WO2012036385A2 - Anode active material, nonaqueous lithium secondary battery containing same, and preparation method thereof - Google Patents

Anode active material, nonaqueous lithium secondary battery containing same, and preparation method thereof Download PDF

Info

Publication number
WO2012036385A2
WO2012036385A2 PCT/KR2011/006110 KR2011006110W WO2012036385A2 WO 2012036385 A2 WO2012036385 A2 WO 2012036385A2 KR 2011006110 W KR2011006110 W KR 2011006110W WO 2012036385 A2 WO2012036385 A2 WO 2012036385A2
Authority
WO
WIPO (PCT)
Prior art keywords
lithium secondary
secondary battery
active material
carbon
aqueous lithium
Prior art date
Application number
PCT/KR2011/006110
Other languages
French (fr)
Korean (ko)
Other versions
WO2012036385A3 (en
Inventor
김영준
조용남
박민식
Original Assignee
전자부품연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020110077357A external-priority patent/KR101316638B1/en
Application filed by 전자부품연구원 filed Critical 전자부품연구원
Priority to CN201180044303.8A priority Critical patent/CN103140968B/en
Priority to US13/822,383 priority patent/US20130177815A1/en
Publication of WO2012036385A2 publication Critical patent/WO2012036385A2/en
Publication of WO2012036385A3 publication Critical patent/WO2012036385A3/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a non-aqueous lithium secondary battery and a method for manufacturing the same, and more particularly, to perform a side treatment of the carbon-based material applied as a negative electrode active material of the lithium secondary battery through heterogeneous element substitution to perform side reactions with the electrolyte on the surface.
  • the present invention relates to a negative active material, a non-aqueous lithium secondary battery having the same, and a method of manufacturing the same, which suppresses and improves structural stability, thereby improving life and rate characteristics of a lithium secondary battery.
  • a lithium secondary battery is a battery in which metal lithium is used as a negative electrode active material and a nonaqueous solvent is used as an electrolyte. Since lithium is a metal with a high tendency to ionize, development of a battery with high energy density is possible because of high voltage expression. Lithium secondary batteries using lithium metal as a negative electrode active material have been used for a long time as next generation batteries.
  • the lithium secondary battery in which metal lithium is used as the negative electrode active material, grows and discharges from the negative electrode to dendrite as the charge and discharge are repeated, and penetrates the separator which is an insulator. There was a short disadvantage.
  • the reaction at the negative electrode during the charging and discharging removes lithium ions into the intercalation layer of carbon.
  • electrons are transferred to the carbonaceous material of the negative electrode so that the carbon becomes negatively charged.
  • lithium ions inserted into the positive electrode are detached and inserted into the carbonaceous material of the negative electrode.
  • lithium ions inserted into the carbonaceous material of the negative electrode are removed and then inserted into the positive electrode.
  • Lithium secondary batteries using this carbon-based material as a negative electrode active material have been put to practical use, which is called a lithium ion secondary battery, and has been widely used for power supply of portable electronic and communication devices.
  • the carbon-based material is used as the negative electrode active material, the charge and discharge potential of lithium is lower than the stable range of the existing non-aqueous electrolyte, so that decomposition reaction of the electrolyte occurs during charge and discharge, which is the current lithium secondary battery in which the carbon-based material is applied to the negative electrode.
  • the low initial charge and discharge efficiency, the degradation of life characteristics and the rate characteristics are pointed as the root cause.
  • an object of the present invention is to modify the surface of the carbon-based material without using an electrolyte additive and improve the surface reactivity and structural stability, when applied as a negative electrode active material of a non-aqueous lithium secondary battery, long life without deterioration of charge and discharge efficiency and rate characteristics
  • the present invention provides a negative electrode active material, a non-aqueous lithium secondary battery, and a method for manufacturing the same, which are surface-treated through heterogeneous element substitution capable of securing characteristics.
  • the present invention includes a carbon-based material, and a coating layer formed on the surface of the carbon-based material through heterogeneous substitution, the hetero-element is a negative electrode for a non-aqueous lithium secondary battery containing phosphorus (P) It provides an active material.
  • the hetero element may include sulfur (S).
  • the carbonaceous material is at least in artificial graphite, natural graphite, graphitized carbon fiber, graphitized mesocarbon microbead, petroleum coke, resin, carbon fiber and pyrolytic carbon It may include one.
  • the carbonaceous material is L a (110) > 10 nm, L c (002) > 10 nm.
  • L a (110) 0.89 ⁇ / [B 110 cos ( ⁇ 110 )]
  • L c (002) 0.89 ⁇ / [B 002 cos ( ⁇ 002 )]
  • FWHM full width at half-maximum
  • the carbon-based material may have a d 002 value of 0.344 nm or less with respect to the (002) peak.
  • the carbon-based material may have a specific surface area of 10 m 2 / g or less.
  • the carbon-based material may have a degree of graphitization value of 0.4 to 1.0.
  • the graphitization degree can be calculated as (3.44-d 002 ) / (0.086).
  • the coating layer may be 10% by weight or less compared to the carbonaceous material.
  • the coating layer may be formed uniformly or partially on the surface of the carbonaceous material.
  • the present invention also provides a non-aqueous lithium secondary battery comprising a negative electrode having the negative electrode active material described above.
  • the present invention also includes a preparation step of preparing a carbon-based material and a heterogeneous material, and forming a coating layer through heterogeneous element substitution on the surface of the carbon-based material by using the heterogeneous material.
  • the elemental material contains phosphorus (P).
  • the hetero element material may include sulfur (S).
  • the hetero element material is NH 4 PF 6 , (NH 4 ) 2 PO 4 , NH 4 PO 3 , (NH 4 ) 2 SO 3 , (NH 4 ) 2 SO 4 , NH 4 SO 4 And (NH 4 ) 2 S 2 O 8 At least one of the.
  • the forming step the step of dissolving the hetero-element material in a solvent to form a solution, the carbon-based material in the solution and uniformly mixed
  • the present invention by forming a coating layer on the surface of the carbon-based material used as a negative electrode active material of the non-aqueous lithium secondary battery through the substitution of heterogeneous elements such as phosphorous or sulfur, the surface of the surface of the carbon-based material by the coating layer formed In addition to reducing side reactions, structural stability can be achieved.
  • the negative electrode active material according to the present invention has an effect of improving the affinity with the electrolyte solution to improve the life characteristics and rate characteristics of the non-aqueous lithium secondary battery.
  • FIG. 1 is a flowchart illustrating a method of manufacturing a negative active material for a non-aqueous lithium secondary battery, which is surface treated through dissimilar element substitution according to an embodiment of the present invention.
  • FIG. 2 is a photograph showing a negative electrode active material according to an embodiment of the present invention and a comparative example.
  • Example 3 is a view showing the results of EDS (Energy Dispersive Spectroscopy) analysis of the negative electrode active material according to Example 1 of the present invention.
  • Example 4 is a view showing an EDS analysis result of a negative active material according to Example 2 of the present invention.
  • FIG. 5 is a graph showing XPS (X-ray Photoelectron Spectroscopy) analysis results of the anode active material according to Example 1 of the present invention.
  • Example 6 is a graph showing the XPS analysis result of the negative electrode active material according to Example 2 of the present invention.
  • FIG. 7 is a graph showing the results of X-ray diffraction (XRD) analysis of the negative electrode active material according to the Examples and Comparative Examples of the present invention.
  • FIG. 8 is a graph showing the life characteristics of the non-aqueous lithium secondary battery according to the surface treatment temperature of the negative electrode active material according to the embodiment and the comparative example of the present invention.
  • FIG. 9 is a graph showing the rate characteristics of the non-aqueous lithium secondary battery according to the Examples and Comparative Examples of the present invention.
  • the negative active material for a non-aqueous lithium secondary battery according to the present invention includes a carbon-based material and a coating layer formed through heterogeneous element substitution on the surface of the carbon-based material.
  • the heterologous element includes phosphorus (P) or sulfur (S).
  • the carbon-based material may be at least one selected from materials consisting of amorphous carbon such as artificial graphite, natural graphite, graphitized carbon fiber, graphitized mesocarbon microbead, petroleum coke, resin plastic, carbon fiber, and pyrolytic carbon.
  • amorphous carbon such as artificial graphite, natural graphite, graphitized carbon fiber, graphitized mesocarbon microbead, petroleum coke, resin plastic, carbon fiber, and pyrolytic carbon.
  • the coating layer through heterogeneous element substitution on the carbon-based material, it is preferable to use the following carbon-based material in order to improve the life characteristics and rate characteristics of the non-aqueous lithium secondary battery to which the negative electrode active material is applied.
  • B is the full width at half for the (110) or (002) peak according to the Bragg diffraction angle -maximum) value.
  • As the carbonaceous material it is preferable to use a d 002 value of 0.344 nm or less with respect to the (002) peak.
  • carbon-based material those having a degree of graphitization value of 0.4 to 1.0 are preferably used.
  • Graphitization degree (3.44- d002 ) / (0.086) can be calculated here.
  • a carbonaceous material having a specific surface area of 10 m 2 / g or less.
  • the coating layer may be formed by heat-treating the surface of the carbon-based material by a pyrolysis method using a heterogenous material of 10 wt% or less of the carbon-based material. That is, in the process of thermally dissociating the hetero element material, the components except the hetero element in the hetero element material are removed and the hetero element forms a coating layer on the surface of the carbon-based material.
  • the coating layer may be uniformly formed on the entire surface of the carbonaceous material or may be formed only on a part of the surface of the carbonaceous material depending on the amount of the dissimilar element material to be heat treated.
  • Heteroelement materials can exist in various compound forms, including heteroatoms, such as NH 4 PF 6 , (NH 4 ) 2 PO 4 , NH 4 PO 3 , (NH 4 ) 2 SO 3 , (NH 4 ) 2 SO 4 , NH 4 SO 4 , (NH 4 ) 2 S 2 O 8 And the like, but are not limited thereto.
  • the negative electrode active material according to the present invention can improve the affinity with the electrolyte solution to improve the life characteristics and rate characteristics of the non-aqueous lithium secondary battery.
  • the production efficiency of the negative electrode active material may be improved due to a simple surface treatment process.
  • FIG. 1 is a flowchart illustrating a method of manufacturing a negative active material for a non-aqueous lithium secondary battery, which is surface-treated through heterogeneous element substitution according to an embodiment of the present invention.
  • the method for producing a negative electrode active material according to the present invention is a step of preparing a carbon-based material and hetero-element material (S11), and forming a coating layer using the hetero-element material on the surface of the carbon-based material Steps S13 to S19 are included.
  • a carbonaceous material and a heterogeneous material are prepared.
  • the carbonaceous material an average particle size of 15 ⁇ m or less may be used.
  • Heterogeneous element is NH 4 PF 6 , (NH 4 ) 2 PO 4 , NH 4 PO 3 , (NH 4 ) 2 SO 3 , (NH 4 ) 2 SO 4 , NH 4 SO 4 , (NH 4 ) 2 S 2 O 8 And the like can be used.
  • step S13 the dissimilar element material is dissolved in deionized water to form an aqueous solution.
  • deionized water an organic solvent such as alcohol may be used.
  • step S15 the carbon-based material is mixed with the aqueous solution in step S15 to form a mixture.
  • the mixing step according to step S15 may be performed for about 5 minutes so that the carbon-based material is uniformly mixed in the aqueous solution.
  • step S17 the mixture is vacuum dried in step S17.
  • vacuum drying according to step S17 may be performed for about 1 to 5 hours at 80 to 150 degrees.
  • the dried product dried in step S17 is thermally treated in the step S19 to form a negative electrode active material according to the present invention, which is a carbon-based material surface-treated with a dissimilar element material. That is, in the process of thermally dissociating the hetero element material, the components except the hetero element in the hetero element material are removed and the hetero element forms a coating layer on the surface of the carbon-based material.
  • the heat treatment step according to the step S19 may be performed in an inert atmosphere at 200 to 3000 degrees or more for 1 hour.
  • the heat treatment step may be carried out in an elevated temperature of 10 °C / min, Ar or N 2 atmosphere.
  • the forming step (S13 ⁇ S19) discloses an example of forming a coating layer on the surface of the carbon-based material by forming a carbon-based material and a heterogeneous material in an aqueous solution, and then heat-treated through vacuum drying It is not limited.
  • a dissimilar element material may be dissolved in a solvent to form a solution, and then the solution may be sprayed on a carbon-based material, followed by heat treatment of the carbon-based material from which the solution is sprayed to form a coating layer on the surface of the carbon-based material.
  • the mixed powder may be heat-treated to form a coating layer on the surface of the carbon-based material. That is, the coating layer is formed on the surface of the carbon-based material by a dry method, and the heat treatment is disclosed in an inert atmosphere, but may be performed in a vacuum atmosphere or an oxidizing atmosphere.
  • a non-aqueous lithium secondary battery was manufactured as follows. In this case, a carbon-based material surface-treated with a hetero element material was used as the negative electrode active material. In the comparative example, a carbon-based material that was not surface treated with a heteroelement material was used as the negative electrode active material. And since the manufacturing of the non-aqueous lithium secondary battery according to the Examples and Comparative Examples except for the negative electrode active material proceeds in the same way, will be described with reference to the manufacturing method of the non-aqueous lithium secondary battery according to the embodiment.
  • a slurry was prepared using water as a solvent with 96 wt% of the negative active material, the binder SBR, and the thickener CMC as 2 wt%, respectively.
  • the slurry was applied to a copper foil (Cu foil) having a thickness of 20 ⁇ m, dried, compacted in a press, dried for 16 hours at 120 ° C. in a vacuum, and an electrode was manufactured from a disc having a diameter of 12 mm.
  • As the counter electrode a lithium metal foil punched to a diameter of 14 mm was used, and a PE film was used as the separator.
  • As the electrolyte solution a mixed solution in which EC / DMC of 1M LiPF 6 was mixed at 3: 7 was used.
  • the carbon-based material may be at least one selected from materials including amorphous carbon such as artificial graphite, natural graphite, graphitized carbon fiber, graphitized mesocarbon microbead, petroleum coke, resin plastic, carbon fiber, and pyrolytic carbon.
  • amorphous carbon such as artificial graphite, natural graphite, graphitized carbon fiber, graphitized mesocarbon microbead, petroleum coke, resin plastic, carbon fiber, and pyrolytic carbon.
  • Heterogeneous material is NH 4 PF 6 , (NH 4 ) 2 PO 4 , NH 4 PO 3 , (NH 4 ) 2 SO 3 , (NH 4 ) 2 SO 4 , NH 4 SO 4 , (NH 4 ) 2 S 2 O 8 It includes, but is not limited to this.
  • the carbon-based material surface-treated with a heterogeneous material may be applied as a negative electrode active material of a non-aqueous lithium secondary battery using a carbonate electrolyte.
  • the carbon-based negative active material surface-treated with a heterogeneous material may be applied to a lithium secondary battery to which a non-aqueous electrolyte driven in a voltage range of 0 V to 5 V or less is applied.
  • the production of the negative electrode plate is one or two or more kinds of powders of the negative electrode active material surface-treated with a dissimilar element material, which are usually used as conductive agents, binders, fillers, dispersants, ion conductive agents, pressure enhancers, etc.
  • the additive component is added to form a slurry or paste with a suitable solvent (organic solvent).
  • the slurry or paste thus obtained is coated and dried on an electrode support substrate using a doctor blade method or the like, and then pressed using a rolling roll or the like is used as the negative electrode plate.
  • the conductive agent graphite, carbon black, acetylene black, Ketjen Black, carbon fiber, metal powder, or the like may be used. PVdF, polyethylene, etc. can be used as a binder.
  • the electrode support substrate also referred to as 'current collector'
  • a lithium secondary battery is manufactured by using the negative electrode thus prepared.
  • the form of the lithium secondary battery may be any one of a coin, a button, a sheet, a cylinder, a square, and the like.
  • the positive electrode, electrolyte, separator, etc. of the lithium secondary battery shall be used for the existing lithium secondary battery.
  • the positive electrode active material includes a positive electrode active material capable of reversibly intercalating and deintercalating lithium ions.
  • Representative examples of the cathode active material include LiCoO 2 , LiNiO 2 , LiMnO 2 , LiMn 2 O 4 , or LiNi1-x-yCo xMy O 2 (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x + y ⁇ 1
  • M may be a lithium-transition metal oxide, such as metals such as Al, Sr, Mg, La, etc., and may use one or two or more of the above-described positive electrode active material.
  • the above-mentioned positive electrode active material is only one example, but is not limited thereto.
  • the electrolyte solution may be a non-aqueous electrolyte solution in which lithium salt is dissolved in an organic solvent, an inorganic solid electrolyte, a composite material of an inorganic solid electrolyte, and the like, but is not limited thereto.
  • carbonate As the solvent of the non-aqueous electrolyte, carbonate, ester, ether or ketone can be used.
  • the carbonate is dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate (DPC), methylpropyl carbonate (MPC), ethylpropyl carbonate (EPC), methylethyl carbonate (MEC), ethylene carbonate (EC) , Propylene carbonate (PC), butylene carbonate (BC) and the like can be used.
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • DPC dipropyl carbonate
  • MPC methylpropyl carbonate
  • EPC ethylpropyl carbonate
  • MEC methylethyl carbonate
  • EC ethylene carbonate
  • PC Propylene carbonate
  • BC butylene carbonate
  • Esters include butyrolactone (BL), decanolide, valerolactone, mevalonolactone, caprolactone, n-methyl acetate, n-ethyl acetate, n- Propyl acetate and the like can be used.
  • Dibutyl ether or the like may be used as the ether.
  • the ketone polymethylvinyl ketone may be used.
  • the non-aqueous electrolyte according to the present invention is not limited to the type of non-aqueous organic solvent.
  • lithium salt of the non-aqueous electrolyte solution examples include LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiClO 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiAlO 4 At least one selected from the group consisting of LiAlCl 4 , LiN (CxF2x + 1SO2) (CyF2x + 1SO2), wherein x and y are natural water, and LiSO 3 CF 3 .
  • a porous film made from polyolefin such as PP or PE, or a porous material such as nonwoven fabric may be used.
  • Example 1 in order to introduce phosphorus (P) into the hetero element, natural graphite having an average particle size of 15 ⁇ m or less, which was surface treated using NH 4 PF 6 as the hetero element material, was used as the negative electrode active material.
  • Example 2 in order to introduce sulfur (S) into the hetero element, natural graphite having an average particle size of 15 ⁇ m or less, which was surface-treated with (NH 4 ) 2 SO 4 as the hetero element material, was used as the negative electrode active material.
  • the negative electrode active materials according to Example 1 and Example 2 were prepared as follows. In order to introduce phosphorus (P) and sulfur (S) on the surface of natural graphite among carbon materials, 3 wt% of NH 4 PF 6 and (NH 4 ) 2 SO 4 were dissolved in DI water, respectively. The surface of the natural graphite was uniformly coated, and finally, a negative active material for a non-aqueous lithium secondary battery including phosphorus or sulfur on the surface was prepared by heat treatment at 800 ° C.
  • Example 1 XPS analysis was performed for surface structure analysis of the anode active materials according to Examples 1 and 2, and the results are shown in FIGS. 5 and 6.
  • P 2p peaks 131 to 135eV
  • S 2p peak 161 ⁇ 168eV
  • Table 2 shows the d 002 values and FWHM (full-width at half maximum) values of Comparative Examples, Examples 1 and 2 through the obtained XRD data. After introduction of the heterogeneous element, the change of d 002 value was insignificant and the FWHM was increased. This is judged to be because a part of P or S introduced into the surface is substituted on the surface.
  • Comparative Example was 2.7845 m 2 / g
  • Example 1 was 2.7461 m 2 / g
  • Example 2 was 2.7199 m 2 / g.
  • Example 1 and Example 2 were applied The same test was performed. That is, the non-aqueous lithium secondary battery to which the comparative examples and the negative electrode active materials of Examples 1 and 2 were applied was subjected to 3 cycle charging and discharging at a current of 0.2C (72 mA / g), followed by 0.5C (180 mA / g). Charging and discharging was performed for 50 cycles with the current of), and the results are shown in FIG. As can be seen in Figure 8, Example 1 and Example 2, the surface treatment of the hetero-element material is improved compared to the comparative example.
  • the non-aqueous lithium secondary battery to which the negative electrode active materials of Comparative Examples, Examples 1 and 2 are applied The following test was carried out using. That is, the non-aqueous lithium secondary battery to which the negative electrode active materials of Comparative Example, Example 1 and Example 2 were applied is subjected to 1 cycle charging and discharging at a current of 0.2C (72 mA / g).
  • Charging was then fixed at a current of 0.5C (180 mA / g), 0.2C (72 mA / g), 0.5C (180 mA / g), 1C (360 mA / g), 2C (720 mA / g) , 3C (1080 mA / g), 5C (1800 mAh / g) to perform the discharge for 3 seconds each. Then, charging and discharging were performed for 2 cycles each at a current of 0.2C (72 mA / g), and the results are shown in FIG. 9. As can be seen in Figure 9, it was confirmed that the rate characteristic after surface treatment was also improved.

