WO2012039136A1 - 画像符号化方法、画像復号化方法、画像符号化装置、および画像復号化装置 - Google Patents

画像符号化方法、画像復号化方法、画像符号化装置、および画像復号化装置 Download PDF

Info

Publication number
WO2012039136A1
WO2012039136A1 PCT/JP2011/005323 JP2011005323W WO2012039136A1 WO 2012039136 A1 WO2012039136 A1 WO 2012039136A1 JP 2011005323 W JP2011005323 W JP 2011005323W WO 2012039136 A1 WO2012039136 A1 WO 2012039136A1
Authority
WO
WIPO (PCT)
Prior art keywords
motion vector
flag
decoding
unit
image
Prior art date
Application number
PCT/JP2011/005323
Other languages
English (en)
French (fr)
Inventor
敏康 杉尾
西 孝啓
陽司 柴原
寿郎 笹井
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US13/816,370 priority Critical patent/US8848805B2/en
Priority to KR1020177015383A priority patent/KR101842852B1/ko
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to MX2013001659A priority patent/MX2013001659A/es
Priority to CN201180036996.6A priority patent/CN103039076B/zh
Priority to JP2012534936A priority patent/JP5303683B2/ja
Priority to EP11826583.4A priority patent/EP2621176A4/en
Priority to BR112013003624A priority patent/BR112013003624A2/pt
Priority to KR1020187007923A priority patent/KR101922392B1/ko
Priority to SG2013011200A priority patent/SG187851A1/en
Priority to KR1020137002632A priority patent/KR101815723B1/ko
Priority to AU2011306322A priority patent/AU2011306322B2/en
Priority to CA2807780A priority patent/CA2807780C/en
Publication of WO2012039136A1 publication Critical patent/WO2012039136A1/ja
Priority to US13/949,620 priority patent/US8861592B2/en
Priority to US14/447,970 priority patent/US9392298B2/en
Priority to US15/170,223 priority patent/US9621915B2/en
Priority to US15/445,295 priority patent/US9930334B2/en
Priority to US15/897,815 priority patent/US10298926B2/en
Priority to US16/377,874 priority patent/US10798381B2/en
Priority to US17/011,452 priority patent/US11166018B2/en
Priority to US17/491,974 priority patent/US11895293B2/en
Priority to US18/394,256 priority patent/US20240179307A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/513Processing of motion vectors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/513Processing of motion vectors
    • H04N19/517Processing of motion vectors by encoding
    • H04N19/52Processing of motion vectors by encoding by predictive encoding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/115Selection of the code volume for a coding unit prior to coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/146Data rate or code amount at the encoder output
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/172Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a picture, frame or field
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/70Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by syntax aspects related to video coding, e.g. related to compression standards

