WO2012032715A1 - Winding element - Google Patents

Winding element Download PDF

Info

Publication number
WO2012032715A1
WO2012032715A1 PCT/JP2011/004567 JP2011004567W WO2012032715A1 WO 2012032715 A1 WO2012032715 A1 WO 2012032715A1 JP 2011004567 W JP2011004567 W JP 2011004567W WO 2012032715 A1 WO2012032715 A1 WO 2012032715A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
core
winding element
members
core portion
Prior art date
Application number
PCT/JP2011/004567
Other languages
French (fr)
Japanese (ja)
Inventor
政寛 菊池
次橋 一樹
浩一 本家
杉本 明男
井上 憲一
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to CN2011800427317A priority Critical patent/CN103081045A/en
Publication of WO2012032715A1 publication Critical patent/WO2012032715A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/26Fastening parts of the core together; Fastening or mounting the core on casing or support
    • H01F27/263Fastening parts of the core together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/10Composite arrangements of magnetic circuits
    • H01F3/14Constrictions; Gaps, e.g. air-gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • H01F17/043Fixed inductances of the signal type  with magnetic core with two, usually identical or nearly identical parts enclosing completely the coil (pot cores)

Definitions

  • the present invention relates to a winding element in which a long conductor is wound, and more particularly, to a winding element having a core portion through which a magnetic flux passes.
  • a reactor for the purpose of introducing reactance into the circuit or electromagnetic induction.
  • transformers transformers, transformers
  • This reactor is used, for example, in various electric circuits and electronic circuits such as prevention of harmonic currents in power factor correction circuits, smoothing of current pulsations in current type inverter and chopper control, and boosting of DC voltage in converters. Yes.
  • Transformers are used in various electric circuits, electronic circuits, and the like in order to perform voltage conversion, impedance matching, current detection, and the like.
  • the reactor in order to circulate the magnetic flux generated in the coil, the reactor is provided with a core portion through which the magnetic flux passes.
  • one coil primary coil
  • the other coil secondary coil
  • a core portion iron core, yoke
  • a gap may be formed in the core portion in order to adjust the inductance.
  • This gap is assumed to sandwich an air gap or a gap material made of a nonmagnetic material.
  • an electromagnetic force acts on the core portion, which causes vibration. In particular, vibration occurs in the gap.
  • FIG. 19 is a diagram illustrating a configuration of a reactor disclosed in Patent Document 1.
  • FIG. 19A is an external configuration diagram
  • FIG. 19B is a longitudinal sectional view
  • FIG. 19C is an exploded perspective view.
  • the reactor 1000 disclosed in Patent Document 1 includes a core portion 1010 and a coil 1020 in FIG. 19, and the core portion 1010 includes a columnar inner core 1011, a hollow cylindrical outer core 1012, and the like. And a pair of upper and lower disk-shaped connecting cores 1013 (1013U, 1013L), and the coil 1020 includes a winding 1021.
  • the winding 1021 is wound around the inner core 1011 and is fitted inside the outer core 1012.
  • a pair of upper and lower connecting cores 1013U and 1013L are joined to the upper and lower surfaces of the inner core 1011 and the outer core 1012, respectively. Both ends of the winding 1021 are drawn out from a notch 1121 formed in the outer core 1012.
  • the core portion 1010 is substantially composed of a material having a relative magnetic permeability of 5-50.
  • the reactor having such a configuration is a so-called pot-type reactor having a gapless core portion 1010 with no gaps. By making the core portion 1010 gapless, the vibration problem is solved and the core portion 1010 is made transparent.
  • a desired inductance is obtained by using a material having a magnetic permeability of 5 to 50.
  • the vibration problem is solved by making the core portion gapless, but the coil 1020 is an air-core coil excluding the inner core 1011 (in order to adjust its inductance).
  • the convex portion extending into the axial core portion of the air-core coil may be on the inner surface of the connecting cores 1013U and 1013L)
  • AC power is supplied to the air-core coil, it is generated by the coil.
  • the electromagnetic force fluctuates at the frequency, and the connecting cores 1013U and 1013L vibrate.
  • the present invention has been made in view of the above circumstances, and its object is to reduce vibration in a winding element including an air-core coil and a core portion disposed outside the air-core coil. It is providing the coil
  • the winding element according to the present invention is arranged on the outside of the coil and is constituted by a plurality of members, and the contact surfaces of the plurality of members are oblique or orthogonal to the axial direction of the coils. Department. For this reason, in the winding element having such a configuration, the abutting surfaces of the plurality of members abut against each other so that the plurality of members are firmly abutted to suppress vibrations and reduce noise. can do.
  • winding element of 5th Embodiment it is a figure for demonstrating the case where a fastening member is combined with a connection member. It is a figure which shows the structure of the coil
  • FIG. 9 is a diagram showing a vibration distribution in the winding element having the structure shown in FIG. It is a figure which shows the structure of the reactor disclosed by patent document 1.
  • FIG. 9 is a diagram showing a vibration distribution in the winding element having the structure shown in FIG. It is a figure which shows the structure of the reactor disclosed by patent document 1.
  • the winding element according to the present embodiment is a winding element including one or a plurality of coils and a core portion through which a magnetic flux generated by the coils passes, and the coil winds a long conductor member.
  • the core portion is arranged on the outer side of the coil and is constituted by a plurality of members, and the contact surfaces of the plurality of members are oblique or orthogonal to the axial direction of the coils. It is what you are doing.
  • Such a winding element functions as, for example, a reactor when configured with one coil, and functions as, for example, a transformer when configured with a plurality of coils.
  • a winding element that functions as a reactor is illustrated, but a winding element that functions as a transformer can be similarly configured.
  • FIG. 1 is a cross-sectional view showing a configuration of a winding element in the first embodiment.
  • FIG. 2 is a cross-sectional view showing another configuration of the contact surface in the winding element of the first embodiment.
  • the winding element Da is configured to include one coil 1 and a core portion 2 a through which a magnetic flux generated by the coil 1 passes when the coil 1 is energized. It functions.
  • the coil 1 is obtained by winding a long conductor member with insulation coating a predetermined number of times, and generates a magnetic field when energized.
  • the coil 1 may be configured by winding a long conductor member having an insulating coating such as a round cross section ( ⁇ shape) or a rectangular cross section ( ⁇ shape).
  • the strip-shaped conductor member coated with insulation is wound so that the width direction of the conductor member is along the axis AX direction of the coil 1.
  • the band shape refers to a case where the width (axial length) W is larger than the thickness (diameter length) t of the conductor member, that is, between the width W and the thickness t, W > T (W / t> 1) is established.
  • the coil 1 of this embodiment has a so-called flat-wise winding structure.
  • the core portion 2a is a member that allows a magnetic flux generated by the magnetic field generated in the coil 1 to pass when the coil 1 is energized.
  • the core part 2 a is disposed outside the coil 1. More specifically, in this embodiment, the core part 2a is a so-called pot type including the coil 1 as shown in FIG.
  • the core portion 2a is formed with an opening such as a through hole for drawing out a terminal for electrical connection with the coil 1 and a through hole for injecting a gap filling material to be described later into the core portion 2a.
  • the core portion 2 a shown in FIG. 1 substantially includes the coil 1.
  • the core part 2a is comprised by the some member.
  • the core part 2a is comprised by the two 1st and 2nd core members 21a and 22a.
  • the first and second core members 21a and 22a have the same shape from the viewpoint of improving productivity.
  • the first and second core members 21a and 22a are substantially perpendicular to the disc-shaped disc portions 211a and 221a covering one end of the coil 1 and the peripheral portion of one main surface of the disc portions 211a and 221a.
  • cylindrical portions 212a and 222a extending in the direction.
  • the first and second core members 21a and 22a are formed on the cylindrical portions 212a and 222a surrounding the outer periphery of the coil 1 so as to cover approximately half of the side surfaces in the axial direction of the coil 1, and on the end surfaces of the cylindrical portions 212a and 222a.
  • the disk-shaped disk parts 211a and 221a connected are comprised.
  • the core 1a is formed by enclosing the coil 1 in a cylindrical internal space and bringing the end faces of the cylindrical portions 212a and 222a of the first and second core members 21a and 22a into contact with each other.
  • the longitudinal section including the axis of the core portion 2a has a square shape.
  • the contact surfaces 2sf of the first and second core members 21a and 22a which are formed by bringing the end surfaces of the cylindrical portions 212a and 222a of the first and second core members 21a and 22a into contact with each other, It is oblique or orthogonal to the axis AX direction of the coil 1.
  • the contact surface 2 sfa is orthogonal to the axis AX direction of the coil 1.
  • the contact surface 2sf is formed so that the shape of the contact surface 2sfa in the longitudinal section orthogonal to the contact surface 2sfa is from one end to the other end as shown in FIG.
  • the contact surface 2sfb may have a step shape as shown in FIG.
  • the shape of the contact surface 2sf in the longitudinal section perpendicular to the skew direction of the contact surface 2sf is a “/” shape (an oblique one) from one end to the other end.
  • Main line shape but also folded shapes such as "V” shape and "W” shape (having a plurality of different skew directions, and two of the plurality of skew directions intersect each other.
  • Shape “-” shape and “/ Or a combination of the shape.
  • the coil 1 has DC power or AC power, for example, AC power having a bias that is not alternating in polarity (power in which the AC voltage is superimposed on a DC voltage having a voltage value equal to or greater than the voltage amplitude of the AC voltage; pulsating power) ) Is generated, a magnetic field is generated by the coil 1, and an attractive magnetic force along the axis AX direction is generated in the axial core portion of the coil 1 by this magnetic field. Although this attractive magnetic force acts on the contact surface 2sf, since the core member is in contact, vibration due to the attractive magnetic force can be suppressed.
  • AC power having a bias that is not alternating in polarity power in which the AC voltage is superimposed on a DC voltage having a voltage value equal to or greater than the voltage amplitude of the AC voltage; pulsating power
  • Such a core portion 2a is made of a material having predetermined magnetic characteristics.
  • the core portion 2a is made of a material that is magnetically isotropic and has a relative permeability corresponding to the inductance required for the winding element Da.
  • the core portion 2a may be manufactured, for example, by press molding using a known conventional means. From the viewpoint of easy realization of desired magnetic characteristics and ease of molding of a desired shape, for example, soft magnetic powder It is preferable to mold a mixture of the nonmagnetic powder and the nonmagnetic powder.
  • the mixing ratio ratio between the soft magnetic powder and the non-magnetic powder can be adjusted relatively easily, and by appropriately adjusting the mixing ratio, the magnetic characteristics of the core portion 2a can be easily adjusted to the desired magnetic characteristics. It can be realized. Moreover, since it is a mixture of soft magnetic powder and non-magnetic powder, it can be formed into various shapes, and the shape of the core portion 2a can be easily formed into a desired shape.
  • This soft magnetic powder is a ferromagnetic metal powder. More specifically, for example, pure iron powder, iron-based alloy powder (Fe—Al alloy, Fe—Si alloy, Sendust, Permalloy, etc.) and amorphous powder, Furthermore, the iron powder etc. with which electric insulation films, such as a phosphoric acid system chemical film, were formed on the surface are mentioned.
  • These soft magnetic powders can be produced, for example, by a method of making fine particles by an atomizing method or the like, or a method of finely pulverizing iron oxide or the like and then reducing it.
  • the soft magnetic powder is particularly preferably a metal-based material such as the above pure iron powder, iron-based alloy powder, and amorphous powder.
  • Such a core portion 2a is formed by mixing iron powder as soft magnetic powder and resin as nonmagnetic powder, for example, by using known conventional means, for example, a predetermined powder molded
  • this member has a density of 7000 kg / m 3 and a Young's modulus of 85 GPa.
  • the core portion 2a is composed of a plurality of members, in the above-described example, two first and second core members 21a and 22a, and these first and second core members 21a. 22a, the attractive magnetic force generated by the coil 1 acts on the contact surface 2sf.
  • the contact surfaces 2 sf of the first and second core members 21 a and 22 a are oblique or orthogonal to the axial direction of the coil 1.
  • the magnetic force generated by the coil 1 is mainly generated along the axial direction of the coil 1.
  • the contact surface 2 sf of the first and second core members 21 a and 22 a is oblique or orthogonal to the axis AX direction of the coil 1. Therefore, when the contact surfaces of the first and second core members 21a and 22a abut against each other, the vibration can be suppressed and noise can be reduced. For this reason, the contact surfaces 2sf of the first and second core members 21a and 22a may be oblique to the axis AX direction of the coil 1, but it is more effective to be orthogonal as described above. And preferred.
  • FIG. 3 is a diagram for explaining a resonance mode excited by a winding element including an air-core coil and an air-core core portion arranged outside the air-core coil.
  • FIG. 3A shows a state of the resonance state of the core part in the primary resonance mode
  • FIG. 3B shows a state of the resonance state of the core part in the secondary resonance mode.
  • FIG. 4 is a longitudinal sectional view showing a configuration of a winding element of a comparative example in which contact surfaces between a plurality of members in the core portion are parallel to the axial direction of the coil.
  • the contact surfaces between the plurality of members in the core portion 2a are oblique or orthogonal to the axial direction of the coil 1, so that the axial direction It is possible to resist the attractive magnetic force, and to suppress the vibration and reduce the noise.
  • FIG. 5 is a longitudinal sectional view showing the configuration of the winding element in the second embodiment.
  • the winding element Dc of the second embodiment is provided with a convex portion extending into the axial core portion of the air-core coil 1 in order to adjust the inductance in the winding elements Da and Db of the first embodiment. For this reason, since the coil 1 is the same as the winding elements Da and Db of the first embodiment, the description thereof is omitted.
  • the winding element Dc of the second embodiment can be configured as a modification of the winding element Db according to another aspect of the first embodiment, but here, the modification of the winding element Da of the first embodiment is used.
  • the case where it comprises as a form is demonstrated below.
  • the core portion 3 in the winding element Dc of the second embodiment is a member through which the magnetic flux generated by the magnetic field generated in the coil 1 passes when the coil 1 is energized, like the core portion 2a in the winding element Da of the first embodiment.
  • it is a so-called pot type disposed outside the coil 1, and is constituted by a plurality of members, in the example shown in FIG.
  • the first and second core members 31 and 32 have the same shape as the first and second core members 21a and 22a of the first embodiment, and are disk-shaped circles that cover one end of the coil 1.
  • the plate portions 311 and 321 and the cylindrical portions 312 and 322 extending substantially perpendicularly from the peripheral portion of one main surface of the disk portions 311 and 321 are configured.
  • the coil 1 is included in a cylindrical internal space, and the first and second core members 31 and 32 are formed by bringing the end faces of the cylindrical portions 312 and 322 into contact with each other.
  • the contact surfaces 3 sf of the second core members 31 and 32 are oblique or orthogonal to the axis AX direction of the coil 1.
  • the magnetic force generated by the coil 1 is mainly generated along the axial direction of the coil 1, and this attractive magnetic force acts on the contact surface 3sf. Therefore, with respect to the magnetic force generated along the axial direction of the coil 1, the contact surfaces 2 sf of the first and second core members 31 and 32 are obliquely or orthogonal to the axis AX direction of the coil 1. Therefore, when the contact surfaces of the first and second core members 31 and 32 abut against each other, the vibration can be suppressed and noise can be reduced.
  • the convex part extended in the axial center inside of the coil 1 is provided in each inner surface in the said disk parts 311 and 321 facing the axial center part of the coil 1 along the axis AX direction.
  • Portions 313 and 323 are formed, respectively.
  • the convex portions 313 and 323 have a truncated cone shape having a tapered surface whose side surface is inclined with respect to the axis AX direction.
  • the gap length between the upper part and the lower part of the core part 3 inside the axial center of the coil 1 can be adjusted by the convex parts 313 and 323, and the inductance of the winding element Dc can be adjusted. It becomes possible to adjust.
  • FIG. 6 is a perspective view showing the structure of the first core member (second core member) in the core portion of the winding element of the second and third embodiments.
  • FIG. 6A shows a first core member (second core member) in the third embodiment
  • FIG. 6B shows a first core member (second core member) in the second embodiment.
  • the outline shape of the core portions 2 and 3 is a similar cylindrical shape in accordance with the cylindrical inner space.
  • the contour shape of the coil 1 is a cylindrical shape
  • the core portion 4 has a cylindrical space for containing the coil 1
  • the contour shape of the core portion 4 is It is a polygonal column shape.
  • the coil 1 is the same as the winding elements Da, Db, and Dc of the first and second embodiments, and the description thereof is omitted.
  • the winding element Dd of the third embodiment can be configured as a modification of the winding elements Da and Db of the first embodiment, but here, it is configured as a modification of the winding element Dc of the second embodiment. This case will be described below.
  • the core part 4 in the winding element Dd of the third embodiment is a member through which the magnetic flux generated by the magnetic field generated in the coil 1 passes when the coil 1 is energized, like the core part 3 in the winding element Dc of the second embodiment. It is a so-called pot type disposed outside the coil 1, and further includes a plurality of members, in the example shown in FIG. 6 (A), two first and second core members 41 and 42. ing. These first and second core members 41, 42 have the same shape, and have outline (outer shape) rectangular plate portions 411, 421 covering one end of the coil 1, and one main surface of the plate portions 411, 421.
  • the cylindrical portions 412 and 422 having a substantially rectangular outer shape and an inner circular shape extending substantially perpendicularly from the peripheral edge portion of FIG.
  • the coil 1 is enclosed in a cylindrical internal space formed by the cylindrical portions 412, 422, and the end surfaces of the cylindrical portions 412, 422 of the first and second core members 41, 42 are in contact with each other.
  • the contact surfaces 4sf (not shown) of the first and second core members 41 and 42 formed by the crossing are oblique or orthogonal to the axis AX direction of the coil 1.
  • the magnetic force generated by the coil 1 is mainly generated along the axial direction of the coil 1, and this attractive magnetic force acts on the contact surface 4sf.
  • the contact surfaces 4 sf of the first and second core members 41 and 42 are oblique or orthogonal to the axis AX direction of the coil 1. Therefore, when the contact surfaces of the first and second core members 41 and 42 abut against each other, the vibration can be suppressed and noise can be reduced.
  • the core part 4 of 3rd Embodiment is the said disk part facing the axial center part of the coil 1 along the axis
  • Convex portions 413 and 423 are provided on the inner surfaces of 411 and 421 and extend into the axial core of the formed coil 1. In the example shown in FIG. 6A, these convex portions 413 and 423 have a truncated cone shape with side surfaces inclined with respect to the axis AX direction.
  • abutting the 1st and 2nd core members 41 and 42 mutually is cylindrical shape.
  • the contour shape is, for example, a triangular prism shape, a quadrangular prism shape, a polygonal prism shape such as a pentagonal prism shape and a hexagonal prism shape, and in the example shown in FIG.
  • the core portion 4 is formed by bringing the first and second core members 31 and 32 of the second embodiment shown in FIG. 6B into contact with each other. 3, compared with the case where the contour shape of the core portion is a columnar shape, the corner portion of the side wall portion of the core portion 4 facing the outer periphery of the coil 1 has a thicker portion. For this reason, the winding element Dd having such a configuration can improve the rigidity of the core portion 4 and shift its natural frequency to the high frequency side as compared with the case where the contour shape of the core portion is a cylindrical shape. it can. That is, the vibration of the core part 4 can be suppressed.
  • the electromagnetic characteristics of the winding element D are substantially equal if the thickness of the thinnest portion of the side wall portion of the core portion is the same.
  • a fixing for fixing the winding element Dd to an attachment member (not shown) to which the winding element Dd is attached is provided at the corner portion of the core portion 4.
  • An engaging portion for engaging the member may be further provided.
  • through holes 414 (424) for inserting bolts as fixing members are provided at the respective corner portions of the first and second core members 41 and 42 of the core portion 4, respectively. ing.
  • FIG. 7 is a longitudinal sectional view showing the configuration of the winding element in the fourth embodiment.
  • FIG. 7A shows the configuration of the first aspect of the winding element of the fourth embodiment
  • FIG. 7B shows the configuration of the second aspect of the winding element of the fourth embodiment.
  • the winding element De of the fourth embodiment is arranged at least inside the axis of the coil 1 in the winding elements Da, Db, Dc, Dd of the first to third embodiments, and at the axis of the coil 1 It further includes a connecting member for connecting at least both inner surface portions of the core portion facing both end portions.
  • the coil 1 is the same as the winding elements Da, Db, and Dc of the first and second embodiments, and the description thereof is omitted.
  • the winding element De of the fourth embodiment can be configured as a modification of the winding elements Da, Db, Dc of the first and second embodiments, but here, the winding element Dd of the third embodiment is used. The case where it comprises as a modification of this is demonstrated below.
  • the core part 3 in the winding element De of the fourth embodiment is the same as the core part 3 in the winding element Dd of the third embodiment, as shown in FIGS. 7 (A) and 7 (B).
  • the winding element De1 concerning the 1st aspect of 4th Embodiment is arrange
  • the connecting member 33 has, for example, a solid cylindrical shape having a diameter (diameter) smaller than the inner diameter (inner diameter) of the coil 1, and both end surfaces of the connecting member 33 are first and second.
  • the core members 31 and 32 are in contact with the respective surfaces of the convex portions 313 and 323 extending from the disk portions 311 and 321 into the axial portion of the coil 1.
  • a connecting member 33 is, for example, a molded body such as a resin such as an epoxy resin, a ceramic such as alumina, and a metal such as stainless steel. The resin preferably has a relatively high rigidity.
  • Such a connecting member 33 may have a ring shape (ring shape, donut shape), as will be described later.
  • the winding element De2 according to the second aspect of the fourth embodiment is formed by contacting the first and second core members 31 and 32 with each other as shown in FIG. 7B. And a connecting member 34 that is filled in a space excluding the coil 1.
  • the connecting member 34 is formed, for example, by injecting a resin such as epoxy resin into the space of the core portion 3 from a through hole (not shown) formed in the core portion 3 and then curing the resin. Alternatively, before the first and second core members 31 and 32 are brought into contact with each other, the connecting member 34 pours resin into a portion of the first and second core members 31 and 32 that becomes the space after the contact. The first and second core members 31 and 32 may be brought into contact with each other after curing.
  • the resin preferably has a relatively high rigidity.
  • winding elements De1 and De2 having such a configuration further include the connecting members 33 and 34, vibrations of both portions of the core portion 3 facing both ends of the axial center of the coil 1 can be suppressed.
  • the rigidity of the core portion 3 is further improved, and the natural frequency can be shifted to the high frequency side as compared with the case where the connecting members 33 and 34 are not provided. That is, the vibration of the core part 4 can be suppressed.
  • a winding element including an air-core coil and an air-core core portion arranged outside the air-core coil has a resonance mode as described with reference to FIG.
  • the connecting member 33 abuts at a position at about 1 ⁇ 2 of the diameter of the core portion 3, and the connecting member 33 is 1 ⁇ 2 or more of the diameter of the core portion 3. It is preferable to have a diameter of
  • Such a connecting member 33 may also serve as a winding core of the coil 1 when the coil 1 is manufactured.
  • FIG. 8 is a longitudinal sectional view showing the configuration of the winding element in the fifth embodiment.
  • FIG. 8A shows the configuration of the first aspect of the winding element of the fifth embodiment
  • FIG. 8B shows the configuration of the second aspect of the winding element of the fifth embodiment.
  • FIG. 9 is a view (No. 1) for explaining a case where a fastening member is also used as a fixing member in the winding element of the fifth embodiment.
  • FIG. 9A shows a first variation in the case where the fastening member is also used as a fixing member in the winding element of the first aspect shown in FIG. 8A, and FIG.
  • FIG. 10 is a diagram (No. 2) for explaining the case where the fastening member is also used as the fixing member in the winding element of the fifth embodiment.
  • FIG. 10A shows a fourth modification in the case where the fastening member is also used as a fixing member in the winding element of the first aspect shown in FIG. 8A, and FIG.
  • FIG. 10 (C) shows the second mode shown in FIG. 8 (B).
  • the winding element WHEREIN The 6th deformation
  • FIG. 11 is a diagram for explaining a case where the fastening member is also used as the connecting member in the winding element of the fifth embodiment.
  • the fifth embodiment includes a plurality of members constituting the contact surfaces 2sfa, 2sfb, 3sf, and 4sf in the winding elements Da, Db, Dc, Dd, and de of the first to fourth embodiments.
  • the first and second core members 21a, 22a; 21b, 22b; 31, 32; 41, 42 are further provided with fastening members.
  • the coil 1 is the same as the winding elements Da, Db, and Dc of the first and second embodiments, and the description thereof is omitted.
  • the winding element Df of the fifth embodiment can be configured as a modified form of the winding elements Da, Db, Dc, Dd, De of the first to fourth embodiments, but here, the winding element Df of the third embodiment The case where it constitutes as a modification of winding element Dd is explained below.