Abstract

The present invention relates to an anode active material, a nonaqueous lithium secondary battery, and a preparation method thereof. The surface of a carbonaceous material is modified without using an electrolyte additive, and the reactivity and structural stability of the surface is improved, thereby obtaining long lifetime characteristics without deteriorating charge/discharge efficiency and rate characteristics when applied as an anode active material of a nonaqueous lithium secondary battery. According to the present invention, the anode active material comprises a carbonaceous material, and a coating layer formed on the surface of the carbonaceous material through hetero atom substitution, wherein the hetero atom can be phosphorus (P) or sulfur (S). A side reaction with an electrolyte on the surface of the carbonaceous material is inhibited and the structural stability of the surface is enhanced by forming a coating layer on the surface of the carbonaceous material with a hetero atom such as phosphorus (P) or sulfur (S), thereby improving the lifetime characteristics and rate characteristics of a lithium secondary battery.

Description

음극 활물질, 그를 갖는 비수계 리튬이차전지 및 그의 제조 방법Anode Active Material, Non-aqueous Lithium Secondary Battery Having It and Manufacturing Method Thereof
본 발명은 비수계 리튬이차전지 및 그의 제조 방법에 관한 것으로, 더욱 상세하게는 리튬이차전지의 음극 활물질로 적용되는 탄소계 재료를 이종원소 치환을 통해 표면처리를 수행하여 표면에서 전해질과의 부반응을 억제하고 구조적 안정성을 향상시켜 리튬이차전지의 수명특성 및 율특성을 향상시킨 음극 활물질, 그를 갖는 비수계 리튬이차전지 및 그의 제조 방법에 관한 것이다.The present invention relates to a non-aqueous lithium secondary battery and a method for manufacturing the same, and more particularly, to perform a side treatment of the carbon-based material applied as a negative electrode active material of the lithium secondary battery through heterogeneous element substitution to perform side reactions with the electrolyte on the surface. The present invention relates to a negative active material, a non-aqueous lithium secondary battery having the same, and a method of manufacturing the same, which suppresses and improves structural stability, thereby improving life and rate characteristics of a lithium secondary battery.
휴대용의 소형 전기 전자기기의 보급이 확산됨에 따라 니켈수소전지나 리튬이차전지라고 하는 신형의 이차전지 개발이 활발하게 진행되고 있다.With the spread of portable small electric electronic devices, new secondary batteries such as nickel-metal hydride batteries and lithium secondary batteries have been actively developed.
이 중 리튬이차전지는 금속 리튬을 음극 활물질로 하며 비수용매를 전해액으로 사용하는 전지이다. 리튬이 매우 이온화 경향이 큰 금속이기 때문에 고전압 발현이 가능하여 에너지 밀도가 높은 전지 개발이 이루어지고 있다. 리튬메탈을 음극 활물질로 하는 리튬이차전지는, 차세대전지로서 장기간에 걸쳐서 이용되고 있다.Among them, a lithium secondary battery is a battery in which metal lithium is used as a negative electrode active material and a nonaqueous solvent is used as an electrolyte. Since lithium is a metal with a high tendency to ionize, development of a battery with high energy density is possible because of high voltage expression. Lithium secondary batteries using lithium metal as a negative electrode active material have been used for a long time as next generation batteries.
그러나 금속 리튬이 음극 활물질로 적용된 리튬이차전지는 충방전이 반복됨에 따라 음극으로부터 리튬이 덴드라이트(dendrite)로 성장하여 절연체인 분리막을 관통해 양극과 단락이 일어나 전지가 동작 불능이 되어 사이클 수명이 짧은 단점이 있었다.However, the lithium secondary battery, in which metal lithium is used as the negative electrode active material, grows and discharges from the negative electrode to dendrite as the charge and discharge are repeated, and penetrates the separator which is an insulator. There was a short disadvantage.
이러한 음극의 열화에 의해 사이클 수명이 짧아지는 리튬이차전지의 문제점을 해결하는 수단으로서 음극 활물질로서 금속리튬이 아니라 리튬 이온을 삽입/탈리할 수 있는 탄소계 재료를 음극 활물질로 이용하는 것이 제안되었다.As a means for solving the problem of a lithium secondary battery whose cycle life is shortened due to deterioration of the negative electrode, it has been proposed to use a carbon-based material capable of inserting / desorbing lithium ions as a negative electrode active material as a negative electrode active material.
탄소계 재료를 이용해 음극을 구성한 리튬이차전지에서는 충방전 시 음극에서의 반응이 리튬 이온이 탄소의 층간으로 탈삽입하는데, 충전 시에는 음극의 탄소질재료에 전자가 이송되어 탄소는 음전하를 띠게 됨으로써, 양극에 삽입되어 있던 리튬이온이 탈리하여 음극의 탄소질재료에 삽입되며, 반대로 방전 시 음극의 탄소계 재료에 삽입되어 있던 리튬 이온이 탈리되어 다시 양극에 삽입된다. 이러한 기구를 이용하는 것으로 음극에서의 금속 리튬의 석출을 막을 수 있어 사이클 수명이 양호한 리튬이차전지를 실현할 수 있었다.In a lithium secondary battery using a carbon-based material as a negative electrode, the reaction at the negative electrode during the charging and discharging removes lithium ions into the intercalation layer of carbon. During charging, electrons are transferred to the carbonaceous material of the negative electrode so that the carbon becomes negatively charged. In this case, lithium ions inserted into the positive electrode are detached and inserted into the carbonaceous material of the negative electrode. On the contrary, lithium ions inserted into the carbonaceous material of the negative electrode are removed and then inserted into the positive electrode. By using such a mechanism, deposition of metallic lithium at the negative electrode can be prevented, and a lithium secondary battery having good cycle life can be realized.
이 탄소계 재료를 음극 활물질로 이용한 리튬이차전지가 실용화되어 이를 리튬이온이차전지라 하며, 휴대용의 전자·통신기기 등의 전원용으로 보급해 오고 있는 것은 알려진 바와 같다. 그러나 탄소계 재료를 음극 활물질로 적용할 경우 리튬의 충방전 전위가 기존 비수계 전해질의 안정한 범위보다 낮아 충방전 시 전해질의 분해반응이 일어나게 되며, 이는 탄소계 재료를 음극에 적용한 현재의 리튬이차전지의 낮은 초기 충방전 효율과 수명특성 열화 그리고 율특성 저하의 근본적인 원인으로 지적되고 있다. 이러한 이유로 인해 탄소질재료를 적용한 비수계 리튬이차전지의 장수명특성 확보를 위해 다양한 VC, FEC 등의 기존 카보네이트계 전해질보다 분해전위가 높은 전해질 첨가제를 이용하여 탄소계 음극 활물질의 표면을 안정화하는 방법이 제안되고 있다.Lithium secondary batteries using this carbon-based material as a negative electrode active material have been put to practical use, which is called a lithium ion secondary battery, and has been widely used for power supply of portable electronic and communication devices. However, when the carbon-based material is used as the negative electrode active material, the charge and discharge potential of lithium is lower than the stable range of the existing non-aqueous electrolyte, so that decomposition reaction of the electrolyte occurs during charge and discharge, which is the current lithium secondary battery in which the carbon-based material is applied to the negative electrode. The low initial charge and discharge efficiency, the degradation of life characteristics and the rate characteristics are pointed as the root cause. For this reason, a method of stabilizing the surface of a carbon-based negative electrode active material using an electrolyte additive having a higher decomposition potential than conventional carbonate-based electrolytes such as various VC and FEC to secure long life characteristics of a non-aqueous lithium secondary battery using carbonaceous materials It is proposed.
그러나 이러한 전해질 첨가제는 수명특성은 향상시키지만 율특성 및 충방전 효율의 저하 문제는 해결할 수 없었다.However, these electrolyte additives improve the life characteristics, but could not solve the problem of lowering the rate characteristics and the charge and discharge efficiency.
따라서 본 발명의 목적은 전해질 첨가제를 사용하지 않고 탄소계 재료의 표면을 개질하며 표면의 반응성 및 구조적 안정성을 향상시켜 비수계 리튬이차전지의 음극 활물질로 적용 시 충방전 효율 및 율특성의 열화 없이 장수명특성을 확보할 수 있는 이종원소 치환을 통해 표면 처리된 음극 활물질, 비수계 리튬이차전지 및 그의 제조 방법을 제공하는 데 있다.Therefore, an object of the present invention is to modify the surface of the carbon-based material without using an electrolyte additive and improve the surface reactivity and structural stability, when applied as a negative electrode active material of a non-aqueous lithium secondary battery, long life without deterioration of charge and discharge efficiency and rate characteristics The present invention provides a negative electrode active material, a non-aqueous lithium secondary battery, and a method for manufacturing the same, which are surface-treated through heterogeneous element substitution capable of securing characteristics.
상기 목적을 달성하기 위하여, 본 발명은 탄소계 재료와, 상기 탄소계 재료의 표면에 이종원소 치환을 통해 형성된 코팅층을 포함하며, 상기 이종원소는 인(P)을 포함하는 비수계 리튬이차전지용 음극 활물질을 제공한다.In order to achieve the above object, the present invention includes a carbon-based material, and a coating layer formed on the surface of the carbon-based material through heterogeneous substitution, the hetero-element is a negative electrode for a non-aqueous lithium secondary battery containing phosphorus (P) It provides an active material.
본 발명에 따른 비수계 리튬이차전지용 음극 활물질에 있어서, 상기 이종원소는 황(S)을 포함할 수 있다.In the negative active material for a non-aqueous lithium secondary battery according to the present invention, the hetero element may include sulfur (S).
본 발명에 따른 비수계 리튬이차전지용 음극 활물질에 있어서, 상기 탄소계 재료는 인조흑연, 천연흑연, 흑연화탄소 섬유, 흑연화 메조카본마이크로비드, 석유코크스, 수지소성체, 탄소섬유 및 열분해 탄소 중에 적어도 하나를 포함할 수 있다.In the negative electrode active material for a non-aqueous lithium secondary battery according to the present invention, the carbonaceous material is at least in artificial graphite, natural graphite, graphitized carbon fiber, graphitized mesocarbon microbead, petroleum coke, resin, carbon fiber and pyrolytic carbon It may include one.
본 발명에 따른 비수계 리튬이차전지용 음극 활물질에 있어서, 상기 탄소재 재료는 La(110)>10nm, Lc(002)>10nm이다. La(110)=0.89λ/[B110cos(θ110)], Lc(002)=0.89λ/[B002cos(θ002)]이고, λ는 Cu Kα(λ= 0.15418 nm)의 파장(wavelength) 값이고, B는 브래그 회절각(Bragg diffraction angle)에 따르는 (110) 또는 (002) 피크(peak)에 대한 FWHM(full width at half-maximum) 값이다.In the negative active material for a non-aqueous lithium secondary battery according to the present invention, the carbonaceous material is L a (110) > 10 nm, L c (002) > 10 nm. L a (110) = 0.89λ / [B 110 cos (θ 110 )], L c (002) = 0.89λ / [B 002 cos (θ 002 )], and λ is Cu Kα (λ = 0.15418 nm). It is a wavelength value and B is a full width at half-maximum (FWHM) value for the (110) or (002) peak according to the Bragg diffraction angle.