Definitions

  • the present invention relates to an image encoding method and an image decoding method that perform predictive encoding of a moving image by selecting a motion vector predictor that is most efficient for encoding a motion vector to be encoded from a plurality of motion vector predictor candidates.
  • the present invention relates to an encoding method, an image encoding device, and an image decoding device.
  • FIG. 32 is a block diagram illustrating a configuration example of a conventional image encoding apparatus that encodes a moving image.
  • H.264 which is an already standardized moving image encoding method. H.264 or the like is used (for example, see Non-Patent Document 1).
  • the picture type determined by the picture type determining unit 124 for example, H.264 slice type
  • the predicted motion vector conflict flag output by the predicted motion vector conflict flag switching unit 125 hereinafter referred to as “H.264 slice type”.
  • the inter prediction control unit 131 controls the inter prediction unit 112 to perform inter prediction encoding.
  • the inter prediction control unit switches the method of obtaining a motion vector predictor for motion vector encoding used for inter encoding of each prediction unit block.
  • mv_competition_flag is included in the first header information (for example, H.264 slice header) added to the bitstream for each first processing unit (for example, H.264 slice), and is decoded by the image encoding apparatus. Is notified to the computer.
  • the image coding apparatus uses one or more motion vectors used around each prediction unit block as prediction motion vector candidates, and finally predicts the motion vector of each prediction unit block.
  • the index number of the motion vector predictor candidate used for is assigned to the bitstream.
  • mv_competition_flag is off, for example, the image encoding device generates one prediction motion vector from the motion vectors used around each prediction unit block, and encodes the motion vector using the prediction motion vector. .
  • FIG. 33A shows an example of a motion vector predictor candidate generation process by a conventional image encoding device when mv_competition_flag is on.
  • the image coding apparatus first obtains adjacent prediction unit blocks on the left (adjacent block A), upper (adjacent block B), and upper right (adjacent block C) of the prediction unit block, and obtains motion vectors MV_A, MV_B, and MV_C. .
  • the image coding apparatus obtains a median motion vector Median (MV_A, MV_B, MV_C) using an intermediate value of each component of the motion vectors MV_A, MV_B, MV_C, and median motion vector Median (MV_A, MV_B, MV_C).
  • FIG. 33B is a diagram illustrating a correspondence relationship between a predicted motion vector index and a predicted motion vector candidate.
  • the image encoding apparatus selects a motion vector predictor candidate that is most efficient for encoding the motion vector of the encoding target prediction block, and adds the index number of the selected motion vector predictor candidate to the bitstream.
  • the image encoding device reduces the number of candidates by merging vectors when the motion vector predictor candidates are all vectors having the same value, and finally the motion vector predictor when the number of candidates is 1. Processing such as not adding an index to the bitstream is performed.
  • FIG. 34 is a block diagram showing a configuration example of an image decoding apparatus corresponding to the conventional image encoding apparatus of FIG.
  • H.264 which is a standardized moving image decoding method
  • a method such as H.264 is used.
  • the inter prediction control unit 231 controls the inter prediction unit 212 according to mv_competition_flag added to the bitstream and the motion vector predictor index, and performs inter prediction decoding.
  • the prediction motion vector is used even when the prediction block to be encoded is a skip block (for example, H-264 P-Skip, B-Skip). If the number of candidates is 2 or more, it is necessary to add a motion vector predictor index to the bitstream (FIGS. 35 and 36).
  • the present invention has been made to solve the above-described problem, and an object of the present invention is to provide an image encoding method and the like that can change the amount of generated motion vector index.
  • An image encoding method is an image encoding method that performs predictive encoding of a moving image, and determines whether or not to select a prediction motion vector from one or more prediction motion vector candidates.
  • a first flag generating step for generating a first flag, and when the first flag indicates that a prediction motion vector is selected, when encoding a block to be encoded in a predetermined encoding mode;
  • a second flag generating step for generating a second flag indicating whether or not to select a predicted motion vector from the one or more predicted motion vector candidates; and the first flag selects a predicted motion vector.
  • an encoded signal generation step of generating an encoded signal including the first flag and the second flag in header information is included.
  • the first flag indicates that the motion vector predictor is selected
  • an encoded signal including the first flag and the second flag in the header information is generated, and the first flag selects the motion vector predictor.
  • an encoded signal that does not include the second flag in the header information can be generated. By not including the second flag, the generated code amount of the predicted motion vector index can be changed.
  • An image decoding method is an image decoding method for decoding an encoded signal obtained by predictively encoding a moving image, and is included in header information of the encoded signal.
  • a first flag decoding step of decoding a first flag indicating whether or not to select a motion vector predictor from among the motion vector predictor candidates, and that the first flag selects a motion vector predictor. In the case, it indicates whether or not to select a motion vector predictor from the one or more motion vector predictor candidates when decoding the decoding target block included in the header information in a predetermined decoding mode.
  • a second flag decoding step of decoding the second flag is an image decoding method for decoding an encoded signal obtained by predictively encoding a moving image, and is included in header information of the encoded signal.
  • the present invention can be realized not only as an image encoding method or an image decoding method including such characteristic steps, but also as a characteristic step included in the image encoding method or image decoding method. It can be realized as an image encoding device or an image decoding device as a processing unit. It can also be realized as a program for causing a computer to execute characteristic steps included in the image encoding method or the image decoding method. Furthermore, the present invention can be realized as a program for causing a computer to function as a characteristic processing unit included in an image encoding device or an image decoding device. Such a program can be distributed via a computer-readable non-transitory recording medium such as a CD-ROM (Compact Disc-Read Only Memory) or a communication network such as the Internet. .
  • a computer-readable non-transitory recording medium such as a CD-ROM (Compact Disc-Read Only Memory) or a communication network such as the Internet. .
  • FIG. 1 is a block diagram showing a configuration example of an image coding apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is a flowchart illustrating an example of skip motion vector predictor conflict flag switching control in the image encoding device.
  • FIG. 3 is a flowchart illustrating an example of inter prediction control in the image encoding device.
  • FIG. 4A is a flowchart illustrating an example of header coding control in the variable-length coding unit.
  • FIG. 4B is a diagram illustrating an example of a header syntax.
  • FIG. 5 is a flowchart illustrating an example of the encoding control of the prediction unit block in the variable length encoding unit.
  • FIG. 6 is a diagram illustrating an example of the syntax of the prediction unit block.
  • FIG. 1 is a block diagram showing a configuration example of an image coding apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is a flowchart illustrating an example of skip motion vector predictor conflict flag
  • FIG. 7 is a block diagram showing a configuration example of the image decoding apparatus according to Embodiment 1 of the present invention.
  • FIG. 8 is a flowchart showing an example of header decoding control in the variable-length decoding unit.
  • FIG. 9 is a flowchart illustrating an example of the decoding control of the prediction unit block in the variable length decoding unit.
  • FIG. 10 is a flowchart illustrating an example of inter prediction control in the image decoding apparatus.
  • FIG. 11A is a diagram illustrating another example of the syntax of the header.
  • FIG. 11B is a diagram illustrating another example of the syntax of the prediction unit block.
  • FIG. 12 is a diagram illustrating an example of the syntax of the prediction unit block.
  • FIG. 13 is an overall configuration diagram of a content supply system that implements a content distribution service.
  • FIG. 14 is an overall configuration diagram of a digital broadcasting system.
  • FIG. 15 is a block diagram illustrating a configuration example of a television.
  • FIG. 16 is a block diagram illustrating a configuration example of an information reproducing / recording unit that reads and writes information from and on a recording medium that is an optical disk.
  • FIG. 17 is a diagram illustrating a structure example of a recording medium that is an optical disk.
  • FIG. 18A illustrates an example of a mobile phone.
  • FIG. 18B is a block diagram illustrating a configuration example of a mobile phone.
  • FIG. 19 is a diagram showing a structure of multiplexed data.
  • FIG. 20 is a diagram schematically showing how each stream is multiplexed in the multiplexed data.
  • FIG. 21 is a diagram showing in more detail how the video stream is stored in the PES packet sequence.
  • FIG. 22 is a diagram illustrating the structure of TS packets and source packets in multiplexed data.
  • FIG. 23 is a diagram illustrating a data structure of the PMT.
  • FIG. 24 shows the internal structure of multiplexed data information.
  • FIG. 25 shows the internal structure of stream attribute information.
  • FIG. 26 is a diagram illustrating steps for identifying video data.
  • FIG. 27 is a block diagram illustrating a configuration example of an integrated circuit that realizes the moving picture coding method and the moving picture decoding method according to each embodiment.
  • FIG. 28 is a diagram showing a configuration for switching the drive frequency.
  • FIG. 29 is a diagram illustrating steps for identifying video data and switching between driving frequencies.
  • FIG. 30 is a diagram illustrating an example of a lookup table in which video data standards are associated with drive frequencies.
  • FIG. 31A is a diagram illustrating an example of a configuration for sharing a module of a signal processing unit.
  • FIG. 31B is a diagram illustrating another example of a configuration for sharing a module of a signal processing unit.
  • FIG. 32 is a block diagram illustrating a configuration example of a conventional image encoding device.
  • FIG. 33A is a conceptual diagram showing conventional motion vector predictor candidate generation processing.
  • FIG. 33B is a diagram illustrating a correspondence relationship between a predicted motion vector index and a predicted motion vector candidate.
  • FIG. 34 is a block diagram illustrating a configuration example of a conventional image decoding apparatus.
  • FIG. 35 is a flowchart showing conventional inter prediction control.
  • FIG. 36 is a diagram illustrating the syntax of a conventional prediction unit block.
  • FIG. 1 is a block diagram showing a configuration example of an image coding apparatus according to Embodiment 1 of the present invention.
  • the conventional image coding apparatus shown in FIG. 32 includes a skip block predicted motion vector conflict flag switching unit 126 and a skip block predicted motion vector conflict flag (hereinafter referred to as “mv_competition_skip_flag”) as a bitstream. It differs in the point provided with the structure added to.
  • mv_competition_skip_flag does not necessarily need to be notified by a header added for each picture, and a header (for example, sequence parameter set of H.264) added for each unit composed of a plurality of pictures, It is good also as a structure notified by the header information (for example, picture
  • a subtraction unit 102 includes a subtraction unit 102, an orthogonal transformation unit 103, a quantization unit 104, a variable length coding unit 105, an inverse quantization unit 106, an inverse orthogonal transformation unit 107, an addition unit 108, and a block.
  • a switching unit 126 is provided.
  • the subtraction unit 102 subtracts the predicted image data from the input image data and outputs prediction error data.
  • the orthogonal transform unit 103 transforms the prediction error data from the image domain to the frequency domain.
  • the quantization unit 104 performs a quantization process on the prediction error data converted into the frequency domain.
  • the inverse quantization unit 106 performs inverse quantization processing on the prediction error data quantized by the quantization unit 104.
  • the inverse orthogonal transform unit 107 performs transform from the frequency domain to the image domain on the prediction error data subjected to the inverse quantization process.
  • the adder 108 adds the prediction error data and the prediction image data, and outputs reconstructed image data.
  • the block memory 109 stores the reconstructed image data in units of blocks, and the frame memory 111 stores the reconstructed image data in units of frames.
  • the intra prediction unit 110 uses the reconstructed image data in units of blocks stored in the block memory 109 to encode the encoding target block by intra prediction, and generates predicted image data.
  • the inter prediction unit 112 encodes the block to be encoded by inter prediction using the reconstructed image data in units of frames stored in the frame memory 111 and the motion vector derived by motion detection, and converts the predicted image data into Generate.
  • the switch 113 switches the encoding mode to intra prediction or inter prediction.
  • the picture type determination unit 124 determines which of the I picture, B picture, and P picture is used to encode the input image sequence, and generates picture type information.
  • the predicted motion vector competition flag switching unit 125 generates mv_competition_flag indicating whether or not to select a predicted motion vector from one or more predicted motion vector candidates.
  • predicted motion vector contention flag switching unit 126 for skip block indicates that mv_competition_flag selects a motion vector predictor
  • one or more of the predicted motion vector contention flag switching unit 126 may be used when encoding the current block in a predetermined encoding mode.
  • Mv_competition_skip_flag indicating whether or not to select a predicted motion vector from predicted motion vector candidates is generated.
  • the inter prediction control unit 121 selects a motion vector predictor from one or more motion vector predictor candidates.
  • variable length coding unit 105 performs variable length coding processing on the prediction error data, the prediction motion vector index, the prediction error information (difference vector) of the prediction motion vector candidate, the picture type information, and the like that have been quantized. I do. As a result, the variable length encoding unit 105 generates a bit stream.
  • FIG. 2 shows an example of the operation flow of the predicted motion vector conflict flag switching unit 126 for skip blocks.
  • the skip block prediction motion vector conflict flag switching unit 126 determines whether the target bit rate at the time of encoding is equal to or less than a certain value (S1001). If the determination result is true (Yes in S1001), mv_competition_skip_flag is set. Turn off (S1002). If the determination result is false (No in S1001), mv_competition_skip_flag is turned on (S1003).
  • the value indicating ON / OFF may be set to any value as long as ON (valid) and OFF (invalid) can be distinguished, such as 1 for OFF and 0 for OFF. .
  • the skip block prediction motion vector contention flag switching unit 126 transmits the set mv_competition_skip_flag to the variable length coding unit 105 in FIG. 1 (S1004), and incorporates it in the header added for each picture.
  • the target bit rate is used for the on / off control of mv_competition_skip_flag, but the present invention is not necessarily limited thereto.
  • mv_competition_skip_flag may be turned off, and if the quantization parameter is small, mv_competition_skip_flag may be controlled to be on.
  • mv_competition_skip_flag can be adaptively controlled according to the value of the quantization parameter.For example, when encoding at a fixed bit rate, mv_competition_skip_flag is turned off if the quantization parameter exceeds a certain value. By doing so, image quality failure can be suppressed.
  • FIG. 3 shows an example of the operation flow of the inter prediction control unit 121 in the image encoding device of FIG.
  • the inter prediction control unit 121 determines whether or not to make the prediction block to be inter-encoded as a skip block from, for example, the target bit rate and the amount of generated code up to now (S1101), and sets the result as a skip flag. Then, the data is transmitted to the variable length coding unit 105.
  • step S1101 determines whether the determination result in step S1101 is false (No in S1101), the inter prediction control unit 121 performs processing of inter-coded blocks other than skip blocks (S1108).
  • step S1101 determines whether mv_competition_flag is on (S1102). If the result is true (Yes in S1102), mv_competition_skip_flag is It is determined whether or not it is on (S1103). If the determination result in step S1103 is true (Yes in S1103), the inter prediction control unit 121 calculates a motion vector predictor candidate (S1104).
  • the inter prediction control unit 121 determines whether there are two or more motion vector predictor candidates (S1105). If the determination result is true (Yes in S1105), the motion vector predictor used for encoding the motion vector. Are transmitted to the variable length coding unit 105 (S1106).
  • the inter prediction control unit 121 sets the prediction motion vector index to invalid (S1107).
  • the variable length coding unit 105 is notified that it is not added to the bit stream.
  • the motion vector predictor index is set to -1.
  • any means may be used as long as it can be notified that the motion vector predictor index is not added.
  • FIG. 4A shows an example of an operation flow of header control in the variable length coding unit 105 of the image coding apparatus in FIG.
  • the variable length coding unit 105 first adds mv_competition_flag received from the motion vector conflict flag switching unit 125 to a header or the like given for each picture (S1201), and determines whether mv_competition_flag is on (S1202). When mv_competition_flag is on (Yes in S1202), the variable length coding unit 105 further adds mv_competition_skip_flag to the header (S1203).
  • variable length coding unit 105 When mv_competition_skip_flag is off (No in S1202), the variable length coding unit 105 does not add mv_competition_skip_flag to the header.
  • FIG. 5 shows an operation flow of the prediction unit block control in the variable length coding unit 105 of the image coding apparatus in FIG.
  • variable length coding unit 105 determines whether or not the slice type to be coded is an I slice (S1301). If the slice type is an I slice (Yes in S1301), the variable length coding unit 105 performs an I slice coding process (S1301). S1310). If the slice type is not an I slice (No in S1301), the variable length coding unit 105 adds the skip flag received from the inter prediction control unit 121 to the bitstream (S1302).
  • variable length coding unit 105 determines whether or not the skip flag is on (S1303). If the skip flag is on (Yes in S1303), the variable length coding unit 105 skips. The process proceeds to the encoding process for the block, and it is determined whether mv_competition_flag is on (S1304). If the skip flag is off (No in S1303), the variable length coding unit 105 performs inter coding block processing other than the skip block (S1309).
  • variable length coding unit 105 next determines whether mv_competition_skip_flag is on (S1305). If mv_competition_skip_flag is on and the motion vector predictor index received from the inter prediction control unit 121 is valid (Yes in S1305, Yes in S1306), the variable length coding unit 105 converts the motion vector predictor index into a bitstream. It is added (S1307).
  • variable length coding unit 105 does not add the motion vector predictor index to the bitstream (S1308).
  • FIG. 6 shows an example of the syntax of the prediction unit block.
  • FIG. 7 is a block diagram illustrating a configuration example of an image decoding apparatus corresponding to the image encoding apparatus in FIG. 34 is different from the conventional image decoding apparatus in FIG. 34 in that mv_competition_skip_flag is read from the bitstream and used for the processing of the inter prediction control unit 221.
  • the image decoding apparatus illustrated in FIG. 7 includes a variable length decoding unit 205, an inverse quantization unit 206, an inverse orthogonal transform unit 207, an addition unit 208, a block memory 209, an intra prediction unit 210, a frame memory 211, and an inter prediction unit. 212, a switch 213, and an inter prediction control unit 221.
  • the variable length decoding unit 205 performs variable length decoding processing on the input bitstream, and decodes picture type information, prediction motion vector index, prediction error data, and the like.
  • the inverse quantization unit 206 performs an inverse quantization process on the prediction error data.
  • the inverse orthogonal transform unit 207 transforms the prediction error data subjected to the inverse quantization process from the frequency domain to the image domain.
  • the adding unit 208 generates decoded image data by adding the predicted image data and the prediction error data.
  • the block memory 209 stores the decoded image data in units of blocks.
  • the frame memory 211 stores the decoded image data in units of frames.
  • the intra prediction unit 210 generates predicted image data of the decoding target block by executing intra prediction using the decoded image data in units of blocks stored in the block memory.
  • the inter prediction unit 212 generates the predicted image data of the decoding target block by performing inter prediction using the decoded image data in units of frames stored in the frame memory.
  • the switch 213 switches the encoding mode to intra prediction or inter prediction.
  • the inter prediction control unit 221 selects a prediction vector from one or more prediction vector candidates. Note that the inter prediction control unit 221 selects a prediction motion vector from one or more prediction vector candidates using the prediction motion vector index decoded by the variable length decoding unit 205.
  • FIG. 8 shows an operation flow of header control in the variable length decoding unit 205 of the image decoding apparatus in FIG.
  • variable length decoding unit 205 decodes mv_competition_flag in the bitstream (S1401), and if mv_competition_flag is on (Yes in S1402), then decodes mv_competition_skip_flag (S1403).
  • FIG. 9 shows an operation flow of the prediction unit block control in the variable length decoding unit 205 of the image decoding apparatus of FIG.
  • the variable length decoding unit 205 determines whether or not the slice type to be decoded is an I slice (S1501). If the slice type is an I slice (Yes in S1501), the variable length decoding unit 205 performs an I slice decoding process (S1511). . If the slice type is not an I slice (No in S1501), the variable length decoding unit 205 decodes the skip flag in the bitstream (S1502).
  • variable length decoding unit 205 determines whether or not the skip flag is on (S1503). If the skip flag is on (Yes in S1503), the variable length decoding unit 205 skips. The process proceeds to a decoding process for the block, and it is determined whether mv_competition_flag is on (S1504). If the skip flag is off (No in S1503), the variable length decoding unit 205 executes inter decoding block processing other than the skip block (S1510).
  • variable length decoding unit 205 next determines whether mv_competition_skip_flag is on (S1505). If the determination result is true (Yes in S1505), variable length decoding. The conversion unit 205 calculates a predicted motion vector candidate (S1506).
  • variable length decoding unit 205 determines whether there are two or more motion vector predictor candidates (S1507), and if the determination result is true (Yes in S1507), decodes the motion vector predictor index in the bitstream. (S1508).
  • variable length decoding unit 205 sets the predicted motion vector index to 0 (S1509).
  • FIG. 10 shows an operation flow of the inter prediction control unit 221 in the image decoding apparatus of FIG.
  • the inter prediction control unit 221 determines whether or not the skip flag received from the variable length decoding unit 205 is on (S1601). If the determination result is false (No in S1601), the inter decoding block other than the skip block is determined. (S1607).
  • step S1601 determines whether mv_competition_flag is on (S1602). If the determination result is true (Yes in S1602), the next step Whether mv_competition_skip_flag is ON is determined (S1603).
  • step S1603 If the determination result in step S1603 is true (Yes in S1603), the inter prediction control unit 221 calculates a motion vector predictor candidate (S1604), and uses the motion vector predictor index received from the variable length decoding unit 205. A predicted motion vector is generated (S1605).
  • the inter prediction control unit 221 If the determination result of either S1602 or S1603 is false, the inter prediction control unit 221 generates, for example, an average value of motion vectors used around each prediction unit block as a predicted motion vector. A predicted motion vector is generated using the motion vector (S1606).
  • the prediction motion vector candidate is calculated again in step S1604.
  • the prediction motion vector candidate obtained by the variable length decoding unit 205 may be received.
  • mv_competition_skip_flag is added to the bitstream if mv_competition_flag is on as shown in the syntax of FIG. 4B, but both mv_competition_flag and mv_competition_skip_flag are used as in the syntax of FIG. 11A. May be added to the header, and the syntax of the prediction unit block may be changed as shown in FIG. 11B.
  • mv_competition_flag and mv_competition_skip_flag have been described as separate flags.
  • mv_competition_flag may be represented by 2 bits, upper bits may be represented by original mv_competition_flag, and lower bits may be represented by mv_competition_skip_flag.
  • the skip block has been described as an example of the encoding mode.
  • the prediction motion vector conflict flag in the direct mode may be controlled by the same method. Absent.
  • the prediction motion vector competition flag can be turned off only in the direct mode, and the code amount of the prediction motion vector index can be suppressed.
  • the storage medium may be any medium that can record a program, such as a magnetic disk, an optical disk, a magneto-optical disk, an IC card, and a semiconductor memory.
  • FIG. 13 is a diagram showing an overall configuration of a content supply system ex100 that realizes a content distribution service.
  • the communication service providing area is divided into desired sizes, and base stations ex106, ex107, ex108, ex109, and ex110, which are fixed wireless stations, are installed in each cell.
  • the content supply system ex100 includes a computer ex111, a PDA (Personal Digital Assistant) ex112, a camera ex113, a mobile phone ex114, a game machine ex115 via the Internet ex101, the Internet service provider ex102, the telephone network ex104, and the base stations ex106 to ex110. Etc. are connected.
  • PDA Personal Digital Assistant
  • each device may be directly connected to the telephone network ex104 without going through the base stations ex106 to ex110 which are fixed wireless stations.
  • the devices may be directly connected to each other via short-range wireless or the like.
  • the camera ex113 is a device that can shoot moving images such as a digital video camera
  • the camera ex116 is a device that can shoot still images and movies such as a digital camera.
  • the mobile phone ex114 is a GSM (Global System for Mobile Communications) method, a CDMA (Code Division Multiple Access) method, a W-CDMA (Wideband-Code Division Multiple Access L (Semiconductor Access) method, a W-CDMA (Wideband-Code Division Multiple Access L method, or a high access)
  • GSM Global System for Mobile Communications
  • CDMA Code Division Multiple Access
  • W-CDMA Wideband-Code Division Multiple Access L (Semiconductor Access) method
  • W-CDMA Wideband-Code Division Multiple Access L method, or a high access
  • a High Speed Packet Access) mobile phone or a PHS (Personal Handyphone System) may be used.
  • the camera ex113 and the like are connected to the streaming server ex103 through the base station ex109 and the telephone network ex104, thereby enabling live distribution and the like.
  • the content for example, music live video
  • the streaming server ex103 streams the content data transmitted to the requested client.
  • the client include a computer ex111, a PDA ex112, a camera ex113, a mobile phone ex114, a game machine ex115, and the like that can decode the encoded data.
  • Each device that receives the distributed data decodes the received data and reproduces it.
  • the encoded processing of the captured data may be performed by the camera ex113, the streaming server ex103 that performs the data transmission processing, or may be performed in a shared manner.
  • the decryption processing of the distributed data may be performed by the client, the streaming server ex103, or may be performed in a shared manner.
  • still images and / or moving image data captured by the camera ex116 may be transmitted to the streaming server ex103 via the computer ex111.
  • the encoding process in this case may be performed by any of the camera ex116, the computer ex111, and the streaming server ex103, or may be performed in a shared manner.
  • encoding / decoding processes are generally performed by the computer ex111 and the LSI ex500 included in each device.
  • the LSI ex500 may be configured as a single chip or a plurality of chips.
  • moving image encoding / decoding software is incorporated into some recording media (CD-ROM, flexible disk, hard disk, etc.) that can be read by the computer ex111 and the like, and encoding / decoding processing is performed using the software May be.
  • moving image data acquired by the camera may be transmitted.
  • the moving image data at this time is data encoded by the LSI ex500 included in the mobile phone ex114.
  • the streaming server ex103 may be a plurality of servers or a plurality of computers, and may process, record, and distribute data in a distributed manner.
  • the encoded data can be received and reproduced by the client.
  • the information transmitted by the user can be received, decrypted and reproduced by the client in real time, and even a user who does not have special rights or facilities can realize personal broadcasting.
  • At least one of the video encoding device and the video decoding device of each of the above embodiments is incorporated in the digital broadcasting system ex200. be able to.
  • the broadcasting station ex201 multiplexed data obtained by multiplexing music data and the like on video data is transmitted to a communication or satellite ex202 via radio waves.
  • This video data is data encoded by the moving image encoding method described in the above embodiments.
  • the broadcasting satellite ex202 transmits a radio wave for broadcasting, and this radio wave is received by a home antenna ex204 capable of receiving satellite broadcasting.
  • the received multiplexed data is decoded and reproduced by a device such as the television (receiver) ex300 or the set top box (STB) ex217.
  • a reader / recorder ex218 that reads and decodes multiplexed data recorded on a recording medium ex215 such as a DVD or a BD, encodes a video signal on the recording medium ex215, and in some cases multiplexes and writes it with a music signal. It is possible to mount the moving picture decoding apparatus or moving picture encoding apparatus shown in the above embodiments. In this case, the reproduced video signal is displayed on the monitor ex219, and the video signal can be reproduced in another device or system using the recording medium ex215 on which the multiplexed data is recorded.
  • a moving picture decoding apparatus may be mounted in a set-top box ex217 connected to a cable ex203 for cable television or an antenna ex204 for satellite / terrestrial broadcasting and displayed on the monitor ex219 of the television. At this time, the moving picture decoding apparatus may be incorporated in the television instead of the set top box.
  • FIG. 15 is a diagram illustrating a television (receiver) ex300 that uses the video decoding method and the video encoding method described in each of the above embodiments.
  • the television ex300 obtains or outputs multiplexed data in which audio data is multiplexed with video data via the antenna ex204 or the cable ex203 that receives the broadcast, and demodulates the received multiplexed data.
