WO2012041261A2 - Peptidos del veneno de escorpion rhopalorus junceus y composicion farmaceutica - Google Patents

Peptidos del veneno de escorpion rhopalorus junceus y composicion farmaceutica Download PDF

Info

Publication number
WO2012041261A2
WO2012041261A2 PCT/CU2011/000006 CU2011000006W WO2012041261A2 WO 2012041261 A2 WO2012041261 A2 WO 2012041261A2 CU 2011000006 W CU2011000006 W CU 2011000006W WO 2012041261 A2 WO2012041261 A2 WO 2012041261A2
Authority
WO
WIPO (PCT)
Prior art keywords
rjlb
venom
scorpion venom
scorpion
junceus
Prior art date
Application number
PCT/CU2011/000006
Other languages
English (en)
French (fr)
Other versions
WO2012041261A3 (es
Inventor
José Antonio FRAGA CASTRO
Regla María MEDINA GALI
Alexis Diaz Garcia
Irania Guevara Orellana
Caridad Clara Rodriguez Torres
Judith Rodriguez Coipel
Yanelis Riquenes Garlobo
Isbel Gonzalez Marrero
María Regla PEREZ CAPOTE
Original Assignee
Grupo Empresarial De Producciones Biofarmaceuticas Y Quimicas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2013530559A priority Critical patent/JP2013542196A/ja
Priority to CN2011800541685A priority patent/CN103200951A/zh
Priority to MX2013003545A priority patent/MX360726B/es
Priority to BR112013007198A priority patent/BR112013007198A2/pt
Priority to RU2013119431/10A priority patent/RU2563348C2/ru
Priority to AU2011307691A priority patent/AU2011307691A1/en
Priority to AP2013006811A priority patent/AP2013006811A0/xx
Priority to CA2812841A priority patent/CA2812841A1/en
Application filed by Grupo Empresarial De Producciones Biofarmaceuticas Y Quimicas filed Critical Grupo Empresarial De Producciones Biofarmaceuticas Y Quimicas
Priority to SG2013022850A priority patent/SG191708A1/en
Priority to KR1020137010868A priority patent/KR20140041381A/ko
Priority to EP11815845.0A priority patent/EP2623111A2/en
Publication of WO2012041261A2 publication Critical patent/WO2012041261A2/es
Publication of WO2012041261A3 publication Critical patent/WO2012041261A3/es
Priority to IL225577A priority patent/IL225577A0/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/08Peptides having 5 to 11 amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/56Materials from animals other than mammals
    • A61K35/63Arthropods
    • A61K35/646Arachnids, e.g. spiders, scorpions, ticks or mites
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/1767Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/43504Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates
    • C07K14/43513Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates from arachnidae
    • C07K14/43522Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates from arachnidae from scorpions

