WO2012017635A1 - トナー用バインダー樹脂、トナーおよびその製造方法 - Google Patents

トナー用バインダー樹脂、トナーおよびその製造方法 Download PDF

Info

Publication number
WO2012017635A1
WO2012017635A1 PCT/JP2011/004323 JP2011004323W WO2012017635A1 WO 2012017635 A1 WO2012017635 A1 WO 2012017635A1 JP 2011004323 W JP2011004323 W JP 2011004323W WO 2012017635 A1 WO2012017635 A1 WO 2012017635A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
polyester resin
toner
mass
crystallinity
Prior art date
Application number
PCT/JP2011/004323
Other languages
English (en)
French (fr)
Inventor
松岡 洋史
武井 宏之
Iii世 リンウッド ブラントン ミュア
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to CN201180038672.6A priority Critical patent/CN103069344B/zh
Priority to US13/813,427 priority patent/US8679717B2/en
Priority to CA2807017A priority patent/CA2807017C/en
Priority to JP2012527587A priority patent/JP5248712B2/ja
Priority to KR1020137005508A priority patent/KR101293412B1/ko
Priority to EP11814272.8A priority patent/EP2602664B1/en
Publication of WO2012017635A1 publication Critical patent/WO2012017635A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/087Binders for toner particles
    • G03G9/08702Binders for toner particles comprising macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • G03G9/0874Polymers comprising hetero rings in the side chains
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/087Binders for toner particles
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/0802Preparation methods
    • G03G9/081Preparation methods by mixing the toner components in a liquefied state; melt kneading; reactive mixing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/0825Developers with toner particles characterised by their structure; characterised by non-homogenuous distribution of components
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/087Binders for toner particles
    • G03G9/08702Binders for toner particles comprising macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • G03G9/08706Polymers of alkenyl-aromatic compounds
    • G03G9/08708Copolymers of styrene
    • G03G9/08711Copolymers of styrene with esters of acrylic or methacrylic acid
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/087Binders for toner particles
    • G03G9/08702Binders for toner particles comprising macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • G03G9/08722Polyvinylalcohols; Polyallylalcohols; Polyvinylethers; Polyvinylaldehydes; Polyvinylketones; Polyvinylketals
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/087Binders for toner particles
    • G03G9/08702Binders for toner particles comprising macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • G03G9/08724Polyvinylesters
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/087Binders for toner particles
    • G03G9/08742Binders for toner particles comprising macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • G03G9/08755Polyesters
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/087Binders for toner particles
    • G03G9/08784Macromolecular material not specially provided for in a single one of groups G03G9/08702 - G03G9/08775
    • G03G9/08795Macromolecular material not specially provided for in a single one of groups G03G9/08702 - G03G9/08775 characterised by their chemical properties, e.g. acidity, molecular weight, sensitivity to reactants
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/087Binders for toner particles
    • G03G9/08784Macromolecular material not specially provided for in a single one of groups G03G9/08702 - G03G9/08775
    • G03G9/08797Macromolecular material not specially provided for in a single one of groups G03G9/08702 - G03G9/08775 characterised by their physical properties, e.g. viscosity, solubility, melting temperature, softening temperature, glass transition temperature
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/097Plasticisers; Charge controlling agents
    • G03G9/09783Organo-metallic compounds
    • G03G9/09791Metallic soaps of higher carboxylic acids

Definitions

  • the present invention relates to a binder resin for toner, a toner and a method for producing the same.
  • electrophotography in a PPC (Plain Paper Copy) copier or printer that transfers a toner image formed on a photoreceptor onto a recording paper is performed in the following procedure.
  • an electrostatic latent image is formed on the photoconductor.
  • the latent image is developed using toner, and after the toner image is transferred onto a fixing sheet such as paper, it is heat-fixed with a heat roll or film.
  • fixing is performed under heating in a state where the heat roll or film and the toner on the fixing sheet are in direct contact with each other, so that the method is quick and the thermal efficiency is very good. Therefore, the fixing efficiency is very good.
  • this heat-fixing method has good thermal efficiency but has a problem of so-called offset phenomenon because the toner is brought into contact with the heat roll or film surface in a molten state.
  • so-called low-temperature fixing performance for fixing toner at a low temperature has been demanded.
  • Patent Documents 1 to 4 a resin in which a high molecular weight resin and a low molecular weight resin are mixed and used and a high molecular weight portion is crosslinked is known (for example, Patent Documents 1 to 4). 2).
  • these resins could not obtain sufficient low-temperature fixing performance.
  • Patent Documents 3 and 4 a resin obtained by adding a different resin such as crystalline polyester to a base resin such as styrene acrylic resin is disclosed (for example, Patent Documents 3 and 4).
  • Patent Documents 3 and 4 a resin obtained by adding a different resin such as crystalline polyester to a base resin such as styrene acrylic resin is disclosed (for example, Patent Documents 3 and 4).
  • the dispersibility of the crystalline polyester is low only by adding it, and the crystallized polyester is easily detached when the toner is used.
  • the crystallinity of the crystalline polyester is increased unless the compatibility between the crystalline polyester resin and the amorphous resin is controlled. As a result, satisfactory storage stability was not obtained.
  • Japanese Patent No. 3532033 Japanese Patent No. 3794762 Japanese Patent No. 2931899 JP 2006-171364 A Japanese Patent No. 3971228 Japanese Patent No. 2872347 JP 2008-102390 A JP 2004-309517 A JP 2007-127828 A JP 2007-71993 A
  • the present invention is as follows.
  • Vinyl resin (A) An amorphous polyester resin (SN); A saturated polyester resin (SC) having crystallinity; A metal component (M) including at least one selected from the group consisting of Zn, Ca, Mg, Al, and Ba (excluding a metal oxide),
  • the content of the vinyl resin (A) is 100% by mass of the total content of the vinyl resin (A), the amorphous polyester resin (SN), and the saturated polyester resin (SC) having crystallinity. 65 mass% or more and 95 mass% or less
  • the vinyl resin (A) is composed of a carboxyl group-containing vinyl resin (C), a glycidyl group-containing vinyl resin (E), and a reaction product thereof.
  • the ester group concentration of the saturated polyester resin (SC) having crystallinity is 10.0 mmol / g or more and 13.5 mmol / g or less
  • the amorphous polyester resin (SN) is dispersed in islands, and the saturated polyester has the crystallinity in the island phase of the amorphous polyester resin (SN).
  • Resin (SC) is included, A binder resin for toner, wherein the metal component (M) is contained in at least the saturated polyester resin (SC) having crystallinity.
  • the glass transition temperature is 50 ° C. or higher and 65 ° C. or lower.
  • the tetrahydrofuran soluble component has a main peak in a region having a molecular weight of 0.3 ⁇ 10 4 or more and less than 2.0 ⁇ 10 4
  • the content of the amorphous polyester resin (SN) is 15% by mass with respect to 100% by mass of the total content of the amorphous polyester resin (SN) and the saturated polyester resin (SC) having crystallinity.
  • the binder resin for toner according to any one of [1] to [5] which is not less than 70% and not more than 70% by mass.
  • the amorphous polyester resin (SN) is The ester group concentration is 3.0 mmol / g or more and 7.0 mmol / g or less, The acid value is 25 mgKOH / g or more and 70 mgKOH / g or less, From [1] to [6], the tetrahydrofuran-soluble component has a main peak in a region having a molecular weight of 0.3 ⁇ 10 4 or more and less than 1.0 ⁇ 10 4 in the molecular weight distribution measured by gel permeation chromatography.
  • the binder resin for toner according to any one of the above.
  • phase of the amorphous polyester resin (SN) includes the phase of the saturated polyester resin (SC) having crystallinity.
  • Binder resin [9] The binder resin for toner according to any one of [1] to [8], wherein the metal component (M) is derived from a fatty acid metal salt represented by the following general formula.
  • a toner binder resin, a colorant, and a release agent The toner binder resin according to any one of [1] to [9], At least one of the release agents has a melting point of ⁇ 40 ° C. or more and 5 ° C. or less with respect to the melting point of the saturated polyester resin (SC) having crystallinity, A toner in which the dispersion diameter of the island phase of the amorphous polyester resin (SN) in the vinyl resin (A) is 2.0 ⁇ m or less.
  • the glass transition temperature is 50 ° C. or higher and 65 ° C.
  • the tetrahydrofuran-soluble component has a main peak in a region having a molecular weight of 0.3 ⁇ 10 4 or more and less than 2 ⁇ 10 4 ,
  • a binder resin for toner and a toner excellent in low-temperature fixability, offset resistance, and storage stability are provided.
  • polymerization is sometimes used in the meaning of copolymerization
  • polymer is sometimes used in the meaning of copolymer.
  • represents that an upper limit value and a lower limit value are included unless otherwise specified.
  • the binder resin for toner of the present invention contains a vinyl resin (A), an amorphous polyester resin (SN), and a saturated polyester resin (SC) having crystallinity, and the content of the vinyl resin (A) is , 65% by mass to 95% by mass with respect to 100% by mass of the total content of vinyl resin (A), amorphous polyester resin (SN) and crystalline saturated polyester resin (SC),
  • the vinyl resin (A) is composed of a carboxyl group-containing vinyl resin (C), a glycidyl group-containing vinyl resin (E), and a reaction product thereof, and the ester group concentration of the saturated polyester resin (SC) having crystallinity Is 10.0 mmol / g or more and 13.5 mmol / g or less, the amorphous polyester resin (SN) is dispersed in an island shape in the vinyl resin (A), and A metal component containing at least one selected from the group consisting of Zn, Ca, Mg, Al and Ba, wherein a saturated polyester resin (SC
  • the vinyl resin (A) according to the present invention includes a carboxyl group-containing vinyl resin (C), a glycidyl group-containing vinyl resin (E), and a reaction product thereof.
  • C carboxyl group-containing vinyl resin
  • E glycidyl group-containing vinyl resin
  • reaction product thereof a reaction product thereof.
  • the ester group concentration of the vinyl resin (A) is preferably 0.6 mmol / g or more and 2.9 mmol / g or less, more preferably 1.0 mmol / g or more and 2.5 mmol / g or less.
  • the ester group concentration of the vinyl resin (A) is derived from the ester group contained in the (meth) acrylic monomer or the like contained in the vinyl resin (A), and is based on the monomer composition at the time of producing the vinyl resin (A). Can be calculated. Moreover, the monomer composition of the vinyl resin (A) can be analyzed by pyrolysis GC (pyrolysis gas chromatography) to calculate the ester group concentration.
  • the acid value of the carboxyl group-containing vinyl resin (C) according to the present invention is preferably 3 to 25 mgKOH / g, more preferably 3 to 20 mgKOH / g, still more preferably 4 to 18 mgKOH / g.
  • the acid value of the carboxyl group-containing vinyl resin (C) is lower than 3 mgKOH / g, the reaction with the glycidyl group-containing vinyl resin (E) described later is difficult to proceed, and as a result, the offset resistance is reduced when the toner is used. May occur easily.
  • the acid value of the carboxyl group-containing vinyl resin (C) exceeds 25 mgKOH / g, the reaction with the glycidyl group-containing vinyl resin (E) proceeds too much, and the carboxyl group-containing vinyl resin (C) and the glycidyl group-containing vinyl resin
  • the crosslinking component obtained by the reaction (E) may be phase-separated from the non-crosslinking component too much, resulting in a decrease in offset resistance that is considered to be caused by the crosslinking component having no effect on the offset resistance.
  • the acid value is the number of mg of potassium hydroxide necessary for neutralizing 1 g of the resin.
  • the carboxyl group-containing vinyl resin (C) has a tetrahydrofuran (hereinafter referred to as THF) soluble content in a region having a molecular weight of 10 ⁇ 10 4 or more and less than 35 ⁇ 10 4 in the chromatogram of gel permeation chromatography (hereinafter referred to as GPC).
  • THF tetrahydrofuran
  • GPC gel permeation chromatography
  • the peak here refers to the main peak (the peak having the highest intensity among the peaks).
  • the ratio (H / L) is the toner fixability, offset resistance, and durability. From the viewpoint of the overall balance such as, it is preferably 10/90 to 50/50, and more preferably the ratio (H / L) is 10/90 to 45/55.
  • the content of the high molecular weight vinyl resin (H) is 100% by mass of the total content of the high molecular weight vinyl resin (H) and the low molecular weight vinyl resin (L). If it is lower than 10% by mass, the durability and anti-offset property may be deteriorated when the toner is used. On the other hand, if the content of the high molecular weight vinyl resin (H) exceeds 50% by mass, the toner fixability may deteriorate.
  • the carboxyl group-containing vinyl resin (C) in addition to the carboxyl group-containing monomers, styrene monomers and acrylic monomers (methacrylic monomers are also included.
  • the styrene monomer is a monomer having a styrene skeleton
  • the acrylic monomer is a monomer having an acrylic skeleton
  • examples of the styrenic monomer used in the present invention include styrene, p-methylstyrene, m-methylstyrene, o-methylstyrene, p-methoxystyrene, p-phenylstyrene, and p-chlorostyrene.
  • acrylic monomer used in the present invention examples include methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, octyl acrylate, cyclohexyl acrylate, stearyl acrylate, benzyl acrylate, and acrylic acid.
  • Acrylic esters such as furfuryl, hydroxyethyl acrylate, hydroxybutyl acrylate, dimethylaminomethyl acrylate, dimethylaminoethyl acrylate, methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, octyl methacrylate, Cyclohexyl methacrylate, stearyl methacrylate, benzyl methacrylate, furfuryl methacrylate, hydroxyethyl methacrylate, hydroxybutyl methacrylate, dimethyl methacrylate Aminomethyl, methacrylic acid esters such as dimethylaminoethyl methacrylate, acrylamide, methacrylamide, N-substituted acrylamides, amides such as N-substituted methacrylamides, acrylonitrile, methacrylonitrile, and the like.
  • acrylic acid esters preferred are acrylic acid esters, methacrylic acid esters, acrylonitrile, and methacrylonitrile, and particularly preferred are butyl acrylate, methyl methacrylate, butyl methacrylate, and hydroxyethyl acrylate.
  • diesters of unsaturated dibasic acids such as dimethyl fumarate, dibutyl fumarate, dioctyl fumarate, dimethyl maleate, dibutyl maleate and dioctyl maleate are also used as monomers. can do.
  • Examples of the carboxyl group-containing monomer in the present invention include acrylic acid, methacrylic acid, maleic anhydride, maleic acid, fumaric acid, cinnamic acid, methyl fumarate, ethyl fumarate, propyl fumarate, butyl fumarate and fumarate. And monoesters of unsaturated dibasic acids such as octyl acid, methyl maleate, ethyl maleate, propyl maleate, butyl maleate and octyl maleate.
  • Acrylic acid, methacrylic acid, fumaric acid, methyl fumarate, ethyl fumarate, propyl fumarate, butyl fumarate and octyl fumarate are preferred, and acrylic acid and methacrylic acid are particularly preferred.
  • a crosslinkable monomer having two or more double bonds may be used as a monomer, if necessary.
  • the crosslinkable monomer include aromatic divinyl compounds such as divinylbenzene and divinylnaphthalene, ethylene glycol diacrylate, 1,3-butylene glycol diacrylate, 1,4-butanediol diacrylate, and 1,5-pentanediol diester.
  • the amount is preferably less than 0.5% by mass with respect to 100% by mass of other monomers of the carboxyl group-containing vinyl resin (C).
  • C carboxyl group-containing vinyl resin
  • carboxyl group-containing vinyl resin (C) As a method for producing the carboxyl group-containing vinyl resin (C) according to the present invention, known polymerization methods such as solution polymerization, bulk polymerization, suspension polymerization, emulsion polymerization, and combinations thereof can be employed. Solution polymerization, bulk polymerization, and combinations thereof are preferably employed because of the mixing property of the high molecular weight vinyl resin (H) and the low molecular weight vinyl resin (L) described later, and the ease of adjusting the distribution of carboxyl groups and glycidyl groups.
  • H high molecular weight vinyl resin
  • L low molecular weight vinyl resin
  • the carboxyl group-containing vinyl resin (C) according to the present invention is obtained by polymerizing a high molecular weight vinyl resin (H) and a low molecular weight vinyl resin (L) separately in advance and mixing them in a molten state or a solution state. be able to. Moreover, after polymerizing one of the high molecular weight vinyl resin (H) or the low molecular weight vinyl resin (L) alone, the other vinyl resin can be polymerized in the presence of the vinyl resin.
  • solvent used for the solution polymerization examples include aromatic hydrocarbons such as benzene, toluene, ethylbenzene, xylene, cumene and the like, and these are used alone or a mixture thereof, preferably xylene.
  • Polymerization may be performed using a polymerization initiator, or so-called thermal polymerization may be performed without using a polymerization initiator.
  • a polymerization initiator what can be normally used as a radical polymerization initiator can be used.
