WO2012031940A1 - Procede et dispositif de detection et d'exclusion de pannes satellite multiples dans un systeme gnss - Google Patents

Procede et dispositif de detection et d'exclusion de pannes satellite multiples dans un systeme gnss Download PDF

Info

Publication number
WO2012031940A1
WO2012031940A1 PCT/EP2011/064891 EP2011064891W WO2012031940A1 WO 2012031940 A1 WO2012031940 A1 WO 2012031940A1 EP 2011064891 W EP2011064891 W EP 2011064891W WO 2012031940 A1 WO2012031940 A1 WO 2012031940A1
Authority
WO
WIPO (PCT)
Prior art keywords
satellite
filter
failure
innovation
navigation solution
Prior art date
Application number
PCT/EP2011/064891
Other languages
English (en)
Inventor
Sébastien VOURC'H
Original Assignee
Sagem Defense Securite
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sagem Defense Securite filed Critical Sagem Defense Securite
Priority to US13/821,556 priority Critical patent/US9291714B2/en
Priority to EP11748963.3A priority patent/EP2614385B1/fr
Priority to CN201180042977.4A priority patent/CN103097911B/zh
Priority to RU2013114354/07A priority patent/RU2559842C2/ru
Publication of WO2012031940A1 publication Critical patent/WO2012031940A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/20Integrity monitoring, fault detection or fault isolation of space segment