Definitions

  • the present invention relates primarily to the pharmaceutical industries, and in particular to the identification of peptides obtained from the scorpion venom Rhopalurus junceus, of the Buthidae family, genus: Rhopalurus, species: R. junceus, vulgar name: Scorpion "colorado” which It contains a mixture of peptides, proteins, amino acids and free amines.
  • Scorpions are terrestrial arthropods and among the poisonous animals they constitute the oldest group as they were the first to appear on earth. There are approximately more than 1500 species of scorpions which have been taxonomically located in the order Scorpions, Arachnida class of Phylum Arthropoda. In its natural conditions, scorpion venom is an opalescent, milky fluid, with a pH of 7.12, containing mucus, lipids, carbohydrates, amino acids, inorganic salts, low molecular weight organic molecules and a wide variety of proteins with molecular weights. between 3 kDa and 90 kDa which constitute the majority component.
  • the scorpion represents one of the components of formulations in the form of tablets for the treatment of primary liver cancer (CN 1265901, 2000 and CN 1279088, 2001) and capsules that inhibit the growth of tumor cells and can cure cancer in patients ( CN 1391941, 2003).
  • Other patents describe various formulations for the treatment of cancer (CN 1252321, 2000; CN 1316249 2001; CN 399979, 2003).
  • chlorotoxin has the ability to prevent the invasion and spread of these types of tumors to undamaged areas of the brain due to their specific and selective interaction with the metalloproteinases which are enzymes that are related to the high invasiveness rate of this type of cancer (Deshane J, Gamer CC and Sontheimer H: Chlorotoxin inhibits glioma cell invasion via matrix metalloproteinase-2. J Biol Chem 2003; 278: 4135-44 ).
  • a toxin isolated from the scorpion Buthus martensis karsh, on tumors implanted in animals (EP2002077425) is published.
  • composition and pharmacological activities of the present invention of the scorpion venom Rhopalurus junceus and / or its derivatives give it a high value as a drug of natural origin, as well as anti-inflammatory, analgesic and anti-cancer activity that substantially differentiates it from other products. Similar in the market. It is completely of natural origin where high efficiency components are combined before tumor cells (peptides), with others that confer analgesic and anti-inflammatory activity. Additionally, it exerts its beneficial action through the induction of apoptosis of tumor cells and through its analgesic and anti-inflammatory properties. These characteristics give it a high value for the improvement of the quality of life in patients with oncological diseases and associated inflammatory processes. It has been found that the composition of the natural product, object of the present invention, is represented by a set of low molecular weight proteins with anti-cancer activity in vitro, whose action confirms a potential antitumor activity in vivo.
  • An object of the present invention is the determination of the composition and description of the peptides that constitute the active ingredients, present in the venom, with antitumor activity.
  • the summary of the qualitative composition, chemical screening, physicochemical properties and pharmacological activity of scorpion venom are shown in Table I, II, III, IV, V, VI and VII respectively.
  • the object of the present invention is non-toxic, according to the results shown in the acute and subchronic toxicity tests carried out in rodents.
  • the studies described in detail below as exemplary embodiments of the object of the invention do not limit the scope of the present application under any circumstances.
  • test substance and the positive control were administered. After 30 min. between 10-5 ⁇ _ of the croton oil solution was applied to each of the surfaces (internal and external of the animal's right ear), the left ear was taken as a control. After three hours the animals were sacrificed according to the standards established for the species (according to FELASA), both ears were cut and circular punches with a diameter of 8mm were taken with a punch and weighed in analytical balance.
  • croton oil offers an appropriate skin inflammation model for the evaluation of anti-inflammatory agents.
  • the active substance of croton oil is Phorbol-12-Myristate 13-Acetate (PMA), a powerful pro-inflammatory agent, whose epicutaneous application results in histological and biochemical changes that include increased vascular permeability and vascular rupture, leukocyte infiltration, activation of protein C and increased release of arachidonic acid and its metabolites.
  • PMA Phorbol-12-Myristate 13-Acetate
  • WFP is a powerful neutrophil activator and the ear has an extensive and rich blood supply. Ip administration path
  • Values are the mean ⁇ D.S. Groups with at least one letter in common do not differ statistically, (p> 0.05)
  • Topical administration of R. junceus venom caused a decrease in atrial edema compared to the control group, as can be seen in Table X.
  • Table XI shows the results corresponding to the study carried out.
  • the oral administration of R. junceus venom caused a discrete inhibition of the granulomatous tissue to form with respect to the negative control group, which suggests activity in the proliferative phase of inflammation.
  • Both doses of the product under study showed a similar behavior.
  • Table XII shows the values of granuloma weight and carmine content for the different experimental groups.
  • the toxin reduced the weight of granuloma 1, 32 and 2.05 times compared to the control group (p ⁇ 0.05) at doses of 3 and 5 mg / kg respectively.
  • Angiogenesis is an essential process for tumor growth and metastasis, so having products capable of inhibiting this complex process is an alternative for the treatment of diseases associated with tumors.
  • Carmine content is an indicator of the formation of new blood vessels in the aerial granuloma. Toxin administration reduced the formation of new blood vessels in granulomatous tissue by 39.22% and 69.24% at doses of 3 and 5 mg / kg (ip) respectively with a significant statistical difference between all experimental groups. (p ⁇ 0.001).
  • Groups with at least one letter in common do not differ statistically
  • Table XIII reports the results of the analgesic effect of R. junceus venom when inoculated via ip in the model of contortions induced by 3% acetic acid, in mice. All the groups treated with the different doses of venom showed a marked decrease (p ⁇ 0.05) in the number of abdominal constrictions with respect to the negative control group. Doses of 2.5 and 7.5 mg / kg of venom produced a result similar to that of the aspirin group, a recognized analgesic agent. On the other hand, the dose of 5.0 mg / kg of R. junceus venom showed a higher percent inhibition (87.74%) than that obtained with the administration of 100 mg / kg of aspirin (49.28%) .
  • Groups with at least one letter in common do not differ statistically (p> 0.05)
  • the animals were placed on a hot plate (UGO-Basile) at a constant temperature of 55 ° C.
  • the latency of the nociceptive response was measured through the licking of the hind legs or the jump. Only animals that showed nociceptive response before 20 sec. They were taken for rehearsal. The cutting time was 40 sec.
  • the response latency time was measured for each animal at 2 and 3 hours.
  • the nociceptive reactivity to heat stimulation in mice was measured using the hot plate test, which constitutes an acute sensitive pain test to detect opioid analgesia as well as some types of hyperalgesic reactions of the spine.
  • a substance is considered to have significant analgesic properties when, when administered to the animal, it doubles the normal reaction time.
  • the analgesic effect of R. junceus venom is shown in Figure 1 and Table XV. The results indicate that the ip administration of the three doses of the product significantly attenuated the thermal stimulation of the hot plate.
  • Figure 1 shows that the three doses of R. junceus venom significantly increase the latency times to show nociceptive response in the hot plate assay in mice.
  • Pain inhibition in the different experimental groups is shown in Table XV.
  • a potent inhibitory action of heat-induced algesia is observed, producing the highest percent inhibition at 2 hours of administration.
  • the effect is potent at 3 hours, and although the doses of 2.5 and 7.5 mg / kg have a behavior similar to the positive control, it is the higher dose that maintains the longest effect over time and exceeds codeine.
  • HEp-2 human larynx epidermoid carcinoma
  • NCI-H292 human monolayer 0.69 mucoepidermoid lung carcinoma
  • Vero normal African monkey ND African green monkey kidney cells
  • MDCK normal dog kidney cells
  • N 2 A murine neuroblastoma cells monolayer 1, 4
  • Macrophages (extracted from the peritoneum in ND Balb / c mice)
  • Lymphocytes (extracted from the spleen of Balb / c mice) ND suspension
  • ND Not determined CC50: average cytotoxic concentration
  • Monolayer cell cultures showed a significant inhibition of cell growth (p ⁇ 0.05) and greater sensitivity than normal cells and tumor cells growing in suspension.
  • the effect of the scorpion venom was evaluated in a breast adenocarcinoma model implanted in Balb c mice. 4 doses were used for the treatment groups (6 mg / kg, 12.5 mg / kg, 25 mg / kg and 50 mg / kg), saline was administered to the control and all administrations were performed orally for 35 days. Tumor growth was monitored for 35 days.
  • Experimental groups treated with scorpion venom showed a significant inhibition of tumor growth (p ⁇ 0.05) when compared to the control group ( Figure 4).
  • the experimental groups showed a dose relationship response during the 35 days of evaluation, regarding the delay of tumor progression.
  • Table XX Average survival time of the experimental groups implanted intraperitoneally with 10 6 S-180 / mouse cells and treated with the scorpion venom R. junceus orally.
  • the dose of 12.5 mg / kg showed the longest half-life (24 days), followed by the dose of 25 mg / kg (22.5 days) and the dose of 6 mg / kg (20.5 days) while the controls showed an average life time of 20 days (Table XXI).
  • the dose of 12.5 mg / kg showed the highest survival rates when 100% of the mice died in the control group (Table XXI), while 6 mg / kg and 25 mg / kg showed 26% and 22% respectively.
  • the increase in survival time and the survival rates in the three experimental groups (6 mg / kg, 12.5 mg / kg and 25 mg / kg) were not statistically significant.
  • the 50 mg / kg dose showed similar values to the control in all cases.
  • the effect of protein fractions on cell growth was determined similarly to example 6.
  • 2 tumor cell lines were used: HeLa, (human cervix carcinoma) A549 (human lung carcinoma) and the normal MRC- cell line. 5, (human lung fibroblasts).
  • the fractions were at a final concentration between 9 pg / mL-600 pg / mL in the wells.
  • the LB-03 and LB-04 fractions have a low molecular weight protein composition and additionally they were the fractions that showed the highest cytotoxicity on tumor cells (Hela and A549) and low toxicity on normal cells (MRC-5).
  • Table XXIII Proportion of the active ingredients within the composition of the poison and range of in vitro biological activity on tumor cells.
  • Another object of the present invention is the formulation obtained as follows. Between 50-100 scorpions of the Rhopalurus junceus species were taken from which the poison was extracted by electrical stimulation and diluted in 10-20 ml of distilled water. It was subsequently clarified by centrifugation at 10,000 rpm for 15 min. For removal of constituents such as mucus and cellular debris. The protein determination was carried out through the Lowry method, showing a concentration between 5-15 mg / mL. Then the scorpion venom is conveniently diluted using distilled water as the sole excipient to obtain a formulation with a concentration range between 0.05-0.1 mg / mL.
  • Fig. 1 the behavior of codeine (positive control), a central analgesic drug whose average life time ranges between 2 and 3 hours, is observed, which corresponds to our results.
  • Fig. 2. shows the electrophoresis in agarose gels (1.5%) of the DNA extracted from the A549 and Hela tumor cell lines.
  • the poison was applied at a final concentration of 0.5 mg / mL per well.
  • the DNA of each cell line was extracted at 24h and 48h.
  • Lane M Lambda DNA / Hind III molecular weight marker
  • Lane 1 -3 A549 cell line; 1: Control DNA without poison, 2: DNA extracted at 24h, 3: DNA extracted at 48h.
  • Lane 4-6 Hela cell line; 4: Control DNA without poison, 5: DNA extracted at 24h, 6: DNA extracted at 48h.
  • Figure Fig. 3. shows the kinetics of tumor growth in the experimental groups. Tumor growth was monitored for 35 days. Inhibition of tumor growth was dependent on the doses of poison used. Statistical significance with respect to the control * p ⁇ 0.05; ** p ⁇ 0.01; * ** p ⁇ 0.001.
  • Fig. 4. shows the kinetics of tumor growth in the experimental groups. Tumor growth was monitored for 35 days. Inhibition of tumor growth was dependent on the doses of poison used. Statistical significance with respect to the control * p ⁇ 0.05; * * p ⁇ 0.01; * ** p ⁇ 0.001.
  • Fig. 5 shows the effect of oral administration of scorpion venom on the incidence of experimental lung metastases. Statistically significant difference ** p ⁇ 0.01; * ** p ⁇ 0.001.
  • Fig. 6. shows the chromatographic profile of the R. junceus scorpion venom in low pressure liquid chromatography using a Superosa 12 HR10 / 30 molecular exclusion column.
  • Fig. 7. shows electrophoresis in polyacrylamide gels under reducing conditions. Fractions obtained in purification were applied by low pressure liquid chromatography. Lane 1: Molecular Weight Marker; Lane 2: Total Poison; Lane 3: Fraction LB-01; Lane 4: Fraction LB-02; Lane 5: Fraction LB-03; Lane 6: Fraction LB-04.
  • Fig. 8. shows the concentration-response curve of the pure peptides obtained from the repurification of the evaluated fractions.
  • the evaluation was performed on Hela tumor cells (human cervical carcinoma). The concentrations used were 6.25 pg / mL-400 pg / mL.
  • Fig. 9. shows the concentration-response curve of the pure peptides obtained from the repurification of the evaluated fractions.
  • the evaluation was performed on CHO non-tumor cells (Chinese Hamster ovary cells). The concentrations used were 6.25 pg / mL-800 pg / mL.
  • Example 1 Model of acute inflammation by induction of atrial edema in mice by croton oil.
  • Inflammation is the tissue's response to damage. This involves the participation and activation of enzymes, release of mediators, fluid extraction, cell migration as well as tissue rupture and repair (Vane 1995). It is well known that the anti-inflammatory effect can be given by a variety of chemical agents and that there is a small correlation between its pharmacological activity and chemical structure (Sertie 1990) This, associated with the complexity of the inflammatory process makes it necessary to use different experimental models to carry out a pharmacological trial. The model of granules by cotton pellets in rats is a test frequently used to study the effect on chronic inflammations.
  • the animals were sacrificed by the corresponding euthanasia method and the pellets extracted and processed. The difference between the final and initial weight of the pellet was considered as the granulomatous tissue produced.
  • Inflammatory angiogenesis is a complex process that involves a number of different molecular mechanisms in many respects but basically similar in that they develop through an angiogenic cascade.
  • the doses of 1; 2.5; 5 and 7.5 mg / kg of R. junceus venom were inoculated intraperitoneally. Thirty minutes later, the experimental animals were administered, via ip, 0.1 mL of a 3% acetic acid solution and the number of contortions / animal was recorded for 10 minutes from the first contortion observed.
  • the effect of venom on cell growth was detected by the MTT test, which measures cell proliferation due to the metabolic reduction of this tetrasolium salt (yellow), by the action of mitochondrial dehydrogenase enzymes.
  • the resulting compound (formazan blue) can be solubilized and quantified spectrophotometrically.
  • tumor cell lines HeLa (human cervical carcinoma), HEp-2 (human larynx squamous cell carcinoma), NCI-H292 (human lung mucoepidermoid carcinoma), A549 (human lung carcinoma), U937 ( human histiocytic lymphoma), L929 (murine fibrosarcoma), S-180 (murine sarcoma) and F3II (murine mammary adenocarcinoma).
  • 3 normal cell lines were used: MRC-5, (human lung fibroblasts), Vero (normal African green monkey kidney cells) and MDCK (normal dog kidney cells).
  • Peripheral macrophages (extracted from the peritoneum of Balb / c mice) and Lymphocytes (extracted from the spleen of Balb / c mice).
  • Cells were grown in culture flasks in minimum essential medium (MEM) or RPMI-1640 medium, according to the characteristics of the cell culture, supplemented with 2 mM glutamine, non-essential amino acids, 10% fetal bovine serum (SFB) and penicillin-streptomycin 100UI / mL - 100 pg / mL. Each was incubated in a humid atmosphere at 37 ° C at 5% CO 2 until monolayer formation. Each cell line was removed by treatment with a 0.25% trypsin-EDTA solution and prepared at a concentration of 2 x 10 5 cells / mL, after being counted in a neubauer chamber.
  • MEM minimum essential medium
  • RPMI-1640 medium RPMI-1640 medium
  • the assay was performed on 96-well flat bottom polystyrene plates, for cell cultures ⁇ Corning Inc. costar).
  • 50 pL of each cell line was added and incubated in a 5% CO 2 atmosphere at 37 ° C for 24 hours.
  • 50 ⁇ 50_ of medium was added with the venom previously dissolved.
  • the venom was at a final concentration of 0.1 mg / mL, 0.25 mg / mL, 0.5 mg / mL, 0.75 mg / mL and 1 mg / mL in the wells. All cell lines were at a final concentration of 10 4 cells / well.
  • Bovine fetal serum (SFB) was used in 10% medium.
  • the plates were incubated again in a 5% CO2 atmosphere at 37 ° C for 3 days. After this time, 10 pL of a sterile MTT solution was added (tetrazolium salts 5 mg / mL in sterile PBS) in each well and incubated under the same conditions for 4h. Finally, the medium was decanted and 200 ⁇ / ⁇ of dimethylsulfoxide solution (DMSO) was added and incubated at 37 ° C for 30 min. in a humid atmosphere The optical density (OD) was read on a MRX Revelation Dynex Technologies ELISA microplate reader at 560 nm with 630 nm as a reference. Each concentration of the fractions was done in triplicate and the test was performed 4 times.
  • DMSO dimethylsulfoxide solution
  • the percentage of cell proliferation is plotted, the formula (1-DO (sample) / OD (control)) X100 calculated against the different concentrations of venom.
  • the average cytotoxic concentration was expressed as the CC50, the concentration of the poison that causes the 50% decrease in the number of viable cells (MTT absorbance) compared to untreated controls and is expressed in Table XV for each of the cells evaluated.
  • the apoptosis determination study was performed by DNA fragmentation. Hela and A549 cell lines were used. The results are observed in Figure 2. DNA fragmentation, characteristic of apoptosis, was observed in the lanes corresponding to the Hela cells treated with the poison, while in the control wells and in the A549 cell line a single one was observed. band corresponding to intact chromosomal DNA. These results show that scorpion venom can induce cell death by both apoptosis and necrosis mechanisms.
  • Example 8 Solid tumor antitumor activity. Experimental model of mammary adenocarcinoma F3II. Intraperitoneal administration route.
  • the effect of scorpion venom in a breast adenocarcinoma model implanted in Balb c mice was evaluated.
  • Four doses were used for the treatment groups (6 mg / kg, 12.5 mg / kg, 25 mg / kg and 50 mg / kg), all saline was administered orally by the control. Tumor growth was monitored for 35 days.
  • the effect of the scorpion venom on lung metastases was evaluated in a breast adenocarcinoma model implanted in Balb / c mice.
  • 4 doses were used for the treatment groups (6 mg / kg, 12.5 mg / kg, 25 mg / kg and 50 mg / kg), saline was administered to the control.
  • the treatments were started, which were performed daily during the morning for 21 days.
  • all experimental groups were sacrificed for cervical dislocation, the lungs were removed for analysis of the occurrence of metastases. In all cases the incidence of the tumor was 100%.
  • the experimental group administered with 6 mg / kg showed levels higher than the control in relation to the occurrence of metastases.
  • the experimental groups treated with the dose of 25 mg / kg showed a decrease in the occurrence of metastases compared to the control, however these differences were not statistically significant.
  • the experimental group treated with the doses of 12.5 mg / kg and 50 mg / kg showed a statistically significant reduction in the occurrence of metastases when compared with the control ( Figure 5).
  • the total poison was dissolved in 0.1 M ammonium acetate (NhUAc) and centrifuged at 10,000 rpm for 15 min. The supernatant was applied in an AKTA FPLC low pressure liquid chromatography kit (Amersham Pharmacia Biotech) implemented with a Superosa12 HR 10/30 filtration gel column, with dimensions 10 x 300 mm. The column was equilibrated with 0.1 M NH 4 Ac and the material eluted in the same solvent at a flow rate of 0.5 mL / min. The absorbance was monitored at an optical density (OD) of 280 nm for 72 min.
  • OD optical density
  • the Superosa 75 HR 10/30 molecular exclusion column was calibrated using a standard protein kit: ribonuclease A (13.7Kda), chymotrypsinogen (25Kda), ovalbumin (43Kda), albumin (67Kda) and 2000 dextran blue. standard curve to determine the relative molecular weights of the different protein fractions obtained during chromatography The results of the chromatographic runs are shown in Fig. 6.
  • the objective of the study was the evaluation of the quality of life in cancer patients.
  • patients of both sexes were used with histological confirmation of cancer at any stage.
  • a document was prepared containing the minutes, the informed consent of the patient and the summary of the medical history issued by the basic oncologist.
  • the document included the evaluation of the clinical behavior of the patients, which was followed through the clinical evolution performed by the physicians at their base hospital.
  • the periodicity of the follow-up was at least two months.
  • the follow-up was carried out for 1 year.
  • the formulation was prepared in bottles with volumes of 40 mL with concentrations between 0.05-0.1 mg / mL.
  • the bottle was diluted in distilled water used as an excipient to complete 1 liter.
  • the administration of the product was performed daily orally and the recommended doses were dependent on the patient's stage and histological diagnosis.
  • VIDATOX ® 30 CH is a homeopathic biotherapeutic, developed in the homeopathy laboratory of LABIOFAM, whose active principle is the venom of the Rhopalurus junceus scorpion in 30 centesimal dilution. Its presentation is in the form of drops in a 33% alcoholic vehicle.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Epidemiology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Insects & Arthropods (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Toxicology (AREA)
  • Pain & Pain Management (AREA)
  • Rheumatology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Medicinal Preparation (AREA)

Abstract

La presente invención se relaciona con nuevos péptidos obtenidos a partir del veneno de escorpión Rhopalurus junceus el que se caracteriza por un alto contenido en proteínas, lípidos, carbohidratos, aminoácidos, sales inorgánicas y otros iones incluidos péptidos como principios activos. La invención también incluye una formulación empleada como medicamento por sus propiedades como anticancerígeno, analgésico y antiinflamatorio que conducen a la elevación de los índices de la mejoría de la calidad de vida en pacientes con enfermedades oncológicas.