  • Hydroperoxides di-t-butyl peroxide, t-butylcumyl peroxide, di-cumyl peroxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, ⁇ , ⁇ ' -Dialkyl peroxides such as bis (t-butylperoxyisopropyl) benzene, isobutyryl peroxide, octanoyl peroxide, decanoyl peroxide, lauroyl peroxide, 3,5,5-trimethylhexanoyl peroxide, benzoyl Peroxide, m-torr Diacyl peroxides such as oil peroxide, di-isopropyl peroxydicarbonate, di-2-ethylhexyl peroxydicarbonate, di-n-propyl peroxydicarbonate, di-2-ethoxyethyl peroxycarbonate, di- Peroxydicarbon
  • the type and amount can be appropriately selected and used depending on the reaction temperature, monomer concentration, etc., and usually 0.01 to 10% by mass is used per 100% by mass of the monomer used.
  • the carboxyl group-containing vinyl resin (C) is a block copolymer comprising a block composed of a chain of structural units derived from ethylene hydrocarbon and / or conjugated diene hydrocarbon and a block composed of a chain derived from styrene. And / or a hydrogenated block copolymer that is a hydrogenated product thereof.
  • the content of these block copolymer and hydrogenated block copolymer is preferably 0.05% by mass or more and 1.5% by mass or less with respect to 100% by mass of the carboxyl group-containing vinyl resin (C), More preferably, it is 0.1 mass% or more and 1.0 mass% or less.
  • the release agent can be dispersed in the toner binder resin without impairing the toner storage stability and fluidity. This makes it easy to obtain a toner with excellent resistance to photoconductor contamination.
  • the production method is not limited, and those produced by other conventionally known production methods may be used.
  • some of the above block copolymers have unsaturated double bonds. These may be used as a hydrogenated product by reacting an unsaturated double bond with hydrogen by a known method.
  • block copolymer commercially available Kraton (Clayton Polymer Co., Ltd.) (styrene-ethylene / butylene-styrene block copolymer (SEBS), styrene-butadiene-styrene block copolymer, styrene-isoprene- Styrene block copolymer, styrene-ethylene / propylene-styrene block copolymer, styrene-ethylene / propylene block copolymer), Kuraray Septon (styrene-ethylene / propylene block copolymer, styrene) -Hydrogenated product of isoprene-based block copolymer), and taffprene (styrene-butadiene-based block copolymer) manufactured by Asahi Kasei.
  • SEBS styrene-ethylene / butylene-styrene
  • the high molecular weight vinyl resin (H) has a THF soluble content of 10 ⁇ 10 4 or more and less than 35 ⁇ 10 4 , more preferably 15 ⁇ 10 4 or more and less than 30 ⁇ 10 4 in the chromatogram of GPC. Has a main peak.
  • a toner that achieves a balance of excellent fixing property, offset resistance, and durability can be obtained.
  • peak molecular weight the molecular weight of the main peak of the high molecular weight vinyl resin (H) (hereinafter referred to as peak molecular weight) is less than 10 ⁇ 10 4 , the strength of the toner binder resin is insufficient, resulting in a decrease in the durability of the resulting toner.
  • the crosslinking formation may be insufficient and offset resistance may be lowered.
  • the peak molecular weight is 35 ⁇ 10 4 or more
  • the binder resin tends to thicken by reaction with the glycidyl group-containing vinyl resin, but the unreacted high molecular weight when adjusted to the proper viscoelastic range of the toner.
  • a large amount of vinyl resin tends to remain, and an unreacted high molecular weight vinyl resin may cause a decrease in fixability.
  • the acid value (AVH) of the high molecular weight vinyl resin (H) is preferably 3 to 30 mgKOH / g, more preferably 5 to 28 mgKOH / g.
  • AZA acid value of the high molecular weight vinyl resin
  • the acid value (AVH) of the high molecular weight vinyl resin (H) is preferably 3 to 30 mgKOH / g, more preferably 5 to 28 mgKOH / g.
  • toner fixing and offset resistance are excellent.
  • the acid value is lower than 3 mgKOH / g, the reaction with the glycidyl group-containing vinyl resin described later hardly occurs, and the offset resistance of the toner may deteriorate.
  • the acid value exceeds 30 mgKOH / g the reaction with the glycidyl group-containing vinyl resin occurs excessively, resulting in excessive thickening. As a result, the loss elastic modulus in the fixing temperature range of the toner becomes too high, and the fixing performance. May be reduced.
  • the high molecular weight vinyl resin (H) is not necessarily a single polymer, and two or more high molecular weight vinyl resins may be used. In that case, it is preferable that the high molecular weight vinyl resin (H) as a whole satisfies the above characteristics. Moreover, when producing
  • the low molecular weight vinyl resin (L) according to the present invention preferably has a main peak at a molecular weight of 0.3 ⁇ 10 4 or more and less than 2.0 ⁇ 10 4 in the GPC chromatogram of the THF soluble component. It is more preferable to have a main peak at 4 ⁇ 10 4 or more and less than 2 ⁇ 10 4 . Thereby, good fixability can be obtained in the toner of the present invention.
  • the peak molecular weight of the low molecular weight vinyl resin (L) is less than 0.3 ⁇ 10 4 , there may be an adverse effect on the storage stability and durability of the toner.
  • the peak molecular weight is 2.0 ⁇ 10 4 or more, the fixing performance may be deteriorated.
  • the acid value (AVL) of the low molecular weight vinyl resin (L) is preferably 2 to 20 mgKOH / g, more preferably 3 to 18 mgKOH / g. Thereby, a toner having excellent fixing performance and anti-offset performance can be obtained.
  • the acid value (AVL) is lower than 2 mgKOH / g, the compatibility with the high molecular weight vinyl resin (H) is excessively deteriorated, and the durability may be lowered or a fine offset may occur.
  • the acid value (AVL) is higher than 20 mg KOH / g, the reactivity with the glycidyl group-containing vinyl resin (E) increases, and the glycidyl group-containing vinyl resin (E) and the high molecular weight vinyl resin (H ) And the low molecular weight vinyl resin (L) itself has a high molecular weight, which may cause deterioration in offset resistance and fixing property.
  • the low molecular weight vinyl resin (L) needs to have the above-mentioned characteristics, but is not necessarily a single polymer, and two or more kinds of low molecular weight vinyl resins may be used. In that case, it is preferable that the low molecular weight vinyl resin (L) as a whole satisfies the above-described characteristics. Moreover, when producing
  • the glycidyl group-containing vinyl resin (E) includes at least one of a styrene monomer and an acrylic monomer (including a methacrylic monomer) and at least one glycidyl group-containing monomer. Can be obtained by using a known polymerization method.
  • the styrene monomer and acrylic monomer (including methacrylic monomers) in the present invention the monomers exemplified in the description of the carboxyl group-containing vinyl resin (C) are preferable.
  • glycidyl group-containing monomer in the present invention glycidyl acrylate, ⁇ -methyl glycidyl acrylate, glycidyl methacrylate, ⁇ -methyl glycidyl methacrylate, and the like are preferable, preferably glycidyl methacrylate, ⁇ -methyl glycidyl methacrylate. It is.
  • the THF soluble component preferably has a molecular weight of 3 ⁇ 10 4 or more and 7 ⁇ 10 4 or less, more preferably 3 ⁇ 10 4 or more and 6 ⁇ 10 4 in the chromatogram of GPC. It has a peak below, and the epoxy value is preferably 0.003 to 0.100 Eq / 100 g, more preferably 0.003 to 0.080 Eq / 100 g.
  • the glycidyl group-containing vinyl resin (E) Since the glycidyl group-containing vinyl resin (E) has a peak molecular weight and an epoxy value within the above ranges, the durability of the toner is improved, and the image is not deteriorated due to toner destruction in long-term continuous printing, so-called development maintaining characteristics. Will improve. At the same time, the reaction between the carboxyl group-containing vinyl resin (C) and the glycidyl group-containing vinyl resin (E) increases the molecular weight of the high molecular weight component and imparts appropriate elasticity to the binder resin. Performance is good. If the peak molecular weight is too small or the epoxy value is too small, the elasticity of the binder resin may be insufficient and a decrease in offset resistance may occur. On the other hand, when the peak molecular weight is too large or the epoxy value is too large, the elasticity of the binder resin becomes too large, and the fixability may deteriorate.
  • the epoxy value is the number of moles of epoxy groups present in 100 g of resin, and the measurement can be performed according to JIS K-7236.
  • the glycidyl group-containing vinyl resin (E) is not necessarily a single polymer, and two or more glycidyl group-containing vinyl resins may be used. In that case, it is preferable that the glycidyl group-containing vinyl resin (E) as a whole satisfies the above characteristics. Moreover, when producing
  • the saturated polyester resin (SC) having crystallinity according to the present invention is a polycondensation of an alcohol component selected from aliphatic diols having 2 to 4 carbon atoms and a carboxylic acid component selected from aliphatic dicarboxylic acids having 4 to 6 carbon atoms. Is preferably obtained.
  • the saturated polyester resin (SC) having crystallinity becomes higher in hydrophobicity, resulting in higher affinity with the vinyl resin (A), and
  • the saturated polyester resin (SC) having the property of being dissolved in the vinyl resin (A) may plasticize the entire toner binder resin, resulting in a decrease in toner storage stability.
  • Examples of the alcohol component selected from aliphatic diols having 2 to 4 carbon atoms include ethylene glycol and 1,4-butanediol.
  • Examples of the carboxylic acid component selected from aliphatic dicarboxylic acids having 4 to 6 carbon atoms include succinic acid, adipic acid, and acid anhydrides or alkyl esters thereof.
  • the saturated polyester resin (SC) having crystallinity contains a trihydric or higher polyhydric alcohol, a trihydric or higher polyhydric carboxylic acid, and an acid anhydride thereof as a raw material alcohol component or carboxylic acid component. Preferably not. When these are contained, a branched structure or a crosslinked structure is formed, and the crystallization is easily inhibited, so that the amorphous portion of the saturated polyester resin (SC) having crystallinity increases, and as a result, the toner Stickiness and storage stability may be reduced.
  • the saturated polyester resin (SC) having crystallinity is a carboxylic acid component having a double bond represented by fumaric acid or an alcohol having a double bond as a raw material alcohol component or carboxylic acid component. It is preferable not to contain any components.
  • a carboxylic acid component having a double bond typified by fumaric acid is used, the regularity of the structure is disturbed, the crystal structure of the crystalline polyester resin is difficult to be formed, and the proportion of the amorphous part that causes stickiness of the toner May go up. As a result, the storage stability of the toner may be easily lowered.
  • a polyester resin having an unsaturated bond is likely to undergo radical polymerization during polycondensation, and as a result, the crystalline polyester resin is likely to have a branched structure or a crosslinked structure. This is also considered to be a cause of difficulty in forming a crystal structure.
  • the crystalline polyester resin has an unsaturated bond derived from fumaric acid or the like, the affinity between the crystalline polyester resin and the amorphous polyester resin (SN) increases, and the crystalline polyester resin becomes amorphous. It becomes easy to dissolve in the polyester resin (SN). As a result, the crystalline structure derived from the crystalline polyester resin cannot be formed in the island phase of the amorphous polyester resin (SN), and the amorphous polyester resin is plasticized, resulting in a decrease in storage stability. There is a case.
  • the temperature at which the polycondensation reaction of the saturated polyester resin (SC) having crystallinity is generally preferably 120 ° C to 250 ° C, more preferably 130 ° C to 240 ° C, still more preferably 140 ° C to 230 ° C. It is. When the reaction temperature is less than 120 ° C., the reaction time may be prolonged and the productivity may be lowered. When the reaction temperature exceeds 250 ° C., the binder resin for toner may be decomposed.
  • a catalyst In the polycondensation reaction, it is preferable to add a catalyst because the reaction proceeds quickly.
  • a known polycondensation reaction catalyst can be used.
  • a catalyst containing an element such as tin, antimony, titanium, germanium, or aluminum can be given.
  • the tin-containing catalyst include dibutyltin oxide.
  • the catalyst containing antimony include antimony trioxide.
  • the titanium-containing catalyst it is more preferable to use titanium alkoxide, titanium acylate, titanium chelate, etc., particularly preferably tetranormal butyl titanate, tetra (2-ethylhexyl) titanate, tetramethyl titanate, tetraisopropyl titanate. Is preferably used.
  • the catalyst containing germanium include germanium dioxide.
  • titanium-containing catalysts include titanium alkoxides such as organics TA-25 (tetranormal butyl titanate), TA-30 (tetra (2-ethylhexyl) titanate), TA-70 ( Tetramethyl titanate), etc., as titanium acylates, such as orgatics TPHS (polyhydroxytitanium stearate), etc., and as titanium chelates, as organics TC-401 (titanium tetraacetylacetonate), TC-200 (titanium octylene glyco) Rate), TC-750 (titanium ethyl acetoacetate), TC-310 (titanium lactate), TC-400 (titanium triethanolamate) and the like (all of which are manufactured by Matsumoto Pharmaceutical Co., Ltd.). Limited to this Not.
  • titanium alkoxides such as organics TA-25 (tetranormal butyl titanate), TA-30 (tetra (2-e
  • the addition amount of the catalyst is preferably 0.01 to 0.50 parts by mass per 100 parts by mass of the saturated polyester resin (SC) having crystallinity.
  • SC saturated polyester resin
  • the above catalysts may be used alone or in combination. Further, the catalyst may be added at the start of polymerization or during the polymerization.
  • the saturated polyester resin (SC) having crystallinity according to the present invention is preferably 0.5 ⁇ 10 4 or more and 1.5 ⁇ in the molecular weight distribution measured by gel permeation chromatography (GPC) of the chloroform-soluble matter. 10 4 or less, and more preferably has a main peak in the region of 0.6 ⁇ 10 4 or more and 1.4 ⁇ 10 4 or less. As a result, the storage stability, durability, and resistance to photoconductor contamination of the toner of the present invention are excellent.
  • the peak molecular weight When the peak molecular weight is lower than 0.5 ⁇ 10 4 , it has crystallinity with respect to the carboxyl group-containing vinyl resin (C), the glycidyl group-containing vinyl resin (E), and further to the amorphous polyester resin (SN). As a result of plasticization of the saturated polyester resin (SC) easily occurring, storage stability may be deteriorated.
  • the carboxyl group-containing vinyl resin (C), the glycidyl group-containing vinyl resin (E) and their reaction products, and further the amorphous polyester resin (SN) The dispersibility of the saturated polyester resin (SC) having crystallinity in the toner may deteriorate, and the saturated polyester resin (SC) having crystallinity may fall out in the toner, resulting in a decrease in storage stability.
  • the saturated polyester resin (SC) having crystallinity according to the present invention is preferably 75 ° C. or higher and 120 ° C. or lower, more preferably 80 ° C. or higher and 115 ° C. or lower, as measured by differential scanning calorimetry (DSC). It has an endothermic peak derived from the crystalline melting point. As a result, a toner having an excellent balance between low-temperature fixability and storage stability can be obtained.
  • the melting point is lower than 75 ° C., the saturated polyester resin (SC) having crystallinity at a lower temperature melts and the viscosity of the toner decreases, so that the low-temperature fixability is improved, but external additives are easily embedded. As a result, storability may deteriorate.
  • the melting point exceeds 120 ° C.
  • the storage stability is improved, but the saturated polyester resin (SC) having sufficient crystallinity is not melted when fixing the toner, and the fixing property is crystalline.
  • the acid value of the saturated polyester resin (SC) having crystallinity is preferably 25 mgKOH / g or more and 70 mgKOH / g or less, more preferably 30 mgKOH / g or more and 65 mgKOH / g or less. This improves the storage stability of the toner of the present invention.
  • the acid value is lower than 25 mgKOH / g, the hydrophilicity of the saturated polyester resin (SC) having crystallinity is lowered and the affinity for the amorphous polyester resin (SN) is increased.
  • the amorphous polyester resin When mixed with (SN), crystallization of the saturated polyester resin (SC) having crystallinity is easily inhibited, and at the same time, the amorphous polyester resin (SN) is easily plasticized. Thereby, preservability may fall.
  • the acid value is higher than 70 mgKOH / g, the molecular weight of the saturated polyester resin (SC) having substantially crystallinity may be too low, and the storage stability may be deteriorated.
  • the structure of the saturated polyester resin (SC) having crystallinity is dissolved in xylene, which is a poor solvent of the saturated polyester resin (SC) having crystallinity, and the xylene-insoluble component is saturated with crystallinity such as chloroform.
  • a saturated polyester resin (SC) having crystallinity is extracted with a good solvent of the polyester resin (SC) and thoroughly hydrolyzed, followed by distillation, separation by LC, IR (infrared absorption analysis), NMR (nuclear)
  • LC magnetic resonance analysis
  • LC liquid chromatograph
  • MS mass spectrometry
  • analysis methods such as gas chromatography (GC) can be combined for identification.