  • the core portions 4a and 4b in the winding elements Df1 and Df2 of the fifth embodiment are caused by the magnetic field generated in the coil 1 when the coil 1 is energized, like the core portion 4 in the winding element Dc of the third embodiment.
  • a member that allows magnetic flux to pass which is a so-called pot type disposed outside the coil 1, and in the example shown in FIG. 8 (A) and FIG. 8 (B), two first and It is comprised by 2nd core member 41a, 42a; 41b, 42b.
  • first and second core members 41a, 42a; 41b, 42b have the same shape as the first and second core members 41, 42 of the third embodiment, and contours that cover one end of the coil 1 (Outer shape) Quadrangular plate portions 411a, 421a; 411b, 421b and one of the plate portions 411a, 421a; And cylindrical portions 412a, 422a; 412b, 422b having a circular shape.
  • the coil 1 is encapsulated in a cylindrical inner space formed by cylindrical portions 412a, 422a; 412b, 422b, and the cylindrical portions 412a of the first and second core members 41a, 42a; 41b, 42b,
  • the contact surfaces 4sf1 and 4sf2 of the first and second core members 41a and 42a; 41b and 42b are formed in the direction of the axis AX of the coil 1 and are formed by bringing the end surfaces of the surfaces 422a and 412b and 422b into contact with each other. It is diagonally or orthogonal to it.
  • the magnetic force generated by the coil 1 is mainly generated along the axial direction of the coil 1, and this attractive magnetic force acts on the contact surfaces 4sf1 and 4sf2.
  • the contact surfaces 4 sf 1 and 4 sf 2 of the first and second core members 41 a and 42 a; 41 b and 42 b are in the axial AX direction of the coil 1. Since they are obliquely or orthogonally crossed, the contact surfaces of the first and second core members 41a, 42a; 41b, 42b abut against each other, so that vibration can be suppressed and noise can be reduced.
  • the core parts 4a and 4b of 5th Embodiment are the said circles which oppose the axial center part of the coil 1 along the axis
  • convex portions 413a, 423a; 413b, 423b extending to the inside of the axial core of the coil 1 are provided.
  • These convex portions 413a, 423a; 413b, 423b are in the shape of a truncated cone having a tapered surface whose side surface is inclined with respect to the axis AX direction in the example shown in FIGS. 8A and 8B.
  • the winding elements Df1 and Df2 of the fifth embodiment are arranged at least inside the axial core of the coil 1 and at both end portions of the axial core of the coil 1 similarly to the winding element De of the fourth embodiment.
  • connecting members 43a and 43b for connecting at least both inner surface portions of the facing core portions 4a and 4b.
  • fastening member 71a formed along the axis AX direction on the first and second core members 41a, 42a; 41b, 42b of the core portions 4a, 4b in the winding elements Df1, Df2 of the fifth embodiment.
  • 71b are inserted through holes 415a, 425a; 415b, 425b.
  • These through holes 415a, 425a; 415b, 425b are formed at the center positions (axial positions) of the first and second core members 41a, 42a; 41b, 42b of the core portions 4a, 4b.
  • the through holes 415b and 425b are provided at the center positions of the first and second core members 41b and 42b of the core portion 4b, but also the first and second of the core portion 4b.
  • the fastening members 72 (72-1 to 72-4, 72-2 and 72-4 are not shown) formed along the axis AX direction are also inserted through the peripheral portions of the two core members 41b and 42b.
  • Through holes 414b (414b-1 to 414b-4, 424b-1 to 424b-4, 414b-2 and 414b-4 and 424b-2 and 424b-4 are not shown) are provided.
  • the fastening members 71a, 71b, 72 (72-1 to 72-4) are, for example, bolts and nuts.
  • the first and second core members 41a, 42a; 41b, 42b are brought into contact with each other, and the fastening members 71a, 71b are inserted into the through holes 415a, 425a; 415b, 425b.
  • the first and second core members 41a, 42a; 41b, 42b are fastened to each other with the bolts and nuts.
  • the bolts of the fastening members 72-1 to 72-4 are respectively inserted into the through holes 414b-1 to 424b-4, and the bolts and nuts are used to The first and second core members 41b and 42b are fastened together.
  • the connecting members 43a and 43b are arranged so as to pass through the fastening members 71a and 71b as shown in FIGS. 8A and 8B. It has a shape.
  • the fastening member 71 may be, for example, a rivet or a clip in addition to the bolt and nut described above. The same applies to the fixing member described later.
  • the winding elements Df1 and Df2 having such a configuration further include the fastening members 71a; 71b and 72, thereby improving the adhesion of the contact surfaces 4sf1 and 4sf2 and further suppressing vibration.
  • the fastening members 71a; 71b and 72 (72-1 to 72-4) are the same as those shown in FIGS.
  • the winding elements Df1, Df2, and Df2 are attached to the members to be attached 100 (100a, 100b), 200 (200a, 200b), and 300 (300a, 300b).
  • Df2 and Df2 may be combined with a fixing member.
  • the attached members 100, 200, 300 are formed with recesses 101, 201, 301 for fixing fastening members (fixing members) 71a; 71b, 72 (72-1 to 72-4).
  • the attached members 100, 200, and 300 are, for example, a substrate, a casing, a cooling member, and the like.
  • the first and second core members 41a, 42a; 41b, 42b; 41b, 42b are brought into contact with each other, and the through holes 415a, 425a; 414b, 424b;
  • the bolts of the fastening members 71a; 71b, 72; 71b, 72 are inserted into 414b, 424b, and further, through the washers 102a, 202a (202a-1 to 202a-4), 302a (302a-1 to 302a-5).
  • step portions (projections, step portions) 102b having a height corresponding to the thickness of the washers 102a, 202a, 302a, 202b (202b-1 to 202b-4) and 302b (302b-1 to 302b-5) may be formed on the attached members 100, 200, and 300.
  • the stepped portions 102b, 202b (202b-1 to 202b-4) and 302b (302b-1 to 302b-5) corresponding to the washers 102a, 202a and 302a are provided on the surfaces of the mounted members 100, 200 and 300.
  • the other parts except for may be slightly recessed.
  • 9A to 9C show the case where the stepped portions 102b, 202b (202b-1 to 202b-4) and 302b (302b-1 to 302b-5) are formed. Further, in the configurations shown in FIGS.
  • the steps 102b, 202b, and 302b are provided on the attached members 100b, 200b, and 300b, but the steps 102b, 202b, and 302b are provided on the steps 102b, 202b, and 302b.
  • Corresponding convex portions may be provided in the core portion. For example, instead of the washers 102a, 202a, and 302a as in the winding elements Df1 ′, Df2 ′, and Df2 ′′ shown in FIGS.
  • the core portion 4a On the surfaces of the second core members 42a ', 42b', 42b "of '4b', 4b", convex portions 44a, 44b (44b-1 to 44b-1 to 44b-1 to 42b "having heights corresponding to the thicknesses of the washers 102a, 202a, 302a. 44b-5) and 44b (44b-1 to 44b-4) may be formed (in other words, the second core members 42a ′, 42b ′, 42b of the core portions 4a ′, 4b ′, 4b ′′).
  • the portions other than the portions 44a, 44b (44b-1 to 44b-5) and 44b (44b-1 to 44b-4) corresponding to the washers 102a, 202a, and 302a are slightly recessed.
  • the shape of the projections 44a, 44b (44b-1 to 44b-5) and 44b (44b-1 to 44b-4) in plan view may be any shape such as a circle or a polygon, for example.
  • the winding is fixed at four peripheral portions, and the winding element having a circular core whose cross section perpendicular to the axial direction is circular is also shown in Figs. And as shown to FIG. 10 (A), it is preferable to fix in a center position.
  • winding elements Df1, Df2, Df2, Df1 ′, Df2 ′, and Df2 ′′ having such a configuration need to be provided separately because the fastening members 71a, 71b, and 72 are also used as a fixing member. Further, it is possible to reduce the cost, and the stepped portions 102b and 202b (202b-1 to 202b-4), 302b (302b-1 to 302b-5) or the convex portions 44a and 44b can be reduced.
  • the washers 102a, 202a and 302a are not required, and the core portions 4a, 4b, 4a ′, 4b ′, 4b ′′ and The thermal conductivity between the mounted members 100, 200, and 300 is improved, and the number of assembly steps is reduced.
  • the washers 102a, 202a, 302a are used (or the step portions 102b, 202b, 302b, or
  • the mounting positions of the winding elements Df1, Df2, Df2, Df1, Df1 ′, Df2 ′, Df2 ′′ attached to the members to be attached 100, 200, 300 (with the convex portions 44a, 44b) are the core portions 4a, 4b, 4a ′, 4b.
  • the position where the vibration displacement at '4b "is relatively small is preferable.
  • the vibration of the winding elements Df1, Df2, Df2, Df1 ′, Df2 ′, Df2 ′′ propagating to the mounted members 100, 200, 300 is suppressed.
  • the winding element Df2 of the second mode is suppressed.
  • the through-hole 203 may be formed, or, as shown in FIG. 9 (C), the winding element Df2 of the second mode is attached to the attached member 300, and the attached member 200 is opposed to the fastening member 71b.
  • a convex portion 202b-5 may be formed at a position where the diameter d (see FIG.
  • the fastening members 71a, 71b, and 72 are also used as the fixing members.
  • the fastening members 71a and 71b are disposed at least inside the shaft core of the coil 1 and are arranged in the shaft core of the coil 1. It may also be used as a connecting member for connecting at least both inner surface portions of the core portion facing both end portions.
  • the fastening member 71c also used as such a connecting member has male threads for attaching nuts to both ends of a cylindrical rod as shown in FIG. A cylindrical portion that functions as a connecting member is formed near the center.
  • the first and second core members 41a and 42a are brought into contact with each other through the through holes 415a and 425a from both sides of the fastening member 71c that is also used as a connecting member. Further, nuts are screwed onto both ends of the fastening member 71c and tightened, and the first and second core members 41a and 42a are fastened.
  • FIG. 12 is a diagram illustrating a configuration of a winding element in the sixth embodiment.
  • FIG. 12A is a longitudinal section
  • FIG. 12B is a top view (bottom view).
  • the winding elements Da, Db, Dc, Dd, De, and Df in the first to fifth embodiments are so-called pot types that substantially include the coil 1, but the winding element Dg in the sixth embodiment is A part of the coil 1 is exposed outside the core portion 5. For this reason, the coil 1 is the same as the winding elements Da, Db, Dc, Dd, De, and Df of the first to fifth embodiments, and the description thereof is omitted.
  • the core portion 5 in the winding element Dg of the sixth embodiment is a member that allows a magnetic flux generated by the magnetic field generated in the coil 1 to pass when the coil 1 is energized, and is disposed outside the coil 1, and further includes a plurality of members.
  • the first and second core members 51 and 52 are configured.
  • the first and second core members 51 and 52 have the same shape and are rectangular plate portions 511 and 521 each having a rectangular plate shape that covers a part of one end portion of the coil 1, and one of the rectangular plate portions 511 and 521.
  • Each side wall portion 512-1, 512-2; 522-1 and 522-2 each extending substantially perpendicularly from a pair of side portions facing each other on the main surface.
  • Each of the rectangular plate portions 511 and 521 has a length on one side larger than the outer diameter (outer diameter) of the coil 1, and a length on the other side smaller than the outer diameter of the coil 1.
  • the core portion 5 is formed by bringing the end faces of the side wall portions 512-1, 512-2; 522-1, 522-2 of the first and second core members 51, 52 into contact with each other, and a longitudinal section thereof. Is a square shape as shown in FIG.
  • the coil 1 is disposed in the square-shaped core portion 5 so that the axis connecting the intersections of the diagonal lines of the rectangular plate-shaped portions 511 and 512 and the axis of the coil 1 coincide with each other.
  • the contact surfaces 5 sf of the first and second core members 51 and 52 are oblique or orthogonal to the axis AX direction of the coil 1.
  • the magnetic force generated by the coil 1 is mainly generated along the axial direction of the coil 1, and this attractive magnetic force acts on the contact surface 5sf. Therefore, with respect to the magnetic force generated along the axial direction of the coil 1, the contact surfaces 5 sf of the first and second core members 51 and 52 are oblique or orthogonal to the axis AX direction of the coil 1. Therefore, when the contact surfaces of the first and second core members 51 and 52 abut against each other, the vibration can be suppressed and noise can be reduced.
  • the winding element Dg of the sixth embodiment has a structure in which the coil 1 can be seen from the outside, and the core portion portions (in the example shown in FIG. 12, the rectangular plate portions 511, 521) and a core portion (the side wall portions 512 and 522 in the example shown in FIG. 12) that connects these core portions on the outer peripheral surface of the coil 1.
  • the inner surfaces of the side wall portions 512 and 522 of the core portion 5 in the winding element Dg of the sixth embodiment may be formed along the outer periphery of the coil 1.
  • the winding element Dg of the sixth embodiment is similar to the winding element Da of the first embodiment in that the contact surface 5sf of the first and second core members 51, 52 is the coil 1 Since the first and second core members 51 and 52 are in contact with each other, the first and second core members 51 and 52 are firmly in contact with each other. The vibration can be suppressed and noise can be reduced.
  • winding elements Da, Db, Dc, Dd, De, Df, Dg in the first to sixth embodiments described above at least of the contact surfaces and the connection surfaces of the core portion and the connection member On one side, a gap filling material for filling the gap may be further provided.
  • the winding elements Da, Db, Dc, Dd, De, Df, and Dg in the first to fifth embodiments described above for example, have a very small vibration displacement on the order of nanometers, and a plurality of core members are in contact with each other. Although it suppresses by mutually abutting on a surface, if the adhesiveness of the said contact surface is not favorable by the unevenness
  • the winding elements Da, Db, Dc, Dd, De, Df, and Dg having such a configuration further include a gap filling material on the contact surface, thereby improving the adhesion of the contact surface and causing vibration. It becomes possible to suppress more.
  • the gap filling material is to increase the adhesion of the contact surface in order to suppress the vibration displacement of the nanometer order, it may be a foil-like thin member, preferably a member that is easily familiar with the unevenness of the contact surface, For example, resin foil (thin plate), metal foil (thin plate), paper, or the like can be used. The resin does not need to have adhesiveness, but may have adhesiveness. Thus, since adhesiveness is not necessary, it is also possible to disassemble and inspect the winding elements Da, Db, Dc, Dd, De, Df, and Dg even after use.
  • fastening members 71a; 71b, 72 (72-1 to 72-4) are provided as in the winding elements Df1, Df2 of the fifth embodiment described above. Further, by applying pressure to the gap filling material by the fastening members 71a; 71b, 72, deterioration of rigidity of the gap filling material at high temperatures is suppressed, and the vibration suppressing effect against temperature change is stable. Become.
  • the core portion is formed by the two first and second core members.
  • the core portion may be formed by any number of core members.
  • the core portion is formed by three first to third core members
  • the second core member is a cylindrical member that covers the outer peripheral surface of the coil 1
  • the first and third core members have the same shape.
  • it is a disk-shaped member respectively connected with the both ends in the cylindrical shape of the said 2nd core member.
  • FIG. 13 is a diagram illustrating a change in vibration acceleration with respect to a change in drive frequency in the first example and the comparative example.
  • the horizontal axis in FIG. 13 is the drive frequency (kHz), and the vertical axis is the vibration acceleration.
  • indicates the result of the first example, and ⁇ indicates the result of the comparative example.
  • the winding element of the first example is a winding element having the structure of the second embodiment shown in FIG. 5, and the winding element of the comparative example is a winding element having the structure shown in FIG.
  • the vibration acceleration is also measured under the conditions in which the attractive magnetic force is equal at each drive frequency in the measurement of the following examples. As shown in FIG. Measured in position.
  • the winding element of the comparative example has a peak vibration acceleration at about 11 kHz, and this about 11 kHz is the natural frequency, but the winding element of the first embodiment has about 13 kHz.
  • the vibration acceleration has a peak at about 13 kHz, which is the natural frequency.
  • the winding element of the first embodiment has a natural frequency shifted to the high frequency side as compared with the winding element of the comparative example, and the vibration is further suppressed. For this reason, the winding element of the first embodiment can be used without resonance up to a higher driving frequency than the winding element of the comparative example.
  • FIG. 14 is a diagram for explaining the difference in natural frequency due to the difference in the contour shape of the core portion.
  • 14 shows a winding element including the core portion 4 having the structure shown in FIG. 6A (the right column in FIG. 14) and a winding element having the core portion 3 having the structure shown in FIG.
  • the natural frequencies of the primary resonance mode (upper part of FIG. 14) and the secondary resonance mode (lower part of FIG. 14) are shown.
  • FIG. 14 shows a simulation result in the case where the core parts 4 and 3 are modeled as a single unit.
  • the natural frequencies of the primary resonance mode and the secondary resonance mode in the winding element including the core portion 3 having the structure shown in FIG. 6B are 5480 Hz and 10740 Hz, respectively.
  • the natural frequencies of the primary resonance mode and the secondary resonance mode in the winding element including the core portion 4 having the structure shown in FIG. 6 (A) are 6320 Hz and 11700 Hz, respectively, and the core shape is changed by changing the outer shape of the core portion.
  • the natural frequency is improved by further providing a thick portion in the portion.
  • the winding element including the core portion 4 having the structure shown in FIG. 6A has a natural frequency on the high frequency side as compared with the winding element including the core portion 3 having the structure shown in FIG. It is shifted, vibration is further suppressed, and it can be used without resonance up to a higher driving frequency.
  • FIG. 15 is a diagram for explaining a difference in natural frequency due to the presence or absence of a connecting member and a difference.
  • the horizontal axis in FIG. 15 is the drive frequency (kHz), and the vertical axis is the vibration acceleration.
  • FIG. 15 shows the measurement results (measurement position center position; ⁇ , measurement position end position; ⁇ ) in the winding element having the structure without the connection member shown in FIG. 5 and the connection of the second mode shown in FIG.
  • the measurement result (measurement position center position; ⁇ , measurement position end position; ⁇ ) in the winding element having the member, and corresponding to the second mode shown in FIG.
  • the measurement results (the measurement position center position; ⁇ , the measurement position end position; ⁇ ) in each of the winding elements are shown.
  • a two-component curable epoxy resin having a Young's modulus at room temperature of 10 GPa or more is used for the connecting member in the winding element having the connecting member of the second mode shown in FIG. 7B. After the part was formed, the resin was poured into the core part, and after the core part was sealed, the resin was cured therein. Further, the ring-shaped connecting member has a relatively high Young's modulus and has a small temperature dependency, and therefore ceramics, for example, ceramics containing 90% by mass or more of alumina and having a Young's modulus of 250 GPa or more is used. It was.
  • the natural frequency that was between about 6 and 7 kHz is at least higher than 16 kHz.
  • the winding element has a natural frequency shifted to the high frequency side compared to the case where the connecting member is not provided, the vibration is further suppressed, and resonance is achieved up to a higher driving frequency. Can be used without.
  • FIG. 16 is a diagram for explaining a difference in natural frequency depending on the presence or absence of a gap filling material.
  • the horizontal axis in FIG. 16 is the drive frequency (kHz), and the vertical axis is the vibration acceleration.
  • FIG. 16 shows a measurement result (measurement position end position; ⁇ ) when there is no gap filling material in the winding element having the structure shown in FIG. 5 and a measurement result (measurement position end position when there is a gap filling material). ;) Are shown respectively.
  • the gap filling material for example, a two-component curable epoxy resin (not an adhesive) having a Young's modulus at room temperature of 10 GPa or more was used.
  • the natural frequency was about 13 kHz in the winding element without the gap filling material, but the natural frequency was about 14.5 kHz in the winding element with the gap filling material.
  • the winding element has a natural frequency shifted to a higher frequency side than when no gap filling material is provided, and the vibration is further suppressed, so that the drive frequency is higher. Can be used without resonance.
  • FIG. 17 is a diagram showing a change in vibration acceleration with respect to a change in temperature depending on the presence or absence of a fastening member.
  • the horizontal axis in FIG. 17 is the temperature (° C.) of the core surface, and the vertical axis is the vibration acceleration.
  • FIG. 17 shows the measurement results (measurement position center position; ⁇ , measurement position end position; ⁇ ) in the winding element when the connecting member is filled in the internal space as shown in FIG.
  • the connecting member is filled in the internal space, and the first and second core members are fastened with the bolts and nuts as the fastening members as shown in FIG. 8B.
  • the measurement results (measurement position center position; ⁇ , measurement position end position; ⁇ ) in the winding element are shown respectively.
  • the drive frequency was 10 kHz
  • the bolt and nut were M6, and were tightened with a torque of 8 Nm.
  • the temperature rise of these winding elements is caused by self-heating due to continuous driving.
  • the vibration also increases as the temperature of the core portion surface increases.
  • the fastening member is provided, even if the temperature of the core portion surface increases.
  • the vibration is substantially constant, and the temperature dependence of the vibration is substantially eliminated. This is considered that the softening of the connecting member is suppressed by the fastening by the fastening member.
  • FIG. 18 is a diagram showing the vibration distribution in the winding element having the structure shown in FIG. 8 (B).
  • the winding element of this embodiment has the structure of the winding element Df2 described with reference to FIG.
  • FIG. 18 shows the vibration distribution of the upper surface (the upper surface of the core portion 41b) (or the lower surface (the lower surface of the core portion 42b)) of the core portion 4b in the winding element Df2 of this embodiment.
  • the measurement position is an edge position (end position), a center position, and an intermediate position between the edge position and the center position on each line that can be generated when a certain diagonal line is rotated by about 45 degrees. Each of the three positions.
  • the measurement result at each measurement position is normalized by setting the magnitude of the vibration displacement at the center position to 1.
  • the position where the vibration displacement in the core portion 4b is relatively small is the edge circumferential position, and the position where the vibration displacement is relatively large is the center position. Therefore, as shown in FIG. 9B, the winding element Df2 having such a structure is propagated to the attached member 200 by attaching the winding element to the attached member 200 at the edge peripheral position of the core portion 4b. The vibration of the winding element Df2 is suppressed.
  • a winding element is a winding element including one or a plurality of coils and a core portion through which a magnetic flux generated by the coils is passed, and the coil is formed by winding a long conductor member.
  • An air-core coil wherein the core portion is disposed outside the coil and includes a plurality of members, and contact surfaces of the plurality of members are oblique or orthogonal to the axial direction of the coils.
  • the said coil is comprised by winding a strip
  • the core portion is composed of a plurality of members, and the contact surfaces of the plurality of members are oblique or orthogonal to the axial direction of the coil.
  • the magnetic force generated by the coil is mainly generated along the axial direction of the coil. Therefore, the contact surfaces of the plurality of members are oblique or orthogonal to the axial direction of the coils against the magnetic force generated along the axial direction of the coil.
  • the plurality of members are firmly brought into contact with each other, so that vibrations thereof can be suppressed and noise can be reduced.
  • the contact surfaces of the plurality of members may be oblique with respect to the axial direction of the coil, but it is more effective and preferable to be orthogonal.
  • vibration is reduced and noise is also reduced.
  • the coil has a cylindrical shape
  • the core portion includes a cylindrical space for containing the coil, and the core portion.
  • the outline shape is a polygonal prism shape.
  • the core portion has a thicker portion than the case where the contour shape of the core portion is a cylindrical shape. For this reason, the winding element having such a configuration can further improve the rigidity of the core portion, and can shift the natural frequency to the high frequency side as compared with the case where the contour shape of the core portion is a columnar shape.
  • At least the two portions of the core portion facing at both ends of the axial center of the coil are connected at least inside the axial core of the coil.
  • a connecting member is further provided.
  • the winding element having such a configuration further includes a connecting member, it is possible to suppress vibrations of both portions of the core portion facing both end portions of the axial center of the coil, and the rigidity of the core portion is further improved. Therefore, the natural frequency can be shifted to the high frequency side as compared with the case where the connecting member is not provided.
  • At least one of the contact surface and the connecting surface between the core portion and the connecting member further includes a gap filling material that fills the gap.
  • the winding element having such a configuration further includes a gap filling material on at least one of the contact surface and the connection surface, thereby improving the adhesion of the contact surface and the connection surface including the gap filling material, Vibration can be further suppressed.
  • the contact surface further includes a gap filling material that fills the gap.
  • the winding element having such a configuration by further providing a gap filling material on the contact surface, the adhesion of the contact surface and the connection surface provided with the gap filling material is improved, and vibration can be further suppressed. It becomes.
  • the above-described winding element further includes a fastening member that fastens a plurality of members constituting the contact surface to each other.
  • the winding element having such a configuration further includes a fastening member, thereby improving the adhesion of the contact surface and further suppressing vibration.
  • the fastening member is also used as a fixing member that fixes the winding element to a member to which the winding element is attached.
  • the fastening member is also used as a fixing member, it is not necessary to prepare a fixing member separately, and the cost can be reduced.
  • the core portion has a convex portion extending into the axial center of the coil.
  • the gap length between the upper portion and the lower portion of the core portion inside the axial center of the coil can be adjusted by the convex portion, and the inductance can be adjusted.
  • a winding element including one or a plurality of coils and a core part through which the magnetic flux generated by the coils passes.