Description

PÉPTIDOS DEL VENENO DE ESCORPIÓN RHOPALURUS JUNCEUS Y COMPOSICIÓN FARMACÉUTICA
Campo de la Invención
La presente invención se relaciona fundamentalmente con las industrias farmacéutica, y en particular con la identificación de péptidos obtenidos del veneno del escorpión Rhopalurus junceus, de la familia Buthidae, género: Rhopalurus, especie: R. junceus, nombre vulgar: Alacrán "colorado" que contiene una mezcla de péptidos, proteínas, aminoácidos y aminas libres.
Arte previo
Los escorpiones son artrópodos terrestres y entre los animales ponzoñosos constituyen el grupo más antiguo pues fueron los primeros que aparecieron en la tierra. Existen aproximadamente más de 1500 especies de escorpiones los cuales han sido ubicados taxonómicamente en el orden Escorpiones, clase Arachnida del Phylum Arthropoda. En sus condiciones naturales, el veneno de los escorpiones es un fluido opalescente, lechoso, con un pH 7.12, que contienen mucus, lípidos, carbohidratos, aminoácidos, sales inorgánicas, moléculas orgánicas de bajo peso molecular y una gran variedad de proteínas con pesos moleculares entre 3 kDa y 90 kDa las cuales constituyen el componente mayoritario. En los últimos tiempos se han incrementado las investigaciones relacionadas con los venenos de escorpión debido a la gran variedad de péptidos presentes, los que han demostrado un gran espectro de actividad farmacológica y por tanto invaluables herramientas en el campo de las investigaciones biomédicas (Martin-Eauclaire M-F, Sogoard M, Ramos C, Cestele S, Bougis PE, and Svenson B. Production of active insect-specific scorpion neurotoxin ¡n yeast. Eur. J. Biochem. 1994; 223:637-45; Bednarek MA, Bugianesi RM, Leonard RJ, Félix JP. Chemical synthesis and structure-function studies of margatoxin, a potent inhibitor of voltage-dependent potassium channel in human T lymphocytes. Biochem Biophys Res Commun. 1994 Jan 28; 198(2):6 9-25). En este sentido en los últimos años se han incrementado las publicaciones patentes y no patentes relacionadas con la actividad de estas toxinas y sus derivados como anti- inflamatorias (Rajendra W, Armugam A and Jeyaseelan K. Toxins in anti-nociception and anti-inflammation. Toxicon 2004 July; 44(1 ):1 -17), analgésicos (Guan RJ, Wang CG, Wang M and Wan g DC. A depressant insect toxin with a novel analgesic effect from scorpion Buthus martensii Karsch. Biochim. Biophys. Acta 2001 ; 1549(1 ):9-18), en el tratamiento del cáncer (Liu YF, Ma RL, Wang SL, Duan ZY, Zhang JH, Wu LJ and Wu CF. Expression of an antitumor-analgesic peptide from the venom of Chínese scorpion Buthus martensi Karsch in Escherichia co//'. Protein Expr Puríf. 2003; 27(2):253-8; Wang WX, Ji YH. Scorpion venom induces glioma cell apoptosis in vivo and inhibits glioma tumor growth in vitro. J Neurooncol. 2005 May; 73(1 ):1 -7) y enfermedades neurodegenerativas (Rajendra W, Armugam A and Jeyaseelan K. Toxins in anti- nociception and anti-inflammation. Toxicon 2004 July; 44(1 ):1 -17). Las invenciones en cuya composición está contenido el escorpión y/o su veneno abarcan una amplia variedad de formulaciones encaminadas al tratamiento del cáncer. En los documentos de patentes CN 1073480, 1993 y CN 1076858, 1993 los autores refieren la obtención de un vino que permite el tratamiento y prevención del cáncer, en ambos casos por la mezcla del escorpión y materiales provenientes de plantas y otros animales.
El escorpión representa uno de los componentes de formulaciones en forma de tabletas para el tratamiento de cáncer primario de hígado (CN 1265901 , 2000 y CN 1279088, 2001 ) y de cápsulas que inhiben el crecimiento de células tumorales y pueden curar el cáncer en pacientes (CN 1391941 , 2003). Otras patentes describen variadas formulaciones para el tratamiento del cáncer (CN 1252321 , 2000; CN 1316249 2001 ; CN 399979, 2003).
Por otro lado existen patentes referidas a la utilización exclusiva de toxinas, obtenidas a partir del veneno de escorpión, con actividad sobre determinados tipos de células tumorales. Los primeros trabajos con toxinas provenientes de venenos de escorpión demostraron la obtención de un péptido a partir del escorpión hebreo Leiurus quinquestriatus. Dicha toxina, un péptido de 4 KDa nombrada clorotoxina, tiene la capacidad de unirse a los canales de cloruro expresados en los gliomas (tumores primarios de cerebro provenientes de la glia (DeBin JA, Maggio JE, Strichartz GR. Purification and characterization of chlorotoxin, a chloride channel ligand fróm the venom of the scorpion. Am J Physiol 1993; 264:361 -369). A partir de estos descubrimientos, en 1999 Ullrich et al., describieron en la patente US 5 905 027 un método de diagnóstico y tratamiento de gliomas. Otros trabajos que toman como base la especificidad de acción de la clorotoxina sobre determinados receptores celulares en los gliomas, mostraron que esta toxina es un marcador altamente específico para otros tipos de tumores, cuyas células presentan un origen embrionario común con las células del Sistema Nervioso Central (SNC) (Lyons SA, O'Neal J, Sontheimer H: Chlorotoxin, a scorpion derived peptide, specifically binds to gliomas and tumors of neuroectodermal origin. GLIA 2002; 39:162-73.). Adicionalmente recientes trabajos demostraron que además de inhibir el crecimiento "in vitro" de los gliomas, la clorotoxina, tiene la capacidad de impedir la invasión y diseminación de este tipo de tumores hacia zonas del cerebro no dañadas debido a su interacción específica y selectiva con las metaloproteinasas las cuales son enzimas que están relacionadas con la elevada tasa de invasividad de este tipo de cáncer (Deshane J, Gamer CC and Sontheimer H: Chlorotoxin inhibits glioma cell invasión via matrix metalloproteinase-2. J Biol Chem 2003; 278:4135-44). En 2004 aparece publicada otra patente relacionada con la actividad antitumoral de una toxina, aislada del escorpión Buthus martensis karsh, sobre tumores implantados en animales (EP2002077425 )
En algunos casos existen una gran variedad de formulaciones que tienen la propiedad de tratar o curar el cáncer, representados por las patentes descritas, sin embargo en estos casos no se demuestra que esta cualidad sea exclusiva de algunos de los tipos de escorpiones o toxinas involucrados en la elaboración de las mismas. Por otro lado, las toxinas descritas, provenientes de los escorpiones Leiurus quinquestriatus no presentan actividad antitumoral per se como el caso de la clorotoxina y Buthus martensis karsh, permite el tratamiento solo de determinados tipos tumores en forma de toxinas aisladas y no como una mezcla de proteínas presentes en el veneno completo.
En Cuba existe una patente de una solución diluida del veneno del escorpión Rhopalurus juhceus con actividad antitumoral demostrada empíricamente en estudios realizados. En estos trabajos se administró la solución en animales domésticos con tumoraciones espontáneas y se observó reducción del tumor, obliteración y elevada sobrevida (CU 22413 A1 ). La formulación de la presente invención posee propiedades distintivas sobre la base de que no se conoce formulación alguna en la rama farmacéutica, para el tratamiento y la mejoría de la calidad de la vida que se reivindica en la presente invención.
Descripción detallada de la Invención La composición y las actividades farmacológicas de la presente invención del veneno del escorpión Rhopalurus junceus y/o sus derivados, le confieren un alto valor como medicamento de origen natural, así como actividad anti-inflamatoria, analgésica y anticancerígena que lo diferencia sustancialmente de otros productos similares en el mercado. Es completamente de origen natural donde se combinan componentes de elevada eficacia ante las células tumorales (péptidos), con otros que le confieren actividad analgésica y anti-inflamatoria. Adicionalmente, ejerce su acción beneficiosa a través de la inducción de apoptosis de células tumorales y a través de sus propiedades analgésicas y antiinflamatorias. Estas características le confieren un alto valor para la mejoría de la calidad de vida en pacientes con enfermedades oncológicas y procesos inflamatorios asociados. Se ha encontrado que la composición del producto natural, objeto de la presente invención, está representada por un conjunto de proteínas de bajo peso molecular con actividad anti-cancerígena in vitro, cuya acción confirma una potencial actividad antitumoral in vivo.
Un objeto de la presente invención es la determinación de la composición y la descripción de los péptidos que constituyen los principios activos, presentes en el veneno, con actividad antitumoral. El resumen de la composición cualitativa, el tamizaje químico, las propiedades físico-químicas y la actividad farmacológica del veneno de escorpión se muestran en la Tabla I, II, III, IV, V, VI y VII respectivamente.
Tabla I. Tamizaje Químico del veneno completo de Rhopalurus junceus, que se emplea en las formulaciones de la presente invención.
Ensayo Resultados
Ensayo de Dragendorff negativo
Ensayo del Cloruro Férrico negativo
Ensayo de Shinoda negativo
Ensayo de Lieberman-Burchard negativo
Ensayo de Ninhidrina positivo
Carbohidratos positivo
Lípidos positivo Tabla II. Determinación de iones metálicos presentes en el veneno completo de Rhopalurus junceus.
Figure imgf000006_0001
*metales pesados con niveles por debajo del límite inferior Tabla III. Propiedades físico-químicas del veneno del escorpión Rhopalurus junceus., que se emplea en las formulaciones de la presente invención.
Figure imgf000006_0002
Tabla IV. Tabla de los pesos moleculares relativos de las proteínas (PMR), presentes en el veneno de escorpión, obtenidos mediante exclusión molecular empleando cromatografía liquida de baja presión y por electroforesis en geles de poliacrilamida (SDS-PAGE).
Pesos moleculares
relativos
>72 kDa
60 kDa
45 kDa
30 kDa
14 kDa
8 kDa
<4 kDa Tabla V. Principios activos con actividad tóxica en células tumorales, identificados a partir del veneno completo de Rhopalurus junceus.
Figure imgf000007_0001
Tabla VI. Resumen de los Estudios Toxicológicos
Veneno de R. junceus
Toxicología General (mg/kg) Efecto
Toxicidad Aguda
Vía Oral 2000 N. E.
Vía IP 5-20 DL50=16,41 mg/kg (M y H)
Irritabilidad
Dérmica - N.E
Oftálmica - N.E
Mucosa Oral - N.E
Toxicidad a Dosis Repetida
Toxicidad dosis repetida 100 N.E
oral
(28 días)
Toxicidad Subcrónica oral 0,1-100 N. E.
(90 días) Consumo de Agua y Alimentos N. E.
Ganancia de Peso N. E.
Parámetros Hematológicos y Bioquímicos N. E.
Peso Relativo de órganos N. E.
Anatomía Patológica N. E.
Toxicología Especial Veneno de R. junceus Efecto
(mg/kg)
Micronúcleos Oral(agudo) 2000 N.E
en médula Oral(dosis repetidas, 100 N.E
ósea de 28 días )
ratón ¡P 4,10-13,13 N.E
Leyenda: N.E.-no efecto
Tabla VII. Resumen de los Estudios farmacológicos
Figure imgf000008_0001
Para la determinación de la composición de la mezcla de la presente invención llevaron a cabo los siguientes pasos:
• Determinación de proteínas totales por el método Lowry modificado.
• Tamizaje Químico • Separación de los péptidos según grupos de pesos moleculares mediante Fraccionamiento por cromatografía liquida de baja presión mediante el uso de columna Superosa 12 HR 10/30.
• Electroforesis de proteínas en geles de poliacrilamida (SDS-PAGE).
· Separación del veneno completo y de los péptidos mediante Cromatografía liquida de alta resolución, empleando una columna C18 de fase reversa.
• Determinación de los espectros UV a longitudes de ondas 220nm y 280nm.
• Viabilidad celular en células normales y tumorales
• Análisis de cada uno de los péptidos de interés mediante espectrometría de masas.
El objeto de la presente invención es no tóxico, de acuerdo a los resultados mostrados en los ensayos de toxicidad aguda y subcrónica realizados en roedores. Los estudios que se describen en detalle más adelante como ejemplos de realización del objeto de invención, no limitan en ninguna circunstancia el alcance de la presente solicitud.
Para la realización de los experimentos recogidos en los ejemplos de realización se tomaron varios escorpiones a los cuales se les extrajo el veneno por estimulación eléctrica y se diluyó en agua destilada convenientemente. Posteriormente se clarificó por centrifugación a 10 000 rpm durante 15 min. para eliminación de constituyentes como mucus y debris celular. Al mismo se le realizó la determinación de proteínas a través del método de Lowry, mostrando una concentración entre 5-15 mg/mL.
Vía de administración intraperitoneal (ip)
Primeramente se administraron la sustancia de ensayo y el control positivo. Pasados 30 min. se aplicaron entre 10- 5μΙ_ de la solución de aceite de crotón en cada una de las superficies (interna y externa de la oreja derecha del animal), la oreja izquierda se tomó como control. Transcurridas tres horas se sacrificaron los animales de acuerdo a las normas establecidas para la especie (según FELASA), se cortaron ambas orejas y ponches circulares con un diámetro de 8mm fueron tomados con un sacabocado y pesados en balanza analítica. Vía de administración tópica
Primeramente se aplicaron los 25-30μΙ_ de la solución de aceite de crotón en cada una de las superficies (interna y extema de la oreja derecha del animal, la oreja izquierda se tomó como control). Inmediatamente después se aplicó la sustancia de ensayo. Transcurridas tres horas se sacrificaron los animales de acuerdo a las normas establecidas para la especie (según FELASA), se cortaron ambas orejas y ponches circulares con un diámetro de 8mm fueron tomados con un sacabocado y pesados en balanza analítica.
