WO2012017834A1 - 嫌気性消化方法 - Google Patents

嫌気性消化方法 Download PDF

Info

Publication number
WO2012017834A1
WO2012017834A1 PCT/JP2011/066611 JP2011066611W WO2012017834A1 WO 2012017834 A1 WO2012017834 A1 WO 2012017834A1 JP 2011066611 W JP2011066611 W JP 2011066611W WO 2012017834 A1 WO2012017834 A1 WO 2012017834A1
Authority
WO
WIPO (PCT)
Prior art keywords
sludge
fixed bed
carrier
anaerobic digestion
digestion method
Prior art date
Application number
PCT/JP2011/066611
Other languages
English (en)
French (fr)
Inventor
昭 中林
真由美 森田
圭祐 松田
Original Assignee
月島機械株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 月島機械株式会社 filed Critical 月島機械株式会社
Priority to KR20137003827A priority Critical patent/KR20130132746A/ko
Priority to CN201180038197.2A priority patent/CN103097308B/zh
Priority to US13/813,281 priority patent/US20130130357A1/en
Priority to EP11814464.1A priority patent/EP2602230A4/en
Publication of WO2012017834A1 publication Critical patent/WO2012017834A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • C02F3/2806Anaerobic processes using solid supports for microorganisms
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/10Packings; Fillings; Grids
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/02Biological treatment
    • C02F11/04Anaerobic treatment; Production of methane by such processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/20Nature of the water, waste water, sewage or sludge to be treated from animal husbandry
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/10Solids, e.g. total solids [TS], total suspended solids [TSS] or volatile solids [VS]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/10Solids, e.g. total solids [TS], total suspended solids [TSS] or volatile solids [VS]
    • C02F2209/105Particle number, particle size or particle characterisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Definitions