  • the modulation / demodulation unit ex302 that modulates multiplexed data to be transmitted to the outside, and the demodulated multiplexed data is separated into video data and audio data, or the video data and audio data encoded by the signal processing unit ex306 Is provided with a multiplexing / separating unit ex303.
  • the television ex300 decodes each of the audio data and the video data, or encodes the respective information, the audio signal processing unit ex304, the signal processing unit ex306 including the video signal processing unit ex305, and the decoded audio signal.
  • the television ex300 includes an interface unit ex317 including an operation input unit ex312 that receives an input of a user operation.
  • the television ex300 includes a control unit ex310 that controls each unit in an integrated manner, and a power supply circuit unit ex311 that supplies power to each unit.
  • the interface unit ex317 includes a bridge ex313 connected to an external device such as a reader / recorder ex218, a recording unit ex216 such as an SD card, and an external recording such as a hard disk.
  • a driver ex315 for connecting to a medium, a modem ex316 for connecting to a telephone network, and the like may be included.
  • the recording medium ex216 is capable of electrically recording information by using a nonvolatile / volatile semiconductor memory element to be stored.
  • Each part of the television ex300 is connected to each other via a synchronous bus.
  • the television ex300 receives a user operation from the remote controller ex220 or the like, and demultiplexes the multiplexed data demodulated by the modulation / demodulation unit ex302 by the multiplexing / demultiplexing unit ex303 based on the control of the control unit ex310 having a CPU or the like. Furthermore, in the television ex300, the separated audio data is decoded by the audio signal processing unit ex304, and the separated video data is decoded by the video signal processing unit ex305 using the decoding method described in the above embodiments.
  • the decoded audio signal and video signal are output from the output unit ex309 to the outside.
  • these signals may be temporarily stored in the buffers ex318, ex319, etc. so that the audio signal and the video signal are reproduced in synchronization.
  • the television ex300 may read multiplexed data from recording media ex215 and ex216 such as a magnetic / optical disk and an SD card, not from broadcasting. Next, a configuration in which the television ex300 encodes an audio signal or a video signal and transmits the signal to the outside or writes it to a recording medium will be described.
  • the television ex300 receives a user operation from the remote controller ex220 or the like, and encodes an audio signal with the audio signal processing unit ex304 based on the control of the control unit ex310, and converts the video signal with the video signal processing unit ex305. Encoding is performed using the encoding method described in (1).
  • the encoded audio signal and video signal are multiplexed by the multiplexing / demultiplexing unit ex303 and output to the outside. When multiplexing, these signals may be temporarily stored in the buffers ex320 and ex321 so that the audio signal and the video signal are synchronized.
  • a plurality of buffers ex318, ex319, ex320, and ex321 may be provided as illustrated, or one or more buffers may be shared. Further, in addition to the illustrated example, data may be stored in the buffer as a buffer material that prevents system overflow and underflow, for example, between the modulation / demodulation unit ex302 and the multiplexing / demultiplexing unit ex303.
  • the television ex300 has a configuration for receiving AV input of a microphone and a camera, and performs encoding processing on the data acquired from them. Also good.
  • the television ex300 has been described as a configuration that can perform the above-described encoding processing, multiplexing, and external output, but these processing cannot be performed, and only the above-described reception, decoding processing, and external output are possible. It may be a configuration.
  • the decoding process or the encoding process may be performed by either the television ex300 or the reader / recorder ex218.
  • the reader / recorder ex218 may be shared with each other.
  • FIG. 16 shows a configuration of the information reproducing / recording unit ex400 when data is read from or written to an optical disk.
  • the information reproducing / recording unit ex400 includes elements ex401, ex402, ex403, ex404, ex405, ex406, and ex407 described below.
  • the optical head ex401 irradiates a laser spot on the recording surface of the recording medium ex215 that is an optical disc to write information, and detects information reflected from the recording surface of the recording medium ex215 to read the information.
  • the modulation recording unit ex402 electrically drives a semiconductor laser built in the optical head ex401 and modulates the laser beam according to the recording data.
  • the reproduction demodulator ex403 amplifies the reproduction signal obtained by electrically detecting the reflected light from the recording surface by the photodetector built in the optical head ex401, separates and demodulates the signal component recorded on the recording medium ex215, and is necessary. To play back information.
  • the buffer ex404 temporarily holds information to be recorded on the recording medium ex215 and information reproduced from the recording medium ex215.
  • the disk motor ex405 rotates the recording medium ex215.
  • the servo control unit ex406 moves the optical head ex401 to a predetermined information track while controlling the rotational drive of the disk motor ex405, and performs a laser spot tracking process.
  • the system control unit ex407 controls the entire information reproduction / recording unit ex400.
  • the system control unit ex407 uses various types of information held in the buffer ex404, and generates and adds new information as necessary, and the modulation recording unit ex402, the reproduction demodulation unit This is realized by recording / reproducing information through the optical head ex401 while operating the ex403 and the servo control unit ex406 in a coordinated manner.
  • the system control unit ex407 is composed of, for example, a microprocessor, and executes these processes by executing a read / write program.
  • the optical head ex401 has been described as irradiating a laser spot, but it may be configured to perform higher-density recording using near-field light.
  • FIG. 17 shows a schematic diagram of a recording medium ex215 that is an optical disk.
  • Guide grooves grooves
  • address information indicating the absolute position on the disc is recorded in advance on the information track ex230 by changing the shape of the groove.
  • This address information includes information for specifying the position of the recording block ex231 that is a unit for recording data, and the recording block is specified by reproducing the information track ex230 and reading the address information in a recording or reproducing apparatus.
  • the recording medium ex215 includes a data recording area ex233, an inner peripheral area ex232, and an outer peripheral area ex234.
  • the area used for recording the user data is the data recording area ex233, and the inner circumference area ex232 and the outer circumference area ex234 arranged on the inner circumference or outer circumference of the data recording area ex233 are used for specific purposes other than user data recording. Used.
  • the information reproducing / recording unit ex400 reads / writes encoded audio data, video data, or multiplexed data obtained by multiplexing these data with respect to the data recording area ex233 of the recording medium ex215.
  • an optical disk such as a single-layer DVD or BD has been described as an example.
  • the present invention is not limited to these, and an optical disk having a multilayer structure and capable of recording other than the surface may be used.
  • an optical disc with a multi-dimensional recording / reproducing structure such as recording information using light of different wavelengths in the same place on the disc, or recording different layers of information from various angles. It may be.
  • the car ex210 having the antenna ex205 can receive data from the satellite ex202 and the like, and the moving image can be reproduced on a display device such as the car navigation ex211 that the car ex210 has.
  • the configuration of the car navigation ex211 may be, for example, a configuration in which a GPS receiving unit is added in the configuration illustrated in FIG. 15, and the same may be considered for the computer ex111, the mobile phone ex114, and the like.
  • FIG. 18A is a diagram showing the mobile phone ex114 using the moving picture decoding method and the moving picture encoding method described in the above embodiment.
  • the mobile phone ex114 includes an antenna ex350 for transmitting and receiving radio waves to and from the base station ex110, a camera unit ex365 capable of taking video and still images, a video captured by the camera unit ex365, a video received by the antenna ex350, and the like Is provided with a display unit ex358 such as a liquid crystal display for displaying the decrypted data.
  • the mobile phone ex114 further includes a main body unit having an operation key unit ex366, an audio output unit ex357 such as a speaker for outputting audio, an audio input unit ex356 such as a microphone for inputting audio,
  • a main body unit having an operation key unit ex366, an audio output unit ex357 such as a speaker for outputting audio, an audio input unit ex356 such as a microphone for inputting audio
  • an audio input unit ex356 such as a microphone for inputting audio
  • the memory unit ex367 for storing encoded data or decoded data such as still images, recorded audio, received video, still images, mails, or the like, or an interface unit with a recording medium for storing data
  • a slot portion ex364 is provided.
  • the cellular phone ex114 has a power supply circuit ex361, an operation input control unit ex362, and a video signal processing unit ex355 for a main control unit ex360 that comprehensively controls each part of the main body including the display unit ex358 and the operation key unit ex366.
  • a camera interface unit ex363, an LCD (Liquid Crystal Display) control unit ex359, a modulation / demodulation unit ex352, a multiplexing / demultiplexing unit ex353, an audio signal processing unit ex354, a slot unit ex364, and a memory unit ex367 are connected to each other via a bus ex370. ing.
  • the power supply circuit unit ex361 starts up the mobile phone ex114 in an operable state by supplying power from the battery pack to each unit.
  • the mobile phone ex114 converts the audio signal collected by the audio input unit ex356 in the voice call mode into a digital audio signal by the audio signal processing unit ex354 based on the control of the main control unit ex360 having a CPU, a ROM, a RAM, and the like. This is subjected to spectrum spread processing by the modulation / demodulation unit ex352, digital-analog conversion processing and frequency conversion processing by the transmission / reception unit ex351, and then transmitted via the antenna ex350.
  • the mobile phone ex114 amplifies the received data received through the antenna ex350 in the voice call mode, performs frequency conversion processing and analog-digital conversion processing, performs spectrum despreading processing in the modulation / demodulation unit ex352, and performs voice signal processing unit After converting to an analog audio signal at ex354, this is output from the audio output unit ex357.
  • the text data of the e-mail input by operating the operation key unit ex366 of the main unit is sent to the main control unit ex360 via the operation input control unit ex362.
  • the main control unit ex360 performs spread spectrum processing on the text data in the modulation / demodulation unit ex352, performs digital analog conversion processing and frequency conversion processing in the transmission / reception unit ex351, and then transmits the text data to the base station ex110 via the antenna ex350.
  • almost the reverse process is performed on the received data and output to the display unit ex358.
  • the video signal processing unit ex355 compresses the video signal supplied from the camera unit ex365 by the moving image encoding method described in the above embodiments.
  • the encoded video data is sent to the multiplexing / demultiplexing unit ex353.
  • the audio signal processing unit ex354 encodes the audio signal picked up by the audio input unit ex356 while the camera unit ex365 images a video, a still image, and the like, and sends the encoded audio data to the multiplexing / demultiplexing unit ex353. To do.
  • the multiplexing / demultiplexing unit ex353 multiplexes the encoded video data supplied from the video signal processing unit ex355 and the encoded audio data supplied from the audio signal processing unit ex354 by a predetermined method, and is obtained as a result.
  • the multiplexed data is subjected to spread spectrum processing by the modulation / demodulation unit (modulation / demodulation circuit unit) ex352, digital-analog conversion processing and frequency conversion processing by the transmission / reception unit ex351, and then transmitted through the antenna ex350.
  • the multiplexing / separating unit ex353 separates the multiplexed data into a video data bit stream and an audio data bit stream, and performs video signal processing on the video data encoded via the synchronization bus ex370.
  • the encoded audio data is supplied to the audio signal processing unit ex354 while being supplied to the unit ex355.
  • the video signal processing unit ex355 decodes the video signal by decoding using a video decoding method corresponding to the video encoding method shown in each of the above embodiments, and the display unit ex358 via the LCD control unit ex359. From, for example, video and still images included in a moving image file linked to a home page are displayed.
  • the audio signal processing unit ex354 decodes the audio signal, and the audio output unit ex357 outputs the audio.
  • the terminal such as the mobile phone ex114 is referred to as a transmitting terminal having only an encoder and a receiving terminal having only a decoder.
  • a transmitting terminal having only an encoder
  • a receiving terminal having only a decoder.
  • multiplexed data in which music data is multiplexed with video data is received and transmitted.
  • character data related to video is multiplexed. It may be converted data, or may be video data itself instead of multiplexed data.
  • the moving picture encoding method or the moving picture decoding method shown in each of the above embodiments can be used in any of the above-described devices / systems. The described effect can be obtained.
  • multiplexed data obtained by multiplexing audio data or the like with video data is configured to include identification information indicating which standard the video data conforms to.
  • identification information indicating which standard the video data conforms to.
  • FIG. 19 is a diagram showing a structure of multiplexed data.
  • multiplexed data is obtained by multiplexing one or more of a video stream, an audio stream, a presentation graphics stream (PG), and an interactive graphics stream.
  • the video stream indicates the main video and sub-video of the movie
  • the audio stream (IG) indicates the main audio portion of the movie and the sub-audio mixed with the main audio
  • the presentation graphics stream indicates the subtitles of the movie.
  • the main video indicates a normal video displayed on the screen
  • the sub-video is a video displayed on a small screen in the main video.
  • the interactive graphics stream indicates an interactive screen created by arranging GUI components on the screen.
  • the video stream is encoded by the moving image encoding method or apparatus shown in the above embodiments, or the moving image encoding method or apparatus conforming to the conventional standards such as MPEG-2, MPEG4-AVC, and VC-1. ing.
  • the audio stream is encoded by a method such as Dolby AC-3, Dolby Digital Plus, MLP, DTS, DTS-HD, or linear PCM.
  • Each stream included in the multiplexed data is identified by PID. For example, 0x1011 for video streams used for movie images, 0x1100 to 0x111F for audio streams, 0x1200 to 0x121F for presentation graphics, 0x1400 to 0x141F for interactive graphics streams, 0x1B00 to 0x1B1F are assigned to video streams used for sub-pictures, and 0x1A00 to 0x1A1F are assigned to audio streams used for sub-audio mixed with the main audio.
  • FIG. 20 is a diagram schematically showing how multiplexed data is multiplexed.
  • a video stream ex235 composed of a plurality of video frames and an audio stream ex238 composed of a plurality of audio frames are converted into PES packet sequences ex236 and ex239, respectively, and converted into TS packets ex237 and ex240.
  • the data of the presentation graphics stream ex241 and interactive graphics ex244 are converted into PES packet sequences ex242 and ex245, respectively, and further converted into TS packets ex243 and ex246.
  • the multiplexed data ex247 is configured by multiplexing these TS packets into one stream.
  • FIG. 21 shows in more detail how the video stream is stored in the PES packet sequence.
  • the first row in FIG. 21 shows a video frame sequence of the video stream.
  • the second level shows a PES packet sequence.
  • a plurality of Video Presentation Units in the video stream are divided into pictures, B pictures, and P pictures and are stored in the payload of the PES packet.
  • Each PES packet has a PES header, and a PTS (Presentation Time-Stamp) that is a display time of a picture and a DTS (Decoding Time-Stamp) that is a decoding time of a picture are stored in the PES header.
  • PTS Presentation Time-Stamp
  • DTS Decoding Time-Stamp
  • FIG. 22 shows the format of TS packets that are finally written in the multiplexed data.
  • the TS packet is a 188-byte fixed-length packet composed of a 4-byte TS header having information such as a PID for identifying a stream and a 184-byte TS payload for storing data.
  • the PES packet is divided and stored in the TS payload.
  • a 4-byte TP_Extra_Header is added to a TS packet, forms a 192-byte source packet, and is written in multiplexed data.
  • TP_Extra_Header information such as ATS (Arrival_Time_Stamp) is described.
  • ATS indicates the transfer start time of the TS packet to the PID filter of the decoder.
  • Source packets are arranged in the multiplexed data as shown in the lower part of FIG. 22, and the number incremented from the head of the multiplexed data is called SPN (source packet number).
  • TS packets included in the multiplexed data include PAT (Program Association Table), PMT (Program Map Table), PCR (Program Clock Reference), and the like in addition to each stream such as video / audio / caption.
  • PAT indicates what the PID of the PMT used in the multiplexed data is, and the PID of the PAT itself is registered as 0.
  • the PMT has the PID of each stream such as video / audio / subtitles included in the multiplexed data and the attribute information of the stream corresponding to each PID, and has various descriptors related to the multiplexed data.
  • the descriptor includes copy control information for instructing permission / non-permission of copying of multiplexed data.
  • the PCR corresponds to the ATS in which the PCR packet is transferred to the decoder. Contains STC time information.
  • FIG. 23 is a diagram for explaining the data structure of the PMT in detail.
  • a PMT header describing the length of data included in the PMT is arranged at the head of the PMT.
  • a plurality of descriptors related to multiplexed data are arranged.
  • the copy control information and the like are described as descriptors.
  • a plurality of pieces of stream information regarding each stream included in the multiplexed data are arranged.
  • the stream information includes a stream descriptor in which a stream type, a stream PID, and stream attribute information (frame rate, aspect ratio, etc.) are described to identify a compression codec of the stream.
  • the multiplexed data is recorded together with the multiplexed data information file.
  • the multiplexed data information file is management information of multiplexed data, has a one-to-one correspondence with the multiplexed data, and includes multiplexed data information, stream attribute information, and an entry map.
  • the multiplexed data information is composed of a system rate, a reproduction start time, and a reproduction end time.
  • the system rate indicates a maximum transfer rate of multiplexed data to a PID filter of a system target decoder described later.
  • the ATS interval included in the multiplexed data is set to be equal to or less than the system rate.
  • the playback start time is the PTS of the first video frame of the multiplexed data
  • the playback end time is set by adding the playback interval for one frame to the PTS of the video frame at the end of the multiplexed data.
  • attribute information about each stream included in the multiplexed data is registered for each PID.
  • the attribute information has different information for each video stream, audio stream, presentation graphics stream, and interactive graphics stream.
  • the video stream attribute information includes the compression codec used to compress the video stream, the resolution of the individual picture data constituting the video stream, the aspect ratio, and the frame rate. It has information such as how much it is.
  • the audio stream attribute information includes the compression codec used to compress the audio stream, the number of channels included in the audio stream, the language supported, and the sampling frequency. With information. These pieces of information are used for initialization of the decoder before the player reproduces it.
  • the stream type included in the PMT is used.
  • video stream attribute information included in the multiplexed data information is used.
  • the video encoding shown in each of the above embodiments for the stream type or video stream attribute information included in the PMT.
  • FIG. 26 shows steps of the moving picture decoding method according to the present embodiment.
  • step exS100 the stream type included in the PMT or the video stream attribute information included in the multiplexed data information is acquired from the multiplexed data.
  • step exS101 it is determined whether or not the stream type or the video stream attribute information indicates multiplexed data generated by the moving picture encoding method or apparatus described in the above embodiments. To do.
  • step exS102 each of the above embodiments.
  • Decoding is performed by the moving picture decoding method shown in the form.
  • the conventional information Decoding is performed by a moving image decoding method compliant with the standard.
  • FIG. 27 shows a configuration of an LSI ex500 that is made into one chip.
  • the LSI ex500 includes elements ex501, ex502, ex503, ex504, ex505, ex506, ex507, ex508, and ex509 described below, and each element is connected via a bus ex510.
  • the power supply circuit unit ex505 starts up to an operable state by supplying power to each unit when the power supply is in an on state.
  • the LSI ex500 uses the AV I / O ex509 to perform the microphone ex117 and the camera ex113 based on the control of the control unit ex501 including the CPU ex502, the memory controller ex503, the stream controller ex504, the drive frequency control unit ex512, and the like.
  • the AV signal is input from the The input AV signal is temporarily stored in an external memory ex511 such as SDRAM.
  • the accumulated data is divided into a plurality of times as appropriate according to the processing amount and the processing speed and sent to the signal processing unit ex507, and the signal processing unit ex507 encodes an audio signal and / or video. Signal encoding is performed.
  • the encoding process of the video signal is the encoding process described in the above embodiments.
  • the signal processing unit ex507 further performs processing such as multiplexing the encoded audio data and the encoded video data according to circumstances, and outputs the result from the stream I / Oex 506 to the outside.
  • the output multiplexed data is transmitted to the base station ex107 or written to the recording medium ex215. It should be noted that data should be temporarily stored in the buffer ex508 so as to be synchronized when multiplexing.
  • the memory ex511 has been described as an external configuration of the LSI ex500.
  • a configuration included in the LSI ex500 may be used.
  • the buffer ex508 is not limited to one, and a plurality of buffers may be provided.
  • the LSI ex500 may be made into one chip or a plurality of chips.
  • control unit ex501 includes the CPU ex502, the memory controller ex503, the stream controller ex504, the drive frequency control unit ex512, and the like, but the configuration of the control unit ex501 is not limited to this configuration.
  • the signal processing unit ex507 may further include a CPU.
  • the CPU ex502 may be configured to include a signal processing unit ex507 or, for example, an audio signal processing unit that is a part of the signal processing unit ex507.
  • the control unit ex501 is configured to include a signal processing unit ex507 or a CPU ex502 having a part thereof.
  • LSI LSI
  • IC system LSI
  • super LSI ultra LSI depending on the degree of integration
  • the method of circuit integration is not limited to LSI, and implementation with a dedicated circuit or a general-purpose processor is also possible.
  • An FPGA Field Programmable Gate Array
  • a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
  • FIG. 28 shows a configuration ex800 in the present embodiment.
  • the drive frequency switching unit ex803 sets the drive frequency high when the video data is generated by the moving image encoding method or apparatus described in the above embodiments.
  • the decoding processing unit ex801 that executes the moving picture decoding method described in each of the above embodiments is instructed to decode the video data.
  • the video data is video data compliant with the conventional standard, compared to the case where the video data is generated by the moving picture encoding method or apparatus shown in the above embodiments, Set the drive frequency low. Then, it instructs the decoding processing unit ex802 compliant with the conventional standard to decode the video data.
  • the drive frequency switching unit ex803 includes the CPU ex502 and the drive frequency control unit ex512 of FIG.
  • the decoding processing unit ex801 that executes the moving picture decoding method shown in each of the above embodiments and the decoding processing unit ex802 that complies with the conventional standard correspond to the signal processing unit ex507 in FIG.
  • the CPU ex502 identifies which standard the video data conforms to.
  • the drive frequency control unit ex512 sets the drive frequency.
  • the signal processing unit ex507 decodes the video data.
  • the identification of the video data for example, it is conceivable to use the identification information described in the third embodiment.
  • the identification information is not limited to that described in Embodiment 3, and any information that can identify which standard the video data conforms to may be used. For example, it is possible to identify which standard the video data conforms to based on an external signal that identifies whether the video data is used for a television or a disk. In some cases, identification may be performed based on such an external signal. In addition, the selection of the driving frequency in the CPU ex502 may be performed based on, for example, a lookup table in which video data standards and driving frequencies are associated with each other as shown in FIG. The look-up table is stored in the buffer ex508 or the internal memory of the LSI, and the CPU ex502 can select the drive frequency by referring to this look-up table.
  • FIG. 29 shows steps for executing the method of the present embodiment.
  • the signal processing unit ex507 acquires identification information from the multiplexed data.
  • the CPU ex502 identifies whether the video data is generated by the encoding method or apparatus described in each of the above embodiments based on the identification information.
  • the CPU ex502 sends a signal for setting the drive frequency high to the drive frequency control unit ex512. Then, the drive frequency control unit ex512 sets a high drive frequency.
  • step exS203 the CPU ex502 drives a signal for setting the drive frequency low. This is sent to the frequency control unit ex512. Then, in the drive frequency control unit ex512, the drive frequency is set to be lower than that in the case where the video data is generated by the encoding method or apparatus described in the above embodiments.
  • the power saving effect can be further enhanced by changing the voltage applied to the LSI ex500 or the device including the LSI ex500 in conjunction with the switching of the driving frequency.
  • the drive frequency is set to be low, it is conceivable that the voltage applied to the LSI ex500 or the device including the LSI ex500 is set low as compared with the case where the drive frequency is set high.
  • the setting method of the driving frequency may be set to a high driving frequency when the processing amount at the time of decoding is large, and to a low driving frequency when the processing amount at the time of decoding is small. It is not limited to the method.
  • the amount of processing for decoding video data compliant with the MPEG4-AVC standard is larger than the amount of processing for decoding video data generated by the moving picture encoding method or apparatus described in the above embodiments. It is conceivable that the setting of the driving frequency is reversed to that in the case described above.
  • the method for setting the drive frequency is not limited to the configuration in which the drive frequency is lowered.
  • the voltage applied to the LSI ex500 or the apparatus including the LSI ex500 is set high.
  • the video data conforms to the conventional standards such as MPEG-2, MPEG4-AVC, VC-1, etc.
  • the identification information indicates that the video data is generated by the moving image encoding method or apparatus described in each of the above embodiments, the driving of the CPU ex502 is stopped.
  • the CPU ex502 is temporarily stopped because there is enough processing. Is also possible. Even when the identification information indicates that the video data is generated by the moving image encoding method or apparatus described in each of the above embodiments, if there is enough processing, the CPU ex502 is temporarily driven. It can also be stopped. In this case, it is conceivable to set the stop time shorter than in the case where the video data conforms to the conventional standards such as MPEG-2, MPEG4-AVC, and VC-1.
  • a plurality of video data that conforms to different standards may be input to the above-described devices and systems such as a television and a mobile phone.
  • the signal processing unit ex507 of the LSI ex500 needs to support a plurality of standards in order to be able to decode even when a plurality of video data complying with different standards is input.
  • the signal processing unit ex507 corresponding to each standard is used individually, there is a problem that the circuit scale of the LSI ex500 increases and the cost increases.
  • a decoding processing unit for executing the moving picture decoding method shown in each of the above embodiments and a decoding conforming to a standard such as MPEG-2, MPEG4-AVC, or VC-1
  • the processing unit is partly shared.
  • An example of this configuration is shown as ex900 in FIG. 31A.
  • the moving picture decoding method shown in each of the above embodiments and the moving picture decoding method compliant with the MPEG4-AVC standard are processed in processes such as entropy coding, inverse quantization, deblocking filter, and motion compensation. Some contents are common.
  • the decoding processing unit ex902 corresponding to the MPEG4-AVC standard is shared, and for other processing contents unique to the present invention that do not correspond to the MPEG4-AVC standard, the dedicated decoding processing unit ex901 is used.
  • Configuration is conceivable.
  • the decoding processing unit for executing the moving picture decoding method described in each of the above embodiments is shared, and the processing content specific to the MPEG4-AVC standard As for, a configuration using a dedicated decoding processing unit may be used.
  • ex1000 in FIG. 31B shows another example in which processing is partially shared.
  • a dedicated decoding processing unit ex1001 corresponding to processing content specific to the present invention
  • a dedicated decoding processing unit ex1002 corresponding to processing content specific to other conventional standards
  • a moving picture decoding method of the present invention A common decoding processing unit ex1003 corresponding to processing contents common to other conventional video decoding methods is used.
  • the dedicated decoding processing units ex1001 and ex1002 are not necessarily specialized in the processing content specific to the present invention or other conventional standards, and may be capable of executing other general-purpose processing.
  • the configuration of the present embodiment can be implemented by LSI ex500.
  • the circuit scale of the LSI is reduced, and the cost is reduced. It is possible to reduce.
  • the image encoding method and the image decoding method according to the present invention can be used for, for example, a television, a digital video recorder, a car navigation, a mobile phone, a digital camera, or a digital video camera.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