  • the ester group concentration of the saturated polyester resin (SC) having crystallinity according to the present invention is preferably 10.0 mmol / g or more and 13.5 mmol / g or less, more preferably 10.3 mmol / g or more and 12.0 mmol / g. g or less. This improves the storage stability of the toner. Further, by setting the ester group concentration within the above range, the polarity of the saturated polyester resin (SC) having crystallinity is increased, and the saturated polyester resin (SC) having crystallinity with respect to the vinyl resin (A) having low polarity. The affinity of is greatly reduced.
  • the present invention if the polarity is increased in the order of vinyl resin (A), amorphous polyester resin (SN), and saturated polyester resin (SC) having crystallinity, it has crystallinity.
  • the saturated polyester resin (SC) is selectively taken into the island phase of the amorphous polyester resin (SN) dispersed in the vinyl resin (A).
  • the probability that the saturated polyester resin (SC) having crystallinity is exposed on the toner surface is reduced. For this reason, the stickiness of the toner surface of the present invention is suppressed, and the storage stability is improved.
  • the ester group concentration of the saturated polyester resin (SC) having crystallinity is lower than 10.0 mmol / g, the difference in the ester group concentration between the amorphous polyester resin (SN) and the saturated polyester resin (SC) having crystallinity By reducing the value, the compatibility of these increases. As a result, the crystallization of the saturated polyester resin (SC) having crystallinity is easily inhibited, and the crystallinity is reduced within the island phase of the amorphous polyester resin (SN) dispersed in the vinyl resin (A). In some cases, crystals of the saturated polyester resin (SC) have difficulty to be formed, and the island phase itself is plasticized by the saturated polyester resin (SC) having crystallinity, which tends to cause deterioration in storage stability.
  • the ester group concentration is the amount (mmol) of ester groups contained in 1 g of resin.
  • the difference between the total amount of carboxyl groups in the raw material before polymerization and the total amount of carboxyl groups in the resin after polymerization is the amount of ester groups formed by polymerization. Therefore, the ester group concentration can be calculated from the amount of the carboxylic acid component as a raw material and the acid value after polymerization.
  • the amount of ester groups present in the resin is the same as the amount of water molecules dehydrated during polymerization. Therefore, it can also be calculated by dividing the amount of dehydration during polymerization by the weight of the resin after polymerization.
  • the saturated polyester resin (SC) having crystallinity is extracted from the binder resin or toner for toner, and the structure and ratio of the carboxylic acid component are determined by structural analysis of the saturated polyester resin (SC) having crystallinity.
  • the ester group concentration can also be calculated by measuring the acid value of the saturated polyester resin (SC) that is specified and has crystallinity.
  • the amorphous polyester resin (SN) according to the present invention is obtained by a polycondensation reaction containing at least one diol and at least one dicarboxylic acid as main components.
  • the amorphous polyester resin (SN) preferably has at least an aromatic ring structure, and more preferably has a skeleton derived from bisphenol A.
  • the amorphous polyester resin (SN) has an aromatic ring structure, it is incompatible with the vinyl resin (A), but has an affinity for the styrene skeleton that is the main component of the vinyl resin (A). This increases the dispersibility of the island phase of the amorphous polyester resin (SN) in the vinyl resin (A). Further, since the amorphous polyester resin (SN) has an ester group, it has an affinity for the saturated polyester resin (SC) having crystallinity compared to the vinyl resin (A), but the aromatic ring.
  • the saturated polyester resin (SC) having crystallinity By having a structure, it is possible to prevent the saturated polyester resin (SC) having crystallinity from being compatible with the amorphous polyester resin (SN), and the crystallinity can be increased within the island phase of the amorphous polyester resin (SN).
  • the saturated polyester resin (SC) it has becomes easy to crystallize and the storage stability is likely to improve.
  • the ester group concentration of the amorphous polyester resin (SN) is more likely to be lowered.
  • Saturated polyester resin (SC) having a crystallinity in the island phase of amorphous polyester resin (SN), which makes it easier to prevent the compatibility of the saturated polyester resin (SC) having a non-crystalline polyester resin (SN) Becomes easier to crystallize, and storage stability is likely to improve.
  • the aromatic ring structure in the amorphous polyester resin (SN) can be confirmed by analyzing the substituent of the benzene ring by NMR or IR.
  • Examples of the alcohol component used as a raw material for the amorphous polyester resin (SN) according to the present invention include ethylene glycol, 1,2-butanediol, 1,2-propylene glycol, 1,3-propanediol, , 3-butanediol, 1,4-butanediol, 2,3-butanediol, diethylene glycol, triethylene glycol, dipropylene glycol, 1,5-pentanediol, 1,6-hexanediol, neopentyl glycol, 2- Examples thereof include ethyl-1,3-hexanediol, hydrogenated bisphenol A, an ethylene oxide adduct of bisphenol A, and a propylene oxide adduct of bisphenol A. Among these, propylene oxide adducts of bisphenol A, triethylene glycol, ethylene glycol, and neopentyl glycol are preferably used.
  • the amount of bisphenol A derivatives such as bisphenol A ethylene oxide adduct and bisphenol A propylene oxide adduct is preferably 100 mol% of the total alcohol components. It is 20 mol% or more, More preferably, it is 40 mol% or more, More preferably, it is 60 mol% or more. Thereby, a toner having excellent storage stability can be obtained.
  • Examples of the dicarboxylic acid used as the raw material for the amorphous polyester resin (SN) according to the present invention include aliphatic saturated dicarboxylic acids, aliphatic unsaturated dicarboxylic acids, aromatic dicarboxylic acids, anhydrides of the above various dicarboxylic acids, Examples thereof include lower alkyl esters having 1 to 6 carbon atoms of the various dicarboxylic acids described above.
  • Examples of the aliphatic saturated dicarboxylic acids include malonic acid, succinic acid, glutaric acid, adipic acid, azelaic acid, sebacic acid and the like.
  • Examples of the aliphatic unsaturated dicarboxylic acids include maleic acid, fumaric acid, citraconic acid, itaconic acid and the like.
  • Aromatic dicarboxylic acids include phthalic acid, terephthalic acid, isophthalic acid and the like.
  • Examples of the anhydrides of the various dicarboxylic acids include succinic anhydride, maleic anhydride, and phthalic anhydride.
  • Examples of the lower alkyl ester having 1 to 6 carbon atoms of various dicarboxylic acids include dimethyl succinate, diethyl maleate, dihexyl phthalate and the like. Among these, terephthalic acid and isophthalic acid are preferably used.
  • aliphatic monocarboxylic acids such as octanoic acid, decanoic acid, dodecanoic acid, myristic acid, palmitic acid and stearic acid, and aromatic monocarboxylic acids such as benzoic acid and naphthalenecarboxylic acid are also available. Can be used.
  • the amount of aromatic dicarboxylic acid used is preferably 60 mol% or more, more preferably 75 mol% or more, with respect to 100 mol% of the total carboxylic acid component. More preferably, it is 85 mol% or more. Thereby, a toner having excellent storage stability can be obtained.
  • amorphous polyester resin (SN) As a raw material of the amorphous polyester resin (SN) according to the present invention, trivalent or higher polyvalent carboxylic acids such as trimellitic acid, pyromellitic acid and acid anhydrides thereof, trimethylolpropane, glycerin, 2 Trihydric or higher polyhydric alcohols such as methylpropanetriol and trimethylolethane can also be used.
  • trivalent or higher polyvalent carboxylic acids such as trimellitic acid, pyromellitic acid and acid anhydrides thereof, trimethylolpropane, glycerin, 2 Trihydric or higher polyhydric alcohols such as methylpropanetriol and trimethylolethane
  • the amorphous polyester resin (SN) has a crosslinked structure and contains a THF-insoluble component, the dispersibility of the amorphous polyester resin (SN) in the vinyl resin (A) tends to be lowered.
  • the amount of trivalent or higher polyvalent carboxylic acid used is preferably 10 mol% or less with respect to the total carboxylic acid components so that no THF-insoluble component is generated.
  • the polyhydric alcohol usage fee is preferably 10 mol% or less based on the total alcohol components.
  • the temperature during the polycondensation reaction of the amorphous polyester resin (SN) is generally preferably 170 ° C. to 270 ° C., more preferably 180 ° C. to 250 ° C.
  • the reaction temperature is lower than 170 ° C.
  • the reaction time may be extended and the productivity may be lowered.
  • the reaction temperature exceeds 270 ° C., the resin may be decomposed.
  • the catalyst for the polycondensation reaction the same catalyst as used for the polycondensation reaction of the saturated polyester resin (SC) having crystallinity described above can be used.
  • the amount of the catalyst added is preferably 0.01 to 0.50 parts by mass per 100 parts by mass of the amorphous polyester resin (SN).
  • the catalyst may be used alone or in combination. Further, the catalyst may be added at the start of polymerization or during the polymerization.
  • the amorphous polyester resin (SN) according to the present invention has a molecular weight distribution measured by gel permeation chromatography (GPC) of THF-soluble matter in a range of 0.3 ⁇ 10 4 to 1.0 ⁇ 10 4 , Preferably, it has a main peak in the region of 0.4 ⁇ 10 4 or more and 0.9 ⁇ 10 4 or less. As a result, a toner having excellent fixability and storage stability can be obtained. When the peak molecular weight is lower than 0.3 ⁇ 10 4 , the compatibility with the vinyl resin (A) becomes too high, and the storage stability may be deteriorated.
  • GPC gel permeation chromatography
  • the peak molecular weight is higher than 1.0 ⁇ 10 4 , the dispersibility in the vinyl resin (A) may be lowered, the storage stability may be lowered, and the melt fluidity is also lowered. May worsen sex.
  • the amorphous polyester resin (SN) according to the present invention does not have an endothermic peak derived from the crystalline melting point as measured by differential scanning calorimetry (DSC). Moreover, it is preferable that the glass transition temperature (Tg) of an amorphous polyester resin (SN) is 55 to 70 degreeC in the measurement by DSC. As a result, a toner having excellent fixability and storage stability can be obtained. When the Tg is less than 55 ° C., the storage stability may be deteriorated. On the other hand, when the Tg exceeds 70 ° C., the fixability may be lowered.
  • the acid value of the amorphous polyester resin (SN) according to the present invention is preferably 25 mgKOH / g or more and 70 mgKOH / g or less, more preferably 25 mgKOH / g or more and 40 mgKOH / g or less. Thereby, a toner excellent in storage stability and durability can be obtained.
  • the acid value is lower than 25 mgKOH / g, in the step of dispersing the amorphous polyester resin (SN) having crystallinity in the reaction of the carboxyl group-containing vinyl resin (C) and the glycidyl group-containing vinyl resin (E), As a result of the deterioration of the dispersibility of the conductive polyester resin (SN), it may fall off and the storage stability of the toner may deteriorate.
  • the acid value is higher than 70 mgKOH / g, the molecular weight of the amorphous polyester resin (SN) is substantially too low, and the storage stability may be deteriorated.
  • the ester group concentration of the amorphous polyester resin (SN) according to the present invention is preferably 3.0 mmol / g or more and 7.0 mmol / g or less, more preferably 3.5 mmol / g or more and 5.5 mmol / g or less. It is. Thereby, a toner having excellent storage stability can be obtained. If the ester group concentration is lower than 3.0 mmol / g, the hydrophobic property of the amorphous polyester resin (SN) becomes too strong and is too soluble in the vinyl resin (A), so that the saturation has crystallinity.
  • the polyester resin (SC) it becomes difficult to incorporate the polyester resin (SC) into the island phase of the amorphous polyester resin (SN), resulting in a decrease in storage stability.
  • the ester group concentration is higher than 7.0 mmol / g, the affinity with the vinyl resin (A) is lowered, the dispersibility of the amorphous polyester resin (SN) is deteriorated, and the crystallinity is obtained.
  • the saturated polyester resin (SC) is easily dissolved in the amorphous polyester resin (SN), the amorphous polyester resin (SN) is plasticized, and the storage stability is deteriorated.
  • the metal component (M) selected from Zn (zinc), Ca (calcium), Mg (magnesium), Al (aluminum), and Ba (barium) (excluding the metal oxide) is at least crystalline. Is dispersed in a saturated polyester resin (SC). Since the metal component (M) is not intended for a sliding effect, it does not segregate on the surface layer of the toner like the metal contained in the external additive as a lubricant.
  • the metal component (M) is preferably Zn or Ca.
  • the metal component (M) based on this invention exists in the saturated polyester resin (SC) which has crystallinity. That is, in the case of a binder resin for toner, it can be confirmed by performing a scanning electron microscope (SEM) / X-ray microanalyzer (XMA) mapping analysis at a magnification of 1000 to 5000 after trimming and surface exposure. Here, the observation area is about 114 ⁇ m ⁇ 76 ⁇ m at 1000 times and about 25 ⁇ m ⁇ 20 ⁇ m at 5000 times. In the case of the toner, the toner can be first embedded in an epoxy resin and then confirmed by the same operation as that for the binder resin. On the other hand, the fact that the metal contained in the external additive is segregated on the toner surface layer can be confirmed by performing a scanning electron microscope (SEM) / X-ray microanalyzer (XMA) mapping analysis.
  • SEM scanning electron microscope
  • XMA X-ray microanalyzer
  • the metal component (M) according to the present invention does not contain a metal oxide. That is, the metal component (M) does not include the metal component contained in this magnetic material.
  • the metal component (M) and magnetic substance (metal oxide) according to the present invention can be distinguished by dissolving a resin or toner in THF and taking out the magnetic substance using a magnet or the like. A metal component contained in the extracted magnetic material can be analyzed by a known method such as X-ray fluorescence analysis (XRF).
  • XRF X-ray fluorescence analysis
  • the metal component (M) can be a metal component (M) derived from an organometallic salt. More specifically, the metal component (M) can be a metal component (M) selected from Zn, Ca, Mg, Al and Ba derived from a fatty acid metal salt represented by the following general formula. Zn or Ca is preferable.
  • n is an integer of 11 to 22
  • m is an integer of 2 or 3
  • M is a metal selected from Zn, Ca, Mg, Al and Ba.
  • the content of the metal component (M) is preferably based on 100% by mass of the total content of the vinyl resin (A), the saturated polyester resin (SC) having crystallinity, and the amorphous polyester resin (SN). Is 0.001% by mass or more and 0.120% by mass or less, more preferably 0.010% by mass or more and 0.110% by mass or less, and further preferably 0.015% by mass or more and 0.100% by mass or less. is there.
  • the weight of the binder resin for toner of the present invention or the metal component (M) in the toner can be measured by a known analysis method such as fluorescent X-ray analysis (XRF).
  • the metal component (M) By containing the metal component (M) according to the present invention, a toner having excellent offset resistance, storage stability, durability, and resistance to photoconductor contamination can be obtained.
  • the fatty acid metal salt is insoluble in the saturated polyester resin (SC) having crystallinity, it exists as a domain in the saturated polyester resin (SC) having crystallinity, and the portion functions as a crystal nucleating agent. This promotes crystallization. As a result, the amorphous portion that causes stickiness in the saturated polyester resin (SC) having crystallinity can be reduced, and a toner having excellent storage stability can be obtained.
  • the said fatty acid metal salt which is a metal component (M) based on this invention is a reaction process of a carboxyl group and a glycidyl group in the reaction process of a carboxyl group-containing vinyl resin (C) and a glycidyl group-containing vinyl resin (E). It has the function of Therefore, when the mixture of the amorphous polyester resin (SN) and the saturated polyester resin (SC) having crystallinity contains a fatty acid metal salt, the island phase of the amorphous polyester resin (SN) in the above reaction step. The reaction between the carboxyl group-containing vinyl resin (C) and the glycidyl group-containing vinyl resin (E) is accelerated in the vicinity of the interface.
  • the island phase of the amorphous polyester resin (SN) is easily dispersed in the carboxyl group-containing vinyl resin (C), the glycidyl group-containing vinyl resin (E) and the reaction product thereof.
  • the amorphous polyester resin (SN) and the saturated polyester resin (SC) having crystallinity present in this island phase are less likely to fall out of the toner, exhibit excellent durability, and contain a carboxyl group. Since the formation of a crosslinked product of the vinyl resin (C) and the glycidyl group-containing vinyl resin (E) is facilitated, a toner having excellent offset resistance can be obtained.
  • the fatty acid metal salt according to the present invention includes, for example, lauric acid, myristic acid, palmitic acid, stearic acid, Zn salt of behenic acid, Ca salt and the like, particularly preferably zinc stearate and calcium stearate.
  • a crystalline saturated polyester resin (SC) or a mixture of a crystalline saturated polyester resin (SC) and an amorphous polyester resin (SN) has crystallinity.
  • the method of adding the fatty acid metal salt and dispersing it after stirring to the melting point of the saturated polyester resin (SC) and the melting point of the fatty acid metal salt to 170 ° C. or less, preferably 160 ° C. or less is the dispersibility of the fatty acid metal salt. It is preferable from the viewpoint.