  • the present invention contains sewage sludge, sludge generated from industrial waste treatment facilities, sludge containing organic matter of livestock waste such as chicken manure, and a large amount (5000 mg / L or more) of suspended solids (SS).
  • the present invention relates to an anaerobic digestion method in which organic wastewater is anaerobically digested by a fixed bed.
  • anaerobic digestion method a method of reducing the volume by anaerobic digestion by introducing sewage sludge into a digestion tank is known. This method is provided with gas stirring or mechanical stirring means inside the digestion tank, and is put into the sewage sludge or the like without any special pretreatment, and is subjected to anaerobic digestion by thoroughly mixing with the stirring means. It is.
  • sludge is conditioned to at least fluid high-concentration slurry containing organic matter-containing solids, and the conditioned sludge is used as a fluid medium, with a true specific gravity of 2.0 or more and
  • a method of digesting in an anaerobic digester having a fluidized bed formed by flowing a carrier having an average particle size of 2.0 to 5.0 mm ⁇ is disclosed (for example, see Patent Document 1). This method prevents clogging in the digestion tank and outflow of the carrier to the outside of the tank, improves the contact efficiency between the methane bacteria fixed on the carrier and sludge, and enhances the sludge digestion reaction. It is an object.
  • anaerobic digestion method in addition to the method disclosed in Patent Document 1, a method is disclosed in which the ratio of the flow stop time to the flow time is set to 30 or less, and the fluidized bed is operated intermittently. (For example, refer to Patent Document 2).
  • This method aims to reduce the energy required for flow while maintaining the significant shortening of the digestion days, which is an advantage of the fluidized bed method.
  • anaerobic digestion method in an anaerobic fluidized bed bioreactor using a bioadhesive carrier, by performing primary treatment within 10 days of digestion, the methane bacteria group is added to the suspended sludge in the anaerobic fluidized bed.
  • a method is disclosed in which a secondary treatment is carried out using a floating sludge-type anaerobic bioreactor using this methanogen group (see, for example, Patent Document 3). The purpose of this method is to provide a low-cost process that can reduce the number of days of digestion, obtain high reaction efficiency.
  • the carrier is flowed in order to improve the contact efficiency between the supplied sludge and the bioadhesive carrier, the necessary pump capacity is increased and the processing cost is increased. Further, when the carrier flows, the carriers come into contact with each other, and the methane bacteria grown on the surface of the carrier are peeled off, the concentration of the retained methane bacteria is lowered, and the digestion reaction is hindered. Furthermore, since the carriers are in contact with each other, the carriers themselves are worn. In order to reduce the wear of the carrier due to flow, the carrier is required to have strength, so that the carrier that can be used is limited, and a carrier having a large porosity cannot be used. As a result, processing efficiency decreases.
  • the present invention has been made in view of the above circumstances, and sludge and biofouling can be achieved by uniformly dispersing sludge without clogging the fixed layer composed of the biofouling carrier constituting the lower layer of the fixed bed. It is an object of the present invention to provide an anaerobic digestion method that improves the contact efficiency with methane bacteria held on a carrier, improves the sludge digestion reaction rate, and prevents wear of the bioadhesive carrier.
  • the anaerobic digestion method treats sediment sludge obtained by precipitating sewage or waste liquid, sludge composed of livestock waste sludge, or organic waste water containing 5000 mg / L or more of suspended solids.
  • the target is a method of biological treatment using a fixed bed using a bioadhesive carrier made of a spherical porous body.
  • a part of the processing target supplied to the fixed bed is extracted from the upper layer of the fixed bed, and the extracted processing target is supplied to the fixed layer made of a bioadhesive carrier that constitutes the lower layer of the fixed bed,
  • a bioadhesive carrier composed of a spherical porous body having an average particle size of 4.0 mm or more
  • the treatment target is uniformly dispersed without causing the bioadhesive carrier to flow or clogging the fixed layer.
  • the object to be treated is circulated in the fixed bed.
  • the filling rate of the bioadhesive carrier with respect to the total volume of the fixed bed is preferably 30 to 70%.
  • the biological adhesion carrier preferably has a true specific gravity of 1.5 to 4.0 g / cm 3 .
  • the bioadhesive carrier preferably has an average particle size of 4.0 mm to 15.0 mm.
  • the bioadhesive carrier preferably has a porosity of 40 to 70%.
  • the speed at which the treatment target is circulated in the fixed bed is preferably 0.1 m / hr to 10 m / hr.
  • the treatment target is biologically treated.
  • the digestion gas or nitrogen gas generated in the fixed bed is supplied to the treatment target supply pipe of the fixed bed or the lower part of the fixed bed, and the bioadhesive carrier is stirred by the digestion gas or the nitrogen gas. Good.
  • the supply speed of the digestion gas or the nitrogen gas supplied to the processing target supply pipe or the lower part of the fixed layer is 5 to 40 m / hr.
  • a part of the processing target is extracted from the upper layer of the fixed bed, and the extracted processing target is supplied to the fixed layer composed of the bioadhesive carrier that constitutes the lower layer of the fixed bed. Circulate the subject.
  • the treatment target can be made uniform without causing the bioadhesive carrier to flow and without blocking the fixed layer. Can be dispersed. As a result, the contact efficiency between the treatment target and the methane bacteria held on the bioadhesive carrier is improved, and the solid matter contained in the treatment target is further refined when passing through the fixed layer.
  • Digestion reaction rate is improved.
  • the bioadhesive carrier does not flow, the growth of methane bacteria on the bioadhesive carrier is promoted, and the bioadhesive carrier constituting the fixed layer is retained at a high concentration. Therefore, methane bacteria are held at a high concentration in the fixed bed in the fixed bed, the digestion reaction rate in the fixed bed is increased, and the operation can be highly efficient.
  • part of the methane bacteria grown on the bioadhesive carrier and held at a high concentration is peeled off and supplied to the object to be treated. Therefore, if a complete mixing tank is provided after the fixed bed, complete mixing Methane fermentation is maintained in the tank, and biological treatment proceeds.
  • the bioadhesive carrier does not flow due to the flow to be treated, it is possible to prevent the bioadhesive carriers from rubbing against each other and wearing out.
  • FIG. 1 is a schematic configuration diagram of an anaerobic digester used in an anaerobic digestion method according to an embodiment of the present invention.
  • the anaerobic digester 10 of the present embodiment is generally configured from a fixed bed 20 and a complete mixing tank 30 connected thereto.
  • the fixed bed 20 accommodates sludge (treatment target) and performs a digestion treatment, a biological adhesion carrier 22, a sludge supply pipe 23 (treatment target supply pipe), a sludge outflow pipe 24, and a sludge circulation pipe. 25, a circulation pump 26, a stirrer 27, and a gas supply pipe 29.
  • the complete mixing tank 30 is generally composed of a processing tank 31 that stores sludge discharged from the fixed bed 20 and performs a digestion process, a sludge discharge pipe 32, and a stirrer 33.
  • a large number of spherical biofouling carriers 22 are filled in the lower part of the treatment tank 21.
  • the fixed layer 28 made of the bioadhesive carrier 22 constitutes the lower layer of the fixed bed 20.
  • the bioadhesive carrier 22 holds methane bacteria that produce methane from organic substances under anaerobic conditions.
  • the sludge supply pipe 23 supplies (introduces) sludge to the inside from the outside of the treatment tank 21.
  • a nozzle 23 a provided at the tip of the sludge supply pipe 23 is disposed in the fixed layer 28.
  • the sludge outflow pipe 24 causes sludge to flow out from the upper layer of the fixed bed 20 to the outside (specifically, the complete mixing tank 30).
  • the sludge outflow pipe 24 is provided from the upper part of the treatment tank 21 to the treatment tank 31 of the complete mixing tank 30.
  • the sludge circulation pipe 25 is provided for extracting a part of the sludge from the upper layer of the fixed bed 20 and supplying the extracted sludge to the fixed layer 28 uniformly.
  • the sludge circulation pipe 25 is provided from the upper part of the processing tank 21 to the sludge supply pipe 23 as a base end, and is connected to the sludge supply pipe 23 outside the processing tank 21.
  • tube 25 of the processing tank 21 is located in the perpendicular direction lower side rather than the connection location with the sludge outflow pipe
  • the sludge circulation pipe 25 is connected to the sludge supply pipe 23, but the tip of the sludge circulation pipe 25 may be directly disposed in the fixed layer 28.
  • a circulation pump 26 is provided for extracting a part of the sludge from the upper layer of the fixed bed 20 and supplying the extracted sludge to the fixed layer 28.
  • the stirrer 27 stirs the sludge in the upper layer of the fixed bed 20.
  • the stirrer 27 is provided in the upper part of the processing tank 21.
  • the stirring blade 27 a of the stirrer 27 is disposed in the upper part (upper layer of the fixed bed 20) in the processing tank 21.
  • the gas supply pipe 29 is branched into two on the way.
  • One of the two branched gas supply pipes 29 is connected to the sludge supply pipe 23.
  • a nozzle 29a is provided at the other end of the gas supply pipe 29 branched into two.
  • the nozzle 29 a is disposed in the lower part in the fixed layer 28.
  • the gas supply pipe 29 is separated from the digested gas generated in the fixed bed 20 or the fixed bed 20 below the sludge supply pipe 23 (specifically, the nozzle 23 a) or the fixed bed 28 constituting the lower layer of the fixed bed 20. Supply nitrogen gas from the body gas supply.
  • the sludge discharge pipe 32 discharges the digested sludge from the upper layer of the complete mixing tank 30 to the outside.
  • the sludge discharge pipe 32 is provided in the upper part of the processing tank 31.
  • the stirrer 33 stirs the sludge in the treatment tank 31 uniformly.
  • the stirrer 33 is provided in the upper part of the processing tank 31.
  • the stirring blade 33 a of the stirrer 33 is disposed in the central portion in the processing tank 31.
  • the sludge 41 to be treated is supplied from the outside of the fixed bed 20 into the treatment tank 21 through the sludge supply pipe 23.
  • the sludge 41 consists of sedimentation sludge obtained by precipitating sewage or waste liquid, or livestock waste sludge.
  • the sludge 41 supplied into the treatment tank 21 via the sludge supply pipe 23 is uniformly supplied to the fixed layer 28 from the nozzle 23 a provided at the tip of the sludge supply pipe 23.
  • the sludge 41 is discharged from the nozzles 23a so as to be in direct contact with the large number of biofouling carriers 22 constituting the fixed layer 28.
  • the temperature of the sludge 41 in the treatment tank 21 is preferably adjusted to 30 to 38 ° C.
  • the temperature of the sludge 41 may be 50 to 55 ° C.
  • the supply of the sludge 41 from the outside of the fixed bed 20 is stopped.
  • a part of the sludge 41 supplied to the fixed bed 20 is extracted from the upper layer of the fixed bed 20 through the sludge circulation pipe 25, and the extracted sludge 41 is fixed through the sludge circulation pipe 25 and the sludge supply pipe 23.
  • the sludge 41 is circulated in the fixed bed 20. That is, the sludge 41 in the treatment tank 21 is circulated in the order of the fixed layer 28, the upper layer of the fixed floor 20, the sludge circulation pipe 25, the sludge supply pipe 23, and the fixed layer 28.
  • the sludge 41 passes through the fixed layer 28. More specifically, the sludge 41 passes between a large number of biofouling carriers 22 constituting the fixed layer 28. As the sludge 41 passes between the large number of biological adhesion carriers 22, the solid matter contained in the sludge 41 is refined.
  • the circulation of the sludge 41 in the fixed bed 20 is performed very slowly so that the biofouling carrier 22 does not flow due to the flow of the sludge 41. That is, the speed (superficial speed) for circulating the sludge 41 from the upper layer of the fixed bed 20 to the fixed bed 28 is preferably 0.1 m / hr to 10 m / hr, more preferably 0.12 m / hr to 3 m. / Hr. If the speed at which the sludge 41 is circulated is within this range, the sludge 41 does not normally block the fixed layer 28 in the bioadhesive carrier 22 having a particle size (details will be described later) used in the present invention.
  • the sludge 41 is almost uniformly dispersed in the fixed layer 28 and hardly causes a drift (channeling). Therefore, the contact efficiency between the sludge 41 and the methane bacteria held by the bioadhesive carrier 22 is improved, and the digestion efficiency of the sludge 41 is improved. In addition, since the bioadhesive carrier 22 does not flow, peeling of the methane bacterium from the bioadhesive carrier 22 due to the contact between the many bioadhesive carriers 22 is prevented. Therefore, the growth of methane bacteria on the bioadhesion carrier 22 is promoted, and the methane bacteria are held at a high concentration on the bioadhesion carrier 22.
  • the digestion efficiency of the sludge 41 in the fixed bed 28 in which methane bacteria are held at a high concentration is improved. Furthermore, since the biofouling carrier 22 does not flow due to the flow of the sludge 41, the biofouling carriers 22 are not rubbed with each other and the biofouling carrier 22 is not worn. Since the bioadhesive carriers 22 do not come into contact with each other, the strength condition required for the carriers can be relaxed, and a carrier having a large porosity can be used. Therefore, it becomes possible to hold many methane bacteria by the carrier.
  • rate which circulates the sludge 41 is less than 0.1 m / hr, the flow rate of the sludge 41 which passes the inside of the fixed bed 28 will become very slow. Therefore, the sludge 41 does not pass through the entire fixed layer 28, causing drift (channeling), which may reduce digestion efficiency.
  • the speed at which the sludge 41 is circulated exceeds 10 m / hr, the amount of methane bacteria peeled off from the bioadhesive carrier 22 increases, making it difficult for the methane bacteria to be maintained at a high concentration and reducing the digestion efficiency of the sludge 41. There is sex.
