WO2012027634A1 - System and method for interference free operation of co-located tranceivers - Google Patents

System and method for interference free operation of co-located tranceivers Download PDF

Info

Publication number
WO2012027634A1
WO2012027634A1 PCT/US2011/049277 US2011049277W WO2012027634A1 WO 2012027634 A1 WO2012027634 A1 WO 2012027634A1 US 2011049277 W US2011049277 W US 2011049277W WO 2012027634 A1 WO2012027634 A1 WO 2012027634A1
Authority
WO
WIPO (PCT)
Prior art keywords
sector
panel
panel device
sectors
receiving
Prior art date
Application number
PCT/US2011/049277
Other languages
French (fr)
Inventor
Randy Frei
Original Assignee
Trilliant Networkd, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US37754810P priority Critical
Priority to US61/377,548 priority
Application filed by Trilliant Networkd, Inc. filed Critical Trilliant Networkd, Inc.
Publication of WO2012027634A1 publication Critical patent/WO2012027634A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management, e.g. wireless traffic scheduling or selection or allocation of wireless resources
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation where an allocation plan is defined based on the type of the allocated resource
    • H04W72/0446Wireless resource allocation where an allocation plan is defined based on the type of the allocated resource the resource being a slot, sub-slot or frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management, e.g. wireless traffic scheduling or selection or allocation of wireless resources
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation where an allocation plan is defined based on the type of the allocated resource
    • H04W72/046Wireless resource allocation where an allocation plan is defined based on the type of the allocated resource the resource being in the space domain, e.g. beams

Abstract

Systems and methods for co-locating a plurality of transceivers capable of operating on the same frequency without interference are provided. The transmissions and/or receptions of the transceivers are coordinated in the time domain such that conflicting sectors are not utilized simultaneously, allowing for the transceivers to be physically located in close proximity without significant intra-system interference. The coordinating programs described herein allow for enhanced efficiency of spectral utilization as well as enhanced quality of service (QoS) through latency controls, rate control and traffic prioritization.

Description

SYSTEM AND METHOD FOR INTERFERENCE FREE OPERATION OF

CO-LOCATED TRANCEIVERS

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] The present application claims benefit of similarly titled U.S. provisional patent application serial no. 61/377,548 filed August 27, 2010, which is incorporated herein by reference in its entirety.

FIELD OF THE INVENTION

[0002] The present invention is directed to a system and method for co-locating a plurality of transceivers that can operate on the same frequency without interference. More specifically, the invention is directed to a system and method for coordinating communications of multiple, co-located transceivers, to allow the transceivers to be physically located in close proximity without causing significant intra-system interference.

BACKGROUND OF THE INVENTION

[0003] As consumer appetite for multimedia content continues to grow, internet service providers are struggling to provide sufficient bandwidth. Although wired solutions, such as Tl lines, digital subscriber lines (DSL), and cable modems, are becoming ubiquitous in urban environments, these systems are presently not available to a significant portion of the population. Moreover, acquisition and installation costs associated with these systems make them less appealing.

[0004] One system that provides a fixed wireless solution with bandwidth comparable to

DSL and cable modem technologies is a mesh network architecture. As described in, for example, commonly owned U.S. Patent Application Nos. 12/554,135 and 12/275,282, each of which are incorporated herein by reference in their entirety, a mesh network comprises a plurality of wirelessly connected nodes that communicate data traffic across a wide area. The nodes of a mesh network communicate with one another using radio or microwave communications signals

[0005] One of the most effective tools to improve wireless links, such as connections between nodes in a mesh network, is the use of directional antennas. The benefits of directional antennas include higher modulation and longer range; decreased interference susceptibility from external sources; decreased interference to other systems; and increased power due to point-to- point regulations in many countries. Despite these advantages, directional antennas are difficult to employ because they must be precisely aligned with a complementary antenna and/or many mesh networks require 360° coverage.

[0006] In those mesh networks where it is desirable to have 360° omnidirectional coverage, a plurality of directional antennas must be employed. Unfortunately, the use of multiple directional antennas in close proximity is difficult to implement, as such systems experience debilitating intra-system interference. Thus, co-located wireless directional antennas are normally assigned to different non-interfering frequencies, or are installed with sufficient physical or spatial isolation to avoid interference. Both of these situations negatively impact performance and/or impose installation challenges.

[0007] It would therefore be desirable to design a system comprising multiple, co-located directional antennas that operate on a single frequency without significant intra-system interference.

SUMMARY OF THE INVENTION

[0008] In order to maximize bandwidth capacity at a single location, and to allow easier installation, the exemplary embodiments described herein employ multiple panel devices along with processor implemented scheduling software to coordinate communications to and from each panel. This allows multiple co-located panels to dynamically use their sectors in an interference free manner, while being able to operate on a single frequency.

[0009] In one aspect of the invention, a panel system is provided. The panel system includes a first panel device having a processor, a transmitter, and a receiver. The first panel device transmits and/or receives a first beam along a first sector chosen from a plurality of first sectors defining a first beam arc. The panel system also includes a second panel device co- located with the first panel device (e.g., located adjacent to the first panel device). The second panel device typically includes a processor, a transmitter, and a receiver such that the second panel device is capable of transmitting and/or receiving a second beam along a second sector chosen from a plurality of second sectors defining a second beam arc. Typically, the first sector is located such that the transmitting and/or receiving of the first beam by the first panel device along the first sector would interfere with the transmitting and/or receiving of the second beam by the second panel device along the second sector. However, such interference is prevented, as the first panel device and second panel device are coordinated in the time domain to prevent the transmitting and/or receiving of the second beam along the second sector when the first panel device is transmitting and/or receiving the first beam along the first sector.

[00010] The second panel device of the multi-panel system is typically not prevented from transmitting and/or receiving along any of the plurality of second sectors that do not interfere with the first sector. The first panel device and/or second panel device of the system may include an array of antenna elements. Moreover, the first panel device and/or second panel device of the system may be a directional antenna.

[00011] These and other aspects of the invention will be better understood by reading the following detailed description and appended claims.

BRIEF DESCRIPTION OF THE FIGURES

[00012] Figure 1 shows a panel device configuration which may be used in accordance with embodiments described herein;

[00013] Figure 2 illustrates an exemplary system comprising multiple, co-located panels in accordance with an embodiment described herein;

[00014] Figure 3 illustrates an exemplary network configuration including a panel system of the invention in connection with NAN mesh networks;

[00015] Figure 4 is an exemplary overall system configuration including a panel system of the invention in communication with broadband antennas; and

[00016] Figure 5 is an exemplary overall system configuration including a panel system of the invention in communication with connectors for enabling wireless connectivity.

DETAILED DESCRIPTION OF INVENTION

[00017] As described below, the methods and systems of the invention employ multiple panel devices along with processor implemented coordinating software to schedule communications (e.g., transmissions and/or receptions) in the time domain to and from each panel. This allows multiple co-located panels to dynamically send and receive data, without debilitating interference, and despite close proximity. The coordinating programs described herein allow for enhanced efficiency of spectral utilization as well as enhanced quality of service (QoS) through latency controls, rate control and traffic prioritization.

[00018] As used throughout, the terms "panel" and "transceiver" are employed interchangeably. Typically, the panels of the invention are capable of transmitting and/or receiving analog and/or digital signals. Moreover, the panels described herein typically comprise a transmitter, a receiver, a memory, a power circuit, and a processor. It is an object of the invention to allow multiple panels to be co-located and interconnected, while preventing interference. For example, multiple panels may be mounted on rooftops, walls, or windows, in such a geometry as to allow for 360° omnidirectional coverage. The panels may be adapted to communicate with any mesh node that is within line-of-sight to the mounting location.

[00019] The term "time slot" or "communication slot," as described herein, refers to a given amount of time during which a panel will send or receive a signal. Although the invention is described in terms of coordinating panel sectors in the time domain, it will be understood that other types of communication spaces may be used, including without limitation, codes, channels, and the like.

[00020] Referring to Figure 1, an exemplary panel 100 which may be used in the embodiments described herein is shown. The panel 100 comprises an array of individual antenna elements (e.g., 120), as shown and described in detail in commonly owned U.S. Patent No. 7,053,853, the entire contents of which are incorporated herein by reference. The panel 100 may produce a single, directional beam that may be switched in a multitude of directions to connect to various nodes.

[00021] In one embodiment, the panel 100 comprises an RF feed circuit, a processor, a transmitter, a receiver, and/or a power circuit. For example, the RF feed circuit of a panel may allow for a beam having the maximum allowable FCC output power of 1 Watt to be produced at 23 dBi of gain. The panel typically operates (i.e., receives and/or transmits) at approximately 5.8GHz (e.g., frequencies within the UNII band). Moreover, each panel typically includes a processor to facilitate coordination calculations and scheduling information transfer between multiple panel devices as described herein.

[00022] One skilled in the art recognizes that the coordinating techniques described herein may be employed with panels having any number of differently configured panels. For example, the particular panel configuration shown in Figure 1 produces a beam having a horizontal width of about 15 degrees and a vertical width of about 6 degrees. The beam may be steerable across a 90 degree coverage arc by changing the phase of the signal at a panel and the panel design supports a very fine level of granularity in horizontal steering (e.g., a minimum of an about 3° increment).

[00023] The exemplary panel of Figure 1 comprises an M x N array of individual antenna elements (e.g., radiating patches), wherein M = 8 and N = 5. In other embodiments, the panel device may include antenna elements in arrays of M = 1 to 10 by N = 1 to 10. In any event, the number of antenna elements in each column typically determines the vertical beam width of the antenna, and the columns are typically spaced one half wavelength apart to provide for optimum side-lobe levels. It will be appreciated that panels comprising any type of radiating elements may be employed in the invention, such as but not limited to those that comprise slots, dipoles or other apertures.

[00024] In exemplary panels described in U.S. Patent No. 7,053,853, an RF signal is fed through a power divider, then phase shifters (to control the beam shape), then an amplifier and T/R (transmit/receive) switch for each of eight element arrays. The output power of the device is equal to the combined output power of the eight elements, which allows for better steering and lower distortion while increasing the delivered output power to the maximum allowable.

[00025] Referring to Figure 2, an exemplary panel system 200 is illustrated comprising four co-located panel devices (A-D), such as the panels shown and described with respect to Figure 1. As shown, the panels are each able to steer a beam over a 90 degree arc, which is divided into any number of sectors having a given width. For example, the arcs shown in Figure 2 are divided into eight sectors (0-7), each spanning about 15 degrees in width. Accordingly, when a panel produces a beam having approximately the same width of a sector, the panel may be said to "use" that sector when it transmits or receives a beam along that sector. In the illustrated exemplary embodiment, the panel (e.g., Panel A) produces a 15 degree wide beam, which may be directed along any of sectors 0-7.

[00026] It will be recognized that, although eight sectors are shown, the invention is not so limited. Typically, the number of sectors will relate to the width of the beam produced by a panel and the total arc used by the panel. For example, if a panel produces a 30 degree wide beam and is capable of steering the beam across a 90 degree arc, the arc may be split into three sectors, each spanning about 30 degrees. [00027] In any event, as shown, each of the panel devices (A-D) are physically independent from one another, but are located in close proximity. In fact, the coordination methods of the invention allow for multiple panels to be separated by less than 10 ft., less than 5 ft., less than 2 ft., or even less than a 1 ft, without the need for significant RF isolation or the need for each panel to operate on a different frequency (although either or both may be implemented in exemplary systems). One skilled in the art recognizes that, while four panels are co-located in the present example, the co-location of fewer or greater individual panel devices is possible.

[00028] Typically, the panels (A-D) are employed in a geometry that allows for the transmittal and/or reception of beams by a first panel that have the potential to interfere with adjacent panels. For example, in the illustrated embodiment, signals emitted along sector 7 of Panel A (A7) and sector 0 of Panel B (B0) are capable of interfering with each other because of their close proximity. By contrast, signals emitted and/or received along sectors A7 and B3 would not typically interfere with each other, because of the distance and direction of these sectors.

[00029] Accordingly, the panels must be coordinated as to prevent the panels from transmitting and/or receiving along conflicting sectors at the same time. The programs of the invention coordinate operation of the panel system 200, including the individual panel devices therein (A-D), to prevent this type of interfering operation. In one embodiment, usage of each sectors is only allowed during a scheduled time slot. For instance, when Panel A communicates on its sector A7, Panel B would be prevented from using its sector B0, but would be allowed to transmit or receive a signal on a non-interfering sector such as, for example, sector B3.

[00030] In order to properly coordinate the multiple panels of a system, certain panel geometries are typically implemented. First, the panels (A-D) are positioned such that a sector only interferes with one or more sectors of a single other panel. Stated another way, a single sector will not interfere with sectors of multiple panels. As an example, if sector A7 interferes with B0, then sector A7 should not interfere with any sectors of Panel C or Panel D.

[00031] The panels are also positioned such that not every sector of a first panel interferes with every sector of an adjacent panel. Therefore, the panel systems will comprise adjacently located panels having one or more interference-free sectors. As an example, Panel B will comprise at least one sector (e.g., B3) that does not interfere with at least one sector of Panel A (e.g., A7). Moreover, because adjacent sectors on different panels (e.g, BO and A7) are capable of operating at similar or identical frequencies, each panel is typically coordinated with at least two other panels. For example, Panel B will be coordinated with at least Panels A and C.