 画像符号化方法は、一つ以上の予測動きベクトル候補の中から予測動きベクトルを選択するか否かを示す、第1フラグを生成する第1フラグ生成ステップと、第1フラグが予測動きベクトルを選択することを示している場合には、符号化対象ブロックを所定の符号化モードで符号化する際に一つ以上の予測動きベクトル候補の中から予測動きベクトルを選択するか否かを示す、第2フラグを生成する第2フラグ生成ステップと、第1フラグが予測動きベクトルを選択することを示している場合には、第1フラグと第2フラグとをヘッダ情報に含む符号化信号を生成する符号化信号生成ステップとを含む。

Description

画像符号化方法、画像復号化方法、画像符号化装置、および画像復号化装置
 本発明は、複数の予測動きベクトル候補の中から、符号化対象の動きベクトルの符号化に最も効率のよい予測動きベクトルを選択して動画像の予測符号化を行う画像符号化方法、画像復号化方法、画像符号化装置、および画像復号化装置に関する。
 図32は、従来の動画像を符号化する画像符号化装置の構成例を示すブロック図である。動画像の符号化には、既に標準化された動画像符号化方式であるH.264などの方式が用いられる(例えば、非特許文献1参照)。図32の画像符号化装置では、ピクチャタイプ決定部124が決定したピクチャタイプ(例えば、H.264のslice type)と、予測動きベクトル競合フラグ切替部125が出力した予測動きベクトル競合フラグ(以下、「mv_competition_flag」と記述する)に応じて、インター予測制御部131がインター予測部112を制御し、インター予測符号化を行う。具体的には、Pピクチャ(例えば、H.264のP slice)またはBピクチャ(例えば、H.264のB slice)などのピクチャタイプ、および、mv_competition_flagのオンまたはオフに応じて、インター予測制御部131は、各予測単位ブロックのインター符号化に用いる動きベクトル符号化のための予測動きベクトルの求め方を切り替えている。
 mv_competition_flagは、第1の処理単位毎(例えば、H.264のslice)にビットストリームに付与する第1のヘッダ情報(例えば、H.264のslice header)に含められ、画像符号化装置から画像復号化装置に通知される。mv_competition_flagがオンの場合は、画像符号化装置は、例えば、各予測単位ブロックの周辺で使用された一つ以上の動きベクトルを予測動きベクトル候補とし、最終的に各予測単位ブロックの動きベクトルの予測に用いた予測動きベクトル候補のインデックス番号を、ビットストリームに付与する。mv_competition_flagがオフの場合は、画像符号化装置は、例えば、各予測単位ブロックの周辺で使用された動きベクトルから一つの予測動きベクトルを生成し、その予測動きベクトルを用いて動きベクトルを符号化する。
 図33Aに、mv_competition_flagがオンの場合の従来の画像符号化装置による予測動きベクトル候補生成処理の一例を示す。画像符号化装置は、まず予測単位ブロックの左(隣接ブロックA)、上(隣接ブロックB)、右上(隣接ブロックC)にある隣接予測単位ブロックを求め、各動きベクトルMV_A,MV_B,MV_Cを求める。次に、画像符号化装置は、動きベクトルMV_A,MV_B,MV_Cの各成分の中間値を用いてメディアン動きベクトルMedian(MV_A、MV_B、MV_C)を求め、メディアン動きベクトルMedian(MV_A、MV_B、MV_C)に予測動きベクトルインデックス0を付加する。また、画像符号化装置は、MV_A、MV_B、MV_Cの順に、各動きベクトルにそれぞれ予測動きベクトルインデックス1、2、3を付加する。図33Bは、予測動きベクトルインデックスと予測動きベクトル候補との対応関係を示す図である。画像符号化装置は、符号化対象予測ブロックの動きベクトルの符号化に最も効率的な予測動きベクトル候補を選択し、選択した予測動きベクトル候補のインデックス番号をビットストリームに付加する。また、画像符号化装置は、予測動きベクトル候補が全て同じ値を持つベクトルの場合などは、ベクトルをマージすることによって候補数を削減し、最終的に候補数が1の場合は、予測動きベクトルインデックスをビットストリームに付加しない等の処理を行う。
 図34は、図32の従来の画像符号化装置に対応する画像復号化装置の構成例を示すブロック図である。動画像の復号化には、既に標準化された動画像復号化方式であるH.264などの方式が用いられる。図34の画像復号化装置では、ビットストリームに付加されているmv_competition_flagと、予測動きベクトルインデックスに応じて、インター予測制御部231がインター予測部212を制御し、インター予測復号化を行う。
ISO/IEC 14496-10「MPEG-4 Part 10 Advanced Video Coding」
 従来の画像符号化装置および画像復号化装置では、mv_competition_flagがオンの場合は、符号化対象予測ブロックがスキップブロック(例えば、H.264のP-Skip、B-Skip)の場合でも、予測動きベクトル候補数が2以上であれば、予測動きベクトルインデックスをビットストリームに付加する必要がある(図35、図36)。
 そのため、例えば低ビットレートをターゲットとした符号化の場合であっても、スキップブロックなどの符号化モードを用いて、予測動きベクトルインデックスの発生符号量を変更することができないという課題が生じる。
 本発明は、上述の課題を解決するためになされたものであり、予測動きベクトルインデックスの発生符号量を変更することができる画像符号化方法等を提供することを目的とする。
 本発明のある局面に係る画像符号化方法は、動画像の予測符号化を行う画像符号化方法であって、一つ以上の予測動きベクトル候補の中から予測動きベクトルを選択するか否かを示す、第1フラグを生成する第1フラグ生成ステップと、前記第1フラグが予測動きベクトルを選択することを示している場合には、符号化対象ブロックを所定の符号化モードで符号化する際に前記一つ以上の予測動きベクトル候補の中から予測動きベクトルを選択するか否かを示す、第2フラグを生成する第2フラグ生成ステップと、前記第1フラグが予測動きベクトルを選択することを示している場合には、前記第1フラグと前記第2フラグとをヘッダ情報に含む符号化信号を生成する符号化信号生成ステップとを含む。
 このような構成により、符号化モードに応じて予測動きベクトルインデックスの発生符号量を制御できる。
 つまり、第1フラグが予測動きベクトルを選択することを示している場合には、第1フラグと第2フラグとをヘッダ情報に含む符号化信号を生成し、第1フラグが予測動きベクトルを選択しないことを示している場合には、第2フラグをヘッダ情報に含まない符号化信号を生成することができる。第2フラグを含まないことにより、予測動きベクトルインデックスの発生符合量を変更することができる。
 これにより、スキップブロックの予測動きベクトル競合フラグ(第2フラグ)を制御することができる。例えば低ビットレートをターゲットとした符号化時に、スキップブロック用の予測動きベクトル競合フラグのみをオフにすることで、スキップブロックの予測動きベクトルインデックスの発生符号量を削減でき、画質破綻等を抑制できる。
 本発明の他の局面に係る画像復号化方法は、動画像を予測符号化した符号化信号を復号化する画像復号化方法であって、前記符号化信号のヘッダ情報に含まれる、一つ以上の予測動きベクトル候補の中から予測動きベクトルを選択するか否かを示す第1フラグを復号化する第1フラグ復号化ステップと、前記第1フラグが予測動きベクトルを選択することを示している場合には、前記ヘッダ情報に含まれる、復号化対象ブロックを所定の復号化モードで復号化する際に前記一つ以上の予測動きベクトル候補の中から予測動きベクトルを選択するか否かを示す第2フラグを復号化する第2フラグ復号化ステップとを含む。
 このような構成により、符号化モードに応じて予測動きベクトルインデックスの発生符号量が制御された符号化信号を復号化することができる。
 なお、本発明は、このような特徴的なステップを含む画像符号化方法または画像復号化方法として実現することができるだけでなく、画像符号化方法または画像復号化方法に含まれる特徴的なステップを処理部とする画像符号化装置または画像復号化装置として実現することができる。また、画像符号化方法または画像復号化方法に含まれる特徴的なステップをコンピュータに実行させるためのプログラムとして実現することもできる。さらに、画像符号化装置または画像復号化装置に含まれる特徴的な処理部としてコンピュータを機能させるためのプログラムとして実現することもできる。そして、そのようなプログラムを、CD-ROM(Compact Disc-Read Only Memory)等のコンピュータ読取可能な非一時的な記録媒体やインターネット等の通信ネットワークを介して流通させることができるのは、言うまでもない。
 本発明によると、予測動きベクトルインデックスの発生符号量を変更することができる画像符号化方法等を提供することができる。
図1は、本発明の実施の形態1に係る画像符号化装置の構成例を示すブロック図である。 図2は、画像符号化装置におけるスキップ用予測動きベクトル競合フラグ切替制御の一例を示すフローチャートである。 図3は、画像符号化装置におけるインター予測制御の一例を示すフローチャートである。 図4Aは、可変長符号化部におけるヘッダの符号化制御の一例を示すフローチャートである。 図4Bは、ヘッダのシンタックスの一例を示す図である。 図5は、可変長符号化部における予測単位ブロックの符号化制御の一例を示すフローチャートである。 図6は、予測単位ブロックのシンタックスの一例を示す図である。 図7は、本発明の実施の形態1に係る画像復号化装置の構成例を示すブロック図である。 図8は、可変長復号化部おけるヘッダの復号化制御の一例を示すフローチャートである。 図9は、可変長復号化部における予測単位ブロックの復号化制御の一例を示すフローチャートである。 図10は、画像復号化装置におけるインター予測制御の一例を示すフローチャートである。 図11Aは、ヘッダのシンタックスの他の一例を示す図である。 図11Bは、予測単位ブロックのシンタックスの他の一例を示す図である。 図12は、予測単位ブロックのシンタックスの一例を示す図である。 図13は、コンテンツ配信サービスを実現するコンテンツ供給システムの全体構成図である。 図14は、デジタル放送用システムの全体構成図である。 図15は、テレビの構成例を示すブロック図である。 図16は、光ディスクである記録メディアに情報の読み書きを行う情報再生/記録部の構成例を示すブロック図である。 図17は、光ディスクである記録メディアの構造例を示す図である。 図18Aは、携帯電話の一例を示す図である。 図18Bは、携帯電話の構成例を示すブロック図である。 図19は、多重化データの構成を示す図である。 図20は、各ストリームが多重化データにおいてどのように多重化されているかを模式的に示す図である。 図21は、PESパケット列に、ビデオストリームがどのように格納されるかを更に詳しく示した図である。 図22は、多重化データにおけるTSパケットとソースパケットの構造を示す図である。 図23は、PMTのデータ構造を示す図である。 図24は、多重化データ情報の内部構成を示す図である。 図25は、ストリーム属性情報の内部構成を示す図である。 図26は、映像データを識別するステップを示す図である。 図27は、各実施の形態の動画像符号化方法および動画像復号化方法を実現する集積回路の構成例を示すブロック図である。 図28は、駆動周波数を切り替える構成を示す図である。 図29は、映像データを識別し、駆動周波数を切り替えるステップを示す図である。 図30は、映像データの規格と駆動周波数を対応づけたルックアップテーブルの一例を示す図である。 図31Aは、信号処理部のモジュールを共有化する構成の一例を示す図である。 図31Bは、信号処理部のモジュールを共有化する構成の他の一例を示す図である。 図32は、従来の画像符号化装置の構成例を示すブロック図である。 図33Aは、従来の予測動きベクトル候補生成処理を示す概念図である。 図33Bは、予測動きベクトルインデックスと予測動きベクトル候補との対応関係を示す図である。 図34は、従来の画像復号化装置の構成例を示すブロック図である。 図35は、従来のインター予測制御を示すフローチャートである。 図36は、従来の予測単位ブロックのシンタックスを示す図である。
 以下、本発明の実施の形態について、図面を用いて詳細に説明する。なお、以下で説明する実施の形態は、いずれも本発明の好ましい一具体例を示すものである。以下の実施の形態で示される数値、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本発明を限定する主旨ではない。本発明は、請求の範囲だけによって限定される。よって、以下の実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない構成要素については、本発明の課題を達成するのに必ずしも必要ではないが、より好ましい形態を構成するものとして説明される。
 以下、本発明の実施の形態について、図面を参照しながら説明する。
 (実施の形態1)
 図1は本発明の実施の形態1に係る画像符号化装置の構成例を示すブロック図である。図32に示す従来の画像符号化装置とは、スキップブロック用予測動きベクトル競合フラグ切替部126を備える点、およびスキップブロック用予測動きベクトル競合フラグ(以下、「mv_competition_skip_flag」と記述する)をビットストリームに付加する構成を備える点で異なる。
 図1の画像符号化装置では、ピクチャ毎に付与されるヘッダ(例えば、H.264のslice header)にて、前記mv_competition_skip_flagを画像復号化装置へ通知する。なお、mv_competition_skip_flagは、必ずしもピクチャ毎に付加されるヘッダにて通知する必要はなく、複数枚のピクチャで構成される単位毎に付与されるヘッダ(例えば、H.264のsequence parameter set)や、複数のピクチャで共通に使用可能なヘッダ情報(例えば、H.264のpicture parameter set)にて通知する構成としてもよい。
 図1に示された画像符号化装置は、減算部102、直交変換部103、量子化部104、可変長符号化部105、逆量子化部106、逆直交変換部107、加算部108、ブロックメモリ109、イントラ予測部110、フレームメモリ111、インター予測部112、スイッチ113、インター予測制御部121、ピクチャタイプ決定部124、予測動きベクトル競合フラグ切替部125、およびスキップブロック用予測動きベクトル競合フラグ切替部126を備える。
 減算部102は、入力画像データから予測画像データを減算して、予測誤差データを出力する。直交変換部103は、予測誤差データに対し、画像領域から、周波数領域への変換を行う。量子化部104は、周波数領域に変換された予測誤差データに対し、量子化処理を行う。
 逆量子化部106は、量子化部104により、量子化処理された予測誤差データに対し、逆量子化処理を行う。逆直交変換部107は、逆量子化処理された予測誤差データに対し、周波数領域から、画像領域への変換を行う。加算部108は、予測誤差データと予測画像データを加算して、再構築画像データを出力する。ブロックメモリ109は、再構築画像データをブロック単位で保存し、フレームメモリ111は、再構築画像データをフレーム単位で保存する。
 イントラ予測部110は、ブロックメモリ109に保存されているブロック単位の再構築画像データを用いて、符号化対象ブロックをイントラ予測により符号化し、予測画像データを生成する。インター予測部112は、フレームメモリ111に保存されているフレーム単位の再構築画像データと、動き検出により導出した動きベクトルとを用いて、符号化対象ブロックをインター予測により符号化し、予測画像データを生成する。スイッチ113は、イントラ予測またはインター予測に符号化モードを切替える。
 ピクチャタイプ決定部124は、Iピクチャ、Bピクチャ、Pピクチャのいずれのピクチャタイプで入力画像列を符号化するかを決定し、ピクチャタイプ情報を生成する。
 予測動きベクトル競合フラグ切替部125は、一つ以上の予測動きベクトル候補の中から予測動きベクトルを選択するか否かを示す、mv_competition_flagを生成する。
 スキップブロック用予測動きベクトル競合フラグ切替部126は、mv_competition_flagが予測動きベクトルを選択することを示している場合には、符号化対象ブロックを所定の符号化モードで符号化する際に一つ以上の予測動きベクトル候補の中から予測動きベクトルを選択するか否かを示す、mv_competition_skip_flagを生成する。
 インター予測制御部121は、一つ以上の予測動きベクトル候補から、予測動きベクトルを選択する。
 可変長符号化部105は、量子化処理された予測誤差データ、予測動きベクトルインデックス、予測動きベクトル候補の予測誤差情報(差分ベクトル)、および、ピクチャタイプ情報等に対して、可変長符号化処理を行う。これにより、可変長符号化部105は、ビットストリームを生成する。
 図2に、スキップブロック用予測動きベクトル競合フラグ切替部126の動作フローの例を示す。
 スキップブロック用予測動きベクトル競合フラグ切替部126は、例えば、符号化時のターゲットビットレートが一定値以下かどうかを判定し(S1001)、判定結果が真であれば(S1001でYes)、mv_competition_skip_flagをオフにする(S1002)。判定結果が偽であれば(S1001でNo)、mv_competition_skip_flagをオンにする(S1003)。オン、オフを示す値は、オンであれば1、オフは0に設定するなどオン(有効)、オフ(無効)を区別できるような値であればどのような値に設定しても構わない。
 スキップブロック用予測動きベクトル競合フラグ切替部126は、設定したmv_competition_skip_flagを図1の可変長符号化部105に送信し(S1004)、ピクチャ毎に付加するヘッダ等に組み込む。
 上記では、mv_competition_skip_flagのオン・オフ制御にターゲットビットレートを用いて説明したが、必ずしもそれに限ったものではない。例えば、量子化パラメータの大小に基づき、量子化パラメータが大きい場合には、mv_competition_skip_flagをオフとし、量子化パラメータが小さい場合にはmv_competition_skip_flagをオンと制御しても構わない。この構成とすると、量子化パラメータの値に応じて適応的にmv_competition_skip_flagを制御することができ、例えば固定ビットレートでの符号化などの際に、量子化パラメータが一定値以上になればmv_competition_skip_flagをオフにすることで、画質破綻を抑制することができる。
 次に、図1の画像符号化装置におけるインター予測制御部121の動作フローの例を図3に示す。
 インター予測制御部121は、インター符号化対象の予測ブロックをスキップブロックにするかどうかを、例えば、ターゲットビットレートと現在までの発生符号量などから判定し(S1101)、その結果をスキップフラグに設定して可変長符号化部105に送信する。
 ステップS1101の判定結果が偽であれば(S1101でNo)、インター予測制御部121は、スキップブロック以外のインター符号化ブロックの処理を行う(S1108)。
 ステップS1101の判定結果が真の場合は(S1101でYes)、インター予測制御部121は、mv_competition_flagがオンかどうかを判定し(S1102)、その結果が真であれば(S1102でYes)、mv_competition_skip_flagがオンかどうかを判定する(S1103)。ステップS1103の判定結果が真であれば(S1103でYes)、インター予測制御部121は、予測動きベクトル候補を算出する(S1104)。
 インター予測制御部121は、予測動きベクトル候補数が2以上存在するかどうかを判定し(S1105)、判定結果が真であれば(S1105でYes)、動きベクトルの符号化に用いた予測動きベクトルのインデックスを可変長符号化部105に送信する(S1106)。
 S1102、S1103、S1105のいずれかの判定結果が偽であれば(S1102でNo、S1103でNo、またはS1105でNo)、インター予測制御部121は、予測動きベクトルインデックスを無効に設定し(S1107)、ビットストリームに付加しないことを可変長符号化部105に伝える。予測動きベクトルインデックスを無効に設定する方法は、例えば、予測動きベクトルインデックスを-1に設定する。ただし、予測動きベクトルインデックスを付加しないことが伝わる手段であれば、どのような手段でも構わない。
 次に、図1の画像符号化装置の可変長符号化部105におけるヘッダ制御の動作フローの例を図4Aに示す。
 可変長符号化部105はまず、予測動きベクトル競合フラグ切替部125から受信したmv_competition_flagを、ピクチャ毎に付与されるヘッダ等に付加し(S1201)、mv_competition_flagがオンかどうかを判定する(S1202)。mv_competition_flagがオンの場合は(S1202でYes)、可変長符号化部105は、さらに、mv_competition_skip_flagをヘッダに付加する(S1203)。
 mv_competition_skip_flagがオフの場合は(S1202でNo)、可変長符号化部105は、mv_competition_skip_flagをヘッダに付加しない。
 これにより、常にmv_competition_skip_flagをヘッダに付加するよりも符号量を削減できる。前記ヘッダのシンタックス例を図4Bに示す。
 次に、図1の画像符号化装置の可変長符号化部105における予測単位ブロック制御の動作フローを図5に示す。
 可変長符号化部105はまず、符号化対象のスライスタイプがIスライスかどうかを判定し(S1301)、スライスタイプがIスライスであれば(S1301でYes)、Iスライスの符号化処理を行う(S1310)。スライスタイプがIスライスでなければ(S1301でNo)、可変長符号化部105は、インター予測制御部121から受信したスキップフラグをビットストリームに付加する(S1302)。
 ステップS1302の処理後、可変長符号化部105は、スキップフラグがオンか否かを判定し(S1303)、スキップフラグがオンであれば(S1303でYes)、可変長符号化部105は、スキップブロックに対する符号化処理に移り、mv_competition_flagがオンかどうかを判定する(S1304)。スキップフラグがオフであれば(S1303でNo)、可変長符号化部105は、スキップブロック以外のインター符号化ブロック処理を実行する(S1309)。
 mv_competition_flagがオンであれば(S1304でYes)、可変長符号化部105は、次にmv_competition_skip_flagがオンかどうかを判定する(S1305)。mv_competition_skip_flagがオンであり、かつインター予測制御部121から受信した予測動きベクトルインデックスが有効であれば(S1305えYes、S1306でYes)、可変長符号化部105は、予測動きベクトルインデックスをビットストリームに付加する(S1307)。
 ステップS1304からS1306のいずれかの判定結果が偽であれば、可変長符号化部105は、予測動きベクトルインデックスをビットストリームに付加しない(S1308)。
 以上により、mv_competition_flagがオンの場合でも、mv_competition_skip_flagがオフであれば、予測動きベクトルインデックスをビットストリームに付加しなくなるため、符号量を抑制できる。図6に予測単位ブロックのシンタックスの例を示す。
 図7は、図1の画像符号化装置に対応する画像復号化装置の構成例を示すブロック図である。図34の従来の画像復号化装置とは、mv_competition_skip_flagをビットストリームから読み込み、インター予測制御部221の処理に使用する点が異なる。
 図7に示された画像復号装置は、可変長復号化部205、逆量子化部206、逆直交変換部207、加算部208、ブロックメモリ209、イントラ予測部210、フレームメモリ211、インター予測部212、スイッチ213、およびインター予測制御部221を備える。
 可変長復号化部205は、入力されたビットストリームに対し、可変長復号処理を行い、ピクチャタイプ情報、予測動きベクトルインデックス、予測誤差データ等を復号する。逆量子化部206は、予測誤差データに対し、逆量子化処理を行う。逆直交変換部207は、逆量子化処理を行った予測誤差データを、周波数領域から、画像領域へ変換する。加算部208は、予測画像データと、予測誤差データとを加算することにより、復号画像データを生成する。
 ブロックメモリ209は、復号画像データを、ブロック単位で保存する。フレームメモリ211は、復号画像データをフレーム単位で保存する。
 イントラ予測部210は、ブロックメモリに保存されているブロック単位の復号画像データを用いて、イントラ予測を実行することにより、復号対象ブロックの予測画像データを生成する。インター予測部212は、フレームメモリに保存されているフレーム単位の復号画像データを用いて、インター予測を実行することにより、復号対象ブロックの予測画像データを生成する。スイッチ213は、イントラ予測またはインター予測に符号化モードを切替える。