  • the bioadhesive carrier 22 flows due to the flow of the sludge 41, the bioadhesive carriers 22 may rub against each other and the bioadhesive carrier 22 may be worn. Furthermore, the energy consumption of the circulation pump 26 increases.
  • the filling rate of the bioadhesive carrier 22 with respect to the total volume of the fixed bed 20, that is, the total volume of the treatment tank 21, is preferably 30 to 70%, and more preferably 40 to 60%. If the filling rate of the biofouling carrier 22 is within this range, the sludge 41 and the biofouling carrier 22 in the treatment tank 21 are completely separated at the upper part of the treatment tank 21, and the biofouling carrier 22 is placed in the sludge circulation pipe 25. Inflow is prevented. Further, the contact efficiency between the sludge 41 and the methane bacteria held on the bioadhesive carrier 22 is improved, and the digestion efficiency of the sludge 41 is improved.
  • the filling rate of the biofouling carrier 22 is less than 30%, the contact efficiency between the sludge 41 in the treatment tank 21 and the methane bacteria held in the biofouling carrier 22 may be reduced, and the digestion efficiency of the sludge 41 may be reduced. There is.
  • the filling rate of the biofouling carrier 22 exceeds 70%, the sludge 41 and the biofouling carrier 22 are not completely separated at the upper part of the treatment tank 21, and the biofouling carrier 22 flows into the sludge circulation pipe 25, and the circulation pump. There is a possibility that the biofouling carrier 22 is damaged at 26.
  • a spherical porous body formed by sintering a clay-based material is used as the bioadhesive carrier 22.
  • clay-based materials include kaolin, bentonite, and barley stone.
  • the bioadhesive carrier 22 preferably has a true specific gravity of 1.5 to 4.0 g / cm 3 , more preferably 1.6 to 2.7 g / cm 3 . If the true specific gravity of the bioadhesion carrier 22 is within this range, the bioadhesion carrier 22 will not flow due to the flow of the sludge 41, and the bioadhesion carriers 22 will rub against each other and wear out. There is no. Moreover, since the porosity of the bioadhesive carrier 22 can be set within a predetermined range, methane bacteria can be held in the bioadhesive carrier 22 at a high concentration.
  • the biofouling carrier 22 is completely separated from the sludge 41 in the treatment tank 21 at the upper part of the treatment tank 21, and the biofouling carrier 22 is prevented from flowing into the sludge circulation pipe 25.
  • the adhesion carrier 22 is not damaged.
  • the sludge 41 and the biofouling carrier 22 are completely separated at the upper part of the treatment tank 21 and the biofouling carrier 22 does not flow out into the complete mixing tank 30, the methane bacteria can be kept at a high concentration in the treatment tank 21. .
  • the biofouling carrier 22 may flow due to the flow of the sludge 41, and the biofouling carriers 22 may rub against each other to wear the biofouling carrier 22. is there. Further, the bioadhesion carrier 22 is not completely separated from the sludge 41 in the treatment tank 21 at the upper part of the treatment tank 21, and the bioadhesion carrier 22 flows into the sludge circulation pipe 25, and the biofouling carrier 22 is supplied by the circulation pump 26. May be damaged. On the other hand, if the true specific gravity of the bioadhesive carrier 22 exceeds 4 g / cm 3 , it cannot be manufactured with a normal clay-based inexpensive material, and is not practical from an economical viewpoint.
  • the bioadhesive carrier 22 preferably has an average particle size of 4.0 mm to 15.0 mm, more preferably 5.0 mm to 10.0 mm. If the average particle diameter of the biofouling carrier 22 is within this range, the sludge 41 can be uniformly dispersed in the fixed layer 28 without the sludge 41 blocking the fixed layer 28. Therefore, the contact efficiency between the sludge 41 in the treatment tank 21 and the methane bacteria retained on the biological adhesion carrier 22 is improved, and the digestion efficiency of the sludge 41 is improved.
  • the biofouling carrier 22 is completely separated from the sludge 41 in the treatment tank 21 at the upper part of the treatment tank 21, and the biofouling carrier 22 is prevented from flowing into the sludge circulation pipe 25. Thus, the biofouling carrier 22 is not damaged.
  • the sludge 41 may block the fixed layer 28 and bridging may occur, or the sludge 41 may cause a drift (channeling) in the fixed layer 28. .
  • the bioadhesion carrier 22 is not completely separated from the sludge 41 in the treatment tank 21 at the upper part of the treatment tank 21, and the bioadhesion carrier 22 wraps around the sludge circulation pipe 25, and the biofouling carrier 22 is circulated by the circulation pump 26. May be damaged.
  • the surface area of the bioadhesive carrier 22 becomes small, and the sludge 41 in the treatment tank 21 contacts the methane bacteria held in the bioadhesive carrier 22. Efficiency may fall and the digestion efficiency of the sludge 41 may fall. Moreover, even if the solid matter contained in the sludge 41 passes between the biofouling carriers 22, the interval between the biofouling carriers 22 is too large, and thus the solid matter may not be refined.
  • the bioadhesive carrier 22 preferably has a porosity of 30 to 70%, more preferably 40 to 60%. If the porosity of the bioadhesive carrier 22 is within this range, the bioadhesive carrier 22 retains methane bacteria at a high concentration, and the digestion efficiency of the sludge 41 is improved. If the porosity of the bioadhesive carrier 22 is less than 30%, it is difficult for the bioadhesive carrier 22 to hold methane bacteria at a high concentration, and the digestion efficiency of the sludge 41 may be reduced. On the other hand, if the porosity of the bioadhesive carrier 22 exceeds 70%, the strength of the bioadhesive carrier 22 is reduced, and the bioadhesive carrier 22 may be worn or damaged over time. .
  • the sludge 41 is normally circulated continuously at all times. However, preferably, when the supply of sludge from the outside into the treatment tank 21 is short, the circulation of the sludge 41 is stopped. The reason is that when the sludge 41 is circulated in the treatment tank 21, the sludge 41 in the treatment tank 21 is very well mixed and is almost completely mixed. In this case, when the sludge is newly supplied into the treatment tank 21, the amount that can be accommodated in the treatment tank 21 is constant. Therefore, a sludge amount equal to the supplied sludge amount flows out of the treatment tank 21 and is completely mixed. It is supplied to the tank 30.
  • the sludge 41 in the upper layer of the fixed bed 20 is stirred intermittently by the stirrer 27 during the sludge digestion process.
  • sponge cake-like sludge called scum formed in the upper layer of the fixed floor 20 can be destroyed, and gas generated by digestion of the sludge 41 can be easily removed.
  • the frequency of stirring the sludge 41 with the stirrer 27 is preferably every 5 minutes to 1 hour. Further, the stirring time per one time is preferably 1 minute to 5 minutes. Further, when the circulation of the sludge 41 is stopped during the supply of sludge from the outside to the treatment tank 21, the stirring by the stirrer 27 may be stopped in order to maintain the pushing flow of the treatment tank 21. preferable.
  • the sludge 41 circulation in the fixed bed 20 that is, the digestion of the sludge 41 has progressed
  • the sludge 41 flows out from the fixed bed 20 and the sludge 41 is introduced into the treatment tank 31 of the complete mixing tank 30.
  • the sludge 42 in the treatment tank 31 is uniformly stirred and mixed by the stirrer 33 so that the sludge is partially separated from the methane bacteria held at a high concentration in the fixed layer 28 in the treatment tank 21. 42 is biologically processed.
  • the temperature of the sludge 42 in the treatment tank 31 is preferably adjusted to 30 to 38 ° C. However, the temperature of the sludge 42 may be 50 to 55 ° C. In the treatment tank 31, the sludge 42 is constantly stirred uniformly.
  • a part of the sludge 41 is extracted from the upper layer of the fixed bed 20, and the extracted sludge 41 is composed of the bioadhesive carrier 22 constituting the lower layer of the fixed bed 20.
  • the sludge 41 is circulated in the fixed bed 20. For this reason, the contact efficiency between the sludge 41 and the methane bacteria held at a high concentration in the bioadhesive carrier 22 is improved, and the solid matter contained in the sludge 41 is further refined when passing through the fixed layer 28.
  • the digestion reaction speed of the sludge 41 is improved.
  • the sludge 41 can be uniformly dispersed in the fixed layer 28 without blocking the fixed layer 28. . Therefore, a high concentration of methane bacteria can be retained on the bioadhesive carrier 22, the concentration of methane bacteria that is the rate-limiting factor for methane fermentation is increased, the digestion efficiency of the sludge 41 is improved, and the digestion reaction of the sludge 41 is eventually achieved. Increases speed. Therefore, the digestion time can be shortened to 1 to 2 days in the present embodiment, whereas the digestion of sludge conventionally takes 4 to 30 days. Thereby, the installation cost of a digester can be reduced significantly.
  • the capacity of the circulation pump 26 can be reduced to 1/50 to 1/100 of the conventional one. Therefore, the initial cost and running cost of the circulation pump can be significantly reduced. Further, since the sludge 41 is circulated very slowly and the bioadhesive carrier 22 does not flow due to the flow of the sludge 41, it is possible to prevent the bioadhesive carriers 22 from rubbing against each other and wearing out the bioadhesive carrier 22. .
  • digestion can be performed more efficiently by treating the sludge 41 treated in the fixed bed 20 in the complete mixing tank 30.
  • the sludge which consists of sedimentation sludge obtained by carrying out precipitation operation of sewage or a waste liquid, or livestock waste sludge was used as a process target, it is not limited to these.
  • Organic sludge containing 5000 mg / L or more of other sludge or suspended solids (SS) may be treated using the anaerobic digestion method of the present embodiment.
  • Example 1 Sludge was digested using the same device as the digester 10 shown in FIG.
  • a tank having a capacity of 2L (liter) was used as the processing tank 21 of the fixed bed 20.
  • a spherical porous ceramic ball having a true specific gravity of 1.7 g / cm 3 , a particle size of about 10 mm, and a porosity of about 50% is sintered.
  • the filling rate of the bioadhesive carrier 22 with respect to the total volume of the treatment tank 21 was set to about 50%.
  • sludge 1L of sludge with a sludge concentration (TS) of 18,500mg / L and an organic substance content (VTS) of 74% is mixed with sludge (mixed sludge) of primary sludge and surplus sludge from a sewage treatment plant. (Liter) was supplied. Moreover, the temperature of the sludge 41 in the treatment tank 21 is adjusted to 35 ° C., a part of the sludge 41 is extracted from the upper layer of the fixed bed 20, and the extracted sludge 41 is supplied to the fixed layer 28. Digestion of sludge 41 was performed. Moreover, the speed
  • the amount of gas per 1 L (liter) of input sludge generated during the digestion reaction of sludge 41 was measured by a wet gas meter manufactured by Shinagawa Co., and the sludge concentration (TS) of sludge 41 and the digestibility of sludge 41 were calculated. .
  • Table 1 The results are shown in Table 1.
  • Table 2 the average particle diameter of the solid substance contained in the sludge 41 after the process in the fixed bed 20 was measured with the wet laser diffraction scattering type particle size distribution measuring method. The results are shown in Table 2.
  • the sludge 41 that has been processed in the fixed bed 20 is introduced into the treatment tank 31 of the complete mixing tank 30, the temperature of the sludge 42 in the treatment tank 31 is adjusted to 35 ° C., and the sludge 42 is removed by the stirrer 33. Uniform stirring and mixing were performed for 2 days, and the sludge 42 was digested.
  • a tank having a capacity of 2L (liter) was used as the processing tank 31 of the complete mixing tank 30 a tank having a capacity of 2L (liter) was used.
  • Example 1 The same sludge treated in Example 1 is supplied into the treatment tank of the complete mixing tank, the temperature of the sludge in the treatment tank is adjusted to 35 ° C., and the sludge is uniformly stirred and mixed by a stirrer. For 10 days to digest the sludge.
  • a tank having a capacity of 2 L (liter) was used as the treatment tank of the complete mixing tank.
  • the amount of gas per 1 liter (liter) of input sludge generated during the sludge digestion reaction was measured, and the sludge concentration (TS) and sludge digestibility were calculated.
  • Table 1 Moreover, it carried out similarly to Example 1, and measured the average particle diameter of the solid substance contained in the sludge after a process. The results are shown in Table 2.
  • Example 1 From the results of Table 1, the treatment time of the fixed bed 20 of Example 1 is 1/5 of the treatment time of the complete mixing type of Comparative Example 1, but the treatment of Example 1 is the same as that of Comparative Example 1. It was confirmed that the same amount of gas was generated as in the treatment, and the digestibility equivalent to that in the treatment of Comparative Example 1 was achieved. Moreover, in Example 1, by providing the complete mixing tank 30 in the subsequent stage of the fixed bed 20, the final gas generation amount becomes 3.8 L / L, which is significantly improved from 2.5 L / L in Comparative Example 1. Confirmed to do.
  • Example 1 From the results shown in Table 2, it was confirmed that in Example 1, the sludge passed through the fixed layer 28 and the solids contained in the sludge were being refined. Therefore, in Example 1, it is guessed that the digestive decomposition of the sludge 41 is accelerated
  • Example 2 In the treatment tank 21, sludge having a sludge concentration (TS) of 22,500 mg / L and an organic substance content (VTS) of 77% is mixed with 2 liters of sludge in a mixed sludge (mixed sludge) of primary sludge and surplus sludge from a sewage treatment plant. (Liter) was supplied. Further, a part of the sludge 41 was extracted from the upper layer of the fixed bed 20, and the extracted sludge 41 was supplied to the fixed layer 28, and the sludge 41 was digested in the same manner as in Example 1 in one day of digestion. .
  • TS sludge concentration
  • VTS organic substance content
  • Example 2 The same sludge as that treated in Example 2 is supplied into the treatment tank of the complete mixing tank, the temperature of the sludge in the treatment tank is adjusted to 35 ° C., and the sludge is uniformly stirred and mixed by a stirrer. For 10 days to digest the sludge. In the same manner as in Example 1, the amount of gas per 1 L (liter) of input sludge generated during the sludge digestion reaction was measured. The results are shown in Table 3.
  • an anaerobic digestion method that improves the digestion reaction rate of sludge and organic wastewater and prevents wear of the bioadhesive carrier.