[00032] In order to carry out effective coordinating via time slot scheduling (described in detail below), each of the coordinated panels will typically share a synchronized clock. It will be appreciated that such synchronization is required to accurately schedule emission/transmission for each panel during a particular time slot.

[00033] In addition to the above panel geometries, the coordination of panels is typically determined according to a number of simplifying assumptions. For example, the system may assume that interference caused by additive signals (i.e., a signal comprising two or more signals from different source panels) is negligible. Accordingly, in one embodiment, the system does not account for additive signals when coordinating panels. For example, an additive signal comprising noise from sectors 7 of Panel B and sector 0 of Panel D would not be taken into account when coordinating sector 3 of Panel C. Although it is preferred to employ such a simplifying assumption to reduce processing power requirements and processing time, in some embodiments, any additive signals may, in fact, be considered when coordinating panels.

[00034] In one embodiment, each of the above panel geometries and simplifying assumptions may be tested prior to deployment. The panels of the system are typically able to test each other in order to determine if they are sufficiently isolated, and this testing is determined through either an automatic sequence test or a manual configuration.

Messaging

[00035] In order to coordinate the transmission and/or emission along sectors of multiple panels, the panels (A-D) are generally capable of communicating and exchanging data with each other. In one embodiment, the panel system 200 initiates a data exchange process when the system is powered up, wherein each individual panel device (A-D) discovers the existence, location, and/or other panel information of the other panel devices in the system through frame exchanges. The data exchange process is typically automatically initiated upon power-up of the system 200, before transmissions to non-co-located panels are made, but may alternatively or additionally be initiated manually or as part of the normal operation of the panel data exchanges. [00036] During the data exchange processes, the panel devices (A-D) exchange panel information, such as but not limited to which sectors (0-7) are being utilized, whether the sectors interfere with those of adjacent panels, and the utilization rate desired or required for each sector. Moreover, the signal quality between each of the panels (A-D) may be determined and communicated.

[00037] In certain embodiments, the data exchange is performed among panels using broadcast messages, but in a preferred embodiment, a three-way handshake adjacent panels is employed. Of course, there are many implementations for executing data exchanges between multiple panels, and in one embodiment, a two-way handshake could alternatively be used.

[00038] An exemplary three-way handshake is described in detail below, where a first panel (Panel 1) negotiates the parameters of the network TCP socket connection before beginning communication with a second panel (Panel 2). The three-way handshake includes a Demand Info Tx from Panel 1 to Panel 2 desiring to use the same sector. For purposes of orientation and coordination, as between two panels, the initiating panel may be determined based on left-right location (i.e., the panel to the right is always Panel 1). Alternatively, the panel with the lowest MAC address may be designated Panel 1.

[00039] The Demand Info Tx includes, but is not limited to, the data show in Table 1 from

Panel 1, and is typically in the form of an XML message:

Table 1 : Demand Info Tx

Figure imgf000009_0001

[00040] In response to a received Demand Info Tx from Panel A, Panel B responds with a

Demand Info Rx that includes, but is not limited to, the data shown in Table 2. Table 2: Demand Info Rx

Figure imgf000010_0001

[00041] Once Panel 1 receives the Demand Info Rx from Panel 2, Panel 1 sends an

Acknowledgement Message. In one embodiment, the Acknowledgement Message may simply contain the IDM.

[00042] Importantly, the Local and Remote Sector interference information seen by Panel

1 may not be the same as the Local and Remote Sector interference information seen by Panel 2. If this is the case, the coordination program may take the maximum interference and coordinate based on this information.

[00043] In a preferred implementation, an explicit start time is not included in the messages, because it is implied that start time will always be the next το after the acknowledgement is received. However, in an alternative embodiment, an explicit start time may be communicated and set in the Demand Info Rx or Tx as the next integer second (or some set number of seconds, e.g., 5 seconds) based on, for example, the global GPS second system.

[00044] Once communication is established, and interfering sectors are identified (e.g., A7 and B0), the desired sector utilization rate for the panels (e.g., Panel A and Panel B) competing for the time slots on the interfering sectors is exchanged between the panels. For example, if Panel A and Panel B each desire to transmit data along sector A7 and B7, respectively, the two panels will exchange data (e.g., an integer value) corresponding to the demand for that sector.

Coordination

[00045] The processor implemented coordinating programs described herein schedule data transmission and/or reception (including phase selection) within time slots to avoid the contention of data, which enables the operation of more than one panel device in a panel system at a given frequency, without interference. As described above, the panels exchange each of their demands for the conflicting sectors, indicating how much time they need to use the conflicting sectors. Using the exchanged time -based demands, the processors of the respective panels may run the coordinating programs of the invention to dynamically adjust sector usage without requiring transaction by transaction negotiation. The pseudo-real-time demand information exchange between panels thus allows for real-time adjustments based on sector demand.

[00046] In one embodiment, the sharing or coordination of time slots within conflicting sectors is scheduled based on "time on the air." This means that if, for example, two panels have equal demands on the conflicting sectors, they will evenly share time regardless of modulation. For instance, if two panels have an equal time demand, then a panel with 6 mbps links on the correlated sectors will get 3mbps and a panel with 18 mbps links will get 9 mbps. Alternatively, the coordination can account for modulation and data transmission .

[00047] A more preferred embodiment is now discussed and is further described in

Equations 1 and 2, below. As shown, each panel (Panel A and Panel B) determines a rate at which integer boundaries are crossed, and transmits and/or receives at calculated time slots. The calculation is typically based on an integer counter (i), which is first multiplied by a first panels' time demand value ("TA") (i.e., the time Panel A needs to use the conflicting sector). This value is then divided by the sum of the time demands of the first panel ("TA") and second panel ("TB"). The second panel (Panel B) performs the same calculation, and the panels employ the computed counter values that do not cross an integer boundary.

Equation 1

Panel A transmits and/or receives when: (TA * i) / (TA + TB) is not equal to (TA * (i-1)) / (TA + TB)); where i = 0, 1, 2, 3, etc.

Equation 2

Panel B transmits and/or receives when: (TA * i) / (TA + TB) is equal to (TA * (i-1)) / (TA + TB); where i = 0, 1, 2, 3, etc.

[00048] Generally, the time demand values (TA and TB) are normalized (e.g., percent of total time required * 100, or number of slots needed out of 100). For instance, a panel with only traffic on a conflicting sector, but that only has 50% load, could send data during 50 out of 100 time slots (i.e., normalized over 100), while another panel with 100% utilization but only 25% on the conflicting sector would send data along that sector during 25 out of the 100 possible time slots.

[00049] In one particular example, if Panel A requires sector A7 25% of the time, and

Panel B requires sector B0 50%> of the time, Panel A would have opportunities to use time slots 1, 3, 6, 9, 12, etc., while Panel B would be able to use time slots 2, 4, 5, 7, 8, 10, 11, etc. To fairly distribute the time, multiple slot beats will count as multiple uses (e.g., a 1600 transmission would count twice as much as a 800 transmission).

[00050] The coordinating programs described herein may be used to assign time slots based solely on demand, without regard to fairness. However, in alternative embodiments, fairness may be considered. For instance, if one panel needs a conflicting sector 100% of the time, and another panel needs the corresponding conflicting sector 50% of the time, the results of the program may assign 2/3 of the time slots to the first panel and 1/3 of the time slots to the second panel, rather than 1/2 and 1/2. While this may seem unfair, the panels are assumed to be part of the same system, so there is no reason why traffic on a lightly utilized panel should be preferred over traffic on a highly utilized panel.

[00051] In one embodiment, the coordinating program enables the panels to grant recurring time slots, which means that panels can be granted extended rights to communicate using a given sector during certain time slots. This is useful for providing higher classes of service for applications like Voice over IP (VoIP).

[00052] While the coordinating process described above is performed in a distributed fashion, the invention is not so limited. Alternatively, systems are envisioned wherein a single processor on a panel is designated as the master and performs scheduling for all panels in the panel system. And in a further embodiment, a wholly separate processor may be employed to perform the coordinating processes.

[00053] Referring to Figure 3, a schematic illustrates an exemplary implementation of a panel system 350 within a larger wide area network (WAN) system 330. The panel system 350 communicates with multiple mesh networks (301, 311, 321), also called neighborhood area networks (NANs). As shown with respect to mesh network A 301, each of the NANs comprises multiple nodes, such as but not limited to, meters (302 - 307) and at least one mesh gate 308. Mesh networks B 311 and C 321 are also shown in communication with the WAN system 330 through their respective mesh gates (312, 322).

[00054] It will be appreciated that the mesh gates (308, 312, 322) are the access points to the meters (e.g. 302-307) within their individual mesh networks and bridge their individual mesh networks to the WAN 330. A mesh gate may also be referred to as an access point or a Neighborhood Area Network to Wide Area Network (NAN- WAN) gate. The mesh gate may perform anyone or more of many different functions including, for example, but not limited to, one or any combination of: relaying information from a server (such as to a back end server 340) to the mesh network nodes, routing information, aggregating information from the nodes within any sub-network that may be configured for transmission to a server (such as to the back end server), acting as a home area network (HAN) sometimes also referred to as a premise area network (PAN) coordinator, acting as a NAN- WAN gate, transmitting firmware upgrades, and/or multicasting messages. The mesh gate may also be referred to as a collector because it collects information from the NAN-associated nodes or other nodes in its subnetwork. A mesh gate may include a mesh radio to communicate with mesh devices over the mesh network and a WAN communication interface to communicate with the Panel System 350.

[00055] The mesh gate may provide a gateway between the mesh network A and a server

340. The server 340 can also act as a back end. The server 340 can provide services to mesh devices, such as commissioning devices, providing software updates, providing metering pricing updates, receiving metering information, etc. The mesh gate may aggregate information from mesh devices (e.g., meters) within the mesh network and transmit the information to the server 340. The mesh gate may further forward messages from the mesh devices to the server 340, for example, status reports and meter readings. The mesh gate may further forward messages from the server 340 to the mesh devices, for example, instructions and queries. The server 340 may be a computing device configured to receive information, such as meter readings, from a plurality of mesh networks and meters. The server 340 may also be configured to transmit instructions to the mesh networks, mesh gates, and meters. It will be appreciated that while only one server is depicted, any number of servers may be used. For example, servers may be distributed by geographical location. Redundant servers may provide backup and failover capabilities in the AMI system. [00056] The extenders 360, in combination with the panel system 350, extend the reach of the mesh gates (308, 312, 322) and relay information to/from the NANs (301, 312, 322) through the WAN 320 to the back-end server(s) 340. The extenders 360 may demand slots from panel system 350.

[00057] While Figure 3 illustrates three mesh networks (301, 311, 321), each with a single mesh gate (308, 312, 322) communicating with a single extender 360 the invention is not so limited, and there need not be such a 1 : 1 ratio of mesh gates to extenders. Rather, multiple mesh gates (308, 312, 322) may communicate with a single extender 360. Similarly, information from a single mesh gate (308, 312, 322) may hop across multiple extenders (361, 362, 363) before reaching the panel system 350. Further still, the WAN 330 may comprise any number of panel systems 350. In one embodiment, the nodes that make up the WAN 330 may communicate using IEEE 802.1 lb, g, and/or n physical and link layer standards.

[00058] Referring to Figure 4, an exemplary use for the panel system 450 is illustrated.

As shown, a WAN 430 comprises a panel system 450 in communication with multiple extenders 460. The WAN 430 is in communication with a broadband provider 490, which provides broadband internet service to customers. The broadband provider 490 communicates with broadband antennas 480 located at individual customer premises through the WAN 430. Specifically, the panel system 450 may is employed to transmit and/or receive data to/from each of the broadband antennas 480.

[00059] Referring to Figure 5, another exemplary use for the panel system 550 is illustrated. As shown, a plurality of directional connectors 590 are disposed around the panel system 550 to provide internet capabilities to consumers. In one embodiment, the multiple directional connectors 590 may be coordinated such that they may provide 360 degree omnidirectional transmission and/or reception capabilities without substantial intra-system interference.

[00060] In certain embodiments, panels having conflicting sectors will divide time slot usage regardless of whether the sector is needed for upstream or downstream communications. In these embodiments, the panel to extender (Figures 3 and 4) and panel to coordinator (Figure 5) communications protocol is typically limited to bi-directional data exchanges, meaning there is no ability to share time slots based on Tx/Tx or Rx/Rx due to the lack of unidirectional sectors in the MAC layer. Of course, the invention is not so limited. For systems wherein the communications protocol is unidirectional (i.e., certain sectors are designated for transmitting or receiving only), the sectors may be shared such that separate data packets may be transmitted simultaneously along the same Tx sector, essentially sharing the sector, and similarly, separate data packets may be received simultaneously from the same Rx sector, essentially sharing the sector.