본 발명에 따른 비수계 리튬이차전지용 음극 활물질에 있어서, 상기 탄소계 재료는 (002) peak에 대한 d002값이 0.344nm 이하일 수 있다.In the negative active material for a non-aqueous lithium secondary battery according to the present invention, the carbon-based material may have a d 002 value of 0.344 nm or less with respect to the (002) peak.
본 발명에 따른 비수계 리튬이차전지용 음극 활물질에 있어서, 상기 탄소계 재료는 비표면적이 10m2/g 이하일 수 있다.In the negative active material for a non-aqueous lithium secondary battery according to the present invention, the carbon-based material may have a specific surface area of 10 m 2 / g or less.
본 발명에 따른 비수계 리튬이차전지용 음극 활물질에 있어서, 상기 탄소계 재료는 흑연화도(degree of graphitization) 값이 0.4 내지 1.0일 수 있다. 상기 흑연화도=(3.44-d002)/(0.086)으로 산출할 수 있다.In the negative active material for a non-aqueous lithium secondary battery according to the present invention, the carbon-based material may have a degree of graphitization value of 0.4 to 1.0. The graphitization degree can be calculated as (3.44-d 002 ) / (0.086).
본 발명에 따른 비수계 리튬이차전지용 음극 활물질에 있어서, 상기 코팅층은 상기 탄소계 재료 대비 10 중량% 이하일 수 있다.In the negative active material for a non-aqueous lithium secondary battery according to the present invention, the coating layer may be 10% by weight or less compared to the carbonaceous material.
본 발명에 따른 비수계 리튬이차전지용 음극 활물질에 있어서, 상기 코팅층은 상기 탄소계 재료의 표면에 균일하게 또는 부분적으로 형성될 수 있다.In the negative active material for a non-aqueous lithium secondary battery according to the present invention, the coating layer may be formed uniformly or partially on the surface of the carbonaceous material.
본 발명은 또한 전술된 음극 활물질을 갖는 음극을 포함하는 비수계 리튬이차전지를 제공한다.The present invention also provides a non-aqueous lithium secondary battery comprising a negative electrode having the negative electrode active material described above.
본 발명은 또한, 탄소계 재료와 이종원소 재료를 준비하는 준비 단계와, 상기 이종원소 재료를 이용하여 상기 탄소계 재료의 표면에 이종원소 치환을 통하여 코팅층을 형성하는 형성 단계를 포함하며, 상기 이종원소 재료는 인(P)을 포함한다.The present invention also includes a preparation step of preparing a carbon-based material and a heterogeneous material, and forming a coating layer through heterogeneous element substitution on the surface of the carbon-based material by using the heterogeneous material. The elemental material contains phosphorus (P).
본 발명에 따른 비수계 리튬이차전지용 음극 활물질의 제조 방법에 있어서, 상기 이종원소 재료는 황(S)을 포함할 수 있다.In the method of manufacturing a negative active material for a non-aqueous lithium secondary battery according to the present invention, the hetero element material may include sulfur (S).
본 발명에 따른 비수계 리튬이차전지용 음극 활물질의 제조 방법에 있어서, 상기 이종원소 재료는 NH4PF6, (NH4)2PO4, NH4PO3, (NH4)2SO3, (NH4)2SO4, NH4SO4 및 (NH4)2S2O8 중에 적어도 하나를 포함한다.In the method for producing a negative active material for a non-aqueous lithium secondary battery according to the present invention, the hetero element material is NH4PF6, (NH4)2PO4, NH4PO3, (NH4)2SO3, (NH4)2SO4, NH4SO4 And (NH4)2S2O8 At least one of the.
그리고 본 발명에 따른 비수계 리튬이차전지용 음극 활물질의 제조 방법에 있어서, 상기 형성 단계는, 상기 이종원소 재료를 용매에 용해시켜 용액을 형성하는 단계, 상기 용액에 상기 탄소계 재료를 넣고 균일하게 혼합하여 혼합물을 형성하는 단계, 상기 혼합물을 진공 건조시키는 건조 단계, 및 상기 건조 단계에서 건조된 건조물을 열분해 방식으로 열처리하여 상기 이종원소를 기반으로 한 상기 코팅층을 상기 탄소계 재료의 표면에 형성하는 열처리 단계를 포함할 수 있다.And in the method for producing a negative active material for a non-aqueous lithium secondary battery according to the present invention, the forming step, the step of dissolving the hetero-element material in a solvent to form a solution, the carbon-based material in the solution and uniformly mixed To form a mixture, a drying step of vacuum drying the mixture, and heat treatment of the dried material dried in the drying step by pyrolysis to form the coating layer based on the dissimilar elements on the surface of the carbonaceous material. It may include a step.
본 발명에 따르면, 비수계 리튬이차전지의 음극 활물질로 사용되는 탄소계 재료에 인 또는 황과 같은 이종 원소의 치환을 통해 표면에 코팅층을 형성함으로써, 탄소계 재료의 표면에 형성된 코팅층에 의해 표면의 부반응이 감소 될 뿐 아니라 구조적 안정성을 확보할 수 있다.According to the present invention, by forming a coating layer on the surface of the carbon-based material used as a negative electrode active material of the non-aqueous lithium secondary battery through the substitution of heterogeneous elements such as phosphorous or sulfur, the surface of the surface of the carbon-based material by the coating layer formed In addition to reducing side reactions, structural stability can be achieved.
또한 본 발명에 따른 음극 활물질은 전해액과의 친화성이 향상되어 비수계 리튬이차전지의 수명특성과 율특성을 향상시킬 수 있는 효과가 있다.In addition, the negative electrode active material according to the present invention has an effect of improving the affinity with the electrolyte solution to improve the life characteristics and rate characteristics of the non-aqueous lithium secondary battery.
또한 단순한 표면처리 공정으로 인하여 음극 활물질의 생산 효율성 또한 향상시킬 수 있는 효과가 있다.In addition, due to the simple surface treatment process there is an effect that can also improve the production efficiency of the negative electrode active material.
도 1은 본 발명의 실시예에 따른 이종 원소 치환을 통해 표면 처리된 비수계 리튬이차전지용 음극 활물질의 제조 방법에 따른 흐름도이다.1 is a flowchart illustrating a method of manufacturing a negative active material for a non-aqueous lithium secondary battery, which is surface treated through dissimilar element substitution according to an embodiment of the present invention.
도 2는 본 발명의 실시예와 비교예에 따른 음극 활물질을 보여주는 사진이다.2 is a photograph showing a negative electrode active material according to an embodiment of the present invention and a comparative example.
도 3은 본 발명의 실시예1에 따른 음극 활물질의 EDS(Energy Dispersive Spectroscopy) 분석 결과를 보여주는 도면이다.3 is a view showing the results of EDS (Energy Dispersive Spectroscopy) analysis of the negative electrode active material according to Example 1 of the present invention.
도 4는 본 발명의 실시예2에 따른 음극 활물질의 EDS 분석 결과를 보여주는 도면이다.4 is a view showing an EDS analysis result of a negative active material according to Example 2 of the present invention.
도 5는 본 발명의 실시예1에 따른 음극 활물질의 XPS(X-ray Photoelectron Spectroscopy) 분석 결과를 보여주는 그래프이다.FIG. 5 is a graph showing XPS (X-ray Photoelectron Spectroscopy) analysis results of the anode active material according to Example 1 of the present invention.
도 6은 본 발명의 실시예2에 따른 음극 활물질의 XPS 분석 결과를 보여주는 그래프이다.6 is a graph showing the XPS analysis result of the negative electrode active material according to Example 2 of the present invention.
도 7은 본 발명의 실시예와 비교예에 따른 음극 활물질의 XRD(X-ray diffraction) 분석 결과를 보여주는 그래프이다.7 is a graph showing the results of X-ray diffraction (XRD) analysis of the negative electrode active material according to the Examples and Comparative Examples of the present invention.
도 8은 본 발명의 실시예와 비교예에 따른 음극 활물질의 표면 처리 온도에 따른 비수계 리튬이차전지의 수명특성을 나타낸 그래프이다.8 is a graph showing the life characteristics of the non-aqueous lithium secondary battery according to the surface treatment temperature of the negative electrode active material according to the embodiment and the comparative example of the present invention.
도 9는 본 발명의 실시예와 비교예에 따른 비수계 리튬이차전지의 율특성을 나타낸 그래프이다.9 is a graph showing the rate characteristics of the non-aqueous lithium secondary battery according to the Examples and Comparative Examples of the present invention.
하기의 설명에서는 본 발명의 실시예에 따른 동작을 이해하는데 필요한 부분만이 설명되며, 그 이외 부분의 설명은 본 발명의 요지를 흩트리지 않도록 생략될 것이라는 것을 유의하여야 한다.In the following description, only parts necessary for understanding the operation according to the embodiment of the present invention will be described, it should be noted that the description of other parts will be omitted so as not to distract from the gist of the present invention.
또한 이하에서 설명되는 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념으로 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 바람직한 하나의 실시예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.Also, the terms or words used in the specification and claims described below should not be construed as being limited to the ordinary or dictionary meanings, and the inventors should use the concept of terms to explain their own invention in the best way. It should be interpreted as meanings and concepts corresponding to the technical idea of the present invention based on the principle that it can be properly defined. Therefore, the embodiments described in the specification and the drawings shown in the drawings are only one preferred embodiment of the present invention, and do not represent all of the technical idea of the present invention, various modifications that can be substituted for them at the time of the present application It should be understood that there may be equivalents and variations.
이하, 첨부 도면을 참조하여 본 발명의 실시예를 보다 상세하게 설명하고자 한다.Hereinafter, with reference to the accompanying drawings will be described in detail an embodiment of the present invention.
본 발명에 따른 비수계 리튬이차전지용 음극 활물질은 탄소계 재료와, 탄소계 재료의 표면에 이종원소 치환을 통해 형성된 코팅층을 포함한다. 이때 이종원소는 인(P) 또는 황(S)을 포함한다.The negative active material for a non-aqueous lithium secondary battery according to the present invention includes a carbon-based material and a coating layer formed through heterogeneous element substitution on the surface of the carbon-based material. In this case, the heterologous element includes phosphorus (P) or sulfur (S).
여기서 탄소계 재료는 인조흑연, 천연흑연, 흑연화탄소 섬유, 흑연화 메조카본마이크로비드, 석유코크스, 수지소성체, 탄소섬유, 열분해 탄소 등의 비정질 탄소로 이루어진 물질 중에서 적어도 하나가 사용될 수 있다.The carbon-based material may be at least one selected from materials consisting of amorphous carbon such as artificial graphite, natural graphite, graphitized carbon fiber, graphitized mesocarbon microbead, petroleum coke, resin plastic, carbon fiber, and pyrolytic carbon.