Definitions

  • the scope of the invention is that of carriers using information provided by a satellite navigation system using measurements from several satellite constellations.
  • the invention relates to a satellite positioning device and a position information integrity checking method provided by such a device, able to detect and exclude two simultaneous satellite failures.
  • Carriers such as aircraft or boats have many navigation systems.
  • INS / GNSS Inertial Navigation System and Global Navigation Satellite System.
  • An inertial unit provides noisy and accurate information in the short term.
  • the localization performance of an inertial unit degrades (more or less quickly depending on the quality of the sensors, accelerometers or gyroscopes for example, and treatments used by the plant).
  • information acquired from a satellite navigation system is very unlikely to drift in the long term, it is often noisy and variable in accuracy.
  • inertial measurements are always available while GNSS information is not available or is likely to be deceived and scrambled.
  • Hybridization consists of combining the information provided by the inertial unit and the measurements provided by the satellite navigation system to obtain position and speed information by taking advantage of both systems.
  • the precision of the measurements provided by the GNSS receiver makes it possible to control the inertial drift and the measurements
  • Inertial noise can be used to filter noise on the GNSS receiver measurements.
  • the GNSS measurement model that is known does not take into account any satellite faults that affect the transmitted clocks or ephemerides, these faults usually appear as biases or drifts on the GNSS measurements.
  • integrity control systems aim to detect the appearance of these failures and to exclude the responsible satellites in order to find a navigation solution that no longer contains an undetected error.
  • the probability of failure of two satellites in the same constellation is less than the risk of integrity. This event can then be attributed to the integrity risk and the system requires only one ability to detect a single satellite failure. The satellite identified as being out of order can then be excluded so as to eliminate pollution of the navigation state by the satellite failure.
  • the invention proposes a method for controlling the integrity of position information delivered by a satellite positioning device comprising a Kalman filter bank each developing a navigation solution from raw measurements. of signals emitted by satellites, characterized in that it comprises the steps consisting, for each bank filter, in:
  • step (ii) calculating a cross innovation reflecting the difference between an observation corresponding to a raw measurement from a satellite not used by the filter and an a posteriori estimation of said observation resulting from the navigation solution developed by the filter and corrected according to step (i); (iii) perform a statistical test of cross-innovation to declare whether the satellite whose gross measurement is not used by the filter is failing or not.
  • step (i) comprises:
  • - it includes the calculation, for each satellite, of a cross innovation and a cross-innovation covariance reflecting the difference between an observation corresponding to a gross measurement from the satellite and an a posteriori estimate of the observation developed by a Kalman filter not using the raw measurement from the satellite, the likelihood ratio being determined according to the cross innovation and the cross innovation covariance provided by said Kalman filter not using the raw measure derived from the satellite and from an estimate of the impact of the breakdown of a given nature on said cross innovation.
  • the impact of the breakdown of a given nature on said cross innovation is estimated by determining, from data provided by said Kalman filter not using the raw measurement from the satellite, a dynamic matrix of innovation, and by estimating a magnitude of the given nature failure on a sliding estimation window corresponding to a given number of increments of said Kalman filter not using the gross metric from satellite, the dynamic innovation matrix representing a link between the magnitude of the failure and the gap induced by the failure on cross innovation;
  • the impact of a failure on a navigation solution is estimated by determining, from data provided by the Kalman filter developing the navigation solution, a dynamic navigation matrix, and by estimating an amplitude and a covariance of the failure on a sliding estimation window corresponding to a given number of increments of said Kalman filter developing the navigation solution, the dynamic navigation matrix representing a link between the amplitude of the failure and the deviation induced by the failure on said navigation solution;
  • step (iii) declares a satellite to be faulty when the cross innovation exceeds a threshold corresponding to (HP H T + R 1 ) * a, where H represents the observation matrix of the filter of Kalman, P, the posterior estimation matrix of the covariance of the error, R, the covariance matrix of the measurement noise, and has a coefficient whose value is fixed as a function of a probability of false detection;
  • - Cross innovation corresponds to the difference between the pseudo-distance to a satellite delivered by the satellite positioning system and a posterior estimate of this pseudo-distance provided by a Kalman filter not using pseudo-distance. delivered by the satellite;
  • Each of the bench filters develops a navigation solution by hybridizing inertial measurements to the raw measurements of the signals emitted by the satellites.
  • the invention proposes a satellite positioning device comprising a Kalman filter bank each developing a navigation solution from raw measurements of signals emitted by satellites, characterized in that it comprises:
  • an accommodation module configured to estimate, for each bank filter, the impact of a satellite failure on the navigation solution developed by the filter, and to correct, in the event of a fault, the solution navigation according to the estimate of the impact of the breakdown;
  • a satellite fault detection module configured for
  • o calculate, for each bank filter, a cross innovation reflecting the difference between an observation corresponding to a raw measurement from a satellite not used by the filter and an a posteriori estimation of the observation resulting from the navigation solution developed by the Kalman filter as corrected by the accommodation module, and o perform a cross-innovation statistical test to declare whether the satellite is failing or not.
  • FIG. 1 is a diagram illustrating the operating principle of the invention in the case where two of four satellites are simultaneously down;
  • FIG. 2 is a diagram showing a possible embodiment of a device according to the second aspect of the invention.
  • a failed satellite is defined as being a satellite that sends erroneous information in its message, leading to a difference (fixed or variable) between its actual position and the position given in its message.
  • a Kalman filter bank is conventionally used to protect against the possible failure of a satellite.
  • these filters perform hybridization between information from the satellite navigation system and those from the inertial unit.
  • One of the filter bank filters referred to as the main filter, uses all GNSS measurements consisting of pseudo-measurements and quality information.
  • the other secondary filters in the filter bank make use of only a part of the available GNSS measurements (typically all GNNS measurements with the exception of those from one of the satellites, the excluded satellite being different from one secondary filter to another).
  • such an architecture in the form of a filter bank has the following advantages.
  • this secondary filter is not affected by the failure and thus remains unpolluted.
  • FIG. 1 shows a Kalman filter bank comprising a FILTER 0 main filter using the measurements from four satellites, and four secondary filters FILTER 1, FILTER 2, FILTER 3 and FILTER 4, each excluding the measurements taken from one of the satellites. Assuming that the satellites 1 and 4 are simultaneously down, it is understood that the secondary filters FILTER 1 and FILTER 4 are affected only by a single satellite failure (respectively that due to the satellite 4 and that due to the satellite 1).
  • a satellite positioning device 1 according to a possible embodiment of the second aspect of the invention, intended to be embedded in a carrier such as an aircraft.
  • the device 1 uses information provided by a UM I inertial unit and by several GNSS GNSS 1, GNSS, and GNSS navigation systems, and comprises a single virtual platform 2 and a Kalman filter bank 3.
  • the invention is however not limited to an INS / GNSS navigation system but also extends to a GNSS context alone.
  • the virtual platform 2 receives inertial increments from the sensors (gyroscopes, accelerometers) of the UMI inertial unit.
  • the inertial increments correspond in particular to angular increments and to increments of speed.
  • Inertial navigation information (such as attitude, heading, speed or carrier position) is calculated by the virtual platform 2 from these increments. This inertial navigation information is designated PPVI inertial measurements thereafter.
  • inertial measurements PPVI are transmitted to a device for calculating pseudo-distances estimated a priori (not shown in Figure 1) which also receives data on the position of the satellites.
  • the device for calculating pseudo-distances estimated a priori calculates the pseudo-distances a priori between the carrier and the different visible satellites of the carrier.
  • the device 1 also receives pseudo-measurements between the carrier and the different visible satellites from several constellations GNSS 1, GNSS j, GNSS p.
  • the discrepancies (called observations) are then classically calculated between the pseudo-measurements estimated a priori and the pseudo conditions delivered by each of the GNSS constellations.
  • the Kalman filter bank 3 hybridises the inertial information from the inertial unit 2 with the information from the satellite navigation systems. In addition to a function of providing statistical information on the output measurements, the role of the filters is to maintain the virtual platform 2 in a linear operating domain image of that modeled in the Kalman filter by estimating each a state vector dXO -dXn (usually of the order of 30 components).
  • the filterbank 3 comprises several Kalman filters in parallel.
  • One of the filters is called the main Kalman filter 8: it takes into account all the observations (and receives all the measurements from the GNSS system) and elaborates a main hybrid navigation solution.
  • the other filters 9i, 9n are called secondary filters: they take into account only a part of the observations, for example (n-1) observations among the n observations relating to the n visible satellites so that the i-th Kalman filter secondary 9i receives from the GNSS system the measurements of all satellites except the i-th, and each develop a secondary hybrid navigation solution.
  • the process of developing the observations described above is not common to all the filters of the bench 3, but is carried out for each of the filters.
  • the computation of the pseudo-distances a priori and the calculation of the observations which are evoked above are not common to all the bench filters, but the hybridization device 1 according to the invention performs these calculations for each bank filter.
  • the device 1 generates a hybrid output Xref ("reference navigation") corresponding to the PPVI inertial measurements calculated by the virtual platform 2 and corrected, via a subtractor 11, by a stabilization vector dC having as many components as the vectors of states estimated by Kalman filters.
  • the hybrid output Xref is looped back to the input of the virtual platform 2.
  • the stabilization vector dC can be applied to the input of all the filters of the filterbank.
  • the Kalman filters adjust by subtracting from their estimation (state vector dX) the correction dC, and are thus kept coherent of the virtual platform.
  • the device 1 further comprises a module 4 for developing the stabilization vector dC, two embodiments of which are given below by way of nonlimiting examples.
  • the corrections to be applied to the inertial measurements come from a single filter.
  • the stabilization vector dC is equal, in all its components, to the state vector estimated by a Kalman filter selected from the filters of the bank 3. The selection takes place for example within the module 4 according to EP1801539 A by detection of a possible satellite failure.
  • the stabilization vector dC is developed component by component, using for each component the set of Kalman filters.
  • the module 4 for developing the correction dC is then configured to elaborate each of the components dC [state] of the stabilization vector dC as a function of the set of corresponding components dX0 [state] -dXn [state] of the correction vectors dXO -dXn.
  • the development of each component occurs for example in accordance with the patent application WO2010070012 in the name of the Applicant.
  • the device 1 furthermore comprises a navigation state correction module 5 comprising a detection module 52 configured so as to implement the steps of:
  • At least one likelihood ratio Ir, Ir ' is determined at each incrementation of the Kalman filter on a sliding storage window, and a breakdown of a given nature is declared if the sum of the likelihood ratios Ir, Ir associated with this failure on the sliding storage window is greater than the associated threshold value.
  • a likelihood ratio is representative of the likelihood that the nature of the product that is associated with it affects the corresponding content. For example, if a likelihood ratio associated with a particular nature failure is positive, it is more likely that the failure will affect the corresponding satellite. The higher a likelihood ratio, the greater the probability that its corresponding satellite will be corrupted by the associated failure.
  • the threshold value may be the same for several satellites and / or for several types of failure, or the threshold values may be different for each satellite and for each type of failure, in which case each likelihood ratio, or advantageously each sum of likelihood ratios, is compared to a threshold value of its own.
  • the module 5 for detection and exclusion of satellite faults also implements a management function and exclusion of GNSS measurements to monitor them.
  • the detection and exclusion module 5 thus comprises a satellite signal management module 53 which receives the GNSS measurements and routes this information to the various filters of the bench 3 according to the circumstances. (no satellite detected as faulty, excluding a satellite detected as faulty).
  • the detection and exclusion module 5 can also make use of the results of the cross innovation tests developed by a module 7 for satellite failure detection, and the results of the tests developed by a user. detection module 52.
  • the satellite signal management module 53 advantageously implements a preselection of the GNSS measurements to be used, able to optimize the performance of the system and to limit a number of measurements. Even if the use of all the measurements makes it possible to obtain an optimal performance, the selection of n measurements (where n corresponds to the number of secondary filters using each n-1 GNSS measurements) in the GPS constellations, Galileo, Glonass, etc. minimizing different precision criteria (such as DOP - "Dilution Of Precision" -, EHE - "Expected Vertical Error” - or EVE- "Expected Vertical Error” - for example) gives better output performance than if we used a single constellation and sufficient to ensure the chosen mission.