[00061] Further, in certain embodiments, the panel systems and/or children thereto (e.g., extenders, connectors, etc.) may be programmed in various ways in order to implement a preferred panel process, wherein if the specified panel is available, a child will connect through it. Otherwise, the child will connect via the best route, according to its normal frequency and domain algorithm to a next best panel. Identification of the preferred panel may be by its MAC address. Further still, information regarding the level of sector interference and/or sector availability may be shared between panel systems and/or children such that there is efficient use of sectors and minimization of interference, where possible. For example, in a specific scenario, individual panels may recognize sector availability and implement a process for initiating communication with a child that might otherwise be communicating via an interfering sector of the panel in a shared configuration.

[00062] Unless specifically stated otherwise as apparent from the following discussion, it is appreciated that throughout the description, discussions utilizing terms such as "processing" or "computing" or "calculating" or "determining" or "displaying" or the like, can refer to the action and processes of a data processing system, or similar electronic device, that manipulates and transforms data represented as physical (electronic) quantities within the system's registers and memories into other data similarly represented as physical quantities within the system's memories or registers or other such information storage, transmission or display devices.

[00063] The exemplary embodiments can relate to an apparatus for performing one or more of the functions described herein. This apparatus may be specially constructed for the required purposes, or it may comprise a general purpose computer selectively activated or reconfigured by a computer program stored in the computer. Such a computer program may be stored in a machine (e.g. computer) readable storage medium, such as, but is not limited to, any type of disk including floppy disks, optical disks, CD-ROMs and magnetic-optical disks, read only memories (ROMs), random access memories (RAMs) erasable programmable ROMs (EPROMs), electrically erasable programmable ROMs (EEPROMs), magnetic or optical cards, or any type of media suitable for storing electronic instructions, and each coupled to a bus.

[00064] Some exemplary embodiments described herein are described as software executed on at least one computer, though it is understood that embodiments can be configured in other ways and retain functionality. The embodiments can be implemented on known devices such as a server, a personal computer, a special purpose computer, a programmed microprocessor or microcontroller and peripheral integrated circuit element(s), and ASIC or other integrated circuit, a digital signal processor, a hard-wired electronic or logic circuit such as a discrete element circuit, or the like. In general, any device capable of implementing the processes described herein can be used to implement the systems and techniques according to this invention.

[00065] It is to be appreciated that the various components of the technology can be located at distant portions of a distributed network and/or the internet, or within a dedicated secure, unsecured and/or encrypted system. Thus, it should be appreciated that the components of the system can be combined into one or more devices or co-located on a particular node of a distributed network, such as a telecommunications network. As will be appreciated from the description, and for reasons of computational efficiency, the components of the system can be arranged at any location within a distributed network without affecting the operation of the system. Moreover, the components could be embedded in a dedicated machine.

[00066] Furthermore, it should be appreciated that the various links connecting the elements can be wired or wireless links, or any combination thereof, or any other known or later developed element(s) that is capable of supplying and/or communicating data to and from the connected elements. The terms determine, calculate and compute, and variations thereof, as used herein are used interchangeably and include any type of methodology, process, mathematical operation or technique.

[00067] The invention described and claimed herein is not to be limited in scope by the specific embodiments herein disclosed since these embodiments are intended as illustrations of several aspects of the invention. Any equivalent embodiments are intended to be within the scope of this invention. Indeed, various modifications of the invention in addition to those shown and described herein will become apparent to those skilled in the art from the foregoing description. Such modifications are also intended to fall within the scope of the appended claims. All publications cited herein are incorporated by reference in their entirety.

Claims

We Claim:
1. A panel system comprising:
a first panel device comprising a first processor, a transmitter, and a receiver, the first panel device capable of transmitting and/or receiving a first beam along a first sector chosen from a plurality of first sectors defining a first beam arc; and
a second panel device co-located with the first panel device comprising a second processor, a transmitter, and a receiver, the second panel device capable of transmitting and/or receiving a second beam along a second sector chosen from a plurality of second sectors defining a second beam arc;
wherein the first sector is located such that the transmitting and/or receiving of the first beam by the first panel device along the first sector would interfere with the transmitting and/or receiving of the second beam by the second panel device along the second sector; and
wherein the first panel device and second panel device are coordinated in the time domain by at least one of the first processor and the second processer to prevent the transmitting and/or receiving of the second beam along the second sector when the first panel device is transmitting and/or receiving the first beam along the first sector.
2. A system according to claim 1, wherein the second panel device is not prevented from transmitting and/or receiving along any of the plurality of second sectors that do not interfere with the first sector.
3. A system according to claim 1, wherein the first panel device and/or second panel device comprises an array of antenna elements.
4. A system according to claim 1, wherein the first panel device and/or second panel device is a directional antenna.
5. A system according to claim 1, wherein the first panel device is located within 12 feet of the second panel device.
6. A system according to claim 1 further comprising a third panel device located adjacent to the first panel device comprising a third processor, a transmitter, and a receiver, the third panel device capable of transmitting and/or receiving a third beam along a third sector chosen from a plurality of third sectors defining a third beam arc;
wherein a different first sector among the plurality of first sectors is located such that the transmitting and/or receiving of a different first beam by the first panel device along the different first sector would interfere with the transmitting and/or receiving of the third beam by the third panel device along the third sector; and
wherein the first panel device and third panel device are coordinated by at least one of the first processer and the third processor in the time domain to prevent the transmitting and/or receiving of the third beam along the third sector by the third panel device when the first panel device is transmitting and/or receiving the different first beam along the different first sector.
7. A system according to claim 6, wherein the third panel device is not prevented from transmitting and/or receiving along any of the plurality of third sectors that do not interfere with the different first sector.
8. A system according to claim 6 further comprising a fourth panel device located adjacent to the second panel device and the third panel device comprising a fourth processor, a transmitter, and a receiver, the fourth panel device capable of transmitting and/or receiving a fourth beam along a fourth sector chosen from a plurality of fourth sectors defining a fourth beam arc;
wherein a different second sector among the plurality of second sectors is located such that the transmitting and/or receiving of a different second beam by the second panel device along the different second sector would interfere with the transmitting and/or receiving of the fourth beam by the fourth panel device along the fourth sector; and
wherein the second panel device and fourth panel device are coordinated by at least one of the second processor and the fourth processor in the time domain to prevent the transmitting and/or receiving of the fourth beam along the fourth sector by the fourth panel device when the second panel device is transmitting and/or receiving the different second beam along the different second sector.
9. A system according to claim 8, wherein the fourth panel device is not prevented from transmitting and/or receiving along any of the plurality of fourth sectors that do not interfere with the different second sector.
10. A system according to claim 8, wherein the first sector does not interfere with any of the third plurality of sectors or any of the fourth plurality of sectors, and wherein the different first sector does not interfere with any of the second plurality of sectors or fourth plurality of sectors.
11. A system according to claim 1 , wherein at least one of the plurality of first sectors does not interfere with at least one of the plurality of second sectors.
12. A system according to claim 8, further comprising a synchronized clock shared by the first, second, third and fourth panels.
13. A transceiver system comprising :
multiple co-located transceiver devices, each transceiver device including an M x N matrix of elements such that the M x N matrix of elements defines a predetermined number of individual sectors; and
at least one processor on each transceiver device programmed to coordinate use of the individual sectors on different co-located transceiver devices in order to avoid interference of use in the time domain.
14. The transceiver system according to claim 13, further comprising a synchronized clock shared by the multiple co-located transceiver devices.
15. The transceiver system according to claim 13, wherein there are four co-located transceiver devices, each including eight individual sectors.
16. A process for coordinating sector use across multiple antenna panels comprising:
receiving at at least a first processor of a first antenna panel, an indication that reception and/or transmission of a first communication signal at a first sector of the first antenna panel would interfere with reception and/or transmission of a second communication signal at a second sector of a second antenna panel; and receiving at at least a second processor of a second antenna panel, an indication that reception and/or transmission of second communication signal at second sector of the second antenna panel would interfere with reception and/or transmission of a first communication signal at a first sector of a first antenna panel; and
coordinating by and between that at least a first and second processors the transmission and/or reception of the first and second communication signals at the first and second sectors in the time domain so as to avoid interference therebetween.
17. The process according to claim 16, wherein coordinating comprises exchanging between the first and second processors use data for the first and second sectors.
PCT/US2011/049277 2010-08-27 2011-08-26 System and method for interference free operation of co-located tranceivers WO2012027634A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US37754810P true 2010-08-27 2010-08-27
US61/377,548 2010-08-27

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CA 2809034 CA2809034A1 (en) 2010-08-27 2011-08-26 System and method for interference free operation of co-located tranceivers

Publications (1)

Publication Number Publication Date
WO2012027634A1 true WO2012027634A1 (en) 2012-03-01

Family

ID=45697900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2011/049277 WO2012027634A1 (en) 2010-08-27 2011-08-26 System and method for interference free operation of co-located tranceivers

Country Status (3)

Country Link
US (1) US9084120B2 (en)
CA (1) CA2809034A1 (en)
WO (1) WO2012027634A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2494808B1 (en) * 2009-10-26 2014-07-16 Telecom Italia S.p.A. Radio resource scheduling for intra-system interference coordination in wireless communication systems
US9680567B2 (en) * 2011-03-03 2017-06-13 Acacia Communications, Inc. Fault localization and fiber security in optical transponders
JP5435111B2 (en) 2012-03-30 2014-03-05 横河電機株式会社 COMMUNICATION APPARATUS, COMMUNICATION SYSTEM AND COMMUNICATION METHOD
US8494580B1 (en) * 2012-04-24 2013-07-23 Texas Instruments Incorporated Method of coordinating the operation of adjacent wireless transceivers on a single device
US9756549B2 (en) 2014-03-14 2017-09-05 goTenna Inc. System and method for digital communication between computing devices

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6556830B1 (en) * 1998-02-02 2003-04-29 Ericsson Inc. Coverage area sectorization in time division multiple access/frequency-time division duplex communications systems
US6882635B2 (en) * 2002-02-05 2005-04-19 Qualcomm Incorporated Coexistence between interfering communication systems
US7230931B2 (en) * 2001-01-19 2007-06-12 Raze Technologies, Inc. Wireless access system using selectively adaptable beam forming in TDD frames and method of operation
US7245938B2 (en) * 2003-10-17 2007-07-17 Sobczak David M Wireless antenna traffic matrix