Abstract

A winding element (Da) of the present invention is disposed on the outside of a coil (1) and is formed by a plurality of members (21a, 22a), and the contact surfaces of the plurality of members (21a, 22a) are provided with a core part (2a) that is oblique or perpendicular to the axial direction of the coil (1). As a result, in the winding element (Da) having this kind of construction, the contact surfaces of the plurality of members (21a, 22a) abut against each other, and therefore the plurality of members (21a, 22a) are firmly brought into contact with each other, resulting vibration can be suppressed, and noise can be reduced.

Description

巻線素子Winding element
 本発明は、長尺な導体を巻き回した巻線素子に関し、特に、磁束を通すコア部を備える巻線素子に関する。 The present invention relates to a winding element in which a long conductor is wound, and more particularly, to a winding element having a core portion through which a magnetic flux passes.
 長尺な導体を巻き回した巻線素子には、回路にリアクタンスを導入することを目的としたリアクトル(コイル)や、電磁誘導を利用することによって複数の巻線(コイル)間でエネルギーの伝達を行うトランス(変成器、変圧器)等が知られている。このリアクトルは、例えば、力率改善回路における高調波電流の防止、電流型インバータやチョッパ制御における電流脈動の平滑化およびコンバータにおける直流電圧の昇圧等の様々な電気回路や電子回路等に用いられている。また、トランスは、電圧変換やインピーダンス整合や電流検出等を行うために、様々な電気回路や電子回路等に用いられている。このようなリアクトルやトランスにおいて、リアクトルでは、コイルで生じる磁束を環流するために、磁束を通すコア部が備えられ、また、トランスでは、外部への磁束漏洩を無くして一方のコイル(1次コイル)から他方のコイル(2次コイル)への効率的な磁気結合を行う磁気回路を形成するために、磁束を通すコア部(鉄心、ヨーク)が備えられている。 In a winding element wound with a long conductor, energy is transferred between a plurality of windings (coils) by using a reactor (coil) for the purpose of introducing reactance into the circuit or electromagnetic induction. There are known transformers (transformers, transformers) and the like. This reactor is used, for example, in various electric circuits and electronic circuits such as prevention of harmonic currents in power factor correction circuits, smoothing of current pulsations in current type inverter and chopper control, and boosting of DC voltage in converters. Yes. Transformers are used in various electric circuits, electronic circuits, and the like in order to perform voltage conversion, impedance matching, current detection, and the like. In such a reactor or transformer, in order to circulate the magnetic flux generated in the coil, the reactor is provided with a core portion through which the magnetic flux passes. In the transformer, one coil (primary coil) is eliminated without leakage of the magnetic flux to the outside. ) To the other coil (secondary coil), a core portion (iron core, yoke) through which magnetic flux passes is provided.
 このような巻線素子では、そのインダクタンスを調整するために、コア部には、ギャップが形成されることがある。このギャップは、エアギャップまたは非磁性材料のギャップ材を挟んだものとされる。このような巻線素子は、コイルを励磁すると、コア部には電磁力が作用し、このために振動が生じてしまう。特に、前記ギャップに振動が生じる。 In such a winding element, a gap may be formed in the core portion in order to adjust the inductance. This gap is assumed to sandwich an air gap or a gap material made of a nonmagnetic material. In such a winding element, when a coil is excited, an electromagnetic force acts on the core portion, which causes vibration. In particular, vibration occurs in the gap.
 そこで、この振動対策を施したリアクトルとして、例えば、特許文献1に開示のリアクトルがある。図19は、特許文献1に開示のリアクトルの構成を示す図である。図19(A)は、外観構成図であり、図19(B)は、縦断面図であり、そして、図19(C)は、分解斜視図である。この特許文献1に開示のリアクトル1000は、図19において、コア部1010と、コイル1020とを備えて構成され、コア部1010は、円柱状の内側コア1011と、中空円筒状の外側コア1012と、上下一対の円板状の連結コア1013(1013U、1013L)とを備えて構成され、コイル1020は、巻線1021を備えて構成されている。巻線1021は、内側コア1011に巻き回され、これが外側コア1012の内側にはめ込まれる。そして、内側コア1011および外側コア1012の上面および下面には、上下一対の連結コア1013U、1013Lがそれぞれ接合される。巻線1021の両端部は、外側コア1012に形成された切欠1121から引き出される。そして、コア部1010が比透磁率5~50の材料で実質的に構成される。このような構成のリアクトルは、ギャップを無くしたギャップレスのコア部1010を備えたいわゆるポット型のリアクトルであり、コア部1010をギャップレスとすることで振動問題を解消するとともに、コア部1010を比透磁率5~50の材料で構成することで、所望のインダクタンスを得ている。 Therefore, for example, there is a reactor disclosed in Patent Document 1 as a reactor with this vibration countermeasure. FIG. 19 is a diagram illustrating a configuration of a reactor disclosed in Patent Document 1. FIG. 19A is an external configuration diagram, FIG. 19B is a longitudinal sectional view, and FIG. 19C is an exploded perspective view. The reactor 1000 disclosed in Patent Document 1 includes a core portion 1010 and a coil 1020 in FIG. 19, and the core portion 1010 includes a columnar inner core 1011, a hollow cylindrical outer core 1012, and the like. And a pair of upper and lower disk-shaped connecting cores 1013 (1013U, 1013L), and the coil 1020 includes a winding 1021. The winding 1021 is wound around the inner core 1011 and is fitted inside the outer core 1012. A pair of upper and lower connecting cores 1013U and 1013L are joined to the upper and lower surfaces of the inner core 1011 and the outer core 1012, respectively. Both ends of the winding 1021 are drawn out from a notch 1121 formed in the outer core 1012. The core portion 1010 is substantially composed of a material having a relative magnetic permeability of 5-50. The reactor having such a configuration is a so-called pot-type reactor having a gapless core portion 1010 with no gaps. By making the core portion 1010 gapless, the vibration problem is solved and the core portion 1010 is made transparent. A desired inductance is obtained by using a material having a magnetic permeability of 5 to 50.
 ところで、前記特許文献1に開示のリアクトルでは、コア部をギャップレスとすることによって振動問題を解消しているが、コイル1020が、内側コア1011を除いた空芯コイル(そのインダクタンスを調整するために、前記空芯コイルの軸芯部内へ延びる凸部が連結コア1013U、1013Lの内面にあってもよい)とされた場合には、前記空芯コイルに交流電力が供給されると、コイルによって生じる電磁力がその周波数で変動し、連結コア1013U、1013Lが振動してしまう。 By the way, in the reactor disclosed in Patent Document 1, the vibration problem is solved by making the core portion gapless, but the coil 1020 is an air-core coil excluding the inner core 1011 (in order to adjust its inductance). When the convex portion extending into the axial core portion of the air-core coil may be on the inner surface of the connecting cores 1013U and 1013L), when AC power is supplied to the air-core coil, it is generated by the coil. The electromagnetic force fluctuates at the frequency, and the connecting cores 1013U and 1013L vibrate.
特開2008-112935号公報Japanese Patent Laid-Open No. 2008-112935
 本発明は、上述の事情に鑑みて為された発明であり、その目的は、空芯コイルと該空芯コイルの外側に配置されたコア部とを備える巻線素子において、振動を低減して騒音を低減することができる巻線素子を提供することである。 The present invention has been made in view of the above circumstances, and its object is to reduce vibration in a winding element including an air-core coil and a core portion disposed outside the air-core coil. It is providing the coil | winding element which can reduce a noise.
 本発明にかかる巻線素子は、コイルの外側に配置されるとともに複数の部材によって構成され、前記複数の部材における当接面は、前記コイルの軸方向に対して斜交または直交しているコア部を備えている。このため、このような構成の巻線素子は、前記複数の部材における当接面同士が突き当たることによって前記複数の部材は、しっかりと当接され、その振動を抑制することができ、騒音を低減することができる。 The winding element according to the present invention is arranged on the outside of the coil and is constituted by a plurality of members, and the contact surfaces of the plurality of members are oblique or orthogonal to the axial direction of the coils. Department. For this reason, in the winding element having such a configuration, the abutting surfaces of the plurality of members abut against each other so that the plurality of members are firmly abutted to suppress vibrations and reduce noise. can do.
 上記並びにその他の本発明の目的、特徴及び利点は、以下の詳細な記載と添付図面から明らかになるであろう。 The above and other objects, features and advantages of the present invention will become apparent from the following detailed description and the accompanying drawings.
第1実施形態における巻線素子の構成を示す断面図である。It is sectional drawing which shows the structure of the coil | winding element in 1st Embodiment. 第1実施形態の巻線素子における当接面の他の構成を示す断面図である。It is sectional drawing which shows the other structure of the contact surface in the coil | winding element of 1st Embodiment. 空芯コイルと該空芯コイルの外側に配置された空芯コア部とを備える巻線素子に励起される共振モードを説明するための図である。It is a figure for demonstrating the resonance mode excited by the coil | winding element provided with an air core coil and the air core core part arrange | positioned on the outer side of this air core coil. コア部における複数の部材間の当接面がコイルの軸方向に対して平行である比較例の巻線素子の構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows the structure of the winding element of the comparative example whose contact surface between the some members in a core part is parallel with respect to the axial direction of a coil. 第2実施形態における巻線素子の構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows the structure of the coil | winding element in 2nd Embodiment. 第2および第3実施形態の巻線素子のコア部における第1コア部材(第2コア部材)の構造を示す斜視図である。It is a perspective view which shows the structure of the 1st core member (2nd core member) in the core part of the coil | winding element of 2nd and 3rd embodiment. 第4実施形態における巻線素子の構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows the structure of the coil | winding element in 4th Embodiment. 第5実施形態における巻線素子の構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows the structure of the coil | winding element in 5th Embodiment. 第5実施形態の巻線素子において、締結部材が固定部材と兼用される場合を説明するための図(その1)である。In the winding element of 5th Embodiment, it is a figure (the 1) for demonstrating the case where a fastening member is combined with a fixing member. 第5実施形態の巻線素子において、締結部材が固定部材と兼用される場合を説明するための図(その2)である。In the winding element of 5th Embodiment, it is a figure (the 2) for demonstrating the case where a fastening member is combined with a fixing member. 第5実施形態の巻線素子において、締結部材が連結部材と兼用される場合を説明するための図である。In the coil | winding element of 5th Embodiment, it is a figure for demonstrating the case where a fastening member is combined with a connection member. 第6実施形態における巻線素子の構成を示す図である。It is a figure which shows the structure of the coil | winding element in 6th Embodiment. 第1実施例および比較例における駆動周波数の変化に対する振動加速度の変化を示す図である。It is a figure which shows the change of the vibration acceleration with respect to the change of the drive frequency in a 1st Example and a comparative example. コア部の輪郭形状の相違による固有振動数の相違を説明するための図である。It is a figure for demonstrating the difference in the natural frequency by the difference in the outline shape of a core part. 連結部材の有無および相違による固有振動数の相違を説明するための図である。It is a figure for demonstrating the difference in the natural frequency by the presence or absence of a connection member, and a difference. 隙間埋め材の有無による固有振動数の相違を説明するための図である。It is a figure for demonstrating the difference in the natural frequency by the presence or absence of a gap filling material. 締結部材の有無による、温度の変化に対する振動加速度の変化を示す図である。It is a figure which shows the change of the vibration acceleration with respect to the change of temperature by the presence or absence of a fastening member. 図8(B)に示す構造の巻線素子において、その振動分布を示す図である。FIG. 9 is a diagram showing a vibration distribution in the winding element having the structure shown in FIG. 特許文献1に開示のリアクトルの構成を示す図である。It is a figure which shows the structure of the reactor disclosed by patent document 1. FIG.
 以下、本発明にかかる実施の一形態を図面に基づいて説明する。なお、各図において同一の符号を付した構成は、同一の構成であることを示し、適宜、その説明を省略する。また、本明細書において、総称する場合には添え字を省略した参照符号で示し、個別の構成を指す場合には添え字を付した参照符号で示す。 Hereinafter, an embodiment according to the present invention will be described with reference to the drawings. In addition, the structure which attached | subjected the same code | symbol in each figure shows that it is the same structure, The description is abbreviate | omitted suitably. Further, in this specification, when referring generically, it is indicated by a reference symbol without a suffix, and when referring to an individual configuration, it is indicated by a reference symbol with a suffix.
 本実施形態にかかる巻線素子は、1または複数のコイルと、前記コイルによって生じた磁束を通すコア部とを備えた巻線素子であって、前記コイルは、長尺な導体部材を巻回した空芯コイルであり、前記コア部は、前記コイルの外側に配置されるとともに複数の部材によって構成され、前記複数の部材における当接面は、前記コイルの軸方向に対して斜交または直交しているものである。このような巻線素子は、1個のコイルを備えて構成される場合には、例えばリアクトルとして機能し、また、複数のコイルを備えて構成される場合には、例えばトランスとして機能する。 The winding element according to the present embodiment is a winding element including one or a plurality of coils and a core portion through which a magnetic flux generated by the coils passes, and the coil winds a long conductor member. The core portion is arranged on the outer side of the coil and is constituted by a plurality of members, and the contact surfaces of the plurality of members are oblique or orthogonal to the axial direction of the coils. It is what you are doing. Such a winding element functions as, for example, a reactor when configured with one coil, and functions as, for example, a transformer when configured with a plurality of coils.
 ここでは、リアクトルとして機能する巻線素子を例示するが、トランスとして機能する巻線素子も同様に構成することが可能である。 Here, a winding element that functions as a reactor is illustrated, but a winding element that functions as a transformer can be similarly configured.
 (第1実施形態)
 図1は、第1実施形態における巻線素子の構成を示す断面図である。図2は、第1実施形態の巻線素子における当接面の他の構成を示す断面図である。
(First embodiment)
FIG. 1 is a cross-sectional view showing a configuration of a winding element in the first embodiment. FIG. 2 is a cross-sectional view showing another configuration of the contact surface in the winding element of the first embodiment.
 図1において、第1実施形態の巻線素子Daは、1個のコイル1と、コイル1に通電した場合にコイル1によって生じた磁束を通すコア部2aとを備えて構成され、例えばリアクトルとして機能するものである。 In FIG. 1, the winding element Da according to the first embodiment is configured to include one coil 1 and a core portion 2 a through which a magnetic flux generated by the coil 1 passes when the coil 1 is energized. It functions.
 コイル1は、絶縁被覆した長尺の導体部材を所定の回数だけ巻き回したものであり、通電することによって、磁場を発生するものである。コイル1は、例えば断面丸形(○形)や断面矩形(□形)等の絶縁被覆した長尺な導体部材を巻回することによって構成されてもよいが、本実施形態では、コイル1は、絶縁被覆した帯状の導体部材を、該導体部材の幅方向がコイル1の軸AX方向に沿うように巻回することによって構成される。帯状とは、導体部材の厚さ(径方向の長さ)tよりも幅(軸方向の長さ)Wの方が大きい場合をいい、すなわち、幅Wと厚さtとの間に、W>t(W/t>1)の関係が成り立つ。このように本実施形態のコイル1は、いわゆるフラットワイズ巻線構造である。 The coil 1 is obtained by winding a long conductor member with insulation coating a predetermined number of times, and generates a magnetic field when energized. For example, the coil 1 may be configured by winding a long conductor member having an insulating coating such as a round cross section (◯ shape) or a rectangular cross section (□ shape). The strip-shaped conductor member coated with insulation is wound so that the width direction of the conductor member is along the axis AX direction of the coil 1. The band shape refers to a case where the width (axial length) W is larger than the thickness (diameter length) t of the conductor member, that is, between the width W and the thickness t, W > T (W / t> 1) is established. Thus, the coil 1 of this embodiment has a so-called flat-wise winding structure.
 コア部2aは、コイル1に通電した場合にコイル1に生じる磁場による磁束を通す部材である。コア部2aは、コイル1の外側に配置される。より具体的には、コア部2aは、本実施形態では、図1に示すように、コイル1を内包するいわゆるポット型である。なお、コア部2aには、コイル1と電気的に接続するためにその端子を引き出す貫通孔や、後述する隙間埋め材をコア部2a内に注入するための貫通孔等の開口部が形成されていてもよく、図1に示すコア部2aは、実質的にコイル1を内包するものである。 The core portion 2a is a member that allows a magnetic flux generated by the magnetic field generated in the coil 1 to pass when the coil 1 is energized. The core part 2 a is disposed outside the coil 1. More specifically, in this embodiment, the core part 2a is a so-called pot type including the coil 1 as shown in FIG. The core portion 2a is formed with an opening such as a through hole for drawing out a terminal for electrical connection with the coil 1 and a through hole for injecting a gap filling material to be described later into the core portion 2a. The core portion 2 a shown in FIG. 1 substantially includes the coil 1.
 そして、コア部2aは、複数の部材によって構成されている。図1に示す例では、コア部2aは、2個の第1および第2コア部材21a、22aによって構成されている。第1および第2コア部材21a、22aは、生産性を向上させる観点から、同形である。第1および第2コア部材21a、22aは、コイル1の一方端部を覆う円板形状の円板部分211a、221aと、前記円板部分211a、221aの一方主面における縁周部分から略垂直に延びる円筒部分212a、222aとを備えて構成される。言い換えれば、第1および第2コア部材21a、22aは、コイル1における軸方向約半分の側面を覆うようにコイル1の外周を取り囲む円筒部分212a、222aと、前記円筒部分212a、222aの端面に連結される円板形状の円板部分211a、221aとを備えて構成される。前記コイル1を円筒形状の内部空間に内包させて、これら第1および第2コア部材21a、22aの各円筒部分212a、222aにおける各端面を互いに当接させることによってコア部2aが形成される。このようなコア部2aの軸を含む縦断面は、図1に示すように、ロ字形状である。これら第1および第2コア部材21a、22aの各円筒部分212a、222aにおける各端面を互いに当接させることによって形成される、これら第1および第2コア部材21a、22aにおける当接面2sfは、コイル1の軸AX方向に対して斜交または直交している。図1に示す例では、前記当接面2sfaは、コイル1の軸AX方向に対して直交している。なお、前記直交する場合には、前記当接面2sfは、図1に示すように、前記当接面2sfaに直交する縦断面における前記当接面2sfaの形状が、一方端から他方端までの間において、“-”形状(一本線形状)である当接面2sfaである場合だけでなく、図2に示すように階段形状である当接面2sfbである場合であってもよく、また、前記斜行する場合には、前記当接面2sfにおける斜行方向と直交する縦断面における前記当接面2sfの形状は、一方端から他方端までの間において、“/”形状(斜めの一本線形状)である場合だけでなく、“V”形状や“W”形状等の折り返し形状(互いに異なる複数の斜行方向を持ち前記複数の斜行方向のうちの2つの斜行方向が交差している形状)であってもよく、“-”形状と“/”形状との組合せであってもよい。そして、コイル1に、直流電力や交流電力、例えば、極性の交番しないバイアスのある交流電力(交流電圧の電圧振幅以上の電圧値を有する直流電圧に前記交流電圧が重畳された電力;脈流電力)が給電されると、コイル1によって磁場が発生し、この磁場によってコイル1の軸芯部には、軸AX方向に沿った吸引磁力が生じる。この吸引磁力が当接面2sfに作用するが、コア部材は、当接されているので、吸引磁力に起因する振動を抑制することができる。 And the core part 2a is comprised by the some member. In the example shown in FIG. 1, the core part 2a is comprised by the two 1st and 2nd core members 21a and 22a. The first and second core members 21a and 22a have the same shape from the viewpoint of improving productivity. The first and second core members 21a and 22a are substantially perpendicular to the disc-shaped disc portions 211a and 221a covering one end of the coil 1 and the peripheral portion of one main surface of the disc portions 211a and 221a. And cylindrical portions 212a and 222a extending in the direction. In other words, the first and second core members 21a and 22a are formed on the cylindrical portions 212a and 222a surrounding the outer periphery of the coil 1 so as to cover approximately half of the side surfaces in the axial direction of the coil 1, and on the end surfaces of the cylindrical portions 212a and 222a. The disk-shaped disk parts 211a and 221a connected are comprised. The core 1a is formed by enclosing the coil 1 in a cylindrical internal space and bringing the end faces of the cylindrical portions 212a and 222a of the first and second core members 21a and 22a into contact with each other. As shown in FIG. 1, the longitudinal section including the axis of the core portion 2a has a square shape. The contact surfaces 2sf of the first and second core members 21a and 22a, which are formed by bringing the end surfaces of the cylindrical portions 212a and 222a of the first and second core members 21a and 22a into contact with each other, It is oblique or orthogonal to the axis AX direction of the coil 1. In the example shown in FIG. 1, the contact surface 2 sfa is orthogonal to the axis AX direction of the coil 1. In addition, in the case of being orthogonal to each other, the contact surface 2sf is formed so that the shape of the contact surface 2sfa in the longitudinal section orthogonal to the contact surface 2sfa is from one end to the other end as shown in FIG. In addition to the contact surface 2sfa having a “−” shape (single line shape), the contact surface 2sfb may have a step shape as shown in FIG. In the case of the skew, the shape of the contact surface 2sf in the longitudinal section perpendicular to the skew direction of the contact surface 2sf is a “/” shape (an oblique one) from one end to the other end. Main line shape), but also folded shapes such as "V" shape and "W" shape (having a plurality of different skew directions, and two of the plurality of skew directions intersect each other. Shape), “-” shape and “/ Or a combination of the shape. The coil 1 has DC power or AC power, for example, AC power having a bias that is not alternating in polarity (power in which the AC voltage is superimposed on a DC voltage having a voltage value equal to or greater than the voltage amplitude of the AC voltage; pulsating power) ) Is generated, a magnetic field is generated by the coil 1, and an attractive magnetic force along the axis AX direction is generated in the axial core portion of the coil 1 by this magnetic field. Although this attractive magnetic force acts on the contact surface 2sf, since the core member is in contact, vibration due to the attractive magnetic force can be suppressed.
 このようなコア部2a(第1および第2コア部材21a、22a)は、所定の磁気特性を有する材料で構成される。例えば、コア部2aは、磁気的に等方性を有し、巻線素子Daに要求されるインダクタンスに応じた比透磁率を有する材料で構成される。コア部2aは、例えば、公知の常套手段を用いたプレス成形で製造されてもよいが、所望の磁気特性の実現容易性および所望の形状の成形容易性の観点から、例えば、軟磁性体粉末と非磁性体粉末との混合物を成形したものであることが好ましい。軟磁性体粉末と非磁性体粉末との混合率比を比較的容易に調整することができ、前記混合比率を適宜に調整することによって、コア部2aの磁気特性を所望の磁気特性に容易に実現することが可能となる。また、軟磁性体粉末と非磁性体粉末との混合物であるので、様々な形状に成形することができ、コア部2aの形状を所望の形状に容易に成形することが可能となる。 Such a core portion 2a (first and second core members 21a and 22a) is made of a material having predetermined magnetic characteristics. For example, the core portion 2a is made of a material that is magnetically isotropic and has a relative permeability corresponding to the inductance required for the winding element Da. The core portion 2a may be manufactured, for example, by press molding using a known conventional means. From the viewpoint of easy realization of desired magnetic characteristics and ease of molding of a desired shape, for example, soft magnetic powder It is preferable to mold a mixture of the nonmagnetic powder and the nonmagnetic powder. The mixing ratio ratio between the soft magnetic powder and the non-magnetic powder can be adjusted relatively easily, and by appropriately adjusting the mixing ratio, the magnetic characteristics of the core portion 2a can be easily adjusted to the desired magnetic characteristics. It can be realized. Moreover, since it is a mixture of soft magnetic powder and non-magnetic powder, it can be formed into various shapes, and the shape of the core portion 2a can be easily formed into a desired shape.
 この軟磁性粉末は、強磁性の金属粉末であり、より具体的には、例えば、純鉄粉、鉄基合金粉末(Fe-Al合金、Fe-Si合金、センダスト、パーマロイ等)およびアモルファス粉末、さらには、表面にリン酸系化成皮膜などの電気絶縁皮膜が形成された鉄粉等が挙げられる。これら軟磁性粉末は、例えば、アトマイズ法等によって微粒子化する方法や、酸化鉄等を微粉砕した後にこれを還元する方法等によって製造することができる。また、一般に、透磁率が同一である場合に飽和磁束密度が大きいので、軟磁性粉末は、例えば上記純鉄粉、鉄基合金粉末およびアモルファス粉末等の金属系材料であることが特に好ましい。 This soft magnetic powder is a ferromagnetic metal powder. More specifically, for example, pure iron powder, iron-based alloy powder (Fe—Al alloy, Fe—Si alloy, Sendust, Permalloy, etc.) and amorphous powder, Furthermore, the iron powder etc. with which electric insulation films, such as a phosphoric acid system chemical film, were formed on the surface are mentioned. These soft magnetic powders can be produced, for example, by a method of making fine particles by an atomizing method or the like, or a method of finely pulverizing iron oxide or the like and then reducing it. In general, since the saturation magnetic flux density is large when the magnetic permeability is the same, the soft magnetic powder is particularly preferably a metal-based material such as the above pure iron powder, iron-based alloy powder, and amorphous powder.
 このようなコア部2aは、例えば、公知の常套手段を用いることによって、軟磁性体粉末としての鉄粉と、非磁性体粉末としての樹脂とを混合して成形、例えば圧粉成形した所定の密度の部材であり、この部材は、一例を挙げれば、例えば、鉄粉の密度が7000kg/mであってヤング率が85GPaである。 Such a core portion 2a is formed by mixing iron powder as soft magnetic powder and resin as nonmagnetic powder, for example, by using known conventional means, for example, a predetermined powder molded For example, this member has a density of 7000 kg / m 3 and a Young's modulus of 85 GPa.
 このような構成の巻線素子Daでは、コア部2aは、複数の部材、上述の例では2個の第1および第2コア部材21a、22aによって構成され、これら第1および第2コア部材21a、22aは、コイル1によって生じる吸引磁力が当接面2sfに作用する。そして、これら第1および第2コア部材21a、22aにおける当接面2sfは、コイル1の軸方向に対して斜交または直交している。ここで、コイル1によって生じる磁力は、主に、コイル1の軸方向に沿って生じる。したがって、このようなコイル1の軸方向に沿って生じる磁力に対し、第1および第2コア部材21a、22aにおける当接面2sfは、コイル1の軸AX方向に対して斜交または直交しているので、第1および第2コア部材21a、22aにおける当接面同士が突き当たることによって、その振動を抑制することができ、騒音を低減することができる。このため、第1および第2コア部材21a、22aにおける当接面2sfは、コイル1の軸AX方向に対して斜交していてもよいが、上述したように直交している方が効果的であって好ましい。 In the winding element Da having such a configuration, the core portion 2a is composed of a plurality of members, in the above-described example, two first and second core members 21a and 22a, and these first and second core members 21a. 22a, the attractive magnetic force generated by the coil 1 acts on the contact surface 2sf. The contact surfaces 2 sf of the first and second core members 21 a and 22 a are oblique or orthogonal to the axial direction of the coil 1. Here, the magnetic force generated by the coil 1 is mainly generated along the axial direction of the coil 1. Therefore, with respect to the magnetic force generated along the axial direction of the coil 1, the contact surface 2 sf of the first and second core members 21 a and 22 a is oblique or orthogonal to the axis AX direction of the coil 1. Therefore, when the contact surfaces of the first and second core members 21a and 22a abut against each other, the vibration can be suppressed and noise can be reduced. For this reason, the contact surfaces 2sf of the first and second core members 21a and 22a may be oblique to the axis AX direction of the coil 1, but it is more effective to be orthogonal as described above. And preferred.