  • the device 1 also comprises an accommodation module 6 configured to implement, for each filter of the bench, the steps of:
  • the accommodation module 6 thus has the function of evaluating the differences AX, AX ; , ..., AXJnduits by a breakdown on the navigation solutions hybrid developed by Kalman filters 8, 9i ... 9n and correct hybrid navigation solutions, for example using a bank of subtractors 10.
  • the invention is however not limited to architecture represented in FIG. 1, the estimation of the impact of the failure on the hybrid navigation solutions that can be performed alternatively by the Kalman filters, by the detection module 52, or by any other suitable means known from the skilled person.
  • modules 5 and 6 are in accordance with those described in the patent application filed in France on July 10, 2009 under the number 0954849 in the name of the Applicant.
  • the likelihood ratios are determined according to data provided by the Kalman filters, in particular innovations and innovation covariances, and from an estimate of the impact of the breakdown of a given nature on the innovations. .
  • innovation is meant a gap between an observation a priori by a Kalman filter and a posteriori estimation of this observation elaborated by the filter.
  • Each filter therefore delivers n innovations, as well as satellites in the constellation.
  • cross innovation is the innovation provided by each secondary Kalman filter 8i representing the difference between an a priori observation coming from the satellite whose secondary filter 8i does not receive the data and a posteriori estimation of this observation.
  • the Kalman filter bank thus delivers n * (n + 1) innovations, of which n are cross innovations.
  • the module 5 for detecting and excluding satellite faults comprises an innovation selection module 51 configured to select innovations (crossed or not) and innovation covariances and route them to the module 52 calculating the errors. likelihood ratios.
  • the module 51 is configured to transmit the crossed innovations, or the classic innovations, to the module 52 for the calculation of the likelihood ratios.
  • the advantage of using cross-innovation compared to conventional innovation tests is that the filter that makes it possible to test a failed satellite is not disturbed by the failure.
  • the i-th secondary Kalman filter 9i receives from the GNSS system the measurements of all the satellites except the i-th, and thus elaborates the state vector dXi independently of the satellite i, so that this filter 8i is not disturbed by a possible failure affecting the satellite i.
  • the cross innovation of a satellite corresponds, for example, to the difference between the pseudo-distance to said satellite delivered by the satellite positioning system and a posteriori estimation of this pseudo-distance provided by a Kalman filter that does not use the pseudo-satellite. -distance delivered by the satellite, so that this estimate is independent of the satellite. The calculation of the likelihood ratio will not be disturbed by a failure, including a slow failure of the satellite.
  • cross innovation can generally be applied to any raw measurement, for example to a pseudo-speed measurement (also called Doppler measurement).
  • a pseudo-speed measurement also called Doppler measurement
  • - * is an estimate of the magnitude of the failure
  • - ⁇ is a dynamic matrix of innovation, representing a link between the amplitude of the failure and the gap induced by the failure on the innovation
  • - is a dynamic navigation matrix, representing a link between the magnitude of the failure and the gap caused by the failure on the hybrid navigation solution.
  • the two dynamic matrices at time t are advantageously calculated by the detection module 52 from data provided by said Kalman filter, preferably recursively crossed, that is, that is, for any time t, t and H t, are calculated as a function of
  • the data provided by the Ka l m an fi lter may include Kalman gain, and trans ition and observation matrices.
  • the estimation of the amplitude of the failure is advantageously performed on a sliding estimation window corresponding to a given number N of increments of the Kalman filter.
  • the estimate can be made by a least-squares estimation on the sliding estimation window, preferably by the following formula:
  • the given number N of increments of the Kalman filter corresponds to a duration less than a predetermined detection time T.
  • the sliding estimation window must check: ⁇ . ⁇ T.
  • This sliding estimation window is advantageously the same as the window of storage of the likelihood ratios associated with the failure.
  • This detection time makes it possible to constrain the size of the sliding estimation window and thus limit the calculation load.
  • the innovation selection module 51 is advantageously configured so that, in this case, only these innovations are provided to the detection module 52 and the accommodation module 6.
  • the innovation selection makes it possible to estimate the impact of a failure detected from innovations using information provided by the satellite declared to be out of order.
  • the detection module 52 is able to store the likelihood ratios of each satellite and for each failure of a given nature on the sliding storage window.
  • the estimates of the impact of the failure on the hybrid navigation solutions provided by the filters are removed at the subtractor bank 10.
  • two ratios Ir, lr 'of likelihood are determined for each satellite, a ratio lr being associated with a hypothesis of failure of bias nature and the other ratio lr' being associated with a hypothesis of failure of a ramp nature.
  • the dynamic innovation matrix determined for each incrementation of a Kalman filter is different for a bias or ramp failure.
  • the two ratios 1r, 1r 'of likelihood are therefore different.
  • the invention thus makes it possible to differentiate the occurrence of a breakdown of a bias nature or of a ramp-like failure.
  • the step of estimating the impact of the pa nneson the solution of the hybridization is advantageously performed on a sliding window of estimation from the instant of declaration of the breakdown of nature bias.
  • the sliding estimate window is active. for a given time, sufficient to estimate the characteristics of the failure.
  • the estimate of the characteristics of the bias-type failure is a function of the moment of occurrence of the fault, that is to say of the moment when the sum of the likelihood ratios associated with the breakdown of the type bias has exceeded its associated threshold value.
  • the exclusion of the measurements by the module 53 is then implemented only after this estimation.
  • the estimate of the impact of the failure on the hybrid navigation solution is preferentially carried out on the sliding estimation window preceding the declaration time of the ramp-like failure.
  • the detection module 52 if more than one of the likelihood ratio ratios are greater than their associated threshold value, only one failure is declared by the detection module 52. This failure corresponds to the largest sum of likelihood ratios for all the failures envisaged on all the satellites.
  • the device 1 further comprises a module 7 for detection and exclusion of satellite faults configured so as to implement the steps of: calculate, for each filter of the bank, a cross innovation reflecting the difference between an observation corresponding to a raw measurement resulting from a satellite not used by the filter and a posteriori estimation of said observation resulting from the navigation solution elaborated by the filter and corrected by the accommodation module 6 via the subtracter 10, so that this estimate is independent of the satellite to be tested,
  • the two filters FILTER 1 and FILTER 4 initially affected by a single satellite failure have, after correction by means of the accommodation module 6, a sound navigation solution. These two filters then make it possible to build two tests of cross innovation which will allow the detection and the direct identification of the two satellites in breakdown.
  • the present invention thus advantageously combines the advantages of the methods proposed in the patent applications FR 0954849 and FR 0951894, by using the capacity to accommodate the navigation state in the event of a satellite failure of the method proposed in FR 0954849 in order to guarantee that the cross innovation of a broken satellite is based on a healthy filter (ie not affected by the failure).
  • a healthy filter ie not affected by the failure.
  • two filters of the bank contain only one failed satellite; by using the accommodation of the state proposed in FR 0954849, one is able to maintain these two filters in a field close to the fault-free state, which makes it possible to guarantee that the interpretation of the cross innovation test proposed in FR 0951894 may lead to the identification of the two satellites in breakdowns.
  • the invention is not limited to the detection and exclusion of two simultaneous satellite failures, but extends to detection and exclusion of multiple simultaneous satellite failures as long as the filter bank has filters assigned only by one of the multiple satellite failures. Taking the example of 3 simultaneous satellite failures, it will be possible to find, in a bank of filters composed of secondary filters using n-2 GNSS measurements among the n measurements available, secondary filters affected by only one of the 3 failures. After accommodation, the navigation solution provided by these filters will be healthy, guaranteeing the interpretation of the cross innovation test.
  • cross innovation from the position provided by this filter and corrected following the accommodation. It is thus possible to detect a satellite failure by the filter not using the failed satellite.
  • the advantage over conventional innovation tests is that the filter that makes it possible to test a broken satellite is not disturbed by the failure.
  • the i-th secondary Kalman filter 9i receives from the GNSS system (via the correction module if appropriate) the measurements of all the satellites except the i-th, and thus elaborates the state vector dXi so independent of the satellite i, so that the filter 9i is not disturbed by a possible failure affecting the satellite i.
  • the cross innovation of a satellite corresponds, for example, to the difference between the pseudo-distance to said satellite PR t delivered by the satellite positioning system and a posterior estimate PR t of this pseudo-distance provided by a Kalman filter. accommodated (ie whose hydride navigation solution was corrected via the accommodation module based on an estimate of the impact of a failure of the satellite on the hybrid navigation solution) not using the pseudo-resistance delivered by the satellite, so that this estimate PR t is independent of the satellite that it is desired to test. The result of the test will not be disturbed by a failure, including a slow failure of the satellite.
  • cross innovation can generally be applied to any raw measurement, for example to a pseudo-speed measurement (also called Doppler measurement).
  • a pseudo-speed measurement also called Doppler measurement
  • X t corresponds to the real position, unknown, of the wearer
  • X t corresponds to the position of the carrier as estimated by the i-th secondary Kalman filter 9i after accommodation.
  • a satellite is then declared as failing when its cross innovation exceeds the threshold presented above.
  • Figure 1 Simultaneous failures affecting satellites 1 and 4
  • the cross-innovations developed for satellites 1 and 4 affected by a failure diverge faster than the cross-innovations developed for satellites 2 and 3 not affected by a failure.
  • the module 7 can also be configured to:
  • this satellite continues to be monitored for a time TE.
  • This satellite of index i for example, will no longer be used by all the filters but will continue to be tested by the filter 9i which does not hybridize it via the test of crossed innovation (the invalidation of the suspect satellite does not actually does not change the operation of the filter 9i not using this satellite).
  • the advantage of invalidating the suspect satellite during the exclusion process is that if there is no ambiguity as to which satellite to exclude, it will be excluded from the beginning of TE (at the time of detection).
  • the value of the duration TE does not in the majority of cases affect the performance of the hybridization device.
  • the previously invalidated satellite is validated so that these raw data are again used by the filters of the bank, and the new satellite failed.
  • a suspicious satellite change is thus made when, despite the invalidation of the first satellite, another crossover innovation passes the threshold (which is not supposed to happen on the assumption that the first satellite was actually the one that failed).
  • a statistical test of the innovation a priori of each of the satellites used by the filter is also carried out for each filter of the bench. For example, it involves performing a Gaussian test of innovations (constrained by a probability ⁇ ) for the satellites used by each filter.
  • the unused satellite is invalidated by the filter having the highest number of innovations a priori whose statistical test is below a threshold so that the gross measurement of said invalidated satellite is no longer used by the bank filters.
  • the choice of the defective satellite to be invalidated can then be made by considering the satellite giving the highest standardized cross innovation in absolute value, by coming to supply the results of the cross innovation tests to the satellite signal management module 53. .
  • this choice can also be achieved by the satellite signal management module 53 by exploiting the results of tests developed by the detection module 52.
  • the bank filters in the event of a satellite failure declaration, it is possible to perform a partial reset of the bank filters using the excluded satellite, in particular by resetting the states related to the measurements received from the GNSS system and the states related to the other sensors used (such as the barometer), and by desensitizing the states affected by the failure by adding state noise, in order to reconvert the concerned filters to a sound solution if the satellite detected as being faulty is actually the satellite down.
  • this type of reset can be performed during the declaration of failure of a satellite, or during a change of identification of the failed satellite during the duration TE.
  • the reinitialization of the bank filters can take place via the accommodation module 6, which then corrects the impact of a declared failure by using the results of the cross innovation tests developed by the module. 7, these test results being looped back to the module 51 for selecting innovations as shown in FIG. 2.
  • the invention has the following advantages in particular.
  • the filter bank has a conventional architecture: it is not necessary to add an additional bank of filters to identify two simultaneous satellite failures.
  • the accommodation allows the removal of pollution from the navigation state without completely resetting the filter bank.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Security & Cryptography (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Navigation (AREA)