 インター予測制御部221は、一つ以上の予測ベクトル候補から、予測ベクトルを選択する。なお、インター予測制御部221は、可変長復号化部205によって復号された予測動きベクトルインデックスを用いて、一つ以上の予測ベクトル候補から、予測動きベクトルを選択する。
 図8は、図7の画像復号化装置の可変長復号化部205におけるヘッダ制御の動作フローを表す。
 可変長復号化部205は、ビットストリーム内のmv_competition_flagを復号化し(S1401)、mv_competition_flagがオンであれば(S1402でYes)、次にmv_competition_skip_flagを復号化する(S1403)。
 図9は、図7の画像復号化装置の可変長復号化部205における予測単位ブロック制御の動作フローを示す。
 可変長復号化部205は、復号化対象のスライスタイプがIスライスかどうかを判定し(S1501)、スライスタイプがIスライスであれば(S1501でYes)、Iスライスの復号処理を行う(S1511)。スライスタイプがIスライスでなければ(S1501でNo)、可変長復号化部205は、ビットストリーム内のスキップフラグを復号化する(S1502)。
 ステップS1502の処理後、可変長復号化部205は、スキップフラグがオンか否かを判定し(S1503)、スキップフラグがオンであれば(S1503でYes)、可変長復号化部205は、スキップブロックに対する復号化処理に移り、mv_competition_flagがオンかどうかを判定する(S1504)。スキップフラグがオフであれば(S1503でNo)、可変長復号化部205は、スキップブロック以外のインター復号ブロック処理を実行する(S1510)。
 mv_competition_flagがオンであれば(S1504でYes)、可変長復号化部205は、次にmv_competition_skip_flagがオンかどうかを判定する(S1505)、判定結果が真であれば(S1505でYes)、可変長復号化部205は、予測動きベクトル候補を算出する(S1506)。
 可変長復号化部205は、予測動きベクトル候補数が2以上存在するかどうかを判定し(S1507)、判定結果が真であれば(S1507でYes)、ビットストリーム内の予測動きベクトルインデックスを復号化する(S1508)。
 S1504、S1505、S1507のいずれかの判定結果が偽であれば、可変長復号化部205は、予測動きベクトルインデックスを0に設定する(S1509)。
 図10は、図7の画像復号化装置におけるインター予測制御部221の動作フローを示す。
 インター予測制御部221は、可変長復号化部205から受信したスキップフラグがオンかどうかを判定し(S1601)、判定結果が偽であれば(S1601でNo)、スキップブロック以外のインター復号化ブロックの処理を行う(S1607)。
 ステップS1601の判定結果が真の場合は(S1601でYes)、インター予測制御部221は、mv_competition_flagがオンかどうかを判定し(S1602)、その判定結果が真であれば(S1602でYes)、次にmv_competition_skip_flagがオンかどうかを判定する(S1603)。
 ステップS1603の判定結果が真であれば(S1603でYes)、インター予測制御部221は、予測動きベクトル候補を算出し(S1604)、可変長復号化部205から受信した予測動きベクトルインデックスを用いて予測動きベクトルを生成する(S1605)。
 S1602、S1603のいずれかの判定結果が偽であれば、インター予測制御部221は、例えば、各予測単位ブロックの周辺で使用された動きベクトルの平均値を予測動きベクトルとして生成するなど、周辺ブロックの動きベクトルを用いて予測動きベクトルを生成する(S1606)。
 上記では、ステップS1604で再度、予測動きベクトル候補を算出するとして説明したが、可変長復号化部205で求めた予測動きベクトル候補を受信するようにしても構わない。
 なお、本実施の形態では、図4Bのシンタックスのように、mv_competition_flagがオンであれば、mv_competition_skip_flagをビットストリームに付加するようにしたが、図11Aのシンタックスのように、mv_competition_flagとmv_competition_skip_flagの両方をヘッダに付加するようにし、図11Bのように予測単位ブロックのシンタックスを変更しても構わない。
 また、本実施の形態では、mv_competition_flagとmv_competition_skip_flagを別のフラグとして説明したが、mv_competition_flagを2ビットとして、上位ビットを元のmv_competition_flag、下位ビットをmv_competition_skip_flagと表しても構わない。
 また、本実施の形態では、符号化モードとしてスキップブロックを例として説明したが、ダイレクトモードで符号化する際にも、同様の方法でダイレクトモード時の予測動きベクトル競合フラグを制御しても構わない。
 その際のシンタックスの一例を図12に示す。図12に示すシンタックスにより、ダイレクトモード時のみ予測動きベクトル競合フラグをオフにすることができ、予測動きベクトルインデックスの符号量を抑制することができる。
 (実施の形態2)
 上記各実施の形態で示した動画像符号化方法または動画像復号化方法の構成を実現するためのプログラムを記憶メディアに記録することにより、上記各実施の形態で示した処理を独立したコンピュータシステムにおいて簡単に実施することが可能となる。記憶メディアは、磁気ディスク、光ディスク、光磁気ディスク、ICカード、半導体メモリ等、プログラムを記録できるものであればよい。
 さらにここで、上記各実施の形態で示した動画像符号化方法や動画像復号化方法の応用例とそれを用いたシステムを説明する。
 図13は、コンテンツ配信サービスを実現するコンテンツ供給システムex100の全体構成を示す図である。通信サービスの提供エリアを所望の大きさに分割し、各セル内にそれぞれ固定無線局である基地局ex106、ex107、ex108、ex109、ex110が設置されている。
 このコンテンツ供給システムex100は、インターネットex101にインターネットサービスプロバイダex102および電話網ex104、および基地局ex106からex110を介して、コンピュータex111、PDA(Personal Digital Assistant)ex112、カメラex113、携帯電話ex114、ゲーム機ex115などの各機器が接続される。
 しかし、コンテンツ供給システムex100は図13のような構成に限定されず、いずれかの要素を組合せて接続するようにしてもよい。また、固定無線局である基地局ex106からex110を介さずに、各機器が電話網ex104に直接接続されてもよい。また、各機器が近距離無線等を介して直接相互に接続されていてもよい。
 カメラex113はデジタルビデオカメラ等の動画撮影が可能な機器であり、カメラex116はデジタルカメラ等の静止画撮影、動画撮影が可能な機器である。また、携帯電話ex114は、GSM(Global System for Mobile Communications)方式、CDMA(Code Division Multiple Access)方式、W-CDMA(Wideband-Code Division Multiple Access)方式、若しくはLTE(Long Term Evolution)方式、HSPA(High Speed Packet Access)の携帯電話機、またはPHS(Personal Handyphone System)等であり、いずれでも構わない。
 コンテンツ供給システムex100では、カメラex113等が基地局ex109、電話網ex104を通じてストリーミングサーバex103に接続されることで、ライブ配信等が可能になる。ライブ配信では、ユーザがカメラex113を用いて撮影するコンテンツ(例えば、音楽ライブの映像等)に対して上記各実施の形態で説明したように符号化処理を行い、ストリーミングサーバex103に送信する。一方、ストリーミングサーバex103は要求のあったクライアントに対して送信されたコンテンツデータをストリーム配信する。クライアントとしては、上記符号化処理されたデータを復号化することが可能な、コンピュータex111、PDAex112、カメラex113、携帯電話ex114、ゲーム機ex115等がある。配信されたデータを受信した各機器では、受信したデータを復号化処理して再生する。
 なお、撮影したデータの符号化処理はカメラex113で行っても、データの送信処理をするストリーミングサーバex103で行ってもよいし、互いに分担して行ってもよい。同様に配信されたデータの復号化処理はクライアントで行っても、ストリーミングサーバex103で行ってもよいし、互いに分担して行ってもよい。また、カメラex113に限らず、カメラex116で撮影した静止画像および/または動画像データを、コンピュータex111を介してストリーミングサーバex103に送信してもよい。この場合の符号化処理はカメラex116、コンピュータex111、ストリーミングサーバex103のいずれで行ってもよいし、互いに分担して行ってもよい。
 また、これら符号化・復号化処理は、一般的にコンピュータex111や各機器が有するLSIex500において処理する。LSIex500は、ワンチップであっても複数チップからなる構成であってもよい。なお、動画像符号化・復号化用のソフトウェアをコンピュータex111等で読み取り可能な何らかの記録メディア(CD-ROM、フレキシブルディスク、ハードディスクなど)に組み込み、そのソフトウェアを用いて符号化・復号化処理を行ってもよい。さらに、携帯電話ex114がカメラ付きである場合には、そのカメラで取得した動画データを送信してもよい。このときの動画データは携帯電話ex114が有するLSIex500で符号化処理されたデータである。
 また、ストリーミングサーバex103は複数のサーバや複数のコンピュータであって、データを分散して処理したり記録したり配信するものであってもよい。
 以上のようにして、コンテンツ供給システムex100では、符号化されたデータをクライアントが受信して再生することができる。このようにコンテンツ供給システムex100では、ユーザが送信した情報をリアルタイムでクライアントが受信して復号化し、再生することができ、特別な権利や設備を有さないユーザでも個人放送を実現できる。
 なお、コンテンツ供給システムex100の例に限らず、図14に示すように、デジタル放送用システムex200にも、上記各実施の形態の少なくとも動画像符号化装置または動画像復号化装置のいずれかを組み込むことができる。具体的には、放送局ex201では映像データに音楽データなどが多重化された多重化データが電波を介して通信または衛星ex202に伝送される。この映像データは上記各実施の形態で説明した動画像符号化方法により符号化されたデータである。これを受けた放送衛星ex202は、放送用の電波を発信し、この電波を衛星放送の受信が可能な家庭のアンテナex204が受信する。受信した多重化データを、テレビ(受信機)ex300またはセットトップボックス(STB)ex217等の装置が復号化して再生する。
 また、DVD、BD等の記録メディアex215に記録した多重化データを読み取り復号化する、または記録メディアex215に映像信号を符号化し、さらに場合によっては音楽信号と多重化して書き込むリーダ/レコーダex218にも上記各実施の形態で示した動画像復号化装置または動画像符号化装置を実装することが可能である。この場合、再生された映像信号はモニタex219に表示され、多重化データが記録された記録メディアex215により他の装置やシステムにおいて映像信号を再生することができる。また、ケーブルテレビ用のケーブルex203または衛星/地上波放送のアンテナex204に接続されたセットトップボックスex217内に動画像復号化装置を実装し、これをテレビのモニタex219で表示してもよい。このときセットトップボックスではなく、テレビ内に動画像復号化装置を組み込んでもよい。
 図15は、上記各実施の形態で説明した動画像復号化方法および動画像符号化方法を用いたテレビ(受信機)ex300を示す図である。テレビex300は、上記放送を受信するアンテナex204またはケーブルex203等を介して映像データに音声データが多重化された多重化データを取得、または出力するチューナex301と、受信した多重化データを復調する、または外部に送信する多重化データに変調する変調/復調部ex302と、復調した多重化データを映像データと、音声データとに分離する、または信号処理部ex306で符号化された映像データ、音声データを多重化する多重/分離部ex303を備える。
 また、テレビex300は、音声データ、映像データそれぞれを復号化する、またはそれぞれの情報を符号化する音声信号処理部ex304、映像信号処理部ex305を有する信号処理部ex306と、復号化した音声信号を出力するスピーカex307、復号化した映像信号を表示するディスプレイ等の表示部ex308を有する出力部ex309とを有する。さらに、テレビex300は、ユーザ操作の入力を受け付ける操作入力部ex312等を有するインタフェース部ex317を有する。さらに、テレビex300は、各部を統括的に制御する制御部ex310、各部に電力を供給する電源回路部ex311を有する。インタフェース部ex317は、操作入力部ex312以外に、リーダ/レコーダex218等の外部機器と接続されるブリッジex313、SDカード等の記録メディアex216を装着可能とするためのスロット部ex314、ハードディスク等の外部記録メディアと接続するためのドライバex315、電話網と接続するモデムex316等を有していてもよい。なお記録メディアex216は、格納する不揮発性/揮発性の半導体メモリ素子により電気的に情報の記録を可能としたものである。テレビex300の各部は同期バスを介して互いに接続されている。
 まず、テレビex300がアンテナex204等により外部から取得した多重化データを復号化し、再生する構成について説明する。テレビex300は、リモートコントローラex220等からのユーザ操作を受け、CPU等を有する制御部ex310の制御に基づいて、変調/復調部ex302で復調した多重化データを多重/分離部ex303で分離する。さらにテレビex300は、分離した音声データを音声信号処理部ex304で復号化し、分離した映像データを映像信号処理部ex305で上記各実施の形態で説明した復号化方法を用いて復号化する。復号化した音声信号、映像信号は、それぞれ出力部ex309から外部に向けて出力される。出力する際には、音声信号と映像信号が同期して再生するよう、バッファex318、ex319等に一旦これらの信号を蓄積するとよい。また、テレビex300は、放送等からではなく、磁気/光ディスク、SDカード等の記録メディアex215、ex216から多重化データを読み出してもよい。次に、テレビex300が音声信号や映像信号を符号化し、外部に送信または記録メディア等に書き込む構成について説明する。テレビex300は、リモートコントローラex220等からのユーザ操作を受け、制御部ex310の制御に基づいて、音声信号処理部ex304で音声信号を符号化し、映像信号処理部ex305で映像信号を上記各実施の形態で説明した符号化方法を用いて符号化する。符号化した音声信号、映像信号は多重/分離部ex303で多重化され外部に出力される。多重化する際には、音声信号と映像信号が同期するように、バッファex320、ex321等に一旦これらの信号を蓄積するとよい。なお、バッファex318、ex319、ex320、ex321は図示しているように複数備えていてもよいし、一つ以上のバッファを共有する構成であってもよい。さらに、図示している以外に、例えば変調/復調部ex302や多重/分離部ex303の間等でもシステムのオーバフロー、アンダーフローを避ける緩衝材としてバッファにデータを蓄積することとしてもよい。
 また、テレビex300は、放送等や記録メディア等から音声データ、映像データを取得する以外に、マイクやカメラのAV入力を受け付ける構成を備え、それらから取得したデータに対して符号化処理を行ってもよい。なお、ここではテレビex300は上記の符号化処理、多重化、および外部出力ができる構成として説明したが、これらの処理を行うことはできず、上記受信、復号化処理、外部出力のみが可能な構成であってもよい。
 また、リーダ/レコーダex218で記録メディアから多重化データを読み出す、または書き込む場合には、上記復号化処理または符号化処理はテレビex300、リーダ/レコーダex218のいずれで行ってもよいし、テレビex300とリーダ/レコーダex218が互いに分担して行ってもよい。
 一例として、光ディスクからデータの読み込みまたは書き込みをする場合の情報再生/記録部ex400の構成を図16に示す。情報再生/記録部ex400は、以下に説明する要素ex401、ex402、ex403、ex404、ex405、ex406、ex407を備える。光ヘッドex401は、光ディスクである記録メディアex215の記録面にレーザスポットを照射して情報を書き込み、記録メディアex215の記録面からの反射光を検出して情報を読み込む。変調記録部ex402は、光ヘッドex401に内蔵された半導体レーザを電気的に駆動し記録データに応じてレーザ光の変調を行う。再生復調部ex403は、光ヘッドex401に内蔵されたフォトディテクタにより記録面からの反射光を電気的に検出した再生信号を増幅し、記録メディアex215に記録された信号成分を分離して復調し、必要な情報を再生する。バッファex404は、記録メディアex215に記録するための情報および記録メディアex215から再生した情報を一時的に保持する。ディスクモータex405は記録メディアex215を回転させる。サーボ制御部ex406は、ディスクモータex405の回転駆動を制御しながら光ヘッドex401を所定の情報トラックに移動させ、レーザスポットの追従処理を行う。システム制御部ex407は、情報再生/記録部ex400全体の制御を行う。上記の読み出しや書き込みの処理はシステム制御部ex407が、バッファex404に保持された各種情報を利用し、また必要に応じて新たな情報の生成・追加を行うと共に、変調記録部ex402、再生復調部ex403、サーボ制御部ex406を協調動作させながら、光ヘッドex401を通して、情報の記録再生を行うことにより実現される。システム制御部ex407は例えばマイクロプロセッサで構成され、読み出し書き込みのプログラムを実行することでそれらの処理を実行する。
 以上では、光ヘッドex401はレーザスポットを照射するとして説明したが、近接場光を用いてより高密度な記録を行う構成であってもよい。
 図17に光ディスクである記録メディアex215の模式図を示す。記録メディアex215の記録面には案内溝(グルーブ)がスパイラル状に形成され、情報トラックex230には、予めグルーブの形状の変化によってディスク上の絶対位置を示す番地情報が記録されている。この番地情報はデータを記録する単位である記録ブロックex231の位置を特定するための情報を含み、記録や再生を行う装置において情報トラックex230を再生し番地情報を読み取ることで記録ブロックを特定することができる。また、記録メディアex215は、データ記録領域ex233、内周領域ex232、外周領域ex234を含んでいる。ユーザデータを記録するために用いる領域がデータ記録領域ex233であり、データ記録領域ex233より内周または外周に配置されている内周領域ex232と外周領域ex234は、ユーザデータの記録以外の特定用途に用いられる。情報再生/記録部ex400は、このような記録メディアex215のデータ記録領域ex233に対して、符号化された音声データ、映像データまたはそれらのデータを多重化した多重化データの読み書きを行う。
 以上では、1層のDVD、BD等の光ディスクを例に挙げ説明したが、これらに限ったものではなく、多層構造であって表面以外にも記録可能な光ディスクであってもよい。また、ディスクの同じ場所にさまざまな異なる波長の色の光を用いて情報を記録したり、さまざまな角度から異なる情報の層を記録したりなど、多次元的な記録/再生を行う構造の光ディスクであってもよい。
 また、デジタル放送用システムex200において、アンテナex205を有する車ex210で衛星ex202等からデータを受信し、車ex210が有するカーナビゲーションex211等の表示装置に動画を再生することも可能である。なお、カーナビゲーションex211の構成は例えば図15に示す構成のうち、GPS受信部を加えた構成が考えられ、同様なことがコンピュータex111や携帯電話ex114等でも考えられる。
 図18Aは、上記実施の形態で説明した動画像復号化方法および動画像符号化方法を用いた携帯電話ex114を示す図である。携帯電話ex114は、基地局ex110との間で電波を送受信するためのアンテナex350、映像、静止画を撮ることが可能なカメラ部ex365、カメラ部ex365で撮像した映像、アンテナex350で受信した映像等が復号化されたデータを表示する液晶ディスプレイ等の表示部ex358を備える。携帯電話ex114は、さらに、操作キー部ex366を有する本体部、音声を出力するためのスピーカ等である音声出力部ex357、音声を入力するためのマイク等である音声入力部ex356、撮影した映像、静止画、録音した音声、または受信した映像、静止画、メール等の符号化されたデータもしくは復号化されたデータを保存するメモリ部ex367、又は同様にデータを保存する記録メディアとのインタフェース部であるスロット部ex364を備える。
 さらに、携帯電話ex114の構成例について、図18Bを用いて説明する。携帯電話ex114は、表示部ex358及び操作キー部ex366を備えた本体部の各部を統括的に制御する主制御部ex360に対して、電源回路部ex361、操作入力制御部ex362、映像信号処理部ex355、カメラインタフェース部ex363、LCD(Liquid Crystal Display)制御部ex359、変調/復調部ex352、多重/分離部ex353、音声信号処理部ex354、スロット部ex364、メモリ部ex367がバスex370を介して互いに接続されている。
 電源回路部ex361は、ユーザの操作により終話及び電源キーがオン状態にされると、バッテリパックから各部に対して電力を供給することにより携帯電話ex114を動作可能な状態に起動する。
 携帯電話ex114は、CPU、ROM、RAM等を有する主制御部ex360の制御に基づいて、音声通話モード時に音声入力部ex356で収音した音声信号を音声信号処理部ex354でデジタル音声信号に変換し、これを変調/復調部ex352でスペクトラム拡散処理し、送信/受信部ex351でデジタルアナログ変換処理および周波数変換処理を施した後にアンテナex350を介して送信する。また携帯電話ex114は、音声通話モード時にアンテナex350を介して受信した受信データを増幅して周波数変換処理およびアナログデジタル変換処理を施し、変調/復調部ex352でスペクトラム逆拡散処理し、音声信号処理部ex354でアナログ音声信号に変換した後、これを音声出力部ex357から出力する。
 さらにデータ通信モード時に電子メールを送信する場合、本体部の操作キー部ex366等の操作によって入力された電子メールのテキストデータは操作入力制御部ex362を介して主制御部ex360に送出される。主制御部ex360は、テキストデータを変調/復調部ex352でスペクトラム拡散処理をし、送信/受信部ex351でデジタルアナログ変換処理および周波数変換処理を施した後にアンテナex350を介して基地局ex110へ送信する。電子メールを受信する場合は、受信したデータに対してこのほぼ逆の処理が行われ、表示部ex358に出力される。
 データ通信モード時に映像、静止画、または映像と音声を送信する場合、映像信号処理部ex355は、カメラ部ex365から供給された映像信号を上記各実施の形態で示した動画像符号化方法によって圧縮符号化し、符号化された映像データを多重/分離部ex353に送出する。また、音声信号処理部ex354は、映像、静止画等をカメラ部ex365で撮像中に音声入力部ex356で収音した音声信号を符号化し、符号化された音声データを多重/分離部ex353に送出する。
 多重/分離部ex353は、映像信号処理部ex355から供給された符号化された映像データと音声信号処理部ex354から供給された符号化された音声データを所定の方式で多重化し、その結果得られる多重化データを変調/復調部(変調/復調回路部)ex352でスペクトラム拡散処理をし、送信/受信部ex351でデジタルアナログ変換処理及び周波数変換処理を施した後にアンテナex350を介して送信する。
 データ通信モード時にホームページ等にリンクされた動画像ファイルのデータを受信する場合、または映像およびもしくは音声が添付された電子メールを受信する場合、アンテナex350を介して受信された多重化データを復号化するために、多重/分離部ex353は、多重化データを分離することにより映像データのビットストリームと音声データのビットストリームとに分け、同期バスex370を介して符号化された映像データを映像信号処理部ex355に供給するとともに、符号化された音声データを音声信号処理部ex354に供給する。映像信号処理部ex355は、上記各実施の形態で示した動画像符号化方法に対応した動画像復号化方法によって復号化することにより映像信号を復号し、LCD制御部ex359を介して表示部ex358から、例えばホームページにリンクされた動画像ファイルに含まれる映像、静止画が表示される。また音声信号処理部ex354は、音声信号を復号し、音声出力部ex357から音声が出力される。