  • the binder resin for toner of the present invention includes a carboxyl group-containing vinyl resin (C), a glycidyl group-containing vinyl resin (E), a vinyl resin (A) composed of a reaction product thereof, and an amorphous polyester resin (SN). ) And a saturated polyester resin (SC) having crystallinity containing the metal component (M). With such a configuration, a toner having an excellent balance of low-temperature fixability, offset resistance, and storage stability can be obtained.
  • the content of the vinyl resin (A) is preferably 100% by mass of the total content of the vinyl resin (A), the amorphous polyester resin (SN) and the saturated polyester resin (SC) having crystallinity. It is 65 mass% or more and 95 mass% or less, More preferably, it is 70 mass% or more and 90 mass% or less, Furthermore, they are 75 mass% or more and 90 mass% or less. As a result, a toner having an excellent balance of low-temperature fixability, offset resistance, and storage stability can be obtained. When the content of the vinyl resin (A) is lower than 65% by mass, the low-temperature fixability is improved, but the content of the cross-linking component of the vinyl resin (A) is lowered, so that the offset resistance may be inferior. .
  • the island phase composed of the amorphous polyester resin (SN) and the crystalline saturated polyester resin (SC) is 2 ⁇ m or less in the toner.
  • the island phase is not formed, and the amorphous polyester resin (SN) and the saturated polyester resin (SC) having crystallinity become a continuous phase, and the polyester resin component is detached from the toner and stored. May be significantly reduced.
  • the saturated polyester resin (SC) having crystallinity may not be sufficiently effective in low-temperature fixability.
  • the content of the total value of the amorphous polyester resin (SN) and the saturated polyester resin (SC) having crystallinity is the vinyl resin (A), the amorphous polyester resin (SN), and the saturated polyester having crystallinity.
  • the total content of the resin (SC) is 100% by mass, preferably 5% by mass to 35% by mass, more preferably 10% by mass to 30% by mass, and even more preferably 10% by mass to 25% by mass. % Or less.
  • the amorphous polyester resin (SN) is dispersed in an island shape in the vinyl resin (A), and the saturated polyester resin (SC) having crystallinity is an amorphous polyester resin ( SN) is present in the island phase and has a crystal structure derived from the saturated polyester resin (SC) having crystallinity in the island phase. That is, the binder resin for toner of the present invention has a sea-island structure in which the vinyl resin (A) forms a sea phase, and the island phase of the amorphous polyester resin (SN) is dispersed in the sea phase. .
  • the saturated polyester resin (SC) having crystallinity has a structure that is unevenly distributed inside the amorphous polyester resin (SN) that is an island phase.
  • a phase of a saturated polyester resin (SC) having crystallinity is formed in a phase of an amorphous polyester resin (SN).
  • the saturated polyester resin (SC) having crystallinity is present in at least the island phase of the amorphous polyester resin (SN) dispersed in the vinyl resin (A). In addition, if it is a trace amount, it may be present in the vinyl resin (A) outside the island phase.
  • the saturated polyester resin (SC) having crystallinity is substantially amorphous polyester.
  • the saturated polyester resin (SC) having crystallinity exists only in the island phase of the amorphous polyester resin (SN). It depends on the content ratio. When the content ratio of the amorphous polyester resin (SN) is low, the saturated polyester resin (SC) having crystallinity is present in the vinyl resin (A) outside the island phase of the amorphous polyester resin (SN). There is also.
  • the island phases of the amorphous polyester resin (SN) may be in contact with each other as long as each of them retains the island phase (if it is not a continuous phase).
  • the mechanism in which the binder resin for toner of the present invention has a structure in which a saturated polyester resin (SC) having crystallinity is present in the island phase of such an amorphous polyester resin (SN) is inferred below.
  • the saturated polyester resin (SC) having crystallinity contains many ester groups, it is extremely hydrophilic compared to the amorphous polyester resin (SN) and the vinyl resin (A).
  • the vinyl resin (A) has low hydrophilicity because it contains styrene as a main component. Therefore, the saturated polyester resin (SC) having crystallinity has an extremely low affinity for the vinyl resin (A) and has no solubility.
  • the affinity for the vinyl resin (A) is higher than that of the saturated polyester resin (SC) having crystallinity.
  • the amorphous polyester resin (SN) is a polyester resin similar to the saturated polyester resin (SC) having crystallinity, it has an affinity for the saturated polyester resin (SC) having more crystallinity than the vinyl resin (A). High nature. Therefore, when the amorphous polyester resin (SN) and the saturated polyester resin (SC) having crystallinity are dispersed in the vinyl resin (A), it has crystallinity in the island phase of the amorphous polyester resin (SN). Saturated polyester resin (SC) will be taken in.
  • the crystal is formed in the island phase. Crystallization of the saturated polyester resin (SC) having the property can be promoted, and a crystal structure derived from the saturated polyester resin (SC) having the crystallinity can be formed in the island phase.
  • the stickiness of the toner by the saturated polyester resin (SC) having crystallinity is suppressed by the amorphous polyester resin (SN), and the balance between the low-temperature fixability and the storage stability is achieved. Excellent toner can be obtained.
  • the metal component (M) such as a fatty acid metal salt
  • the saturated polyester resin (SC) having crystallinity does not crystallize, and the entire island phase causes stickiness and deteriorates storage stability.
  • Such a structure can be confirmed by observing at a magnification of 10,000 to 60000 times using a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • the observation area is about 25.5 ⁇ m ⁇ 16 ⁇ m at 10000 ⁇ and about 4.25 ⁇ m ⁇ 2.67 ⁇ m at 60000 ⁇ .
  • the measurement sample is a binder resin
  • the measurement sample is toner, after embedding an epoxy resin, the same as for the resin
  • the crystal structure in the island phase the stripe pattern derived from the crystal structure is dyed darkly, and the amorphous part is dyed lightly, so the presence or absence of the crystal structure in the island phase can be confirmed.
  • the area of the saturated polyester resin (SC) island phase which has crystallinity of vinyl resin (A) and an amorphous polyester resin (SN) can be confirmed, and vinyl resin (A ) Ratio can also be confirmed.
  • the glass transition temperature (Tg) measured by DSC of the binder resin for toner of the present invention is preferably 50 ° C. or higher and 65 ° C. or lower, more preferably 53 ° C. or higher and 62 ° C. or lower.
  • Tg glass transition temperature measured by DSC of the binder resin for toner of the present invention
  • the binder resin for toner of the present invention preferably has a molecular weight distribution in which tetrahydrofuran (THF) soluble content is measured by gel permeation chromatography (GPC), preferably a molecular weight of 0.3 ⁇ 10 4 or more and 2.0 ⁇ 10 4. It has a main peak in a region having a molecular weight of 0.4 ⁇ 10 4 or more and less than 1.8 ⁇ 10 4 . Thereby, a toner excellent in low-temperature fixability can be obtained.
  • GPC gel permeation chromatography
  • the content of insoluble content of tetrahydrofuran (THF) is preferably 5% by mass or more and less than 40% by mass, more preferably 10% by mass or more and less than 35% by mass.
  • the tetrahydrofuran (THF) insoluble component contains at least a cross-linked product formed by the reaction of the carboxyl group-containing vinyl resin (C) and the glycidyl group-containing vinyl resin (E).
  • the binder resin for toner of the present invention when the tetrahydrofuran (THF) insoluble content is less than the above range, when the toner is used, the elasticity may be insufficient and the offset resistance may be deteriorated. If the amount exceeds the range, the crosslinking component contracts too much, and the low molecular component does not enter the network structure of the crosslinked product, and phase separation from the non-crosslinking component occurs too much. As a result, the crosslinking component is effective in offset resistance. It may be lost.
  • THF tetrahydrofuran
  • the ratio (C / E) between the carboxyl group-containing vinyl resin (C) and the glycidyl group-containing vinyl resin (E) is preferably 87/13 to 99/1, more preferably 89/11 to 97/3. Thereby, a toner excellent in offset resistance can be obtained.
  • the content of the glycidyl group-containing vinyl resin (E) exceeds 13% by mass with respect to the total content of 100% by mass of the carboxyl group-containing vinyl resin (C) and the glycidyl group-containing vinyl resin (E)
  • a decrease in offset resistance may occur.
  • the island phase of the amorphous polyester resin (SN) is dispersed in the sea phase of the vinyl resin (A), and the saturated polyester resin (SC) having crystallinity in the island phase. ) Is used. Accordingly, the saturated polyester resin (SC) having crystallinity is obtained while the effect of the low temperature fixability of the saturated polyester resin (SC) having crystallinity is obtained, and the detachment of the saturated polyester resin (SC) having crystallinity is suppressed and the crystalline saturated polyester resin (SC) is obtained. ) Is reduced on the surface of the toner, thereby preventing a decrease in the storage stability of the toner. Thus, in the present invention, the trade-off relationship between low-temperature fixability and storage stability is improved.
  • the method for producing the binder resin for toner of the present invention comprises a step of obtaining a mixture of the amorphous polyester resin (SN), a saturated polyester resin having crystallinity (SC), and a metal component (M), A step of mixing the mixture, the carboxyl group-containing vinyl resin (C), and the glycidyl group-containing vinyl resin (E) in a molten state is included.
  • SN amorphous polyester resin
  • SC saturated polyester resin having crystallinity
  • M metal component
  • the amorphous polyester resin (SN) and the saturated polyester resin having crystallinity (SC) are formed of the amorphous polyester resin (SN) efficiently in the binder resin.
  • the saturated polyester resin (SC) having crystallinity is previously added. It is preferably mixed in a molten state and added in the reaction of a carboxyl group-containing vinyl resin (C) and a glycidyl group-containing vinyl resin (E) described later.
  • the content of the amorphous polyester resin (SN) is the content of the amorphous polyester resin (SN) and the saturated polyester resin (SC) having crystallinity.
  • the total value is 100% by mass, preferably 15% by mass to 70% by mass, and more preferably 20% by mass to 65% by mass.
  • the saturated polyester resin (SC) which has crystallinity is taken in into the island phase of an amorphous polyester resin (SN),
  • the probability that a saturated polyester resin (SC) having crystallinity is present on the toner surface can be reduced, toner stickiness can be suppressed, and the toner can be excellent in storage stability.
  • the content of the amorphous polyester resin (SN) is lower than 15% by mass, the saturated polyester resin (SC) having crystallinity at the interface between the island phase of the amorphous polyester resin (SN) and the vinyl resin (A).
  • the saturated polyester resin (SC) having crystallinity is exposed on the toner surface, and the storage stability may be deteriorated. Further, in this case, the affinity between the island phase and the vinyl resin (A) is lowered, and the saturated polyester resin (SC) having crystallinity is easily removed from the toner, resulting in a decrease in durability and storage stability. May end up.
  • the content of the amorphous polyester resin (SN) is higher than 70% by mass, most of the crystalline saturated polyester resin (SC) is dissolved in the amorphous polyester resin (SN), and the island phase In some cases, the saturated polyester resin (SC) having crystallinity becomes difficult to crystallize, and the storage stability may be lowered.
  • a saturated polyester resin (SC) having crystallinity containing at least a metal component (M) such as a fatty acid metal salt is used.
  • a method in which the carboxyl group-containing vinyl resin (C) and the glycidyl group-containing vinyl resin (E) are mixed and reacted in a molten state is preferable. Thereby, a toner excellent in offset resistance, storage stability and durability can be obtained.
  • any conventionally known method for example, a method in which both resins are charged in a reaction vessel equipped with a stirrer and heated and reacted in a molten state, or a method of reacting in the presence of a solvent and desolvating can be adopted.
  • a method using a twin-screw kneader is preferable.
  • SC saturated polyester resin
  • C carboxyl group-containing vinyl resin
  • E glycidyl group-containing vinyl resin
  • M metal component
  • the temperature at the time of melt kneading and reaction varies depending on the functional group amount and molecular weight of the carboxyl group-containing vinyl resin (C) and glycidyl group-containing vinyl resin (E), but is preferably 100 ° C. to 220 ° C., more preferably 120 ° C. to 200 ° C., more preferably in the range of 130 ° C. to 180 ° C. If the reaction temperature is lower than 100 ° C., even if cross-linked body formation occurs, the kneading share is too strong and the formed cross-linked body may be cut, resulting in poor offset resistance.
  • water is added to the biaxial kneader, preferably at a pressure of 1 MPa to 3 MPa, more preferably at a pressure of 1.7 MPa to 2.3 MPa. It is preferably injected in an amount of 0.5 to 2.5 parts by mass, more preferably 1.0 to 2.0 parts by mass with respect to parts by mass. Then, a method of removing water and volatile components by reducing the pressure preferably from 0.001 to 0.200 MPa, more preferably from 0.050 to 0.150 MPa, from the pressure reducing port provided on the outlet side from the press fitting is preferable.
  • the pressure is a value obtained by subtracting the atmospheric pressure from the gauge pressure, that is, the absolute pressure based on the vacuum.
  • the resin thus obtained is cooled and pulverized to obtain a binder resin for toner.
  • Any conventionally known method can be adopted as the cooling and pulverizing method.
  • a cooling method it is possible to rapidly cool using a steel belt cooler or the like.
  • the toner of the present invention includes the toner binder resin, a colorant, and a release agent.
  • the dispersion diameter of the island phase of the amorphous polyester resin (SN) is preferably 2.0 ⁇ m or less, more preferably 1.0 ⁇ m or less.
  • the toner of the present invention contains at least one release agent having a melting point of ⁇ 40 ° C. or more and 5 ° C. or less, more preferably ⁇ 35 ° C. or more and 0 ° C. or less with respect to the melting point of the saturated polyester resin (SC) having crystallinity. It is characterized by containing 1% by mass or more and 10% by mass or less, and further 2% by mass or more and 8% by mass or less.
  • at least one release agent having a melting point in the above range adhesion of the saturated polyester resin (SC) having crystallinity to the fixing roll can be prevented and offset resistance can be improved.
  • the tetrahydrofuran (THF) soluble component is preferably a molecular weight distribution of 0.3 ⁇ 10 4 or more and less than 2.0 ⁇ 10 4 in a molecular weight distribution measured by gel permeation chromatography (GPC). More preferably, it has a main peak in a region of 0.4 ⁇ 10 4 or more and less than 1.8 ⁇ 10 4 . Thereby, a toner excellent in low-temperature fixability can be obtained.
  • the peak molecular weight is lower than 0.3 ⁇ 10 4 , there are cases where adverse effects on the storage stability and durability of the toner are likely to occur.
  • the peak molecular weight is higher than 2.0 ⁇ 10 4 , the fixing performance may be deteriorated.
  • the THF-insoluble matter derived from the binder resin is preferably 5% by mass or more and less than 40% by mass, and more preferably 10% by mass or more and less than 35% by mass.
  • a toner excellent in offset resistance can be obtained.
  • the glass transition temperature (Tg) measured by DSC of the toner of the present invention is preferably 50 ° C. or higher and 65 ° C. or lower, more preferably 52 ° C. or higher and 60 ° C. or lower. As a result, a toner having excellent low-temperature fixability and storage stability can be obtained. When the Tg is lower than 50 ° C., the storage stability of the toner may be inferior, and when the Tg is higher than 65 ° C., the low-temperature fixability may be inferior.
  • the toner production method of the present invention includes a step of obtaining the toner binder resin and a step of mixing the toner binder resin and the colorant.
  • the toner of the present invention is produced by a conventionally known method using the toner binder resin of the present invention.
  • a binder resin and additives such as a colorant, a release agent, and a charge control agent are sufficiently mixed with a powder mixer such as a Henschel mixer, and then a kneader such as a biaxial kneader or an open roll kneader is used. Then, melt and knead to thoroughly mix each component.
  • a method in which, after cooling, pulverization and classification are performed to collect particles usually in the range of 4 to 15 ⁇ m, and a toner is obtained by applying a surface treatment agent by a powder mixing method.
  • the toner may be spheroidized by a surface treatment apparatus or the like.
  • the surface treatment method include a method in which the toner is spheroidized by flowing it into a high-temperature air jet, and a method in which the corners of the toner are removed by mechanical impact, and these surface treatments are performed for the purpose of improving image quality.
  • the average circularity measured by a flow type particle image measuring device (for example, FIPA-3000 manufactured by Sysmex Corporation) may be adjusted to 0.960 or more.
  • the toner of the present invention has a melting point of preferably ⁇ 40 ° C. or higher and 5 ° C. or lower, and a melting point of 60 ° C. or higher and 120 ° C. or lower, as a release agent, with respect to the melting point of the saturated polyester resin (SC) having crystallinity. It is preferable to contain at least one conventionally known release agent that satisfies the conditions.
  • release agents examples include low molecular weight polyethylene, low molecular weight polypropylene, polyolefin copolymers, polyolefin wax, paraffin wax, microcrystalline wax, Fischer-Tropsch wax and other aliphatic hydrocarbon waxes, and oxidized polyethylene waxes.
  • Oxide of aliphatic hydrocarbon wax such as Candelilla wax, Carnauba wax, Wax wax, Rice wax, Jojoba wax, Plant wax, Beeswax, Lanolin, Whale wax, Ozokerite, Ceresin Mineral wax such as petrolatum, waxes mainly composed of fatty acid esters such as montanic acid esters and castor waxes, and waxes obtained by deoxidizing a part or all of fatty acid esters such as deoxidized carnauba wax.