 図3は、空芯コイルと該空芯コイルの外側に配置された空芯コア部とを備える巻線素子に励起される共振モードを説明するための図である。図3(A)は、1次共振モードにおけるコア部の共振状態の様子を示し、図3(B)は、2次共振モードにおけるコア部の共振状態の様子を示す。図4は、コア部における複数の部材間の当接面がコイルの軸方向に対して平行である比較例の巻線素子の構成を示す縦断面図である。 FIG. 3 is a diagram for explaining a resonance mode excited by a winding element including an air-core coil and an air-core core portion arranged outside the air-core coil. FIG. 3A shows a state of the resonance state of the core part in the primary resonance mode, and FIG. 3B shows a state of the resonance state of the core part in the secondary resonance mode. FIG. 4 is a longitudinal sectional view showing a configuration of a winding element of a comparative example in which contact surfaces between a plurality of members in the core portion are parallel to the axial direction of the coil.
 より具体的に説明すると、空芯コイルと該空芯コイルの外側に配置された空芯コア部とを備える巻線素子では、調査による知見として、図3に示すように、コイルの両端に対向するコア部の各部分における振動変位が面対称であるモードしか共振モードとして発現しない。このため、図4に示すように、コア部における複数の部材間の当接面がコイルの軸方向に対して平行である比較例の巻線素子では、コイルによる軸方向の吸引磁力がコア部に作用すると、前記コイルの軸方向に対して平行な当接面では、前記軸方向の吸引磁力に抗することができない。一方、本実施形態の巻線素子Daでは、上述したように、コア部2aにおける複数の部材間の当接面がコイル1の軸方向に対して斜交または直交しているので、前記軸方向の吸引磁力に抗することができ、その振動を抑制し、騒音を低減することができる。 More specifically, in a winding element including an air-core coil and an air-core core portion disposed outside the air-core coil, as shown in FIG. Only the mode in which the vibration displacement in each part of the core portion to be performed is plane symmetric appears as the resonance mode. For this reason, as shown in FIG. 4, in the winding element of the comparative example in which the contact surfaces between the plurality of members in the core part are parallel to the axial direction of the coil, the axial attractive force by the coil is the core part. If it acts on, the contact surface parallel to the axial direction of the coil cannot resist the attractive magnetic force in the axial direction. On the other hand, in the winding element Da of the present embodiment, as described above, the contact surfaces between the plurality of members in the core portion 2a are oblique or orthogonal to the axial direction of the coil 1, so that the axial direction It is possible to resist the attractive magnetic force, and to suppress the vibration and reduce the noise.
 次に、別の実施形態について説明する。 Next, another embodiment will be described.
 (第2実施形態)
 図5は、第2実施形態における巻線素子の構成を示す縦断面図である。第2実施形態の巻線素子Dcは、第1実施形態の巻線素子Da、Dbにおいて、そのインダクタンスを調整するために、空芯コイル1の軸芯部内へ延びる凸部を備えるものである。このため、コイル1は、第1実施形態の巻線素子Da、Dbと同様であるので、その説明を省略する。
(Second Embodiment)
FIG. 5 is a longitudinal sectional view showing the configuration of the winding element in the second embodiment. The winding element Dc of the second embodiment is provided with a convex portion extending into the axial core portion of the air-core coil 1 in order to adjust the inductance in the winding elements Da and Db of the first embodiment. For this reason, since the coil 1 is the same as the winding elements Da and Db of the first embodiment, the description thereof is omitted.
 第2実施形態の巻線素子Dcは、第1実施形態の他の態様にかかる巻線素子Dbの変形形態として構成することもできるが、ここでは、第1実施形態の巻線素子Daの変形形態として構成した場合について以下に説明する。 The winding element Dc of the second embodiment can be configured as a modification of the winding element Db according to another aspect of the first embodiment, but here, the modification of the winding element Da of the first embodiment is used. The case where it comprises as a form is demonstrated below.
 この第2実施形態の巻線素子Dcにおけるコア部3は、第1実施形態の巻線素子Daにおけるコア部2aと同様に、コイル1に通電した場合にコイル1に生じる磁場による磁束を通す部材であって、コイル1の外側に配置されたいわゆるポット型であり、さらに、複数の部材、図5に示す例では、2個の第1および第2コア部材31、32によって構成されている。これら第1および第2コア部材31、32は、第1実施形態の第1および第2コア部材21a、22aと同様に、同形であって、コイル1の一方端部を覆う円板形状の円板部分311、321と、前記円板部分311、321の一方主面における縁周部分から略垂直に延びる円筒部分312、322とを備えて構成される。前記コイル1を円筒形状の内部空間に内包させて、これら第1および第2コア部材31、32の各円筒部分312、322における各端面を互いに当接させることによって形成される、これら第1および第2コア部材31、32における当接面3sfは、コイル1の軸AX方向に対して斜交または直交している。ここで、コイル1によって生じる磁力は、主に、コイル1の軸方向に沿って生じ、この吸引磁力が当接面3sfに作用する。したがって、このようなコイル1の軸方向に沿って生じる磁力に対し、第1および第2コア部材31、32における当接面2sfは、コイル1の軸AX方向に対して斜交または直交しているので、第1および第2コア部材31、32における当接面同士が突き当たることによって、その振動を抑制することができ、騒音を低減することができる。 The core portion 3 in the winding element Dc of the second embodiment is a member through which the magnetic flux generated by the magnetic field generated in the coil 1 passes when the coil 1 is energized, like the core portion 2a in the winding element Da of the first embodiment. In this case, it is a so-called pot type disposed outside the coil 1, and is constituted by a plurality of members, in the example shown in FIG. The first and second core members 31 and 32 have the same shape as the first and second core members 21a and 22a of the first embodiment, and are disk-shaped circles that cover one end of the coil 1. The plate portions 311 and 321 and the cylindrical portions 312 and 322 extending substantially perpendicularly from the peripheral portion of one main surface of the disk portions 311 and 321 are configured. The coil 1 is included in a cylindrical internal space, and the first and second core members 31 and 32 are formed by bringing the end faces of the cylindrical portions 312 and 322 into contact with each other. The contact surfaces 3 sf of the second core members 31 and 32 are oblique or orthogonal to the axis AX direction of the coil 1. Here, the magnetic force generated by the coil 1 is mainly generated along the axial direction of the coil 1, and this attractive magnetic force acts on the contact surface 3sf. Therefore, with respect to the magnetic force generated along the axial direction of the coil 1, the contact surfaces 2 sf of the first and second core members 31 and 32 are obliquely or orthogonal to the axis AX direction of the coil 1. Therefore, when the contact surfaces of the first and second core members 31 and 32 abut against each other, the vibration can be suppressed and noise can be reduced.
 そして、第2実施形態のコア部3では、コイル1の軸芯部に軸AX方向に沿って対向する、前記円板部分311、321における各内面には、コイル1の軸芯内部へ延びる凸部313、323がそれぞれ形成されている。これら凸部313、323は、図5に示す例では、側面が軸AX方向に対して斜行するテーパ面を有する円錐台形状である。 And in the core part 3 of 2nd Embodiment, the convex part extended in the axial center inside of the coil 1 is provided in each inner surface in the said disk parts 311 and 321 facing the axial center part of the coil 1 along the axis AX direction. Portions 313 and 323 are formed, respectively. In the example shown in FIG. 5, the convex portions 313 and 323 have a truncated cone shape having a tapered surface whose side surface is inclined with respect to the axis AX direction.
 このような構成の巻線素子Dcでは、前記凸部313、323によってコイル1の軸芯内部におけるコア部3の上部と下部とのギャップ長を調整することができ、巻線素子Dcのインダクタンスを調整することが可能となる。 In the winding element Dc having such a configuration, the gap length between the upper part and the lower part of the core part 3 inside the axial center of the coil 1 can be adjusted by the convex parts 313 and 323, and the inductance of the winding element Dc can be adjusted. It becomes possible to adjust.
 次に、別の実施形態について説明する。 Next, another embodiment will be described.
 (第3実施形態)
 図6は、第2および第3実施形態の巻線素子のコア部における第1コア部材(第2コア部材)の構造を示す斜視図である。図6(A)は、第3実施形態における第1コア部材(第2コア部材)を示し、図6(B)は、第2実施形態における第1コア部材(第2コア部材)を示す。
(Third embodiment)
FIG. 6 is a perspective view showing the structure of the first core member (second core member) in the core portion of the winding element of the second and third embodiments. FIG. 6A shows a first core member (second core member) in the third embodiment, and FIG. 6B shows a first core member (second core member) in the second embodiment.
 第1および第2実施形態の巻線素子Da、Db、Dcでは、コア部2、3の輪郭形状は、円筒形状の内部空間に合わせてその相似形の円筒形状であったが、第3実施形態の巻線素子Ddは、そのコイル1の輪郭形状が円筒形状であり、そのコア部4が、このコイル1を内包するための円筒形状の空間を有するとともに、コア部4の輪郭形状が、多角柱形状であるものである。このため、コイル1は、第1および第2実施形態の巻線素子Da、Db、Dcと同様であるので、その説明を省略する。 In the winding elements Da, Db, and Dc of the first and second embodiments, the outline shape of the core portions 2 and 3 is a similar cylindrical shape in accordance with the cylindrical inner space. In the winding element Dd of the form, the contour shape of the coil 1 is a cylindrical shape, the core portion 4 has a cylindrical space for containing the coil 1, and the contour shape of the core portion 4 is It is a polygonal column shape. For this reason, the coil 1 is the same as the winding elements Da, Db, and Dc of the first and second embodiments, and the description thereof is omitted.
 第3実施形態の巻線素子Ddは、第1実施形態の巻線素子Da、Dbの変形形態として構成することもできるが、ここでは、第2実施形態の巻線素子Dcの変形形態として構成した場合について以下に説明する。 The winding element Dd of the third embodiment can be configured as a modification of the winding elements Da and Db of the first embodiment, but here, it is configured as a modification of the winding element Dc of the second embodiment. This case will be described below.
 この第3実施形態の巻線素子Ddにおけるコア部4は、第2実施形態の巻線素子Dcにおけるコア部3と同様に、コイル1に通電した場合にコイル1に生じる磁場による磁束を通す部材であって、コイル1の外側に配置されたいわゆるポット型であり、さらに、複数の部材、図6(A)に示す例では、2個の第1および第2コア部材41、42によって構成されている。これら第1および第2コア部材41、42は、同形であって、コイル1の一方端部を覆う輪郭(外形)四角形状の板部分411、421と、前記板部分411、421の一方主面における縁周部分から略垂直に延びる、断面が外形四角形状であって内形円形状である筒状部分412、422とを備えて構成される。前記コイル1を筒状部分412、422によって形成される円筒形状の内部空間に内包させて、これら第1および第2コア部材41、42の各筒状部分412、422における各端面を互いに当接させることによって形成される、これら第1および第2コア部材41、42における図略の当接面4sfは、コイル1の軸AX方向に対して斜交または直交している。ここで、コイル1によって生じる磁力は、主に、コイル1の軸方向に沿って生じ、この吸引磁力が当接面4sfに作用する。したがって、このようなコイル1の軸方向に沿って生じる磁力に対し、第1および第2コア部材41、42における当接面4sfは、コイル1の軸AX方向に対して斜交または直交しているので、第1および第2コア部材41、42における当接面同士が突き当たることによって、その振動を抑制することができ、騒音を低減することができる。そして、第3実施形態のコア部4は、第2実施形態のコア部3と同様に、そのインダクタンスを調整するべく、コイル1の軸芯部に軸AX方向に沿って対向する前記円板部分411、421における各内面に、それぞれ形成されるコイル1の軸芯内部へ延びる凸部413、423を備えている。これら凸部413、423は、図6(A)に示す例では、側面が軸AX方向に対して斜行するテーパ面を有する円錐台形状である。 The core part 4 in the winding element Dd of the third embodiment is a member through which the magnetic flux generated by the magnetic field generated in the coil 1 passes when the coil 1 is energized, like the core part 3 in the winding element Dc of the second embodiment. It is a so-called pot type disposed outside the coil 1, and further includes a plurality of members, in the example shown in FIG. 6 (A), two first and second core members 41 and 42. ing. These first and second core members 41, 42 have the same shape, and have outline (outer shape) rectangular plate portions 411, 421 covering one end of the coil 1, and one main surface of the plate portions 411, 421. The cylindrical portions 412 and 422 having a substantially rectangular outer shape and an inner circular shape extending substantially perpendicularly from the peripheral edge portion of FIG. The coil 1 is enclosed in a cylindrical internal space formed by the cylindrical portions 412, 422, and the end surfaces of the cylindrical portions 412, 422 of the first and second core members 41, 42 are in contact with each other. The contact surfaces 4sf (not shown) of the first and second core members 41 and 42 formed by the crossing are oblique or orthogonal to the axis AX direction of the coil 1. Here, the magnetic force generated by the coil 1 is mainly generated along the axial direction of the coil 1, and this attractive magnetic force acts on the contact surface 4sf. Therefore, with respect to the magnetic force generated along the axial direction of the coil 1, the contact surfaces 4 sf of the first and second core members 41 and 42 are oblique or orthogonal to the axis AX direction of the coil 1. Therefore, when the contact surfaces of the first and second core members 41 and 42 abut against each other, the vibration can be suppressed and noise can be reduced. And the core part 4 of 3rd Embodiment is the said disk part facing the axial center part of the coil 1 along the axis | shaft AX direction in order to adjust the inductance similarly to the core part 3 of 2nd Embodiment. Convex portions 413 and 423 are provided on the inner surfaces of 411 and 421 and extend into the axial core of the formed coil 1. In the example shown in FIG. 6A, these convex portions 413 and 423 have a truncated cone shape with side surfaces inclined with respect to the axis AX direction.
 そして、第3実施形態の巻線素子Ddにおけるコア部4では、第1および第2コア部材41、42を互いに当接することによって形成される、コイル1を内包するための空間は、円筒形状であって、その輪郭形状(外形形状)は、例えば三角柱形状、四角柱形状、五角柱形状および六角柱形状等の多角柱形状、図6(A)に示す例では、四角柱形状である。 And in the core part 4 in the coil | winding element Dd of 3rd Embodiment, the space for enclosing the coil 1 formed by contact | abutting the 1st and 2nd core members 41 and 42 mutually is cylindrical shape. The contour shape (outer shape) is, for example, a triangular prism shape, a quadrangular prism shape, a polygonal prism shape such as a pentagonal prism shape and a hexagonal prism shape, and in the example shown in FIG.
 このような構成の巻線素子Ddでは、コア部4は、図6(B)に示す第2実施形態の第1および第2コア部材31、32を互いに当接させることによって形成されるコア部3のように、コア部の輪郭形状が円柱形状である場合に較べて、コイル1の外周に面するコア部4側壁部分における角部分に肉厚な部分を有している。このため、このような構成の巻線素子Ddは、コア部4の剛性がより向上し、コア部の輪郭形状が円柱形状である場合に較べてその固有振動数を高周波側にシフトすることができる。すなわち、コア部4の振動を抑制することが可能となっている。 In the winding element Dd having such a configuration, the core portion 4 is formed by bringing the first and second core members 31 and 32 of the second embodiment shown in FIG. 6B into contact with each other. 3, compared with the case where the contour shape of the core portion is a columnar shape, the corner portion of the side wall portion of the core portion 4 facing the outer periphery of the coil 1 has a thicker portion. For this reason, the winding element Dd having such a configuration can improve the rigidity of the core portion 4 and shift its natural frequency to the high frequency side as compared with the case where the contour shape of the core portion is a cylindrical shape. it can. That is, the vibration of the core part 4 can be suppressed.
 なお、コア部の輪郭形状が異なっても、コア部の側壁部分における最も薄い部分における肉厚が同じであれば、巻線素子Dの電磁気特性は、略同等である。 Even if the contour shape of the core portion is different, the electromagnetic characteristics of the winding element D are substantially equal if the thickness of the thinnest portion of the side wall portion of the core portion is the same.
 また、第3実施形態の巻線素子Ddにおいて、コア部4における前記角部分には、巻線素子Ddが取り付けられる被取り付け部材(不図示)に、該巻線素子Ddを固定するための固定部材を係合させるための係合部がさらに設けられてもよい。図6(A)に示す例では、固定部材としてのボルトを挿通するための貫通孔414(424)がコア部4の第1および第2コア部材41、42における前記各角部分にそれぞれ設けられている。 In addition, in the winding element Dd of the third embodiment, a fixing for fixing the winding element Dd to an attachment member (not shown) to which the winding element Dd is attached is provided at the corner portion of the core portion 4. An engaging portion for engaging the member may be further provided. In the example shown in FIG. 6A, through holes 414 (424) for inserting bolts as fixing members are provided at the respective corner portions of the first and second core members 41 and 42 of the core portion 4, respectively. ing.
 次に、別の実施形態について説明する。 Next, another embodiment will be described.
 (第4実施形態)
 図7は、第4実施形態における巻線素子の構成を示す縦断面図である。図7(A)は、第4実施形態の巻線素子における第1態様の構成を示し、図7(B)は、第4実施形態の巻線素子における第2態様の構成を示す。
(Fourth embodiment)
FIG. 7 is a longitudinal sectional view showing the configuration of the winding element in the fourth embodiment. FIG. 7A shows the configuration of the first aspect of the winding element of the fourth embodiment, and FIG. 7B shows the configuration of the second aspect of the winding element of the fourth embodiment.
 第4実施形態の巻線素子Deは、第1ないし第3実施形態の巻線素子Da、Db、Dc、Ddにおいて、コイル1の軸芯内部に少なくとも配置されるとともに、コイル1の軸芯における両端部に対向するコア部の両内面部分を少なくとも連結する連結部材をさらに備えるものである。このため、コイル1は、第1および第2実施形態の巻線素子Da、Db、Dcと同様であるので、その説明を省略する。 The winding element De of the fourth embodiment is arranged at least inside the axis of the coil 1 in the winding elements Da, Db, Dc, Dd of the first to third embodiments, and at the axis of the coil 1 It further includes a connecting member for connecting at least both inner surface portions of the core portion facing both end portions. For this reason, the coil 1 is the same as the winding elements Da, Db, and Dc of the first and second embodiments, and the description thereof is omitted.
 第4実施形態の巻線素子Deは、第1および第2実施形態の巻線素子Da、Db、Dcの変形形態として構成することもできるが、ここでは、第3実施形態の巻線素子Ddの変形形態として構成した場合について以下に説明する。 The winding element De of the fourth embodiment can be configured as a modification of the winding elements Da, Db, Dc of the first and second embodiments, but here, the winding element Dd of the third embodiment is used. The case where it comprises as a modification of this is demonstrated below.
 第4実施形態の巻線素子Deにおけるコア部3は、図7(A)および図7(B)に示すように、第3実施形態の巻線素子Ddにおけるコア部3と同様である。そして、第4実施形態の第1態様にかかる巻線素子De1は、図7(A)に示すように、コイル1の軸芯内部の一部分に配置されるとともに、コイル1の軸芯における両端部に対向するコア部3の両内面部分の一部分を連結する連結部材33をさらに備えている。より具体的には、連結部材33は、例えば、コイル1の内径(内直径)よりも小さい径(直径)である中実円柱形状であり、連結部材33の両端面は、第1および第2コア部材31、32における円板部分311、321からコイル1の軸芯部内へ延びる凸部313、323の各面にそれぞれ当接している。このような連結部材33は、例えば、エポキシ系樹脂等の樹脂、アルミナ等のセラミックス、および、ステンレス鋼等の金属等の成型体である。前記樹脂は、比較的剛性の高いものが好ましい。このような連結部材33は、後述するように、リング形状(環形状、ドーナツ形状)であってもよい。あるいは、第4実施形態の第2態様にかかる巻線素子De2は、図7(B)に示すように、第1および第2コア部材31、32を互いに当接することで形成されるコア部3の内部空間であってコイル1を除く空間に充填されている連結部材34をさらに備えている。この連結部材34は、例えばエポキシ系樹脂等の樹脂をコア部3に形成された貫通孔(不図示)からコア部3の前記空間に注入してその後硬化することによって形成される。あるいは、この連結部材34は、第1および第2コア部材31、32を互いに当接する前に予め、第1および第2コア部材31、32における前記当接後に前記空間となる部分に樹脂を流し込んで硬化させ、この後に、第1および第2コア部材31、32を互いに当接することによって形成されてもよい。前記樹脂は、比較的剛性の高いものが好ましい。このように連結部材34を形成することによって、連結部材34は、コイル1の軸芯内部のすべてに配置されるとともに、コイル1の軸芯における両端部に対向するコア部3の両内面部分のすべてを連結する部材となる。 The core part 3 in the winding element De of the fourth embodiment is the same as the core part 3 in the winding element Dd of the third embodiment, as shown in FIGS. 7 (A) and 7 (B). And the winding element De1 concerning the 1st aspect of 4th Embodiment is arrange | positioned in a part inside the axial center of the coil 1, as shown to FIG. 7 (A), and both ends in the axial center of the coil 1 It further includes a connecting member 33 for connecting a part of both inner surface portions of the core portion 3 facing each other. More specifically, the connecting member 33 has, for example, a solid cylindrical shape having a diameter (diameter) smaller than the inner diameter (inner diameter) of the coil 1, and both end surfaces of the connecting member 33 are first and second. The core members 31 and 32 are in contact with the respective surfaces of the convex portions 313 and 323 extending from the disk portions 311 and 321 into the axial portion of the coil 1. Such a connecting member 33 is, for example, a molded body such as a resin such as an epoxy resin, a ceramic such as alumina, and a metal such as stainless steel. The resin preferably has a relatively high rigidity. Such a connecting member 33 may have a ring shape (ring shape, donut shape), as will be described later. Alternatively, the winding element De2 according to the second aspect of the fourth embodiment is formed by contacting the first and second core members 31 and 32 with each other as shown in FIG. 7B. And a connecting member 34 that is filled in a space excluding the coil 1. The connecting member 34 is formed, for example, by injecting a resin such as epoxy resin into the space of the core portion 3 from a through hole (not shown) formed in the core portion 3 and then curing the resin. Alternatively, before the first and second core members 31 and 32 are brought into contact with each other, the connecting member 34 pours resin into a portion of the first and second core members 31 and 32 that becomes the space after the contact. The first and second core members 31 and 32 may be brought into contact with each other after curing. The resin preferably has a relatively high rigidity. By forming the connecting member 34 in this way, the connecting member 34 is disposed in the entire axial center of the coil 1 and at both inner surface portions of the core portion 3 facing both ends of the axial core of the coil 1. It becomes a member that connects everything.
 このような構成の巻線素子De1、De2は、連結部材33、34をさらに備えるので、コイル1の軸芯における両端部に対向するコア部3の両部分の振動を抑えることができ、また、コア部3の剛性がより向上し、前記連結部材33、34を備えない場合に較べてその固有振動数を高周波側にシフトすることができる。すなわち、コア部4の振動を抑制することが可能となっている。 Since the winding elements De1 and De2 having such a configuration further include the connecting members 33 and 34, vibrations of both portions of the core portion 3 facing both ends of the axial center of the coil 1 can be suppressed. The rigidity of the core portion 3 is further improved, and the natural frequency can be shifted to the high frequency side as compared with the case where the connecting members 33 and 34 are not provided. That is, the vibration of the core part 4 can be suppressed.
 空芯コイルと該空芯コイルの外側に配置された空芯コア部とを備える巻線素子は、図3を用いて説明したような共振モードを備えることから、幅広い次数(多くの次数)の固有振動数を高周波側へシフトするために、コア部3の直径の約1/2における位置で連結部材33が当接することが好ましく、連結部材33は、コア部3の直径の1/2以上の直径を有することが好ましい。 A winding element including an air-core coil and an air-core core portion arranged outside the air-core coil has a resonance mode as described with reference to FIG. In order to shift the natural frequency to the high frequency side, it is preferable that the connecting member 33 abuts at a position at about ½ of the diameter of the core portion 3, and the connecting member 33 is ½ or more of the diameter of the core portion 3. It is preferable to have a diameter of
 なお、このような連結部材33は、コイル1を製作する場合におけるコイル1の巻き芯を兼ねても良い。 Note that such a connecting member 33 may also serve as a winding core of the coil 1 when the coil 1 is manufactured.
 次に、別の実施形態について説明する。 Next, another embodiment will be described.
 (第5実施形態)
 図8は、第5実施形態における巻線素子の構成を示す縦断面図である。図8(A)は、第5実施形態の巻線素子における第1態様の構成を示し、図8(B)は、第5実施形態の巻線素子における第2態様の構成を示す。図9は、第5実施形態の巻線素子において、締結部材が固定部材と兼用される場合を説明するための図(その1)である。図9(A)は、図8(A)に示す第1態様の巻線素子において、締結部材が固定部材と兼用される場合における第1変形態様を示し、図9(B)は、図8(B)に示す第2態様の巻線素子において、締結部材が固定部材と兼用される場合における第2変形態様を示し、図9(C)は、図8(B)に示す第2態様の巻線素子において、締結部材が固定部材と兼用される場合における第3変形態様を示す。図10は、第5実施形態の巻線素子において、締結部材が固定部材と兼用される場合を説明するための図(その2)である。図10(A)は、図8(A)に示す第1態様の巻線素子において、締結部材が固定部材と兼用される場合における第4変形態様を示し、図10(B)は、図8(B)に示す第2態様の巻線素子において、締結部材が固定部材と兼用される場合における第5変形態様を示し、図10(C)は、図8(B)に示す第2態様の巻線素子において、締結部材が固定部材と兼用される場合における第6変形態様を示す。図11は、第5実施形態の巻線素子において、締結部材が連結部材と兼用される場合を説明するための図である。
(Fifth embodiment)
FIG. 8 is a longitudinal sectional view showing the configuration of the winding element in the fifth embodiment. FIG. 8A shows the configuration of the first aspect of the winding element of the fifth embodiment, and FIG. 8B shows the configuration of the second aspect of the winding element of the fifth embodiment. FIG. 9 is a view (No. 1) for explaining a case where a fastening member is also used as a fixing member in the winding element of the fifth embodiment. FIG. 9A shows a first variation in the case where the fastening member is also used as a fixing member in the winding element of the first aspect shown in FIG. 8A, and FIG. In the winding element of the second mode shown in (B), a second modification mode in the case where the fastening member is also used as a fixing member is shown, and FIG. 9 (C) shows the second mode shown in FIG. 8 (B). A winding element WHEREIN: The 3rd deformation | transformation aspect in case a fastening member is combined with a fixing member is shown. FIG. 10 is a diagram (No. 2) for explaining the case where the fastening member is also used as the fixing member in the winding element of the fifth embodiment. FIG. 10A shows a fourth modification in the case where the fastening member is also used as a fixing member in the winding element of the first aspect shown in FIG. 8A, and FIG. In the winding element of the second mode shown in (B), a fifth modification mode in the case where the fastening member is also used as a fixing member is shown, and FIG. 10 (C) shows the second mode shown in FIG. 8 (B). The winding element WHEREIN: The 6th deformation | transformation aspect in case a fastening member is combined with a fixing member is shown. FIG. 11 is a diagram for explaining a case where the fastening member is also used as the connecting member in the winding element of the fifth embodiment.
 第5実施形態は、上述の第1ないし第4実施形態の巻線素子Da、Db、Dc、Dd、deにおいて、前記当接面2sfa、2sfb、3sf、4sfを構成する複数の部材、上述では、第1および第2コア部材21a、22a;21b、22b;31、32;41、42を互いに締結する締結部材をさらに備えるものである。このため、コイル1は、第1および第2実施形態の巻線素子Da、Db、Dcと同様であるので、その説明を省略する。 The fifth embodiment includes a plurality of members constituting the contact surfaces 2sfa, 2sfb, 3sf, and 4sf in the winding elements Da, Db, Dc, Dd, and de of the first to fourth embodiments. The first and second core members 21a, 22a; 21b, 22b; 31, 32; 41, 42 are further provided with fastening members. For this reason, the coil 1 is the same as the winding elements Da, Db, and Dc of the first and second embodiments, and the description thereof is omitted.
 第5実施形態の巻線素子Dfは、第1ないし第4実施形態の巻線素子Da、Db、Dc、Dd、Deの変形形態として構成することもできるが、ここでは、第3実施形態の巻線素子Ddの変形形態として構成した場合について以下に説明する。 The winding element Df of the fifth embodiment can be configured as a modified form of the winding elements Da, Db, Dc, Dd, De of the first to fourth embodiments, but here, the winding element Df of the third embodiment The case where it constitutes as a modification of winding element Dd is explained below.