Family Cites Families (487)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4132981A (en) 1976-10-21 1979-01-02 Rockwell International Corporation Self-powered system for measuring and storing consumption of utility meter
US4190800A (en) 1976-11-22 1980-02-26 Scientific-Atlanta, Inc. Electrical load management system
US4204195A (en) 1977-05-23 1980-05-20 General Electric Company Meter terminal unit for use in automatic remote meter reading and control system
US4254472A (en) 1978-08-14 1981-03-03 The Valeron Corporation Remote metering system
US4322842A (en) 1979-10-23 1982-03-30 Altran Electronics Broadcast system for distribution automation and remote metering
US4396915A (en) 1980-03-31 1983-08-02 General Electric Company Automatic meter reading and control system
US4425628A (en) 1981-05-26 1984-01-10 General Electric Company Control module for engergy management system
US4638314A (en) 1984-01-12 1987-01-20 American Science And Engineering, Inc. Meter transponder hybrid
US4644320A (en) 1984-09-14 1987-02-17 Carr R Stephen Home energy monitoring and control system
US4749992B1 (en) 1986-07-03 1996-06-11 Total Energy Management Consul Utility monitoring and control system
US4792946A (en) 1987-04-07 1988-12-20 Spectrum Electronics, Inc. Wireless local area network for use in neighborhoods
US6970434B1 (en) 1995-06-07 2005-11-29 Broadcom Corporation Hierarchical communication system providing intelligent data, program and processing migration
US5010568A (en) 1989-04-04 1991-04-23 Sparton Corporation Remote meter reading method and apparatus
US5007052A (en) 1989-04-11 1991-04-09 Metricom, Inc. Method for routing packets by squelched flooding
US5138615A (en) 1989-06-22 1992-08-11 Digital Equipment Corporation Reconfiguration system and method for high-speed mesh connected local area network
US5115433A (en) 1989-07-18 1992-05-19 Metricom, Inc. Method and system for routing packets in a packet communication network
US4939726A (en) 1989-07-18 1990-07-03 Metricom, Inc. Method for routing packets in a packet communication network
US5673252A (en) 1990-02-15 1997-09-30 Itron, Inc. Communications protocol for remote data generating stations
US5056107A (en) 1990-02-15 1991-10-08 Iris Systems Inc. Radio communication network for remote data generating stations
US5553094A (en) 1990-02-15 1996-09-03 Iris Systems, Inc. Radio communication network for remote data generating stations
US5130987A (en) 1990-03-23 1992-07-14 Metricom, Inc. Method for synchronizing a wide area network without global synchronizing
US5079768A (en) 1990-03-23 1992-01-07 Metricom, Inc. Method for frequency sharing in frequency hopping communications network
US5077753A (en) 1990-04-09 1991-12-31 Proxim, Inc. Radio communication system using spread spectrum techniques
US5216623A (en) 1990-06-06 1993-06-01 M. T. Mcbrian, Inc. System and method for monitoring and analyzing energy characteristics
US5117422A (en) 1990-07-09 1992-05-26 Itt Corporation Method for providing an efficient and adaptive management of message routing in a multi-platform and apparatus communication system
US5159592A (en) 1990-10-29 1992-10-27 International Business Machines Corporation Network address management for a wired network supporting wireless communication to a plurality of mobile users
CA2054591C (en) 1991-02-28 1996-09-03 Giovanni Vannucci Wireless telecommunication systems
CA2040234C (en) 1991-04-11 2000-01-04 Steven Messenger Wireless coupling of devices to wired network
US5844893A (en) 1991-05-14 1998-12-01 Norand Corporation System for coupling host computer meanswith base transceiver units on a local area network
US5394436A (en) 1991-10-01 1995-02-28 Norand Corporation Radio frequency local area network
US6084867A (en) 1991-10-01 2000-07-04 Intermec Ip Corp. Apparatus and method of routing data in a radio frequency local area network
US6407991B1 (en) 1993-05-06 2002-06-18 Intermec Ip Corp. Communication network providing wireless and hard-wired dynamic routing
US5544036A (en) 1992-03-25 1996-08-06 Brown, Jr.; Robert J. Energy management and home automation system
US5974236A (en) 1992-03-25 1999-10-26 Aes Corporation Dynamically reconfigurable communications network and method
US5761083A (en) 1992-03-25 1998-06-02 Brown, Jr.; Robert J. Energy management and home automation system
AU4661793A (en) 1992-07-02 1994-01-31 Wellfleet Communications Data packet processing method and apparatus
US5442633A (en) 1992-07-08 1995-08-15 International Business Machines Corporation Shortcut network layer routing for mobile hosts
DE69326656D1 (en) 1992-07-17 1999-11-11 Sun Microsystems Inc Method and apparatus for self-organization in a wireless local area network
IT1257167B (en) 1992-10-27 1996-01-05 Method for the improvement of the particular distribuzionein networks gas management, water, electric energy, heat.
GB9312836D0 (en) 1993-06-22 1993-08-04 Schlumberger Ind Ltd Multipoint to point radiocommunications network
US5528507A (en) 1993-08-11 1996-06-18 First Pacific Networks System for utility demand monitoring and control using a distribution network
US5465398A (en) 1993-10-07 1995-11-07 Metricom, Inc. Automatic power level control of a packet communication link
EP0740873B1 (en) 1993-11-04 2005-12-21 Norand Corporation A communication network providing wireless and hard-wired dynamic routing
US5608780A (en) 1993-11-24 1997-03-04 Lucent Technologies Inc. Wireless communication system having base units which extracts channel and setup information from nearby base units
US5530963A (en) 1993-12-16 1996-06-25 International Business Machines Corporation Method and system for maintaining routing between mobile workstations and selected network workstation using routing table within each router device in the network
US5400338A (en) 1994-02-08 1995-03-21 Metricom, Inc. Parasitic adoption of coordinate-based addressing by roaming node
US5471469A (en) 1994-02-08 1995-11-28 Metricon, Inc. Method of resolving media contention in radio communication links
US5453977A (en) 1994-02-08 1995-09-26 Metricom, Inc. Method for network configuration via third party query
US5963457A (en) 1994-03-18 1999-10-05 Hitachi, Ltd. Electrical power distribution monitoring system and method
US5430729A (en) 1994-04-04 1995-07-04 Motorola, Inc. Method and apparatus for adaptive directed route randomization and distribution in a richly connected communication network
US5488608A (en) 1994-04-14 1996-01-30 Metricom, Inc. Method and system for routing packets in a packet communication network using locally constructed routing tables
US5467345A (en) 1994-05-31 1995-11-14 Motorola, Inc. Packet routing system and method therefor
US5479400A (en) 1994-06-06 1995-12-26 Metricom, Inc. Transceiver sharing between access and backhaul in a wireless digital communication system
US5903566A (en) 1994-06-24 1999-05-11 Metricom, Inc. Method for distributing program code to intelligent nodes in a wireless mesh data communication network
US5515369A (en) 1994-06-24 1996-05-07 Metricom, Inc. Method for frequency sharing and frequency punchout in frequency hopping communications network
US5570084A (en) 1994-06-28 1996-10-29 Metricom, Inc. Method of loose source routing over disparate network types in a packet communication network
CA2129199C (en) 1994-07-29 1999-07-20 Roger Y.M. Cheung Method and apparatus for bridging wireless lan to a wired lan
US5696501A (en) 1994-08-02 1997-12-09 General Electric Company Method and apparatus for performing the register functions for a plurality of metering devices at a common node
US5758331A (en) 1994-08-15 1998-05-26 Clear With Computers, Inc. Computer-assisted sales system for utilities
US5490139A (en) 1994-09-28 1996-02-06 International Business Machines Corporation Mobility enabling access point architecture for wireless attachment to source routing networks
MY123040A (en) 1994-12-19 2006-05-31 Salbu Res And Dev Proprietary Ltd Multi-hop packet radio networks
US5727057A (en) 1994-12-27 1998-03-10 Ag Communication Systems Corporation Storage, transmission, communication and access to geographical positioning data linked with standard telephony numbering and encoded for use in telecommunications and related services
US7188003B2 (en) 1994-12-30 2007-03-06 Power Measurement Ltd. System and method for securing energy management systems
US7761910B2 (en) 1994-12-30 2010-07-20 Power Measurement Ltd. System and method for assigning an identity to an intelligent electronic device
US7089089B2 (en) 2003-03-31 2006-08-08 Power Measurement Ltd. Methods and apparatus for retrieving energy readings from an energy monitoring device
US6988025B2 (en) 2000-11-28 2006-01-17 Power Measurement Ltd. System and method for implementing XML on an energy management device
US5572438A (en) 1995-01-05 1996-11-05 Teco Energy Management Services Engery management and building automation system
US5659300A (en) 1995-01-30 1997-08-19 Innovatec Corporation Meter for measuring volumetric consumption of a commodity
US7133845B1 (en) 1995-02-13 2006-11-07 Intertrust Technologies Corp. System and methods for secure transaction management and electronic rights protection
US5572528A (en) 1995-03-20 1996-11-05 Novell, Inc. Mobile networking method and apparatus
US5608721A (en) 1995-04-03 1997-03-04 Motorola, Inc. Communications network and method which implement diversified routing
US5596722A (en) 1995-04-03 1997-01-21 Motorola, Inc. Packet routing system and method for achieving uniform link usage and minimizing link load
US5623495A (en) 1995-06-15 1997-04-22 Lucent Technologies Inc. Portable base station architecture for an AD-HOC ATM lan
US5757783A (en) 1995-06-15 1998-05-26 Lucent Technologies Inc. Method and apparatus for routing ATM cells in an AD-ATM LAN
US5822309A (en) 1995-06-15 1998-10-13 Lucent Technologies Inc. Signaling and control architecture for an ad-hoc ATM LAN
US5726644A (en) 1995-06-30 1998-03-10 Philips Electronics North America Corporation Lighting control system with packet hopping communication
US5896566A (en) 1995-07-28 1999-04-20 Motorola, Inc. Method for indicating availability of updated software to portable wireless communication units
US5898826A (en) 1995-11-22 1999-04-27 Intel Corporation Method and apparatus for deadlock-free routing around an unusable routing component in an N-dimensional network
US5737318A (en) 1995-12-27 1998-04-07 Philips Electronics North America Corporation Method for initializing a wireless, packet-hopping network
US6195018B1 (en) 1996-02-07 2001-02-27 Cellnet Data Systems, Inc. Metering system
US5896097A (en) 1996-03-06 1999-04-20 Schlumberger Resource Management Services, Inc. System for utility meter communications using a single RF frequency
US5767790A (en) 1996-03-07 1998-06-16 Jovellana; Bartolome D. Automatic utility meter monitor
US5719564A (en) 1996-05-10 1998-02-17 Sears; Lawrence M. Utility meter reading system
US5748104A (en) 1996-07-11 1998-05-05 Qualcomm Incorporated Wireless remote telemetry system
US5920697A (en) 1996-07-11 1999-07-06 Microsoft Corporation Method of automatic updating and use of routing information by programmable and manual routing information configuration based on least lost routing
US5892758A (en) 1996-07-11 1999-04-06 Qualcomm Incorporated Concentrated subscriber wireless remote telemetry system
GB2315197B (en) 1996-07-11 2000-07-12 Nokia Mobile Phones Ltd Method and apparatus for system clock adjustment
US5919247A (en) 1996-07-24 1999-07-06 Marimba, Inc. Method for the distribution of code and data updates
US5774660A (en) 1996-08-05 1998-06-30 Resonate, Inc. World-wide-web server with delayed resource-binding for resource-based load balancing on a distributed resource multi-node network
DE19632261C2 (en) 1996-08-09 1998-07-09 Siemens Ag A method for establishing telecommunication connections between telecommunication devices in wireless telecommunication systems, particularly DECT equipment between a DECT system
US6075777A (en) 1996-08-21 2000-06-13 Lucent Technologies Inc. Network flow framework for online dynamic channel allocation
JP3227390B2 (en) 1996-08-27 2001-11-12 松下電工株式会社 Building management system
US5987011A (en) 1996-08-30 1999-11-16 Chai-Keong Toh Routing method for Ad-Hoc mobile networks
US6246677B1 (en) 1996-09-06 2001-06-12 Innovatec Communications, Llc Automatic meter reading data communication system
US6538577B1 (en) 1997-09-05 2003-03-25 Silver Springs Networks, Inc. Electronic electric meter for networked meter reading
US6078785A (en) 1996-10-15 2000-06-20 Bush; E. William Demand reporting of electricity consumption by radio in relays to a base station, and demand relays wattmeters so reporting over a wide area
US5880677A (en) 1996-10-15 1999-03-09 Lestician; Guy J. System for monitoring and controlling electrical consumption, including transceiver communicator control apparatus and alternating current control apparatus
US6018659A (en) 1996-10-17 2000-01-25 The Boeing Company Airborne broadband communication network
US6150955A (en) 1996-10-28 2000-11-21 Tracy Corporation Ii Apparatus and method for transmitting data via a digital control channel of a digital wireless network
US6014089A (en) 1996-10-28 2000-01-11 Tracy Corporation Ii Method for transmitting data using a digital control channel of a wireless network
JPH10135965A (en) 1996-10-29 1998-05-22 Ricoh Co Ltd Radio communication system
US6839775B1 (en) 1996-11-15 2005-01-04 Kim Y. Kao Method and apparatus for vending machine controller configured to monitor and analyze power profiles for plurality of motor coils to determine condition of vending machine
US7143204B1 (en) 1996-11-15 2006-11-28 Logiclink Corporation Method and apparatus for suspending or adjusting billing charge for usage of electrically powered devices if abnormal or halt condition detected
US5901067A (en) 1996-11-15 1999-05-04 Kim Y. Kao System for interactively selecting and activating groups of electrically powered devices
US7054271B2 (en) 1996-12-06 2006-05-30 Ipco, Llc Wireless network system and method for providing same
US6044062A (en) 1996-12-06 2000-03-28 Communique, Llc Wireless network system and method for providing same
JP3097581B2 (en) 1996-12-27 2000-10-10 日本電気株式会社 Configuring ad-hoc local area network, a communication method and a terminal
US5894422A (en) 1997-01-27 1999-04-13 Chasek; Norman E. System and methods that facilitate the introduction of market based economic models for electric power
US7046682B2 (en) 1997-02-12 2006-05-16 Elster Electricity, Llc. Network-enabled, extensible metering system
US6396839B1 (en) 1997-02-12 2002-05-28 Abb Automation Inc. Remote access to electronic meters using a TCP/IP protocol suite
US6233327B1 (en) 1997-02-14 2001-05-15 Statsignal Systems, Inc. Multi-function general purpose transceiver
US7137550B1 (en) 1997-02-14 2006-11-21 Statsignal Ipc, Llc Transmitter for accessing automated financial transaction machines
US6618578B1 (en) 1997-02-14 2003-09-09 Statsignal Systems, Inc System and method for communicating with a remote communication unit via the public switched telephone network (PSTN)
US7079810B2 (en) 1997-02-14 2006-07-18 Statsignal Ipc, Llc System and method for communicating with a remote communication unit via the public switched telephone network (PSTN)
US5926531A (en) 1997-02-14 1999-07-20 Statsignal Systems, Inc. Transmitter for accessing pay-type telephones
US6628764B1 (en) 1997-02-14 2003-09-30 Statsignal Systems, Inc. System for requesting service of a vending machine
CN1153352C (en) 1997-03-18 2004-06-09 皇家菲利浦电子有限公司 Receiver tuning system
US5898387A (en) 1997-03-26 1999-04-27 Scientific-Atlanta, Inc. Modular meter based utility gateway enclosure
US6118269A (en) 1997-03-26 2000-09-12 Comverge Technologies, Inc. Electric meter tamper detection circuit for sensing electric meter removal