Abstract

 この嫌気性消化方法は、下水もしくは廃液を沈殿操作して得られる沈殿汚泥、もしくは畜産廃棄物汚泥からなる汚泥、又は浮遊固形物を5000mg/L以上含んだ有機性排水を処理対象として、球状の多孔質体からなる生物付着担体(22)を用いた固定床(20)により生物学的処理する方法である。また、固定床(20)に供給された処理対象の一部を、固定床(20)の上層から抜き取り、その抜き取った処理対象を、固定床(20)の下層を構成する生物付着担体(22)からなる固定層(28)へ供給し、平均粒径が4.0mm以上の球状の多孔質体からなる生物付着担体(22)を用いることによって、生物付着担体(22)を流動させず、また固定層(28)を閉塞させることなく、処理対象を均一に分散させるように、固定床(20)において処理対象を循環させる。

Description

嫌気性消化方法
 本発明は、下水汚泥、産業廃棄物処理設備などから発生する汚泥、鶏糞などの畜産廃棄物の有機物を含有する汚泥、および、浮遊固形物(SS)を多量(5000mg/L以上)に含んだ有機性排水を固定床により嫌気性消化する嫌気性消化方法に関する。
 本願は、2010年8月6日に日本に出願された特願2010-177780号に基づき優先権を主張し、その内容をここに援用する。
 従来、嫌気性消化方法としては、消化槽に下水汚泥などを投入して嫌気性消化により減容処理する方法が知られている。この方法は、消化槽の内部にガス攪拌または機械攪拌の手段を備え、下水汚泥などに特別の前処理を施すことなくそのまま投入して、攪拌手段によって完全に混合させることにより嫌気性消化させる方法である。
 嫌気性消化方法の一例としては、汚泥を、有機物含有固形物を含む少なくとも流動性のある高濃度スラリーに調質して、調質後の汚泥を流動媒体とし、真比重2.0以上でかつ平均粒径2.0~5.0mmφである担体を流動させることにより形成される流動床を有する嫌気性消化槽で消化する方法が開示されている(例えば、特許文献1参照)。この方法は、消化槽内での閉塞や、担体の槽外への流出などを防止し、担体に固定したメタン菌と、汚泥との接触効率の向上を図るとともに、汚泥消化の反応を高めることを目的としている。
 嫌気性消化方法の他の例としては、特許文献1に開示されている方法に加えて、流動時間に対する流動停止時間の比を30以下とし、流動床を間欠流動運転する方法が開示されている(例えば、特許文献2参照)。この方法は、流動床法の長所である消化日数の大幅短縮を維持しつつ、流動に必要なエネルギーを削減することを目的としている。
 嫌気性消化方法の他の例としては、生物付着担体を用いる嫌気性流動床バイオリアクターにおいて、消化日数10日以内で1次処理することにより、嫌気性流動床内の浮遊汚泥にメタン菌群を流出させ、次いで、このメタン菌群を利用した浮遊汚泥型の嫌気性バイオリアクターを用いて2次処理する方法が開示されている(例えば、特許文献3参照)。この方法は、消化日数を短縮でき、高い反応効率が得られ、安価なプロセスを提供することを目的としている。
特許第2729623号公報 特許第2819315号公報 特許第2952301号公報
 しかしながら、上述した従来の嫌気性消化方法では、供給汚泥と生物付着担体の接触効率を向上させるために担体を流動させることから、必要なポンプ容量が大きくなり、処理コストが高くなる。
 また、担体が流動することによって、担体同士が接触し、担体の表面で生育したメタン菌が剥離してしまい、保持されるメタン菌の濃度が低下し、消化反応が妨げられる。
 さらに、担体同士が接触するため、担体自体が摩耗する。流動による担体の摩耗を低減するためには、担体に強度が求められるので、使用可能な担体が限定されてしまい、空隙率の大きな担体を用いることができない。結果として、処理効率が低下する。
 本発明は、上記事情に鑑みてなされたものであって、固定床の下層を構成する生物付着担体からなる固定層を閉塞させることなく、汚泥を均一に分散させることによって、汚泥と、生物付着担体に保持されたメタン菌との接触効率を向上させて、汚泥の消化反応速度を向上させるとともに、生物付着担体の摩耗を防止する嫌気性消化方法を提供することを目的とする。
 本発明によれば、嫌気性消化方法は、下水もしくは廃液を沈殿操作して得られる沈殿汚泥、もしくは畜産廃棄物汚泥からなる汚泥、又は浮遊固形物を5000mg/L以上含んだ有機性排水を処理対象として、球状の多孔質体からなる生物付着担体を用いた固定床により生物学的処理する方法である。また、前記固定床に供給された処理対象の一部を、前記固定床の上層から抜き取り、その抜き取った処理対象を、前記固定床の下層を構成する生物付着担体からなる固定層へ供給し、平均粒径が4.0mm以上の球状の多孔質体からなる生物付着担体を用いることによって、前記生物付着担体を流動させず、また前記固定層を閉塞させることなく、処理対象を均一に分散させるように、前記固定床において処理対象を循環させる。
 この場合、前記固定床の全容積に対する前記生物付着担体の充填率は30~70%であることが好ましい。
 また、前記生物付着担体は、真比重が1.5~4.0g/cmであることが好ましい。
 また、前記生物付着担体は、平均粒径が4.0mm~15.0mmであることが好ましい。
 また、前記生物付着担体は、空隙率が40~70%であることが好ましい。
 また、前記固定床において処理対象を循環させる速度は0.1m/hr~10m/hrであることが好ましい。
 また、前記固定床の上層にある処理対象を間欠的に攪拌することが好ましい。
 また、前記固定床から前記生物付着担体と接触した処理対象を流出させて、その処理対象を、後段の完全混合槽に導入し、前記完全混合槽において処理対象を均一に攪拌、混合することにより、処理対象を生物学的処理することが好ましい。
 また、前記固定床の処理対象供給管または前記固定層の下部に、前記固定床で発生した消化ガスまたは窒素ガスを供給し、前記消化ガスまたは前記窒素ガスにより前記生物付着担体を攪拌してもよい。
 この場合、前記処理対象供給管または前記固定層の下部に供給する、前記消化ガスまたは前記窒素ガスの供給速度は5~40m/hrであることが好ましい。
 本発明によれば、固定床の上層から処理対象の一部を抜き取り、その抜き取った処理対象を、固定床の下層を構成する生物付着担体からなる固定層へ供給することより、固定床において処理対象を循環させる。本発明では、平均粒径が4.0mm以上の球状の多孔質体からなる生物付着担体を用いることによって、生物付着担体を流動させず、また固定層を閉塞させることなく、処理対象を均一に分散させることができる。これにより、処理対象と、生物付着担体に保持されたメタン菌との接触効率が向上するとともに、固定層を通過する際に処理対象に含まれる固形物の微細化が進むことから、処理対象の消化反応速度が向上する。また、生物付着担体が流動しないため、生物付着担体におけるメタン菌の増殖が促進され、固定層を構成する生物付着担体に高濃度でメタン菌が保持される。そのため、固定床内の固定層にメタン菌が高濃度で保持され、固定床における消化反応速度が増加し、運転の高効率化が可能となる。また、生物付着担体にて増殖し高濃度に保持されたメタン菌の一部が剥離して、処理対象中に供給されるので、固定床の後段に完全混合槽を設けた場合、その完全混合槽においてもメタン発酵が維持され、生物学的処理が進行する。さらに、処理対象の流れによって生物付着担体が流動することがないので、生物付着担体同士が擦れ合って、生物付着担体が摩耗するのを防止できる。
本発明の実施形態における嫌気性消化方法に用いられる消化装置の概略構成図である。
 本発明の嫌気性消化方法の実施の形態について説明する。
 なお、この実施の形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。
 図1は、本発明の実施形態における嫌気性消化方法に用いられる嫌気性消化装置の概略構成図である。
 本実施形態の嫌気性消化装置10は、固定床20と、これに接続された完全混合槽30とから概略構成されている。
 固定床20は、汚泥(処理対象)を収容して消化処理を行う処理槽21と、生物付着担体22と、汚泥供給管23(処理対象供給管)と、汚泥流出管24と、汚泥循環管25と、循環ポンプ26と、攪拌機27と、ガス供給管29とから概略構成されている。
 完全混合槽30は、固定床20から流出させた汚泥を収容して消化処理を行う処理槽31と、汚泥排出管32と、攪拌機33とから概略構成されている。
 固定床20において、多数の球状の生物付着担体22が、処理槽21の下部に充填されている。また、生物付着担体22からなる固定層28が固定床20の下層を構成している。生物付着担体22には、嫌気条件で有機物からメタンを生成するメタン菌が保持される。
 汚泥供給管23は、処理槽21の外部から内部に汚泥を供給(導入)する。汚泥供給管23の先端に設けられたノズル23aは、固定層28内に配置されている。
 汚泥流出管24は、固定床20の上層から、その外部(詳細には、完全混合槽30)に汚泥を流出させる。汚泥流出管24は、処理槽21の上部を基端として完全混合槽30の処理槽31まで設けられている。
 汚泥循環管25は、固定床20の上層から汚泥の一部を抜き取り、その抜き取った汚泥を固定層28に均一に供給するために設けられる。汚泥循環管25は、処理槽21の上部を基端として汚泥供給管23まで設けられており、処理槽21の外部において汚泥供給管23に接続されている。なお、処理槽21の汚泥循環管25との接続箇所は、処理槽21の汚泥流出管24との接続箇所よりも、鉛直方向下側に位置している。また、本実施形態では、汚泥循環管25は汚泥供給管23に接続されているが、汚泥循環管25の先端が直接に固定層28内に配置されていてもよい。
 また、汚泥循環管25の途中には、固定床20の上層から汚泥の一部を抜き取り、その抜き取った汚泥を固定層28に供給するための循環ポンプ26が設けられている。
 攪拌機27は、固定床20の上層にある汚泥を攪拌する。攪拌機27は、処理槽21の上部に設けられている。攪拌機27の攪拌羽根27aは、処理槽21内の上部(固定床20の上層)に配置されている。