특히 탄소계 재료에 이종원소 치환을 통해 코팅층을 안정적으로 형성하면서, 음극 활물질을 적용한 비수계 리튬이차전지의 수명특성 및 율특성을 향상시키기 위해서 다음과 같은 탄소계 재료를 사용하는 것이 바람직하다.In particular, in order to stably form the coating layer through heterogeneous element substitution on the carbon-based material, it is preferable to use the following carbon-based material in order to improve the life characteristics and rate characteristics of the non-aqueous lithium secondary battery to which the negative electrode active material is applied.
즉 탄소계 재료로는 La(110)>10nm, Lc(002)>10nm인 것을 사용하는 것이 바람직하다. La(110)=0.89λ/[B110cos(θ110)], Lc(002)=0.89λ/[B002cos(θ002)]로 표시할 수 있다. 여기서 λ는 Cu Kα(λ= 0.15418 nm)의 파장(wavelength) 값이고, B는 브래그 회절각(Bragg diffraction angle)에 따르는 (110) 또는 (002) 피크(peak)에 대한 FWHM(full width at half-maximum) 값이다. 또한 탄소계 재료로는 (002) peak에 대한 d002값이 0.344nm 이하인 것을 사용하는 것이 바람직하다.That is, it is preferable to use the thing of La (110) > 10 nm and Lc (002) > 10 nm as a carbon type material. L a (110) = 0.89λ / [B 110 cos (θ 110 )] and L c (002) = 0.89λ / [B 002 cos (θ 002 )]. Where λ is the wavelength value of Cu Kα (λ = 0.15418 nm) and B is the full width at half for the (110) or (002) peak according to the Bragg diffraction angle -maximum) value. As the carbonaceous material, it is preferable to use a d 002 value of 0.344 nm or less with respect to the (002) peak.
또한 탄소계 재료로는 흑연화도(degree of graphitization) 값이 0.4 내지 1.0인 것을 사용하는 것이 바람직하다. 여기서 흑연화도=(3.44-d002)/(0.086)으로 산출할 수 있다.In addition, as the carbon-based material, those having a degree of graphitization value of 0.4 to 1.0 are preferably used. Graphitization degree = (3.44- d002 ) / (0.086) can be calculated here.
또한 탄소계 재료로는 비표면적이 10 m2/g 이하인 것을 사용하는 것이 바람직하다. In addition, it is preferable to use a carbonaceous material having a specific surface area of 10 m 2 / g or less.
코팅층은 탄소계 재료 대비 10 중량% 이하의 이종원소 재료를 이용한 열분해 방식으로 탄소계 재료의 표면을 열처리하여 형성할 수 있다. 즉 이종원소 재료를 열분해 방식으로 열처리하는 과정에서, 이종원소 재료에서 이종원소를 제외한 성분은 제거되고 이종원소가 탄소계 재료의 표면에 코팅층을 형성한다. 코팅층은 열처리되는 이종원소 재료의 양에 따라 탄소계 재료의 표면 전체에 균일하게 형성될 수도 있고, 탄소계 재료의 표면의 일부에만 형성될 수도 있다. 이종원소 재료는 이종원소를 포함하는 다양한 화합물 형태로 존재할 수 있으며, 예컨대 NH4PF6, (NH4)2PO4, NH4PO3, (NH4)2SO3, (NH4)2SO4, NH4SO4, (NH4)2S2O8 등을 포함하며, 이것에 한정되는 것은 아니다.The coating layer may be formed by heat-treating the surface of the carbon-based material by a pyrolysis method using a heterogenous material of 10 wt% or less of the carbon-based material. That is, in the process of thermally dissociating the hetero element material, the components except the hetero element in the hetero element material are removed and the hetero element forms a coating layer on the surface of the carbon-based material. The coating layer may be uniformly formed on the entire surface of the carbonaceous material or may be formed only on a part of the surface of the carbonaceous material depending on the amount of the dissimilar element material to be heat treated. Heteroelement materials can exist in various compound forms, including heteroatoms, such as NH4PF6, (NH4)2PO4, NH4PO3, (NH4)2SO3, (NH4)2SO4, NH4SO4, (NH4)2S2O8And the like, but are not limited thereto.
이와 같이 본 발명에 따른 비수계 리튬이차전지의 음극 활물질로 사용되는 탄소계 재료에 인 또는 황과 같은 이종원소의 치환을 통해 표면에 코팅층을 형성함으로써, 탄소계 재료의 표면에 형성된 코팅층에 의해 표면의 부반응이 감소 될 뿐 아니라 구조적 안정성을 확보할 수 있다. 또한 본 발명에 따른 음극 활물질은 전해액과의 친화성이 향상되어 비수계 리튬이차전지의 수명특성과 율특성을 향상시킬 수 있다. 또한 단순한 표면처리 공정으로 인하여 음극 활물질의 생산 효율성 또한 향상시킬 수 있다.Thus, by forming a coating layer on the surface of the carbon-based material used as the negative electrode active material of the non-aqueous lithium secondary battery according to the present invention through the substitution of hetero elements such as phosphorus or sulfur, the surface of the surface by the coating layer formed on the surface of the carbon-based material In addition to reducing side reactions, structural stability can be achieved. In addition, the negative electrode active material according to the present invention can improve the affinity with the electrolyte solution to improve the life characteristics and rate characteristics of the non-aqueous lithium secondary battery. In addition, the production efficiency of the negative electrode active material may be improved due to a simple surface treatment process.
이와 같은 본 발명에 따른 이종원소 재료로 표면 처리된 비수계 리튬이차전지용 음극 활물질의 제조 방법을 도 1을 참조하여 설명하면 다음과 같다. 여기서 도 1은 본 발명의 실시예에 따른 이종원소 치환을 통해 표면 처리된 비수계 리튬이차전지용 음극 활물질의 제조 방법에 따른 흐름도이다.Such a method of manufacturing a negative active material for a non-aqueous lithium secondary battery, which is surface treated with a heterogeneous material according to the present invention will be described with reference to FIG. 1. 1 is a flowchart illustrating a method of manufacturing a negative active material for a non-aqueous lithium secondary battery, which is surface-treated through heterogeneous element substitution according to an embodiment of the present invention.
도 1을 참조하면, 본 발명에 따른 음극 활물질의 제조 방법은 탄소계 재료와 이종원소 재료를 준비하는 준비 단계(S11)와, 탄소계 재료의 표면에 이종원소 재료를 이용하여 코팅층을 형성하는 형성 단계(S13~S19)를 포함한다.Referring to Figure 1, the method for producing a negative electrode active material according to the present invention is a step of preparing a carbon-based material and hetero-element material (S11), and forming a coating layer using the hetero-element material on the surface of the carbon-based material Steps S13 to S19 are included.
먼저 S11단계에서 탄소계 재료와 이종원소 재료를 준비한다. 이때 탄소계 재료로는 평균입자 크기는 15㎛ 이하인 것을 사용할 수 있다. 이종원소 재료로는 NH4PF6, (NH4)2PO4, NH4PO3, (NH4)2SO3, (NH4)2SO4, NH4SO4, (NH4)2S2O8 등이 사용될 수 있다.First, in step S11, a carbonaceous material and a heterogeneous material are prepared. In this case, as the carbonaceous material, an average particle size of 15 μm or less may be used. Heterogeneous element is NH4PF6, (NH4)2PO4, NH4PO3, (NH4)2SO3, (NH4)2SO4, NH4SO4, (NH4)2S2O8 And the like can be used.
다음으로 S13단계에서 이종원소 재료를 탈이온수에 용해시켜 수용액을 형성한다. 이때 용매로는 탈이온수를 사용하는 예를 개시하였지만, 알코올 등과 같은 유기용매가 사용될 수 있다.Next, in step S13, the dissimilar element material is dissolved in deionized water to form an aqueous solution. In this case, although an example of using deionized water is disclosed as the solvent, an organic solvent such as alcohol may be used.
이어서 S15단계에서 수용액에 탄소계 재료를 혼합하여 혼합물을 형성한다. 이때 수용액에 탄소계 재료가 균일하게 혼합될 수 있도록, S15단계에 따른 혼합 단계는 5분 정도 진행될 수 있다.Subsequently, the carbon-based material is mixed with the aqueous solution in step S15 to form a mixture. In this case, the mixing step according to step S15 may be performed for about 5 minutes so that the carbon-based material is uniformly mixed in the aqueous solution.
다음으로 S17단계에서 혼합물을 진공 건조시킨다. 예컨대 S17단계에 따른 진공 건조는 80 내지 150도에서 1 내지 5시간 정도 진행될 수 있다.Next, the mixture is vacuum dried in step S17. For example, vacuum drying according to step S17 may be performed for about 1 to 5 hours at 80 to 150 degrees.
그리고 S17단계에서 건조된 건조물은, S19단계에서 열분해 방식으로 열처리하여 이종원소 재료로 표면 처리된 탄소계 재료인 본 발명에 따른 음극 활물질을 형성한다. 즉 이종원소 재료를 열분해 방식으로 열처리하는 과정에서, 이종원소 재료에서 이종원소를 제외한 성분은 제거되고 이종원소가 탄소계 재료의 표면에 코팅층을 형성한다. 이때 S19단계에 따른 열처리 단계는 200 내지 3000도에서 1시간 이상 비활성 분위기에서 수행될 수 있다. 예컨대 열처리 단계는 승온 온도가 10℃/min, Ar 또는 N2 분위기에서 진행될 수 있다.The dried product dried in step S17 is thermally treated in the step S19 to form a negative electrode active material according to the present invention, which is a carbon-based material surface-treated with a dissimilar element material. That is, in the process of thermally dissociating the hetero element material, the components except the hetero element in the hetero element material are removed and the hetero element forms a coating layer on the surface of the carbon-based material. At this time, the heat treatment step according to the step S19 may be performed in an inert atmosphere at 200 to 3000 degrees or more for 1 hour. For example, the heat treatment step may be carried out in an elevated temperature of 10 ℃ / min, Ar or N 2 atmosphere.
한편 본 발명에 따른 형성 단계(S13~S19)는 탄소계 재료와 이종원소 재료를 수용액 상태로 형성한 다음, 진공 건조를 거쳐 열처리하여 탄소계 재료의 표면에 코팅층을 형성하는 예를 개시하였지만 이것에 한정되는 것은 아니다. 예컨대 이종원소 재료를 용매에 용해시켜 용액을 형성한 다음, 그 용액을 탄소계 재료에 분사한 후, 용액이 분사된 탄소계 재료를 열처리하여 코팅층을 탄소계 재료의 표면에 형성할 수 있다. 또는 탄소계 재료와 이종원소 재료의 분말을 혼합한 후, 혼합된 분말을 열처리하여 코팅층을 탄소계 재료의 표면에 형성할 수 있다. 즉 건식 방법으로 탄소계 재료의 표면에 코팅층을 형성하며, 이때 열처리는 비활성 분위기에서 진행되는 예를 개시하였지만, 진공 분위기 또는 산화성 분위기에서 진행될 수도 있다.On the other hand, the forming step (S13 ~ S19) according to the present invention discloses an example of forming a coating layer on the surface of the carbon-based material by forming a carbon-based material and a heterogeneous material in an aqueous solution, and then heat-treated through vacuum drying It is not limited. For example, a dissimilar element material may be dissolved in a solvent to form a solution, and then the solution may be sprayed on a carbon-based material, followed by heat treatment of the carbon-based material from which the solution is sprayed to form a coating layer on the surface of the carbon-based material. Alternatively, after mixing the carbon-based material and the powder of the hetero element material, the mixed powder may be heat-treated to form a coating layer on the surface of the carbon-based material. That is, the coating layer is formed on the surface of the carbon-based material by a dry method, and the heat treatment is disclosed in an inert atmosphere, but may be performed in a vacuum atmosphere or an oxidizing atmosphere.