Abstract

L'invention concerne selon un premier aspect un procédé de contrôle d'intégrité d'informations de position délivrées par un dispositif (1) de positionnement par satellites (GNSS) comprenant un banc (3) de filtres de Kalman élaborant chacun une solution de navigation (dX0, dXi, dXn) à partir de mesures brutes de signaux émis par des satellites, caractérisé en ce qu'il comporte les étapes consistant, pour chaque filtre du banc, à :- (i) corriger la solution de navigation élaborée par le filtre en fonction d'une estimation de l'impact d'une panne d'un satellite sur la solution de navigation; - (ii) calculer une innovation croisée reflétant l'écart entre une observation correspondant à une mesure brute issue d'un satellite non utilisée par le filtre et une estimation a posteriori de ladite observation issue de la solution de navigation élaborée par le filtre et corrigée conformément à l'étape (i); - (iii) réaliser un test statistique de l'innovation croisée pour déclarer si le satellite dont la mesure brute n'est pas utilisée par le filtre est ou non défaillant.

Description

PROCEDE ET DISPOSITIF DE DETECTION ET D'EXCLUSION DE PANNES SATELLITE MULTIPLES DANS UN SYSTEME GNSS
DOMAINE DE L'INVENTION
Le dom aine de l' invention est celu i des porteurs uti l isant des informations fournies par un système de navigation par satellites utilisant des mesures issues de plusieurs constellations de satellites.
L' invention concerne plus particulièrement un dispositif de positionnement par satellites et un procédé de contrôle d' intégrité d'informations de position délivrées par un tel dispositif, aptes à détecter et à exclure deux pannes satellites simultanées.
ARRIERE PLAN DE L'INVENTION
Les porteurs comme les aéronefs ou encore les bateaux disposent de nombreux systèmes de navigation . Parm i ces systèm es, on com pte notamment un équipement hybride INS/GNSS (de l'anglo-saxon « Inertial Navigation System » et « Global Navigation Satellite System »).
Une centrale inertielle fournit des informations peu bruitées et précises à court terme. Cependant, sur le long terme, les performances en localisation d'une centrale inertielle se dégradent (plus ou moins vite en fonction de la qualité des capteurs, accéléromètres ou gyroscopes par exemple, et des traitements utilisés par la centrale). Si les informations acquises auprès d'un système de navigation par satellites sont quant à elles très peu susceptibles de dériver sur le long terme, elles sont cependant souvent bruitées et d'une précision variable. Par ailleurs, les mesures inertielles sont toujours disponibles alors que les informations GNSS ne le sont pas ou sont susceptibles d'être leurrées et brouillées.
L'hybridation consiste à combiner les informations fournies par la centrale inertielle et les mesures fournies par le système de navigation par satellites pour obtenir des informations de position et de vitesse en tirant avantage des deux systèmes. Ainsi, la précision des mesures fournies par le récepteur GNSS permet de maîtriser la dérive inertielle et les mesures inertielles peu bruitées permettent de filtrer le bruit sur les mesures du récepteur GNSS.
Le modèle des mesures GNSS qui est connu ne tient pas compte des éventuelles pannes satellites qui affectent les horloges ou les éphémérides transmises, ces pannes se manifestant généralement sous la forme de biais ou de dérives sur les mesures GNSS.
Dans ce cadre, des systèmes de contrôle d'intégrité ont pour but de détecter l'apparition de ces pannes et d'exclure les satellites responsables afin de retrouver une solution de navigation ne contenant plus d'erreur non détectée.
Dans les systèmes de navigation hybride INS/GNSS, la probabilité de défaillance de deux satellites dans une même constellation est inférieure au risque d'intégrité. Cet événement peut alors être imputé au risque d'intégrité et le système ne nécessite qu'une capacité à détecter une seule panne satellite. Le satellite identifié comme étant en panne peut alors être exclu de manière à supprimer la pollution de l'état de navigation par la panne satellite.
La multiplication des constellations de satellites dédiés à la navigation (GPS, Galileo, Glonass par exemple) augmente le nombre de satellites pouvant être utilisés dans un système de navigation hybride INS/GNSS. Mais alors, la probabilité de rencontrer deux pannes satellites simultanées ne sera plus négligeable devant le risque d'intégrité.
Ainsi, les futurs systèmes de navigation, qui demanderont des exigences d'intégrité supérieures, seront contraints d'avoir la capacité de détecter et d'exclure plus d'une panne satellite.
O r les techniques actuelles de contrôle d'intégrité ne permettent la détection que d'une seule panne satellite. Et ces techniques ne peuvent être étendues au cas double panne sans nécessiter une charge de calcul élevée.
L'article « A GLR Algorithm to Detect and Exclude up to Two Simultaneous Range Failures in a GPS/Galileo/IRS Case" de A. Gerimus et A.C Escher, ION GNSS 2007, expose l'utilisation d'une méthode de détection et d'exclusion de pannes satellites multiples reposant sur l'algorithme GLR (« Generalized Likehood Ratio », test du rapport de vraisemblance) pour détecter deux pannes satellites. Un inconvénient principal de cette méthode réside dans le fait qu'elle n'utilise qu'un seul filtre de navigation et qu'elle va commencer par détecter le satellite qui présente la panne la plus importante avant de pouvoir détecter le deuxième satellite en panne, dès lors on observera des erreurs importantes sur la solution de navigation. De plus, cette méthode ne permet pas de supprimer la pollution de l'état de navigation par la première panne satellite, ce qui impacte nécessairement la capacité du système à détecter la deuxième panne satellite.
BREVE DESCRIPTION DE L'INVENTION
Il existe donc un besoin pour une technique pouvant être m ise en œuvre avec une charge de calcul réduite qui permette de détecter et d'exclure efficacement des pannes satellites multiples, et de corriger l'impact des pannes sur la solution de navigation.
A cet effet, l'invention propose selon un premier aspect un procédé de contrôle d'intégrité d'informations de position délivrées par un dispositif de positionnement par satellites comprenant un banc de filtres de Kalman élaborant chacun une solution de navigation à partir de mesures brutes de signaux émis par des satellites, caractérisé en ce qu'il comporte les étapes consistant, pour chaque filtre du banc, à :
- (i) corriger la solution de navigation élaborée par le filtre en fonction d'une estimation de l'impact d'une panne d'un satellite sur la solution de navigation ;
- (i i) calcu ler une innovation croisée reflétant l'écart entre une observation correspondant à une mesure brute issue d'un satellite non utilisée par le filtre et une estimation a posteriori de ladite observation issue de la solution de navigation élaborée par le filtre et corrigée conformément à l'étape (i) ; (iii) réaliser un test statistique de l'innovation croisée pour déclarer si le satellite dont la mesure brute n'est pas utilisée par le filtre est ou non défaillant.
Certains aspects préférés, mais non limitatifs, de ce procédé sont les suivants :
- l'étape (i) comprend :
o la détermination, pour chaque satellite, d'au moins un rapport de vraisemblance entre une hypothèse de panne d'une nature donnée du satellite et une hypothèse d'absence de panne du satellite ;
o la comparaison du rapport de vraisemblance associé à une panne de nature donnée à une valeur seuil, et la déclaration le cas échéant d'une panne de nature donnée ;
o une estimation de l'impact de la panne déclarée sur la solution de navigation élaborée par le filtre;
o la correction de la solution de navigation élaborée par le filtre en fonction de l'estimation de l'impact de la panne déclarée.
- il comprend le calcul, pour chaque satellite, d'une innovation croisée et d'une covariance d'innovation croisée reflétant l'écart entre une observation correspondant à une mesure brute issue du satellite et une estimation a posteriori de ladite observation élaborée par un filtre de Kalman n'utilisant pas la mesure brute issue du satellite, le rapport de vraisemblance étant déterminé en fonction de l'innovation croisée et de la covariance d'innovation croisée fournies par ledit filtre de Kalman n'utilisant pas la mesure brute issue du satellite et à partir d'une estimation de l'impact de la panne de nature donnée sur ladite innovation croisée.
- l'impact de la panne de nature donnée sur ladite innovation croisée est estimé par détermination, à partir de données fournies par ledit filtre de Kalman n'utilisant pas la mesure brute issue du satellite, d'une matrice dynamique d'innovation, et par estimation d'une amplitude de la panne de nature donnée sur une fenêtre glissante d'estimation correspondant à un nombre donné d'incrémentations dudit filtre de Kalman n'utilisant pas la mesure brute issue du satel l ite, la m atrice dynam ique d' innovation représentant un lien entre l'amplitude de la panne et l'écart induit par la panne sur l'innovation croisée ;
- l'impact d'une panne sur une solution de navigation est estimé par détermination, à partir de données fournies par le filtre de Kalman élaborant la solution de navigation, d'une matrice dynamique de navigation, et par estimation d'une amplitude et d'une covariance de la panne sur une fenêtre glissante d'estimation correspondant à un nombre donné d'incrémentations dudit filtre de Kalman élaborant la solution de navigation, la matrice dynamique de navigation représentant un lien entre l'amplitude de la panne et l'écart induit par la panne sur ladite solution de navigation ;
- le test statistique réalisé à l'étape (iii) déclare un satellite comme étant défaillant lorsque l'innovation croisée excède un seuil correspondant à (H.P HT + R1 ) *a , où H représente la matrice d'observation du filtre de Kalman, P, la matrice d'estimation a posteriori de la covariance de l'erreur, R, la matrice de covariance du bruit de mesure, et a un coefficient dont la valeur est fixée en fonction d'une probabilité de fausse détection ;
- l'innovation croisée correspond à l'écart entre la pseudo-distance à un satellite délivrée par le système de positionnement par satellites et une estimation a posteriori de cette pseudo-distance fournie par un filtre de Kalman n'utilisant pas la pseudo-distance délivrée par le satellite ;
- il comprend en outre les étapes consistant à :
o invalider un satellite déclaré comme étant défaillant pour que les mesures brutes dudit satellite défaillant ne soient plus utilisées par les filtres du banc,
o exclure le satellite invalidé si à l'expiration d'un délai prédéterminé suite à l'invalidation le test statistique de l'innovation croisée conclut toujours à la défaillance dudit satellite et aucun autre test d'innovation croisée n'a déclaré la défaillance d'un autre satellite. - il met également en œuvre, pour chaque filtre du banc, un test statistique de l'innovation a priori de chacun des satellites utilisés par le filtre, et dans le cas où plusieurs satellites sont déclarés comme étant défaillants suite au test statistique de leur innovation croisée, on invalide le satellite non utilisé par le filtre ayant le plus grand nombre d'innovations a priori dont le test statistique est inférieur à un seuil de sorte que la mesure brute dudit satellite invalidé ne soit plus utilisée par les filtres du banc ;
- chacun des filtres du banc élabore une solution de navigation en venant hybrider des mesures inertielles aux mesures brutes des signaux émis par les satellites.
S e l o n u n second aspect, l'invention propose un dispositif de positionnement par satellites comprenant un banc de filtres de Kalman élaborant chacun une solution de navigation à partir de mesures brutes de signaux émis par des satellites, caractérisé en ce qu'il comporte :
- un module d'accommodation configuré pour estimer, pour chaque filtre du banc, l'impact d'une panne d'un satellite sur la solution de navigation élaborée par le filtre, et à corriger, en cas de déclaration de panne, la solution de navigation en fonction de l'estimation de l'impact de la panne ;
- un module de détection de pannes satellites configuré pour
o calculer, pour chaque filtre du banc, une innovation croisée reflétant l'écart entre une observation correspondant à une mesure brute issue d'un satellite non utilisée par le filtre et une estimation a posteriori de ladite observation issue de la solution de navigation élaborée par le filtre de Kalman telle que corrigée par le module d'accommodation, et o réaliser un test statistique de l'innovation croisée pour déclarer si le satellite est ou non défaillant.
BREVE DESCRIPTION DES DESSINS
D'autres aspects, buts et avantages de la présente invention apparaîtront mieux à la lecture de la description détaillée suivante de formes de réalisation préférées de celle-ci, donnée à titre d'exemple non limitatif, et faite en référence aux dessins annexés sur lesquels : - la figure 1 est un schéma illustrant le principe de fonctionnement de l'invention dans le cas où deux satellites parmi quatre sont simultanément en panne ;
- la figure 2 est un schéma représentant un mode de réalisation possible d'un dispositif conforme au second aspect de l'invention.
DESCRIPTION DETAILLEE DE L'INVENTION
Dans le cadre de l'invention, on définit un satellite en panne comme étant un satellite qui envoie des informations erronées dans son message, conduisant à un écart (fixe ou variable) entre sa position réelle et la position donnée dans son message.
Selon l'état de l'art, un banc de filtres de Kalman est classiquement utilisé pour se protéger contre la panne éventuelle d'un satellite. Dans un contexte INS/GNSS, ces filtres réalisent l'hybridation entre les informations issues du système de navigation par satellite et celles issues de la centrale inertielle. Un des filtres du banc de filtres, désigné par le terme de filtre principal, utilise toutes les mesures GNSS constituées de pseudo-mesures et d'informations sur la qualité de celles-ci. Les autres filtres, dit secondaires, du banc de filtres ne font usage que d'une partie seulement des mesures GNSS disponibles (typiquement toutes les mesures GNNS à l'exception de celles provenant de l'un des satellites ; le satellite exclu étant différent d'un filtre secondaire à l'autre).
Dans le cadre de l'invention, une telle architecture sous la forme d'un banc de filtres présente les avantages suivants.
Si une panne satellite survient, celle-ci n'est pas vue par le filtre secondaire ne recevant pas cette mesure : ce filtre secondaire n'est donc pas affecté par la panne et reste ainsi non pollué.
Par ailleurs, si deux pannes satellites simultanées surviennent, deux des filtres secondaires du banc (ceux excluant les mesures issues de l'un ou l'autre des satellites en panne) sont alors affectés par une seule panne satellite. On a représenté su r la figure 1 , un banc de filtres de Kalman comprenant un filtre principal FILTRE 0 utilisant les mesures issues de quatre satellites, et quatre filtres secondaires FILTRE 1 , FILTRE 2, FILTRE 3 et FILTRE 4 excluant chacun les mesures issues de l'un des satellites. Prenant l'hypothèse que les satellites 1 et 4 sont simultanément en panne, on comprend que les filtres secondaires FILTRE 1 et FILTRE 4 ne sont affectés que par une seule panne satellite (respectivement celle due au satellite 4 et celle due au satellite 1 ).
En référence à la figure 2, on a représenté un dispositif de positionnement par satellites 1 conforme à un mode de réalisation possible du second aspect de l'invention, destiné à être embarqué au sein d'un porteur tel qu'un aéronef. Le dispositif 1 utilise des informations fournies par une centrale inertielle UM I et par plusieurs systèmes de navigation par satellites GNSS 1 , GNNS j, GNSS p, et comprend une seule plateforme virtuelle 2 et un banc 3 de filtres de Kalman. L'invention n'est toutefois pas limitée à un système de navigation INS/GNSS mais s'étend également à un contexte GNSS seul.