  • saturated linear fatty acids such as palmitic acid, stearic acid, montanic acid, or long-chain alkyl carboxylic acids having further long-chain alkyl groups
  • unsaturated such as brassic acid, eleostearic acid, and valinal acid
  • Saturated alcohols such as fatty acids, stearyl alcohol, eicosyl alcohol, behenyl alcohol, carnauvir alcohol, seryl alcohol, melyl alcohol, or further long-chain alkyl alcohols with long-chain alkyl groups
  • polyhydric alcohols such as sorbitol
  • Fatty acid amides such as linoleic acid amide, oleic acid amide, lauric acid amide
  • saturated fats such as methylene bis-stearic acid amide, ethylene bis-capric acid amide, ethylene bis-lauric acid amide, hexamethylene bis-stearic acid amide Acid bisamide, ethylene bisoleic acid amide, hexamethylene bisoleic
  • Higher aliphatic hydrocarbons obtained by synthesizing higher aliphatic hydrocarbons having one or more double bonds, n-paraffin mixtures obtained from petroleum fractions, polyethylene waxes obtained by ethylene polymerization, and Fischer-Tropsch synthesis Polyethylene synthesized by a metallocene catalyst, waxes having functional groups such as hydroxyl groups, ester groups, and carboxyl groups obtained by liquid phase oxidation of hydrocarbons with molecular oxygen-containing gas in the presence of boric acid and boric anhydride , Polypropylene, polybutene, polypentene, polyhexene, polyheptane, polyoctene, ethylene-propylene copolymer, ethylene-butene copolymer, butene-propylene copolymer, and long-chain alkyl carboxylic acids and polyhydric alcohols Alkyl carboxylic acid halides An ester group-containing waxes obtained by the polyhydric alcohol reaction.
  • release agents may be used alone or in combination of two or more. However, when two or more release agents are combined, at least one of the release agents has a melting point of the saturated polyester resin (SC) having crystallinity. It only needs to have a melting point between ⁇ 40 ° C. and 5 ° C.
  • SC saturated polyester resin
  • the saturated polyester resin (SC) having crystallinity contains, as a main component, an alcohol component selected from aliphatic diols having 2 to 4 carbon atoms and a carboxylic acid component selected from aliphatic dicarboxylic acids having 4 to 6 carbon atoms.
  • the saturated polyester resin (SC) itself having crystallinity has no releasability because it contains almost no long-chain alkyl unit. Therefore, when the melting point of all the release agents contained is higher than the melting point of the saturated polyester resin (SC) having crystallinity, the saturated polyester resin (SC) having crystallinity when fixing the toner to paper. In some cases, the toner melts and adheres to the fixing roll before the release agent, causing offset. For this reason, it is preferable that melting
  • these release agents are used for high molecular weight vinyl resin (H), low molecular weight vinyl resin (L), carboxyl group-containing vinyl resin (C), glycidyl group-containing vinyl resin.
  • E production process of amorphous polyester resin (SN), crystalline saturated polyester resin (SC), amorphous polyester resin (SN), saturated polyester resin (SC) having crystallinity and metal component ( It is preferable to add in the mixing step of M), the reaction step of the carboxyl group-containing vinyl resin (C) and the glycidyl group-containing vinyl resin (E) described later, or each step.
  • the carboxyl group-containing vinyl resin (C) from a block consisting of a chain of structural units derived from a solvent and an ethylene-based hydrocarbon and / or conjugated diene hydrocarbon and a block consisting of a chain derived from styrene.
  • the solvent is removed by adding a release agent in the presence of the block copolymer and / or a hydrogenated block copolymer that is a hydrogenated product thereof.
  • it is not limited to these addition methods, and it can be added by the above-described method or a combination thereof, and can be added at the time of toner production as necessary.
  • the addition amount of the release agent is such that the carboxyl group-containing vinyl resin (C), the glycidyl group-containing vinyl resin (E), and their reaction products, the amorphous polyester resin (SN), and the saturation having crystallinity.
  • they are 1 mass% or more and 10 mass% or less with respect to 100 mass% of total values of the addition amount of a polyester resin (SC), More preferably, they are 2 mass% or more and 8 mass% or less.
  • SC carboxyl group-containing vinyl resin
  • SN amorphous polyester resin
  • saturation having crystallinity Preferably they are 1 mass% or more and 10 mass% or less with respect to 100 mass% of total values of the addition amount of a polyester resin (SC), More preferably, they are 2 mass% or more and 8 mass% or less.
  • the release agent plasticizes the binder resin.
  • Photosensitive body that is likely to be caused by deterioration of storage stability, which is likely to be caused by external additives being embedded in the toner surface, and toner melting due to frictional heat between the photoreceptor and the cleaning blade There is a case where the contamination is deteriorated, and further, the dispersion of the release agent is deteriorated and falls out of the toner, and the durability of the toner may be lowered.
  • the toner of the present invention preferably contains a charge control agent in order to maintain positive chargeability or negative chargeability.
  • a conventionally known charge control agent can be used.
  • positively chargeable charge control agents include modified products of nigrosine and fatty acid metal salts; quaternary ammonium salts such as tributylbenzylammonium-1-hydroxy-4-naphthosulfonate and tetrabutylammonium tetrafluoroborate And onium salts such as phosphonium salts which are analogs thereof and lake pigments thereof; triphenylmethane dyes and lake pigments thereof (as rake agents, phosphotungstic acid, phosphomolybdic acid, phosphotungsten molybdic acid, Tannic acid, lauric acid, gallic acid, ferricyanide, ferrocyanide, etc.); metal salts of higher fatty acids; diorganotin oxides such as dibutyltin oxide, dioctyltin oxide, dicyclohexyltin oxide; dibutyltin borate, dioctyl Copolymers of diorganotin borates such as t
  • organometallic complexes and chelate compounds are effective, and monoazo metal complexes, acetylacetone metal complexes, aromatic hydroxycarboxylic acid metal complexes, aromatic dicarboxylic acid metal complexes, and aromatic hydroxycarboxylic acids.
  • acids aromatic carboxylic acids, aromatic polycarboxylic acids and their metal salts, anhydrides, esters, bisphenol derivatives such as bisphenol
  • the coordination center metal is Sc, Ti, V, Cr, Co
  • An azo metal compound selected from Ni, Mn, and Fe and a cation selected from hydrogen ion, sodium ion, potassium ion, and ammonium ion
  • a coordination center metal is Cr, Co, Ni, Mn, Fe, Ti, Zr Zn, Si, B, Al and the cation is hydrogen ion, sodium ion, potassium ion
  • Metal compounds of aromatic hydroxycarboxylic acid derivatives and aromatic polycarboxylic acid derivatives selected from um ion, ammonium ion and aliphatic ammonium (aromatic hydroxycarboxylic acid derivatives and aromatic polycarboxylic acids are substituted with alkyl groups, aryl groups Cycloalkyl group, alkenyl group, alkoxy group, aryloxy group, hydroxy
  • the addition amount of the charge control agent to the toner is preferably 0.05 to 10% by mass, more preferably 0.1 to 5% by mass with respect to 100% by mass of the binder resin, from the balance between the charge amount and the fluidity of the toner. Further, the content is 0.2 to 3% by mass.
  • a method of adding to the inside of the toner, a method of external addition, or a combination thereof can be applied.
  • any metal oxide other than the metal component (M) may be contained.
  • the color toner of the present invention contains a colorant. Conventionally known pigments and dyes can be used as the colorant.
  • pigments include mineral fast yellow, navel yellow, naphthol yellow S, hansa yellow G, permanent yellow NCG, tartrazine lake, molybdenum orange, permanent orange GTR, pyrazolone orange, benzidine orange G, permanent red 4R, and watching red calcium.
  • Salt Eosin Lake, Brilliant Carmine 3B, Manganese Purple, Fast Violet B, Methyl Violet Lake, Cobalt Blue, Alkaline Blue Lake, Victoria Blue Lake, Phthalocyanine Blue, Fast Sky Blue, Indanthrene Blue BC, Chrome Green, Pigment Green B , Malachite green lake, final yellow green G and the like.
  • the color pigment for magenta include C.I. I.
  • Examples of the color pigment for cyan include C.I. I. Pigment Blue 2, 3, 15, 15: 1, 15: 2, 15: 3, 16, 17, C.I. I. Acid Blue 6, C.I.
  • the color pigment for yellow include C.I. I. Pigment Yellow 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 23, 65, 73, 74, 83, 93, 97, 155, 180, 185, C.I. I. Bat yellow 1, 3, 20 etc. are mentioned.
  • the black pigment include carbon black such as furnace black, channel black, acetylene black, thermal black, and lamp black.
  • Examples of the dye include C.I. I. Direct Red 1, C.I. I. Direct Red 4, C.I. I. Acid Red 1, C.I. I. Basic Red 1, C.I. I.
  • the addition amount of the colorant to the toner is preferably 0.05 to 20% by mass, more preferably 0.1 to 15% by mass, and further preferably 0.2 to 10% by mass with respect to 100% by mass of the binder resin. It is.
  • a magnetic material can be used in place of these colorants.
  • the magnetic material include metal oxides containing elements such as iron, cobalt, nickel, copper, magnesium, manganese, aluminum, and silicon. Specifically, iron tetroxide, iron sesquioxide, zinc iron oxide, Iron yttrium oxide, iron cadmium oxide, iron gadolinium oxide, copper iron oxide, lead iron oxide, nickel iron oxide, iron neodymium oxide, barium iron oxide, magnesium iron oxide, iron manganese oxide, iron lanthanum oxide, iron powder, cobalt powder, Nickel powder etc. are mentioned. These magnetic materials may be used in combination of two or more as required.
  • the shape is preferably a sphere, octahedron, or hexahedron, and more preferably a sphere is used from the viewpoint of uniformly dispersing the magnetic powder in the toner.
  • the BET specific surface area of the magnetic powder by nitrogen adsorption method is preferably 1 to 30 m 2 / g, more preferably 2 to 20 m 2 / g, and a Mohs hardness of 4 is preferable. It is preferable to use magnetic powders of 8 to 8.
  • the average particle size of the magnetic material is preferably 0.01 to 0.8 ⁇ m, more preferably 0.05 to 0.5 ⁇ m.
  • the magnetic properties of the magnetic material, coercivity 1 at 795.8 kA / m applied 20 kA / m, saturation magnetization of 50 - 200 Am 2 / kg, residual magnetization is preferably from 1 to 20 Am 2 / kg.
  • the addition amount of the magnetic substance is preferably 4 to 200% by mass, more preferably 10 to 170% by mass, and further 20 to 150% by mass with respect to 100% by mass of the binder resin.
  • the toner of the present invention may be used within a range that does not impair the effects of the present invention as necessary, for example, polyvinyl chloride, polyvinyl acetate, polyester, polyvinyl butyral, polyurethane, polyamide, polystyrene, rosin, polymerized rosin, modified rosin, A terpene resin, a phenol resin, an aromatic petroleum resin, a vinyl chloride resin, a styrene-butadiene resin, a styrene- (meth) acrylic copolymer, a chroman-indene resin, a melamine resin, or the like may be partially added.
  • a method of dispersing a colorant in a binder resin or a raw material resin in advance to produce a so-called master batch and adding it to the toner may be performed.
  • 20 to 60% by mass of a colorant and 80 to 40% by mass of a resin component are mixed in a powder state, and the resulting mixture is batch-type such as a twin-screw kneader, an open roll kneader, or a pressure kneader.
  • a product kneaded with a kneader or the like and pulverized may be used at the time of toner production.
  • the surface treatment agent is preferably present between the toner and the carrier or between the toners by adding a surface treatment agent to the surface of the toner.
  • a surface treating agent By adding a surface treating agent, powder flowability, storage stability, charging stability, and environmental stability can be improved, and the life of the developer can be further improved.
  • the surface treatment agent can be used as the surface treatment agent.
  • examples thereof include silica fine powder, titanium oxide fine powder, and hydrophobized products thereof.
  • silica fine powder wet silica, dry silica, a composite of dry silica and metal oxide, or the like can be used, and those obtained by hydrophobizing them with an organosilicon compound or the like can be used.
  • the hydrophobizing treatment include a method in which a silica fine powder produced by vapor phase oxidation of a silicon halogen compound is treated with a silane compound and treated with an organosilicon compound.
  • silane compound used for the hydrophobizing treatment examples include hexamethyldisilazane, trimethylsilane, trimethylchlorosilane, trimethylethoxysilane, dimethyldichlorosilane, methyltrichlorosilane, allyldimethylchlorosilane, allylphenyldichlorosilane, and benzyl.
  • organosilicon compound used for the hydrophobizing treatment examples include silicone oils such as dimethyl silicone oil, methylphenyl silicone oil, ⁇ -methylstyrene modified silicone oil, chlorophenyl silicone oil, and fluorine modified silicone oil. Further, fine titanium oxide powder treated with oil, fine particles of vinyl resin of 0.03 ⁇ m to 1 ⁇ m, and the like may be used.
  • Other surface treatment agents include lubricants such as polyfluorinated ethylene, zinc stearate, and polyvinylidene fluoride, abrasives such as cerium oxide, silicon carbide, strontium titanate, magnetic powder, and alumina, carbon black, zinc oxide, and oxidation. Conductivity imparting agents such as antimony and tin oxide may also be used.
  • the surface treatment agent has various shapes such as particles having a small particle size of 100 nm or less, particles having a large particle size of 100 nm or more, octahedral shape, hexahedral shape, needle shape, fiber shape, etc. May be used. You may use a surface treating agent individually or in combination of 2 or more types.
  • the addition amount of the surface treatment agent is preferably 0.1 to 10 parts by mass, more preferably 0.1 to 5 parts by mass in 100 parts by mass of the toner.
  • a conventionally known carrier can be used.
  • These carriers may be those whose surface is coated with a styrene resin, an acrylic resin, a silicone resin, a polyester resin, a fluorine resin, or the like.
  • a magnetic carrier having a magnetic fine particle dispersed core in which magnetic fine particles are dispersed in a resin and a coating layer containing a coating resin for coating the surface of the magnetic fine particle dispersed core may be used.
  • the toner obtained by the present invention can be used in various known development processes. For example, but not limited to, the cascade development method, the magnetic brush method, the powder cloud method, the touchdown development method, the so-called microtoning method using a magnetic toner produced by a pulverization method as a carrier, and frictional charging between magnetic toners. For example, a so-called bipolar magnetic toner method for obtaining toner charge may be used. Further, the color toner obtained by the present invention can be used in various cleaning methods such as a conventionally known fur brush method and blade method. The color toner obtained by the present invention can be used in various conventionally known fixing methods.
  • an oilless heat roll method an oil application heat roll method, a heat belt fixing method, a flash method, an oven method, and a pressure fixing method.
  • the data measurement method and determination method are as follows. Further, in the table, St represents styrene, Mac represents methacrylic acid, BA represents n-butyl acrylate, and GMA represents glycidyl methacrylate.
  • Epoxy value was calculated by the following procedure. A resin sample of 0.2 to 5 g was precisely weighed and placed in a 200 ml Erlenmeyer flask. Thereafter, 25 ml of dioxane was added and dissolved. 25 ml of 1/5 normal hydrochloric acid solution (dioxane solvent) was added, and the mixture was sealed and mixed well. Then, it left still for 30 minutes. Next, 50 ml of a toluene-ethanol mixed solution (1: 1 volume ratio) was added, and titrated with a 1/10 normal aqueous sodium hydroxide solution using cresol red as an indicator.
  • Epoxy value (Eq / 100 g) [(B ⁇ S) ⁇ N ⁇ F] / (10 ⁇ W)
  • W is the amount of sample collected (g)
  • B is the amount of sodium hydroxide aqueous solution required for the blank test (ml)
  • S is the amount of sodium hydroxide aqueous solution required for the sample test (ml)
  • N is water.
  • the normality of the aqueous sodium oxide solution and F is the titer of the aqueous sodium hydroxide solution.
  • the peak molecular weight in this example (excluding the molecular weight of the saturated polyester resin (SC) having crystallinity) was obtained by GPC (gel permeation chromatography) method, and a calibration curve was prepared with monodisperse standard polystyrene. It is a converted molecular weight.
  • the measurement conditions are as follows.
  • GPC device SHODEX (registered trademark) GPC SYSTEM-21 (manufactured by Showa Denko KK)
  • Detector SHODEX (registered trademark) RI SE-31 (manufactured by Showa Denko KK)
  • Column One SHODEX (registered trademark) GPC KF-G, three GPC KF-807L, and one GPC KF-800D (manufactured by Showa Denko KK) were connected in series in this order.