US6073169A (en) 1997-04-08 2000-06-06 Abb Power T&D Company Inc. Automatic meter reading system employing common broadcast command channel
US6457054B1 (en) 1997-05-15 2002-09-24 Intel Corporation System for reducing user-visibility latency in network transactions
US5874903A (en) 1997-06-06 1999-02-23 Abb Power T & D Company Inc. RF repeater for automatic meter reading system
US5991806A (en) 1997-06-09 1999-11-23 Dell Usa, L.P. Dynamic system control via messaging in a network management system
US5914672A (en) 1997-06-13 1999-06-22 Whisper Communications Incorporated System for field installation of a remote meter interface
US6108699A (en) 1997-06-27 2000-08-22 Sun Microsystems, Inc. System and method for modifying membership in a clustered distributed computer system and updating system configuration
US6058355A (en) 1997-06-30 2000-05-02 Ericsson Inc. Automatic power outage notification via CEBus interface
JP3180726B2 (en) 1997-08-05 2001-06-25 日本電気株式会社 Control method for a mobile terminal
US6414952B2 (en) 1997-08-28 2002-07-02 Broadcom Homenetworking, Inc. Virtual gateway system and method
US20080129538A1 (en) 1999-02-23 2008-06-05 Raj Vaswani Electronic electric meter for networked meter reading
US20080136667A1 (en) 1999-02-23 2008-06-12 Raj Vaswani Network for automated meter reading
US6088659A (en) 1997-09-11 2000-07-11 Abb Power T&D Company Inc. Automated meter reading system
US6124806A (en) 1997-09-12 2000-09-26 Williams Wireless, Inc. Wide area remote telemetry
US6430268B1 (en) 1997-09-20 2002-08-06 Statsignal Systems, Inc. Systems for requesting service of a vending machine
US6437692B1 (en) 1998-06-22 2002-08-20 Statsignal Systems, Inc. System and method for monitoring and controlling remote devices
US6914533B2 (en) 1998-06-22 2005-07-05 Statsignal Ipc Llc System and method for accessing residential monitoring devices
US6914893B2 (en) 1998-06-22 2005-07-05 Statsignal Ipc, Llc System and method for monitoring and controlling remote devices
US6891838B1 (en) 1998-06-22 2005-05-10 Statsignal Ipc, Llc System and method for monitoring and controlling residential devices
US6385644B1 (en) 1997-09-26 2002-05-07 Mci Worldcom, Inc. Multi-threaded web based user inbox for report management
US20020120569A1 (en) 1997-10-16 2002-08-29 Day Mark E. System and method for communication between remote locations
US5986574A (en) 1997-10-16 1999-11-16 Peco Energy Company System and method for communication between remote locations
US6711166B1 (en) 1997-12-10 2004-03-23 Radvision Ltd. System and method for packet network trunking
SE9801172D0 (en) 1998-04-01 1998-04-01 Ericsson Telefon Ab L M Cell selection in a system with different cell capabilities
NO309550B1 (en) 1998-04-07 2001-02-12 It & Process As System for controlling power consumption at a user of electric power
US6778099B1 (en) 1998-05-01 2004-08-17 Elster Electricity, Llc Wireless area network communications module for utility meters
US6122603A (en) 1998-05-29 2000-09-19 Powerweb, Inc. Multi-utility energy control system with dashboard
US6553355B1 (en) 1998-05-29 2003-04-22 Indranet Technologies Limited Autopoietic network system endowed with distributed artificial intelligence for the supply of high volume high-speed multimedia telesthesia telemetry, telekinesis, telepresence, telemanagement, telecommunications, and data processing services
US6311105B1 (en) 1998-05-29 2001-10-30 Powerweb, Inc. Multi-utility energy control system
US6445691B2 (en) 1998-06-08 2002-09-03 Koninklijke Philips Electronics N. V. Wireless coupling of standardized networks and non-standardized nodes
US7263073B2 (en) 1999-03-18 2007-08-28 Statsignal Ipc, Llc Systems and methods for enabling a mobile user to notify an automated monitoring system of an emergency situation
US6747557B1 (en) 1999-03-18 2004-06-08 Statsignal Systems, Inc. System and method for signaling a weather alert condition to a residential environment
US7650425B2 (en) 1999-03-18 2010-01-19 Sipco, Llc System and method for controlling communication between a host computer and communication devices associated with remote devices in an automated monitoring system
US20020031101A1 (en) 2000-11-01 2002-03-14 Petite Thomas D. System and methods for interconnecting remote devices in an automated monitoring system
US7103511B2 (en) 1998-10-14 2006-09-05 Statsignal Ipc, Llc Wireless communication networks for providing remote monitoring of devices
WO2002013412A1 (en) 2000-08-09 2002-02-14 Statsignal Systems, Inc. Systems and methods for providing remote monitoring of electricity consumption for an electric meter
US20040183687A1 (en) 1999-03-18 2004-09-23 Petite Thomas D. System and method for signaling a weather alert condition to a residential environment
US6304556B1 (en) 1998-08-24 2001-10-16 Cornell Research Foundation, Inc. Routing and mobility management protocols for ad-hoc networks
US6826620B1 (en) 1998-08-26 2004-11-30 Paradyne Corporation Network congestion control system and method
US6665620B1 (en) 1998-08-26 2003-12-16 Siemens Transmission & Distribution, Llc Utility meter having primary and secondary communication circuits
US6246689B1 (en) 1998-09-21 2001-06-12 Lucent Technologies Inc. Method and apparatus for efficient topology aggregation for networks with hierarchical structure
US20020013679A1 (en) 1998-10-14 2002-01-31 Petite Thomas D. System and method for monitoring the light level in a lighted area
US6028522A (en) 1998-10-14 2000-02-22 Statsignal Systems, Inc. System for monitoring the light level around an ATM
US6218953B1 (en) 1998-10-14 2001-04-17 Statsignal Systems, Inc. System and method for monitoring the light level around an ATM
US20010010032A1 (en) 1998-10-27 2001-07-26 Ehlers Gregory A. Energy management and building automation system
US6480497B1 (en) 1998-11-23 2002-11-12 Ricochet Networks, Inc. Method and apparatus for maximizing data throughput in a packet radio mesh network
US6636894B1 (en) 1998-12-08 2003-10-21 Nomadix, Inc. Systems and methods for redirecting users having transparent computer access to a network using a gateway device having redirection capability
US6718137B1 (en) 1999-01-05 2004-04-06 Ciena Corporation Method and apparatus for configuration by a first network element based on operating parameters of a second network element
EP1169691A1 (en) 1999-03-12 2002-01-09 Graviton, Inc. Systems and methods for network based sensing and distributed sensor, data and memory management
US6751672B1 (en) 1999-06-02 2004-06-15 Nortel Networks Limited Efficient dynamic home agent discovery algorithm and system
US6300881B1 (en) 1999-06-09 2001-10-09 Motorola, Inc. Data transfer system and method for communicating utility consumption data over power line carriers
US7231482B2 (en) 2000-06-09 2007-06-12 Universal Smart Technologies, Llc. Method and system for monitoring and transmitting utility status via universal communications interface
US6954814B1 (en) 1999-06-10 2005-10-11 Amron Technologies Inc. Method and system for monitoring and transmitting utility status via universal communications interface
US7185131B2 (en) 1999-06-10 2007-02-27 Amron Technologies, Inc. Host-client utility meter systems and methods for communicating with the same
US7487282B2 (en) 2000-06-09 2009-02-03 Leach Mark A Host-client utility meter systems and methods for communicating with the same
US6725281B1 (en) 1999-06-11 2004-04-20 Microsoft Corporation Synchronization of controlled device state using state table and eventing in data-driven remote device control model
US6681110B1 (en) 1999-07-02 2004-01-20 Musco Corporation Means and apparatus for control of remote electrical devices
US6691173B2 (en) 1999-07-06 2004-02-10 Widcomm, Inc. Distributed management of an extended network containing short-range wireless links
US6785592B1 (en) 1999-07-16 2004-08-31 Perot Systems Corporation System and method for energy management
JP3669619B2 (en) 1999-09-06 2005-07-13 富士通株式会社 Software updating method and apparatus of the wireless terminal device
US6980973B1 (en) 1999-09-07 2005-12-27 Visa International Service Association Self-paying smart utility meter and payment service
US6751455B1 (en) 1999-09-17 2004-06-15 The Regents Of The University Of California Power- and bandwidth-adaptive in-home wireless communications system with power-grid-powered agents and battery-powered clients
US6976062B1 (en) 1999-09-22 2005-12-13 Intermec Ip Corp. Automated software upgrade utility
US7020701B1 (en) 1999-10-06 2006-03-28 Sensoria Corporation Method for collecting and processing data using internetworked wireless integrated network sensors (WINS)
WO2001026331A2 (en) 1999-10-06 2001-04-12 Sensoria Corporation Method for vehicle internetworks
US6904025B1 (en) 1999-10-12 2005-06-07 Telefonaktiebolaget Lm Ericsson (Publ) Wide area network mobility for IP based networks
US7042368B2 (en) 1999-10-16 2006-05-09 Datamatic, Ltd Automated meter reader device having optical sensor with automatic gain control
US20060028355A1 (en) 1999-10-16 2006-02-09 Tim Patterson Automated meter reader having peak product delivery rate generator
US7315257B2 (en) 1999-10-16 2008-01-01 Datamatic, Ltd. Automated meter reader having high product delivery rate alert generator
US6710721B1 (en) 1999-10-16 2004-03-23 Datamatic Inc. Radio frequency automated meter reading device
DE59911450D1 (en) 1999-11-01 2005-02-17 Abb Research Ltd Integration of a field device in a plant control system
US6909705B1 (en) 1999-11-02 2005-06-21 Cello Partnership Integrating wireless local loop networks with cellular networks
US6697331B1 (en) 1999-11-17 2004-02-24 Telefonaktiebolaget Lm Ericsson (Publ) Link layer acknowledgement and retransmission for cellular telecommunications
US6535498B1 (en) 1999-12-06 2003-03-18 Telefonaktiebolaget Lm Ericsson (Publ) Route updating in ad-hoc networks
US6480505B1 (en) 1999-12-06 2002-11-12 Telefonaktiebolaget Lm Ericsson (Publ) Batched fair exhaustive polling scheduler
US6975613B1 (en) 1999-12-06 2005-12-13 Telefonaktiebolaget L M Ericsson (Publ) System and method for scheduling communication sessions in an ad-hoc network
EP1107508A1 (en) 1999-12-06 2001-06-13 Telefonaktiebolaget Lm Ericsson System, method and computer program product for sending broadcast messages
US6711409B1 (en) 1999-12-15 2004-03-23 Bbnt Solutions Llc Node belonging to multiple clusters in an ad hoc wireless network
US6577671B1 (en) 1999-12-29 2003-06-10 Nokia Mobile Phones Limited Enhanced code allocation method for CDMA systems
US6298053B1 (en) 2000-01-14 2001-10-02 Metricom, Inc. Method and apparatus for connection handoff between connected radios
US7213063B2 (en) 2000-01-18 2007-05-01 Lucent Technologies Inc. Method, apparatus and system for maintaining connections between computers using connection-oriented protocols
US7379981B2 (en) 2000-01-31 2008-05-27 Kenneth W. Garrard Wireless communication enabled meter and network
US8019836B2 (en) 2002-01-02 2011-09-13 Mesh Comm, Llc Wireless communication enabled meter and network
AU3466901A (en) 2000-01-31 2001-08-07 Telemetry Technologies Inc Wireless communication enabled meter and network
US20010033554A1 (en) 2000-02-18 2001-10-25 Arun Ayyagari Proxy-bridge connecting remote users to a limited connectivity network
US6369769B1 (en) 2000-02-25 2002-04-09 Innovatec Communications, Llc Flush mounted pit lid antenna
US6865185B1 (en) 2000-02-25 2005-03-08 Cisco Technology, Inc. Method and system for queuing traffic in a wireless communications network
US6522974B2 (en) 2000-03-01 2003-02-18 Westerngeco, L.L.C. Method for vibrator sweep analysis and synthesis
US6845091B2 (en) 2000-03-16 2005-01-18 Sri International Mobile ad hoc extensions for the internet
US6775258B1 (en) 2000-03-17 2004-08-10 Nokia Corporation Apparatus, and associated method, for routing packet data in an ad hoc, wireless communication system
GB0007266D0 (en) 2000-03-25 2000-05-17 Hewlett Packard Co Providing location data about a mobile entity
US7062361B1 (en) 2000-05-02 2006-06-13 Mark E. Lane Method and apparatus for controlling power consumption
US6933857B2 (en) 2000-05-05 2005-08-23 Charles A. Foote Method and system for airborne meter communication
US20020066095A1 (en) 2000-05-12 2002-05-30 Yueh-O Yu Process and device for updating personalized products
US6880086B2 (en) 2000-05-20 2005-04-12 Ciena Corporation Signatures for facilitating hot upgrades of modular software components
US6885309B1 (en) 2000-06-01 2005-04-26 Cellnet Innovations, Inc. Meter to internet pathway
US6900738B2 (en) 2000-06-21 2005-05-31 Henry Crichlow Method and apparatus for reading a meter and providing customer service via the internet
US6519509B1 (en) 2000-06-22 2003-02-11 Stonewater Software, Inc. System and method for monitoring and controlling energy distribution
US7072945B1 (en) 2000-06-30 2006-07-04 Nokia Corporation Network and method for controlling appliances
AU7892301A (en) 2000-07-13 2002-01-30 Nxegen System and method for monitoring and controlling energy usage
US7197046B1 (en) 2000-08-07 2007-03-27 Shrikumar Hariharasubrahmanian Systems and methods for combined protocol processing protocols
US7346463B2 (en) 2001-08-09 2008-03-18 Hunt Technologies, Llc System for controlling electrically-powered devices in an electrical network
US6829216B1 (en) 2000-08-18 2004-12-07 Hitachi Telecom (U.S.A.), Inc. Method and system for designing a network
US7200633B2 (en) 2000-08-25 2007-04-03 Ntt Docomo, Inc. Information delivery system and information delivery method
US6728514B2 (en) 2000-09-08 2004-04-27 Wi-Lan Inc. Scalable wireless network topology systems and methods
US7103086B2 (en) 2000-09-29 2006-09-05 Maxstream, Inc. Frequency hopping data radio
US20020051269A1 (en) 2000-09-29 2002-05-02 Shlomo Margalit Reconfigurable over-the-air optical data transmission system
US7016336B2 (en) 2000-11-22 2006-03-21 Telefonaktiebolaget L M Ericsson (Publ) Administrative domains for personal area networks
US20070136817A1 (en) 2000-12-07 2007-06-14 Igt Wager game license management in a peer gaming network
WO2002065707A2 (en) 2000-12-26 2002-08-22 Bluesocket, Inc. Methods and systems for clock synchronization across wireless networks
US6965575B2 (en) 2000-12-29 2005-11-15 Tropos Networks Selection of routing paths based upon path quality of a wireless mesh network
FI20010095A (en) 2001-01-16 2002-07-17 Nokia Corp Verification method, an excellent monitor network element in telecommunications networks and telecommunication system
US6842706B1 (en) 2001-01-17 2005-01-11 Smart Disaster Response Technologies, Inc. Methods, apparatus, media, and signals for managing utility usage
US6946972B2 (en) 2001-01-25 2005-09-20 Smartsynch, Inc. Systems and methods for wirelessly transmitting data from a utility meter
US6671635B1 (en) 2001-02-23 2003-12-30 Power Measurement Ltd. Systems for improved monitoring accuracy of intelligent electronic devices
KR100932944B1 (en) 2001-03-12 2009-12-21 코닌클리케 필립스 일렉트로닉스 엔.브이. And a receiving device for securely storing a content item, the playback device
JP3700596B2 (en) 2001-03-14 2005-09-28 日本電気株式会社 Communication network and a path setting method and a path setting program
US7266085B2 (en) 2001-03-21 2007-09-04 Stine John A Access and routing protocol for ad hoc network using synchronous collision resolution and node state dissemination
AUPR441401A0 (en) 2001-04-12 2001-05-17 Gladwin, Paul Utility usage rate monitor
AT456912T (en) * 2001-04-18 2010-02-15 Trilliant Networks Inc Network channel access protocol - interference-and lastadaptiv
AU2002308535C1 (en) 2001-05-02 2008-05-29 M&Fc Holding, Llc Automatic meter reading module
AR033319A1 (en) 2001-05-04 2003-12-10 Invensys Metering Systems Nort Arrangement and method for communication and control of automated meter reading
US20020186619A1 (en) 2001-05-07 2002-12-12 Reeves Michael H. Apparatus, system and method for synchronizing a clock with a master time service