La plateforme virtuelle 2 reçoit des incréments inertiels provenant des capteurs (gyroscopes, accéléromètres) de la centrale inertielle UMI. Les incréments inertiels correspondent notamment à des incréments angulaires et à des incréments de vitesse. Des informations de navigation inertielle (comme les attitudes, le cap, la vitesse ou la position du porteur) sont calculées par la plateforme virtuelle 2 à partir de ces incréments. Ces informations de navigation inertielle sont désignées mesures inertielles PPVI par la suite.
Ces mesures inertielles PPVI sont transmises à un dispositif de calcul des pseudo-distances estimées a priori (non représenté sur la figure 1 ) qui reçoit également des données sur la position des satellites. A partir d'une part des mesures inertielles et d'autres par des données sur la position des satellites, le dispositif de calcul des pseudo-distances estimées a priori calcule les pseudo-distances a priori entre le porteur et les différents satellites visibles du porteur.
Le dispositif 1 reçoit également des pseudo-mesures entre le porteur et les différents satellites visibles issus de plusieurs constellations GNSS 1 , GNSS j, GNSS p. On calcule alors classiquement les écarts (appelées observations) entre les pseudo-mesures estimées a priori et les pseudomesures délivrées par chacune des constellations GNSS.
Le banc de filtres de Kalman 3 réalise l'hybridation entre les informations inertielles provenant de la centrale inertielle 2 et les informations des systèmes de navigation par satellites. Outre une fonction de fourniture d'informations statistiques sur les mesures en sortie, le rôle des filtres est de maintenir la plateforme virtuelle 2 dans un domaine de fonctionnement linéaire image de celui modélisé dans le filtre de Kalman en estimant chacun un vecteur d'états dXO-dXn (comportant en règle générale de l'ordre de 30 composantes).
De manière classiquement connue en soi, le banc de filtres 3 comporte plusieurs filtres de Kalman en parallèle. Un des filtres est appelé filtre de Kalman principal 8 : il prend en compte toutes les observations (et reçoit pour ce faire toutes les mesures issues du système GNSS) et élabore une solution de navigation hybride principale.
Les autres filtres 9i, 9n sont appelées filtres secondaires : ils ne prennent en compte qu'une partie des observations, par exemple (n-1 ) observations parmi les n observations relatives aux n satellites visibles de sorte que le i-ème filtre de Kalman secondaire 9i reçoit du système GNSS les mesures de tous les satellites sauf du i-ème, et élaborent chacun une solution de navigation hybride secondaire.
On relèvera que le processus d'élaboration des observations décrit ci- dessus n'est pas commun à tous les filtres du banc 3, mais est réalisé pour chacun des filtres. Ainsi, le calcul des pseudo-distances a priori et le calcul des observations qui sont évoqués ci-dessus ne sont pas communs à tous les filtres du banc, mais le dispositif d'hybridation 1 conforme à l'invention réalise ces calculs pour chaque filtre du banc.
Le dispositif 1 élabore une sortie hybride Xref (« Navigation de référence ») correspondant aux mesures inertielles PPVI calculées par la plateforme virtuelle 2 et corrigées, via un soustracteur 1 1 , par un vecteur de stabilisation dC présentant autant de composantes que les vecteurs d'états estimés par les filtres de Kalman.
On relèvera que dans le cadre d'un dispositif d'hybridation en boucle fermée, la sortie hybride Xref est rebouclée à l'entrée de la plateforme virtuelle 2.
Par ailleurs, comme cela est représenté sur la figure 1 , le vecteur de stabilisation dC peut être appliqué à l'entrée de l'ensemble des filtres du banc de filtres. De telle manière, les filtres de Kalman s'ajustent en soustrayant à leur estimation (vecteur d'états dX) la correction dC, et sont ainsi maintenus cohérents de la plateforme virtuelle.
Le dispositif 1 comporte en outre un module 4 d'élaboration du vecteur de stabilisation dC dont deux modes de réalisation sont indiqués ci-après à titre d'exemples non limitatifs.
Selon un premier mode de réalisation possible, les corrections à appliquer aux mesures inertielles sont issues d'un seul filtre. Ainsi, le vecteur de stabilisation dC est égal, dans toutes ses composantes, au vecteur d'états estimé par un filtre de Kalman sélectionné parmi les filtres du banc 3. La sélection s'opère par exemple au sein du module 4 conformément au document EP1801539 A par détection d'une éventuelle panne satellite.
S e l on u n second mode de réalisation possible, le vecteur de stabilisation dC est élaboré composante par composante, en utilisant pour chaque composante l'ensemble des filtres de Kalman. Le module 4 d'élaboration de la correction dC est alors configuré pour élaborer chacune des composantes dC[état] du vecteur de stabilisation dC en fonction de l'ensemble des composantes correspondantes dX0[état]-dXn[état] des vecteurs de correction dXO-dXn. L'élaboration de chacune des composantes s'opère par exemple conformément à la demande de brevet WO2010070012 au nom de la Demanderesse.
Le dispositif 1 comporte par ailleurs un module 5 de correction de l'état de navigation comprenant un module 52 de détection configuré de manière à mettre en œuvre les étapes de :
- détermination, pour chaque satellite, d'au moins un rapport Ir, Ir' de vraisemblance entre une hypothèse de panne d'une nature donnée du satellite et une hypothèse d'absence de panne du satellite,
- déclaration, d'une panne de nature donnée sur un satellite en fonction du rapport Ir, Ir' de vraisemblance associé à cette panne et d'une valeur seuil.
Avantageusement, pour chaque satellite, au moins un rapport Ir, Ir' de vraisemblance est déterminé à chaque incrémentation du filtre de Kalman sur une fenêtre glissante de stockage, et une panne de nature donnée est déclarée si la somme des rapports de vraisemblance Ir, Ir' associés à cette panne sur la fenêtre glissante de stockage est supérieure à la valeur seuil associée.
Un rapport de vraisemblance est représentatif de la probabilité que la pan ne de natu re don née q u i l u i est associ ée affecte le sate l l ite correspondant. Par exemple, si un rapport de vraisemblance associé à une panne de nature donnée est positif, il est plus probable que ladite panne affecte le satellite correspondant. Plus un rapport de vraisemblance est élevé, plus la probabilité est grande que son satellite correspondant soit corrompu par la panne qui lui est associé.
La valeur seuil peut être la même pour plusieurs satellites et/ou pour plusieurs natures de panne, ou bien les valeurs seu i ls peuvent être différentes pour chaque satellite et pour chaque nature de panne, auquel cas chaque rapport de vraisemblance, ou avantageusement chaque somme de rapports de vraisemblance, est comparé à une valeur seuil qui lui est propre.
La taille de la fenêtre glissante de stockage peut varier en fonction de la nature de la panne, ou bien une seule taille de fenêtre glissante peut être prévue. Comme cela sera détaillé par la suite, le module 5 de détection et d'exclusion de pannes satellites met également en œuvre une fonction de gestion et d'exclusion des mesures GNSS pour les surveiller. Dans le mode de réalisation représenté sur la figure 1 , le module 5 de détection et d'exclusion comprend ainsi un module 53 de gestion des signaux satellites qui reçoit les mesures GNSS et route ces informations vers les différents filtres du banc 3 en fonction des circonstances (aucun satellite détecté comme étant défaillant ; exclusion d'un satellite détecté comme étant défaillant). Comme cela sera détaillé par la suite, le module 5 de détection et d'exclusion peut également exploiter pour ce faire les résultats des tests d'innovations croisées élaborées par un module 7 de détection de pannes satellites, et les résultats des tests élaborés par un module de détection 52.
Le module 53 de gestion des signaux satellites met avantageusement en œuvre une présélection des mesures GNSS à utiliser, à même d'optimiser la performance du système et de limiter de nombre de mesures. En effet même si l'utilisation de toutes les mesures permet d'obtenir une performance optimale, la sélection de n mesures (où n correspond au nombre de filtres secondaires utilisant chacun n-1 mesures GNSS) dans les constellations GPS, Galileo, Glonass, etc. minimisant différents critères de précision (tels que DOP - « Dilution Of Précision »-, EHE - « Expected Vertical Error »- ou EVE— « Expected Vertical Error »- par exemple) permet d'obtenir des performances en sortie meilleures que si on utilisait une seule constellation et suffisantes pour assurer la mission choisie.
Le dispositif 1 comprend également un module 6 d'accommodation configuré pour mettre en œuvre, pour chaque filtre du banc, les étapes de :
- estimation de l'impact d'une panne d'un satellite sur la solution de navigation hybride élaborée par le filtre, et
- si une panne est déclarée, correction de la solution de navigation en fonction de l'estimation de l'impact de la panne.
Le module 6 d'accommodation a ainsi pour fonction d'évaluer les écarts AX, AX; ,...,AXJnduits par une panne sur les solutions de navigation hybride élaborées par les filtres de Kalman 8, 9i...9n et de corriger les solutions de navigation hybride, par exemple à l'aide d' u n banc de soustracteurs 10. L'invention n'est cependant pas limitée à l'architecture représentée sur la figure 1 , l'estimation de l'impact de la panne sur les solutions de navigation hybride pouvant être réalisée de manière alternative par les filtres de Kalman, par le module 52 de détection, ou encore par tout autre moyen adapté connu de l'homme de l'art.
On relèvera que les modules 5 et 6 sont conformes à ceux décrits dans la demande de brevet déposée en France le 10 Juillet 2009 sous le n° 0954849 au nom de la Demanderesse.
On décrit ci-après des méthodes de calcul développées par la Demanderesse et déjà exposées dans cette demande de brevet FR 0954849 pour déterminer les rapports de vraisemblance et l'impact d'une panne sur la solution de navigation hybride. Ces formules sont données à titre illustratif et ne constituent en rien une limitation de l'invention.
Avantageusement, les rapports de vraisemblance sont déterminés en fonction de données fournies par les filtres de Kalman comprenant en particulier des innovations et des covariances d'innovation, et à partir d'une estimation de l'impact de la panne de nature donnée sur les innovations.
On entend par innovation un écart entre une observation a priori par un filtre de Kalman et une estimation a posteriori de cette observation élaborée par le filtre.
Chaque filtre délivre donc n innovations, autant que de satellites dans la constellation.
On appelle en particulier « innovation croisée » l'innovation fournie par chaque filtre de Kalman secondaire 8i représentant l'écart entre une observation a priori en provenance du satellite dont le filtre secondaire 8i ne reçoit pas les données et une estimation a posteriori de cette observation. Le banc de filtres de Kalman délivre ainsi n*(n+1 ) innovations, dont n sont des innovations croisées. Avantageusement, le module 5 de détection et d'exclusion de pannes satellites comprend un module 51 de sélection d'innovations configuré de manière à sélectionner les innovations (croisées ou non) et les covariances d'innovation et les router vers le module 52 calculant les rapports de vraisemblance.
Avantageusement, le module 51 est configuré pour transmettre les innovations croisées, ou les innovations classiques, au module 52 pour le calcul des rapports de vraisemblance. L'avantage d'utiliser une innovation croisée, par rapport aux tests d'innovation classiques est que le filtre qui permet de tester un satellite en panne n'est pas perturbé par la panne.
En particulier, le i-ème filtre de Kalman secondaire 9i reçoit du système GNSS les mesures de tous les satellites sauf du i-ème, et élabore ainsi le vecteur d'états dXi de manière indépendante du satellite i, de sorte que ce filtre 8i n'est pas perturbé par une éventuelle panne affectant le satellite i.
L'innovation croisée d'un satellite correspond par exemple à l'écart entre la pseudo-distance audit satellite délivrée par le système de positionnement par satellites et une estimation a posteriori de cette pseudodistance fournie par un filtre de Kalman n'utilisant pas la pseudo-distance délivrée par le satellite, de sorte que cette estimation est indépendante du satellite. Le calcul du rapport de vraisemblance ne sera donc pas perturbé par une panne, et notamment par une panne lente, du satellite.
On précise ici que l'innovation croisée peut d'une manière générale être appliquée à n'importe quelle mesure brute, par exemple à une mesure de pseudo-vitesse (également appelée mesure doppler).
Préférentiellement, le rapport de vraisemblance Ir associé à une panne de nature donnée est déterminé, à un instant t donné, pour chaque satellite, par la formule suivante : lrt = et TS
Figure imgf000016_0001
- pt ) dans laquelle : - °t représente une innovation (classique ou avantageusement croisée) d'un filtre de Kalman 8i à l'instant t
- t représente la covariance de l'innovation à l'instant t, et
- Pt représente l'écart dû à la panne sur ladite innovation à l'instant t.
T
- représente la transposition d'une matrice ou d'un vecteur colonne.
- Pt est inconnu, mais on peut l'estimer sur une fenêtre glissante d'estimation.
Préférentiellement, on estime en parallèle l'écart dû à la panne sur la solution hybride de navigation élaborée par ledit filtre de Kalman, écart que l'on notera βί dans la suite. Ces estimations peuvent être mises en œuvre selon les formules suivantes :
Figure imgf000017_0001
dans lesquelles :
- * est une estimation de l'amplitude de la panne, - Ψί est une matrice dynamique d'innovation, représentant un lien entre l'amplitude de la panne et l'écart induit par la panne sur l'innovation, et
- est une matrice dynamique de navigation, représentant un lien entre l'amplitude de la panne et l'écart induit par la panne sur la solution hybride de navigation.
Les deux matrice dynamiques à l'instant t sont avantageusement calculées par le module 52 de détection à partir de données fournies par ledit filtre de Kalman, préférentiellement de manière récursive croisée, c'est- à-dire que, pour tout instant t, Çt et H t , sont calculées en fonction de
Figure imgf000018_0001
Lesd ites don nées fou rn ies par le fi ltre de Ka l m an peuvent comprendre un gain de Kalman, et des matrices de trans ition et d'observation.
L'estimation de l'am pl itude de la panne est avantageusement effectuée sur une fenêtre glissante d'estimation correspondant à un nombre donné N d'incrémentations du filtre de Kalman.
Selon une variante avantageuse, l'estimation peut être réalisée par une estimation aux moindres carrés sur la fenêtre glissante d'estimation, préférentiellement ar la formule suivante :
Figure imgf000018_0002
Avantageusement, le nombre donné N d'incrémentations du filtre de Kalman correspond à une durée inférieure à un délai de détection T prédéterminé. En particulier, en notant δ la période d'incrémentation du filtre de Kalman, la fenêtre glissante d'estimation doit vérifier : Ν.δ≤ T .
Cette fenêtre glissante d'estimation est avantageusement la même que la fenêtre de stockage des rapports de vraisemblance associée à la panne.
Ce délai de détection permet de contraindre la taille de la fenêtre glissante d'estimation et ainsi de limiter la charge de calcul.
Si un satellite est déclaré en panne, l'estimation des écarts évalués par le module 6 à l'instant t sur la solution de navigation hybride élaborée par chaque filtre de Kalman 8i est :
ΑΧι = βίί τ ύ{ où βί a été calculé à partir de l'innovation utilisant une observation a priori du satellite déclaré en panne. Le module 51 de sélection d'innovations est avantageusement configuré de telle sorte que, dans ce cas, seules ces innovations sont fournies au module 52 de détection et au module 6 d'accommodation. Ainsi, la sélection d'innovation permet d'estimer l'impact d'une panne détectée à partir des innovations utilisant des informations fournies par le satellite déclaré en panne. Par ailleurs, l'écart sur la covariance Pt de l'erreur associée à la solution de navigation hybride élaborée par le filtre de Kalman 8i est également estimé par la formule suivante : Ρ, =μ? ?ίμί où Pt est la covariance du défaut estimé à l'instant t * ■