 ガス供給管29は途中で2つに分岐されている。2つに分岐されたガス供給管29の一方は、汚泥供給管23の途中に接続されている。2つに分岐されたガス供給管29の他方の先端には、ノズル29aが設けられている。ノズル29aは、固定層28内の下部に配置されている。
 ガス供給管29は、汚泥供給管23(詳細には、ノズル23a)または固定床20の下層を構成する固定層28の下部に、固定床20で発生した消化ガス、又は固定床20とは別体のガス供給源からの窒素ガスを供給する。これらのガスは、固定層28が汚泥に含まれる固形物などで閉塞し、汚泥循環管25によって循環された汚泥(循環汚泥)が固定層28内に均一に分散せずに偏流(チャンネリング)を起こし、固定床20の処理性能が低下した場合に、ガス供給管29から供給される。これらのガスの供給により、固定層28を構成する生物付着担体22が攪拌される。
 汚泥排出管32は、完全混合槽30の上層から、その外部に消化処理後の汚泥を排出させる。汚泥排出管32は、処理槽31の上部に設けられている。
 攪拌機33は、処理槽31内の汚泥を均一に攪拌する。攪拌機33は、処理槽31の上部に設けられている。攪拌機33の攪拌羽根33aは、処理槽31内の中央部に配置されている。
 次に、この嫌気性消化装置10を用いた嫌気性消化方法を説明する。
 まず、固定床20の外部から処理対象である汚泥41を、汚泥供給管23を介して、処理槽21内に供給する。汚泥41は、下水もしくは廃液を沈殿操作して得られる沈殿汚泥、又は畜産廃棄物汚泥からなる。
 汚泥供給管23を介して処理槽21内に供給される汚泥41は、汚泥供給管23の先端に設けられたノズル23aから、固定層28に均一に供給される。このとき、固定層28を構成する多数の生物付着担体22に直接、接触するように、ノズル23aから汚泥41が吐出される。
 処理槽21における汚泥41の消化では、処理槽21内の汚泥41の温度を、好ましくは30~38℃に調節する。ただし、汚泥41の温度は、50~55℃であってもよい。
 処理槽21内への供給汚泥量が所定量に達した後、固定床20の外部からの汚泥41の供給を停止する。固定床20に供給された汚泥41の一部を、固定床20の上層から汚泥循環管25を介して抜き取り、その抜き取った汚泥41を、汚泥循環管25および汚泥供給管23を介して、固定層28に均一に供給することにより、固定床20において汚泥41を循環させる。すなわち、処理槽21内の汚泥41を、固定層28、固定床20の上層、汚泥循環管25、汚泥供給管23、固定層28、の順に循環させる。これにより、汚泥41が固定層28を通過する。より詳細には、汚泥41が、固定層28を構成する多数の生物付着担体22の間を通過する。汚泥41が、多数の生物付着担体22の間を通過することにより、汚泥41に含まれる固形物が微細化される。
 ただし、固定床20における汚泥41の循環は、汚泥41の流れによって生物付着担体22が流動しないように、非常にゆっくり行われる。
 すなわち、汚泥41を、固定床20の上層から固定層28へ循環させる速度(空塔速度)は0.1m/hr~10m/hrであることが好ましく、より好ましくは0.12m/hr~3m/hrである。
 汚泥41を循環させる速度がこの範囲内であれば、本発明で用いられる粒径(詳細は後述する)の生物付着担体22においては、通常、汚泥41が固定層28を閉塞することがなく、汚泥41がほぼ均一に固定層28内に分散し、ほとんど偏流(チャンネリング)を起こすことがない。そのため、汚泥41と生物付着担体22に保持されたメタン菌との接触効率が向上し、汚泥41の消化効率が向上する。
 また、生物付着担体22が流動しないため、多数の生物付着担体22同士が接触することによるメタン菌の生物付着担体22からの剥離が防止される。そのため、生物付着担体22におけるメタン菌の増殖が促進され、生物付着担体22にメタン菌が高濃度に保持される。よって、メタン菌が高濃度に保持された固定層28における汚泥41の消化効率が向上する。
 さらに、汚泥41の流れによって生物付着担体22が流動することがないので、生物付着担体22同士が擦れ合って、生物付着担体22が摩耗することがない。生物付着担体22同士が接触しないので、担体に求められる強度の条件を緩和でき、空隙率の大きな担体を用いることができる。よって、担体により多くのメタン菌を保持することが可能となる。
 汚泥41を循環させる速度が0.1m/hr未満では、固定層28内を通過する汚泥41の流速が非常に遅くなる。そのため、固定層28内全体を汚泥41が通過せず、偏流(チャンネリング)を起こし、消化効率が低下する可能性がある。
 一方、汚泥41を循環させる速度が10m/hrを超えると、生物付着担体22から剥離するメタン菌量が増加し、メタン菌が高濃度に保持され難くなり、汚泥41の消化効率が低下する可能性がある。また、汚泥41の流れによって生物付着担体22が流動すると、生物付着担体22同士が擦れ合って、生物付着担体22が摩耗する可能性がある。さらに、循環ポンプ26の消費エネルギーが増大する。
 固定床20の全容積、すなわち、処理槽21の全容積に対する生物付着担体22の充填率は30~70%であることが好ましく、より好ましくは40~60%である。
 生物付着担体22の充填率がこの範囲内であれば、処理槽21内の汚泥41と生物付着担体22は、完全に処理槽21上部で分離され、汚泥循環管25内に生物付着担体22が流れ込むことが防止される。また、汚泥41と、生物付着担体22に保持されたメタン菌との接触効率が向上し、汚泥41の消化効率が向上する。
 生物付着担体22の充填率が30%未満では、処理槽21内の汚泥41と、生物付着担体22に保持されたメタン菌との接触効率が低下し、汚泥41の消化効率が低下する可能性がある。一方、生物付着担体22の充填率が70%を超えると、汚泥41と生物付着担体22が完全に処理槽21上部で分離されず、汚泥循環管25内に生物付着担体22が流れ込み、循環ポンプ26で生物付着担体22が破損する可能性がある。
 生物付着担体22としては、粘土系の材料を焼結してなる球状の多孔質体が用いられる。粘土系の材料としては、カオリン、ベントナイト、麦飯石などが挙げられる。
 生物付着担体22は、真比重が1.5~4.0g/cmであることが好ましく、より好ましくは1.6~2.7g/cmである。
 生物付着担体22の真比重がこの範囲内であれば、汚泥41の流れによって生物付着担体22が流動することがないので、生物付着担体22同士が擦れ合って、生物付着担体22が摩耗することがない。また、生物付着担体22の空隙率を所定の範囲にすることができるので、メタン菌を生物付着担体22に高濃度に保持させることができる。
 生物付着担体22は、処理槽21内の汚泥41と、完全に処理槽21の上部で分離され、汚泥循環管25内に生物付着担体22が流れ込むことが防止されるため、循環ポンプ26で生物付着担体22が破損されない。また、汚泥41と生物付着担体22が完全に処理槽21上部で分離され、完全混合槽30に生物付着担体22が流出しないので、処理槽21内にメタン菌を高濃度に保持させることができる。
 生物付着担体22の真比重が1.5g/cm未満では、汚泥41の流れによって生物付着担体22が流動し、生物付着担体22同士が擦れ合って、生物付着担体22が摩耗する可能性がある。また、生物付着担体22は、処理槽21内の汚泥41と、完全に処理槽21の上部で分離されず、汚泥循環管25内に生物付着担体22が流れ込み、循環ポンプ26で生物付着担体22が破損される可能性がある。一方、生物付着担体22の真比重が4g/cmを超えると、通常の粘土系の安価な材料では製作できず、経済面から実用的でなくなる。
 生物付着担体22は、平均粒径が4.0mm~15.0mmであることが好ましく、より好ましくは5.0mm~10.0mmである。
 生物付着担体22の平均粒径がこの範囲内であれば、汚泥41が固定層28を閉塞させることなく、汚泥41を固定層28に均一に分散させることができる。そのため、処理槽21内の汚泥41と、生物付着担体22に保持されたメタン菌との接触効率が向上し、汚泥41の消化効率が向上する。さらに、生物付着担体22は、処理槽21内の汚泥41と、完全に処理槽21の上部で分離され、汚泥循環管25内に生物付着担体22が流れ込むことが防止されるので、循環ポンプ26で生物付着担体22が破損されない。
 生物付着担体22の平均粒径が4.0mm未満では、汚泥41が固定層28を閉塞させ、ブリッジングが発生したり、汚泥41が固定層28で偏流(チャンネリング)を起こす可能性がある。また、生物付着担体22は、処理槽21内の汚泥41と、完全に処理槽21の上部で分離されず、汚泥循環管25内に生物付着担体22が回り込み、循環ポンプ26で生物付着担体22が破損される可能性がある。
 一方、生物付着担体22の平均粒径が15.0mmを超えると、生物付着担体22の表面積が小さくなり、処理槽21内の汚泥41と、生物付着担体22に保持されたメタン菌との接触効率が低下し、汚泥41の消化効率が低下する可能性がある。また、汚泥41に含まれる固形物が、生物付着担体22の間を通過しても、生物付着担体22間の間隔が大きすぎるために、その固形物の微細化が進まなくなる可能性がある。
 生物付着担体22は、空隙率が30~70%であることが好ましく、より好ましくは40~60%である。
 生物付着担体22の空隙率がこの範囲内であれば、生物付着担体22にメタン菌が高濃度に保持され、汚泥41の消化効率が向上する。
 生物付着担体22の空隙率が30%未満では、生物付着担体22にメタン菌が高濃度に保持され難くなり、汚泥41の消化効率が低下する可能性がある。一方、生物付着担体22の空隙率が70%を超えると、生物付着担体22の強度が低下し、時間の経過に伴って、生物付着担体22が摩耗したり、破損したりする可能性がある。
 処理槽21内において、汚泥41の循環は、通常、常時、連続的に行う。ただし、好ましくは、処理槽21内への外部からの汚泥の供給が短時間の場合は、汚泥41の循環を停止する。