이와 같은 본 발명에 따른 음극 활물질을 적용한 비수계 리튬이차전지의 수명특성 및 율특성을 평가하기 위해서, 아래와 같이 비수계 리튬이차전지를 제조하였다. 이때 실시예의 경우, 음극 활물질로 이종원소 재료로 표면 처리된 탄소계 재료를 사용하였다. 비교예의 경우, 음극 활물질로 이종원소 재료로 표면 처리되지 않은 탄소계 재료를 사용하였다. 그리고 음극 활물질을 제외하면 실시예 및 비교예에 따른 비수계 리튬이차전지의 제조는 동일하게 진행되기 때문에, 실시예에 따른 비수계 리튬이차전지의 제조 방법을 중심으로 설명하도록 하겠다.In order to evaluate the life characteristics and rate characteristics of the non-aqueous lithium secondary battery to which the negative electrode active material according to the present invention is applied, a non-aqueous lithium secondary battery was manufactured as follows. In this case, a carbon-based material surface-treated with a hetero element material was used as the negative electrode active material. In the comparative example, a carbon-based material that was not surface treated with a heteroelement material was used as the negative electrode active material. And since the manufacturing of the non-aqueous lithium secondary battery according to the Examples and Comparative Examples except for the negative electrode active material proceeds in the same way, will be described with reference to the manufacturing method of the non-aqueous lithium secondary battery according to the embodiment.
음극 활물질 96 wt%와 결착제 SBR과 증점제 CMC를 각각 2 wt%로 하여, 물을 용매로 슬러리(slurry)를 제조하였다. 이 슬러리를 두께 20㎛의 구리 포일(Cu foil)에 도포하여 건조 후 프레스로 압밀화시켜, 진공상에서 120℃로 16시간 건조해 직경 12 mm의 원판으로 전극을 제조하였다. 상대극으로는 직경 14mm로 펀칭(punching)을 한 리튬금속박을, 분리막으로는 PE 필름을 사용하였다. 전해액으로는 1M의 LiPF6의 EC/DMC를 3:7로 배합한 혼합 용액을 사용하였다. 전해액을 분리막에 함침시킨 후, 이 분리막을 작용극과 상대극 사이에 끼운 후 서스(SUS) 제품의 케이스를 전극 평가용 시험 셀, 즉 비수계 리튬이차전지로 제조하였다.A slurry was prepared using water as a solvent with 96 wt% of the negative active material, the binder SBR, and the thickener CMC as 2 wt%, respectively. The slurry was applied to a copper foil (Cu foil) having a thickness of 20 µm, dried, compacted in a press, dried for 16 hours at 120 ° C. in a vacuum, and an electrode was manufactured from a disc having a diameter of 12 mm. As the counter electrode, a lithium metal foil punched to a diameter of 14 mm was used, and a PE film was used as the separator. As the electrolyte solution, a mixed solution in which EC / DMC of 1M LiPF 6 was mixed at 3: 7 was used. After the electrolyte solution was impregnated into the separator, the separator was sandwiched between the working electrode and the counter electrode, and a case of Sus (SUS) product was manufactured as a test cell for electrode evaluation, that is, a non-aqueous lithium secondary battery.
이때 탄소계 재료는 인조흑연, 천연흑연, 흑연화탄소 섬유, 흑연화 메조카본마이크로비드, 석유코크스, 수지소성체, 탄소섬유, 열분해 탄소 등의 비정질 탄소로 이루어진 물질 중에서 적어도 하나가 사용될 수 있다.In this case, the carbon-based material may be at least one selected from materials including amorphous carbon such as artificial graphite, natural graphite, graphitized carbon fiber, graphitized mesocarbon microbead, petroleum coke, resin plastic, carbon fiber, and pyrolytic carbon.
이종원소 재료은 NH4PF6, (NH4)2PO4, NH4PO3, (NH4)2SO3, (NH4)2SO4, NH4SO4, (NH4)2S2O8을 포함하며, 이것에 한정되는 것은 아니다.Heterogeneous material is NH4PF6, (NH4)2PO4, NH4PO3, (NH4)2SO3, (NH4)2SO4, NH4SO4, (NH4)2S2O8It includes, but is not limited to this.
이종원소 재료로 표면 처리된 탄소계 재료는 카보네이트계 전해질을 사용하는 비수계 리튬이차전지의 음극 활물질로 적용이 가능하다. 또한, 이종원소 재료로 표면 처리된 탄소계 음극 활물질은 0 V ~ 5 V 이하의 전압 영역에서 구동되는 비수계 전해질이 적용된 리튬이차전지에 적용이 가능하다.The carbon-based material surface-treated with a heterogeneous material may be applied as a negative electrode active material of a non-aqueous lithium secondary battery using a carbonate electrolyte. In addition, the carbon-based negative active material surface-treated with a heterogeneous material may be applied to a lithium secondary battery to which a non-aqueous electrolyte driven in a voltage range of 0 V to 5 V or less is applied.
한편 음극 극판의 제작은 이종원소 재료로 표면 처리된 음극 활물질의 분말에, 필요에 따라서, 도전제, 결착제, 필러, 분산제, 이온 도전제, 압력 증강제 등과 통상 이용되고 있는 l종 또는 2종 이상의 첨가 성분을 첨가해, 적당한 용매(유기용매)에 의해 슬러리 내지 페이스트(paste)화 한다. 이렇게 얻은 슬러리 또는 페이스트를 전극 지지 기판에 닥터 블레이드법 등을 이용해 도포 및 건조한 후, 압연 롤 등으로 프레스한 것을 음극 극판으로서 사용한다.On the other hand, the production of the negative electrode plate is one or two or more kinds of powders of the negative electrode active material surface-treated with a dissimilar element material, which are usually used as conductive agents, binders, fillers, dispersants, ion conductive agents, pressure enhancers, etc. The additive component is added to form a slurry or paste with a suitable solvent (organic solvent). The slurry or paste thus obtained is coated and dried on an electrode support substrate using a doctor blade method or the like, and then pressed using a rolling roll or the like is used as the negative electrode plate.
이때 도전제로는 흑연, 카본 블랙, 아세틸렌 블랙, Ketjen Black, 탄소섬유, 금속가루 등이 사용될 수 있다. 결착제로는 PVdF, 폴리에틸렌 등을 사용할 수 있다. 전극 지지 기판('집전체'라고도 함)은, 동, 니켈, 스텐레스 강철, 알루미늄 등의 박, 시트 혹은 탄소섬유 등으로 구성할 수 있다.In this case, as the conductive agent, graphite, carbon black, acetylene black, Ketjen Black, carbon fiber, metal powder, or the like may be used. PVdF, polyethylene, etc. can be used as a binder. The electrode support substrate (also referred to as 'current collector') can be made of foil, sheet or carbon fiber such as copper, nickel, stainless steel, aluminum, or the like.
이와 같이 제조된 음극을 이용하여 리튬이차전지를 제작한다. 리튬이차전지의 형태는 코인, 버튼, 시트, 원통형, 각형 등 어느 것이라도 좋다. 리튬이차전지의 양극, 전해질, 분리막 등은 기존 리튬이차전지에 사용하는 것으로 한다.A lithium secondary battery is manufactured by using the negative electrode thus prepared. The form of the lithium secondary battery may be any one of a coin, a button, a sheet, a cylinder, a square, and the like. The positive electrode, electrolyte, separator, etc. of the lithium secondary battery shall be used for the existing lithium secondary battery.
양극 활물질은 리튬이온을 가역적으로 인터칼레이션 및 디인터칼레이션 할 수 있는 양극 활물질을 포함한다. 이러한 양극 활물질의 대표적인 예로는 LiCoO2, LiNiO2, LiMnO2, LiMn2O4, 또는 LiNi1-x-yCo xMyO2(0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ x+y ≤ 1, M은 Al, Sr, Mg, La 등의 금속)와 같은 리튬-전이금속 산화물을 사용할 수 있으며, 상기한 양극 활물질 중 l종 혹은 2종 이상을 사용할 수 있다. 한편 상기한 양극 활물질은 하나의 예시에 불과하며, 이것에 한정되는 것은 아니다.The positive electrode active material includes a positive electrode active material capable of reversibly intercalating and deintercalating lithium ions. Representative examples of the cathode active material include LiCoO 2 , LiNiO 2 , LiMnO 2 , LiMn 2 O 4 , or LiNi1-x-yCo xMy O 2 (0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 ≦ x + y ≦ 1 , M may be a lithium-transition metal oxide, such as metals such as Al, Sr, Mg, La, etc., and may use one or two or more of the above-described positive electrode active material. On the other hand, the above-mentioned positive electrode active material is only one example, but is not limited thereto.
전해액은 유기용매에 리튬염을 용해시킨 비수계 전해액, 무기 고체 전해질, 무기 고체 전해질의 복합재 등을 사용할 수 있으며, 이것에 한정되는 것은 아니다.The electrolyte solution may be a non-aqueous electrolyte solution in which lithium salt is dissolved in an organic solvent, an inorganic solid electrolyte, a composite material of an inorganic solid electrolyte, and the like, but is not limited thereto.
여기서 비수계 전해액의 용매로서는 카보네이트, 에스테르, 에테르 또는 케톤을 사용할 수 있다. 상기 카보네이트로는 디메틸 카보네이트(DMC), 디에틸 카보네이트(DEC), 디프로필 카보네이트(DPC), 메틸프로필 카보네이트(MPC), 에틸프로필 카보네이트(EPC), 메틸에틸 카보네이트(MEC), 에틸렌 카보네이트(EC), 프로필렌 카보네이트(PC), 부틸렌 카보네이트(BC) 등이 사용될 수 있다. 에스테르로는 부티로락톤(BL), 데카놀라이드(decanolide), 발레로락톤(valerolactone), 메발로노락톤(mevalonolactone), 카프로락톤(caprolactone), n-메틸 아세테이트, n-에틸 아세테이트, n-프로필 아세테이트 등이 사용될 수 있다. 에테르로는 디부틸 에테르 등이 사용될 수 있다. 케톤으로는 폴리메틸비닐 케톤이 사용될 수 있다. 또한 본 발명에 따른 비수계 전해액은 비수성 유기용매의 종류에 한정되는 것은 아니다.As the solvent of the non-aqueous electrolyte, carbonate, ester, ether or ketone can be used. The carbonate is dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate (DPC), methylpropyl carbonate (MPC), ethylpropyl carbonate (EPC), methylethyl carbonate (MEC), ethylene carbonate (EC) , Propylene carbonate (PC), butylene carbonate (BC) and the like can be used. Esters include butyrolactone (BL), decanolide, valerolactone, mevalonolactone, caprolactone, n-methyl acetate, n-ethyl acetate, n- Propyl acetate and the like can be used. Dibutyl ether or the like may be used as the ether. As the ketone, polymethylvinyl ketone may be used. In addition, the non-aqueous electrolyte according to the present invention is not limited to the type of non-aqueous organic solvent.
비수계 전해액의 리튬염의 예로서는, LiPF6, LiBF4, LiSbF6, LiAsF6, LiClO4, LiCF3SO3, LiN(CF3SO2)2, LiN(C2F5SO2)2, LiAlO4, LiAlCl4, LiN(CxF2x+1SO2)(CyF2x+1SO2)(여기서, x 및 y는 자연수임) 및 LiSO3CF3로 이루어진 군에서 선택되는 것을 하나 이상 또는 이들의 혼합물을 포함한다.Examples of the lithium salt of the non-aqueous electrolyte solution include LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiClO 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiAlO 4 At least one selected from the group consisting of LiAlCl 4 , LiN (CxF2x + 1SO2) (CyF2x + 1SO2), wherein x and y are natural water, and LiSO 3 CF 3 .
그리고 분리막으로는 PP 또는 PE 등의 폴리올레핀(Polyolefin)으로부터 제조되는 다공성 필름이나, 부직포 등의 다공성재를 사용할 수 있다.As the separator, a porous film made from polyolefin such as PP or PE, or a porous material such as nonwoven fabric may be used.
실시예 및 비교예Examples and Comparative Examples
비교예에서는, 이종원소 재료로 표면처리를 하지 않은 탄소계 재료로 평균입자 크기가 15㎛ 이하인 천연흑연을 음극 활물질로 사용했다.In the comparative example, natural graphite having an average particle size of 15 µm or less was used as the negative electrode active material as a carbon-based material which was not surface treated with a heteroelement material.
실시예1에서는 이종원소로 인(P)을 도입하기 위해서, 이종원소 재료로 NH4PF6을 이용하여 표면 처리한 평균입자 크기가 15㎛ 이하인 천연흑연을 음극 활물질로 사용했다.In Example 1, in order to introduce phosphorus (P) into the hetero element, natural graphite having an average particle size of 15 μm or less, which was surface treated using NH 4 PF 6 as the hetero element material, was used as the negative electrode active material.