 また、上記携帯電話ex114等の端末は、テレビex300と同様に、符号化器・復号化器を両方持つ送受信型端末の他に、符号化器のみの送信端末、復号化器のみの受信端末という3通りの実装形式が考えられる。さらに、デジタル放送用システムex200において、映像データに音楽データなどが多重化された多重化された多重化データを受信、送信するとして説明したが、音声データ以外に映像に関連する文字データなどが多重化されたデータであってもよいし、多重化データではなく映像データ自体であってもよい。
 このように、上記各実施の形態で示した動画像符号化方法あるいは動画像復号化方法を上述したいずれの機器・システムに用いることは可能であり、そうすることで、上記各実施の形態で説明した効果を得ることができる。
 また、本発明はかかる上記実施形態に限定されるものではなく、本発明の範囲を逸脱することなく種々の変形または修正が可能である。
 (実施の形態3)
 上記各実施の形態で示した動画像符号化方法または装置と、MPEG-2、MPEG4-AVC、VC-1など異なる規格に準拠した動画像符号化方法または装置とを、必要に応じて適宜切替えることにより、映像データを生成することも可能である。
 ここで、それぞれ異なる規格に準拠する複数の映像データを生成した場合、復号する際に、それぞれの規格に対応した復号方法を選択する必要がある。しかしながら、復号する映像データが、どの規格に準拠するものであるか識別できないため、適切な復号方法を選択することができないという課題を生じる。
 この課題を解決するために、映像データに音声データなどを多重化した多重化データは、映像データがどの規格に準拠するものであるかを示す識別情報を含む構成とする。上記各実施の形態で示す動画像符号化方法または装置によって生成された映像データを含む多重化データの具体的な構成を以下説明する。多重化データは、MPEG-2トランスポートストリーム形式のデジタルストリームである。
 図19は、多重化データの構成を示す図である。図19に示すように多重化データは、ビデオストリーム、オーディオストリーム、プレゼンテーショングラフィックスストリーム(PG)、インタラクティブグラフィックスストリームのうち、一つ以上を多重化することで得られる。ビデオストリームは映画の主映像および副映像を、オーディオストリーム(IG)は映画の主音声部分とその主音声とミキシングする副音声を、プレゼンテーショングラフィックスストリームは、映画の字幕をそれぞれ示している。ここで主映像とは画面に表示される通常の映像を示し、副映像とは主映像の中に小さな画面で表示する映像のことである。また、インタラクティブグラフィックスストリームは、画面上にGUI部品を配置することにより作成される対話画面を示している。ビデオストリームは、上記各実施の形態で示した動画像符号化方法または装置、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠した動画像符号化方法または装置によって符号化されている。オーディオストリームは、ドルビーAC-3、Dolby Digital Plus、MLP、DTS、DTS-HD、または、リニアPCMなどの方式で符号化されている。
 多重化データに含まれる各ストリームはPIDによって識別される。例えば、映画の映像に利用するビデオストリームには0x1011が、オーディオストリームには0x1100から0x111Fまでが、プレゼンテーショングラフィックスには0x1200から0x121Fまでが、インタラクティブグラフィックスストリームには0x1400から0x141Fまでが、映画の副映像に利用するビデオストリームには0x1B00から0x1B1Fまで、主音声とミキシングする副音声に利用するオーディオストリームには0x1A00から0x1A1Fが、それぞれ割り当てられている。
 図20は、多重化データがどのように多重化されるかを模式的に示す図である。まず、複数のビデオフレームからなるビデオストリームex235、複数のオーディオフレームからなるオーディオストリームex238を、それぞれPESパケット列ex236およびex239に変換し、TSパケットex237およびex240に変換する。同じくプレゼンテーショングラフィックスストリームex241およびインタラクティブグラフィックスex244のデータをそれぞれPESパケット列ex242およびex245に変換し、さらにTSパケットex243およびex246に変換する。多重化データex247はこれらのTSパケットを1本のストリームに多重化することで構成される。
 図21は、PESパケット列に、ビデオストリームがどのように格納されるかをさらに詳しく示している。図21における第1段目はビデオストリームのビデオフレーム列を示す。第2段目は、PESパケット列を示す。図21の矢印yy1,yy2, yy3, yy4に示すように、ビデオストリームにおける複数のVideo Presentation UnitであるIピクチャ、Bピクチャ、Pピクチャは、ピクチャ毎に分割され、PESパケットのペイロードに格納される。各PESパケットはPESヘッダを持ち、PESヘッダには、ピクチャの表示時刻であるPTS(Presentation Time-Stamp)やピクチャの復号時刻であるDTS(Decoding Time-Stamp)が格納される。
 図22は、多重化データに最終的に書き込まれるTSパケットの形式を示している。TSパケットは、ストリームを識別するPIDなどの情報を持つ4ByteのTSヘッダとデータを格納する184ByteのTSペイロードから構成される188Byte固定長のパケットであり、上記PESパケットは分割されTSペイロードに格納される。BD-ROMの場合、TSパケットには、4ByteのTP_Extra_Headerが付与され、192Byteのソースパケットを構成し、多重化データに書き込まれる。TP_Extra_HeaderにはATS(Arrival_Time_Stamp)などの情報が記載される。ATSは当該TSパケットのデコーダのPIDフィルタへの転送開始時刻を示す。多重化データには図22下段に示すようにソースパケットが並ぶこととなり、多重化データの先頭からインクリメントする番号はSPN(ソースパケットナンバー)と呼ばれる。
 また、多重化データに含まれるTSパケットには、映像・音声・字幕などの各ストリーム以外にもPAT(Program Association Table)、PMT(Program Map Table)、PCR(Program Clock Reference)などがある。PATは多重化データ中に利用されるPMTのPIDが何であるかを示し、PAT自身のPIDは0で登録される。PMTは、多重化データ中に含まれる映像・音声・字幕などの各ストリームのPIDと各PIDに対応するストリームの属性情報を持ち、また多重化データに関する各種ディスクリプタを持つ。ディスクリプタには多重化データのコピーを許可・不許可を指示するコピーコントロール情報などがある。PCRは、ATSの時間軸であるATC(Arrival Time Clock)とPTS・DTSの時間軸であるSTC(System Time Clock)の同期を取るために、そのPCRパケットがデコーダに転送されるATSに対応するSTC時間の情報を持つ。
 図23はPMTのデータ構造を詳しく説明する図である。PMTの先頭には、そのPMTに含まれるデータの長さなどを記したPMTヘッダが配置される。その後ろには、多重化データに関するディスクリプタが複数配置される。上記コピーコントロール情報などが、ディスクリプタとして記載される。ディスクリプタの後には、多重化データに含まれる各ストリームに関するストリーム情報が複数配置される。ストリーム情報は、ストリームの圧縮コーデックなどを識別するためストリームタイプ、ストリームのPID、ストリームの属性情報(フレームレート、アスペクト比など)が記載されたストリームディスクリプタから構成される。ストリームディスクリプタは多重化データに存在するストリームの数だけ存在する。
 記録媒体などに記録する場合には、上記多重化データは、多重化データ情報ファイルと共に記録される。
 多重化データ情報ファイルは、図24に示すように多重化データの管理情報であり、多重化データと1対1に対応し、多重化データ情報、ストリーム属性情報とエントリマップから構成される。
 多重化データ情報は図24に示すようにシステムレート、再生開始時刻、再生終了時刻から構成されている。システムレートは多重化データの、後述するシステムターゲットデコーダのPIDフィルタへの最大転送レートを示す。多重化データ中に含まれるATSの間隔はシステムレート以下になるように設定されている。再生開始時刻は多重化データの先頭のビデオフレームのPTSであり、再生終了時刻は多重化データの終端のビデオフレームのPTSに1フレーム分の再生間隔を足したものが設定される。
 ストリーム属性情報は図25に示すように、多重化データに含まれる各ストリームについての属性情報が、PID毎に登録される。属性情報はビデオストリーム、オーディオストリーム、プレゼンテーショングラフィックスストリーム、インタラクティブグラフィックスストリーム毎に異なる情報を持つ。ビデオストリーム属性情報は、そのビデオストリームがどのような圧縮コーデックで圧縮されたか、ビデオストリームを構成する個々のピクチャデータの解像度がどれだけであるか、アスペクト比はどれだけであるか、フレームレートはどれだけであるかなどの情報を持つ。オーディオストリーム属性情報は、そのオーディオストリームがどのような圧縮コーデックで圧縮されたか、そのオーディオストリームに含まれるチャンネル数は何であるか、何の言語に対応するか、サンプリング周波数がどれだけであるかなどの情報を持つ。これらの情報は、プレーヤが再生する前のデコーダの初期化などに利用される。
 本実施の形態においては、上記多重化データのうち、PMTに含まれるストリームタイプを利用する。また、記録媒体に多重化データが記録されている場合には、多重化データ情報に含まれる、ビデオストリーム属性情報を利用する。具体的には、上記各実施の形態で示した動画像符号化方法または装置において、PMTに含まれるストリームタイプ、または、ビデオストリーム属性情報に対し、上記各実施の形態で示した動画像符号化方法または装置によって生成された映像データであることを示す固有の情報を設定するステップまたは手段を設ける。この構成により、上記各実施の形態で示した動画像符号化方法または装置によって生成した映像データと、他の規格に準拠する映像データとを識別することが可能になる。
 また、本実施の形態における動画像復号化方法のステップを図26に示す。ステップexS100において、多重化データからPMTに含まれるストリームタイプ、または、多重化データ情報に含まれるビデオストリーム属性情報を取得する。次に、ステップexS101において、ストリームタイプ、または、ビデオストリーム属性情報が上記各実施の形態で示した動画像符号化方法または装置によって生成された多重化データであることを示しているか否かを判断する。そして、ストリームタイプ、または、ビデオストリーム属性情報が上記各実施の形態で示した動画像符号化方法または装置によって生成されたものであると判断された場合には、ステップexS102において、上記各実施の形態で示した動画像復号方法により復号を行う。また、ストリームタイプ、または、ビデオストリーム属性情報が、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠するものであることを示している場合には、ステップexS103において、従来の規格に準拠した動画像復号方法により復号を行う。
 このように、ストリームタイプ、または、ビデオストリーム属性情報に新たな固有値を設定することにより、復号する際に、上記各実施の形態で示した動画像復号化方法または装置で復号可能であるかを判断することができる。従って、異なる規格に準拠する多重化データが入力された場合であっても、適切な復号化方法または装置を選択することができるため、エラーを生じることなく復号することが可能となる。また、本実施の形態で示した動画像符号化方法または装置、または、動画像復号方法または装置を、上述したいずれの機器・システムに用いることも可能である。
 (実施の形態4)
 上記各実施の形態で示した動画像符号化方法および装置、動画像復号化方法および装置は、典型的には集積回路であるLSIで実現される。一例として、図27に1チップ化されたLSIex500の構成を示す。LSIex500は、以下に説明する要素ex501、ex502、ex503、ex504、ex505、ex506、ex507、ex508、ex509を備え、各要素はバスex510を介して接続している。電源回路部ex505は電源がオン状態の場合に各部に対して電力を供給することで動作可能な状態に起動する。
 例えば符号化処理を行う場合には、LSIex500は、CPUex502、メモリコントローラex503、ストリームコントローラex504、駆動周波数制御部ex512等を有する制御部ex501の制御に基づいて、AV I/Oex509によりマイクex117やカメラex113等からAV信号を入力する。入力されたAV信号は、一旦SDRAM等の外部のメモリex511に蓄積される。制御部ex501の制御に基づいて、蓄積したデータは処理量や処理速度に応じて適宜複数回に分けるなどされ信号処理部ex507に送られ、信号処理部ex507において音声信号の符号化および/または映像信号の符号化が行われる。ここで映像信号の符号化処理は上記各実施の形態で説明した符号化処理である。信号処理部ex507ではさらに、場合により符号化された音声データと符号化された映像データを多重化するなどの処理を行い、ストリームI/Oex506から外部に出力する。この出力された多重化データは、基地局ex107に向けて送信されたり、または記録メディアex215に書き込まれたりする。なお、多重化する際には同期するよう、一旦バッファex508にデータを蓄積するとよい。
 なお、上記では、メモリex511がLSIex500の外部の構成として説明したが、LSIex500の内部に含まれる構成であってもよい。バッファex508も一つに限ったものではなく、複数のバッファを備えていてもよい。また、LSIex500は1チップ化されてもよいし、複数チップ化されてもよい。
 また、上記では、制御部ex501が、CPUex502、メモリコントローラex503、ストリームコントローラex504、駆動周波数制御部ex512等を有するとしているが、制御部ex501の構成は、この構成に限らない。例えば、信号処理部ex507がさらにCPUを備える構成であってもよい。信号処理部ex507の内部にもCPUを設けることにより、処理速度をより向上させることが可能になる。また、他の例として、CPUex502が信号処理部ex507、または信号処理部ex507の一部である例えば音声信号処理部を備える構成であってもよい。このような場合には、制御部ex501は、信号処理部ex507、またはその一部を有するCPUex502を備える構成となる。
 なお、ここでは、LSIとしたが、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。
 また、集積回路化の手法はLSIに限るものではなく、専用回路または汎用プロセッサで実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。
 さらには、半導体技術の進歩または派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適応等が可能性としてありえる。
 (実施の形態5)
 上記各実施の形態で示した動画像符号化方法または装置によって生成された映像データを復号する場合、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠する映像データを復号する場合に比べ、処理量が増加することが考えられる。そのため、LSIex500において、従来の規格に準拠する映像データを復号する際のCPUex502の駆動周波数よりも高い駆動周波数に設定する必要がある。しかし、駆動周波数を高くすると、消費電力が高くなるという課題が生じる。
 この課題を解決するために、テレビex300、LSIex500などの動画像復号化装置は、映像データがどの規格に準拠するものであるかを識別し、規格に応じて駆動周波数を切替える構成とする。図28は、本実施の形態における構成ex800を示している。駆動周波数切替え部ex803は、映像データが、上記各実施の形態で示した動画像符号化方法または装置によって生成されたものである場合には、駆動周波数を高く設定する。そして、上記各実施の形態で示した動画像復号化方法を実行する復号処理部ex801に対し、映像データを復号するよう指示する。一方、映像データが、従来の規格に準拠する映像データである場合には、映像データが、上記各実施の形態で示した動画像符号化方法または装置によって生成されたものである場合に比べ、駆動周波数を低く設定する。そして、従来の規格に準拠する復号処理部ex802に対し、映像データを復号するよう指示する。
 より具体的には、駆動周波数切替え部ex803は、図27のCPUex502と駆動周波数制御部ex512から構成される。また、上記各実施の形態で示した動画像復号化方法を実行する復号処理部ex801、および、従来の規格に準拠する復号処理部ex802は、図27の信号処理部ex507に該当する。CPUex502は、映像データがどの規格に準拠するものであるかを識別する。そして、CPUex502からの信号に基づいて、駆動周波数制御部ex512は、駆動周波数を設定する。また、CPUex502からの信号に基づいて、信号処理部ex507は、映像データの復号を行う。ここで、映像データの識別には、例えば、実施の形態3で記載した識別情報を利用することが考えられる。識別情報に関しては、実施の形態3で記載したものに限られず、映像データがどの規格に準拠するか識別できる情報であればよい。例えば、映像データがテレビに利用されるものであるか、ディスクに利用されるものであるかなどを識別する外部信号に基づいて、映像データがどの規格に準拠するものであるか識別可能である場合には、このような外部信号に基づいて識別してもよい。また、CPUex502における駆動周波数の選択は、例えば、図30のような映像データの規格と、駆動周波数とを対応付けたルックアップテーブルに基づいて行うことが考えられる。ルックアップテーブルを、バッファex508や、LSIの内部メモリに格納しておき、CPUex502がこのルックアップテーブルを参照することにより、駆動周波数を選択することが可能である。
 図29は、本実施の形態の方法を実施するステップを示している。まず、ステップexS200では、信号処理部ex507において、多重化データから識別情報を取得する。次に、ステップexS201では、CPUex502において、識別情報に基づいて映像データが上記各実施の形態で示した符号化方法または装置によって生成されたものであるか否かを識別する。映像データが上記各実施の形態で示した符号化方法または装置によって生成されたものである場合には、ステップexS202において、駆動周波数を高く設定する信号を、CPUex502が駆動周波数制御部ex512に送る。そして、駆動周波数制御部ex512において、高い駆動周波数に設定される。一方、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠する映像データであることを示している場合には、ステップexS203において、駆動周波数を低く設定する信号を、CPUex502が駆動周波数制御部ex512に送る。そして、駆動周波数制御部ex512において、映像データが上記各実施の形態で示した符号化方法または装置によって生成されたものである場合に比べ、低い駆動周波数に設定される。
 さらに、駆動周波数の切替えに連動して、LSIex500またはLSIex500を含む装置に与える電圧を変更することにより、省電力効果をより高めることが可能である。例えば、駆動周波数を低く設定する場合には、これに伴い、駆動周波数を高く設定している場合に比べ、LSIex500またはLSIex500を含む装置に与える電圧を低く設定することが考えられる。
 また、駆動周波数の設定方法は、復号する際の処理量が大きい場合に、駆動周波数を高く設定し、復号する際の処理量が小さい場合に、駆動周波数を低く設定すればよく、上述した設定方法に限らない。例えば、MPEG4-AVC規格に準拠する映像データを復号する処理量の方が、上記各実施の形態で示した動画像符号化方法または装置により生成された映像データを復号する処理量よりも大きい場合には、駆動周波数の設定を上述した場合の逆にすることが考えられる。
 さらに、駆動周波数の設定方法は、駆動周波数を低くする構成に限らない。例えば、識別情報が、上記各実施の形態で示した動画像符号化方法または装置によって生成された映像データであることを示している場合には、LSIex500またはLSIex500を含む装置に与える電圧を高く設定し、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠する映像データであることを示している場合には、LSIex500またはLSIex500を含む装置に与える電圧を低く設定することも考えられる。また、他の例としては、識別情報が、上記各実施の形態で示した動画像符号化方法または装置によって生成された映像データであることを示している場合には、CPUex502の駆動を停止させることなく、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠する映像データであることを示している場合には、処理に余裕があるため、CPUex502の駆動を一時停止させることも考えられる。識別情報が、上記各実施の形態で示した動画像符号化方法または装置によって生成された映像データであることを示している場合であっても、処理に余裕があれば、CPUex502の駆動を一時停止させることも考えられる。この場合は、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠する映像データであることを示している場合に比べて、停止時間を短く設定することが考えられる。
 このように、映像データが準拠する規格に応じて、駆動周波数を切替えることにより、省電力化を図ることが可能になる。また、電池を用いてLSIex500またはLSIex500を含む装置を駆動している場合には、省電力化に伴い、電池の寿命を長くすることが可能である。
 (実施の形態6)
 テレビや、携帯電話など、上述した機器・システムには、異なる規格に準拠する複数の映像データが入力される場合がある。このように、異なる規格に準拠する複数の映像データが入力された場合にも復号できるようにするために、LSIex500の信号処理部ex507が複数の規格に対応している必要がある。しかし、それぞれの規格に対応する信号処理部ex507を個別に用いると、LSIex500の回路規模が大きくなり、また、コストが増加するという課題が生じる。
 この課題を解決するために、上記各実施の形態で示した動画像復号方法を実行するための復号処理部と、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠する復号処理部とを一部共有化する構成とする。この構成例を図31Aのex900に示す。例えば、上記各実施の形態で示した動画像復号方法と、MPEG4-AVC規格に準拠する動画像復号方法とは、エントロピー符号化、逆量子化、デブロッキング・フィルタ、動き補償などの処理において処理内容が一部共通する。共通する処理内容については、MPEG4-AVC規格に対応する復号処理部ex902を共有し、MPEG4-AVC規格に対応しない、本発明特有の他の処理内容については、専用の復号処理部ex901を用いるという構成が考えられる。復号処理部の共有化に関しては、共通する処理内容については、上記各実施の形態で示した動画像復号化方法を実行するための復号処理部を共有し、MPEG4-AVC規格に特有の処理内容については、専用の復号処理部を用いる構成であってもよい。
 また、処理を一部共有化する他の例を図31Bのex1000に示す。この例では、本発明に特有の処理内容に対応した専用の復号処理部ex1001と、他の従来規格に特有の処理内容に対応した専用の復号処理部ex1002と、本発明の動画像復号方法と他の従来規格の動画像復号方法とに共通する処理内容に対応した共用の復号処理部ex1003とを用いる構成としている。ここで、専用の復号処理部ex1001、ex1002は、必ずしも本発明、または、他の従来規格に特有の処理内容に特化したものではなく、他の汎用処理を実行できるものであってもよい。また、本実施の形態の構成を、LSIex500で実装することも可能である。
 このように、本発明の動画像復号方法と、従来の規格の動画像復号方法とで共通する処理内容について、復号処理部を共有することにより、LSIの回路規模を小さくし、かつ、コストを低減することが可能である。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
 本発明に係る画像符号化方法および画像復号化方法は、例えば、テレビ、デジタルビデオレコーダー、カーナビゲーション、携帯電話、デジタルカメラ、または、デジタルビデオカメラ等に利用可能である。
102 減算部
103 直交変換部
104 量子化部
105 可変長符号化部
106、206 逆量子化部
107、207 逆直交変換部
108、208 加算部
109、209 ブロックメモリ
110、210 イントラ予測部
111、211 フレームメモリ
112、212 インター予測部
113、213 スイッチ
121、131、221、231 インター予測制御部
124 ピクチャタイプ決定部
125 予測動きベクトル競合フラグ切替部
126 スキップブロック用予測動きベクトル競合フラグ切替部
205 可変長復号化部