 その理由は、処理槽21において、汚泥41が循環されている時、処理槽21内の汚泥41は非常に良く混合されており、完全混合状態に近い。この場合、新たに処理槽21内へ汚泥が供給されると、処理槽21の収容可能量は一定であるので、供給された汚泥量と等しい汚泥量が、処理槽21から流出し、完全混合槽30に供給される。この時、処理槽21における汚泥の滞留時間が非常に短いため、ほとんど処理されない汚泥の一部が処理槽21から流出する。これに対して、汚泥41の循環を停止すると、固定層28に供給された汚泥41が、処理槽21の上部へ上昇する速度が遅いため、汚泥41の攪拌が緩やかとなり、処理槽21では押し出し流れ(ピストン流れ)の状態になる。そのため、処理槽21で処理された汚泥のみが処理槽21の上部から流出するので、ほとんど処理されていない汚泥の流出が防止され、処理効率を向上できる。
 また、汚泥の消化処理の途中で、攪拌機27によって、固定床20の上層にある汚泥41を間欠的に攪拌することが好ましい。これにより、固定床20の上層に形成されたスカムと呼ばれる、スポンジケーキ状の汚泥を破壊でき、汚泥41の消化によって発生したガスを抜けやすくすることができる。
 攪拌機27により汚泥41を攪拌する頻度は、5分~1時間毎であることが好ましい。
 また、1回当たりの攪拌時間は、1分~5分であることが好ましい。さらに、処理槽21への外部からの汚泥の供給中に、汚泥41の循環が停止されている場合には、処理槽21の押し出し流れを維持するために、攪拌機27による攪拌を停止することが好ましい。
 また、固定床20における汚泥41の循環、すなわち、汚泥41の消化処理が進行した後、固定床20から汚泥41を流出させて、その汚泥41を、完全混合槽30の処理槽31内に導入させる。そして、攪拌機33によって、処理槽31内の汚泥42を均一に攪拌、混合することにより、処理槽21内の固定層28に高濃度に保持されたメタン菌から一部剥離したメタン菌によって、汚泥42を生物学的処理する。
 処理槽31における汚泥42の消化では、処理槽31内の汚泥42の温度を、好ましくは30~38℃に調節する。ただし、ただし、汚泥42の温度は、50~55℃であってもよい。
 処理槽31内において、汚泥42を常時、均一に攪拌する。
 この実施形態の嫌気性消化方法によれば、固定床20の上層から汚泥41の一部を抜き取り、その抜き取った汚泥41を、固定床20の下層を構成する生物付着担体22からなる固定層28へ均一に供給し、固定床20において汚泥41を循環させる。そのため、汚泥41と、生物付着担体22に高濃度に保持されたメタン菌との接触効率が向上するとともに、固定層28を通過する際に汚泥41に含まれる固形物の微細化が進むので、汚泥41の消化反応速度が向上する。
 また、生物付着担体22として、上記の真比重、平均粒径、空隙率を有するものを用いることにより、固定層28を閉塞させることなく、汚泥41を固定層28に均一に分散させることができる。そのため、生物付着担体22に高濃度のメタン菌を保持することができ、メタン発酵の律速となっているメタン菌濃度が増加し、汚泥41の消化効率が向上し、ひいては、汚泥41の消化反応速度が向上する。したがって、従来、汚泥の消化に4~30日要していたのに対して、本実施形態では消化時間を1~2日に短縮することができる。これにより、消化装置の設備費を大幅に削減することができる。
 また、汚泥41を非常にゆっくりと循環させ、さらに生物付着担体22を流動させる必要がないので、循環ポンプ26の容量を従来の1/50~1/100にすることができる。そのため、循環ポンプのイニシャルコスト、ランニングコストを大幅に削減することができる。
 また、汚泥41を非常にゆっくりと循環させ、汚泥41の流動によって生物付着担体22が流動することがないので、生物付着担体22同士が擦れ合って、生物付着担体22が摩耗するのを防止できる。
 さらに、固定床20にて処理した汚泥41を、完全混合槽30で処理することにより、より効率的に消化を行うことができる。
 なお、本実施形態では処理対象として、下水もしくは廃液を沈殿操作して得られる沈殿汚泥、又は畜産廃棄物汚泥からなる汚泥を用いたが、これらに限定されるものではない。その他の汚泥、又は浮遊固形物(SS)を5000mg/L以上含んだ有機性排水を、本実施形態の嫌気性消化方法を用いて処理してもよい。
 以下、実施例および比較例により本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。
「実施例1」
 図1に示した消化装置10と同様の装置を用いて、汚泥の消化を行った。
 固定床20の処理槽21としては、容量が2L(リットル)の槽を用いた。
 固定床20における生物付着担体22としては、粘土系の材料を焼結し、真比重が1.7g/cm、粒径が約10mm、空隙率が約50%の球状の多孔性セラミックスボールを用いた。
 固定床20において、処理槽21の全容積に対する生物付着担体22の充填率を約50%とした。
 処理槽21に、下水処理場の初沈汚泥と余剰汚泥の混合汚泥(混生汚泥)で、汚泥濃度(TS)18,500mg/L、有機物含有量(VTS)74%の汚泥を、1日当たり1L(リットル)供給した。また、処理槽21内の汚泥41の温度を35℃に調節し、固定床20の上層から汚泥41の一部を抜き取り、その抜き取った汚泥41を固定層28に供給し、消化日数2日で、汚泥41の消化を行った。
 また、処理槽21内において、汚泥41を循環させる速度を、4L/hrとした。
 シナガワ社製の湿式ガスメーターにより、汚泥41の消化反応中に発生した、投入汚泥1L(リットル)当たりのガスの量を測定し、汚泥41の汚泥濃度(TS)、汚泥41の消化率を算出した。結果を表1に示す。
 また、湿式のレーザ回折散乱式粒径分布測定法により、固定床20での処理後の汚泥41に含まれる固形物の平均粒径を測定した。結果を表2に示す。
 さらに、固定床20における処理が進行した汚泥41を、完全混合槽30の処理槽31内に導入し、処理槽31内の汚泥42の温度を35℃に調節し、攪拌機33によって、汚泥42を均一に攪拌、混合することを2日間行い、汚泥42の消化を行った。
 完全混合槽30の処理槽31としては、容量が2L(リットル)の槽を用いた。
 シナガワ社製の湿式ガスメーターにより、汚泥42の消化反応中に発生した、投入汚泥1L(リットル)当たりのガスの量を測定し、汚泥42の汚泥濃度(TS)、汚泥42の消化率を算出した。結果を表1に示す。
「比較例1」
 実施例1で処理したのと同様の汚泥を、完全混合槽の処理槽内に供給し、処理槽内の汚泥の温度を35℃に調節し、攪拌機によって、汚泥を均一に攪拌、混合することを10日間行い、汚泥の消化を行った。
 完全混合槽の処理槽としては、容量が2L(リットル)の槽を用いた。
実施例1と同様にして、汚泥の消化反応中に発生した、投入汚泥1L(リットル)当たりのガスの量を測定し、汚泥の汚泥濃度(TS)、汚泥の消化率を算出した。結果を表1に示す。
 また、実施例1と同様にして、処理後の汚泥に含まれる固形物の平均粒径を測定した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1の結果から、実施例1の固定床20における処理時間は、比較例1の完全混合型の処理時間の1/5であるにもかかわらず、実施例1の処理では、比較例1の処理と同等量のガスが発生し、比較例1の処理と同等の消化率が達成されたことが確認された。
 また、実施例1では、固定床20の後段に完全混合槽30を設けることにより、最終的なガス発生量が3.8L/Lとなり、比較例1の2.5L/Lよりも大幅に向上することが確認された。
 表2の結果から、実施例1では、汚泥が固定層28を通過することによって、汚泥に含まれる固形物の微細化が進んでいることが確認された。したがって、実施例1では、汚泥41の消化分解が促進されていると推察される。
「実施例2」
 処理槽21に、下水処理場の初沈汚泥と余剰汚泥の混合汚泥(混生汚泥)で、汚泥濃度(TS)22,500mg/L、有機物含有量(VTS)77%の汚泥を、1日当たり2L(リットル)供給した。また、固定床20の上層から汚泥41の一部を抜き取り、その抜き取った汚泥41を固定層28に供給し、消化日数1日で、実施例1と同様にして、汚泥41の消化を行った。
 実施例1と同様にして、汚泥の消化反応中に発生した、投入汚泥1L(リットル)当たりのガスの量を測定し、汚泥の汚泥濃度(TS)、汚泥の消化率を算出した。結果を表3に示す。
「比較例2」
 実施例2で処理したのと同様の汚泥を、完全混合槽の処理槽内に供給し、処理槽内の汚泥の温度を35℃に調節し、攪拌機によって、汚泥を均一に攪拌、混合することを10日間行い、汚泥の消化を行った。
 実施例1と同様にして、汚泥の消化反応中に発生した、投入汚泥1L(リットル)当たりのガスの量を測定した。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3の結果から、実施例2の固定床20における処理時間は、比較例1の完全混合型の処理時間の1/10であるにもかかわらず、固定床20におけるガス発生量は3.4L/Lとなり、比較例2におけるガス発生量4.7L/Lの72%であった。また、固定床20の後段に設けた完全混合槽30で汚泥42の処理を行うことにより、最終的なガス発生量が4.7L/Lとなり、比較例2の4.7L/Lと同等となることが確認された。
 また、比較例2の方法による限界消化日数(最短の消化日数)は5日程度である。これに対して、実施例2の方法では、反応時間が1日であっても、生物付着担体22に保持されたメタン菌によって、良好なメタン発酵を維持できることが判明した。
 本発明によれば、汚泥や有機性排水の消化反応速度を向上させるとともに、生物付着担体の摩耗を防止する嫌気性消化方法を提供することができる。
10・・・消化装置
20・・・固定床
21・・・処理槽
22・・・生物付着担体
23・・・汚泥供給管
24・・・汚泥流出管
25・・・汚泥循環管
26・・・循環ポンプ
27・・・攪拌機
28・・・固定層
29・・・ガス供給管
30・・・完全混合槽
31・・・処理槽
32・・・汚泥排出管
33・・・攪拌機
41,42・・・汚泥。