실시예2에서는 이종원소로 황(S)을 도입하기 위해서, 이종원소 재료로 (NH4)2SO4를 이용하여 표면 처리한 평균입자 크기가 15㎛ 이하인 천연흑연을 음극 활물질로 사용했다.In Example 2, in order to introduce sulfur (S) into the hetero element, natural graphite having an average particle size of 15 µm or less, which was surface-treated with (NH 4 ) 2 SO 4 as the hetero element material, was used as the negative electrode active material.
실시예1 및 실시예2에 따른 음극 활물질은 아래와 같이 제조하였다. 탄소계 재료 중 천연흑연 표면에 각각 인(P)과 황(S)을 도입하기 위하여 NH4PF6와 (NH4)2SO4를 각각 3 wt% 중량비를 탈이온수(DI water)에 녹인 후 천연흑연 표면에 균일하게 코팅을 하고 최종적으로 800℃에서 열처리를 통해 인 또는 황을 표면에 포함하는 비수계 리튬이차전지용 음극 활물질을 제조하였다.The negative electrode active materials according to Example 1 and Example 2 were prepared as follows. In order to introduce phosphorus (P) and sulfur (S) on the surface of natural graphite among carbon materials, 3 wt% of NH 4 PF 6 and (NH 4 ) 2 SO 4 were dissolved in DI water, respectively. The surface of the natural graphite was uniformly coated, and finally, a negative active material for a non-aqueous lithium secondary battery including phosphorus or sulfur on the surface was prepared by heat treatment at 800 ° C.
이와 같이 제조된 실시예1, 실시예2 및 비교예에 따른 음극 활물질의 모폴로지(morphology)를 비교하면, 도 2에 도시된 바와 같이, 천연흑연 모재의 표면 구조 변화 또는 불순물 형성은 관찰되지 않았다.Comparing the morphology (morphology) of the negative electrode active material according to Example 1, Example 2 and Comparative Example prepared as described above, as shown in Figure 2, no change in the surface structure or the formation of impurities of the natural graphite base material.
실시예1 및 실시예2에 따른 음극 활물질에 대한 EDS 및 XPS 분석 결과, 도 3 및 도 4에 도시된 바와 같이, 천연흑연 표면에 인과 황이 균일하게 존재하는 것을 확인할 수 있었다. 여기서 도 3와 4는 각각 표면에 인과 황이 도입된 천연흑연 재료에 EDS 분석으로 얻어진 표면의 구성요소 매핑(element mapping) 결과를 비교한 것이다. 도 3에 도시된 바와 같이, 실시예1에 따른 음극 활물질은 천연흑연 표면에 0.59 wt%의 인이 검출되었다. 도 4에 도시된 바와 같이, 실시예2에 따른 음극 활물질은 천연흑연 표면에 0.28 wt%의 황이 검출되었다. As a result of EDS and XPS analysis of the negative electrode active materials according to Examples 1 and 2, it was confirmed that phosphorus and sulfur were uniformly present on the surface of natural graphite. 3 and 4 compare element mapping results of surfaces obtained by EDS analysis to natural graphite materials in which phosphorus and sulfur are introduced to the surfaces, respectively. As shown in FIG. 3, in the negative active material according to Example 1, 0.59 wt% of phosphorus was detected on the natural graphite surface. As shown in FIG. 4, 0.28 wt% of sulfur was detected on the surface of the natural graphite of the negative active material according to Example 2.
실시예1 및 실시예2에 따른 음극 활물질에 대한 표면 구조분석을 위해 XPS 분석을 실시하였으며, 그 결과는 도 5와 도 6에 나타내었다. 도 5를 참조하면, 실시예1은 표면에 P 2p peak(131~135eV)가 형성됨을 확인할 수 있다. 또한 도 6을 참조하면, 실시예2는 표면에 S 2p peak(161~168eV)가 형성됨을 확인할 수 있다. 이는 천연흑연의 표면에 존재하는 인과 황이 천연흑연의 탄소와 특정 결합을 형성하고 있는 것을 의미한다.XPS analysis was performed for surface structure analysis of the anode active materials according to Examples 1 and 2, and the results are shown in FIGS. 5 and 6. Referring to FIG. 5, in Example 1, P 2p peaks (131 to 135eV) are formed on the surface. In addition, referring to Figure 6, Example 2 can be seen that the S 2p peak (161 ~ 168eV) is formed on the surface. This means that phosphorus and sulfur on the surface of natural graphite form a specific bond with carbon of natural graphite.
또한 비교예, 실시예1 및 실시예2에 따른 음극 활물질에 대한 분석을 위해 XRD 분석을 실시하였으며, 그 결과는 도 7에 나타내었다. 도 7을 참조하면, 이종 원소 도입 후 불순물 또는 이차상의 형성은 확인 할 수 없었다. XRD 결과를 바탕으로 La(110)와 Lc(002)값을 계산한 결과는 아래의 표1과 같다. 이종 원소 도입 후 La(110)의 변화는 미미하였으며, Lc(002)의 감소를 확인하였다. In addition, XRD analysis was performed for the analysis of the negative active material according to Comparative Example, Example 1 and Example 2, the results are shown in FIG. Referring to FIG. 7, formation of impurities or secondary phases after introduction of heterogeneous elements could not be confirmed. Based on the XRD results, the results of calculating L a (110) and L c (002) are shown in Table 1 below. The change of L a (110) after the introduction of the heterogeneous element was insignificant, and the decrease of L c (002) was confirmed.
표 1
Lc(002)[nm] La(aa0)[nm]
비교예 35.854 71.413
실시예1 31.512 71.402
실시예2 32.268 71.422
Table 1
L c (002) [nm] L a (aa 0) [nm]
Comparative example 35.854 71.413
Example 1 31.512 71.402
Example 2 32.268 71.422
얻어진 XRD 데이터를 통해 비교예, 실시예1 및 실시예2의 d002값과 FWHM (full-width at half maximum) 값을 표 2에 나타내었다. 이종 원소 도입 후 d002 값의 변화는 미미하였고, FWHM은 증가하는 것을 확인 할 수 있었다. 이는 표면에 도입된 P 또는 S의 일부가 표면에 치환되었기 때문으로 판단된다. 또한 비교예, 실시예1 및 실시예2의 비표면적 측정 결과, 비교예는 2.7845 m2/g, 실시예1은 2.7461 m2/g, 그리고 실시예2는 2.7199 m2/g을 나타내었다.Table 2 shows the d 002 values and FWHM (full-width at half maximum) values of Comparative Examples, Examples 1 and 2 through the obtained XRD data. After introduction of the heterogeneous element, the change of d 002 value was insignificant and the FWHM was increased. This is judged to be because a part of P or S introduced into the surface is substituted on the surface. In addition, as a result of measuring the specific surface area of Comparative Example, Example 1 and Example 2, Comparative Example was 2.7845 m 2 / g, Example 1 was 2.7461 m 2 / g, and Example 2 was 2.7199 m 2 / g.
표 2
Figure PCTKR2011006110-appb-T000001
TABLE 2
Figure PCTKR2011006110-appb-T000001
비교예, 실시예1 및 실시예2에 따른 음극 활물질을 포함하는 비수계 리튬이차전지의 수명특성 및 율특성을 아래와 같은 시험을 확인하였다.The life and rate characteristics of the non-aqueous lithium secondary battery including the negative electrode active materials according to Comparative Example, Example 1 and Example 2 were confirmed as follows.
먼저 사용된 이종원소 재료의 종류에 따른 비수계 리튬이차전지의 수명특성에 미치는 영향을 살펴보기 위해, 비교예, 실시예1 및 실시예2의 음극 활물질이 적용된 비수계 리튬이차전지를 이용하여 다음과 같은 시험을 수행하였다. 즉 비교예와, 실시예1 및 실시예2의 음극 활물질이 적용된 비수계 리튬이차전지를 0.2C(72 mA/g)의 전류로 3 cycle 충방전을 실시하고, 이어서 0.5C (180 mA/g)의 전류로 50 cycle 동안 충방전을 수행하였으며, 그 결과는 도 8과 같다. 도 8에서 확인할 수 있는 바와 같이, 이종원소 재료가 표면 처리된 실시예1 및 실시예2가 비교예에 비해 수명특성이 향상되었다.First, in order to examine the effect on the life characteristics of the non-aqueous lithium secondary battery according to the type of heterogeneous material used, using a non-aqueous lithium secondary battery to which the negative electrode active material of Comparative Example, Example 1 and Example 2 was applied The same test was performed. That is, the non-aqueous lithium secondary battery to which the comparative examples and the negative electrode active materials of Examples 1 and 2 were applied was subjected to 3 cycle charging and discharging at a current of 0.2C (72 mA / g), followed by 0.5C (180 mA / g). Charging and discharging was performed for 50 cycles with the current of), and the results are shown in FIG. As can be seen in Figure 8, Example 1 and Example 2, the surface treatment of the hetero-element material is improved compared to the comparative example.
그리고 사용된 이종원소 재료의 종류에 따른 표면 처리가 비수계 리튬이차전지의 율특성에 미치는 영향을 살펴보기 위해, 비교예, 실시예1 및 실시예2의 음극 활물질이 적용된 비수계 리튬이차전지를 이용하여 다음과 같은 시험을 수행하였다. 즉 비교예, 실시예1 및 실시예2의 음극 활물질이 적용된 비수계 리튬이차전지를 0.2C(72 mA/g)의 전류로 1 cycle 충방전을 실시한다. 이어서 충전은 0.5C(180 mA/g)의 전류로 고정하고, 0.2C(72 mA/g), 0.5C(180 mA/g), 1C(360 mA/g), 2C(720 mA/g), 3C(1080 mA/g), 5C(1800 mAh/g)의 전류로 방전을 각각 3 초씩 수행한다. 그리고 다시 0.2C (72 mA/g)의 전류로 각각 2 cycle씩 충방전을 수행하였으며, 그 결과는 도 9와 같다. 도 9에서 확인할 수 있는 바와 같이, 표면처리 후 율특성 또한 향상되었음을 확인할 수 있었다.And to examine the effect of the surface treatment according to the type of heterogeneous material used on the rate characteristics of the non-aqueous lithium secondary battery, the non-aqueous lithium secondary battery to which the negative electrode active materials of Comparative Examples, Examples 1 and 2 are applied The following test was carried out using. That is, the non-aqueous lithium secondary battery to which the negative electrode active materials of Comparative Example, Example 1 and Example 2 were applied is subjected to 1 cycle charging and discharging at a current of 0.2C (72 mA / g). Charging was then fixed at a current of 0.5C (180 mA / g), 0.2C (72 mA / g), 0.5C (180 mA / g), 1C (360 mA / g), 2C (720 mA / g) , 3C (1080 mA / g), 5C (1800 mAh / g) to perform the discharge for 3 seconds each. Then, charging and discharging were performed for 2 cycles each at a current of 0.2C (72 mA / g), and the results are shown in FIG. 9. As can be seen in Figure 9, it was confirmed that the rate characteristic after surface treatment was also improved.
이러한 결과는 이종원소 재료로 표면 처리에 의해 형성된 천연흑연 표면에 형성된 코팅층이 전해질과의 직접적인 접촉에 의한 부반응을 효과적으로 억제하고, 천연흑연 표면의 구조적 안정성을 향상시킴으로써, 이종원소 재료로 표면처리 된 음극 활물질이 적용된 비수계 리튬이차전지의 수명특성과 출력 특성을 증가시키는데 효과가 있다는 것을 나타낸다.These results indicate that the coating layer formed on the surface of the natural graphite formed by surface treatment with a heterogeneous material effectively suppresses side reactions due to direct contact with the electrolyte and improves the structural stability of the surface of the natural graphite, thereby improving the surface stability of the heterogeneous material. It shows that it is effective in increasing the life characteristics and output characteristics of the non-aqueous lithium secondary battery to which the active material is applied.
한편, 본 명세서와 도면에 개시된 본 발명의 실시예들은 이해를 돕기 위해 특정 예를 제시한 것에 지나지 않으며, 본 발명의 범위를 한정하고자 하는 것은 아니다. 여기에 개시된 실시예들 이외에도 본 발명의 기술적 사상에 바탕을 둔 다른 변형예들이 실시 가능하다는 것은, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 자명한 것이다.On the other hand, the embodiments of the present invention disclosed in the specification and drawings are merely presented specific examples to aid understanding, and are not intended to limit the scope of the present invention. It will be apparent to those skilled in the art that other modifications based on the technical idea of the present invention can be implemented in addition to the embodiments disclosed herein.