Préférentiellement, le module 52 de détection est apte à stocker les rapports de vraisemblance de chaque satellite et pour chaque panne de nature donnée sur la fenêtre glissante de stockage. Les estimations de l'impact de la panne sur les solutions de navigation hybrides fournies par les filtres sont retirées au niveau du banc de soustracteurs 10.
Selon une variante avantageuse, deux rapports Ir, lr' de vraisemblance sont déterminés pour chaque satellite, un rapport lr étant associé à une hypothèse de panne de nature biais et l'autre rapport lr' étant associé à une hypothèse de panne de nature rampe.
En particulier, la matrice dynamique d'innovation déterminée pour chaque incrémentation d'un filtre de Kalman est différente pour une panne de nature biais ou rampe. Pour chaque satellite, les deux rapports lr, lr' de vraisemblance sont donc différents.
L'invention permet ainsi de différencier l'occurrence d'une panne de nature biais ou bien d'une panne de nature rampe.
Si une panne de nature biais est détectée, l'étape d'estimation de l ' i m pact d e l a pa n n e s u r l a so l ut i o n d e n av i gat i o n hyb ri d e est avantageusement réalisée sur une fenêtre glissante d'estimation à partir de l'instant de déclaration de la panne de nature biais. Ainsi, si une panne de type biais est détectée, on laisse active la fenêtre glissante d'estimation pendant un temps déterminé, suffisant pour estimer les caractéristiques de la panne.
Avantageusement, l'estimation des caractéristiques de la panne de type biais est fonction de l'instant d'apparition de la panne, c'est-à-dire de l'instant où la somme des rapports de vraisemblance associée à la panne de type biais a dépassé sa valeur seuil associée. L'exclusion des mesures par le module 53 n'est alors implémentée qu'après cette estimation.
Si une panne de type rampe est détectée, l'estimation de l'impact de la panne sur la solution de navigation hybride est préférentiellement réalisée sur la fenêtre glissante d'estimation précédent l'instant de déclaration de la panne de nature rampe.
Avantageusem ent, si plusieurs som m es de rapports I r, lr' de vraisemblance sont supérieures à leur valeur seuil associée, une seule panne est déclarée par le module 52 de détection. Cette panne correspond à la plus grande des sommes de rapports de vraisemblance pour l'ensemble des pannes envisagées sur l'ensemble des satellites.
Ainsi, si deux satellites sont susceptibles d'être déclarés en panne, seule la panne la plus probable est effectivement déclarée et si deux pannes de nature différentes sont susceptibles d'être déclarées, seule la panne la plus probable est effectivement déclarée.
Reprenant l'hypothèse que les satellites 1 et 4 sont simultanément chacun affecté par une panne, on a pu voir que les filtres secondaires FILTRE 1 et FILTRE 4 excluant les mesures issues de l'un de ses satellites 1 et 4 sont uniquement affectées par une seule panne satellite. Dès lors, la solution de navigation hybride élaborée par chacun de ces filtres est corrigée comme indiqué précédemment de l'impact de l'unique panne satellite les affectant. On obtient ainsi une solution de navigation saine pour ces deux filtres affectés par une seule panne satellite.
Le dispositif 1 comporte en outre un module 7 de détection et d'exclusion de pannes satellites configuré de manière à mettre en œuvre les étapes consistant à : - calculer, pour chaque filtre du banc, une innovation croisée reflétant l'écart entre une observation correspondant à une mesure brute issue d'un satellite non utilisée par le filtre et une estimation a posteriori de ladite observation issue de la solution de navigation élaborée par le filtre et corrigée par le module d'accommodation 6 via le soustracteur 10, de sorte que cette estimation est indépendante du satellite que l'on souhaite tester,
- réaliser un test statistique de l'innovation croisée pour déclarer si le satellite est ou non défaillant.
On relèvera que ce module 7 est conforme à celui décrit dans la demande de brevet déposée en France le 24 Mars 2009 sous le n° 0951894 au nom de la Demanderesse.
Reprenant l'exemple de la figure 1 , les deux filtres FILTRE 1 et FILTRE 4 initialement affectés par une seule panne satellite présentent, après correction au moyen du module d'accommodation 6, une solution de navigation saine. Ces deux filtres permettent alors de construire deux tests d'innovation croisée qui vont permettre la détection et l'identification directe des deux satellites en panne.
La présente invention combine ainsi avantageusement les avantages des méthodes proposées dans les demandes de brevet FR 0954849 et FR 0951894, en utilisant la capacité à accommoder l'état de navigation en cas d'une panne satellite de la méthode proposée dans FR 0954849 afin de garantir que l'innovation croisée d'un satellite en panne se base sur un filtre sain (i.e non affecté par la panne). En effet dans une architecture de banc de filtres, deux filtres du banc ne contiennent qu'un seul satellite en panne ; en utilisant l'accommodation de l'état proposée dans FR 0954849, on est capable de maintenir ces deux filtres dans un domaine proche de l'état sans panne, ce qui permet de garantir que l'interprétation du test d'innovation croisée proposée dans FR 0951894 puisse donner lieu à l'identification des deux satellites en pannes.
On relèvera que l'invention n'est pas limitée à la détection et l'exclusion de deux pannes satellites simultanées, mais s'étend à la détection et l'exclusion de multiples pannes satellites simultanées pour autant que le banc de filtres présente des filtres affectés uniquement par une seule des pannes satellites multiples. Prenant l'exemple de 3 pannes satellites simultanées, on pourra retrouver, dans un banc de filtres composé de filtres secondaires utilisant n-2 mesures GNSS parmi les n mesures disponibles, des filtres secondaires affectés par une seule des 3 pannes. Après accommodation, la solution de navigation fournie par ces filtres sera saine, garantissant l'interprétation du test d'innovation croisée.
On reprend ci-après les méthodes de calcul développées par la Demanderesse et déjà exposées dans la demande de brevet FR 0951894 pour réaliser une détection et exclusion de pannes satellites basée sur les tests d'innovations croisées des satellites non utilisés et les tests d'innovations des satellites utilisés au moment de l'hybridation par chaque filtre du banc de filtres.
Chaque filtre n'utilisant pas un satellite teste l'innovation de ce satellite
(appelée innovation croisée) à partir de la position fournie par ce filtre et corrigée suite à l'accommodation. On peut ainsi détecter une panne satellite par le filtre n'utilisant pas le satellite en panne. L'avantage par rapport aux tests d'innovation classiques est que le filtre qui permet de tester un satellite en panne n'est pas perturbé par la panne.
En effet, le i-ème filtre de Kalman secondaire 9i reçoit du système GNSS (via le cas échéant le module de correction 5) les mesures de tous les satellites sauf du i-ème, et élabore ainsi le vecteur d'états dXi de manière indépendante du satellite i, de sorte que ce filtre 9i n'est pas perturbé par une éventuelle panne affectant le satellite i.
L'innovation croisée d'un satellite correspond par exemple à l'écart entre la pseudo-distance audit satellite PRt délivrée par le système de positionnement par satellites et une estimation a posteriori PRt de cette pseudo-distance fournie par un filtre de Kalman accommodée (c'est à dire dont la solution de navigation hydride a été corrigée via le module d'accommodation en fonction d'une estimation de l'impact d'une panne du satellite sur la solution de navigation hybride) n'utilisant pas la pseudodistance délivrée par le satellite, de sorte que cette estimation PRt est indépendant du satellite que l'on souhaite tester. Le résultat du test ne sera donc pas perturbé par une panne, et notamment par une panne lente, du satellite.
On précise ici que l'innovation croisée peut d'une manière générale être appliquée à n'importe quelle mesure brute, par exemple à une mesure de pseudo-vitesse (également appelée mesure doppler).
Revenant à l'exemple d'une innovation croisée appliquée à une pseudo-distance, on note Inno, l'innovation croisée du satellite d'indice i :
InnOi = PR, - PR, = H( Xx ) - H( Xx ), où
- H correspond au modèle d'observation du filtre de Kalman,
Xt correspond à la position réelle, non connue, du porteur
Xt correspond à la position du porteur telle qu'estimée par le i-ème filtre de Kalman secondaire 9i après accommodation.
En linéarisant l'équation précédente par développement de la matrice d'observation H au premier ordre : Ιηηο, = Η ( Χι ).( Χι - Xt ), où H désigne la dérivée au premier ordre de H.
La statistique de l'erreur ( Xt - Xt ) sur la position étant connue de par le filtre de Kalman (elle est notée Pi ci-après), le test statistique consiste par exemple à confronter l'innovation croisée à un seuil dépendant de sa covariance et pris égal a (H P HT +R1 ) *a , où H représente la matrice d'observation du filtre de Kalman, Pi la matrice d'estimation a posteriori de la covariance de l'erreur, Ri la matrice de covariance du bruit de mesure, et a un coefficient dont la valeur est fixée en fonction de la probabilité de fausse détection.
Un satellite est alors déclaré comme étant défaillant lorsque son innovation croisée excède le seuil présenté ci-dessus. Reprenant l'exemple de la figure 1 (pannes simultanées affectant les satellites 1 et 4), on retiendra à ce propos que les innovations croisées élaborées pour les satellites 1 et 4 affectés par une panne divergent plus vite que les innovations croisées élaborées pour les satellites 2 et 3 non affectés par une panne.
Afin de réaliser la fonction d'exclusion, le module 7 peut en outre être configuré pour :
- invalider un satellite déclaré comme étant défaillant pour que les mesures brutes dudit satellite défaillant ne soient plus utilisées par les filtres du banc,
- exclure le satellite invalidé si à l'expiration d'un délai prédéterminé TE suite à l'invalidation le test statistique de l'innovation croisée dudit satellite conclut toujours à la défaillance dudit satellite, et qu'aucun autre test d'innovation croisée n'a signalé la défaillance d'un autre satellite.
Ainsi, lorsque qu'un satellite est détecté comme étant en panne, on continue à surveiller ce satellite pendant un temps TE. Ce satellite, d'indice i par exemple, ne sera plus utilisé par tous les filtres mais continuera à être testé par le filtre 9i qui ne l'hybride pas via le test d'innovation croisée (le fait d'invalider le satellite suspect ne modifie effectivement en rien le fonctionnement du filtre 9i n'utilisant pas ce satellite). L'avantage d'invalider le satellite suspect pendant le procédé d'exclusion est que s'il n'y a pas d'ambiguïté sur le choix du satellite à exclure, il sera de fait exclu dès le début de TE (au moment de la détection). Ainsi, la valeur de la durée TE n'influe pas dans la majorité des cas sur les performances du dispositif d'hybridation.
Selon un mode de réalisation possible, en cas de déclaration de défaillance d'un nouveau satellite au cours du délai TE, on valide le satellite anciennement invalidé de sorte que ces données brutes soient à nouveau utilisées par les filtres du banc, et on invalide le nouveau satellite défaillant. On réalise ainsi un changement de satellite suspect lorsque malgré l'invalidation du premier satellite, une autre innovation croisée dépasse le seuil (ce qui n'est pas censé arriver dans l'hypothèse où le premier satellite était réellement celui en panne).
Selon un autre mode de réalisation possible, on réalise également, pour chaque filtre du banc, un test statistique de l'innovation a priori de chacun des satellites utilisés par le filtre. Il s'agit par exemple de réaliser un test gaussien des innovations (contraint par une probabilité β) pour les satellites utilisés par chaque filtre.
Ces tests d'innovations dits classiques peuvent aider à choisir le filtre n'utilisant pas le satellite défaillant lorsque plusieurs innovations croisées dépassent un seuil. En effet, il peut arriver qu'une défaillance d'un satellite perturbe suffisamment la position d'un ou plusieurs filtres l'utilisant pour que leurs innovations croisées dépassent également ce seuil. Il faut alors invalider le bon satellite parmi plusieurs possibles. Dans ce mode de réalisation, le choix du satellite à invalider est facilité par la prise en compte des tests d'innovations classiques qui permettent d'évaluer la pertinence de chacun des filtres. Le filtre le plus fiable sera celui qui a le plus grand nombre d'innovations classiques inférieures au seuil.
Ainsi, dans le cas où plusieurs satellites sont déclarés comme étant défaillants suite au test statistique de leur innovation croisée, on invalide le satellite non utilisé par le filtre ayant le plus grand nombre d'innovations a priori dont le test statistique est inférieur à un seuil de sorte que la mesure brute dudit satellite invalidé ne soit plus utilisée par les filtres du banc.
Il peut également arriver que plusieurs satellites soient déclarés comme étant défaillants suite au test statistique de leur innovation croisée et qu'il existe plusieurs filtres n'utilisant pas ces satellites ayant le même plus grand nombre d'innovations à priori dont le test statistique est inférieur à un seuil.
Dans ce cas, le choix du satellite défaillant à invalider peut alors fait en considérant le satellite donnant l'innovation croisée normalisée la plus grande en valeur absolue, en venant fournir les résultats des tests d'innovations croisées au module 53 de gestion des signaux satellites.
Alternativement, et comme également représenté sur la figure 2, ce choix peut également être réalisé par le module 53 de gestion des signaux satellites en venant exploiter les résultats des tests élaborés par le module de détection 52.
Selon un autre aspect de l'invention, en cas de déclaration de défaillance d'un satellite, on peut réaliser une réinitialisation partielle des filtres du banc utilisant le satellite exclu, notamment en réinitialisant les états liés aux mesures reçues du système GNSS et les états liés aux autres senseurs utilisés (tels que le baromètre), et en désensibilisant les états affectés par la panne par ajout de bruit d'état, ceci afin de faire reconverger les filtres concernés vers une solution saine si le satellite détecté comme étant défaillant est effectivement le satellite en panne.
On notera que ce type de réinitialisation peut être réalisé lors de la déclaration de défaillance d'un satellite, ou lors d'un changement d'identification du satellite défaillant durant la durée TE.
Alternativement la réinitialisation des filtres du banc peut s'opérer par l'intermédiaire du module d'accommodation 6 qui vient alors corriger l'impact d'une panne déclarée en utilisant pour ce faire les résultats des tests d'innovations croisées élaborés par le module 7 de détection de pannes satellites, ces résultats de tests étant pour ce faire rebouclés au module 51 de sélection d'innovations comme représenté sur la figure 2.
L'invention présente notamment les avantages suivants.
Le banc de filtres présente une architecture conventionnelle : il n'est pas nécessaire de rajouter un banc supplémentaire de filtres pour pouvoir identifier deux pannes satellites simultanées.
Un seul filtre est utilisé pour intégrer les mesures de plusieurs constellations GNSS.
L'utilisation des tests d' innovations croisées permet l'identification directe des satellites en panne.
L'accommodation permet la suppression de la pollution de l'état de navigation sans réinitialisation complète du banc de filtres.