 この第5実施形態の巻線素子Df1、Df2におけるコア部4a、4bは、第3実施形態の巻線素子Dcにおけるコア部4と同様に、コイル1に通電した場合にコイル1に生じる磁場による磁束を通す部材であって、コイル1の外側に配置されたいわゆるポット型であり、さらに、複数の部材、図8(A)および図8(B)に示す例では、2個の第1および第2コア部材41a、42a;41b、42bによって構成されている。これら第1および第2コア部材41a、42a;41b、42bは、第3実施形態の第1および第2コア部材41、42と同様に、同形であって、コイル1の一方端部を覆う輪郭(外形)四角形状の板部分411a、421a;411b、421bと、前記板部分411a、421a;411b、421bの一方主面における縁周部分から略垂直に延びる、断面が外形四角形状であって内形円形状である筒状部分412a、422a;412b、422bとを備えて構成される。前記コイル1を筒状部分412a、422a;412b、422bによって形成される円筒形状の内部空間に内包させて、これら第1および第2コア部材41a、42a;41b、42bの各筒状部分412a、422a;412b、422bにおける各端面を互いに当接させることによって形成される、これら第1および第2コア部材41a、42a;41b、42bにおける当接面4sf1、4sf2は、コイル1の軸AX方向に対して斜交または直交している。ここで、コイル1によって生じる磁力は、主に、コイル1の軸方向に沿って生じ、この吸引磁力が当接面4sf1、4sf2に作用する。したがって、このようなコイル1の軸方向に沿って生じる磁力に対し、第1および第2コア部材41a、42a;41b、42bにおける当接面4sf1、4sf2は、コイル1の軸AX方向に対して斜交または直交しているので、第1および第2コア部材41a、42a;41b、42bにおける当接面同士が突き当たることによって、その振動を抑制することができ、騒音を低減することができる。そして、第5実施形態のコア部4a、4bは、第3実施形態のコア部4と同様に、そのインダクタンスを調整するべく、コイル1の軸芯部に軸AX方向に沿って対向する前記円板部分411a、421a;411b、421bにおける各内面に、それぞれ形成されるコイル1の軸芯内部へ延びる凸部413a、423a;413b、423bを備えている。これら凸部413a、423a;413b、423bは、図8(A)および図8(B)に示す例では、側面が軸AX方向に対して斜行するテーパ面を有する円錐台形状である。さらに、第5実施形態の巻線素子Df1、Df2は、第4実施形態の巻線素子Deと同様に、コイル1の軸芯内部に少なくとも配置されるとともに、コイル1の軸芯における両端部に対向するコア部4a、4bの両内面部分を少なくとも連結する連結部材43a、43bをさらに備えている。 The core portions 4a and 4b in the winding elements Df1 and Df2 of the fifth embodiment are caused by the magnetic field generated in the coil 1 when the coil 1 is energized, like the core portion 4 in the winding element Dc of the third embodiment. A member that allows magnetic flux to pass, which is a so-called pot type disposed outside the coil 1, and in the example shown in FIG. 8 (A) and FIG. 8 (B), two first and It is comprised by 2nd core member 41a, 42a; 41b, 42b. These first and second core members 41a, 42a; 41b, 42b have the same shape as the first and second core members 41, 42 of the third embodiment, and contours that cover one end of the coil 1 (Outer shape) Quadrangular plate portions 411a, 421a; 411b, 421b and one of the plate portions 411a, 421a; And cylindrical portions 412a, 422a; 412b, 422b having a circular shape. The coil 1 is encapsulated in a cylindrical inner space formed by cylindrical portions 412a, 422a; 412b, 422b, and the cylindrical portions 412a of the first and second core members 41a, 42a; 41b, 42b, The contact surfaces 4sf1 and 4sf2 of the first and second core members 41a and 42a; 41b and 42b are formed in the direction of the axis AX of the coil 1 and are formed by bringing the end surfaces of the surfaces 422a and 412b and 422b into contact with each other. It is diagonally or orthogonal to it. Here, the magnetic force generated by the coil 1 is mainly generated along the axial direction of the coil 1, and this attractive magnetic force acts on the contact surfaces 4sf1 and 4sf2. Therefore, against the magnetic force generated along the axial direction of the coil 1, the contact surfaces 4 sf 1 and 4 sf 2 of the first and second core members 41 a and 42 a; 41 b and 42 b are in the axial AX direction of the coil 1. Since they are obliquely or orthogonally crossed, the contact surfaces of the first and second core members 41a, 42a; 41b, 42b abut against each other, so that vibration can be suppressed and noise can be reduced. And the core parts 4a and 4b of 5th Embodiment are the said circles which oppose the axial center part of the coil 1 along the axis | shaft AX direction in order to adjust the inductance similarly to the core part 4 of 3rd Embodiment. On the inner surfaces of the plate portions 411a, 421a; 411b, 421b, convex portions 413a, 423a; 413b, 423b extending to the inside of the axial core of the coil 1 are provided. These convex portions 413a, 423a; 413b, 423b are in the shape of a truncated cone having a tapered surface whose side surface is inclined with respect to the axis AX direction in the example shown in FIGS. 8A and 8B. Further, the winding elements Df1 and Df2 of the fifth embodiment are arranged at least inside the axial core of the coil 1 and at both end portions of the axial core of the coil 1 similarly to the winding element De of the fourth embodiment. Further provided are connecting members 43a and 43b for connecting at least both inner surface portions of the facing core portions 4a and 4b.
 そして、第5実施形態の巻線素子Df1、Df2におけるコア部4a、4bの第1および第2コア部材41a、42a;41b、42bには、軸AX方向に沿って形成された、締結部材71a、71bを挿通するための貫通孔415a、425a;415b、425bが設けられている。これら貫通孔415a、425a;415b、425bは、コア部4a、4bの第1および第2コア部材41a、42a;41b、42bの中心位置(軸芯位置)に形成されている。さらに、第2態様の巻線素子Df2では、コア部4bの第1および第2コア部材41b、42bの中心位置に貫通孔415b、425bが設けられるだけでなく、コア部4bの第1および第2コア部材41b、42bの縁周部分にも、軸AX方向に沿って形成された、締結部材72(72-1~72-4、72-2および72-4は不図示))を挿通するための貫通孔414b(414b-1~414b-4、424b-1~424b-4、414b-2および414b-4と424b-2および424b-4は不図示)が設けられている。締結部材71a、71b、72(72-1~72-4)は、例えば、ボルトおよびナット等である。このような構成の巻線素子Df1、Df2では、第1および第2コア部材41a、42a;41b、42bを互いに当接させ、前記貫通孔415a、425a;415b、425bに前記締結部材71a、71bのボルトを挿通させ、そして、前記ボルトおよびナットで第1および第2コア部材41a、42a;41b、42bが互いに締め付けられる。さらに、第2態様の巻線素子Df2では、前記貫通孔414b-1~424b-4に前記締結部材72-1~72-4のボルトをそれぞれ挿通させ、そして、前記各ボルトおよび各ナットで第1および第2コア部材41b、42bが互いに締め付けられる。 And the fastening member 71a formed along the axis AX direction on the first and second core members 41a, 42a; 41b, 42b of the core portions 4a, 4b in the winding elements Df1, Df2 of the fifth embodiment. , 71b are inserted through holes 415a, 425a; 415b, 425b. These through holes 415a, 425a; 415b, 425b are formed at the center positions (axial positions) of the first and second core members 41a, 42a; 41b, 42b of the core portions 4a, 4b. Furthermore, in the winding element Df2 of the second mode, not only the through holes 415b and 425b are provided at the center positions of the first and second core members 41b and 42b of the core portion 4b, but also the first and second of the core portion 4b. The fastening members 72 (72-1 to 72-4, 72-2 and 72-4 are not shown) formed along the axis AX direction are also inserted through the peripheral portions of the two core members 41b and 42b. Through holes 414b (414b-1 to 414b-4, 424b-1 to 424b-4, 414b-2 and 414b-4 and 424b-2 and 424b-4 are not shown) are provided. The fastening members 71a, 71b, 72 (72-1 to 72-4) are, for example, bolts and nuts. In the winding elements Df1, Df2 having such a configuration, the first and second core members 41a, 42a; 41b, 42b are brought into contact with each other, and the fastening members 71a, 71b are inserted into the through holes 415a, 425a; 415b, 425b. The first and second core members 41a, 42a; 41b, 42b are fastened to each other with the bolts and nuts. Further, in the winding element Df2 of the second aspect, the bolts of the fastening members 72-1 to 72-4 are respectively inserted into the through holes 414b-1 to 424b-4, and the bolts and nuts are used to The first and second core members 41b and 42b are fastened together.
 なお、第5実施形態の巻線素子Df1、Df2では、連結部材43a、43bは、図8(A)および図8(B)に示すように、締結部材71a、71bを挿通するために、リング形状となっている。また、前記締結部材71は、上述のボルトおよびナットの他、例えば、リベットやクリップ等であっても良い。後述の固定部材も同様である。 In addition, in the winding elements Df1 and Df2 of the fifth embodiment, the connecting members 43a and 43b are arranged so as to pass through the fastening members 71a and 71b as shown in FIGS. 8A and 8B. It has a shape. Further, the fastening member 71 may be, for example, a rivet or a clip in addition to the bolt and nut described above. The same applies to the fixing member described later.
 このような構成の巻線素子Df1、Df2は、締結部材71a;71b、72をさらに備えることによって、当接面4sf1、4sf2の密着性が向上し、振動をより抑制することが可能となる。 The winding elements Df1 and Df2 having such a configuration further include the fastening members 71a; 71b and 72, thereby improving the adhesion of the contact surfaces 4sf1 and 4sf2 and further suppressing vibration.
 そして、上述の第5実施形態における巻線素子Df1、Df2において、前記締結部材71a;71b、72(72-1~72-4)は、図9(A)、図9(B)および図9(C)に示すように、当該巻線素子Df1、Df2、Df2が取り付けられる被取り付け部材100(100a、100b)、200(200a、200b)、300(300a、300b)に、当該巻線素子Df1、Df2、Df2を固定する固定部材と兼用されてもよい。被取り付け部材100、200、300には、締結部材(固定部材)71a;71b、72(72-1~72-4)を固着させるための凹部101、201、301が形成されている。より具体的には、締結部材(固定部材)71a;71b、72(72-1~72-4)にかかるボルトの一方端部に形成された雄ねじと螺着するために、凹部101、201、301の内周側面には、雌ねじが形成されている。被取り付け部材100、200、300は、例えば、基板、ケーシングおよび冷却部材等である。 In the winding elements Df1 and Df2 in the fifth embodiment described above, the fastening members 71a; 71b and 72 (72-1 to 72-4) are the same as those shown in FIGS. As shown in (C), the winding elements Df1, Df2, and Df2 are attached to the members to be attached 100 (100a, 100b), 200 (200a, 200b), and 300 (300a, 300b). , Df2 and Df2 may be combined with a fixing member. The attached members 100, 200, 300 are formed with recesses 101, 201, 301 for fixing fastening members (fixing members) 71a; 71b, 72 (72-1 to 72-4). More specifically, in order to screw with a male screw formed at one end of a bolt applied to the fastening member (fixing member) 71a; 71b, 72 (72-1 to 72-4), the recesses 101, 201, An internal thread is formed on the inner peripheral side surface of 301. The attached members 100, 200, and 300 are, for example, a substrate, a casing, a cooling member, and the like.
 このような構成の巻線素子Df1、Df2、Df2では、第1および第2コア部材41a、42a;41b、42b;41b、42bを互いに当接させ、前記貫通孔415a、425a;414b、424b;414b、424bに前記締結部材71a;71b、72;71b、72のボルトを挿通させ、さらに、ワッシャー102a、202a(202a-1~202a-4)、302a(302a-1~302a-5)を介して被取り付け部材100、200、300の取り付けのための凹部101、201、301に螺着させて、巻線素子Df1、Df2、Df2が被取り付け部材100、200、300に固定されて取り付けられる。なお、これら第1ないし第3変形態様において、前記ワッシャー102a、202a、302aに代えて、前記ワッシャー102a、202a、302aの厚さに対応する高さの段部(凸部、段差部)102b、202b(202b-1~202b-4)、302b(302b-1~302b-5)が被取り付け部材100、200、300に形成されてもよい。言い換えれば、被取り付け部材100、200、300の面において、ワッシャー102a、202a、302aに対応する段部102b、202b(202b-1~202b-4)、302b(302b-1~302b-5)を除いた他の部分が僅かに凹んでいてもよい。図9(A)~図9(C)には、段部102b、202b(202b-1~202b-4)、302b(302b-1~302b-5)が形成された場合を示している。また、これら図9(A)~図9(C)に示す構成では、被取り付け部材100b、200b、300bに段部102b、202b、302bが設けられたが、前記段部102b、202b、302bに相当する凸部がコア部に設けられてもよい。例えば、図10(A)、図10(B)および図10(C)に示す巻線素子Df1’、Df2’、Df2”のように、前記ワッシャ102a、202a、302aに代えて、コア部4a’、4b’、4b”の第2コア部材42a’、42b’、42b”の面に、前記ワッシャ102a、202a、302aの厚さに対応する高さの凸部44a、44b(44b-1~44b-5)、44b(44b-1~44b-4)が形成されて設けられてもよい(言い換えれば、コア部4a’、4b’、4b”の第2コア部材42a’、42b’、42b”の面において、ワッシャー102a、202a、302aに対応する部分44a、44b(44b-1~44b-5)、44b(44b-1~44b-4)を除いた他の部分が僅かに凹んでいてもよい)。これら前記凸部44a、44b(44b-1~44b-5)、44b(44b-1~44b-4)における平面視での形状は、例えば円形や多角形等の任意形状でよい。図10(A)に示す第4変形態様では、中心位置1箇所で固定され、図10(B)に示す第5変形態様では、中心位置1箇所と周縁部分4箇所とで固定され、そして、図10(C)に示す第6変形態様では、周縁部分4箇所で固定される。なお、軸方向に垂直な断面が円形である円形コアの巻線素子も図8(A)、図9(A)および図10(A)に示すように、中心位置で固定されることが好ましい。 In the winding elements Df1, Df2, Df2 having such a configuration, the first and second core members 41a, 42a; 41b, 42b; 41b, 42b are brought into contact with each other, and the through holes 415a, 425a; 414b, 424b; The bolts of the fastening members 71a; 71b, 72; 71b, 72 are inserted into 414b, 424b, and further, through the washers 102a, 202a (202a-1 to 202a-4), 302a (302a-1 to 302a-5). Then, the winding elements Df1, Df2, and Df2 are fixedly attached to the attached members 100, 200, and 300 by screwing them into the recesses 101, 201, and 301 for attaching the attached members 100, 200, and 300. In these first to third modifications, instead of the washers 102a, 202a, 302a, step portions (projections, step portions) 102b having a height corresponding to the thickness of the washers 102a, 202a, 302a, 202b (202b-1 to 202b-4) and 302b (302b-1 to 302b-5) may be formed on the attached members 100, 200, and 300. In other words, the stepped portions 102b, 202b (202b-1 to 202b-4) and 302b (302b-1 to 302b-5) corresponding to the washers 102a, 202a and 302a are provided on the surfaces of the mounted members 100, 200 and 300. The other parts except for may be slightly recessed. 9A to 9C show the case where the stepped portions 102b, 202b (202b-1 to 202b-4) and 302b (302b-1 to 302b-5) are formed. Further, in the configurations shown in FIGS. 9A to 9C, the steps 102b, 202b, and 302b are provided on the attached members 100b, 200b, and 300b, but the steps 102b, 202b, and 302b are provided on the steps 102b, 202b, and 302b. Corresponding convex portions may be provided in the core portion. For example, instead of the washers 102a, 202a, and 302a as in the winding elements Df1 ′, Df2 ′, and Df2 ″ shown in FIGS. 10A, 10B, and 10C, the core portion 4a On the surfaces of the second core members 42a ', 42b', 42b "of '4b', 4b", convex portions 44a, 44b (44b-1 to 44b-1 to 44b-1 to 42b "having heights corresponding to the thicknesses of the washers 102a, 202a, 302a. 44b-5) and 44b (44b-1 to 44b-4) may be formed (in other words, the second core members 42a ′, 42b ′, 42b of the core portions 4a ′, 4b ′, 4b ″). ”, The portions other than the portions 44a, 44b (44b-1 to 44b-5) and 44b (44b-1 to 44b-4) corresponding to the washers 102a, 202a, and 302a are slightly recessed. Good The shape of the projections 44a, 44b (44b-1 to 44b-5) and 44b (44b-1 to 44b-4) in plan view may be any shape such as a circle or a polygon, for example. In the fourth modification mode shown in FIG. 10A, the center position is fixed at one place. In the fifth modification mode shown in FIG. 10B, the center position is fixed at one place and the peripheral portion 4 positions, and FIG. In the sixth modification shown in Fig. 8C, the winding is fixed at four peripheral portions, and the winding element having a circular core whose cross section perpendicular to the axial direction is circular is also shown in Figs. And as shown to FIG. 10 (A), it is preferable to fix in a center position.
 このような構成の巻線素子Df1、Df2、Df2、Df1’、Df2’、Df2”は、前記締結部材71a、71b、72が固定部材と兼用されているので、別途に固定部材を用意する必要がなく、コストを低減することが可能となる。また、このような段部102b、202b(202b-1~202b-4)、302b(302b-1~302b-5)または前記凸部44a、44b(44b-1~44b-5)、44b(44b-1~44b-4)を設けることで、ワッシャー102a、202a、302aが不要となり、コア部4a、4b、4a’、4b’、4b”と被取り付け部材100、200、300との間における熱伝導性が改善され、組み立て工数が低減される。また、これら段部102b、202b(202b-1~202b-4)、302b(302b-1~302b-5)または前記凸部44a、44b(44b-1~44b-5)、44b(44b-1~44b-4)が設けられても、そのコア部4における形状変化は、僅かであるので、巻線素子Dfの固有振動数は、ほとんど変化が無く、著しく低下することもない。 The winding elements Df1, Df2, Df2, Df1 ′, Df2 ′, and Df2 ″ having such a configuration need to be provided separately because the fastening members 71a, 71b, and 72 are also used as a fixing member. Further, it is possible to reduce the cost, and the stepped portions 102b and 202b (202b-1 to 202b-4), 302b (302b-1 to 302b-5) or the convex portions 44a and 44b can be reduced. By providing (44b-1 to 44b-5) and 44b (44b-1 to 44b-4), the washers 102a, 202a and 302a are not required, and the core portions 4a, 4b, 4a ′, 4b ′, 4b ″ and The thermal conductivity between the mounted members 100, 200, and 300 is improved, and the number of assembly steps is reduced. Further, these step portions 102b, 202b (202b-1 to 202b-4), 302b (302b-1 to 302b-5) or the convex portions 44a, 44b (44b-1 to 44b-5), 44b (44b-1) Even if .about.44b-4) is provided, since the shape change in the core portion 4 is slight, the natural frequency of the winding element Df hardly changes and does not significantly decrease.
 そして、このような構成の巻線素子Df1、Df2、Df2、Df1’、Df2’、Df2”において、前記ワッシャー102a、202a、302aを介して(または前記段部102b、202b、302bで、または前記凸部44a、44bで)被取り付け部材100、200、300に取り付けられる巻線素子Df1、Df2、Df2、Df1’、Df2’、Df2”の取付位置は、コア部4a、4b、4a’、4b’、4b”における振動変位が比較的小さい位置が好ましい。これによって被取り付け部材100、200、300に伝播する巻線素子Df1、Df2、Df2、Df1’、Df2’、Df2”の振動が抑制される。さらに、巻線素子Df1、Df2、Df2、Df1’、Df2’、Df2”が前記ワッシャー102a、202a、302aの厚さだけ被取り付け部材100、200、300から浮いているので(段部102b、202b、302bおよび凸部44a、44bの場合を含む)、コア部4a、4b、4a’、4b’、4b”の振動が被取り付け部材100、200、300に伝播することがさらに抑制でき、さらに効果的に、被取り付け部材100、200、300に伝播する巻線素子Df1、Df2、Df2、Df1’、Df2’、Df2”の振動が抑制される。この観点から、第2態様の巻線素子Df2が取り付けられ被取り付け部材200には、図9(B)に示すように、締結部材71bが対向する被取り付け部材200の位置には、貫通孔203が形成されてよく、あるいは、第2態様の巻線素子Df2が取り付けられ被取り付け部材300には、図9(C)に示すように、締結部材71bが対向する被取り付け部材200の位置には、凸部202b-5が形成されてよい。なお、空芯コイル1の軸芯部内へ延びる凸部の直径d(図9(C)参照)が、コア部4bの直径に較べて相対的に大きい場合には、コア部4bの中心位置での振動が小さくなる場合があり、このような場合に中心位置と周辺位置とで固定する図9(C)に示す態様が有利となる。 In the winding elements Df1, Df2, Df2, Df1 ′, Df2 ′, Df2 ″ having the above-described configuration, the washers 102a, 202a, 302a are used (or the step portions 102b, 202b, 302b, or The mounting positions of the winding elements Df1, Df2, Df2, Df1, Df1 ′, Df2 ′, Df2 ″ attached to the members to be attached 100, 200, 300 (with the convex portions 44a, 44b) are the core portions 4a, 4b, 4a ′, 4b. The position where the vibration displacement at '4b "is relatively small is preferable. This suppresses the vibration of the winding elements Df1, Df2, Df2, Df1', Df2 ', Df2" propagating to the mounted members 100, 200, 300. The Further, the winding elements Df1, Df2, Df2, Df1 ′, Df2 ′, Df2 ″ are lifted from the attachment members 100, 200, 300 by the thicknesses of the washers 102a, 202a, 302a ( steps 102b, 202b). , 302b and the convex portions 44a and 44b), the vibration of the core portions 4a, 4b, 4a ′, 4b ′, and 4b ″ can be further suppressed from propagating to the attached members 100, 200, and 300, and further effects are achieved. In particular, the vibration of the winding elements Df1, Df2, Df2, Df1 ′, Df2 ′, Df2 ″ propagating to the mounted members 100, 200, 300 is suppressed. From this viewpoint, the winding element Df2 of the second mode is suppressed. Is attached to the attached member 200, as shown in FIG. 9B, at the position of the attached member 200 facing the fastening member 71b, The through-hole 203 may be formed, or, as shown in FIG. 9 (C), the winding element Df2 of the second mode is attached to the attached member 300, and the attached member 200 is opposed to the fastening member 71b. A convex portion 202b-5 may be formed at a position where the diameter d (see FIG. 9C) of the convex portion extending into the axial core portion of the air-core coil 1 is compared with the diameter of the core portion 4b. If it is relatively large, the vibration at the center position of the core portion 4b may be reduced. In such a case, the embodiment shown in FIG. 9C in which the center position and the peripheral position are fixed is advantageous. .
 また、上述では、締結部材71a、71b、72が固定部材と兼用されたが、締結部材71a、71bは、上述した、コイル1の軸芯内部に少なくとも配置されるとともに、コイル1の軸芯における両端部に対向するコア部の両内面部分を少なくとも連結する連結部材と兼用されてもよい。このような連結部材と兼用される締結部材71cは、より具体的には、図11に示すように、円柱形状のロッドの両端にナットを取り付けるための雄ねじが形成されているとともに、前記ロッドの中央付近に連結部材として機能する円柱部分が形成されている。 In the above description, the fastening members 71a, 71b, and 72 are also used as the fixing members. However, the fastening members 71a and 71b are disposed at least inside the shaft core of the coil 1 and are arranged in the shaft core of the coil 1. It may also be used as a connecting member for connecting at least both inner surface portions of the core portion facing both end portions. More specifically, the fastening member 71c also used as such a connecting member has male threads for attaching nuts to both ends of a cylindrical rod as shown in FIG. A cylindrical portion that functions as a connecting member is formed near the center.
 このような構成の巻線素子Df3では、連結部材と兼用されている締結部材71cの両側から、前記貫通孔415a、425aを介して、第1および第2コア部材41a、42aが互いに当接され、さらに、締結部材71cの前記両端にナットが螺着されて締め付けられ、第1および第2コア部材41a、42aが締結される。 In the winding element Df3 having such a configuration, the first and second core members 41a and 42a are brought into contact with each other through the through holes 415a and 425a from both sides of the fastening member 71c that is also used as a connecting member. Further, nuts are screwed onto both ends of the fastening member 71c and tightened, and the first and second core members 41a and 42a are fastened.
 次に、別の実施形態について説明する。 Next, another embodiment will be described.
 (第6実施形態)
 図12は、第6実施形態における巻線素子の構成を示す図である。図12(A)は、縦断面であり、図12(B)は、上面図(下面図)である。
(Sixth embodiment)
FIG. 12 is a diagram illustrating a configuration of a winding element in the sixth embodiment. FIG. 12A is a longitudinal section, and FIG. 12B is a top view (bottom view).
 第1ないし第5実施形態における巻線素子Da、Db、Dc、Dd、De、Dfは、コイル1を実質的に内包するいわゆるポット型であるが、第6実施形態の巻線素子Dgは、コイル1の一部がコア部5外に露出するものである。このため、コイル1は、第1ないし第5実施形態の巻線素子Da、Db、Dc、Dd、De、Dfと同様であるので、その説明を省略する。 The winding elements Da, Db, Dc, Dd, De, and Df in the first to fifth embodiments are so-called pot types that substantially include the coil 1, but the winding element Dg in the sixth embodiment is A part of the coil 1 is exposed outside the core portion 5. For this reason, the coil 1 is the same as the winding elements Da, Db, Dc, Dd, De, and Df of the first to fifth embodiments, and the description thereof is omitted.
 この第6実施形態の巻線素子Dgにおけるコア部5は、コイル1に通電した場合にコイル1に生じる磁場による磁束を通す部材であって、コイル1の外側に配置され、さらに、複数の部材、図12に示す例では、2個の第1および第2コア部材51、52によって構成されている。これら第1および第2コア部材51、52は、同形であって、コイル1の一方端部の一部を覆う矩形板形状の矩形板部分511、521と、前記矩形板部分511、521の一方主面における互いに対向する一対の側部部分から略垂直にそれぞれ延びる各側壁部分512-1、512-2;522-1、522-2とを備えて構成される。前記矩形板部分511、521は、一方辺の長さがコイル1の外径(外直径)よりも大きくされている一方、他方辺の長さがコイル1の外径よりも小さくされている。これら第1および第2コア部材51、52の各側壁部分512-1、512-2;522-1、522-2における各端面を互いに当接させることによってコア部5が形成され、その縦断面は、図12に示すように、ロ字形状である。コイル1は、矩形板形状部分511、512の対角線の各交点を結ぶ軸とコイル1の軸とが互いに一致するように、このロ字形状のコア部5内に配置される。そして、これら第1および第2コア部材51、52における当接面5sfは、コイル1の軸AX方向に対して斜交または直交している。ここで、コイル1によって生じる磁力は、主に、コイル1の軸方向に沿って生じ、この吸引磁力が当接面5sfに作用する。したがって、このようなコイル1の軸方向に沿って生じる磁力に対し、第1および第2コア部材51、52における当接面5sfは、コイル1の軸AX方向に対して斜交または直交しているので、第1および第2コア部材51、52における当接面同士が突き当たることによって、その振動を抑制することができ、騒音を低減することができる。 The core portion 5 in the winding element Dg of the sixth embodiment is a member that allows a magnetic flux generated by the magnetic field generated in the coil 1 to pass when the coil 1 is energized, and is disposed outside the coil 1, and further includes a plurality of members. In the example shown in FIG. 12, the first and second core members 51 and 52 are configured. The first and second core members 51 and 52 have the same shape and are rectangular plate portions 511 and 521 each having a rectangular plate shape that covers a part of one end portion of the coil 1, and one of the rectangular plate portions 511 and 521. Each side wall portion 512-1, 512-2; 522-1 and 522-2 each extending substantially perpendicularly from a pair of side portions facing each other on the main surface. Each of the rectangular plate portions 511 and 521 has a length on one side larger than the outer diameter (outer diameter) of the coil 1, and a length on the other side smaller than the outer diameter of the coil 1. The core portion 5 is formed by bringing the end faces of the side wall portions 512-1, 512-2; 522-1, 522-2 of the first and second core members 51, 52 into contact with each other, and a longitudinal section thereof. Is a square shape as shown in FIG. The coil 1 is disposed in the square-shaped core portion 5 so that the axis connecting the intersections of the diagonal lines of the rectangular plate-shaped portions 511 and 512 and the axis of the coil 1 coincide with each other. The contact surfaces 5 sf of the first and second core members 51 and 52 are oblique or orthogonal to the axis AX direction of the coil 1. Here, the magnetic force generated by the coil 1 is mainly generated along the axial direction of the coil 1, and this attractive magnetic force acts on the contact surface 5sf. Therefore, with respect to the magnetic force generated along the axial direction of the coil 1, the contact surfaces 5 sf of the first and second core members 51 and 52 are oblique or orthogonal to the axis AX direction of the coil 1. Therefore, when the contact surfaces of the first and second core members 51 and 52 abut against each other, the vibration can be suppressed and noise can be reduced.
 このように第6実施形態の巻線素子Dgは、コイル1が外部から見える構造であって、コイル1の両端部に少なくとも対向するコア部部分(図12に示す例では、矩形板部分511、521)と、コイル1の外周面でこれらコア部部分を連結するコア部部分(図12に示す例では、側壁部分512、522)とを備えて構成されている。 As described above, the winding element Dg of the sixth embodiment has a structure in which the coil 1 can be seen from the outside, and the core portion portions (in the example shown in FIG. 12, the rectangular plate portions 511, 521) and a core portion (the side wall portions 512 and 522 in the example shown in FIG. 12) that connects these core portions on the outer peripheral surface of the coil 1.
 なお、第6実施形態の巻線素子Dgにおけるコア部5の側壁部分512、522の内面は、コイル1の外周に沿うように形成されていてもよい。 Note that the inner surfaces of the side wall portions 512 and 522 of the core portion 5 in the winding element Dg of the sixth embodiment may be formed along the outer periphery of the coil 1.
 このような構成によっても、第6実施形態の巻線素子Dgは、第1実施形態の巻線素子Daと同様に、第1および第2コア部材51、52における当接面5sfは、コイル1の軸AX方向に対して斜交または直交しているので、第1および第2コア部材51、52における当接面同士が突き当たることによって第1および第2コア部材51、52は、しっかりと当接され、その振動を抑制することができ、騒音を低減することができる。 Even with such a configuration, the winding element Dg of the sixth embodiment is similar to the winding element Da of the first embodiment in that the contact surface 5sf of the first and second core members 51, 52 is the coil 1 Since the first and second core members 51 and 52 are in contact with each other, the first and second core members 51 and 52 are firmly in contact with each other. The vibration can be suppressed and noise can be reduced.