Claims (10)

  1.  下水もしくは廃液を沈殿操作して得られる沈殿汚泥、もしくは畜産廃棄物汚泥からなる汚泥、又は浮遊固形物を5000mg/L以上含んだ有機性排水を処理対象として、球状の多孔質体からなる生物付着担体を用いた固定床により生物学的処理する嫌気性消化方法であって、
     前記固定床に供給された処理対象の一部を、前記固定床の上層から抜き取り、その抜き取った処理対象を、前記固定床の下層を構成する生物付着担体からなる固定層へ供給し、平均粒径が4.0mm以上の球状の多孔質体からなる生物付着担体を用いることによって、前記生物付着担体を流動させず、また前記固定層を閉塞させることなく、処理対象を均一に分散させるように、前記固定床において処理対象を循環させる嫌気性消化方法。
  2.  前記固定床の全容積に対する前記生物付着担体の充填率は30~70%である請求項1に記載の嫌気性消化方法。
  3.  前記生物付着担体は、真比重が1.5~4.0g/cmである請求項1または2に記載の嫌気性消化方法。
  4.  前記生物付着担体は、平均粒径が4.0mm~15.0mmである請求項1~3のいずれか1項に記載の嫌気性消化方法。
  5.  前記生物付着担体は、空隙率が40~70%である請求項1~4のいずれか1項に記載の嫌気性消化方法。
  6.  前記固定床において処理対象を循環させる速度は0.1m/hr~10m/hrである請求項1~5のいずれか1項に記載の嫌気性消化方法。
  7.  前記固定床の上層にある処理対象を間欠的に攪拌する請求項1~6のいずれか1項に記載の嫌気性消化方法。
  8.  前記固定床から前記生物付着担体と接触した処理対象を流出させて、その処理対象を、後段の完全混合槽に導入し、前記完全混合槽において処理対象を均一に攪拌、混合することにより、処理対象を生物学的処理する請求項1~7のいずれか1項に記載の嫌気性消化方法。
  9.  前記固定床の処理対象供給管または前記固定層の下部に、前記固定床で発生した消化ガスまたは窒素ガスを供給し、前記消化ガスまたは前記窒素ガスにより前記生物付着担体を攪拌する請求項1~8のいずれか1項に記載の嫌気性消化方法。
  10.  前記処理対象供給管または前記固定層の下部に供給する、前記消化ガスまたは前記窒素ガスの供給速度は5~40m/hrである請求項9に記載の嫌気性消化方法。
PCT/JP2011/066611 2010-08-06 2011-07-21 嫌気性消化方法 WO2012017834A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR20137003827A KR20130132746A (ko) 2010-08-06 2011-07-21 혐기성 소화 방법
CN201180038197.2A CN103097308B (zh) 2010-08-06 2011-07-21 厌氧性消化方法
US13/813,281 US20130130357A1 (en) 2010-08-06 2011-07-21 Anaerobic Digestion Method
EP11814464.1A EP2602230A4 (en) 2010-08-06 2011-07-21 ANAEROBIC DIGESTION METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010177780A JP5620188B2 (ja) 2010-08-06 2010-08-06 嫌気性消化方法
JP2010-177780 2010-08-06