Claims

REVENDICATIONS
1 . Procédé de contrôle d'intégrité d'informations de position délivrées par un dispositif (1 ) de positionnement par satellites (GNSS) comprenant un banc (3) de filtres de Kalman élaborant chacun une solution de navigation (dXO, dXi, dXn) à partir de mesures brutes de signaux émis par des satellites, caractérisé en ce qu'il comporte les étapes consistant, pour chaque filtre du banc, à :
- (i) corriger la solution de navigation élaborée par le filtre en fonction d'une estimation de l'impact d'une panne d'un satellite sur la solution de navigation ;
- (ii) calculer une innovation croisée reflétant l'écart entre une observation correspondant à une mesure brute issue d'un satellite non utilisée par le filtre et une estimation a posteriori de ladite observation issue de la solution de navigation élaborée par le filtre et corrigée conformément à l'étape (i) ;
- (iii) réaliser un test statistique de l'innovation croisée pour déclarer si le satellite dont la mesure brute n'est pas utilisée par le filtre est ou non défaillant.
2. Procédé selon la revendication 1 , dans lequel l'étape (i) comprend :
- la détermination, pour chaque satellite, d'au moins un rapport (Ir, lr') de vraisemblance entre une hypothèse de panne d'une nature donnée du satellite et une hypothèse d'absence de panne du satellite ;
- la comparaison du rapport de vraisemblance (lr, lr') associé à une panne de nature donnée à une valeur seuil, et la déclaration le cas échéant d'une panne de nature donnée ;
- une estimation de l'impact de la panne déclarée sur la solution de navigation élaborée par le filtre;
- la correction de la solution de navigation élaborée par le filtre en fonction de l'estimation de l'impact de la panne déclarée.
3. Procédé selon la revendication 2, comprenant le calcul, pour chaque satellite, d'une innovation croisée et d'une covariance d'innovation croisée reflétant l'écart entre une observation correspondant à une mesure brute issue du satellite et une estimation a posteriori de ladite observation élaborée par un filtre de Kalman n'utilisant pas la mesure brute issue du satellite, le rapport (Ir, lr') de vraisemblance étant déterminé en fonction de l'innovation croisée et de la covariance d'innovation croisée fournies par ledit filtre de Kalman n'utilisant pas la mesure brute issue du satellite et à partir d'une estimation de l'impact de la panne de nature donnée sur ladite innovation croisée.
4. Procédé selon la revendication 3, dans lequel l'impact de la panne de nature donnée sur ladite innovation croisée est estimé par détermination, à partir de données fournies par ledit filtre de Kalman n'utilisant pas la mesure brute issue du satellite, d'une matrice dynamique d'innovation, et par estimation d'une amplitude de la panne de nature donnée sur une fenêtre glissante d'estimation correspondant à un nombre donné (N) d'incrémentations dudit filtre de Kalman n'utilisant pas la mesure brute issue du satellite, la matrice dynamique d'innovation représentant un lien entre l'amplitude de la panne et l'écart induit par la panne sur l'innovation croisée.
5. Procédé selon l'une des revendications 1 à 4, dans lequel l'impact d'une panne sur une solution de navigation est estimé par détermination, à partir de données fournies par le filtre de Kalman élaborant la solution de navigation, d'une matrice dynamique de navigation, et par estimation d'une amplitude et d'une covariance de la panne sur une fenêtre glissante d'estimation correspondant à un nombre donné d'incrémentations dudit filtre de Kalman élaborant la solution de navigation, la matrice dynamique de navigation représentant un lien entre l'amplitude de la panne et l'écart induit par la panne sur ladite solution de navigation.
6. Procédé selon l'une des revendications 1 à 5, dans lequel le test statistique réalisé à l'étape (iii) déclare un satellite comme étant défaillant lorsque l'innovation croisée excède un seuil correspondant à (H.P HT + Ri) *a , où H représente la matrice d'observation du filtre de
Kalman, P, la matrice d'estimation a posteriori de la covariance de l'erreur, R, la matrice de covariance du bruit de mesure, et a un coefficient dont la valeur est fixée en fonction d'une probabilité de fausse détection.
7. P rocédé selon l' une des revend ications 1 à 6, dans lequel l'innovation croisée correspond à l'écart entre la pseudo-distance à un satellite délivrée par le système de positionnement par satellites et une estimation a posteriori de cette pseudo-distance fournie par un filtre de Kalman n'utilisant pas la pseudo-distance délivrée par le satellite.
8. Procédé selon l'une des revendications 1 à 7, comprenant en outre les étapes consistant à :
- invalider un satellite déclaré comme étant défaillant pour que les mesures brutes dudit satellite défaillant ne soient plus utilisées par les filtres du banc,
- exclure le satellite invalidé si à l'expiration d'un délai prédéterminé suite à l'invalidation le test statistique de l'innovation croisée conclut toujours à la défaillance dudit satellite et aucun autre test d'innovation croisée n'a déclaré la défaillance d'un autre satellite.
9. Procédé selon l'une des revendications 1 à 8, mettant également en œuvre, pour chaque filtre du banc, un test statistique de l'innovation a priori de chacun des satellites utilisés par le filtre, et dans lequel dans le cas où plusieurs satellites sont déclarés comme étant défaillants suite au test statistique de leur innovation croisée, on invalide le satellite non utilisé par le filtre ayant le plus grand nombre d'innovations a priori dont le test statistique est inférieur à un seuil de sorte que la mesure brute dudit satellite invalidé ne soit plus utilisée par les filtres du banc.
10. Procédé selon l'une des revendications précédentes, dans lequel chacun des filtres du banc élabore une solution de navigation en venant hybrider des mesures inertielles aux mesures brutes des signaux émis par les satellites.
1 1 . Dispositif de positionnement par satellites comprenant un banc (3) de filtres de Kalman élaborant chacun une solution de navigation à partir de mesures brutes de signaux émis par des satellites, caractérisé en ce qu'il comporte :
- un module (6) d'accommodation configuré pour estimer, pour chaque filtre du banc, l'impact d'une panne d'un satellite sur la solution de navigation élaborée par le filtre, et à corriger, en cas de déclaration de panne, la solution de navigation en fonction de l'estimation de l'impact de la panne ;un module (7) de détection de pannes satellites configuré pour
o calculer, pour chaque filtre du banc, une innovation croisée reflétant l'écart entre une observation correspondant à une mesure brute issue d'un satellite non utilisée par le filtre et une estimation a posteriori de ladite observation issue de la solution de navigation élaborée par le filtre de Kalman telle que corrigée par le module d'accommodation, et
o réaliser un test statistique de l'innovation croisée pour déclarer si le satellite est ou non défaillant.
PCT/EP2011/064891 2010-09-08 2011-08-30 Procede et dispositif de detection et d'exclusion de pannes satellite multiples dans un systeme gnss WO2012031940A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/821,556 US9291714B2 (en) 2010-09-08 2011-08-30 Method and device for detecting and excluding multiple satellite failures in a GNSS system
EP11748963.3A EP2614385B1 (fr) 2010-09-08 2011-08-30 Procede et dispositif de detection et d'exclusion de pannes satellite multiples dans un systeme gnss
CN201180042977.4A CN103097911B (zh) 2010-09-08 2011-08-30 用于检测和排除gnss系统中多个卫星故障的方法和装置
RU2013114354/07A RU2559842C2 (ru) 2010-09-08 2011-08-30 Способ и устройство для обнаружения и исключения множественных отказов спутников системы гнсс

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1057140A FR2964468B1 (fr) 2010-09-08 2010-09-08 Procede et dispositif de detection et d'exclusion de pannes satellite multiples dans un systeme gnss
FR1057140 2010-09-08

Publications (1)

Publication Number Publication Date
WO2012031940A1 true WO2012031940A1 (fr) 2012-03-15

Family

ID=44146288

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/064891 WO2012031940A1 (fr) 2010-09-08 2011-08-30 Procede et dispositif de detection et d'exclusion de pannes satellite multiples dans un systeme gnss