 なお、上述の第1ないし第6実施形態における巻線素子Da、Db、Dc、Dd、De、Df、Dgにおいて、前記当接面および前記コア部と前記連結部材との連結面のうちの少なくとも一方には、隙間を埋める隙間埋め材をさらに備えてもよい。上述の第1ないし第5実施形態における巻線素子Da、Db、Dc、Dd、De、Df、Dgは、例えば、ナノメートルオーダの非常に微小な振動変位を、複数のコア部材を前記当接面で互いに突き当てることによって抑えているが、コア部材の表面における例えば凹凸や加工公差等によって前記当接面の密着性が良好ではないと、前記振動変位を良好に抑えることが難しくなる。そのため、このような構成の巻線素子Da、Db、Dc、Dd、De、Df、Dgは、当接面に隙間埋め材をさらに備えることによって、当接面の密着性が向上し、振動をより抑制することが可能となる。隙間埋め材は、前記ナノメートルオーダの振動変位を抑えるべく当接面の密着性を高めるものであるから、箔状の薄い部材でよく、好ましくは当接面の凹凸に馴染みやすい部材がよく、例えば、樹脂の箔(薄板)や金属の箔(薄板)や紙等を用いることができる。なお、樹脂は、接着性を有する必要はないが、接着性を有していてもよい。このように接着性は、必要ではないので、使用後であっても、巻線素子Da、Db、Dc、Dd、De、Df、Dgを分解して点検することも可能である。 In the winding elements Da, Db, Dc, Dd, De, Df, Dg in the first to sixth embodiments described above, at least of the contact surfaces and the connection surfaces of the core portion and the connection member On one side, a gap filling material for filling the gap may be further provided. The winding elements Da, Db, Dc, Dd, De, Df, and Dg in the first to fifth embodiments described above, for example, have a very small vibration displacement on the order of nanometers, and a plurality of core members are in contact with each other. Although it suppresses by mutually abutting on a surface, if the adhesiveness of the said contact surface is not favorable by the unevenness | corrugation, processing tolerance, etc. in the surface of a core member, it will become difficult to suppress the said vibration displacement favorably. For this reason, the winding elements Da, Db, Dc, Dd, De, Df, and Dg having such a configuration further include a gap filling material on the contact surface, thereby improving the adhesion of the contact surface and causing vibration. It becomes possible to suppress more. Since the gap filling material is to increase the adhesion of the contact surface in order to suppress the vibration displacement of the nanometer order, it may be a foil-like thin member, preferably a member that is easily familiar with the unevenness of the contact surface, For example, resin foil (thin plate), metal foil (thin plate), paper, or the like can be used. The resin does not need to have adhesiveness, but may have adhesiveness. Thus, since adhesiveness is not necessary, it is also possible to disassemble and inspect the winding elements Da, Db, Dc, Dd, De, Df, and Dg even after use.
 なお、このような隙間埋め材をさらに備える場合では、上述した第5実施形態の巻線素子Df1、Df2のようにこのような締結部材71a;71b、72(72-1~72-4)をさらに備えることで、前記隙間埋め材に前記締結部材71a;71b、72によって与圧を作用させることによって、高温時における隙間埋め材の剛性劣化が抑制され、温度変化に対する振動抑制効果が安定的となる。 In the case of further including such a gap filling material, such fastening members 71a; 71b, 72 (72-1 to 72-4) are provided as in the winding elements Df1, Df2 of the fifth embodiment described above. Further, by applying pressure to the gap filling material by the fastening members 71a; 71b, 72, deterioration of rigidity of the gap filling material at high temperatures is suppressed, and the vibration suppressing effect against temperature change is stable. Become.
 また、上述の第1ないし第6実施形態における巻線素子Da、Db、Dc、Dd、De、Df、Dgでは、コア部が2個の第1および第2コア部材によって形成される場合について説明したが、コア部は、任意の個数のコア部材によって形成されてよい。例えば、コア部は、3個の第1ないし第3コア部材によって形成され、第2コア部材は、コイル1の外周面を覆う円筒形状の部材であり、第1および第3コア部材は、同形であって、前記第2コア部材の円筒形状における両端部にそれぞれ連結される円板形状の部材である。 In the winding elements Da, Db, Dc, Dd, De, Df, and Dg in the first to sixth embodiments described above, the case where the core portion is formed by the two first and second core members will be described. However, the core portion may be formed by any number of core members. For example, the core portion is formed by three first to third core members, the second core member is a cylindrical member that covers the outer peripheral surface of the coil 1, and the first and third core members have the same shape. And it is a disk-shaped member respectively connected with the both ends in the cylindrical shape of the said 2nd core member.
 次に、実施例について説明する。 Next, examples will be described.
 (実施例)
 図13は、第1実施例および比較例における駆動周波数の変化に対する振動加速度の変化を示す図である。図13の横軸は、駆動周波数(kHz)であり、その縦軸は、振動加速度である。○は、第1実施例の結果を示し、●は、比較例の結果を示す。
(Example)
FIG. 13 is a diagram illustrating a change in vibration acceleration with respect to a change in drive frequency in the first example and the comparative example. The horizontal axis in FIG. 13 is the drive frequency (kHz), and the vertical axis is the vibration acceleration. ○ indicates the result of the first example, and ● indicates the result of the comparative example.
 第1実施例の巻線素子は、図5に示す第2実施形態の構造の巻線素子であり、比較例の巻線素子は、図4に示す構造の巻線素子である。なお、これらの測定において、振動加速度は、以下の実施例の測定においても同様に、各駆動周波数において前記吸引磁力が等しくなる条件で測定され、図5に示すように、巻線素子の端部位置で測定された。 The winding element of the first example is a winding element having the structure of the second embodiment shown in FIG. 5, and the winding element of the comparative example is a winding element having the structure shown in FIG. In these measurements, the vibration acceleration is also measured under the conditions in which the attractive magnetic force is equal at each drive frequency in the measurement of the following examples. As shown in FIG. Measured in position.
 図13に示すように、比較例の巻線素子は、約11kHzで振動加速度がピークとなっており、この約11kHzが固有振動数であるが、第1実施例の巻線素子は、約13kHzで振動加速度がピークとなっており、この約13kHzが固有振動数である。このように第1実施例の巻線素子は、比較例の巻線素子と較べて固有振動数が高周波側にシフトしており、振動がより抑制されている。このため、第1実施例の巻線素子は、比較例の巻線素子と較べて、より高い駆動周波数まで、共振することなく使用することができる。 As shown in FIG. 13, the winding element of the comparative example has a peak vibration acceleration at about 11 kHz, and this about 11 kHz is the natural frequency, but the winding element of the first embodiment has about 13 kHz. The vibration acceleration has a peak at about 13 kHz, which is the natural frequency. Thus, the winding element of the first embodiment has a natural frequency shifted to the high frequency side as compared with the winding element of the comparative example, and the vibration is further suppressed. For this reason, the winding element of the first embodiment can be used without resonance up to a higher driving frequency than the winding element of the comparative example.
 図14は、コア部の輪郭形状の相違による固有振動数の相違を説明するための図である。図14には、図6(A)に示す構造のコア部4を備える巻線素子(図14の右欄)および図6(B)に示す構造のコア部3を備える巻線素子(図14の左欄)における1次共振モード(図14の上段)および2次共振モード(図14の下段)の固有振動数がそれぞれ示されている。図14には、コア部4、3を一体物でモデル化した場合におけるシミュレーション結果が示されている。 FIG. 14 is a diagram for explaining the difference in natural frequency due to the difference in the contour shape of the core portion. 14 shows a winding element including the core portion 4 having the structure shown in FIG. 6A (the right column in FIG. 14) and a winding element having the core portion 3 having the structure shown in FIG. In the left column of FIG. 14, the natural frequencies of the primary resonance mode (upper part of FIG. 14) and the secondary resonance mode (lower part of FIG. 14) are shown. FIG. 14 shows a simulation result in the case where the core parts 4 and 3 are modeled as a single unit.
 図14に示すように、図6(B)に示す構造のコア部3を備える巻線素子における1次共振モードおよび2次共振モードの固有振動数は、それぞれ、5480Hzおよび10740Hzである一方、図6(A)に示す構造のコア部4を備える巻線素子における1次共振モードおよび2次共振モードの固有振動数は、それぞれ、6320Hzおよび11700Hzであり、コア部の外形形状の変更により、コア部に肉厚部分をさらに設けた方がその固有振動数が向上している。このように図6(A)に示す構造のコア部4を備える巻線素子は、図6(B)に示す構造のコア部3を備える巻線素子に較べて、固有振動数が高周波側にシフトしており、振動がより抑制され、より高い駆動周波数まで、共振することなく使用することができる。 As shown in FIG. 14, the natural frequencies of the primary resonance mode and the secondary resonance mode in the winding element including the core portion 3 having the structure shown in FIG. 6B are 5480 Hz and 10740 Hz, respectively. The natural frequencies of the primary resonance mode and the secondary resonance mode in the winding element including the core portion 4 having the structure shown in FIG. 6 (A) are 6320 Hz and 11700 Hz, respectively, and the core shape is changed by changing the outer shape of the core portion. The natural frequency is improved by further providing a thick portion in the portion. Thus, the winding element including the core portion 4 having the structure shown in FIG. 6A has a natural frequency on the high frequency side as compared with the winding element including the core portion 3 having the structure shown in FIG. It is shifted, vibration is further suppressed, and it can be used without resonance up to a higher driving frequency.
 図15は、連結部材の有無および相違による固有振動数の相違を説明するための図である。図15の横軸は、駆動周波数(kHz)であり、その縦軸は、振動加速度である。 FIG. 15 is a diagram for explaining a difference in natural frequency due to the presence or absence of a connecting member and a difference. The horizontal axis in FIG. 15 is the drive frequency (kHz), and the vertical axis is the vibration acceleration.
 図15には、図5に示す連結部材の無い構造の巻線素子における測定結果(測定位置中央位置;○、測定位置端部位置;△)、図7(B)に示す第2態様の連結部材の有る巻線素子における測定結果(測定位置中央位置;●、測定位置端部位置;▲)、および、図7(A)に示す第2態様に相当するが連結部材がリング形状である場合の巻線素子における測定結果(測定位置中央位置;□、測定位置端部位置;■)が、それぞれ、示されている。 FIG. 15 shows the measurement results (measurement position center position; ◯, measurement position end position; Δ) in the winding element having the structure without the connection member shown in FIG. 5 and the connection of the second mode shown in FIG. The measurement result (measurement position center position; ●, measurement position end position; ▲) in the winding element having the member, and corresponding to the second mode shown in FIG. The measurement results (the measurement position center position; □, the measurement position end position; ■) in each of the winding elements are shown.
 図7(B)に示す第2態様の連結部材の有る巻線素子における前記連結部材には、室温でのヤング率が10GPa以上の、例えば、2液硬化型のエポキシ系樹脂が用いられ、コア部が形成された後に、前記樹脂が前記コア部内へ流し込まれ、コア部が密閉された後に、その内部で前記樹脂が硬化された。また、前記リング形状の連結部材には、比較的ヤング率が高く、そして、その温度依存性が小さいことから、セラミックス、例えば、アルミナを90質量%以上含み、ヤング率が250GPa以上のセラミックスが用いられた。 For the connecting member in the winding element having the connecting member of the second mode shown in FIG. 7B, for example, a two-component curable epoxy resin having a Young's modulus at room temperature of 10 GPa or more is used. After the part was formed, the resin was poured into the core part, and after the core part was sealed, the resin was cured therein. Further, the ring-shaped connecting member has a relatively high Young's modulus and has a small temperature dependency, and therefore ceramics, for example, ceramics containing 90% by mass or more of alumina and having a Young's modulus of 250 GPa or more is used. It was.
 図15に示すように、連結部材が無い巻線素子では、約6~7kHzの間にあった固有振動数が16kHzよりも少なくとも高くなっている。このように連結部材を備えることによって、巻線素子は、連結部材を備えない場合に較べて、固有振動数が高周波側にシフトしており、振動がより抑制され、より高い駆動周波数まで、共振することなく使用することができる。 As shown in FIG. 15, in the winding element without the connecting member, the natural frequency that was between about 6 and 7 kHz is at least higher than 16 kHz. By providing the connecting member in this manner, the winding element has a natural frequency shifted to the high frequency side compared to the case where the connecting member is not provided, the vibration is further suppressed, and resonance is achieved up to a higher driving frequency. Can be used without.
 図16は、隙間埋め材の有無による固有振動数の相違を説明するための図である。図16の横軸は、駆動周波数(kHz)であり、その縦軸は、振動加速度である。 FIG. 16 is a diagram for explaining a difference in natural frequency depending on the presence or absence of a gap filling material. The horizontal axis in FIG. 16 is the drive frequency (kHz), and the vertical axis is the vibration acceleration.
 図16には、図5に示す構造の巻線素子において、隙間埋め材が無い場合における測定結果(測定位置端部位置;△)および隙間埋め材が有る場合における測定結果(測定位置端部位置;○)が、それぞれ、示されている。隙間埋め材には、室温でのヤング率が10GPa以上の、例えば、2液硬化型のエポキシ系樹脂(接着剤ではない)が用いられた。 FIG. 16 shows a measurement result (measurement position end position; Δ) when there is no gap filling material in the winding element having the structure shown in FIG. 5 and a measurement result (measurement position end position when there is a gap filling material). ;) Are shown respectively. For the gap filling material, for example, a two-component curable epoxy resin (not an adhesive) having a Young's modulus at room temperature of 10 GPa or more was used.
 図16に示すように、隙間埋め材が無い巻線素子では、固有振動数が約13kHzであったが、隙間埋め材が有る巻線素子では、固有振動数が約14.5kHzであった。このように隙間埋め材を備えることによって、巻線素子は、隙間埋め材を備えない場合に較べて、固有振動数が高周波側にシフトしており、振動がより抑制され、より高い駆動周波数まで、共振することなく使用することができる。 As shown in FIG. 16, the natural frequency was about 13 kHz in the winding element without the gap filling material, but the natural frequency was about 14.5 kHz in the winding element with the gap filling material. By providing the gap filling material in this way, the winding element has a natural frequency shifted to a higher frequency side than when no gap filling material is provided, and the vibration is further suppressed, so that the drive frequency is higher. Can be used without resonance.
 図17は、締結部材の有無による、温度の変化に対する振動加速度の変化を示す図である。図17の横軸は、コア部表面の温度(℃)であり、その縦軸は、振動加速度である。 FIG. 17 is a diagram showing a change in vibration acceleration with respect to a change in temperature depending on the presence or absence of a fastening member. The horizontal axis in FIG. 17 is the temperature (° C.) of the core surface, and the vertical axis is the vibration acceleration.
 図17には、図7(B)に示すように連結部材を内部空間に充填した場合の巻線素子における測定結果(測定位置中央位置;○、測定位置端部位置;△)、および、図7(B)に示すように連結部材を内部空間に充填した場合であって、図8(B)に示すように締結部材で第1および第2コア部材を締結部材としてのボルトおよびナットによって締結した場合の巻線素子における測定結果(測定位置中央位置;●、測定位置端部位置;▲)が、それぞれ、示されている。駆動周波数は、10kHzであり、前記ボルトおよびナットは、M6であり、8Nmのトルクで締め付けられた。これら巻線素子の温度上昇は、連続駆動による自己発熱に起因するものである。 FIG. 17 shows the measurement results (measurement position center position; ◯, measurement position end position; Δ) in the winding element when the connecting member is filled in the internal space as shown in FIG. As shown in FIG. 7B, the connecting member is filled in the internal space, and the first and second core members are fastened with the bolts and nuts as the fastening members as shown in FIG. 8B. The measurement results (measurement position center position; ●, measurement position end position; ▲) in the winding element are shown respectively. The drive frequency was 10 kHz, the bolt and nut were M6, and were tightened with a torque of 8 Nm. The temperature rise of these winding elements is caused by self-heating due to continuous driving.
 図17に示すように、締結部材を備えない場合では、コア部表面の温度上昇に伴ってその振動も増大しているが、締結部材を備える場合では、コア部表面の温度が上昇しても振動が略一定であり、振動の温度依存性が略解消している。これは、締結部材による締め付けにより連結部材の軟化が抑制されたものと思われる。 As shown in FIG. 17, in the case where the fastening member is not provided, the vibration also increases as the temperature of the core portion surface increases. However, in the case where the fastening member is provided, even if the temperature of the core portion surface increases. The vibration is substantially constant, and the temperature dependence of the vibration is substantially eliminated. This is considered that the softening of the connecting member is suppressed by the fastening by the fastening member.
 図18は、図8(B)に示す構造の巻線素子において、その振動分布を示す図である。この実施例の巻線素子は、図8(B)を用いて説明した巻線素子Df2の構造のものである。図18には、この実施例の巻線素子Df2におけるコア部4bの上面(コア部41bの上面)(または下面(コア部42bの下面))の振動分布が示されている。測定位置は、或る1つの対角線を約45度ずつ回転させた場合に生じ得る各線上において、縁周位置(端部位置)、中心位置、および、縁周位置と中心位置との間の中間位置の3個の各位置である。また、中心位置の振動変位の大きさを1として各測定位置の測定結果を規格化している。図18から分かるように、コア部4bにおける振動変位の比較的小さい位置は、縁周位置であり、その振動変位の比較的大きい位置は、中心位置である。したがって、このような構造の巻線素子Df2は、図9(B)に示すように、コア部4bの縁周位置で被取り付け部材200に巻線素子を取り付けることによって、被取り付け部材200に伝播する巻線素子Df2の振動が抑制される。 FIG. 18 is a diagram showing the vibration distribution in the winding element having the structure shown in FIG. 8 (B). The winding element of this embodiment has the structure of the winding element Df2 described with reference to FIG. FIG. 18 shows the vibration distribution of the upper surface (the upper surface of the core portion 41b) (or the lower surface (the lower surface of the core portion 42b)) of the core portion 4b in the winding element Df2 of this embodiment. The measurement position is an edge position (end position), a center position, and an intermediate position between the edge position and the center position on each line that can be generated when a certain diagonal line is rotated by about 45 degrees. Each of the three positions. In addition, the measurement result at each measurement position is normalized by setting the magnitude of the vibration displacement at the center position to 1. As can be seen from FIG. 18, the position where the vibration displacement in the core portion 4b is relatively small is the edge circumferential position, and the position where the vibration displacement is relatively large is the center position. Therefore, as shown in FIG. 9B, the winding element Df2 having such a structure is propagated to the attached member 200 by attaching the winding element to the attached member 200 at the edge peripheral position of the core portion 4b. The vibration of the winding element Df2 is suppressed.
 本明細書は、上記のように様々な態様の技術を開示しているが、そのうち主な技術を以下に纏める。 This specification discloses various modes of technology as described above, and the main technologies are summarized below.
 一態様にかかる巻線素子は、1または複数のコイルと、前記コイルによって生じた磁束を通すコア部とを備えた巻線素子であって、前記コイルは、長尺な導体部材を巻回した空芯コイルであり、前記コア部は、前記コイルの外側に配置されるとともに複数の部材によって構成され、前記複数の部材における当接面は、前記コイルの軸方向に対して斜交または直交している。そして、好ましくは、前記コイルは、帯状の導体部材を、該導体部材の幅方向が該コイルの軸方向に沿うように巻回することによって構成される。 A winding element according to one aspect is a winding element including one or a plurality of coils and a core portion through which a magnetic flux generated by the coils is passed, and the coil is formed by winding a long conductor member. An air-core coil, wherein the core portion is disposed outside the coil and includes a plurality of members, and contact surfaces of the plurality of members are oblique or orthogonal to the axial direction of the coils. ing. And preferably, the said coil is comprised by winding a strip | belt-shaped conductor member so that the width direction of this conductor member may follow the axial direction of this coil.
 このような構成の巻線素子では、コア部は、複数の部材によって構成され、これら複数の部材における当接面は、コイルの軸方向に対して斜交または直交している。ここで、コイルによって生じる磁力は、主に、コイルの軸方向に沿って生じる。したがって、このようなコイルの軸方向に沿って生じる磁力に対し、前記複数の部材における当接面は、コイルの軸方向に対して斜交または直交しているので、前記複数の部材における当接面同士が突き当たることによって前記複数の部材は、しっかりと当接され、その振動を抑制することができ、騒音を低減することができる。このため、前記複数の部材における当接面は、コイルの軸方向に対して斜交していてもよいが、直交している方が効果的であって好ましい。このように空芯コイルと該空芯コイルの外側に配置されたコア部とを備える巻線素子において、振動が低減され、騒音も低減される。 In the winding element having such a configuration, the core portion is composed of a plurality of members, and the contact surfaces of the plurality of members are oblique or orthogonal to the axial direction of the coil. Here, the magnetic force generated by the coil is mainly generated along the axial direction of the coil. Therefore, the contact surfaces of the plurality of members are oblique or orthogonal to the axial direction of the coils against the magnetic force generated along the axial direction of the coil. When the surfaces abut each other, the plurality of members are firmly brought into contact with each other, so that vibrations thereof can be suppressed and noise can be reduced. For this reason, the contact surfaces of the plurality of members may be oblique with respect to the axial direction of the coil, but it is more effective and preferable to be orthogonal. Thus, in the winding element including the air-core coil and the core portion disposed outside the air-core coil, vibration is reduced and noise is also reduced.
 また、他の一態様では、上述の巻線素子において、前記コイルの輪郭形状は、円筒形状であり、前記コア部は、前記コイルを内包するための円筒形状の空間を有するとともに、前記コア部の輪郭形状は、多角柱形状である。 In another aspect, in the above-described winding element, the coil has a cylindrical shape, and the core portion includes a cylindrical space for containing the coil, and the core portion. The outline shape is a polygonal prism shape.
 このような構成の巻線素子では、コア部は、コア部の輪郭形状が円柱形状である場合に較べて肉厚な部分を有している。このため、このような構成の巻線素子は、コア部の剛性がより向上し、コア部の輪郭形状が円柱形状である場合に較べてその固有振動数を高周波側にシフトすることができる。 In the winding element having such a configuration, the core portion has a thicker portion than the case where the contour shape of the core portion is a cylindrical shape. For this reason, the winding element having such a configuration can further improve the rigidity of the core portion, and can shift the natural frequency to the high frequency side as compared with the case where the contour shape of the core portion is a columnar shape.
 また、他の一態様では、これら上述の巻線素子において、前記コイルの軸芯内部に少なくとも配置されるとともに、前記コイルの軸芯における両端部に対向する前記コア部の両部分を少なくとも連結する連結部材をさらに備える。 Further, in another aspect, in the above-described winding element, at least the two portions of the core portion facing at both ends of the axial center of the coil are connected at least inside the axial core of the coil. A connecting member is further provided.
 このような構成の巻線素子は、連結部材をさらに備えるので、コイルの軸芯における両端部に対向するコア部の両部分の振動を抑えることができ、また、コア部の剛性がより向上するので、前記連結部材を備えない場合に較べてその固有振動数を高周波側にシフトすることができる。 Since the winding element having such a configuration further includes a connecting member, it is possible to suppress vibrations of both portions of the core portion facing both end portions of the axial center of the coil, and the rigidity of the core portion is further improved. Therefore, the natural frequency can be shifted to the high frequency side as compared with the case where the connecting member is not provided.
 また、他の一態様では、上述の巻線素子において、前記当接面および前記コア部と前記連結部材との連結面のうちの少なくとも一方には、隙間を埋める隙間埋め材をさらに備える。 In another aspect, in the winding element described above, at least one of the contact surface and the connecting surface between the core portion and the connecting member further includes a gap filling material that fills the gap.
 このような構成の巻線素子は、当接面および連結面のうちの少なくとも一方に隙間埋め材をさらに備えることによって、前記隙間埋め材を備える当接面や連結面の密着性が向上し、振動をより抑制することが可能となる。 The winding element having such a configuration further includes a gap filling material on at least one of the contact surface and the connection surface, thereby improving the adhesion of the contact surface and the connection surface including the gap filling material, Vibration can be further suppressed.
 また、他の一態様では、これら上述の巻線素子において、前記当接面には、隙間を埋める隙間埋め材をさらに備える。 Further, in another aspect, in the above-described winding element, the contact surface further includes a gap filling material that fills the gap.
 このような構成の巻線素子は、当接面に隙間埋め材をさらに備えることによって、前記隙間埋め材を備える当接面や連結面の密着性が向上し、振動をより抑制することが可能となる。 In the winding element having such a configuration, by further providing a gap filling material on the contact surface, the adhesion of the contact surface and the connection surface provided with the gap filling material is improved, and vibration can be further suppressed. It becomes.
 また、他の一態様では、これら上述の巻線素子において、前記当接面を構成する複数の部材を互いに締結する締結部材をさらに備える。 In another aspect, the above-described winding element further includes a fastening member that fastens a plurality of members constituting the contact surface to each other.
 このような構成の巻線素子は、締結部材をさらに備えることによって、当接面の密着性が向上し、振動をより抑制することが可能となる。 The winding element having such a configuration further includes a fastening member, thereby improving the adhesion of the contact surface and further suppressing vibration.
 また、他の一態様では、上述の巻線素子において、前記締結部材は、当該巻線素子が取り付けられる被取り付け部材に、当該巻き線素子を固定する固定部材と兼用されている。 In another aspect, in the above-described winding element, the fastening member is also used as a fixing member that fixes the winding element to a member to which the winding element is attached.
 このような構成の巻線素子は、前記締結部材が固定部材と兼用されているので、別途に固定部材を用意する必要がなく、コストを低減することが可能となる。 In the winding element having such a configuration, since the fastening member is also used as a fixing member, it is not necessary to prepare a fixing member separately, and the cost can be reduced.
 また、他の一態様では、これら上述の巻線素子において、前記コア部は、前記コイルの軸芯内部へ延びる凸部を有している。 In another aspect, in the above-described winding elements, the core portion has a convex portion extending into the axial center of the coil.
 このような構成の巻線素子では、前記凸部によってコイルの軸芯内部におけるコア部の上部と下部とのギャップ長を調整することができ、そのインダクタンスを調整することが可能となる。 In the winding element configured as described above, the gap length between the upper portion and the lower portion of the core portion inside the axial center of the coil can be adjusted by the convex portion, and the inductance can be adjusted.
 この出願は、2010年9月6日に出願された日本国特許出願特願2010-198481および2011年5月13日に出願された日本国特許出願特願2011-107845を基礎とするものであり、その内容は、本願に含まれるものである。 This application is based on Japanese Patent Application No. 2010-198481 filed on September 6, 2010 and Japanese Patent Application No. 2011-107845 filed on May 13, 2011. The contents thereof are included in the present application.
 本発明を表現するために、上述において図面を参照しながら実施形態を通して本発明を適切且つ十分に説明したが、当業者であれば上述の実施形態を変更および/または改良することは容易に為し得ることであると認識すべきである。したがって、当業者が実施する変更形態または改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態または当該改良形態は、当該請求項の権利範囲に包括されると解釈される。 In order to express the present invention, the present invention has been properly and fully described through the embodiments with reference to the drawings. However, those skilled in the art can easily change and / or improve the above-described embodiments. It should be recognized that this is possible. Therefore, unless the modifications or improvements implemented by those skilled in the art are at a level that departs from the scope of the claims recited in the claims, the modifications or improvements are not covered by the claims. It is interpreted that it is included in
 本発明によれば、1または複数のコイルと、前記コイルによって生じた磁束を通すコア部とを備えた巻線素子を提供することができる。 According to the present invention, it is possible to provide a winding element including one or a plurality of coils and a core part through which the magnetic flux generated by the coils passes.