Publications (1)

Publication Number Publication Date
WO2012017834A1 true WO2012017834A1 (ja) 2012-02-09

Family

ID=45559340

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/066611 WO2012017834A1 (ja) 2010-08-06 2011-07-21 嫌気性消化方法

Country Status (6)

Country Link
US (1) US20130130357A1 (ja)
EP (1) EP2602230A4 (ja)
JP (1) JP5620188B2 (ja)
KR (1) KR20130132746A (ja)
CN (1) CN103097308B (ja)
WO (1) WO2012017834A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103304028A (zh) * 2013-06-26 2013-09-18 哈尔滨工业大学 一种厌氧处理的氮气搅拌方法
US11802065B2 (en) * 2016-08-31 2023-10-31 Conly L. Hansen Induced sludge bed anaerobic reactor system
CN112321114B (zh) * 2020-10-30 2021-08-27 上海市政工程设计研究总院(集团)有限公司 厌氧消化池及污水处理厂

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61111195A (ja) * 1984-11-02 1986-05-29 Kurita Water Ind Ltd 汚水の嫌気性処理装置
JPS61111196A (ja) * 1984-11-02 1986-05-29 Kurita Water Ind Ltd 汚水の嫌気性処理装置
JPS6233596A (ja) * 1985-08-06 1987-02-13 Kubota Ltd メタン発酵装置
JP2729623B2 (ja) 1988-03-03 1998-03-18 建設省土木研究所長 嫌気性流動床消化方法
JP2819315B2 (ja) 1989-08-16 1998-10-30 建設省土木研究所長 嫌気性流動床消化方法
JP2952301B2 (ja) 1990-11-22 1999-09-27 建設省土木研究所長 汚泥嫌気性消化方法
JP2002079299A (ja) * 1999-10-19 2002-03-19 Mitsubishi Heavy Ind Ltd 含アンモニア廃棄物の処理方法
JP2002248498A (ja) * 2001-02-26 2002-09-03 Katayama Chem Works Co Ltd 余剰汚泥の処理方法
JP2003260446A (ja) * 2002-03-11 2003-09-16 Fuji Electric Co Ltd 有機性廃棄物のメタン発酵処理方法及び処理装置
JP2005218895A (ja) * 2004-02-03 2005-08-18 Babcock Hitachi Kk 固定床型メタン発酵システム
JP2005218898A (ja) * 2004-02-03 2005-08-18 Babcock Hitachi Kk メタン発酵システム
JP2005270048A (ja) * 2004-03-26 2005-10-06 Nagao Kk 微生物担体及びその製造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62166889A (ja) * 1986-01-20 1987-07-23 Agency Of Ind Science & Technol 固定化微生物、該固定化微生物の製法及び該固定化微生物を用いる水処理方法
DD266088A1 (de) * 1987-11-18 1989-03-22 Dresden Komplette Chemieanlag Verfahren zur selbsttaetigen reaktorumwaelzung
JPH01262995A (ja) * 1988-04-14 1989-10-19 Toshiba Corp 固定床式廃水処理装置
JPH02273594A (ja) * 1989-04-14 1990-11-08 Toto Ltd 微生物固定化用担体
US5217616A (en) * 1991-12-06 1993-06-08 Allied-Signal Inc. Process and apparatus for removal of organic pollutants from waste water
JP3323040B2 (ja) * 1995-09-06 2002-09-09 シャープ株式会社 超純水製造装置
JPH09220089A (ja) * 1996-02-19 1997-08-26 Shinagawa Refract Co Ltd セラミック質微生物固定化担体
JP5095882B2 (ja) * 1998-05-08 2012-12-12 日鉄環境エンジニアリング株式会社 廃硝酸の処理方法
JPH11319880A (ja) * 1998-05-14 1999-11-24 Kankyo Eng Co Ltd 有機性排水の生物学的処理方法
JP2000102798A (ja) * 1998-09-29 2000-04-11 Yamakawa Sangyo Kk 廃水の処理方法
FR2856676B1 (fr) * 2003-06-24 2006-12-22 Eparco Assainissement Procede de digestion anaerobie de boues biologiques issues de traitements des eaux usees et digesteur pour la mise en oeuvre du procede.
JP4368171B2 (ja) * 2003-09-08 2009-11-18 鹿島建設株式会社 有機物含有液の嫌気処理方法及び装置
JP4025733B2 (ja) * 2004-02-03 2007-12-26 バブコック日立株式会社 メタン発酵装置
JP2006255545A (ja) * 2005-03-16 2006-09-28 Fuji Electric Holdings Co Ltd メタン発酵処理方法
JP4979614B2 (ja) * 2008-02-27 2012-07-18 大阪瓦斯株式会社 ディスポーザー排水の処理方法及び処理装置
CN101643274B (zh) * 2009-09-11 2011-06-22 华南理工大学 一种复合折板厌氧生物反应器

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61111195A (ja) * 1984-11-02 1986-05-29 Kurita Water Ind Ltd 汚水の嫌気性処理装置
JPS61111196A (ja) * 1984-11-02 1986-05-29 Kurita Water Ind Ltd 汚水の嫌気性処理装置
JPS6233596A (ja) * 1985-08-06 1987-02-13 Kubota Ltd メタン発酵装置
JP2729623B2 (ja) 1988-03-03 1998-03-18 建設省土木研究所長 嫌気性流動床消化方法
JP2819315B2 (ja) 1989-08-16 1998-10-30 建設省土木研究所長 嫌気性流動床消化方法
JP2952301B2 (ja) 1990-11-22 1999-09-27 建設省土木研究所長 汚泥嫌気性消化方法
JP2002079299A (ja) * 1999-10-19 2002-03-19 Mitsubishi Heavy Ind Ltd 含アンモニア廃棄物の処理方法
JP2002248498A (ja) * 2001-02-26 2002-09-03 Katayama Chem Works Co Ltd 余剰汚泥の処理方法
JP2003260446A (ja) * 2002-03-11 2003-09-16 Fuji Electric Co Ltd 有機性廃棄物のメタン発酵処理方法及び処理装置
JP2005218895A (ja) * 2004-02-03 2005-08-18 Babcock Hitachi Kk 固定床型メタン発酵システム
JP2005218898A (ja) * 2004-02-03 2005-08-18 Babcock Hitachi Kk メタン発酵システム
JP2005270048A (ja) * 2004-03-26 2005-10-06 Nagao Kk 微生物担体及びその製造方法

Also Published As

Publication number Publication date
KR20130132746A (ko) 2013-12-05
JP2012035197A (ja) 2012-02-23
CN103097308B (zh) 2015-08-12
CN103097308A (zh) 2013-05-08
EP2602230A4 (en) 2015-09-09
EP2602230A1 (en) 2013-06-12
JP5620188B2 (ja) 2014-11-05
US20130130357A1 (en) 2013-05-23

Similar Documents

Publication Publication Date Title
KR102021289B1 (ko) 하수 처리장치 및 방법
CN107108293B (zh) 含氮废水的脱氮方法以及脱氮装置
JP5597002B2 (ja) 排水処理装置及び排水処理方法
JP5685902B2 (ja) 有機性排水の処理方法
WO2012017834A1 (ja) 嫌気性消化方法
JP2015128747A (ja) 水処理装置及び水処理方法
JP6497871B2 (ja) 油脂含有排水の処理方法及び装置
JP6821498B2 (ja) 窒素含有排水処理システムの立ち上げ方法
JP2013230413A (ja) 窒素含有排水の処理方法および窒素含有排水の処理装置
JP2006239572A (ja) 亜硝酸含有液の酸化処理方法
JP2001009498A (ja) 廃水の処理方法および処理装置
JP2015131271A (ja) 油脂含有排水の処理方法および処理装置
JP5095882B2 (ja) 廃硝酸の処理方法
KR101272267B1 (ko) 복합미생물을 이용한 슬러지 감량방법 및 감량장치
JP6852214B2 (ja) 下水処理システム
JPH10192888A (ja) 廃水の浄化方法および装置
JP2008188503A (ja) 排水処理装置及び排水処理方法
JP2006320777A (ja) 排水処理装置
JP4796852B2 (ja) 排水処理装置
JP2004041981A (ja) 有機性排水の処理方法およびそのシステム
JP2004275820A (ja) 排水処理装置
JPS6227095A (ja) 廃水の処理方法
JP2006305455A (ja) 廃水処理システム
JP4786678B2 (ja) 有機性排水の処理方法
KR20100004481A (ko) 메탄발효조를 이용하는 유기물의 부식화에 의한 폐수의처리방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180038197.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11814464

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13813281

Country of ref document: US

Ref document number: 2011814464

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137003827

Country of ref document: KR

Kind code of ref document: A