Country Status (6)

Country Link
US (1) US9291714B2 (fr)
EP (1) EP2614385B1 (fr)
CN (1) CN103097911B (fr)
FR (1) FR2964468B1 (fr)
RU (1) RU2559842C2 (fr)
WO (1) WO2012031940A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2634693C2 (ru) * 2013-04-18 2017-11-03 Сажем Дефанс Секюрите Способ контроля достоверности и устройство объединения/консолидации с множеством модулей обработки
CN108931789A (zh) * 2018-03-02 2018-12-04 和芯星通(上海)科技有限公司 攻击检测方法、攻击检测器、计算机可读存储介质和终端
WO2022185002A1 (fr) 2021-03-02 2022-09-09 Safran Electronics & Defense Procédé et centrale de calcul de données de navigation inertielle

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9341718B2 (en) * 2012-09-07 2016-05-17 Honeywell International Inc. Method and system for providing integrity for hybrid attitude and true heading
FR3012619B1 (fr) * 2013-10-31 2016-01-22 Sagem Defense Securite Procede de controle d'integrite de mesures satellites
FR3030058B1 (fr) * 2014-12-11 2016-12-09 Airbus Helicopters Dispositif redondant de capteurs de pilotage pour aeronef a voiture tournante
CN105487088B (zh) * 2015-09-12 2017-12-01 北京大学 一种卫星导航系统中基于卡尔曼滤波的raim算法
US11188752B2 (en) 2018-03-08 2021-11-30 Regents Of The University Of Minnesota Crop biometrics detection
CN110728007B (zh) * 2018-06-27 2023-11-03 北京自动化控制设备研究所 一种基于模型特征的动态故障诊断方法
CN108897016A (zh) * 2018-07-11 2018-11-27 北斗未来创新科技发展(深圳)有限公司 基于gnss的故障检测排除方法及装置
CN111142128A (zh) * 2018-11-02 2020-05-12 千寻位置网络有限公司 导航完好性的监测方法及装置、无人机
FR3088443B1 (fr) * 2018-11-13 2022-03-11 Thales Sa procédé et système de navigation d'aéronef
US11714200B2 (en) 2020-03-18 2023-08-01 Honeywell International Inc. Single-difference based pre-filter of measurements for use in solution separation framework
US11460585B2 (en) 2020-03-18 2022-10-04 Honeywell International Inc. Implementing single differences within a solution separation framework
KR102302865B1 (ko) * 2020-06-19 2021-09-17 한국과학기술원 다중 imu 및 gnss의 융합항법시스템을 위한 imu 센서 고장 검출 방법 및 장치
CN111767658A (zh) * 2020-07-10 2020-10-13 南通大学 一种用于组合导航系统的快速故障检测方法
CN114076959A (zh) * 2020-08-20 2022-02-22 华为技术有限公司 故障检测方法、装置及系统
CN113189623B (zh) * 2021-04-21 2022-08-12 中国电子科技集团公司第五十四研究所 一种卫星导航系统信号质量等级评估方法
FR3130399B1 (fr) 2021-12-14 2024-01-26 Safran Electronics & Defense Procédé de navigation par satellite avec détection de satellite en panne par traitement statistique de l’innovation croisée
FR3140447A1 (fr) * 2022-10-03 2024-04-05 Safran Electronics & Defense Procédé de contrôle de l’intégrité d’une pluralité de mesures de pseudo-distances acquises par un système de navigation
CN115420284B (zh) * 2022-11-08 2023-02-03 北京航空航天大学 一种组合导航系统故障检测与识别方法
CN116482716B (zh) * 2023-06-26 2023-08-29 北京航空航天大学 一种空基导航增强自组网的节点故障检测方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR951894A (fr) 1947-08-04 1949-11-04 Appareil pour le séchage des fils, tissus ou analogues
FR954849A (fr) 1950-01-06
EP1801539A1 (fr) 2005-12-20 2007-06-27 Thales Dispositif d'hybridation en boucle fermée avec surveillance de l'intégrité des mesures.
EP1956386A1 (fr) * 2007-02-07 2008-08-13 Sagem Défense Sécurité Procédé de détermination d'une position d'un corps mobile et d'une limite de protection autour de cette position
EP2120060A1 (fr) * 2008-04-21 2009-11-18 Deutsches Zentrum für Luft- und Raumfahrt e.V. Procédé de fonctionnement d'un récepteur de navigation satellite
WO2010070012A1 (fr) 2008-12-17 2010-06-24 Sagem Defense Securite Dispositif d'hybridation en boucle fermee integre par construction

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6639549B2 (en) * 2001-12-20 2003-10-28 Honeywell International Inc. Fault detection and exclusion for global position systems
RU2237257C2 (ru) * 2002-01-25 2004-09-27 Закрытое акционерное общество "Конструкторское бюро навигационных систем" Способ устранения влияния тропосферных и ионосферных ошибок измерения в одночастотных приёмниках спутниковой навигации
US7219013B1 (en) * 2003-07-31 2007-05-15 Rockwell Collins, Inc. Method and system for fault detection and exclusion for multi-sensor navigation systems
EP1637899A1 (fr) * 2004-09-20 2006-03-22 EADS Astrium GmbH Procédé et dispositif pour fournir des informations d'intégrité pour les utilisateurs d'un système de navigation global
US8722649B2 (en) 2007-06-15 2014-05-13 University Of Utah Research Foundation Alpha-chloro and alpha-bromo phosphonate analogs of lysophosphatidic acid and methods of making and using thereof
FR2927705B1 (fr) * 2008-02-19 2010-03-26 Thales Sa Systeme de navigation a hybridation par les mesures de phase

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR954849A (fr) 1950-01-06
FR951894A (fr) 1947-08-04 1949-11-04 Appareil pour le séchage des fils, tissus ou analogues
EP1801539A1 (fr) 2005-12-20 2007-06-27 Thales Dispositif d'hybridation en boucle fermée avec surveillance de l'intégrité des mesures.
EP1956386A1 (fr) * 2007-02-07 2008-08-13 Sagem Défense Sécurité Procédé de détermination d'une position d'un corps mobile et d'une limite de protection autour de cette position
EP2120060A1 (fr) * 2008-04-21 2009-11-18 Deutsches Zentrum für Luft- und Raumfahrt e.V. Procédé de fonctionnement d'un récepteur de navigation satellite
WO2010070012A1 (fr) 2008-12-17 2010-06-24 Sagem Defense Securite Dispositif d'hybridation en boucle fermee integre par construction

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
AUDREY GIREMUS AND ANNE-CHRISTINE ESCHER: "A GLR Algorithm to Detect and Exclude up to Two Simultaneous Range Failures in a GPS/Galileo/IRS Case", PROCEEDINGS OF THE 20TH INTERNATIONAL TECHNICAL MEETING OF THE SATELLITE DIVISION OF THE INSTITUTE OF NAVIGATION, ION GNSS 2007 : SEPT. 25 - 28, 2007, FORT WORTH CONVENTION CENTER, FORT WORTH, TEXAS, INST. OF NAVIGATION, FAIRFAX, VA, 25 September 2007 (2007-09-25), pages 2911 - 2923, XP002636755 *
PARKINSON B W ET AL: "AUTONOMOUS GPS INTEGRITY MONITORING USING THE PSEUDORANGE RESIDUAL", NAVIGATION, INSTITUTE OF NAVIGATION, FAIRFAX, VA, US, vol. 35, no. 2, 1 June 1998 (1998-06-01), pages 255 - 274, XP008064597, ISSN: 0028-1522 *
YOUNG C LEE: "Analysis of Range and Position Comparison Methods as a Means to Provide GPS Integrity in the User Receiver", MITRE PAPER, 1 January 1986 (1986-01-01), XP055001228 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2634693C2 (ru) * 2013-04-18 2017-11-03 Сажем Дефанс Секюрите Способ контроля достоверности и устройство объединения/консолидации с множеством модулей обработки
CN108931789A (zh) * 2018-03-02 2018-12-04 和芯星通(上海)科技有限公司 攻击检测方法、攻击检测器、计算机可读存储介质和终端
CN108931789B (zh) * 2018-03-02 2021-02-05 和芯星通(上海)科技有限公司 攻击检测方法、攻击检测器、计算机可读存储介质和终端
WO2022185002A1 (fr) 2021-03-02 2022-09-09 Safran Electronics & Defense Procédé et centrale de calcul de données de navigation inertielle
FR3120437A1 (fr) 2021-03-02 2022-09-09 Safran Electronics & Defense Procede et centrale de calcul de donnees de navigation inertielle

Also Published As

Publication number Publication date
EP2614385A1 (fr) 2013-07-17
CN103097911B (zh) 2014-10-15
EP2614385B1 (fr) 2014-06-25
RU2559842C2 (ru) 2015-08-10
FR2964468A1 (fr) 2012-03-09
RU2013114354A (ru) 2014-10-20
US20130169478A1 (en) 2013-07-04
FR2964468B1 (fr) 2012-09-28
CN103097911A (zh) 2013-05-08
US9291714B2 (en) 2016-03-22

Similar Documents

Publication Publication Date Title
EP2614385B1 (fr) Procede et dispositif de detection et d'exclusion de pannes satellite multiples dans un systeme gnss
EP2411832B1 (fr) Procédé et dispositif de détection et d'exclusion de pannes satellite dans un système hybride ins/gnss
EP2459965B1 (fr) Procede de determination de parametres de navigation d'un porteur et dispositif d'hybridation associe a banc de filtres de kalman
EP1714166B1 (fr) Dispositif de surveillance de l integrite des informations delivrees par un systeme hybride ins/gnss
EP3623758B1 (fr) Système de localisation, et procédé de localisation associé
EP2299287B1 (fr) Système hybride et dispositif de calcul d'une position et de surveillance de son intégrité
EP2998765B1 (fr) Système d'exclusion d'une défaillance d'un satellite dans un système gnss
FR2906893A1 (fr) Procede et dispositif de surveillance de l'integrite des informations delivrees par un systeme hybride ins/gnss
WO2010070012A1 (fr) Dispositif d'hybridation en boucle fermee integre par construction
EP2987036A1 (fr) Procede de controle d'integrite et dispositif de fusion-consolidation comprenant une pluralite de modules de traitement
WO2011000643A1 (fr) Procede de determination de la position d'un mobile a un instant donne et de surveillance de l'integrite de la position dudit mobile.
WO2015165908A1 (fr) Procédé et dispositif de contrôle d'intégrité à double niveau de consolidation
EP2452157B1 (fr) Procede de determination de parametres de navigation d'un porteur et dispositif d'hybridation associe
WO2010070011A1 (fr) Dispositif d'hybridation a filtres de kalman segreges
EP1752786B1 (fr) Système de navigation hybride inertiel/satellite et procedé de controle d'un tel système
WO2024008640A1 (fr) Dispositif et procédé de navigation et de positionnement
WO2024008635A1 (fr) Dispositif et procede de maintien de l'integrite du positionnement d'un vehicule independamment de la vulnerabilite de donnees satellitaires
WO2024008942A1 (fr) Dispositif de navigation et de positionnement

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180042977.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11748963

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13821556

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011748963

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013114354

Country of ref document: RU

Kind code of ref document: A