  • Solvent tetrahydrofuran (THF) Flow rate: 1.2 ml / min
  • Sample concentration 0.002 g-resin / ml-THF
  • Injection volume 100 ⁇ L
  • a filter was used immediately before the measurement to remove components insoluble in THF. Further, when measuring the molecular weight of the toner, 10 parts by mass of the toner is sufficiently dissolved in 90 parts by mass of THF, and then 50 parts by mass of Simgon talc and 50 parts by mass of titanium (CR-95) are added, followed by centrifugation. The obtained supernatant was adjusted to a predetermined concentration and measured.
  • the molecular weight of the saturated polyester resin (SC) having crystallinity is also determined by GPC (gel permeation chromatography) method, and is a converted molecular weight obtained by preparing a calibration curve with monodisperse standard polystyrene.
  • GPC device GPC Waters detector: Waters 2414 Column: One SHODEX (registered trademark) LF-G and one LF-804 (manufactured by Showa Denko KK) were connected in series in this order.
  • Tg ⁇ Glass transition temperature (Tg) and melting point> Tg in this example was measured by DSC-20 (manufactured by Seiko Denshi Kogyo Co., Ltd.) according to differential scanning calorimetry (DSC). About 10 mg of the sample was heated from room temperature to 200 ° C. at 30 ° C./min, and the sample was air-cooled in an environment of 20 ° C. Thereafter, the sample was measured in the temperature range of ⁇ 20 ° C. to 200 ° C. at a rate of temperature increase of 10 ° C./min, and Tg was determined from the intersection of the obtained curve base line and the endothermic peak inclination. The melting points of the release agent and the crystalline polyester resin were also determined from the endothermic peak using the above-mentioned apparatus.
  • the THF-insoluble content of the binder resin in the present invention was determined as follows. 0.4 g of resin and 39.5 g of THF were put into a 50 ml glass sample tube with a lid, and the sample tube was stirred for 48 hours under the conditions of a rotation speed of 50 rpm and 22 ° C., and then allowed to stand at 22 ° C. for 48 hours. Then, the weight after drying the supernatant liquid 5g of a sample tube at 150 degreeC for 1 hour was measured, and the THF insoluble fraction (mass%) was computed by the following formula
  • the amount of the THF-soluble component in the toner is measured in the same manner as the insoluble content of the binder resin, and the weight is defined as Xg.
  • the amount of components other than resin in the toner was defined as Yg, and the THF insoluble fraction (% by mass) was calculated from the following formula.
  • the rate of change was measured in the same manner while changing the density of the image, and the numerical value with the lowest rate of change was calculated as the fixing rate.
  • the hot roller fixing device used here did not have a silicone oil supply mechanism.
  • the environmental conditions were normal temperature and normal pressure (temperature 22 ° C., relative humidity 55%). (Evaluation criteria) ⁇ : 60% ⁇ fixing rate ⁇ : 55% ⁇ fixing rate ⁇ 60% ⁇ : Fixing rate ⁇ 55%
  • ⁇ Offset resistance> It carried out according to the measurement of the above fixing evaluation. That is, an unfixed image was created by the copying machine. Thereafter, a fixing process was performed by the above-described heat roller fixing device, and it was observed whether or not toner smear occurred in the non-image portion.
  • the set temperature of the heat roller of the heat roller fixing device was repeated from 130 ° C. in increments of 5 ° C. up to 250 ° C., and the upper limit value of the set temperature at which no contamination with toner occurred was defined as the anti-offset temperature.
  • the atmosphere of the copying machine was a temperature of 22 ° C. and a relative humidity of 55%. (Evaluation criteria) ⁇ : 240 ° C. ⁇ offset resistance ⁇ : 220 ° C. ⁇ offset resistance ⁇ 240 ° C. ⁇ : Offset resistance ⁇ 220 ° C.
  • the reaction was performed for a period of time, and dehydration polycondensation was performed.
  • the obtained resin was extracted from the flask, cooled, and pulverized to obtain an amorphous polyester resin SN-1.
  • Table 4 shows the physical property values.
  • the Tg of SN-1 was 61 ° C.
  • KB300 represents a bisphenol A propylene oxide adduct (manufactured by Mitsui Chemicals, Inc.).
  • the addition amount of the fatty acid metal salt is a numerical value when the total amount of the amorphous polyester resin (SN) and the saturated polyester resin (SC) having crystallinity is 100% by mass.
  • the mass% of the saturated polyester resin (SC) having crystallinity and the amorphous polyester resin (SN) represents mass% with respect to the total amount (100 mass%) of SC and SN.
  • the unit of the addition amount of a fatty-acid metal salt is represented by the mass% with respect to the total amount (100 mass%) of SC and SN.
  • a high molecular weight vinyl resin (H), a low molecular weight vinyl resin (L), and FT100 (manufactured by Nippon Seiki Co., Ltd.) as a release agent are mixed so as to have a charge composition shown in Table 6, and further, a high molecular weight vinyl resin Styrene-ethylene-butylene-styrene block copolymer (SEBS) (trade name: Kraton G1652; manufactured by Kraton Polymer Japan Co., Ltd.) as an additive with respect to 100 parts by mass of the total amount of (H) and low molecular weight vinyl resin (L) .5 parts by mass were mixed.
  • SEBS high molecular weight vinyl resin Styrene-ethylene-butylene-styrene block copolymer
  • the raw material of the binder resin in Table 8 contains a fatty acid metal salt
  • the mass% of the polyester resin mixture was calculated by excluding the mass of the fatty acid metal salt.
  • each mass% of carboxyl group-containing vinyl resin (C), glycidyl group-containing vinyl resin (E), (amorphous polyester resin (SN) + saturated polyester resin having crystallinity (SC)). Indicates mass% relative to the total amount of C, E and SN + SC (100 mass%).
  • the mass% of a fatty-acid metal salt and M content shows the mass% with respect to the total amount (100 mass%) of C, E, and SN + SC.
  • a carboxyl group-containing vinyl resin (C) containing a release agent in advance is used. Therefore, the description of the release agent component in R-14 and R-15 in Table 8 means the release agent component contained in the carboxyl group-containing vinyl resin (C), and the binder resin (R) It does not mean that it is newly added in the manufacturing process.
  • Examples 1 to 15 and Comparative Examples 1 to 11 To 3% by mass of the toner shown in Table 9, 97% by mass of a carrier (F-150, manufactured by Powdertech Co., Ltd.) was mixed to obtain a developer, and various evaluations were performed. The results are shown in Table 9.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Developing Agents For Electrophotography (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 トナー用バインダー樹脂は、ビニル樹脂(A)と、非晶性ポリエステル樹脂(SN)と、結晶性を有する飽和ポリエステル樹脂(SC)と、を含み、ビニル樹脂(A)の含有量は、ビニル樹脂(A)、非晶性ポリエステル樹脂(SN)および結晶性を有する飽和ポリエステル樹脂(SC)の含有量の合計値100質量%に対して、65質量%以上95質量%以下であり、ビニル樹脂(A)が、カルボキシル基含有ビニル樹脂(C)、グリシジル基含有ビニル樹脂(E)、およびこれらの反応物から構成されており、結晶性を有する飽和ポリエステル樹脂(SC)のエステル基濃度が、10.0mmol/g以上13.5mmol/g以下であり、ビニル樹脂(A)中に非晶性ポリエステル樹脂(SN)が島状に分散しており、かつ、非晶性ポリエステル樹脂(SN)の島相内に結晶性を有する飽和ポリエステル樹脂(SC)が含まれており、Zn、Ca、Mg、AlおよびBaからなる群から選択される少なくとも一種を含む金属成分(M)(ただし、金属酸化物を除く)が、少なくとも結晶性を有する飽和ポリエステル樹脂(SC)中に含まれている。

Description

トナー用バインダー樹脂、トナーおよびその製造方法
 本発明は、トナー用バインダー樹脂、トナーおよびその製造方法に関する。
 一般に、感光体上に形成したトナー画像を記録紙に転写するPPC(Plain Paper Copy)複写機やプリンターにおける電子写真法は、以下のような手順で行われる。まず、光感光体上に静電気的潜像を形成する。ついで該潜像をトナーを用いて現像し、紙等の被定着シート上にトナー画像を転写した後、熱ロールやフィルムで加熱定着する。この方法は、熱ロールやフィルムと被定着シート上のトナーが直接接触した状態で加熱下にて定着が行われるので、迅速でしかも熱効率が極めて良好である。したがって、定着効率が非常に良い。
 しかしながら、この加熱定着方式においては熱効率が良い反面、熱ロールやフィルム表面とトナーが溶融状態で接触するため、いわゆるオフセット現象という問題がある。また、印刷速度の高速化に伴い、トナーには低温で定着させるいわゆる低温定着性能が求められようになってきている。
 定着性と耐オフセット性の良好な樹脂を得るために、高分子量の樹脂と低分子量の樹脂とを混合使用し、かつ高分子量部分を架橋した樹脂が知られている(例えば、特許文献1~2)。しかし、これらの樹脂では十分な低温定着性能を得ることは出来なかった。また、低温定着性の改良などを目的としてスチレンアクリル樹脂等のベース樹脂に、結晶性のポリエステルなど異種の樹脂を添加した樹脂が開示されている(例えば、特許文献3,4)。しかし、添加されているだけでは、結晶性のポリエステルの分散性が低く、トナーとした際に、結晶化ポリエステルが脱離しやすい。このため、結晶性のポリエステルを添加することで、低温定着性が向上するものの、脱離した結晶性のポリエステルがブロッキングを引き起こすため、満足な保存性が得られなかった。
 ベース樹脂に結晶性ポリエステル樹脂を添加するだけでなく化学的に結合させた樹脂が開示されている(例えば、特許文献5~7)。しかし、化学的に結合することによって、結晶性ポリエステル樹脂がベース樹脂に溶け込み、ベース樹脂の可塑化や、結晶性ポリエステル樹脂の結晶性の低下が起こり、満足な保存性が得られなかった。
 また、結晶性ポリエステル樹脂に、非晶性樹脂、無機微粒子や有機金属塩を添加することが種々の文献に開示されている(例えば、特許文献8~9)。無機微粒子や有機金属塩を添加することで結晶性を制御することは示されているが、結晶性ポリエステル樹脂と非晶性樹脂の相溶性を制御しないと、結晶性ポリエステルの結晶化度を高くすることは困難であり、結果として満足な保存性が得られなかった。