Claims (8)

  1.  1または複数のコイルと、前記コイルによって生じた磁束を通すコア部とを備えた巻線素子であって、
     前記コイルは、長尺な導体部材を巻回した空芯コイルであり、
     前記コア部は、前記コイルの外側に配置されるとともに複数の部材によって構成され、前記複数の部材における当接面は、前記コイルの軸方向に対して斜交または直交していること
     を特徴とする巻線素子。
    A winding element comprising one or more coils and a core portion through which the magnetic flux generated by the coils passes;
    The coil is an air-core coil wound with a long conductor member,
    The core portion is disposed outside the coil and is configured by a plurality of members, and a contact surface of the plurality of members is oblique or orthogonal to the axial direction of the coil. Winding element to do.
  2.  前記コイルの輪郭形状は、円筒形状であり、
     前記コア部は、前記コイルを内包するための円筒形状の空間を有するとともに、前記コア部の輪郭形状は、多角柱形状であること
     を特徴とする請求項1に記載の巻線素子。
    The outline shape of the coil is a cylindrical shape,
    The winding element according to claim 1, wherein the core portion has a cylindrical space for enclosing the coil, and a contour shape of the core portion is a polygonal column shape.
  3.  前記コイルの軸芯内部に少なくとも配置されるとともに、前記コイルの軸芯における両端部に対向する前記コア部の両部分を少なくとも連結する連結部材をさらに備えること
     を特徴とする請求項1または請求項2に記載の巻線素子。
    The connecting member for connecting at least both portions of the core portion facing at both ends of the axial center of the coil and at least disposed inside the axial core of the coil. The winding element according to 2.
  4.  前記当接面および前記コア部と前記連結部材との連結面のうちの少なくとも一方には、隙間を埋める隙間埋め材をさらに備えること
     を特徴とする請求項3に記載の巻線素子。
    4. The winding element according to claim 3, further comprising a gap filling material that fills the gap in at least one of the contact surface and the connection surface between the core portion and the connection member.
  5.  前記当接面には、隙間を埋める隙間埋め材をさらに備えること
     を特徴とする請求項1または請求項2に記載の巻線素子。
    The winding element according to claim 1, further comprising a gap filling material that fills the gap on the contact surface.
  6.  前記当接面を構成する複数の部材を互いに締結する締結部材をさらに備えること
     を特徴とする請求項1または請求項2に記載の巻線素子。
    The winding element according to claim 1, further comprising a fastening member that fastens a plurality of members constituting the contact surface to each other.
  7.  前記締結部材は、当該巻線素子が取り付けられる被取り付け部材に、当該巻き線素子を固定する固定部材と兼用されていること
     を特徴とする請求項6に記載の巻線素子。
    The winding element according to claim 6, wherein the fastening member is also used as a fixing member that fixes the winding element to an attached member to which the winding element is attached.
  8.  前記コア部は、前記コイルの軸芯内部へ延びる凸部を有していること
     を特徴とする請求項1または請求項2に記載の巻線素子。
    The winding element according to claim 1, wherein the core portion has a convex portion that extends into the axial center of the coil.
PCT/JP2011/004567 2010-09-06 2011-08-12 Winding element WO2012032715A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011800427317A CN103081045A (en) 2010-09-06 2011-08-12 Winding element