Claims (14)

  1. 탄소계 재료;Carbon-based materials;
    상기 탄소계 재료의 표면에 이종원소 치환을 통해 형성된 코팅층;을 포함하며,And a coating layer formed on the surface of the carbon-based material through heterogeneous element substitution.
    상기 이종원소는 인(P)을 포함하는 것을 특징으로 하는 비수계 리튬이차전지용 음극 활물질.The hetero element is a negative active material for a non-aqueous lithium secondary battery, characterized in that it comprises phosphorus (P).
  2. 제1항에 있어서,The method of claim 1,
    상기 이종원소는 황(S)을 포함하는 것을 특징으로 하는 비수계 리튬이차전지용 음극 활물질.The hetero-element is a negative active material for a non-aqueous lithium secondary battery, characterized in that containing sulfur (S).
  3. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    상기 탄소계 재료는 인조흑연, 천연흑연, 흑연화탄소 섬유, 흑연화 메조카본마이크로비드, 석유코크스, 수지소성체, 탄소섬유 및 열분해 탄소 중에 적어도 하나를 포함하는 것을 특징으로 하는 비수계 리튬이차전지용 음극 활물질.The carbonaceous material is a negative electrode for a non-aqueous lithium secondary battery, characterized in that it comprises at least one of artificial graphite, natural graphite, graphitized carbon fiber, graphitized mesocarbon microbead, petroleum coke, resin plastic, carbon fiber and pyrolytic carbon Active material.
  4. 제3항에 있어서,The method of claim 3,
    상기 탄소재 재료는 La(110)>10nm, Lc(002)>10nm이며,The carbonaceous material is L a (110) > 10 nm, L c (002) > 10 nm,
    La(110)=0.89λ/[B110cos(θ110)], Lc(002)=0.89λ/[B002cos(θ002)]이고, λ는 Cu Kα(λ= 0.15418 nm)의 파장(wavelength) 값이고, B는 브래그 회절각(Bragg diffraction angle)에 따르는 (110) 또는 (002) 피크(peak)에 대한 FWHM(full width at half-maximum) 값인 것을 특징으로 하는 비수계 리튬이차전지용 음극 활물질.L a (110) = 0.89λ / [B 110 cos (θ 110 )], L c (002) = 0.89λ / [B 002 cos (θ 002 )], and λ is Cu Kα (λ = 0.15418 nm). A non-aqueous lithium secondary, characterized in that the wavelength value, B is the full width at half-maximum (FWHM) value for the (110) or (002) peak according to the Bragg diffraction angle. Battery negative electrode active material.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 탄소계 재료는 (002) peak에 대한 d002값이 0.344nm 이하인 것을 특징으로 하는 비수계 리튬이차전지용 음극 활물질.The carbon-based material is a negative active material for a non-aqueous lithium secondary battery, characterized in that the d 002 value for the (002) peak is 0.344nm or less.
  6. 제3항에 있어서,The method of claim 3,
    상기 탄소계 재료는 비표면적이 10m2/g 이하인 것을 특징으로 하는 비수계 리튬이차전지용 음극 활물질.The carbonaceous material has a specific surface area of 10 m 2 / g or less, the negative active material for a non-aqueous lithium secondary battery.
  7. 제3항에 있어서,The method of claim 3,
    상기 탄소계 재료는 흑연화도(degree of graphitization) 값이 0.4 내지 1.0이며, 상기 흑연화도=(3.44-d002)/(0.086)으로 산출하는 것을 특징으로 하는 비수계 리튬이차전지용 음극 활물질.The carbon-based material has a degree of graphitization value of 0.4 to 1.0, and the graphitization degree = (3.44-d 002 ) / (0.086), characterized in that the negative active material for a non-aqueous lithium secondary battery.
  8. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    상기 코팅층은 상기 탄소계 재료 대비 10 중량% 이하인 것을 특징으로 비수계 리튬이차전지용 음극 활물질.The coating layer is a negative active material for a non-aqueous lithium secondary battery, characterized in that less than 10% by weight compared to the carbon-based material.
  9. 제8항에 있어서,The method of claim 8,
    상기 코팅층은 상기 탄소계 재료의 표면에 균일하게 또는 부분적으로 형성되는 것을 특징으로 하는 비수계 리튬이차전지용 음극 활물질.The coating layer is a negative active material for a non-aqueous lithium secondary battery, characterized in that formed on the surface of the carbon-based material uniformly or partially.
  10. 탄소계 재료와, 상기 탄소계 재료의 표면에 이종원소 치환을 통해 형성된 코팅층을 구비하는 음극 활물질로서, 상기 이종원소는 인(P) 또는 황(S)을 포함하는 상기 음극 활물질을 갖는 음극을 포함하는 것을 특징으로 하는 비수계 리튬이차전지.A negative electrode active material having a carbon-based material and a coating layer formed on the surface of the carbon-based material through heterogeneous element substitution, wherein the hetero element includes a negative electrode having the negative electrode active material including phosphorus (P) or sulfur (S). Non-aqueous lithium secondary battery, characterized in that.
  11. 탄소계 재료와 이종원소 재료를 준비하는 준비 단계;Preparing a carbon-based material and a dissimilar element material;
    상기 이종원소 재료를 이용하여 상기 탄소계 재료의 표면에 이종원소 치환을 통하여 코팅층을 형성하는 형성 단계;를 포함하며,And forming a coating layer through heterogeneous element substitution on the surface of the carbonaceous material using the heterogenous material.
    상기 이종원소 재료는 인(P)을 포함하는 것을 특징으로 하는 비수계 리튬이차전지용 음극 활물질의 제조 방법.The hetero element material is a method for producing a negative active material for a non-aqueous lithium secondary battery, characterized in that it comprises phosphorus (P).
  12. 제11항에 있어서,The method of claim 11,
    상기 이종원소 재료는 황(S)을 더 포함하는 것을 특징으로 하는 비수계 리튬이차전지용 음극 활물질의 제조 방법.The hetero-element material is a method for producing a negative active material for a non-aqueous lithium secondary battery, characterized in that it further comprises sulfur (S).
  13. 제12항에 있어서, 상기 이종원소 재료는The method of claim 12, wherein the heteroelement material is
    NH4PF6, (NH4)2PO4, NH4PO3, (NH4)2SO3, (NH4)2SO4, NH4SO4 및 (NH4)2S2O8 중에 적어도 하나를 포함하는 것을 특징으로 하는 비수계 리튬이차전지용 음극 활물질의 제조 방법.NH4PF6, (NH4)2PO4, NH4PO3, (NH4)2SO3, (NH4)2SO4, NH4SO4 And (NH4)2S2O8 Method for producing a negative active material for a non-aqueous lithium secondary battery, characterized in that it comprises at least one.
  14. 제13항에 있어서, 상기 형성 단계는,The method of claim 13, wherein the forming step,
    상기 이종원소 재료를 용매에 용해시켜 용액을 형성하는 단계;Dissolving the heteroatomic material in a solvent to form a solution;
    상기 용액에 상기 탄소계 재료를 넣고 균일하게 혼합하여 혼합물을 형성하는 단계;Adding the carbonaceous material to the solution and uniformly mixing to form a mixture;
    상기 혼합물을 진공 건조시키는 건조 단계;Drying the vacuum to dry the mixture;
    상기 건조 단계에서 건조된 건조물을 열분해 방식으로 열처리하여 상기 이종원소를 기반으로 한 상기 코팅층을 상기 탄소계 재료의 표면에 형성하는 열처리 단계;Heat-treating the dried material dried in the drying step by pyrolysis to form the coating layer based on the heterogeneous element on the surface of the carbon-based material;
    를 포함하는 것을 특징으로 하는 비수계 리튬이차전지용 음극 활물질의 제조 방법.Method for producing a negative active material for a non-aqueous lithium secondary battery comprising a.
PCT/KR2011/006110 2010-09-16 2011-08-19 Anode active material, nonaqueous lithium secondary battery containing same, and preparation method thereof WO2012036385A2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180044303.8A CN103140968B (en) 2010-09-16 2011-08-19 Active material of positive electrode, non-aqueous lithium secondary cell containing this active material of positive electrode and preparation method thereof
US13/822,383 US20130177815A1 (en) 2010-09-16 2011-08-19 Negative active material, lithium secondary battery comprising the negative active material and manufacturing method thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2010-0091296 2010-09-16
KR20100091296 2010-09-16
KR10-2011-0077357 2011-08-03
KR1020110077357A KR101316638B1 (en) 2010-09-16 2011-08-03 Negative active material, Lithium secondary battery comprising the negative active material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
WO2012036385A2 true WO2012036385A2 (en) 2012-03-22
WO2012036385A3 WO2012036385A3 (en) 2012-05-10