US20030156715A1 (en) 2001-06-12 2003-08-21 Reeds James Alexander Apparatus, system and method for validating integrity of transmitted data
US7009493B2 (en) 2001-06-22 2006-03-07 Matsushita Electric Works, Ltd. Electronic device with paging for energy curtailment and code generation for manual verification of curtailment
US6999441B2 (en) 2001-06-27 2006-02-14 Ricochet Networks, Inc. Method and apparatus for contention management in a radio-based packet network
US6509801B1 (en) 2001-06-29 2003-01-21 Sierra Monolithics, Inc. Multi-gigabit-per-sec clock recovery apparatus and method for optical communications
US7266840B2 (en) 2001-07-12 2007-09-04 Vignette Corporation Method and system for secure, authorized e-mail based transactions
US7076244B2 (en) 2001-07-23 2006-07-11 Research In Motion Limited System and method for pushing information to a mobile device
US7277414B2 (en) 2001-08-03 2007-10-02 Honeywell International Inc. Energy aware network management
US6711512B2 (en) 2001-08-07 2004-03-23 Korea Electric Power Data Network Co. Ltd. Pole transformer load monitoring system using wireless internet network
US6993571B2 (en) 2001-08-16 2006-01-31 International Business Machines Corporation Power conservation in a server cluster
US6993417B2 (en) 2001-09-10 2006-01-31 Osann Jr Robert System for energy sensing analysis and feedback
KR100452508B1 (en) 2001-09-25 2004-10-12 엘지전자 주식회사 remote detecting equipment using CO-LINE and controlling method therefore
US7362709B1 (en) 2001-11-02 2008-04-22 Arizona Board Of Regents Agile digital communication network with rapid rerouting
US20030131079A1 (en) 2001-11-13 2003-07-10 Ems Technologies, Inc. Performance enhancing proxy techniques for internet protocol traffic
US6829347B1 (en) 2001-12-14 2004-12-07 Nortel Networks Limited Constraint based routing
US6925461B2 (en) 2001-12-17 2005-08-02 At&T Corp. Parallel random proxy usage for large scale web access
US7106757B2 (en) 2001-12-19 2006-09-12 Intel Corporation System and method for streaming multimedia over packet networks
ITMI20012726A1 (en) 2001-12-20 2003-06-20 Enel Distribuzione Spa remote acquisition system of consumption and remote management of utilities distributed also of domestic type
US6744740B2 (en) 2001-12-21 2004-06-01 Motorola, Inc. Network protocol for wireless devices utilizing location information
US6714787B2 (en) 2002-01-17 2004-03-30 Motorola, Inc. Method and apparatus for adapting a routing map for a wireless communications network
US7073178B2 (en) 2002-01-18 2006-07-04 Mobitv, Inc. Method and system of performing transactions using shared resources and different applications
US7609673B2 (en) 2002-02-08 2009-10-27 Telefonaktiebolaget Lm Ericsson (Publ) Packet-based conversational service for a multimedia session in a mobile communications system
US7626508B2 (en) 2002-03-05 2009-12-01 Aeromesh Corporation Monitoring system and method
US6985087B2 (en) 2002-03-15 2006-01-10 Qualcomm Inc. Method and apparatus for wireless remote telemetry using ad-hoc networks
US6801865B2 (en) 2002-03-21 2004-10-05 Engage Networks, Inc. Meter monitoring and tamper protection system and method
US6831921B2 (en) 2002-03-27 2004-12-14 James A. Higgins Wireless internet access system
CA2480551A1 (en) 2002-03-28 2003-10-09 Robertshaw Controls Company Energy management system and method
US7230544B2 (en) 2002-04-22 2007-06-12 Cellnet Innovations, Inc. Intelligent two-way telemetry
US7177661B2 (en) 2002-05-06 2007-02-13 Extricom Ltd. Communication between wireless access points over LAN cabling
US20040082203A1 (en) 2002-05-07 2004-04-29 Oleg Logvinov Method and apparatus for power theft prevention based on TDR or FDR signature monitoring on LV and MV power lines
AU2003239385A1 (en) 2002-05-10 2003-11-11 Richard R. Reisman Method and apparatus for browsing using multiple coordinated device
EP1372238B1 (en) 2002-06-13 2018-06-06 Whirlpool Corporation Total home energy management system
US7119713B2 (en) 2002-06-27 2006-10-10 Elster Electricity, Llc Dynamic self-configuring metering network
US20040113810A1 (en) 2002-06-28 2004-06-17 Mason Robert T. Data collector for an automated meter reading system
GB0218452D0 (en) 2002-08-08 2002-09-18 Lal Depak Energy consumption monitoring
US7069438B2 (en) 2002-08-19 2006-06-27 Sowl Associates, Inc. Establishing authenticated network connections
US20040039817A1 (en) 2002-08-26 2004-02-26 Lee Mai Tranh Enhanced algorithm for initial AP selection and roaming
US7324453B2 (en) 2002-08-30 2008-01-29 Alcatel Lucent Constraint-based shortest path first method for dynamically switched optical transport networks
US7009379B2 (en) 2002-09-12 2006-03-07 Landis & Gyr, Inc. Electricity meter with power supply load management
EP1401224A1 (en) 2002-09-17 2004-03-24 Motorola, Inc. Software download to software definable radio by intermediate communication unit
WO2004030152A2 (en) 2002-09-30 2004-04-08 Basic Resources, Inc. Outage notification device and method
CN1322722C (en) 2002-10-11 2007-06-20 诺基亚公司 Connecting method and net system between several net node
US6995666B1 (en) 2002-10-16 2006-02-07 Luttrell Clyde K Cellemetry-operated railroad switch heater
US7599323B2 (en) 2002-10-17 2009-10-06 Alcatel-Lucent Usa Inc. Multi-interface mobility client
JP3844768B2 (en) 2002-11-20 2006-11-15 富士通株式会社 Wireless terminal device
JP3773049B2 (en) 2002-11-28 2006-05-10 ヤマハ株式会社 Tone decay rate controller for generating a dB linear attenuation factor data in accordance with the position of the knob
US20040117788A1 (en) 2002-12-11 2004-06-17 Jeyhan Karaoguz Method and system for TV interface for coordinating media exchange with a media peripheral
JP3799010B2 (en) 2002-12-19 2006-07-19 アンリツ株式会社 Bridge for mesh network
US20040125776A1 (en) 2002-12-26 2004-07-01 Haugli Hans C. Peer-to-peer wireless data communication system with progressive dynamic routing
US7366113B1 (en) 2002-12-27 2008-04-29 At & T Corp. Adaptive topology discovery in communication networks
US6859186B2 (en) 2003-02-03 2005-02-22 Silver Spring Networks, Inc. Flush-mounted antenna and transmission system
US7174170B2 (en) 2003-02-12 2007-02-06 Nortel Networks Limited Self-selection of radio frequency channels to reduce co-channel and adjacent channel interference in a wireless distributed network
US20070013547A1 (en) 2003-02-14 2007-01-18 Boaz Jon A Automated meter reading system, communication and control network from automated meter reading, meter data collector, and associated methods
JP4134916B2 (en) 2003-02-14 2008-08-20 松下電器産業株式会社 Network connection device, and a network connection switching method
US7304587B2 (en) 2003-02-14 2007-12-04 Energy Technology Group, Inc. Automated meter reading system, communication and control network for automated meter reading, meter data collector program product, and associated methods
US7400264B2 (en) 2003-02-14 2008-07-15 Energy Technology Group, Inc. Automated meter reading system, communication and control network for automated meter reading, meter data collector, and associated methods
US20040185845A1 (en) 2003-02-28 2004-09-23 Microsoft Corporation Access point to access point range extension
US7406298B2 (en) 2003-03-25 2008-07-29 Silver Spring Networks, Inc. Wireless communication system
US7321316B2 (en) 2003-07-18 2008-01-22 Power Measurement, Ltd. Grouping mesh clusters
US7251570B2 (en) 2003-07-18 2007-07-31 Power Measurement Ltd. Data integrity in a mesh network
US7010363B2 (en) 2003-06-13 2006-03-07 Battelle Memorial Institute Electrical appliance energy consumption control methods and electrical energy consumption systems
US7562024B2 (en) 2003-06-18 2009-07-14 Hewlett-Packard Development Company, L.P. Method and system for addressing client service outages
US7053853B2 (en) * 2003-06-26 2006-05-30 Skypilot Network, Inc. Planar antenna for a wireless mesh network
US7444508B2 (en) 2003-06-30 2008-10-28 Nokia Corporation Method of implementing secure access
WO2005004368A2 (en) 2003-07-07 2005-01-13 Lg Electronics, Inc. Upgrade apparatus and its method for home network system
US7701858B2 (en) 2003-07-17 2010-04-20 Sensicast Systems Method and apparatus for wireless communication in a mesh network
KR100547788B1 (en) 2003-07-31 2006-01-31 삼성전자주식회사 That the communication between the devices of the high-speed WPAN piconet and a data transmitting method
JP4218451B2 (en) 2003-08-05 2009-02-04 株式会社日立製作所 License management system, a server apparatus and a terminal device
US7336642B2 (en) 2003-08-07 2008-02-26 Skypilot Networks, Inc. Communication protocol for a wireless mesh architecture
WO2005033964A1 (en) 2003-09-05 2005-04-14 Itron, Inc. Synchronizing and controlling software downloads, such as for utility meter-reading data collection and processing
US7289887B2 (en) 2003-09-08 2007-10-30 Smartsynch, Inc. Systems and methods for remote power management using IEEE 802 based wireless communication links
US20050055432A1 (en) 2003-09-08 2005-03-10 Smart Synch, Inc. Systems and methods for remote power management using 802.11 wireless protocols
JP4139758B2 (en) 2003-09-29 2008-08-27 松下電工株式会社 Path setting method and a network employing the path setting method, relay station and the master station
CN1879081B (en) 2003-11-04 2011-07-13 汤姆森许可贸易公司 Cache server at hotspots for downloading services
KR100640327B1 (en) 2003-11-24 2006-10-30 삼성전자주식회사 The Frame Structure and Data Transmission Method for Bridge Operation of WPAN
KR100547849B1 (en) 2003-12-05 2006-01-31 삼성전자주식회사 Frame Structure for Selecting Bridge Device in WPAN and Method for Selecting Bridge Device in WPAN
US7215926B2 (en) 2003-12-05 2007-05-08 Microsoft Corporation Enhanced mode technique for growing mesh networks
US7324824B2 (en) 2003-12-09 2008-01-29 Awarepoint Corporation Wireless network monitoring system
AU2003292275A1 (en) 2003-12-19 2005-07-05 Nokia Corporation Selection of radio resources in a wireless communication device
EP1553713A1 (en) 2004-01-09 2005-07-13 Thomson Multimedia Broadband Belgium Time synchronizing device and process and associated products
US7317404B2 (en) 2004-01-14 2008-01-08 Itron, Inc. Method and apparatus for collecting and displaying consumption data from a meter reading system
US7802015B2 (en) 2004-01-26 2010-09-21 Tantalus Systems Corp. Communications system of heterogeneous elements
JP2005242691A (en) 2004-02-26 2005-09-08 Fujitsu Ltd Program downloading/switching method and device for it
US20050195757A1 (en) 2004-03-02 2005-09-08 Kidder Kenneth B. Wireless association approach and arrangement therefor
US20050194456A1 (en) 2004-03-02 2005-09-08 Tessier Patrick C. Wireless controller with gateway
GB2412193A (en) 2004-03-19 2005-09-21 Matsushita Electric Ind Co Ltd Reprogramming a non-volatile memory system.
US7174260B2 (en) 2004-04-01 2007-02-06 Blue Line Innovations Inc. System and method for reading power meters
US7539862B2 (en) 2004-04-08 2009-05-26 Ipass Inc. Method and system for verifying and updating the configuration of an access device during authentication
US20050251403A1 (en) 2004-05-10 2005-11-10 Elster Electricity, Llc. Mesh AMR network interconnecting to TCP/IP wireless mesh network
JP4449588B2 (en) 2004-06-09 2010-04-14 ソニー株式会社 Wireless communication system, wireless communication apparatus and wireless communication method, and computer program
US7847706B1 (en) 2004-06-23 2010-12-07 Wireless Telematics Llc Wireless electrical apparatus controller device and method of use
WO2006012211A2 (en) 2004-06-24 2006-02-02 Meshnetworks, Inc. A system and method for adaptive rate selection for wireless networks
JP4445351B2 (en) 2004-08-31 2010-04-07 株式会社東芝 Semiconductor module
US7554941B2 (en) 2004-09-10 2009-06-30 Nivis, Llc System and method for a wireless mesh network
US7590589B2 (en) 2004-09-10 2009-09-15 Hoffberg Steven M Game theoretic prioritization scheme for mobile ad hoc networks permitting hierarchal deference
US7627283B2 (en) 2004-09-10 2009-12-01 Nivis, Llc System and method for a wireless mesh network of configurable signage
US7263371B2 (en) 2004-09-13 2007-08-28 Lucent Technologies Inc. Method for controlling paging and registration of a mobile device in a wireless communications system
US7170425B2 (en) 2004-09-24 2007-01-30 Elster Electricity, Llc System and method for creating multiple operating territories within a meter reading system
US7546595B1 (en) 2004-10-14 2009-06-09 Microsoft Corporation System and method of installing software updates in a computer networking environment
US7349355B2 (en) 2004-10-27 2008-03-25 Intel Corporation Methods and apparatus for providing a communication proxy system
US7369856B2 (en) 2004-11-24 2008-05-06 Intel Corporation Method and system to support fast hand-over of mobile subscriber stations in broadband wireless networks
EP1829297B1 (en) 2004-12-17 2011-04-13 Telefonaktiebolaget LM Ericsson (publ) Retransmission in wireless communication systems
US7327998B2 (en) 2004-12-22 2008-02-05 Elster Electricity, Llc System and method of providing a geographic view of nodes in a wireless network
US7428229B2 (en) 2004-12-28 2008-09-23 Motorola, Inc. Ad hoc cluster idle node coordination
US7697459B2 (en) 2005-01-05 2010-04-13 Intel Corporation Methods and apparatus for identifying a distance-vector route associated with a wireless mesh network
US7626967B2 (en) 2005-01-05 2009-12-01 Intel Corporation Methods and apparatus for providing a transparent bridge associated with a wireless mesh network
GB2439490B (en) 2005-03-08 2008-12-17 Radio Usa Inc E Systems and methods for modifying power usage
US20060215673A1 (en) 2005-03-11 2006-09-28 Interdigital Technology Corporation Mesh network configured to autonomously commission a network and manage the network topology
US7308370B2 (en) 2005-03-22 2007-12-11 Elster Electricity Llc Using a fixed network wireless data collection system to improve utility responsiveness to power outages
US8599822B2 (en) 2005-03-23 2013-12-03 Cisco Technology, Inc. Slot-based transmission synchronization mechanism in wireless mesh networks
EP1710764A1 (en) 2005-04-07 2006-10-11 Sap Ag Authentication of products using identification tags
EP1713206A1 (en) 2005-04-11 2006-10-18 Last Mile Communications/Tivis Limited A distributed communications network comprising wirelessly linked base stations
US7676231B2 (en) 2005-04-13 2010-03-09 Intel Corporation Methods and apparatus for selecting communication channels based on channel load information
US7522540B1 (en) 2005-04-15 2009-04-21 Nvidia Corporation Extended service set mesh topology discovery
US7814322B2 (en) 2005-05-03 2010-10-12 Sri International Discovery and authentication scheme for wireless mesh networks
KR100737854B1 (en) 2005-05-10 2007-07-12 더 리서치 파운데이션 오브 더 시티 유니버시티 오브 뉴욕 Optimal path routing method in Wireless Network
US7539882B2 (en) 2005-05-30 2009-05-26 Rambus Inc. Self-powered devices and methods
WO2006130725A2 (en) 2005-05-31 2006-12-07 Interdigital Technology Corporation Authentication and encryption methods using shared secret randomness in a joint channel
US20070063866A1 (en) 2005-06-02 2007-03-22 Andisa Technologies, Inc. Remote meter monitoring and control system
US7274975B2 (en) 2005-06-06 2007-09-25 Gridpoint, Inc. Optimized energy management system
DE602005002259T2 (en) 2005-06-30 2008-05-21 Ntt Docomo Inc. Apparatus and method for improved handover in mesh networks
US7539151B2 (en) 2005-06-30 2009-05-26 Intel Corporation Channel selection for mesh networks having nodes with multiple radios
CN101263689B (en) 2005-07-20 2012-01-11 发尔泰公司 Route optimization for on-demand routing protocols for mesh networks
US20070060147A1 (en) 2005-07-25 2007-03-15 Shin Young S Apparatus for transmitting data packets between wireless sensor networks over internet, wireless sensor network domain name server, and data packet transmission method using the same