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-198481 2010-09-06
JP2010198481 2010-09-06
JP2011107845A JP5557797B2 (en) 2010-09-06 2011-05-13 Winding element
JP2011-107845 2011-05-13

Publications (1)

Publication Number Publication Date
WO2012032715A1 true WO2012032715A1 (en) 2012-03-15

Family

ID=45810328

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/004567 WO2012032715A1 (en) 2010-09-06 2011-08-12 Winding element

Country Status (3)

Country Link
JP (1) JP5557797B2 (en)
CN (1) CN103081045A (en)
WO (1) WO2012032715A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018117047A (en) * 2017-01-18 2018-07-26 ファナック株式会社 Three-phase reactor with vibration suppression structure part

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014204032A (en) * 2013-04-08 2014-10-27 三菱電機株式会社 Coil device
CN105336468A (en) * 2014-07-04 2016-02-17 郑长茂 Inductor and manufacturing method of inductor
JP2017069460A (en) 2015-09-30 2017-04-06 太陽誘電株式会社 Coil component and manufacturing method therefor
JP6687881B2 (en) * 2015-12-02 2020-04-28 Tdk株式会社 Coil device
JP6612158B2 (en) * 2016-03-15 2019-11-27 Ntn株式会社 Magnetic element
JP6667826B2 (en) * 2016-04-13 2020-03-18 ローム株式会社 AC power supply
JP6656594B2 (en) 2017-05-22 2020-03-04 株式会社オートネットワーク技術研究所 Reactor
JP6490156B2 (en) 2017-07-06 2019-03-27 ファナック株式会社 Reactor with iron core and coil
JP7147266B2 (en) * 2018-05-18 2022-10-05 オムロン株式会社 Magnetic parts, electronic devices

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07288210A (en) * 1994-04-18 1995-10-31 Tdk Corp Surface mount inductor
JP2001110649A (en) * 1999-10-04 2001-04-20 Tdk Corp Attachment structure for magnetic component
JP2006066683A (en) * 2004-08-27 2006-03-09 Matsushita Electric Ind Co Ltd Coil component
JP2007201129A (en) * 2006-01-26 2007-08-09 Sumitomo Electric Ind Ltd Reactor
JP2008210998A (en) * 2007-02-27 2008-09-11 Pony Denki Kk Reactor element with air gap
JP2009059954A (en) * 2007-08-31 2009-03-19 Hitachi Powdered Metals Co Ltd Disc type reactor
JP2010129986A (en) * 2008-12-01 2010-06-10 Tdk-Lambda Corp Reactor element for power source

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02110316U (en) * 1989-02-20 1990-09-04
JP4915870B2 (en) * 2007-11-26 2012-04-11 Necトーキン株式会社 Reactor and manufacturing method thereof
CN101567243A (en) * 2008-02-18 2009-10-28 大同特殊钢株式会社 Cementing magnet for DC reactor and the DC reactor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07288210A (en) * 1994-04-18 1995-10-31 Tdk Corp Surface mount inductor
JP2001110649A (en) * 1999-10-04 2001-04-20 Tdk Corp Attachment structure for magnetic component
JP2006066683A (en) * 2004-08-27 2006-03-09 Matsushita Electric Ind Co Ltd Coil component
JP2007201129A (en) * 2006-01-26 2007-08-09 Sumitomo Electric Ind Ltd Reactor
JP2008210998A (en) * 2007-02-27 2008-09-11 Pony Denki Kk Reactor element with air gap
JP2009059954A (en) * 2007-08-31 2009-03-19 Hitachi Powdered Metals Co Ltd Disc type reactor
JP2010129986A (en) * 2008-12-01 2010-06-10 Tdk-Lambda Corp Reactor element for power source

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018117047A (en) * 2017-01-18 2018-07-26 ファナック株式会社 Three-phase reactor with vibration suppression structure part
US10529481B2 (en) 2017-01-18 2020-01-07 Fanuc Corporation Three-phase reactor including vibration suppressing structure part
US10910146B2 (en) 2017-01-18 2021-02-02 Fanuc Corporation Three-phase reactor including vibration suppressing structure part

Also Published As

Publication number Publication date
JP5557797B2 (en) 2014-07-23
CN103081045A (en) 2013-05-01
JP2012080068A (en) 2012-04-19

Similar Documents

Publication Publication Date Title
JP5557797B2 (en) Winding element
US9601256B2 (en) Wound iron core for static apparatus, amorphous transformer and coil winding frame for transformer
WO2011007879A1 (en) Reactor
WO2014073252A1 (en) Reactor device
JP5662255B2 (en) Reactor
WO2020071512A1 (en) Wound core and transformer
JP5271995B2 (en) Trance
JP2006344868A (en) Reactor and transformer
TWI611438B (en) Composite smoothing inductor and smoothing circuit
JP2013157352A (en) Coil device
JP6050024B2 (en) Reactor
JP2010074132A (en) Core for high-frequency transformer and high-frequency transformer
JP2012023090A (en) Reactor
JP6490129B2 (en) An iron core consisting of a first iron core block and a second iron core block
WO2011145299A1 (en) Reactor
JP2009117676A (en) Coupled inductor
JP2011077302A (en) Coil and transformer
JP2016127070A (en) Reactor
WO2020148942A1 (en) Stationary induction device
JP6774725B2 (en) Coil parts
JP2013207232A (en) Reactor and electrical apparatus
WO2012032716A1 (en) Winding element
WO2016013062A1 (en) Composite magnetic path inductor
JP5690572B2 (en) Trance
JPS60101906A (en) Three-phase three legs iron core type reactor with gaps

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180042731.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11823197

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11823197

Country of ref document: EP

Kind code of ref document: A1