Vía de administración oral Se aplicaron 25-30μΙ_ de la solución de aceite de crotón en cada una de las superficies (interna y externa de la oreja derecha del animal, la oreja izquierda se tomó como control). Inmediatamente después se administró oralmente las muestras de ensayo. Transcurridas tres horas se sacrificaron los animales de acuerdo a las normas establecidas para la especie (según FELASA), se cortaron ambas orejas y ponches circulares con un diámetro de 8mm fueron tomados con un sacabocado y pesados en balanza analítica.
La aplicación tópica de aceite de crotón ofrece un modelo de inflamación de la piel apropiada para la evaluación de agentes antiinflamatorios. El principio activo del aceite de crotón es el Phorbol-12-Myristate 13-Acetate (PMA), potente agente proinflamatorio, cuya aplicación epicutánea resulta en cambios histológicos y bioquímicos que incluyen aumento de la permeabilidad vascular y ruptura vascular, infiltración leucocitaria, activación de proteína C y liberación incrementada de ácido araquidónico y sus metabolitos. Además se conoce que el PMA es un poderoso activador de neutrófilos y la oreja posee una extensa y rica irrigación sanguínea. Vía de administración ip
La administración ip. de las dosis de 1-5 mg/kg de peso corporal inhibió la inflamación inducida por aceite de crotón en la oreja del ratón (Tabla VIII), siendo la dosis de 3 mg/kg más efectiva que la administración de 15 mg/kg de dexametasona vía ip en los animales de experimentación al tener un mayor porciento de inhibición de la inflamación (97% vs 60,86%). La dosis de 5 mg/kg no difirió estadísticamente (p>0,05) del control positivo (dexametasona). Tabla VIII. Efecto de la administración intraperitoneal del veneno de R. junceus en el modelo de edema auricular en ratón
Figure imgf000011_0001
Los valores son la media ± D.S. Grupos con al menos una letra en común no difieren estadísticamente, (p >0.05)
Vía de administración Oral
Al administrar oralmente 5, 10 y 20 mg/kg de veneno de R. junceus se aprecia una disminución significativa en el peso de las orejas con respecto al grupo control negativo (Tabla IX), pero que no es estadísticamente comparable con la inhibición de la inflamación producida por la dexametasona, fármaco antiinflamatorio esferoidal por excelencia que inhibe la fosfolipasa A2 (enzima responsable de la vía del ácido araquidónico).
Tabla IX. Efecto de la administración oral del veneno de R. junceus en al modelo de edema auricular en ratón
Figure imgf000011_0002
Los valores son la media ± D.S. Grupos con al menos una letra en común no difieren estadísticamente. (p>0,05) 06
11
Vía de administración tópica
La administración tópica del veneno de R. junceus provocó una disminución del edema auricular respecto al grupo control, como puede apreciarse en la Tabla X.
Tabla X. Efecto de la administración tópica del veneno de R. junceus en al modelo de edema auricular en ratón
Figure imgf000012_0001
Los valores son la media ± D.S. Grupos con al menos una letra en común no difieren estadísticamente. (p>0.05)
En la Tabla XI se pueden apreciar los resultados correspondientes al estudio realizado. La administración por vía oral del veneno de R. junceus provocó una discreta inhibición del tejido granulomatoso a formarse respecto al grupo control negativo, lo que sugiere actividad en la fase proliferativa de la inflamación. Ambas dosis del producto en estudio presentaron un comportamiento similar.
Tabla XI. Efecto del veneno de R. junceus sobre los granulomas inducidos por pellets de algodón en ratas.
Grupo Peso del granuloma (mg) % inhibición
Control 103,33 ± 5,08 a -
Dexametasona 55,40 ± 14,84 b 44,09
3 mg/kg
Veneno R. junceus 80,60 ± 4,74 c 20,95
10 mg/kg
Veneno R. junceus 83,10 ± 6,52 c 18,49
20 mg/kg Los valores son la media ± D.S. Grupos con al menos una letra en común no difieren estadísticamente, (p >0.05)
En la Tabla XII se muestran los valores del peso del granuloma y del contenido de carmín para los diferentes grupos experimentales. La toxina redujo el peso del granuloma 1 ,32 y 2,05 veces respecto al grupo control (p<0,05) a las dosis de 3 y 5 mg/kg respectivamente.
La angiogénesis es un proceso esencial para el crecimiento del tumor y la metástasis por lo que contar con productos capaces de inhibir este complejo proceso constituye una alternativa para el tratamiento de enfermedades asociadas a tumores.
El contenido de carmín es un indicador de la formación de nuevos vasos sanguíneos en el granuloma aéreo. La administración de toxina redujo la formación de nuevos vasos sanguíneos en el tejido granulomatoso en un 39,22 % y 69,24 % a las dosis de 3 y 5 mg/kg (ip) respectivamente con una diferencia estadística significativa entre todos los grupos experimentales (p<0,001 ).
Tabla XII. Efecto del veneno de R. junceus por vía intraperitoneal sobre el peso del granuloma y el contenido de carmín en la Angiogénesis Inflamatoria inducida por adyuvantes en ratas (n=10).
Figure imgf000013_0001
Grupos con al menos una letra en común no difieren estadísticamente
(p>0,05)
A: absorbancia a 490 nm
En la Tabla XIII se reportan los resultados del efecto analgésico del veneno de R. junceus al ser inoculado vía ip en el modelo de contorsiones inducidas por ácido acético al 3%, en ratones. Todos los grupos tratados con las diferentes dosis de veneno mostraron una marcada disminución (p<0,05) en el número de constricciones abdominales con respecto al grupo control negativo. Las dosis de 2,5 y 7,5 mg/kg de veneno produjeron un resultado similar al del grupo de la aspirina, reconocido agente analgésico. Por otra parte, la dosis de 5,0 mg/kg de veneno de R. junceus mostró un por ciento de inhibición superior (87,74%) al obtenido con la administración de 100 mg/kg de aspirina (49,28%).
Tabla XIII. Efecto de la administración intraperitoneal del veneno de R. junceus en el modelo de contorsiones abdominales inducidas por ácido acético.
Figure imgf000014_0001
CN: control negativo; No.: número
ASA: aspirina
Grupos con al menos una letra en común no difieren estadísticamente (p>0,05)
Administración vía oral
Como se puede apreciar en la Tabla XIV, todos los grupos tratados con las diferentes dosis de veneno mostraron una marcada disminución (p<0,05) en el número de constricciones abdominales con respecto al grupo control negativo.
Al comparar las dosis de veneno empleadas con el grupo control positivo (aspirina) se evidenció un marcado efecto analgésico. Las dosis de 10, 15 y 20 mg/kg de veneno de R. junceus produjeron una inhibición en las contracciones abdominales similares a la provocada por la aspirina; en tanto a pesar de que la dosis de 50 mg/kg no presentó diferencias estadísticas significativas con el control positivo, alcanzó un 54,78% de inhibición de las contorsiones abdominales en los animales de experimentación. Tabla XIV. Inhibición de las contorsiones abdominales inducidas por ácido acético tras la administración oral del veneno de R. junceus
Figure imgf000015_0001
CN: control negativo; No.: número
ASA: aspirina
• Modelo de analgesia térmica en ratones.
Se empleó la metodología descrita en Drug Discover.
Se utilizaron ratones OF1 , machos, peso promedio 20-25 g procedentes del Centro Nacional para la Producción de Animales de Laboratorio (CENPALAB).
Antes y después de la administración de la sustancia de ensayo los animales fueron puestos en un plato caliente (UGO-Basile) a temperatura constante de 55° C. Fue medida la latencia de la respuesta nociceptiva a través del lamido de las patas traseras o el salto. Solo los animales que mostraron respuesta nociceptiva antes de los 20 seg. Fueron tomados para el ensayo. El tiempo de corte fue de 40 seg.
Luego de administrar el control negativo (solución salina fisiológica), el control positivo (Codeína 4%) y las diferentes dosis del veneno de R. junceus se midió el tiempo de latencia de la respuesta para cada animal a las 2 y 3 horas.
En el presente trabajo se midió la reactividad nociceptiva al estímulo térmico en ratones utilizando el ensayo del plato caliente, el cual constituye una prueba de dolor agudo sensitivo para detectar analgesia opioide así como algunos tipos de reacciones hiperalgésicas de la espina dorsal. Se considera que una sustancia tiene propiedades analgésicas significativas cuando al ser administrada al animal, este duplica el tiempo normal de reacción. El efecto analgésico del veneno de R. junceus se muestra en la Figura 1 y Tabla XV. Los resultados indican que la administración ip de las tres dosis del producto significativamente atenuó la estimulación térmica del plato caliente. En la Figura 1 se observa que las tres dosis de veneno de R. junceus incrementan significativamente los tiempos de latencia para mostrar respuesta nociceptiva en el ensayo de plato caliente en ratones.
La inhibición del dolor en los diferentes grupos experimentales se muestra en la Tabla XV. Se observa una potente acción inhibitoria de la algesia inducida por calor, produciéndose los mayores porcientos de inhibición a las 2 horas de administración. El efecto es potente a las 3 horas, y aunque las dosis de 2,5 y 7,5 mg/kg tienen un comportamiento similar al control positivo, es la dosis mayor la que mantiene el efecto más prolongado en el tiempo y superior a la codeína.
Tabla XV. Efecto de la administración del veneno de R. junceus en el modelo del plato caliente.
Figure imgf000016_0001
Grupos con al menos una letra común, no difieren estadísticamente (p>0,05)
Los resultados del plato caliente evidencian que el veneno de R. junceus juega un papel antinociceptivo a niveles del sistema nervioso central superiores a la médula espinal puesto que la respuesta de lamido y salto requiere de una mayor y más compleja integración neuronal.
Tabla XVI. Potencial pro-oxidante del veneno del escorpión R, junceus en el modelo de daño al ADN inducido por Fenantrolina/Cu2+ . Sustancia de prueba Concentración agnitud del daño al ADN
(mi) ) a 532 nm; Media ± DE)
Control negativo ~ 0,069 ± 0,004
7,50 0,023± 0,009*
18,70 0,036 ± 0,002*
veneno del escorpión R.
eus 37,50 0,047± 0,003*
56,20 0,069 ± 0,012
75,00 0,075 + 0,01 1
Ácido ascórbico 200 μΜ 0,130 ± 0,006*
Letras diferentes significan diferencia estadística (p < 0,05) respecto al control Tabla XVII. Potencial pro-oxidante del veneno del escorpión R. junceus en el modelo de daño al ADN inducido por Bleomicina/Fe3* '.
Figure imgf000017_0001
Letras diferentes significan diferencia estadística (p < 0,05) respecto al control Tabla XVIII. Células empleadas en los estudios de evaluación de la actividad biológica in vitro del veneno de escorpión R. junceus. Líneas celulares Forma de CC50(mg/mL) crecimiento
HeLa (carcinoma de cérvix humano) monocapa 1
HEp-2 (carcinoma epidermoide de laringe humano) monocapa 0,78
NCI-H292 (carcinoma mucoepidermoide de pulmón monocapa 0,69 humano)
A549 (carcinoma de pulmón humano) monocapa 0,62
U937 (linfoma histiocitico humano) suspensión ND
L929 (fibrosarcoma murino) monocapa 1 ,3
S-180 (sarcoma murino) suspensión ND
F3II (adenocarcinoma mamario murino) monocapa 1 ,2
MRC-5 (fibroblastos de pulmón humano) Monocapa 2,2
Vero ( células normales de riñon de mono verde Monocapa ND africano)
MDCK (células normales de riñon de perro) monocapa ND
N2A (células de neuroblastoma murino) monocapa 1 ,4
Macrófagos (extraídos del peritoneo en ratones ND Balb/c)
Linfocitos (extraídos del bazo de ratones Balb/c) suspensión ND
ND: No determinado CC50: concentración citotóxica media
Los cultivos celulares que crecen en monocapa (carcinomas) mostraron una inhibición significativa del crecimiento celular (p<0.05) y mayor sensibilidad que las células normales y las células tumorales que crecen en suspensión.
La comparación de la CC50 de la línea celular normal humana MRC-5 con las células tumorales humanas mostraron que el veneno del escorpión R. junceus presenta una diferencial y significativa citotoxicidad (p<0.05) hacia las células tumorales con respecto a las células normales (Tabla XVIII).
La exposición del veneno, provocó una inhibición significativa del crecimiento (p<0.05), en las líneas celulares tumorales humanas y murinas que crecen en monocapa. Las líneas celulares tumorales U937 y S-180 (ambas crecen en suspensión) se mostraron menos sensible a la aplicación del veneno, la afectación sólo se tradujo en una ligera disminución del crecimiento (Tabla XVIII).
Las celulares normales, los linfocitos y macrófagos peritoneales mostraron menor sensibilidad que las células tumorales. No se observaron efectos tóxicos significativos (p>0.05) en todo el espectro de concentraciones empleadas (Tabla XVIII).
La evaluación de la incidencia de las metástasis pulmonares al cabo de 50 días demostró, que la administración del veneno de escorpión provocó una reducción significativa (0,8 mg/kg; 3,2 mg/kg) en la aparición de metástasis espontáneas en los pulmones (Tabla XIX).
Tabla XIX. Incidencia de la aparición de metástasis pulmonares en ratones Balb c implantados con el tumor mamario murino F3II. *diferencias estadísticamente significativa con respecto al control (p<0,05).
Figure imgf000019_0001
Vía de administración oral