Claims (9)

  1.  動画像の予測符号化を行う画像符号化方法であって、
     一つ以上の予測動きベクトル候補の中から予測動きベクトルを選択するか否かを示す、第1フラグを生成する第1フラグ生成ステップと、
     前記第1フラグが予測動きベクトルを選択することを示している場合には、符号化対象ブロックを所定の符号化モードで符号化する際に前記一つ以上の予測動きベクトル候補の中から予測動きベクトルを選択するか否かを示す、第2フラグを生成する第2フラグ生成ステップと、
     前記第1フラグが予測動きベクトルを選択することを示している場合には、前記第1フラグと前記第2フラグとをヘッダ情報に含む符号化信号を生成する符号化信号生成ステップと
     を含む画像符号化方法。
  2.  前記符号化信号生成ステップでは、さらに、前記第1フラグが予測動きベクトルを選択しないことを示している場合には、前記第2フラグをヘッダ情報に含まない符号化信号を生成する
     請求項1記載の画像符号化方法。
  3.  さらに、
     前記符号化対象ブロックを前記所定の符号化モードで符号化する際には、前記第1フラグおよび前記第2フラグのいずれもが予測動きベクトルを選択することを示している場合には、前記一つ以上の予測動きベクトル候補の中から選択する予測動きベクトルを示すインデックス情報を前記符号化信号に含めるステップを含む
     請求項2記載の画像符号化方法。
  4.  前記所定の符号化モードはスキップモードであり、
     前記第2フラグ生成ステップでは、符号化において目標とするターゲットビットレートまたは前記符号化対象ブロックの量子化における量子化パラメータの値に基づいて、前記第2フラグの値を決定する
     請求項3記載の画像符号化方法。
  5.  動画像を予測符号化した符号化信号を復号化する画像復号化方法であって、
     前記符号化信号のヘッダ情報に含まれる、一つ以上の予測動きベクトル候補の中から予測動きベクトルを選択するか否かを示す第1フラグを復号化する第1フラグ復号化ステップと、
     前記第1フラグが予測動きベクトルを選択することを示している場合には、前記ヘッダ情報に含まれる、復号化対象ブロックを所定の復号化モードで復号化する際に前記一つ以上の予測動きベクトル候補の中から予測動きベクトルを選択するか否かを示す第2フラグを復号化する第2フラグ復号化ステップと
     を含む画像復号化方法。
  6.  さらに、
     前記復号化対象ブロックを前記所定の復号化モードで復号化する際には、前記第1フラグおよび前記第2フラグのいずれもが予測動きベクトルを選択することを示している場合には、前記一つ以上の予測動きベクトル候補の中から選択する予測動きベクトルを示すインデックス情報を、前記符号化信号から復号化するインデックス情報復号化ステップを含む
     請求項5記載の画像復号化方法。
  7.  動画像の予測符号化を行う画像符号化装置であって、
     一つ以上の予測動きベクトル候補の中から予測動きベクトルを選択するか否かを示す、第1フラグを生成する予測動きベクトル競合フラグ切替部と、
     前記第1フラグが予測動きベクトルを選択することを示している場合には、符号化対象ブロックを所定の符号化モードで符号化する際に前記一つ以上の予測動きベクトル候補の中から予測動きベクトルを選択するか否かを示す、第2フラグを生成するスキップブロック用予測動きベクトル競合フラグ切替部と、
     前記第1フラグが予測動きベクトルを選択することを示している場合には、前記第1フラグと前記第2フラグとをヘッダ情報に含む符号化信号を生成する可変長符号化部と
     を備える画像符号化装置。
  8.  動画像を予測符号化した符号化信号を復号化する画像復号化装置であって、
     前記符号化信号のヘッダ情報に含まれる、一つ以上の予測動きベクトル候補の中から予測動きベクトルを選択するか否かを示す第1フラグを復号化し、前記第1フラグが予測動きベクトルを選択することを示している場合には、前記ヘッダ情報に含まれる、復号化対象ブロックを所定の復号化モードで復号化する際に前記一つ以上の予測動きベクトル候補の中から予測動きベクトルを選択するか否かを示す第2フラグを復号化する可変長復号化部を備える
     を含む画像復号化装置。
  9.  請求項1に記載の画像符号化方法または請求項5に記載の画像復号化方法をコンピュータに実行させるためのプログラム。
PCT/JP2011/005323 2010-09-24 2011-09-21 画像符号化方法、画像復号化方法、画像符号化装置、および画像復号化装置 WO2012039136A1 (ja)