 また、特許文献10の段落0076には、本発明のトナーが懸濁重合法により製造(後述)される場合、水系分散媒中に形成される懸濁液滴の表面に非晶質ポリエステルが偏在しやすく、結果として製造されるトナーのトナー粒子表面に非晶質ポリエステルが偏在する。一方、結晶性ポリエステルはトナー粒子内部に偏在すると記載されている。つまり、同文献によれば、懸濁重合法では、トナーの内部に結晶性ポリエステルが存在し、一方、トナーの表面に非晶質ポリエステルが存在するので、結晶性ポリエステルの表層が非晶質ポリエステルにコートされていないことが分かる。
特許第3532033号公報 特許第3794762号公報 特許第2931899号公報 特開2006-171364号公報 特許第3971228号公報 特許第2872347号公報 特開2008-102390号公報 特開2004-309517号公報 特開2007-127828号公報 特開2007-71993号公報
 本発明者らは、結晶性ポリエステルを含有するトナーの保存性に注目して鋭意検討を行った結果、低温定着性、耐オフセット性、保存性のバランスに優れたトナー用バインダー樹脂及びトナーを見出し、本発明を完成させた。
 すなわち、本発明は、以下の通りである。
[1]
 ビニル樹脂(A)と、
 非晶性ポリエステル樹脂(SN)と、
 結晶性を有する飽和ポリエステル樹脂(SC)と、
 Zn、Ca、Mg、AlおよびBaからなる群から選択される少なくとも一種を含む金属成分(M)(ただし、金属酸化物を除く)と、を含み、
 前記ビニル樹脂(A)の含有量は、前記ビニル樹脂(A)、前記非晶性ポリエステル樹脂(SN)および前記結晶性を有する飽和ポリエステル樹脂(SC)の含有量の合計値100質量%に対して、65質量%以上95質量%以下であり、
 前記ビニル樹脂(A)が、カルボキシル基含有ビニル樹脂(C)、グリシジル基含有ビニル樹脂(E)、およびこれらの反応物から構成されており、
 前記結晶性を有する飽和ポリエステル樹脂(SC)のエステル基濃度が、10.0mmol/g以上13.5mmol/g以下であり、
 前記ビニル樹脂(A)中に、前記非晶性ポリエステル樹脂(SN)が島状に分散しており、かつ、前記非晶性ポリエステル樹脂(SN)の島相内に前記結晶性を有する飽和ポリエステル樹脂(SC)が含まれており、
 前記金属成分(M)が、少なくとも前記結晶性を有する飽和ポリエステル樹脂(SC)中に含まれている、トナー用バインダー樹脂。
[2]
 前記非晶性ポリエステル樹脂(SN)が少なくとも芳香族環構造を有している、[1]に記載のトナー用バインダー樹脂。
[3]
 前記結晶性を有する飽和ポリエステル樹脂(SC)の融点が75℃以上120℃以下である、[1]または[2]に記載のトナー用バインダー樹脂。
[4]
 ガラス転移温度が50℃以上65℃以下であり、
 テトラヒドロフラン可溶分が、ゲルパーミエーションクロマトグラフィーで測定される分子量分布において、分子量0.3×10以上2.0×10未満の領域にメインピークを有し、
 テトラヒドロフラン不溶分が5質量%以上40質量%未満である、[1]から[3]のいずれか1項に記載のトナー用バインダー樹脂。
[5]
 前記結晶性を有する飽和ポリエステル樹脂(SC)の酸価が25mgKOH/g以上70mgKOH/g以下である、[1]から[4]のいずれか1項に記載のトナー用バインダー樹脂。
[6]
 前記非晶性ポリエステル樹脂(SN)の含有量が、前記非晶性ポリエステル樹脂(SN)および前記結晶性を有する飽和ポリエステル樹脂(SC)の含有量の合計値100質量%に対して、15質量%以上70質量%以下である、[1]から[5]のいずれか1項に記載のトナー用バインダー樹脂。
[7]
 前記非晶性ポリエステル樹脂(SN)は、
 エステル基濃度が3.0mmol/g以上7.0mmol/g以下であり、
 酸価が25mgKOH/g以上70mgKOH/g以下であり、
 テトラヒドロフラン可溶分が、ゲルパーミエーションクロマトグラフィーで測定される分子量分布において、分子量0.3×10以上1.0×10未満の領域にメインピークを有する、[1]から[6]のいずれか1項に記載のトナー用バインダー樹脂。
[8]
 前記非晶性ポリエステル樹脂(SN)の相内に、前記結晶性を有する飽和ポリエステル樹脂(SC)の相が含まれている、[1]から[7]のいずれか1項に記載のトナー用バインダー樹脂。
[9]
 前記金属成分(M)が下記一般式で表される脂肪酸金属塩由来である、[1]から[8]のいずれか1項に記載のトナー用バインダー樹脂。
Figure JPOXMLDOC01-appb-C000001
 (nは11から22の整数であり、mは2または3の整数であり、MはZn、Ca、Mg、AlおよびBaから選択される金属である。)
[10]
 トナー用バインダー樹脂と、着色剤と、離型剤と、を含み、
 前記トナー用バインダー樹脂が、[1]から[9]のいずれか1項に記載のトナー用バインダー樹脂であって、
 前記離型剤の少なくとも1種は、結晶性を有する飽和ポリエステル樹脂(SC)の融点に対し-40℃以上5℃以下の融点を有しており、
 ビニル樹脂(A)中の非晶性ポリエステル樹脂(SN)の島相の分散径が2.0μm以下である、トナー。
[11]
 ガラス転移温度が50℃以上65℃以下であり、
 テトラヒドロフラン可溶分が、ゲルパーミエーションクロマトグラフィーで測定される分子量分布において、分子量0.3×10以上2×10未満の領域にメインピークを有しており、
 テトラヒドロフラン不溶分が5質量%以上40質量%未満である、[10]に記載のトナー。
[12]
 非晶性ポリエステル樹脂(SN)、結晶性を有する飽和ポリエステル樹脂(SC)および、Zn、Ca、Mg、AlおよびBaからなる群から選択される少なくとも一種を含む金属成分(M)(ただし、金属酸化物を除く)の混合物を得る工程と、
 得られた前記混合物、カルボキシル基含有ビニル樹脂(C)、およびグリシジル基含有ビニル樹脂(E)を溶融状態で混合する工程を含む、トナー用バインダー樹脂の製造方法。
[13]
 トナー用バインダー樹脂を得る工程と、
 前記トナー用バインダー樹脂と着色剤とを混合する工程と、を含み、
 前記トナー用バインダー樹脂は、[12]に記載の製造方法で得られる、トナーの製造方法。
 本発明により、低温定着性、耐オフセット性、保存性に優れたトナー用バインダー樹脂及びトナーが提供される。
 以下、本発明を詳細に説明する。
 本発明において、重合という語を共重合の意味で使うことがあり、重合体という語を共重合体の意味で使うことがある。また、「~」は、特に明示しない限り、上限値と下限値を含むことを表す。
 本発明のトナー用バインダー樹脂は、ビニル樹脂(A)と、非晶性ポリエステル樹脂(SN)と、結晶性を有する飽和ポリエステル樹脂(SC)と、を含み、ビニル樹脂(A)の含有量は、ビニル樹脂(A)、非晶性ポリエステル樹脂(SN)および結晶性を有する飽和ポリエステル樹脂(SC)の含有量の合計値100質量%に対して、65質量%以上95質量%以下であり、ビニル樹脂(A)が、カルボキシル基含有ビニル樹脂(C)、グリシジル基含有ビニル樹脂(E)、およびこれらの反応物から構成されており、結晶性を有する飽和ポリエステル樹脂(SC)のエステル基濃度が、10.0mmol/g以上13.5mmol/g以下であり、ビニル樹脂(A)中に非晶性ポリエステル樹脂(SN)が島状に分散しており、かつ、非晶性ポリエステル樹脂(SN)の島相内に結晶性を有する飽和ポリエステル樹脂(SC)が含まれており、Zn、Ca、Mg、AlおよびBaからなる群から選択される少なくとも一種を含む金属成分(M)(ただし、金属酸化物を除く)が、少なくとも結晶性を有する飽和ポリエステル樹脂(SC)中に含まれている。
 以下、トナー用バインダー樹脂の各成分を説明する。
<ビニル樹脂(A)>
 本発明に係るビニル樹脂(A)は、カルボキシル基含有ビニル樹脂(C)、グリシジル基含有ビニル樹脂(E)、及び、これらの反応物から構成される。このような構成とすることにより、定着性、耐オフセット性のバランスに優れたトナーを得ることができる。更には、トナー中における非晶性ポリエステル樹脂(SN)の島相の分散性に優れたトナーを得ることができる。したがって、保存性や耐久性に優れたトナーを得ることが出来る。
 ビニル樹脂(A)のエステル基濃度は、好ましくは0.6mmol/g以上2.9mmol/g以下であり、より好ましくは1.0mmol/g以上2.5mmol/g以下である。これにより、ビニル樹脂(A)中への、結晶性を有する飽和ポリエステル樹脂(SC)の溶解を防止でき、且つ、非晶性ポリエステル樹脂(SN)の島相の分散性が向上し、保存性に優れたトナーが得られる。ビニル樹脂(A)のエステル基濃度は、ビニル樹脂(A)に含まれる(メタ)アクリルモノマー等に含まれるエステル基に由来するものであり、ビニル樹脂(A)の製造時のモノマーの組成より計算できる。また、ビニル樹脂(A)のモノマーの組成は、熱分解GC(熱分解ガスクロマトグラフィー)によってモノマー組成を分析し、エステル基濃度を計算することも出来る。
<カルボキシル基含有ビニル樹脂(C)>
 本発明に係るカルボキシル基含有ビニル樹脂(C)の酸価は、3~25mgKOH/gであることが好ましく、より好ましくは、3~20mgKOH/g、更に好ましくは4~18mgKOH/gである。カルボキシル基含有ビニル樹脂(C)の酸価が3mgKOH/gより低い場合、後述するグリシジル基含有ビニル樹脂(E)との反応が進みづらくなり、その結果、トナーにした際の耐オフセット性の低下が発生しやすくなることがある。一方、カルボキシル基含有ビニル樹脂(C)の酸価が25mgKOH/gを超えると、グリシジル基含有ビニル樹脂(E)との反応が進み過ぎ、カルボキシル基含有ビニル樹脂(C)とグリシジル基含有ビニル樹脂(E)の反応によって得られる架橋成分が、非架橋成分と相分離し過ぎて架橋成分が耐オフセット性に効果が無くなる事に起因すると考えられる耐オフセット性の低下が発生することがある。尚、本発明において、酸価は、樹脂1gを中和するために必要な水酸化カリウムのmg数である。
 カルボキシル基含有ビニル樹脂(C)は、テトラヒドロフラン(以下、THFという)可溶分がゲルパーミエーションクロマトグラフィー(以下、GPCという)のクロマトグラムにおいて分子量10×10以上35×10未満の領域にピークを有する高分子量ビニル樹脂(H)とTHF可溶分がGPCのクロマトグラムにおいて分子量0.3×10以上2.0×10未満の領域にピークを有する低分子量ビニル樹脂(L)を含むことが好ましい。ここで言うピークとはメインピーク(ピークの中で最も強度の大きいピーク)のことを指す。
 カルボキシル基含有ビニル樹脂(C)が高分子量ビニル樹脂(H)と低分子量ビニル樹脂(L)から構成される場合、その比率(H/L)は、トナーの定着性、耐オフセット性、耐久性などの総合バランスの観点から、10/90~50/50であることが好ましく、より好ましくは、比率(H/L)は、10/90~45/55である。高分子量ビニル樹脂(H)の含有量が、高分子量ビニル樹脂(H)および低分子量ビニル樹脂(L)の含有量の合計値100質量%に対して、高分子量ビニル樹脂(H)の含有量が10質量%より低い場合、トナーにした際の耐久性や耐オフセット性が悪化する場合がある。一方、高分子量ビニル樹脂(H)の含有量が50質量%を超えるとトナーの定着性が悪化する場合がある。
 カルボキシル基含有ビニル樹脂(C)を構成する単量体としては、カルボキシル基含有単量体の他に、スチレン系単量体、アクリル系単量体(メタクリル系単量体も含む。以下同じ。)が挙げられる(ここで、スチレン系単量体はスチレン骨格を有する単量体であり、アクリル系単量体は、アクリル骨格を有する単量体である)。
 ここで、本発明において使用されるスチレン系単量体としては、例えば、スチレン、p-メチルスチレン、m-メチルスチレン、o-メチルスチレン、p-メトキシスチレン、p-フェニルスチレン、p-クロルスチレン、3,4-ジクロルスチレン、p-エチルスチレン、2,4-ジメチルスチレン、p-n-ブチルスチレン、p-tert-ブチルスチレン、p-n-ヘキシルスチレン、p-n-オクチルスチレン、p-n-ノニルスチレン、p-n-デシルスチレン、p-n-ドデシルスチレン等であり、特に好ましくは、スチレンである。
 本発明において使用されるアクリル系単量体としては、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル、アクリル酸オクチル、アクリル酸シクロヘキシル、アクリル酸ステアリル、アクリル酸ベンジル、アクリル酸フルフリル、アクリル酸ヒドロキシエチル、アクリル酸ヒドロキシブチル、アクリル酸ジメチルアミノメチル、アクリル酸ジメチルアミノエチル等のアクリル酸エステル類、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル、メタクリル酸オクチル、メタクリル酸シクロヘキシル、メタクリル酸ステアリル、メタクリル酸ベンジル、メタクリル酸フルフリル、メタクリル酸ヒドロキシエチル、メタクリル酸ヒドロキシブチル、メタクリル酸ジメチルアミノメチル、メタクリル酸ジメチルアミノエチル等のメタクリル酸エステル類、アクリルアミド、メタクリルアミド、N置換アクリルアミド、N置換メタクリルアミド等のアミド、アクリロニトリル、メタクリロニトリル、等が挙げられる。これらのうち、好ましくはアクリル酸エステル類、メタクリル酸エステル類、アクリロニトリル、メタクリロニトリルであり、特に好ましくは、アクリル酸ブチル、メタクリル酸メチル、メタクリル酸ブチル、アクリル酸ヒドロキシエチルである。
 本発明において上記単量体の他に、フマル酸ジメチル、フマル酸ジブチル、フマル酸ジオクチル、マレイン酸ジメチル、マレイン酸ジブチル、マレイン酸ジオクチル等の不飽和二塩基酸のジエステル類も単量体として使用することができる。
 本発明におけるカルボキシル基含有単量体としては、例えば、アクリル酸、メタクリル酸、無水マレイン酸、マレイン酸、フマル酸、ケイヒ酸、フマル酸メチル、フマル酸エチル、フマル酸プロピル、フマル酸ブチル、フマル酸オクチル、マレイン酸メチル、マレイン酸エチル、マレイン酸プロピル、マレイン酸ブチル、マレイン酸オクチル等の不飽和二塩基酸のモノエステル類等、が挙げられる。好ましくはアクリル酸、メタクリル酸、フマル酸、フマル酸メチル、フマル酸エチル、フマル酸プロピル、フマル酸ブチル、フマル酸オクチルであり、特に好ましくはアクリル酸、メタクリル酸である。
 本発明におけるカルボキシル基含有ビニル樹脂(C)は、単量体として、必要に応じて2個以上の2重結合を有する架橋性モノマーを使用してもよい。架橋性モノマーとしては、たとえば、ジビニルベンゼン、ジビニルナフタレン等の芳香族ジビニル化合物、エチレングリコールジアクリレート、1,3-ブチレングリコールジアクリレート、1,4-ブタンジオールジアクリレート、1,5-ペンタンジオールジアクリレート、1,6-ヘキサンジオールジアクリレート、ネオペンチルグリコールジアクリレート、ジエチレングリコールジアクリレート、トリエチレングリコールジアクリレート、テトラエチレングリコールジアクリレート、ポリオキシエチレン(2)-2,2-ビス(4-ヒドロキシフェニル)プロパンジアクリレート、ポリオキシエチレン(4)-2,2-ビス(4-ヒドロキシフェニル)プロパンジアクリレート、等のジアクリレート化合物及びそれらのメタクリレート化合物、ペンタエリスリトールトリアクリレート、トリメチロールエタントリアクリレート、トリメチロールプロパントリアクリレート、テトラメチロールメタンテトラアクリレート等の多官能架橋性モノマー及びそれらのメタクリレート化合物等が挙げられる。
 これら多官能架橋性モノマーを使用する場合は、カルボキシル基含有ビニル樹脂(C)の他のモノマー100質量%に対して0.5質量%未満であることが好ましい。0.5質量%以上使用する場合、後述するカルボキシル基とグリシジル基の反応により生成する架橋体が、トナー製造の際に切断されてしまうことがある。これは、多官能架橋性モノマーによる架橋部分がトナー製造時の混練シェアに脆く、多官能架橋性モノマーによる架橋切断部分が起点となり、架橋切断が促進されるためと考えられる。
 本発明に係るカルボキシル基含有ビニル樹脂(C)の製造方法としては、溶液重合、塊状重合、懸濁重合、乳化重合等の公知の重合方法及びそれらの組み合わせが採用できるが、分子量分布の調整や、後述する高分子量ビニル樹脂(H)と低分子量ビニル樹脂(L)の混合性、カルボキシル基やグリシジル基の分布調整の簡便さから溶液重合や塊状重合及びそれらの組み合わせが好適に採用される。
 本発明に係るカルボキシル基含有ビニル樹脂(C)は、高分子量ビニル樹脂(H)と低分子量ビニル樹脂(L)を、それぞれあらかじめ単独で重合し、それらを溶融状態もしくは溶液状態で混合して得ることができる。また、高分子量ビニル樹脂(H)もしくは低分子量ビニル樹脂(L)の一方を単独で重合した後、そのビニル樹脂の存在下に他方のビニル樹脂を重合して得ることもできる。
 溶液重合に用いられる溶剤としては、ベンゼン、トルエン、エチルベンゼン、キシレン、キュメン等の芳香族炭化水素が挙げられ、これら単独またはこれらの混合物が使用され、好ましくはキシレンが好適である。
 重合は、重合開始剤を用いて行っても良いし、重合開始剤を用いずに、いわゆる熱重合を行っても良い。重合開始剤としては通常、ラジカル重合開始剤として使用可能なものを使用することができる。例えば2,2'-アゾビスイソブチロニトリル、2,2'-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、ジメチル-2,2'-アゾビスイソブチレート、1,1'-アゾビス(1-シクロヘキサンカーボニトリル)、2-(カーバモイルアゾ)-イソブチロニトリル、2,2'-アゾビス(2,4,4-トリメチルペンタン)、2-フェニルアゾ-2,4-ジメチル-4-メトキシバレロニトリル、2,2'-アゾビス(2-メチル-プロパン)などのアゾ系開始剤、メチルエチルケトンパーオキサイド、アセチルアセトンパーオキサイド、シクロヘキサノンパーオキサイドなどのケトンパーオキサイド類、1,1-ビス(t-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(ブチルパーオキシ)シクロヘキサン、2-2-ビス(t-ブチルパーオキシ)ブタンなどのパーオキシケタール類、t-ブチルハイドロパーオキサイド、クメンハイドロパーオキサイド、1,1,3,3-テトラメチルブチルハイドロパーオキサイドなどのハイドロパーオキサイド類、ジ-t-ブチルパーオキサイド、t-ブチルクミルパーオキサイド、ジ-クミルパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、α,α'-ビス(t-ブチルパーオキシイソプロピル)ベンゼンなどのジアルキルパーオキサイド類、イソブチリルパーオキサイド、オクタノイルパーオキサイド、デカノイルパーオキサイド、ラウロイルパーオキサイド、3,5,5-トリメチルヘキサノイルパーオキサイド、ベンゾイルパーオキサイド、m-トルオイルパーオキサイドなどのジアシルパーオキサイド類、ジ-イソプロピルパーオキシジカーボネート、ジ-2-エチルヘキシルパーオキシジカーボネート、ジ-n-プロピルパーオキシジカーボネート、ジ-2-エトキシエチルパーオキシカーボネート、ジ-メトキシイソプロピルパーオキシジカーボネート、ジ(3-メチル-3-メトキシブチル)パーオキシカーボネートなどのパーオキシジカーボネート類、アセチルシクロヘキシルスルホニルパーオキサイドなどのスルホニルパーオキサイド類、t-ブチルパーオキシアセテート、t-ブチルパーオキシイソブチレート、t-ブチルパーオキシネオデカノエイト、クミルパーオキシネオデカノエイト、t-ブチルパーオキシ-2-エチルヘキサノエイト、t-ブチルパーオキシラウレート、t-ブチルパーオキシベンゾエイト、t-ブチルパーオキシイソブロピルカーボネート、ジ-t-ブチルジパーオキシイソフタレートなどのパーオキシエステル類等が例示できる。これらの開始剤は、単独で使用しても良いし、2種以上を併用しても良い。