Se evaluó el efecto del veneno del escorpión en un modelo de adenocarcinoma mamario implantado en ratones Balb c. Se emplearon 4 dosis para los grupos de tratamiento (6 mg/kg, 12,5 mg/kg, 25 mg/kg y 50 mg/kg), al control se administró solución salina y todas las administraciones se realizaron por vía oral durante 35 días. El crecimiento tumoral se monitoreó durante 35 días.
Los grupos experimentales tratados con el veneno del escorpión mostraron una inhibición significativa del crecimiento tumoral (p<0.05) cuando se compararon con el grupo control (Figura 4). Los grupos experimentales mostraron una relación dosis respuesta durante los 35 días de evaluación, con respecto al retardo de la progresión tumoral.
Tabla XX. Tiempo de sobrevida promedio de los grupos experimentales implantados por vía intraperitoneal con 106 células de S-180/ratón y tratados con el veneno del escorpión R. junceus por vía oral.
Figure imgf000020_0001
Tabla XXI. Porciento de sobrevida de los grupos experimentales implantados por vía intraperitoneal con 106 células de S-180 y tratados con el veneno del escorpión R. junceus por vía oral.
Figure imgf000020_0002
La dosis de 12,5 mg/kg mostró el mayor tiempo de vida media (24 días), seguido por la dosis de 25 mg/kg (22,5 días) y la dosis de 6 mg/kg (20,5 días) mientras los controles mostraron un tiempo de vida media de 20 días (Tabla XXI). De igual forma la dosis de 12,5 mg/kg evidenció los mayores porcientos de sobrevida cuando murió el 100% de los ratones en el grupo control (Tabla XXI), mientras que 6 mg/kg y 25 mg/kg mostraron 26% y 22% respectivamente. A pesar de estos resultados el incremento del tiempo de sobrevida y los porcentajes de sobrevida en los tres grupos experimentales (6 mg/kg, 12,5 mg/kg y 25 mg/kg) no fueron estadísticamente significativos. La dosis de 50 mg/kg mostró valores similares al control en todos los casos.
Ensayo de actividad antiproliferativa de las fracciones obtenidas en cromatografía de exclusión molecular
El efecto de las fracciones proteicas sobre el crecimiento celular se determinó de forma similar al ejemplo 6. En el estudio se emplearon2 líneas celulares tumorales: HeLa, (carcinoma de cérvix humano) A549 (carcinoma de pulmón humano) y la línea celular normal MRC-5, (fibroblastos de pulmón humano). Las fracciones quedaron a concentración final entre 9 pg/mL-600 pg/mL en los pocilios.
La evaluación de la citotoxicidad de las fracciones en las líneas celulares evidenció una inhibición del crecimiento en las células tumorales y escasa toxicidad en la célula normal para las fracciones LB-03 y LB-04. La tabla XXII muestra la CC50 para cada una de las fracciones provenientes de la purificación.
Tabla XXII. Pesos moleculares relativos y concentración citotoxica media de las fracciones obtenidas en cromatografía de exclusión molecular sobre líneas celulares tumorales y normales.
Figure imgf000021_0001
*pesos moleculares relativos determinados a partir de la curva de calibración log PM vs Vo/Ve. PM: pesos moleculares de las proteínas patrones. Vo: Volumen muerto de la columna. Ve: volumen de elusión de cada pico de proteína.
Las fracciones obtenidas en cromatografía de exclusión molecular en FPLC se corrieron en una electroforesis en geles de poliacrilamida con un gradiente entre un 4-20% para verificar la composición proteica de las mismas la cual se observa en la Fig. 7.
Las fracciones LB-03 y LB-04 presentan una composición de proteínas de bajo peso molecular y adicionalmente fueron las fracciones que mostraron mayor citotoxicidad sobre células tumorales (Hela y A549) y baja toxicidad sobre células normales (MRC-5).
Estas fracciones se sometieron a una repurificación mediante cromatografía liquida de alta resolución empleando una columna C18 analítica de fase reversa. Como fase móvil se emplearon dos soluciones: solución A (0,12% de ácido trifluoroacético (TFA) en agua) y solución B (0,10% de TFA en acetonitrilo). La elución de los componentes de las fracciones se realizó bajo un gradiente escalonado de 0 hasta 70% de la solución B en 70 minutos a un flujo de 0,5 ml/min y se detectaron a una longitud de onda de 220nm. Los péptidos puros obtenidos se evaluaron en células tumorales (Hela) y normales (CHO) de forma similar a como se describe en el ejemplo 6 y se determinaron el peso molecular y la secuencia proteica mediante espectrometría de masas acoplado a un equipo de cromatografía líquida de alta resolución.
Se obtuvieron ocho péptidos RjLB-01 , RjLB-03, RjLB-04, RjLB-05, RjLB-07, RjLB-08, RjLB-09 y RjLB- 4 con elevada actividad citotóxica sobre células tumorales y escasa toxicidad sobre las células normales. Estos resultados corroboran lo observado para el caso del veneno completo y confirma la toxicidad preferencial de los componentes del veneno sobre las células tumorales.
A partir de la purificación de los componente activos se determinaron las proporciones a las que se encuentran en el veneno (Tabla XXIII).
Tabla XXIII. Proporción de los principios activos dentro de la composición del veneno y rango de la actividad biológica in vitro sobre células tumorales.
Principio activo proporción en el veneno Rango de actividad biológica
(%) in vitro (%)
RjLB-01 1 ,5-2,0 0,945 -1 ,89
RjLB-03 8-9 4,5 - 9
RjLB-04 0,5-1 ,0 0,445 - 0,89
RjLB-05 0,5-0,7 0,33-0,71
RjLB-07 0,5-0,8 0,5-1 ,0
RjLB-08 0,5-1 ,0 1 ,5-3,0
RjLB-09 0,3-0,6 3,65-4,1
RjLB-14 0,4-0,8 3,5-6,0 Para los péptidos RjLB-01 , RjLB-03 y RjLB-04 se obtuvieron pesos moleculares de 908 Da, 1964 Da y 4748,14 Da respectivamente. Las secuencias obtenidas fueron comparadas con las bases de datos de péptidos de venenos de escorpión y no se encontró homología con péptidos anteriormente descritos lo que evidencia adicionalmente la novedad de los resultados.
Otro objeto de la presente invención es la formulación obtenida de la siguiente forma. Se tomaron entre 50-100 escorpiones de la especie Rhopalurus junceus a los cuales se les extrajo el veneno por estimulación eléctrica y se diluyó en 10-20 ml_ de agua destilada. Posteriormente se clarificó por centrifugación a 10 000 rpm durante 15 min. Para eliminación de constituyentes como mucus y debris celular. Al mismo se le realizó la determinación de proteínas a través del método de Lowry, mostrando una concentración entre 5-15 mg/mL. A continuación el veneno de escorpión se diluye convenientemente empleando el agua destilada como único excipiente para obtener una formulación con un rango de concentración entre 0,05-0,1 mg/mL.
Breve descripción de las figuras.
En la Fig.1 se observa el comportamiento de la codeína (control positivo), fármaco analgésico central cuyo tiempo de vida media oscila entre las 2 y 3 horas, lo cual está en correspondencia con nuestros resultados.
La Fig. 2. muestra la electroforesis en geles de agarosa (1 .5 %), del ADN extraído de las líneas celulares tumorales A549 y Hela. El veneno se aplicó a concentración final de 0.5 mg/mL por pocilio. El ADN de cada línea celular se extrajo a las 24h y 48h.
Carril M: Marcador de peso molecular Lambda DNA /Hind III;
Carril 1 -3: Linea celular A549; 1 : ADN control sin veneno, 2: ADN extraído a las 24h, 3: ADN extraído a las 48h.
Carril 4-6: Línea celular Hela; 4: ADN control sin veneno, 5: ADN extraído a las 24h, 6: ADN extraído a las 48h.
La figura Fig. 3. muestra |a cinética de crecimiento tumoral en los grupos experimentales. El crecimiento tumoral se monitoreó durante 35 días. La inhibición del crecimiento tumoral fue dependiente de las dosis de veneno empleadas. Significación estadística con respecto al control *p<0,05; **p<0,01 ; ***p<0,001 . La Fig. 4. muestra la cinética de crecimiento tumoral en los grupos experimentales. El crecimiento tumoral se monitoreó durante 35 días. La inhibición del crecimiento tumoral fue dependiente de las dosis de veneno empleadas. Significación estadística con respecto al control *p<0,05; **p<0,01 ; ***p<0,001 .
La Fig.5 muestra el efecto de la administración oral del veneno de escorpión sobre la incidencia de las metástasis experimentales en pulmón. Diferencia estadísticamente significativa **p<0,01 ; ***p<0.001 .
La Fig. 6. muestra el perfil cromatográfico del veneno de escorpión R. junceus en cromatografía líquida de baja presión empleando una columna de exclusión molecular Superosa 12 HR10/30.
La Fig. 7. muestra la electroforesis en geles de poliacrilamida en condiciones reductoras, Se aplicaron las fracciones obtenidas en la purificación mediante cromatografía líquida de baja presión. Carril 1 : Marcador de Peso Molecular; Carril 2: Veneno Total; Carril 3: Fracción LB-01 ; Carril 4: Fracción LB-02; Carril 5: Fracción LB-03; Carril 6: Fracción LB-04.
La Fig.8. muestra la curva de concentración-respuesta de los péptidos puros obtenidos de la repurificación de las fracciones evaluadas. La evaluación se realizó sobre las células tumorales Hela (carcinoma de cérvix humano). Las concentraciones empleadas estuvieron de 6,25 pg/mL-400 pg/mL.
La Fig.9. muestra la curva de concentración-respuesta de los péptidos puros obtenidos de la repurificación de las fracciones evaluadas. La evaluación se realizó sobre las células no tumorales CHO (células de ovario de Hámster chino). Las concentraciones empleadas estuvieron de 6,25 pg/mL-800 pg/mL.
EJEMPLOS DE REALIZACION
Ejemplo 1 Modelo de inflamación aguda por inducción de edema auricular en ratón por aceite de crotón.
Se utilizaron ratones OF1 , machos, peso promedio 18-22 g procedentes del Centro Nacional para la Producción de Animales de Laboratorio (CENPALAB).
Se desarrolló la metodología descrita en el CYTED (Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo. Lima. Noviembre 1996). Se utilizó una solución de aceite de crotón en acetona al 0,5%. La dexametasona se disolvió en CMC al 0,5%. Ejemplo 2 Modelo de implantación de tacos de algodón en ratas.
Se utilizaron Ratas Sprague-Dawley con 180 g de peso corporal procedentes del Centro Nacional para la Producción de Animales de Laboratorio (CENPALAB).
Se empleó el método de implantación de tacos de algon citado en el CYTED (Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo. Lima. Noviembre 1996),
La inflamación es la respuesta del tejido frente a un daño. Esto involucra la participación y activación de enzimas, liberación de mediadores, extravación de fluido, migración celular así como ruptura y reparación de los tejidos (Vane 1995). Es bien conocido que el efecto antiinflamatorio puede estar dado por una variedad de agentes químicos y que existe una pequeña correlación entre su actividad farmacológica y estructura química (Sertie 1990) Esto, asociado con la complejidad del proceso inflamatorio hace necesario el uso de diferentes modelos experimentales para llevar a cabo un ensayo farmacológico. El modelo del granulosa por pellets de algodón en ratas es un ensayo utilizado frecuentemente para estudiar el efecto sobre inflamaciones crónicas. (Elieter 1999) Se ha demostrado que hay tres fases de inflamación después de la implantación del pellet, la última fase pertenece al proliferación celular que ocurre entre el tercer y sexto día, esta fase pude ser inhibida por antiinflamatorios esteroidales como la dexametasona y por fármacos antiinflamatorios no esteroidales (Sw 1972).
Transcurridos los 7 días de haberse implantado los pellets de algodón los animales fueron sacrificados por el método de eutanasia correspondiente y los pellets extraídos y procesados. La diferencia entre el peso final e inicial del pellet fue considerado como el tejido granulomatoso producido.
Ejemplo 3 Modelo de Angiogénesis inflamatoria
Se emplearon ratas Sprague Dawley machos, procedentes del CENPALAB con un peso corporal entre 180-240 g.
La angiogénesis inflamatoria es un proceso complejo que involucra una serie de mecanismos moleculares diferentes en muchos aspectos pero básicamente semejantes en que se desarrollan mediante una cascada angiogénica.
Después de un período de 6 días de haber sido inducida la formación del granuloma, este se observó bien definido y palpable en el grupo control, lo cual se corresponde con los resultados reportados por Primelles en 2001 . En el caso de los animales tratados con las dosis de veneno, los granulomas eran de menor tamaño al tacto y al observarlos macroscópicamente tenían los bordes con menor definición y estaban menos adheridos a la epidermis.
Ejemplo 4. Actividad analgésica
• Modelo de inducción de contorsiones por ácido acético en ratones.
Se procedió según la metodología descrita en CYTED.
Se utilizaron ratones OF1 , machos, peso promedio 20-25 g procedentes del Centro Nacional para la Producción de Animales de Laboratorio (CENPALAB).
Administración vía intraperitoneal
Las dosis de 1 ; 2,5; 5 y 7,5 mg/kg de veneno de R. junceus fueron inoculados por vía intraperitoneal. Treinta minutos después se les administró a los animales de experimentación, vía ip, 0,1 mL de una solución de ácido acético al 3% y se registraron el número de contorsiones/animal durante 10 minutos a partir de la primera contorsión observada.
Administración vía oral
Las dosis de 1 , 5, 10, 15, 20 y 50 mg/kg de veneno de R. junceus administrados por vía oral. Una hora después se les administró a los animales de experimentación, vía ip, 0,1 mL de una solución de ácido acético al 3% y se registraron el número de contorsiones/animal durante 10 minutos a partir de la primera contorsión observada. Ejemplo 5. Evaluación de la actividad antioxidante