Priority Applications (21)

Application Number Priority Date Filing Date Title
AU2011306322A AU2011306322B2 (en) 2010-09-24 2011-09-21 Image coding method, image decoding method, image coding apparatus, and image decoding apparatus
KR1020137002632A KR101815723B1 (ko) 2010-09-24 2011-09-21 화상 부호화 방법, 화상 복호화 방법, 화상 부호화 장치, 및 화상 복호화 장치
MX2013001659A MX2013001659A (es) 2010-09-24 2011-09-21 Metodo de codificacion de imagen, metodo de decodificacion de imagen, aparato de codificacion de imagen, y aparato de decodificacion de imagen.
CN201180036996.6A CN103039076B (zh) 2010-09-24 2011-09-21 图像编码方法、图像解码方法、图像编码装置及图像解码装置
JP2012534936A JP5303683B2 (ja) 2010-09-24 2011-09-21 画像符号化方法および画像符号化装置
EP11826583.4A EP2621176A4 (en) 2010-09-24 2011-09-21 IMAGE ENCODING METHOD, IMAGE DECODING METHOD, IMAGE ENCODING APPARATUS, AND IMAGE DECODING APPARATUS
BR112013003624A BR112013003624A2 (pt) 2010-09-24 2011-09-21 método de codificação de imagem, método de decodificação de imagem, aparelho de codificação de imagem e aparelho de decodificação de imagem
KR1020187007923A KR101922392B1 (ko) 2010-09-24 2011-09-21 화상 부호화 방법, 화상 복호화 방법, 화상 부호화 장치, 및 화상 복호화 장치
CA2807780A CA2807780C (en) 2010-09-24 2011-09-21 Image coding method, image decoding method, image coding apparatus, and image decoding apparatus
US13/816,370 US8848805B2 (en) 2010-09-24 2011-09-21 Image coding method, image decoding method, image coding apparatus, and image decoding apparatus
KR1020177015383A KR101842852B1 (ko) 2010-09-24 2011-09-21 화상 부호화 방법, 화상 복호화 방법, 화상 부호화 장치, 및 화상 복호화 장치
SG2013011200A SG187851A1 (en) 2010-09-24 2011-09-21 Image coding method, image decoding method, image coding apparatus, and image decoding apparatus
US13/949,620 US8861592B2 (en) 2010-09-24 2013-07-24 Image coding method, image decoding method, image coding apparatus, and image decoding apparatus
US14/447,970 US9392298B2 (en) 2010-09-24 2014-07-31 Image coding method, image decoding method, image coding apparatus, and image decoding apparatus
US15/170,223 US9621915B2 (en) 2010-09-24 2016-06-01 Image coding method, image decoding method, image coding apparatus, and image decoding apparatus
US15/445,295 US9930334B2 (en) 2010-09-24 2017-02-28 Image coding method, image decoding method, image coding apparatus, and image decoding apparatus
US15/897,815 US10298926B2 (en) 2010-09-24 2018-02-15 Image coding method, image decoding method, image coding apparatus, and image decoding apparatus
US16/377,874 US10798381B2 (en) 2010-09-24 2019-04-08 Image coding method, image decoding method, image coding apparatus, and image decoding apparatus
US17/011,452 US11166018B2 (en) 2010-09-24 2020-09-03 Image coding method, image decoding method, image coding apparatus, and image decoding apparatus
US17/491,974 US11895293B2 (en) 2010-09-24 2021-10-01 Image coding method, image decoding method, image coding apparatus, and image decoding apparatus
US18/394,256 US20240179307A1 (en) 2010-09-24 2023-12-22 Image coding method, image decoding method, image coding apparatus, and image decoding apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US38616110P 2010-09-24 2010-09-24
US61/386,161 2010-09-24

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US13/816,370 A-371-Of-International US8848805B2 (en) 2010-09-24 2011-09-21 Image coding method, image decoding method, image coding apparatus, and image decoding apparatus
US13/949,620 Division US8861592B2 (en) 2010-09-24 2013-07-24 Image coding method, image decoding method, image coding apparatus, and image decoding apparatus
US14/447,970 Continuation US9392298B2 (en) 2010-09-24 2014-07-31 Image coding method, image decoding method, image coding apparatus, and image decoding apparatus

Publications (1)

Publication Number Publication Date
WO2012039136A1 true WO2012039136A1 (ja) 2012-03-29

Family

ID=45873635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/005323 WO2012039136A1 (ja) 2010-09-24 2011-09-21 画像符号化方法、画像復号化方法、画像符号化装置、および画像復号化装置

Country Status (11)

Country Link
US (10) US8848805B2 (ja)
EP (1) EP2621176A4 (ja)
JP (3) JP5303683B2 (ja)
KR (3) KR101815723B1 (ja)
CN (2) CN105592317B (ja)
AU (1) AU2011306322B2 (ja)
BR (1) BR112013003624A2 (ja)
CA (1) CA2807780C (ja)
MX (1) MX2013001659A (ja)
SG (1) SG187851A1 (ja)
WO (1) WO2012039136A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5982734B2 (ja) * 2011-03-11 2016-08-31 ソニー株式会社 画像処理装置および方法
EP3139611A1 (en) * 2011-03-14 2017-03-08 HFI Innovation Inc. Method and apparatus for deriving temporal motion vector prediction
KR20220162877A (ko) 2014-10-31 2022-12-08 삼성전자주식회사 고정밀 스킵 부호화를 이용한 비디오 부호화 장치 및 비디오 복호화 장치 및 그 방법
US10663417B2 (en) 2017-12-01 2020-05-26 Deka Products Limited Partnership System and method for characterizing bioreactor fluids
US11025904B2 (en) * 2018-06-08 2021-06-01 Tencent America LLC Method and apparatus for temporal motion vector prediction
JP7322020B2 (ja) * 2018-06-27 2023-08-07 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置
US11533472B2 (en) 2020-05-21 2022-12-20 Alibaba Group Holding Limited Method for reference picture processing in video coding

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009051419A2 (en) * 2007-10-16 2009-04-23 Lg Electronics Inc. A method and an apparatus for processing a video signal

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1253697A (zh) * 1997-04-14 2000-05-17 汤姆森消费电子有限公司 为用户启动控制和通信功能而形成节目引导信息的系统
JP4114859B2 (ja) * 2002-01-09 2008-07-09 松下電器産業株式会社 動きベクトル符号化方法および動きベクトル復号化方法
US7280700B2 (en) * 2002-07-05 2007-10-09 Microsoft Corporation Optimization techniques for data compression
CN100553339C (zh) * 2002-07-15 2009-10-21 株式会社日立制作所 动态图像解码方法
KR100585710B1 (ko) * 2002-08-24 2006-06-02 엘지전자 주식회사 가변길이 동영상 부호화 방법
WO2004040915A1 (ja) 2002-11-01 2004-05-13 Matsushita Electric Industrial Co., Ltd. 動画像符号化方法および動画像復号化方法
JP3878591B2 (ja) * 2002-11-01 2007-02-07 松下電器産業株式会社 動画像符号化方法および動画像復号化方法
US20050013498A1 (en) * 2003-07-18 2005-01-20 Microsoft Corporation Coding of motion vector information
US8064520B2 (en) * 2003-09-07 2011-11-22 Microsoft Corporation Advanced bi-directional predictive coding of interlaced video
US7620106B2 (en) * 2003-09-07 2009-11-17 Microsoft Corporation Joint coding and decoding of a reference field selection and differential motion vector information
CN1316829C (zh) * 2004-12-03 2007-05-16 大唐微电子技术有限公司 基于小波变换的视频流编码/解码方法
JP3745363B2 (ja) * 2005-03-28 2006-02-15 オリンパス株式会社 カメラ
EP1872590B1 (en) 2005-04-19 2014-10-22 Telecom Italia S.p.A. Method and apparatus for digital image coding
US8031766B2 (en) 2005-08-02 2011-10-04 Lsi Corporation Performance adaptive video encoding with concurrent decoding
US8761259B2 (en) * 2005-09-22 2014-06-24 Qualcomm Incorporated Multi-dimensional neighboring block prediction for video encoding
JP4527677B2 (ja) 2006-03-15 2010-08-18 富士通株式会社 動画像符号化方法、動画像符号化装置、動画像符号化プログラム
JP2009531940A (ja) * 2006-03-24 2009-09-03 韓國電子通信研究院 Fgsレイヤーの動きデータを利用してインターレイヤーリダンダンシを除去するコーディング方法及びその装置
WO2007148907A1 (en) * 2006-06-19 2007-12-27 Lg Electronics, Inc. Method and apparatus for processing a vedeo signal
US8428118B2 (en) * 2006-08-17 2013-04-23 Ittiam Systems (P) Ltd. Technique for transcoding MPEG-2/MPEG-4 bitstream to H.264 bitstream
JP5249242B2 (ja) * 2007-01-24 2013-07-31 エルジー エレクトロニクス インコーポレイティド ビデオ信号処理方法及び装置
US8077772B2 (en) * 2007-11-09 2011-12-13 Cisco Technology, Inc. Coding background blocks in video coding that includes coding as skipped
KR101560182B1 (ko) * 2008-01-07 2015-10-15 삼성전자주식회사 다시점 비디오 부호화 방법과 그 장치 및 다시점 비디오 복호화 방법과 그 장치
EP2266318B1 (en) 2008-03-19 2020-04-22 Nokia Technologies Oy Combined motion vector and reference index prediction for video coding
WO2009149762A1 (en) * 2008-06-13 2009-12-17 Telefonaktiebolaget Lm Ericsson (Publ) Packet loss analysis
JP4977094B2 (ja) * 2008-06-25 2012-07-18 株式会社東芝 画像符号化方法
JP2012504925A (ja) * 2008-10-06 2012-02-23 エルジー エレクトロニクス インコーポレイティド ビデオ信号の処理方法及び装置
US7932843B2 (en) 2008-10-17 2011-04-26 Texas Instruments Incorporated Parallel CABAC decoding for video decompression
KR101279573B1 (ko) * 2008-10-31 2013-06-27 에스케이텔레콤 주식회사 움직임 벡터 부호화 방법 및 장치와 그를 이용한 영상 부호화/복호화 방법 및 장치
KR101590511B1 (ko) 2009-01-23 2016-02-02 에스케이텔레콤 주식회사 움직임 벡터 부호화/복호화 장치 및 방법과 그를 이용한 영상 부호화/복호화 장치 및 방법
BR112012019560B1 (pt) * 2010-02-05 2021-08-24 Telefonaktiebolaget Lm Ericsson Método para gerenciar candidatos a vetor de movimento predito, e, aparelhos de codificação e de decodificação de vídeo
US8527649B2 (en) * 2010-03-09 2013-09-03 Mobixell Networks Ltd. Multi-stream bit rate adaptation
US9510009B2 (en) * 2010-05-20 2016-11-29 Thomson Licensing Methods and apparatus for adaptive motion vector candidate ordering for video encoding and decoding
US9247266B2 (en) * 2011-04-18 2016-01-26 Texas Instruments Incorporated Temporal motion data candidate derivation in video coding
US9185424B2 (en) * 2011-07-05 2015-11-10 Qualcomm Incorporated Image data compression
US20130188716A1 (en) * 2012-01-20 2013-07-25 Qualcomm Incorporated Temporal motion vector predictor candidate

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009051419A2 (en) * 2007-10-16 2009-04-23 Lg Electronics Inc. A method and an apparatus for processing a video signal

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
"Test Model under Consideration", OUTPUT DOCUMENT (DRAFT000), JOINT COLLABORATIVE TEAM ON VIDEO CODING (JCT-VC) OF ITU-T SG16 WP3 AND ISO/IEC JTC1/SC29/WG11, JCTVC-B205, 2ND MEETING, July 2010 (2010-07-01), GENEVA, CH, pages 1 - 30, 36-39, XP030007704 *
BYEONGMOON JEON ET AL.: "Description of video coding technology proposal by LG Electronics", JOINT COLLABORATIVE TEAM ON VIDEO CODING (JCT- VC) OF ITU-T SG16 WP3 AND ISO/IEC JTC1/SC29/ WG11, JCTVC-A110, 1ST MEETING, April 2010 (2010-04-01), DRESDEN, DE, pages 1 - 37, XP008168684 *
JOEL JUNG ET AL.: "Competition- Based Scheme for Motion Vector Selection and Coding", ITU - TELECOMMUNICATIONS STANDARDIZATION SECTOR STUDY GROUP 16 QUESTION 6 VIDEO CODING EXPERTS GROUP (VCEG), VCEG-AC06, 29TH MEETING, July 2006 (2006-07-01), KLAGENFURT, AUSTRIA, pages 1 - 7, XP030003490 *
KAZUSHI SATO: "On Motion Vector Coding", JOINT COLLABORATIVE TEAM ON VIDEO CODING (JCT-VC) OF ITU-T SG16 WP3 AND ISO/IEC JTC1/SC29/WG11, JCTVC-B081, 2ND MEETING, July 2010 (2010-07-01), GENEVA, CH, pages 1 - 9, XP008168663 *
See also references of EP2621176A4 *
TOMOYUKI YAMAMOTO: "A new scheme for motion vector predictor encoding", ITU - TELECOMMUNICATIONS STANDARDIZATION SECTOR STUDY GROUP 16 QUESTION 6 VIDEO CODING EXPERTS GROUP (VCEG), VCEG-AF13, 32ND MEETING, April 2007 (2007-04-01), SAN JOSE, CA, USA, pages 1 - 4, XP030003534 *

Also Published As

Publication number Publication date
US20190238844A1 (en) 2019-08-01
US20170171544A1 (en) 2017-06-15
US9930334B2 (en) 2018-03-27
US8861592B2 (en) 2014-10-14
CN103039076A (zh) 2013-04-10
CA2807780A1 (en) 2012-03-29
BR112013003624A2 (pt) 2019-05-28
KR20170070251A (ko) 2017-06-21
AU2011306322B2 (en) 2016-06-02
US10798381B2 (en) 2020-10-06
US20130308705A1 (en) 2013-11-21
AU2011306322A1 (en) 2013-02-28
JP2013225898A (ja) 2013-10-31
CA2807780C (en) 2018-09-18
JP5331944B2 (ja) 2013-10-30
US11895293B2 (en) 2024-02-06
US9621915B2 (en) 2017-04-11
CN105592317A (zh) 2016-05-18
US20240179307A1 (en) 2024-05-30
EP2621176A1 (en) 2013-07-31
JP5694447B2 (ja) 2015-04-01
KR101815723B1 (ko) 2018-01-05
EP2621176A4 (en) 2014-04-30
KR101842852B1 (ko) 2018-03-27
US20130142254A1 (en) 2013-06-06
KR20130102531A (ko) 2013-09-17
US20220021875A1 (en) 2022-01-20
CN105592317B (zh) 2018-08-28
US20140341296A1 (en) 2014-11-20
JPWO2012039136A1 (ja) 2014-02-03
SG187851A1 (en) 2013-03-28
US20200404262A1 (en) 2020-12-24
JP2013211920A (ja) 2013-10-10
CN103039076B (zh) 2016-03-16
US10298926B2 (en) 2019-05-21
US9392298B2 (en) 2016-07-12
KR20180032676A (ko) 2018-03-30
KR101922392B1 (ko) 2018-11-26
JP5303683B2 (ja) 2013-10-02
MX2013001659A (es) 2013-03-21
US20180176558A1 (en) 2018-06-21
US8848805B2 (en) 2014-09-30
US20160277757A1 (en) 2016-09-22
US11166018B2 (en) 2021-11-02

Similar Documents

Publication Publication Date Title
JP5414942B1 (ja) カメラデバイスおよび送信方法
JP6008291B2 (ja) 画像符号化方法および画像符号化装置
JP5837575B2 (ja) 動画像符号化方法、動画像符号化装置、動画像復号化方法、動画像復号化装置、および動画像符号化復号化装置
JP5347081B1 (ja) 符号化方法および符号化装置
WO2013061546A1 (ja) 画像符号化方法、画像復号方法、画像符号化装置および画像復号装置
WO2012117728A1 (ja) 動画像符号化方法、動画像復号方法、動画像符号化装置、動画像復号装置、及び動画像符号化復号装置
WO2012102045A1 (ja) 画像符号化方法および画像復号化方法
JP5331944B2 (ja) 画像復号化方法および画像復号化装置
JP6414712B2 (ja) 多数の参照ピクチャを用いる動画像符号化方法、動画像復号方法、動画像符号化装置、および動画像復号方法
WO2012023281A1 (ja) 動画像復号方法、動画像符号化方法、動画像復号装置、及び、動画像符号化装置
WO2013001748A1 (ja) 画像符号化方法、画像復号方法、画像符号化装置、画像復号装置および画像符号化復号装置
WO2012120840A1 (ja) 画像復号方法、画像符号化方法、画像復号装置および画像符号化装置
WO2012090495A1 (ja) 画像符号化方法および画像復号方法
WO2012081246A1 (ja) 画像符号化方法および画像復号化方法
WO2012070235A1 (ja) 動きベクトル算出方法、画像符号化方法、画像復号方法、動きベクトル算出装置および画像符号化復号装置
WO2012081225A1 (ja) 画像符号化方法、及び画像復号方法
WO2013073154A1 (ja) 符号化方法および復号方法
WO2012096157A1 (ja) 画像符号化方法、画像復号方法、画像符号化装置および画像復号装置
WO2012086166A1 (ja) 画像符号化方法及び画像復号化方法
WO2013046616A1 (ja) 画像符号化装置、画像復号装置、画像符号化方法及び画像復号方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180036996.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11826583

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012534936

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20137002632

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2807780

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 13816370

Country of ref document: US

Ref document number: MX/A/2013/001659

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2011826583

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2011306322

Country of ref document: AU

Date of ref document: 20110921

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013003624

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013003624

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130215