US7602747B2 (en) 2005-07-29 2009-10-13 Intel Corporation Systems and methods increased mobility among mobile nodes in a wireless network
US7106044B1 (en) 2005-08-02 2006-09-12 General Electric Company Systems, methods, and apparatuses for detecting residential electricity theft in firmware
US7400253B2 (en) 2005-08-04 2008-07-15 Mhcmos, Llc Harvesting ambient radio frequency electromagnetic energy for powering wireless electronic devices, sensors and sensor networks and applications thereof
US7583984B2 (en) 2005-08-12 2009-09-01 Lg Electronics Inc. Method of providing notification for battery power conservation in a wireless system
US7495578B2 (en) 2005-09-02 2009-02-24 Elster Electricity, Llc Multipurpose interface for an automated meter reading device
US7546168B2 (en) 2005-09-12 2009-06-09 Abl Ip Holding Llc Owner/operator control of a light management system using networked intelligent luminaire managers
US8874477B2 (en) 2005-10-04 2014-10-28 Steven Mark Hoffberg Multifactorial optimization system and method
US7788491B1 (en) 2005-10-21 2010-08-31 Sprint Communications Company L.P. Use of encryption for secure communication exchanges
US7498873B2 (en) 2005-11-02 2009-03-03 Rosom Corporation Wide-lane pseudorange measurements using FM signals
US7493494B2 (en) 2005-11-03 2009-02-17 Prostor Systems, Inc. Secure data cartridge
US7756538B2 (en) 2005-11-09 2010-07-13 Motorola, Inc. Wide area network handset assisted content delivery system and method of using same
US7814478B2 (en) 2005-11-09 2010-10-12 Texas Instruments Norway As Methods and apparatus for use in updating application programs in memory of a network device
US20070110024A1 (en) 2005-11-14 2007-05-17 Cisco Technology, Inc. System and method for spanning tree cross routes
JP2009516881A (en) 2005-11-17 2009-04-23 シルヴァー−スプリング ネットワークス,インコーポレイテッド Method and system for providing a network protocol for public service
US7962101B2 (en) 2005-11-17 2011-06-14 Silver Spring Networks, Inc. Method and system for providing a routing protocol for wireless networks
US7623043B2 (en) 2005-12-19 2009-11-24 General Electric Company Method and system for metering consumption of energy
US20070147268A1 (en) 2005-12-23 2007-06-28 Elster Electricity, Llc Distributing overall control of mesh AMR LAN networks to WAN interconnected collectors
US7743224B2 (en) 2006-01-06 2010-06-22 Dot Hill Systems Corp. Method and apparatus for virtual load regions in storage system controllers
US20080151824A1 (en) 2006-01-31 2008-06-26 Peter Shorty Home electrical device control within a wireless mesh network
US8626251B2 (en) 2006-01-31 2014-01-07 Niels Thybo Johansen Audio-visual system energy savings using a mesh network
US20080151825A1 (en) 2006-01-31 2008-06-26 Peter Shorty Home electrical device control within a wireless mesh network
US20070177576A1 (en) 2006-01-31 2007-08-02 Niels Thybo Johansen Communicating metadata through a mesh network
US20080170511A1 (en) 2006-01-31 2008-07-17 Peter Shorty Home electrical device control within a wireless mesh network
US20080165712A1 (en) 2006-01-31 2008-07-10 Peter Shorty Home electrical device control within a wireless mesh network
US8509790B2 (en) 2006-01-31 2013-08-13 Tommas Jess Christensen Multi-speed mesh networks
US8300652B2 (en) 2006-01-31 2012-10-30 Sigma Designs, Inc. Dynamically enabling a secondary channel in a mesh network
US20080154396A1 (en) 2006-01-31 2008-06-26 Peter Shorty Home electrical device control within a wireless mesh network
US8626178B2 (en) 2006-01-31 2014-01-07 Niels Thybo Johansen Audio-visual system control using a mesh network
US8194569B2 (en) 2006-01-31 2012-06-05 Sigma Designs, Inc. Static update controller enablement in a mesh network
US8219705B2 (en) 2006-01-31 2012-07-10 Sigma Designs, Inc. Silent acknowledgement of routing in a mesh network
US8223783B2 (en) 2006-01-31 2012-07-17 Sigma Designs, Inc. Using battery-powered nodes in a mesh network
US7680041B2 (en) 2006-01-31 2010-03-16 Zensys A/S Node repair in a mesh network
US20080151795A1 (en) 2006-01-31 2008-06-26 Peter Shorty Home electrical device control within a wireless mesh network
US9166812B2 (en) 2006-01-31 2015-10-20 Sigma Designs, Inc. Home electrical device control within a wireless mesh network
US20080159213A1 (en) 2006-01-31 2008-07-03 Peter Shorty Home electrical device control within a wireless mesh network
US20070257813A1 (en) 2006-02-03 2007-11-08 Silver Spring Networks Secure network bootstrap of devices in an automatic meter reading network
US7427927B2 (en) 2006-02-16 2008-09-23 Elster Electricity, Llc In-home display communicates with a fixed network meter reading system
US7545285B2 (en) 2006-02-16 2009-06-09 Elster Electricity, Llc Load control unit in communication with a fixed network meter reading system
US7729496B2 (en) 2006-02-28 2010-06-01 International Business Machines Corporation Efficient key updates in encrypted database systems
US20070206521A1 (en) 2006-03-05 2007-09-06 Osaje Emeke E Wireless Utility Monitoring And Control Mesh Network
US7936681B2 (en) 2006-03-06 2011-05-03 Cisco Technology, Inc. Cross-layer design techniques for interference-aware routing configuration in wireless mesh networks
US7768926B2 (en) 2006-03-09 2010-08-03 Firetide, Inc. Effective bandwidth path metric and path computation method for wireless mesh networks with wired links
US7802245B2 (en) 2006-04-27 2010-09-21 Agere Systems Inc. Methods and apparatus for performing in-service upgrade of software in network processor
US7958032B2 (en) 2006-05-10 2011-06-07 International Business Machines Corporation Generating event messages corresponding to event indicators
US7548907B2 (en) 2006-05-11 2009-06-16 Theresa Wall Partitioning electrical data within a database
WO2007132473A1 (en) 2006-05-17 2007-11-22 Tanla Solutions Limited Automated meter reading system and method thereof
US8103389B2 (en) 2006-05-18 2012-01-24 Gridpoint, Inc. Modular energy control system
US7733224B2 (en) 2006-06-30 2010-06-08 Bao Tran Mesh network personal emergency response appliance
WO2008004251A2 (en) 2006-07-03 2008-01-10 Tanla Solutions Limited Home security system using an ad-hoc wireless mesh and method thereof
US7843842B2 (en) 2006-08-04 2010-11-30 Cisco Technology, Inc. Method and system for initiating a remote trace route
US20080032703A1 (en) 2006-08-07 2008-02-07 Microsoft Corporation Location based notification services
US7548826B2 (en) 2006-08-24 2009-06-16 Blue Pillar, Inc. Power monitoring and testing
US20080074285A1 (en) 2006-08-31 2008-03-27 Guthrie Kevin D Interface between meter and application (IMA)
US7707415B2 (en) 2006-09-07 2010-04-27 Motorola, Inc. Tunneling security association messages through a mesh network
US8059009B2 (en) 2006-09-15 2011-11-15 Itron, Inc. Uplink routing without routing table
US8138944B2 (en) 2006-09-15 2012-03-20 Itron, Inc. Home area networking (HAN) with handheld for diagnostics
US8055461B2 (en) 2006-09-15 2011-11-08 Itron, Inc. Distributing metering responses for load balancing an AMR network
WO2008036756A2 (en) 2006-09-19 2008-03-27 Firetide, Inc. A multi-channel assignment method for multi-radio multi-hop wireless mesh networks
US7720010B2 (en) 2006-09-29 2010-05-18 Cisco Technology, Inc. Tree based wireless mesh for an OSPF network with intra-tree communication optimization
US7571865B2 (en) 2006-10-31 2009-08-11 Tonerhead, Inc. Wireless temperature control system
JP4861484B2 (en) * 2006-12-07 2012-01-25 ミソニモ チ アクイジションズ エル.エル.シー. System and method for allocating time slots and channels
US20080177678A1 (en) 2007-01-24 2008-07-24 Paul Di Martini Method of communicating between a utility and its customer locations
US8155007B2 (en) 2007-01-25 2012-04-10 Cisco Technology, Inc. Path optimization for mesh access points in a wireless mesh network
US7853417B2 (en) 2007-01-30 2010-12-14 Silver Spring Networks, Inc. Methods and system for utility network outage detection
US8953610B2 (en) 2007-02-02 2015-02-10 Silver Spring Networks, Inc. Method and system for transit between two IPV6 nodes of a utility network connected VIA an IPV4 network using encapsulation technique
CA2676852A1 (en) 2007-02-02 2008-08-07 Aztech Associates Inc. Utility monitoring device, system and method
US7957322B2 (en) 2007-02-02 2011-06-07 Silver Sring Networks, Inc. Flow-through provisioning in utility AMR/AMI networks
US8023482B2 (en) 2007-03-15 2011-09-20 Cisco Technology, Inc. Dynamic rate limiting in wireless mesh networks
US7859477B2 (en) 2007-03-30 2010-12-28 Silver Spring Networks, Inc. J-pole antenna
US8230108B2 (en) 2007-04-13 2012-07-24 Hart Communication Foundation Routing packets on a network using directed graphs
ITTO20070351A1 (en) 2007-05-17 2008-11-18 Gevipi Ag Thermostatic mixing device perfected for sanitary use
US8189577B2 (en) 2007-06-15 2012-05-29 Silver Spring Networks, Inc. Network utilities in wireless mesh communications networks
US7769888B2 (en) 2007-06-15 2010-08-03 Silver Spring Networks, Inc. Method and system for providing network and routing protocols for utility services
US8233905B2 (en) 2007-06-15 2012-07-31 Silver Spring Networks, Inc. Load management in wireless mesh communications networks
US8130700B2 (en) 2007-06-15 2012-03-06 Silver Spring Networks, Inc. Method and system for providing network and routing protocols for utility services
US8072951B2 (en) 2007-06-15 2011-12-06 Silver Spring Networks, Inc. Method and system for providing routing protocols in a frequency hopping spread spectrum network
US20090003356A1 (en) 2007-06-15 2009-01-01 Silver Spring Networks, Inc. Node discovery and culling in wireless mesh communications networks
US7940669B2 (en) 2007-06-15 2011-05-10 Silver Spring Networks, Inc. Route and link evaluation in wireless mesh communications networks
US20080317047A1 (en) 2007-06-20 2008-12-25 Motorola, Inc. Method for discovering a route to a peer node in a multi-hop wireless mesh network
US20090010178A1 (en) 2007-07-03 2009-01-08 Digi International Inc. Cordless mains powered form factor for mesh network router node
JP2010534021A (en) * 2007-07-18 2010-10-28 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ How to generate a report message in the network
US9464917B2 (en) 2007-07-18 2016-10-11 Silver Spring Networks, Inc. Method and system of reading utility meter data over a network
US7894371B2 (en) 2007-07-31 2011-02-22 Motorola, Inc. System and method of resource allocation within a communication system
US8279870B2 (en) 2007-08-01 2012-10-02 Silver Spring Networks, Inc. Method and system of routing in a utility smart-grid network
US7961740B2 (en) 2007-08-01 2011-06-14 Silver Spring Networks, Inc. Method and system of routing in a utility smart-grid network
US8218564B2 (en) * 2007-08-29 2012-07-10 Trilliant Networks, Inc. Method and apparatus for WiFi long range radio coordination
US7693609B2 (en) 2007-09-05 2010-04-06 Consolidated Edison Company Of New York, Inc. Hybrid vehicle recharging system and method of operation
US20090115626A1 (en) 2007-11-02 2009-05-07 Raj Vaswani Electronic meter for networked meter reading
US9158510B2 (en) 2007-11-21 2015-10-13 International Business Machines Corporation System and computer program product for creating a telecommunications application
US20090132220A1 (en) 2007-11-21 2009-05-21 International Business Machines Corporation Method For Creating A Telecommunications Application
EP2257884A4 (en) 2007-11-25 2011-04-20 Trilliant Networks Inc System and method for transmitting and receiving information on a neighborhood area network
EP2215556A4 (en) 2007-11-25 2011-01-19 Trilliant Networks Inc System and method for power outage and restoration notification in an advanced metering infrastructure network
WO2009067254A1 (en) 2007-11-25 2009-05-28 Trilliant Networks, Inc. System and method for operating mesh devices in multi-tree overlapping mesh networks
WO2009067249A1 (en) 2007-11-25 2009-05-28 Trilliant Networks, Inc. System and method for application layer time synchronization without creating a time discrepancy or gap in time
CA2716727A1 (en) 2007-11-25 2009-05-28 Trilliant Networks, Inc. Application layer authorization token and method
US8289883B2 (en) 2007-12-21 2012-10-16 Samsung Electronics Co., Ltd. Hybrid multicast routing protocol for wireless mesh networks
US7522639B1 (en) 2007-12-26 2009-04-21 Katz Daniel A Synchronization among distributed wireless devices beyond communications range
US8442092B2 (en) 2007-12-27 2013-05-14 Silver Spring Networks, Inc. Creation and use of unique hopping sequences in a frequency-hopping spread spectrum (FHSS) wireless communications network
US20090167547A1 (en) 2007-12-31 2009-07-02 Brad Gilbert Utility disconnect monitor node with communication interface
US7961554B2 (en) 2008-01-11 2011-06-14 Cellnet Innovations, Inc. Methods and systems for accurate time-keeping on metering and other network communication devices
JP4530059B2 (en) 2008-02-18 2010-08-25 日本電気株式会社 The disk array device, firmware replacing and firmware replacement program
US8402455B2 (en) 2008-03-17 2013-03-19 Landis+Gyr Innovations, Inc. Methods and systems for distributing firmware through an over-the-air network
US8311063B2 (en) 2008-03-28 2012-11-13 Silver Spring Networks, Inc. Updating routing and outage information in a communications network
US7839899B2 (en) 2008-03-28 2010-11-23 Silver Spring Networks, Inc. Method and system of updating routing information in a communications network
US20090267792A1 (en) 2008-04-25 2009-10-29 Henry Crichlow Customer supported automatic meter reading method
US7978632B2 (en) 2008-05-13 2011-07-12 Nortel Networks Limited Wireless mesh network transit link topology optimization method and system
WO2009143287A1 (en) 2008-05-20 2009-11-26 Live Meters, Inc. Remote monitoring and control system comprising mesh and time synchronization technology
US20090303972A1 (en) 2008-06-06 2009-12-10 Silver Spring Networks Dynamic Scrambling Techniques for Reducing Killer Packets in a Wireless Network
US20090310593A1 (en) 2008-06-17 2009-12-17 Qualcomm Incorporated Self-positioning access points
US9853488B2 (en) 2008-07-11 2017-12-26 Charge Fusion Technologies, Llc Systems and methods for electric vehicle charging and power management
US8484486B2 (en) 2008-08-06 2013-07-09 Silver Spring Networks, Inc. Integrated cryptographic security module for a network node
US8756675B2 (en) 2008-08-06 2014-06-17 Silver Spring Networks, Inc. Systems and methods for security in a wireless utility network
US8467370B2 (en) 2008-08-15 2013-06-18 Silver Spring Networks, Inc. Beaconing techniques in frequency hopping spread spectrum (FHSS) wireless mesh networks
WO2010027495A1 (en) 2008-09-04 2010-03-11 Trilliant Networks, Inc. A system and method for implementing mesh network communications using a mesh network protocol
US8207726B2 (en) 2008-09-05 2012-06-26 Silver Spring Networks, Inc. Determining electric grid endpoint phase connectivity
US9025584B2 (en) 2008-09-09 2015-05-05 Silver Spring Networks, Inc. Multi-channel mesh nodes employing stacked responses
US9743337B2 (en) 2008-09-22 2017-08-22 Silver Spring Networks, Inc. Meshed networking of access points in a utility network
WO2010033244A1 (en) 2008-09-22 2010-03-25 Silver Spring Networks, Inc. Transparent routing in a power line carrier network
WO2010033245A1 (en) 2008-09-22 2010-03-25 Silver Spring Networks, Inc. Power line communication using frequency hopping
US8990569B2 (en) 2008-12-03 2015-03-24 Verizon Patent And Licensing Inc. Secure communication session setup
EP2387776A4 (en) 2009-01-14 2013-03-20 Integral Analytics Inc Optimization of microgrid energy use and distribution
US8249049B2 (en) 2009-03-17 2012-08-21 Cisco Technology, Inc. Clock synchronization
GB2481946A (en) 2009-03-31 2012-01-11 Gridpoint Inc Electric vehicle power management systems