Se evaluó la actividad anti-oxidante in vitro del veneno de Rhopalurus junceus, a través del efecto protector del ADN frente a procesos oxidativos en los sistemas Cobre-Fenantrolina y Bleomicina-Hierro. El veneno demostró tener actividad antioxidante al proteger al ADN de los procesos de peroxidación.
En los sistemas Cobre-Fenantrolina y Bleomicina-Hierro se observó que el derivado de Rhopalurus junceus presente en las formulaciones descritas con anterioridad no ejerce efecto pro-oxidante sobre el ADN. Los valores de absorbancia obtenidos con las diferentes concentraciones del derivado de Rhopalurus junceus, son inferiores a los obtenidos con el control positivo. Los resultados de dicha evaluación se muestran en las Tablas XVI y XVII. Ejemplo 6. Citotoxicidad in vitro en un panel de células tumorales y normales
|EI efecto del veneno sobre el crecimiento celular, se detectó por el ensayo del MTT, el cual mide la proliferación celular debido a la reducción metabólica de esta sal de tetrasolio (amarillo), por la acción de enzimas deshidrogenasas mitocondriales. El compuesto resultante (azul de formazán) puede ser solubilizado y cuantificado espectrofotométricamente.
En el estudio se emplearon 9 líneas celulares tumorales: HeLa (carcinoma de cérvix humano), HEp-2 (carcinoma epidermoide de laringe humano), NCI-H292 (carcinoma mucoepidermoide de pulmón humano), A549 (carcinoma de pulmón humano), U937 (linfoma histiocitico humano), L929 (fibrosarcoma murino), S-180 (sarcoma murino) y F3II (adenocarcinoma mamario murino). De igual forma se emplearon 3 líneas celulares normales: MRC-5, (fibroblastos de pulmón humano), Vero (células normales de riñon de mono verde africano) y MDCK (células normales de riñon de perro). Se evaluaron además: Macrófagos perifonéales (extraídos del peritoneo de ratones Balb/c) y Linfocitos (extraídos del bazo de ratones Balb/c).Las células fueron crecidas en frascos de cultivo en medio mínimo esencial (MEM) ó medio RPMI-1640, según las características del cultivo celular, suplementados con 2 mM de glutamina, aminoácidos no esenciales, 10% de suero fetal bovino (SFB) y penicilina-estreptomicina 100UI/mL - 100 pg/mL. Cada una se incubó en atmósfera húmeda a 37°C a 5% de CO2 hasta formación de monocapa. Cada línea celular se desprendió por tratamiento con una solución de tripsina-EDTA 0,25 % y se prepararon a concentración de 2 x 105 células/mL, después de ser contadas en cámara de neubauer.
El ensayo se realizó en placas de poliestireno de fondo plano de 96 pocilios, para cultivos celulares {Corning Inc. costar ). En cada pocilio se adicionó 50 pL de cada línea celular y se incubaron en atmósfera de 5% CO2 a 37°C durante 24h. Al cabo de este tiempo se adicionaron 50 μΙ_ de medio con el veneno previamente disuelto. El veneno quedó a concentración final de 0,1 mg/mL, 0,25 mg/mL, 0,5 mg/mL, 0,75 mg/mL y 1 mg/mL en los pocilios. Todas las líneas celulares quedaron a concentración final de 104 células/pozo. El suero fetal bovino (SFB) se empleó en el medio al 10%.
Las placas se incubaron nuevamente en atmósfera de 5% CO2 a 37°C durante 3 días. Al cabo de este tiempo se adicionaron 10 pL de una solución estéril de MTT (sales de tetrazolio 5 mg/mL en PBS estéril) en cada pocilio y se incubaron bajo las mismas condiciones durante 4h. Finalmente el medio se decantó y se adicionó 200 μί/ροζο de solución de dimetilsulfóxido (DMSO) y se incubaron a 37°C durante 30 min. en atmósfera húmeda. La densidad óptica (DO) se leyó en un lector de microplacas de ELISA MRX Revelation Dynex Technologies a 560 nm con 630 nm como referencia. Cada concentración de las fracciones se realizó por triplicado y se realizó 4 veces el ensayo.
Para análisis de las curvas de concentración-respuesta se gráfico el porciento de proliferación celular, calculada la fórmula (1 -DO (muestra )/DO (control)) X100 contra las diferentes concentraciones de veneno. La concentración citotóxica media se expresó como la CC50, la concentración del veneno que causa el decrecimiento del 50% en el número de células viables (absorbancia del MTT) comparada con controles no tratados y aparece expresada en la tabla XV para cada una de las células evaluadas.
Ejemplo 7. Estudio de apoptosis
Se realizó el estudio de determinación de apoptosis mediante fragmentación de ADN. Se emplearon las líneas celulares Hela y A549. Los resultados se observan en la Figura 2. La fragmentación del ADN, característico de la apoptosis, se observó en los carriles correspondientes a las células Hela tratadas con el veneno, mientras que en los pocilios controles y en la línea celular A549 se observó una única banda correspondiente al ADN cromosomal intacto. Estos resultados evidencian que el veneno de escorpión puede inducir la muerte celular por ambos mecanismos apoptosis y necrosis.
Ejemplo 8. Actividad antitumoral tumores sólidos. Modelo Experimental de adenocarcinoma mamario F3II. Vía de administración intraperitoneal.
Se evaluó el efecto del veneno del escorpión en un modelo de adenocarcinoma de mamas implantado en ratones Balb c. Se emplearon 3 dosis para los grupos de tratamiento (0,2 mg/kg, 0,8 mg/kg, y 3,2 mg/kg), al control se administró solución salina todos por vía intraperitoneal. El crecimiento tumoral se monitoreó durante 35 días. Al cabo de 50 días a partir de la implantación del tumor se sacrificaron losa animales, se les extrajo los pulmones y se analizó la aparición de metástasis pulmonares. Los grupos experimentales tratados con el veneno del escorpión mostraron una inhibición significativa del crecimiento tumoral (p<0.05) cuando se compararon con el grupo control (Figura. 3). Los grupos experimentales mostraron una relación dosis respuesta durante los 35 días de evaluación, con respecto al retardo de la progresión tumoral. La disminución significativa de la progresión tumoral encontrada en los grupos tratados, indica que el veneno del escorpión R. junceus tiene efecto antitumoral al afectar el crecimiento del tumor al menos durante el período de evaluación. Ejemplo 9
Modelo Experimental de adenocarcinoma mamario F3II.
Vía de administración oral.
Se evaluó el efecto del veneno del escorpión en un modelo de adenocarcinoma de mamas implantado en ratones Balb c. Se emplearon 4 dosis para los grupos de tratamiento (6 mg/kg, 12,5 mg/kg, 25 mg/kg y 50 mg/kg), al control se administró solución salina todos por vía oral. El crecimiento tumoral se monitoreó durante 35 días.
Los grupos experimentales tratados con el veneno del escorpión (12,5 mg/kg, 25 mg/kg y 50 mg/kg) mostraron una inhibición significativa del crecimiento tumoral (p<0.05) cuando se compararon con el grupo control (Figura. 4). La disminución significativa de la progresión tumoral encontrada en los grupos tratados, indica que el veneno del escorpión R. junceus tiene efecto antitumoral al afectar el crecimiento del tumor al menos durante el período de evaluación.
Ejemplo 10
Actividad antimetastásica. Modelo Experimental de metástasis pulmonares
Se evaluó el efecto del veneno del escorpión sobre las metástasis pulmonares en un modelo de adenocarcinoma mamario implantado en ratones Balb/c. Se emplearon 4 dosis para los grupos de tratamiento (6 mg/kg, 12,5 mg/kg, 25 mg/kg y 50 mg/kg), al control se administró solución salina. Al cabo de 24 h de implantación del tumor en los pulmones por vía intravenosa, se comenzaron los tratamientos los que se realizaron diariamente en el horario de la mañana durante 21 días. Al cabo de 24 horas después de la última administración todos los grupos experimentales fueron sacrificados por dislocación cervical, los pulmones fueron extraídos para análisis de la ocurrencia de metástasis. En todos los casos la incidencia del tumor fue del 100%. El grupo experimental administrado con 6 mg/kg mostró niveles superiores al control con relación a la ocurrencia de metástasis. Los grupos experimentales tratados con la dosis de 25 mg/kg evidenciaron una disminución de la ocurrencia de metástasis comparados con el control sin embargo estas diferencias no fueron estadísticamente significativas. El grupo experimental tratado con las dosis de 12,5 mg/kg y 50 mg/kg mostraron una reducción estadísticamente significativa de la ocurrencia de metástasis cuando se comparó con el control (Figura 5).
Ejemplo 11
Actividad antitumoral tumores ascíticos. Modelo Experimental de Sarcoma (S-180) Se evaluó el efecto del veneno del escorpión en un modelo de Sarcoma murino implantado en el peritoneo en ratones NMRI. Se emplearon 4 dosis para los grupos de tratamiento (6 mg/kg, 12,5 mg/kg, 25 mg/kg y 50 mg/kg), al grupo control se administró solución salina. El veneno se administró 24h después de implantado el tumor diariamente hasta la mortalidad del 100% de todos los grupos experimentales. La tabla XX muestra los resultados del tiempo de sobrevida de los animales tratados y los controles. La tabla XXI muestra los porcientos de sobrevida de los grupos experimentales.
Ejemplo 12
Purificación e identificación de proteínas del veneno como principios activos.
Para realizar el fraccionamiento del contenido proteico total, el veneno total se disolvió en acetato de amonio 0.1 M (NhUAc) y se centrifugó a 10 000 rpm durante 15 min. El sobrenadante se aplicó en un equipo de cromatografía líquida de baja presión AKTA FPLC (Amersham Pharmacia Biotech) implementado con una columna de gel filtración Superosa12 HR 10/30, con dimensiones 10 x 300 mm. La columna se equilibró con 0.1 M de NH4Ac y el material eluyó en el mismo solvente a una velocidad de flujo de 0.5 mL/min. La absorbancia se monitoreó a una densidad óptica (DO) de 280 nm durante 72 min. La columna de exclusión molecular Superosa 75 HR 10/30 se calibró mediante un Kit de proteínas patrones: ribonucleasa A (13,7Kda), quimotripsinógeno (25Kda), ovoalbúmina (43Kda), albúmina (67Kda) y azul dextrana 2000. Se realizó una curva patrón para determinar los pesos moleculares relativos de las diferentes fracciones de proteínas obtenidas durante la cromatografía. Los resultados de las corridas cromatográficas se observan en la Fig.6.
Ejemplo 13
Estudios clínicos de la formulación en pacientes humanos con cáncer.
El objetivo del estudio fue la evaluación de la calidad de vida en pacientes oncológicos. Para la inclusión de los sujetos de estudio se utilizaron pacientes de ambos sexos con confirmación histológica de cáncer en cualquier estadio. Se elaboró un documento que contenía el acta el consentimiento informado del paciente y el resumen de historia clínica expedido por el oncólogo de base. En el documento se incluyó la evaluación del comportamiento clínico de los pacientes la cual se siguió a través de la evolución clínica realizada por los facultativos en su hospital de base. La periodicidad del seguimiento fue de al menos dos meses. El seguimiento se realizó durante 1 año. Se preparó la formulación en frascos con volúmenes de 40 mL con concentraciones entre 0,05-0,1 mg/mL. El frasco se diluyó en agua destilada empleada como excipiente hasta completar 1 litro. La administración del producto se realizó diariamente por vía oral y las dosis recomendadas fueron dependientes del estadio del paciente y el diagnóstico histológico.
Se incluyeron un total de 100 pacientes en el estudio y las principales localizaciones evaluadas fueron cáncer de mama, próstata, colon, pulmón, cerebro y páncreas. La administración del producto en ninguno de los casos provocó reacciones adversas durante el tratamiento, correspondiéndose con lo observado en los estudios preclínicos. En todos los casos se observó aumento de la calidad de vida que incluyó mejoría de las variables clínicas fundamentales como fueron disminución o desaparición de la disnea y tos en la totalidad de los casos de los pacientes con cáncer de pulmón. Se constató en muchos pacientes mejoría radiológica por la estabilización de las lesiones, en algunos casos y desaparición de estas, en otros. Adicionalmente se logró la estabilización de las variables hematológicas y disminución del dolor y la inflamación. En mas del 50% de los pacientes tratados durante 1 año, con la formulación objeto del la invención, se superó el tiempo de sobrevida estimado para algunas de las patologías estudiadas. Ejemplo 14.
Estudios clínicos del VIDATOX® 30 CH.
El VIDATOX® 30 CH es un bioterápico homeopático, desarrollado en el laboratorio de homeopatía de LABIOFAM, que tiene como principio activo el veneno del escorpión Rhopalurus junceus en dilución 30 centesimal. Su presentación es en forma de gotas en vehículo alcohólico al 33 %.
En estudios realizados en 174 pacientes de ambos sexos con tratamientos oncoespecíficos se demostró el efecto adyuvante del VIDATOX® 30 CH en el tratamiento del cáncer en diferentes localizaciones (pulmón, próstata, mama, colon, páncreas, t. linfoide, cerebro, recto, etc.). Sus resultados señalan que el 96% de los pacientes administrados tuvieron una sobrevida mayor de 12 meses, que el 90% reportaron mejorías de los síntomas clínicos motivos de consulta y que el dolor en 63 de estos pacientes (como síntoma predominante) en el 62% de los casos evolucionó hacia una forma moderada que no requería necesariamente tratamiento para su alivio, que el 27% manifestaron ausencia de dolor y que en ninguno de los casos reportó reacciones adversas relacionadas con el tratamiento.