Family

ID=45832040

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/006110 WO2012036385A2 (en) 2010-09-16 2011-08-19 Anode active material, nonaqueous lithium secondary battery containing same, and preparation method thereof

Country Status (1)

Country Link
WO (1) WO2012036385A2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050115480A (en) * 2004-06-03 2005-12-08 한국과학기술연구원 Carbon composite for secondary battery, fabrication method thereof, and secondary battery using the same
KR20070059389A (en) * 2005-12-06 2007-06-12 주식회사 엘지화학 Anode active material for secondary battery with high capacity
KR20080099132A (en) * 2007-05-07 2008-11-12 한양대학교 산학협력단 Method of preparing positive active material for lithium secondary battery, positive active material for lithium secondary battery prepared by same, and lithium secondary battery including positive active material
KR20090028986A (en) * 2007-09-17 2009-03-20 삼성에스디아이 주식회사 Negative active material for lithium secondary battery, and method of preparing same
KR20100073506A (en) * 2008-12-23 2010-07-01 삼성전자주식회사 Negative active material, negative electrode comprising same, method of preparing negative electrode, and lithium battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050115480A (en) * 2004-06-03 2005-12-08 한국과학기술연구원 Carbon composite for secondary battery, fabrication method thereof, and secondary battery using the same
KR20070059389A (en) * 2005-12-06 2007-06-12 주식회사 엘지화학 Anode active material for secondary battery with high capacity
KR20080099132A (en) * 2007-05-07 2008-11-12 한양대학교 산학협력단 Method of preparing positive active material for lithium secondary battery, positive active material for lithium secondary battery prepared by same, and lithium secondary battery including positive active material
KR20090028986A (en) * 2007-09-17 2009-03-20 삼성에스디아이 주식회사 Negative active material for lithium secondary battery, and method of preparing same
KR20100073506A (en) * 2008-12-23 2010-07-01 삼성전자주식회사 Negative active material, negative electrode comprising same, method of preparing negative electrode, and lithium battery

Also Published As

Publication number Publication date
WO2012036385A3 (en) 2012-05-10

Similar Documents

Publication Publication Date Title
WO2018212453A1 (en) Method for pre-lithiating silicon oxide anode for secondary battery
WO2019151813A1 (en) Anode active material, anode comprising same, and lithium secondary battery
WO2019112390A1 (en) Anode active material for lithium secondary battery and method for manufacturing same
WO2017069407A1 (en) Precursor comprising multi-layered transition metal oxides for producing cathode active material, and cathode active material produced using precursor for lithium secondary battery
WO2014204141A1 (en) Anode active material for lithium secondary battery, lithium secondary battery including same, and method for manufacturing anode active material
WO2011162529A2 (en) Negative electrode active material with improved safety, and secondary battery comprising same
KR101316638B1 (en) Negative active material, Lithium secondary battery comprising the negative active material and manufacturing method thereof
WO2020085823A1 (en) Method for manufacturing anode for lithium secondary battery
WO2019013511A2 (en) Positive electrode for lithium secondary battery, manufacturing method therefor, and lithium secondary battery comprising same
WO2020153690A1 (en) Lithium composite negative electrode active material, negative electrode comprising same and methods for manufacturing same
WO2018194345A1 (en) Anode for lithium secondary battery, lithium secondary battery comprising same, and manufacturing method therefor
KR100318375B1 (en) Lithium ion secondary battery
KR20190044445A (en) Positive electrode active material for lithium secondary battery, preparing method of the same, positive electrode and lithium secondary battery including the same
WO2016122196A1 (en) Electrode, and method for producing battery and electrode
WO2021112607A1 (en) Method for producing positive electrode material for secondary battery
WO2021107586A1 (en) Positive electrode for secondary battery including flake graphite and secondary battery including same
WO2012141503A2 (en) Positive electrode active material, method for preparing same, and positive electrode and lithium battery using same
WO2019078506A2 (en) Method for preparing cathode active material for lithium secondary battery, cathode active material prepared thereby, cathode comprising same for lithium secondary battery, and lithium secondary battery
WO2020204625A1 (en) Electrode for lithium secondary battery
WO2017142261A1 (en) Negative electrode manufacturing method and negative electrode
WO2017030416A1 (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising same
WO2022108267A1 (en) Anode active material and lithium secondary battery comprising same
WO2022139563A1 (en) Negative electrode for secondary battery, slurry for negative electrode, and method for manufacturing negative electrode
WO2014081240A1 (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising same
WO2012036372A2 (en) Anode active material, non-aqueous lithium secondary battery including the same, and manufacturing method thereof

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180044303.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11825345

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 13822383

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11825345

Country of ref document: EP

Kind code of ref document: A2