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6556830B1 (en) * 1998-02-02 2003-04-29 Ericsson Inc. Coverage area sectorization in time division multiple access/frequency-time division duplex communications systems
US7230931B2 (en) * 2001-01-19 2007-06-12 Raze Technologies, Inc. Wireless access system using selectively adaptable beam forming in TDD frames and method of operation
US6882635B2 (en) * 2002-02-05 2005-04-19 Qualcomm Incorporated Coexistence between interfering communication systems
US7245938B2 (en) * 2003-10-17 2007-07-17 Sobczak David M Wireless antenna traffic matrix

Also Published As

Publication number Publication date
US20120052812A1 (en) 2012-03-01
US9084120B2 (en) 2015-07-14
CA2809034A1 (en) 2012-03-01

Similar Documents

Publication Publication Date Title
Ramachandran et al. Interference-Aware Channel Assignment in Multi-Radio Wireless Mesh Networks.
Han et al. Cooperative decode-and-forward relaying for secondary spectrum access
US8200212B2 (en) Wireless network system and method
Bhagwat et al. Turning 802.11 inside-out
Akyildiz et al. Wireless mesh networks: a survey
Xie et al. Does full-duplex double the capacity of wireless networks?
KR100924605B1 (en) System and method for reusing wireless resources in a wireless network
Zhang et al. Wireless mesh networking: architectures, protocols and standards
US8750392B2 (en) PLC device supporting MIMO operations
JP5865358B2 (en) Wireless communication method, system and computer program product
EP2263413B1 (en) Method for routing via access terminals
US7593729B2 (en) Point to point link and communication method
Crichigno et al. Protocols and architectures for channel assignment in wireless mesh networks
US8644271B2 (en) Communication protocol for a wireless mesh architecture
US8830943B2 (en) Intelligent backhaul management system
Das et al. DMesh: incorporating practical directional antennas in multichannel wireless mesh networks
US10020861B2 (en) Method and system for distributed transceivers and mobile device connectivity
Mishra et al. Exploiting partially overlapping channels in wireless networks: Turning a peril into an advantage
US7283494B2 (en) Network channel access protocol-interference and load adaptive
CA2444432C (en) Wireless mesh network and network node
Takai et al. Directional virtual carrier sensing for directional antennas in mobile ad hoc networks
KR100950357B1 (en) System and method for assigning channels in a wireless network
US10129888B2 (en) Method for installing a fixed wireless access link with alignment signals
Akyildiz et al. Wireless mesh networks
US9668299B2 (en) Multi-mode WLAN/PAN MAC

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11820700

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase in:

Ref document number: 2809034

Country of ref document: CA

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct app. not ent. europ. phase

Ref document number: 11820700

Country of ref document: EP

Kind code of ref document: A1