Claims

32
REIVINDICACIONES
1 ) Péptido nombrado RjLB-01 , proveniente del veneno de escorpión, caracterizado por poseer 544.42 Da de peso molecular y secuencia aminoacídica SEQ. ID No.1
2) Péptido nombrado RjLB-03, proveniente del veneno de escorpión, caracterizado por poseer 1964.0 Da de peso molecular y secuencia aminoacídica SEQ. ID No.2
3) Péptido nombrado RjLB-04, proveniente del veneno de escorpión, caracterizado por poseer 4748.14 Da de peso molecular y secuencia aminoacídica SEQ. ID No.3
4) Péptido nombrado RJLB- 05, proveniente del veneno de escorpión, caracterizado por poseer 908.0 Da de peso molecular y secuencia aminoacídica SEQ ID No.4 5) Péptido nombrado RjLB-07, proveniente del veneno de escorpión, caracterizado por poseer 707.03 Da de peso molecular y secuencia aminoacídica SEQ ID No. 5.
6) Péptido nombrado RjLB-08, proveniente del veneno de escorpión, caracterizado por poseer 712.42 da de peso molecular y secuencia aminoacídica SEQ ID No.6.
7) Péptido nombrado RjLB-09, proveniente del veneno de escorpión, caracterizado por poseer 203.44 Da de peso molecular y secuencia aminoacídica SEQ. ID. No. 7.
8) Péptido nombrado RjLB-14, proveniente del veneno de escorpión, caracterizado por poseer 5930.45 Da de peso molecular y secuencia aminoacídica SEQ. ID. No 8
9) Composiciones farmacéuticas, que son obtenidas, a partir del veneno del escorpión Rhopalurus junceus, caracterizadas por poseer péptidos como principios activos con elevada actividad citotóxica sobre células tumorales, mezcladas con agua destilada como excipiente.
10) Composiciones farmacéuticas según reivindicación 9, procesadas homeopáticamente.
1 1 ) Composiciones farmacéuticas, según la reivindicación 9 que contienen al menos un péptido según las reivindicaciones de la 1 a la 8, que presenta actividad antitumoral, dicho péptido seleccionado presenta cualquiera de las secuencias de aminoácidos descritas.
12) Composiciones farmacéuticas, según la reivindicación 11 caracterizada por poseer una mezcla de péptidos presentes en el veneno del escorpión Rophalurus junceus en las concentraciones siguientes: RJLB-01 en un rango del 1 ,5-2,0%; RJLB-03 en un rango del 8-9 %; RJLB-04 en un rango del 0,5-1 ,0 %; RJLB-05 en un rango 0,5-0,7%; RJLB-07 en un rango de 0,5-0,8 %; RJLB-08 en un rango del 0,5-1 ,0%; RJLB-09 en un rango del 0,3-0,6 %; RJLB-14 en un rango del 0,4- 0-8 % diluidos en 10-20 mi de agua destilada.
13) Composiciones farmacéuticas, según la reivindicación 12 procesados homeopáticamente.
14) Composiciones farmacéuticas, según la reivindicación 9, 10, 11 , 12 y 13 empleadas en formulaciones para administración por vía oral, tópica, parenteral, rectal, vaginal y aerosol.
PCT/CU2011/000006 2010-09-27 2011-09-27 Peptidos del veneno de escorpion rhopalorus junceus y composicion farmaceutica WO2012041261A2 (es)

Priority Applications (12)

Application Number Priority Date Filing Date Title
AP2013006811A AP2013006811A0 (en) 2010-09-27 2011-09-27 Peptides from the venom of the rhopalurus junceus scorpion and pharmaceutical composition
MX2013003545A MX360726B (es) 2010-09-27 2011-09-27 Péptidos del veneno de escorpión rhopalurus junceus y composición farmacéutica.
BR112013007198A BR112013007198A2 (pt) 2010-09-27 2011-09-27 peptídeos do veneno do escorpião rhopalurus junceus e composições farmacêuticas
RU2013119431/10A RU2563348C2 (ru) 2010-09-27 2011-09-27 ПЕПТИДЫ ИЗ ЯДА СКОРПИОНА Rhopalurus junceus И ФАРМАЦЕВТИЧЕСКАЯ КОМПОЗИЦИЯ
AU2011307691A AU2011307691A1 (en) 2010-09-27 2011-09-27 Peptides from the venom of the Rhopalurus junceus scorpion and pharmaceutical composition
JP2013530559A JP2013542196A (ja) 2010-09-27 2011-09-27 ロパルルス・ジュンセウスサソリの毒由来のペプチド及び医薬組成物
CA2812841A CA2812841A1 (en) 2010-09-27 2011-09-27 Peptides from the venom of the rhopalurus junceus and pharmaceutical composition
CN2011800541685A CN103200951A (zh) 2010-09-27 2011-09-27 来自灯心草棒尾蝎毒液的肽以及药物组合物
SG2013022850A SG191708A1 (en) 2010-09-27 2011-09-27 Peptides from the venom of the rhopalurus junceus scorpion and pharmaceutical composition
KR1020137010868A KR20140041381A (ko) 2010-09-27 2011-09-27 로팔러러스 정셔스 전갈 독으로부터의 펩티드 및 약리학적 조성물
EP11815845.0A EP2623111A2 (en) 2010-09-27 2011-09-27 Peptides from the venom of the rhopalurus junceus scorpion and pharmaceutical composition
IL225577A IL225577A0 (en) 2010-09-27 2013-04-04 Peptides from the venom of the scorpion junceus rhopalurus and a pharmaceutical preparation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CU2010000186A CU24055B1 (es) 2010-09-27 2010-09-27 Composiciones farmacéuticas de veneno de escorpión rhopalurus junceus
CU2010-0186 2010-09-27

Publications (2)

Publication Number Publication Date
WO2012041261A2 true WO2012041261A2 (es) 2012-04-05
WO2012041261A3 WO2012041261A3 (es) 2012-11-22

Family

ID=45566782

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CU2011/000006 WO2012041261A2 (es) 2010-09-27 2011-09-27 Peptidos del veneno de escorpion rhopalorus junceus y composicion farmaceutica

Country Status (17)

Country Link
EP (1) EP2623111A2 (es)
JP (1) JP2013542196A (es)
KR (1) KR20140041381A (es)
CN (1) CN103200951A (es)
AP (1) AP2013006811A0 (es)
AR (1) AR083117A1 (es)
AU (1) AU2011307691A1 (es)
BR (1) BR112013007198A2 (es)
CA (1) CA2812841A1 (es)
CO (1) CO6781464A2 (es)
CU (1) CU24055B1 (es)
EC (1) ECSP13012595A (es)
IL (1) IL225577A0 (es)
MX (1) MX360726B (es)
RU (1) RU2563348C2 (es)
SG (1) SG191708A1 (es)
WO (1) WO2012041261A2 (es)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103074304A (zh) * 2013-01-28 2013-05-01 江苏健安生物科技有限公司 高水平人二倍体细胞培养水痘-带状疱疹疫苗病毒方法
CN113384682A (zh) * 2021-05-31 2021-09-14 南方医科大学 蝎毒多肽Smp43在制备抗肿瘤药物的应用
WO2022133540A1 (en) * 2020-12-22 2022-06-30 PreveCeutical Medical Inc. Cyclic peptides and uses thereof
CN117069800A (zh) * 2023-10-16 2023-11-17 山东省食品药品检验研究院 一种鉴别东亚钳蝎的特征多肽及其应用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2019000570A (es) * 2018-12-19 2020-08-13 Centro De Investig Biologicas Del Noroeste S C Composición homeopatica a base de veneno de escorpión rhopalurus junceus y su uso en acuicultura.

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1073480A (zh) 1991-12-16 1993-06-23 山东省蒙阴县酒厂 全蝎酒的制作方法
CN1076858A (zh) 1993-03-24 1993-10-06 王强华 熊胆全蝎酒及其制备工艺
CU22413A1 (es) 1994-01-11 1996-01-31 Composicion antitumoral
US5905027A (en) 1995-12-27 1999-05-18 Uab Research Foundation Method of diagnosing and treating gliomas
CN1252321A (zh) 1998-10-08 2000-05-10 唐纳森公司 带有成型吸附剂的过滤装置、设备和使用方法
CN1265901A (zh) 2000-01-26 2000-09-13 徐忠廷 一种抗癌中药丸剂
CN1279088A (zh) 1999-06-25 2001-01-10 谷令旗 一种治疗肝癌药剂的制备方法
CN1316249A (zh) 2001-04-04 2001-10-10 李滋星 全蝎活性营养液
CN1391941A (zh) 2002-08-12 2003-01-22 徐继康 肿瘤康胶囊及其制备方法
CN1399979A (zh) 2001-07-30 2003-03-05 张官锁 一种治疗癌症的中药组合物

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2745004B1 (fr) * 1996-02-16 1998-03-27 Rhone Poulenc Agrochimie Peptide antibacterien et antifongique
CN1325514C (zh) * 2001-09-30 2007-07-11 沈阳药科大学 蝎镇痛抗肿瘤缬精甘肽及获得方法
CN100465272C (zh) * 2002-01-18 2009-03-04 中国科学院上海有机化学研究所 重组东亚马氏钳蝎毒rBmKaIT1的基因工程
CA2494451A1 (en) * 2002-05-31 2003-12-11 Transmolecular, Inc. Treatment of cell proliferative disorders with chlorotoxin
US8097284B2 (en) * 2007-11-13 2012-01-17 Arthur Mikaelian Polarized scorpion venom solution and a method for making polarized scorpion venom solution

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1073480A (zh) 1991-12-16 1993-06-23 山东省蒙阴县酒厂 全蝎酒的制作方法
CN1076858A (zh) 1993-03-24 1993-10-06 王强华 熊胆全蝎酒及其制备工艺
CU22413A1 (es) 1994-01-11 1996-01-31 Composicion antitumoral
US5905027A (en) 1995-12-27 1999-05-18 Uab Research Foundation Method of diagnosing and treating gliomas
CN1252321A (zh) 1998-10-08 2000-05-10 唐纳森公司 带有成型吸附剂的过滤装置、设备和使用方法
CN1279088A (zh) 1999-06-25 2001-01-10 谷令旗 一种治疗肝癌药剂的制备方法
CN1265901A (zh) 2000-01-26 2000-09-13 徐忠廷 一种抗癌中药丸剂
CN1316249A (zh) 2001-04-04 2001-10-10 李滋星 全蝎活性营养液
CN1399979A (zh) 2001-07-30 2003-03-05 张官锁 一种治疗癌症的中药组合物
CN1391941A (zh) 2002-08-12 2003-01-22 徐继康 肿瘤康胶囊及其制备方法

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
BEDNAREK MA; BUGIANESI RM; LEONARD RJ; FELIX JP.: "Chemical synthesis and structure-function studies of margatoxin, a potent inhibitor of voltage dependent potassium channel in human T lymphocytes", BIOCHEM BIOPHYS RES COMMUN., vol. 198, no. 2, 28 January 1994 (1994-01-28), pages 619 - 25, XP024765016, DOI: doi:10.1006/bbrc.1994.1090
DE BIN JA; MAGGIO JE; STRICHARTZ GR.: "Purification and characterization of chlrotoxin, a chloride channel ligand from venom of the scorpion", AM J PHYSIOL, vol. 264, 1993, pages 361 - 369
DESHANE J; GARNER CC; SONTHEIMER H: "Chlorotoxin inhibits glioma cell invasion via matrix metalloproteinase-2", J BIOL CHEM, vol. 278, 2003, pages 4135 - 44, XP002398052, DOI: doi:10.1074/jbc.M205662200
GUAN RJ; WANG CG; WANG M; WANG DC.: "A depressant insect toxin with a novel analgesic effect from scorpion Buthus martensii Karsch", BIOCHEM. BIOPHYS. FILE, vol. 1549, no. 1, 2001, pages 9 - 18, XP004305692, DOI: doi:10.1016/S0167-4838(01)00241-2
LIU YF; MA RL; WANG SL; DUAN ZY; ZHANG JH; WU LJ; WU CF.: "Expression of an antitumor- analgesic peptide from the venom of Chinese scorpion Buthus martensi Karsch", ESCHERICHIA COLI. PROTEIN EXPR. PURIF., vol. 27, no. 2, 2003, pages 253 - 8
LYONS SA; O'NEAL J; SONTHEIMER H: "Chlorotoxin, a scorpion derived peptide, specifically binds to gliomas and tumors of neuroectodermal origin", GLIA, vol. 39, 2002, pages 162 - 73, XP009006886, DOI: doi:10.1002/glia.10083
MARTIN-EAUCLAIRE M-F; SEGOARD M; RAMOS C; CESTELE S; BOUGIS PE; SVENSON B: "Production of active insect-specific scorpion neurotoxin in yeast", EUR.J. BIOCHEM., vol. 223, 1994, pages 637 - 45
RAJENDRA W; ARMUGAM A; JEYASEELAN K.: "Toxins in anti-nociception and anti-inflammation", TOXICON, vol. 44, no. 1, July 2004 (2004-07-01), pages 1 - 17
RAJENDRA W; ARMUGAN A; JEYASEELAN K.: "Toxins in anti-nociception and anti-inflammation", TOXICON, vol. 44, no. 1, July 2004 (2004-07-01), pages 1 - 17
WANQ WX; JI YH.: "Scorpion venom induces glioma cell apoptosis in vivo and inhibits glioma tumor growth in vitro", J NEUROONCOL., vol. 73, no. 1, May 2005 (2005-05-01), pages 1 - 7, XP019260667

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103074304A (zh) * 2013-01-28 2013-05-01 江苏健安生物科技有限公司 高水平人二倍体细胞培养水痘-带状疱疹疫苗病毒方法
WO2022133540A1 (en) * 2020-12-22 2022-06-30 PreveCeutical Medical Inc. Cyclic peptides and uses thereof
CN113384682A (zh) * 2021-05-31 2021-09-14 南方医科大学 蝎毒多肽Smp43在制备抗肿瘤药物的应用
CN113384682B (zh) * 2021-05-31 2023-07-04 南方医科大学 蝎毒多肽Smp43在制备抗肿瘤药物的应用
CN117069800A (zh) * 2023-10-16 2023-11-17 山东省食品药品检验研究院 一种鉴别东亚钳蝎的特征多肽及其应用
CN117069800B (zh) * 2023-10-16 2023-12-12 山东省食品药品检验研究院 一种鉴别东亚钳蝎的特征多肽及其应用

Also Published As

Publication number Publication date
CU24055B1 (es) 2014-12-26
CN103200951A (zh) 2013-07-10
EP2623111A2 (en) 2013-08-07
WO2012041261A3 (es) 2012-11-22
AU2011307691A1 (en) 2013-05-02
CO6781464A2 (es) 2013-10-31
AP2013006811A0 (en) 2013-04-30
MX2013003545A (es) 2013-11-04
SG191708A1 (en) 2013-08-30
CA2812841A1 (en) 2012-04-05
ECSP13012595A (es) 2014-11-28
KR20140041381A (ko) 2014-04-04
BR112013007198A2 (pt) 2016-06-14
AR083117A1 (es) 2013-01-30
RU2013119431A (ru) 2014-11-10
CU20100186A7 (es) 2012-06-21
IL225577A0 (en) 2013-06-27
JP2013542196A (ja) 2013-11-21
MX360726B (es) 2018-11-13
RU2563348C2 (ru) 2015-09-20

Similar Documents

Publication Publication Date Title
Saha et al. Evaluation of the anticarcinogenic activity of Swertia chirata Buch. Ham, an Indian medicinal plant, on DMBA‐induced mouse skin carcinogenesis model
Kathiriya et al. Evaluation of antitumor and antioxidant activity of Oxalis Corniculata Linn. against ehrlich ascites carcinoma on mice
Ashokkumar et al. Cynodon dactylon (L.) Pers.: An updated review of its phytochemistry and pharmacology
ES2308810T3 (es) Uso de un compuesto ingenano para la elaboracion de un medicamento para el tratamiento del cancer.
US8192768B2 (en) Synergistic anti-inflammatory and antioxidant dietary supplement compositions
ES2370533T3 (es) Preparación de aphanizomenón flos-aquae, extractos y componentes purificados de los mismos para el tratamiento de trastornos neurológicos, neurodegenerativos y del ánimo.
WO2012041261A2 (es) Peptidos del veneno de escorpion rhopalorus junceus y composicion farmaceutica
de Oliveira et al. Neuroprotective effects of berberine on recognition memory impairment, oxidative stress, and damage to the purinergic system in rats submitted to intracerebroventricular injection of streptozotocin
Hossain et al. Hepatoprotective activity of Lawsonia inermis Linn, warm aqueous extract in carbon tetrachloride induced hepatic injury in Wister rats
Al-Sayed et al. Anti-inflammatory, hepatoprotective and antioxidant activity of ellagitannin isolated from Melaleuca styphelioides
Gomathi et al. Analgesic and acetylcholinesterase inhibition potential of polyphenols from Scolopia crenata (Flacourtiaceae): An endemic medicinal plant of India
Abderrahim et al. Allium sativum mitigates oxidative damages induced by Microcystin-LR in heart and liver tissues of mice
Beagloo et al. The antioxidant and hepatoprotective effect of alcoholic extract of ginger against the cisplatin-induced oxidative stress in rats
El Hakim et al. Purification and characterization of a cytotoxic neurotoxin-like protein from Naja haje haje venom that induces mitochondrial apoptosis pathway
Kuamwat et al. Hepatoprotective effect of Gallic acid and Gallic acid Phytosome against Carbon Tetrachloride induced damage in albino rats
WO2014144765A1 (en) Seaweed extracts, unsaturated aldehydes, and methods of treatment
Bulbul et al. Anti-nociceptive and anti-inflammatory activities of Crotalaria pallida Aiton (Fam: Fabaceae) leaves
Moran et al. Insect venoms and their bioactive components: A novel therapeutic approach in chronic diseases and cancer
Tiwari et al. Screening of antiinflammatory activity of Mesua ferrea Linn flower
Chandrappa et al. In vitro anti-inflammatory activity of Carmona retusa (Vahl.)
AU2006328064B2 (en) Anti-gastritis and anti-ulcer agent containing Momordicae semen extract and momordica saponin I isolated from the same
Chethankumar et al. Turmerin, a protein from Curcuma longa L. prevent oxidative organ damage against Naja naja venom phospholipase A2 in experimental animal
CA3009533A1 (en) Novel molecule with anti-cancer activity
Pillai et al. In-vitro anti-inflammatory studies in Cleome viscosa L. and Cleome burmanni W. & A.(Cleomaceae)
Roy et al. Nephroprotective efficacy of Asparagus racemosus root extract on acetaminophen-induced renal injury in rats

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11815845

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2013530559

Country of ref document: JP

Kind code of ref document: A

Ref document number: 2812841

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: MX/A/2013/003545

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 225577

Country of ref document: IL

REEP Request for entry into the european phase

Ref document number: 2011815845

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13105491

Country of ref document: CO

Ref document number: 2011815845

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137010868

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2013119431

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: A201305336

Country of ref document: UA

ENP Entry into the national phase

Ref document number: 2011307691

Country of ref document: AU

Date of ref document: 20110927

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013007198

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013007198

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130327