 その種類、量は反応温度、単量体濃度等により適宜選んで使用でき、通常、用いる単量体100質量%当たり0.01~10質量%使用される。
 さらに、カルボキシル基含有ビニル樹脂(C)は、さらに、エチレン系炭化水素および/または共役ジエン系炭化水素由来の構成単位の連鎖からなるブロックとスチレン由来の連鎖からなるブロックとからなるブロック共重合体、および/またはそれらの水素添加物である水素添加ブロック共重合体を含有してもよい。
 これらのブロック共重合体および水素添加ブロック共重合体の含有量は、カルボキシル基含有ビニル樹脂(C)100質量%に対して、好ましくは0.05質量%以上1.5質量%以下であり、より好ましくは0.1質量%以上1.0質量%以下である。上記範囲内とすることにより、トナー保存性や流動性などを損なうことなくトナー用バインダー樹脂内に離型剤を分散することができる。これにより、耐感光体汚染性の優れたトナーを得やすくなる。
 これらのブロック共重合体を得るために、一般に、エチレン、プロピレン、1-ブテン、2-ブテン、イソブチレン、1-ペンテン、2-ペンテン、2-メチル-1-ブテン、3-メチル-1-ブテン、2-メチル-2-ブテン、1-ヘキセン、2,3-ジメチル-2-ブテン等のエチレン系炭化水素、およびブタジエン、イソプレン等の共役ジエン系炭化水素から選択される1種以上を使用してよい。これらを用いて公知のリビングアニオン重合やリビングカチオン重合により生成させたブロック共重合体の反応性基を利用し、さらにこれにスチレンをブロックさせる等の方法で製造される。しかしながら、製造方法に制限を受けるものではなく、従来公知のその他の製造方法により製造されたものを使用してもよい。さらに、上記のブロック共重合体の中には不飽和二重結合を有するものもある。これらは公知の方法により不飽和二重結合と水素とを反応させ、水素添加物として使用してもよい。
 上記ブロック共重合体としては、市販のものとして、クレイトンポリマー社のクレイトン(スチレン-エチレン/ブチレン-スチレン系ブロック共重合体(SEBS)、スチレン-ブタジエン-スチレン系ブロック共重合体、スチレン-イソプレン-スチレン系ブロック共重合体、スチレン-エチレン/プロピレン-スチレン系ブロック共重合体、スチレン-エチレン/プロピレン系ブロック共重合体)、株式会社クラレ製セプトン(スチレン-エチレン/プロピレン系ブロック共重合体、スチレン-イソプレン系ブロック共重合体の水添物)、旭化成製タフプレン(スチレン-ブタジエン系ブロック共重合体)等が挙げられる。
<高分子量ビニル樹脂(H)>
 本発明に係る高分子量ビニル樹脂(H)は、THF可溶分がGPCのクロマトグラムにおいて、分子量10×10以上35×10未満、より好ましくは15×10以上30×10未満にメインピークを有する。これにより、優れた定着性、耐オフセット性、耐久性のバランスを実現したトナーが得られる。高分子量ビニル樹脂(H)のメインピークの分子量(以下、ピーク分子量という)が10×10未満の場合、トナー用バインダー樹脂の強度が不足し、得られるトナーの耐久性の低下が発生したり、後述するグリシジル基との反応による架橋体形成において、架橋形成が不十分となり耐オフセット性の低下が起きることがある。一方、上記ピーク分子量が35×10以上の場合、グリシジル基含有ビニル樹脂との反応よってバインダー樹脂が増粘しやすくなるものの、適正なトナーの粘弾性範囲に調整した際に未反応の高分子量ビニル樹脂が多く残存しやすくなり、未反応の高分子量ビニル樹脂が定着性低下を引き起こす場合がある。
 高分子量ビニル樹脂(H)の酸価(AVH)は3~30mgKOH/gであることが好ましく、より好ましくは5~28mgKOH/gである。これにより、トナーの定着性、耐オフセット性が優れる。上記酸価が3mgKOH/gより低い場合、後述するグリシジル基含有ビニル樹脂との反応が起きにくくなり、トナーの耐オフセット性が悪化する場合がある。一方、上記酸価が30mgKOH/gを超えると、グリシジル基含有ビニル樹脂との反応が起きすぎて増粘しすぎ、その結果、トナーの定着温度域での損失弾性率が高くなりすぎ、定着性能を低下させる場合がある。
 高分子量ビニル樹脂(H)は、必ずしも単独の重合体である必要は無く、2種以上の高分子量ビニル樹脂を使用してもよい。その場合、高分子量ビニル樹脂(H)全体として上記特性を満たしていることが好ましい。また、単独の高分子量ビニル樹脂(H)の重合体を生成する際に、カルボキシル基含有単量体を重合途中に添加、若しくは重合初期と後期に分けて添加することも可能である。
<低分子量ビニル樹脂(L)>
 本発明に係る低分子量ビニル樹脂(L)は、THF可溶分がGPCのクロマトグラムにおいて分子量0.3×10以上2.0×10未満にメインピークを有することが好ましく、分子量0.4×10以上2×10未満にメインピークを有することがより好ましい。これにより、本発明のトナーにおいて良好な定着性が得られる。低分子量ビニル樹脂(L)のピーク分子量が0.3×10未満の場合、トナーの保存性や耐久性への悪影響が出やすくなる場合がある。一方、上記ピーク分子量が2.0×10以上の場合、定着性能を悪化させる場合がある。
 低分子量ビニル樹脂(L)の酸価(AVL)は、2~20mgKOH/gが好ましく、より好ましくは3~18mgKOH/gである。これにより、定着性能と耐オフセット性能とに優れたトナーが得られる。上記酸価(AVL)が2mgKOH/gより低い場合、高分子量ビニル樹脂(H)との相溶性が悪化しすぎ、耐久性の低下や、微細なオフセットが発生する場合がある。一方、上記酸価(AVL)が20mgKOH/gよりも高い場合、グリシジル基含有ビニル樹脂(E)との反応性が増し、実質的にグリシジル基含有ビニル樹脂(E)と高分子量ビニル樹脂(H)との反応を阻害し、且つ、低分子量ビニル樹脂(L)自体は高分子量化することとなり、耐オフセット性の悪化や、定着性の悪化を引き起こすことがある。
 低分子量ビニル樹脂(L)は、上記の特徴を有している必要があるが、必ずしも単独の重合体である必要は無く、2種以上の低分子量ビニル樹脂を使用しても構わない。そのときには、低分子量ビニル樹脂(L)全体として、上述の特性を満たしていることが好ましい。また、単独の低分子量ビニル樹脂(L)の重合体を生成する際に、カルボキシル基含有単量体を重合途中に添加、若しくは重合初期と後期に分けて添加することも可能である。
<グリシジル基含有ビニル樹脂(E)>
 本発明に係るグリジジル基含有ビニル樹脂(E)は、スチレン系単量体、アクリル系単量体(メタクリル系単量体も含む)の少なくとも1種と、少なくとも1種のグリシジル基含有単量体を用いて公知の重合方法を用いることによって得られる。
 本発明におけるスチレン系単量体、アクリル系単量体(メタクリル系単量体も含む)としては、カルボキシル基含有ビニル樹脂(C)の説明で例示した単量体が良い。
 本発明におけるグリシジル基含有単量体としては、アクリル酸グリシジル、アクリル酸βメチルグリシジル、メタアクリル酸グリシジル、メタアクリル酸βメチルグリシジルなどが良く、好ましくはメタアクリル酸グリシジル、メタアクリル酸βメチルグリシジルである。
 本発明に係るグリシジル基含有ビニル樹脂(E)において、THF可溶分はGPCのクロマトグラムにおいて分子量3×10以上7×10以下が好ましく、より好ましくは3×10以上6×10以下にピークを有し、また、エポキシ価は0.003~0.100Eq/100gが好ましく、より好ましくは0.003~0.080Eq/100gである。グリシジル基含有ビニル樹脂(E)が、上記範囲内のピーク分子量およびエポキシ価を有することにより、トナーの耐久性が良好となり、長期連続印刷においてトナー破壊により画像の劣化が起きない、いわゆる現像維持特性が向上する。また、それと同時に、カルボキシル基含有ビニル樹脂(C)とグリシジル基含有ビニル樹脂(E)との反応により、高分子量成分の分子量がより増大し、バインダー樹脂に適度な弾性を付与するため、耐オフセット性能が良好となる。ピーク分子量が小さすぎたりエポキシ価が小さすぎる場合には、バインダー樹脂の弾性が不足し、耐オフセット性の低下が発生することがある。一方で、ピーク分子量が大きすぎたりエポキシ価が大きすぎる場合、バインダー樹脂の弾性が大きくなりすぎ、定着性が悪化することがある。
 本発明においてエポキシ価は、樹脂100g中に存在するエポキシ基のモル数であり、その測定はJIS K-7236に準じて行うことができる。
 グリシジル基含有ビニル樹脂(E)は、必ずしも単独の重合体である必要は無く、2種以上のグリシジル基含有ビニル樹脂を使用しても良い。その場合、グリシジル基含有ビニル樹脂(E)全体として上記特性を満たしていることが好ましい。また、単独のグリシジル基含有ビニル樹脂(E)の重合体を生成する際に、グリシジル基含有単量体を重合途中に添加、若しくは重合初期と後期に分けて添加することも可能である。
<結晶性を有する飽和ポリエステル樹脂(SC)>
 本発明に係る結晶性を有する飽和ポリエステル樹脂(SC)は、炭素数2~4の脂肪族ジオールから選ばれるアルコール成分と炭素数4~6の脂肪族ジカルボン酸から選ばれるカルボン酸成分を重縮合して得られることが好ましい。上記アルコール成分またはカルボン酸成分の炭素数が上記範囲よりも多い場合、結晶性を有する飽和ポリエステル樹脂(SC)の疎水性が高くなる結果、ビニル樹脂(A)との親和性が高くなり、結晶性を有する飽和ポリエステル樹脂(SC)がビニル樹脂(A)に溶け込み、トナー用バインダー樹脂全体が可塑化され、結果としてトナーの保存性が低下してしまうことがある。
 炭素数2~4の脂肪族ジオールから選ばれるアルコール成分としては、エチレングリコール、1,4-ブタンジオール等が挙げられる。また、炭素数4~6の脂肪族ジカルボン酸から選ばれるカルボン酸成分としては、コハク酸、アジピン酸、及びそれらの酸無水物またはアルキルエステル等が挙げられる。
 本発明に係る結晶性を有する飽和ポリエステル樹脂(SC)は、原料となるアルコール成分やカルボン酸成分として、3価以上の多価アルコールや3価以上の多価カルボン酸ならびにその酸無水物を含まないことが好ましい。これらを含有した場合、分岐構造や架橋構造が形成され、結晶化が阻害されやすくなることにより、結晶性を有する飽和ポリエステル樹脂(SC)の非晶部分が多くなってしまい、その結果、トナーがべたつき、保存性が低下してしまうことがある。
 また、本発明に係る結晶性を有する飽和ポリエステル樹脂(SC)は、原料となるアルコール成分やカルボン酸成分として、フマル酸に代表される2重結合を有するカルボン酸成分や2重結合を有するアルコール成分を含まないことが好ましい。フマル酸に代表される2重結合を有するカルボン酸成分を用いた場合、構造の規則性が乱れ、結晶性ポリエステル樹脂の結晶構造ができにくくなり、トナーのべたつきの原因となる非晶部分の割合が上がってしまうことがある。その結果、トナーの保存性が低下しやすくなることがある。また、不飽和結合を有するポリエステル樹脂は、重縮合の際に、ラジカル重合を起こしやすく、これに起因して結晶性ポリエステル樹脂に分岐構造や架橋構造が出来やすい。このことも結晶構造ができにくくなる一因と考えられる。また、結晶性ポリエステル樹脂がフマル酸などに由来する不飽和結合を有していると、結晶性ポリエステル樹脂と非晶性ポリエステル樹脂(SN)の親和力が強くなり、結晶性ポリエステル樹脂が非晶性ポリエステル樹脂(SN)に溶け込みやすくなる。その結果、非晶性ポリエステル樹脂(SN)の島相内に結晶性ポリエステル樹脂由来の結晶構造が形成できず、且つ、非晶性ポリエステル樹脂が可塑化することにより、保存性が低下してしまう場合がある。
 結晶性を有する飽和ポリエステル樹脂(SC)の重縮合反応を行う際の温度は、一般に、120℃~250℃が好ましく、より好ましくは130℃~240℃であり、更に好ましくは140℃~230℃である。反応温度が120℃未満の場合は、反応時間が延び生産性が低下することがあり、反応温度が250℃を超える場合は、トナー用バインダー樹脂の分解が起こることがある。
 上記重縮合反応において、触媒を添加すると反応の進行が速やかになり好ましい。触媒としては、公知の重縮合反応用の触媒が使用できる。一例として、錫、アンチモン、チタン、ゲルマニウム、アルミニウム等の元素を含有する触媒が挙げられる。錫を含有する触媒としては、ジブチル錫オキサイド等が挙げられる。アンチモンを含有する触媒としては、三酸化アンチモン等が挙げられる。チタンを含有する触媒としては、チタンアルコキシド、チタンアシレート、チタンキレート等を使用することがさらに好ましく、特に好ましくは、テトラノルマルブチルチタネート、テトラ(2‐エチルヘキシル)チタネート、テトラメチルチタネート、テトライソプロピルチタネートを使用することが好ましい。ゲルマニウムを含有する触媒としては二酸化ゲルマニウム等が挙げられる。
 上記チタンを含有する触媒に相当する具体的な商品名として、チタンアルコキシドとしては、オルガチックスTA-25(テトラノルマルブチルチタネート)、TA-30(テトラ(2-エチルヘキシル)チタネート)、TA-70(テトラメチルチタネート)等、チタンアシレートとしては、オルガチックスTPHS(ポリヒドロキシチタンステアレート)等、チタンキレートとしては、オルガチックスTC-401(チタンテトラアセチルアセトナート)、TC-200(チタンオクチレングリコレート)、TC-750(チタンエチルアセトアセテート)、TC-310(チタンラクテート)、TC-400(チタントリエタノールアミネート)等(いずれも松本製薬工業株式会社製)、を例示することができるが、これに限定されるものではない。
 また、触媒の添加量は、結晶性を有する飽和ポリエステル樹脂(SC)100質量部当たり0.01質量部~0.50質量部であることが好ましい。上記の触媒は、単独で使用しても複数を使用しても良い。また、触媒は、重合開始時に添加しても、重合途中で添加しても良い。
 本発明に係る結晶性を有する飽和ポリエステル樹脂(SC)は、クロロホルム可溶分のゲルパーミエーションクロマトグラフィー(GPC)により測定される分子量分布において、好ましくは0.5×10以上1.5×10以下であり、より好ましくは0.6×10以上1.4×10以下の領域にメインピークを有している。これにより、本発明のトナーの保存性、耐久性、耐感光体汚染性が優れる。上記ピーク分子量が0.5×10より低い場合、カルボキシル基含有ビニル樹脂(C)やグリシジル基含有ビニル樹脂(E)、更には非晶性ポリエステル樹脂(SN)に対して、結晶性を有する飽和ポリエステル樹脂(SC)の可塑化が起きやすくなる結果、保存性の悪化を起こすことがある。一方、上記ピーク分子量が1.5×10よりも高い場合、カルボキシル基含有ビニル樹脂(C)やグリシジル基含有ビニル樹脂(E)およびこれらの反応物、更には非晶性ポリエステル樹脂(SN)への結晶性を有する飽和ポリエステル樹脂(SC)の分散性が悪化し、トナーにおいて結晶性を有する飽和ポリエステル樹脂(SC)が抜け落ち保存性の低下が起こる場合がある。
 本発明に係る結晶性を有する飽和ポリエステル樹脂(SC)は、示差走査型熱量測定法(DSC)による測定において、好ましくは75℃以上120℃以下であり、より好ましくは80℃以上115℃以下に結晶融点に由来する吸熱ピークを有している。これにより、低温定着性、保存性のバランスに優れたトナーが得られる。上記融点が75℃より低い場合、より低温で結晶性を有する飽和ポリエステル樹脂(SC)が溶融し、トナーの粘度が低下するため、低温定着性は向上するものの、外添剤が埋め込まれやすくなる結果、保存性が悪化してしまう場合がある。一方、融点が120℃を超える場合には、保存性は良化するものの、トナーを定着させる際に十分に結晶性を有する飽和ポリエステル樹脂(SC)が溶融せず、定着性の効果に結晶性を有する飽和ポリエステル樹脂(SC)が寄与しなくなる場合がある。
 本発明において結晶性を有する飽和ポリエステル樹脂(SC)の酸価は、好ましくは25mgKOH/g以上70mgKOH/g以下であり、より好ましくは30mgKOH/g以上65mgKOH/g以下である。これにより、本発明のトナーの保存性が向上する。上記酸価が25mgKOH/gより低い場合、結晶性を有する飽和ポリエステル樹脂(SC)の親水性が低下し、非晶性ポリエステル樹脂(SN)に対する親和性が高くなる結果、非晶性ポリエステル樹脂(SN)と混合した際に、結晶性を有する飽和ポリエステル樹脂(SC)の結晶化が阻害されやすくなると同時に、非晶性ポリエステル樹脂(SN)が可塑化されやすくなる。これにより保存性が低下してしまう場合がある。一方、上記酸価が70mgKOH/gより高い場合、実質的に結晶性を有する飽和ポリエステル樹脂(SC)の分子量が低くなりすぎ、保存性の悪化を起こす場合がある。
 また、結晶性を有する飽和ポリエステル樹脂(SC)の構造については、結晶性を有する飽和ポリエステル樹脂(SC)の貧溶媒であるキシレンに溶解し、キシレン不溶成分をクロロホルムのような結晶性を有する飽和ポリエステル樹脂(SC)の良溶媒にて結晶性を有する飽和ポリエステル樹脂(SC)を抽出し、徹底的に加水分解した後、蒸留やLCによる分離とIR(赤外吸収分析法)、NMR(核磁気共鳴分析法)、LC(液クロマトグラフ)、MS(質量分析)の他、ガスクロマトグラフィー(GC)等の分析法を組み合わせて、特定することが出来る。
 本発明に係る結晶性を有する飽和ポリエステル樹脂(SC)のエステル基濃度は、好ましくは10.0mmol/g以上13.5mmol/g以下であり、より好ましくは10.3mmol/g以上12.0mmol/g以下である。これにより、トナーの保存性が向上する。また、上記エステル基濃度を上記範囲内とすることにより、結晶性を有する飽和ポリエステル樹脂(SC)の極性が高くなり、極性の低いビニル樹脂(A)に対する結晶性を有する飽和ポリエステル樹脂(SC)の親和性が大きく低下する。そのため、本発明において、極性の高さが、ビニル樹脂(A)、非晶性ポリエステル樹脂(SN)、結晶性を有する飽和ポリエステル樹脂(SC)の順で大きくなる場合には、結晶性を有する飽和ポリエステル樹脂(SC)は、ビニル樹脂(A)中に分散する非晶性ポリエステル樹脂(SN)の島相内に、選択的に取り込まれることになる。その結果、結晶性を有する飽和ポリエステル樹脂(SC)がトナー表面に露出する確率が低減する。このため、本発明のトナー表面のベタツキが抑えられ、保存性が向上する。
 結晶性を有する飽和ポリエステル樹脂(SC)のエステル基濃度が10.0mmol/gよりも低い場合、非晶性ポリエステル樹脂(SN)と結晶性を有する飽和ポリエステル樹脂(SC)のエステル基濃度の差が小さくなることにより、これらの相溶性が増大する。これにより、結晶性を有する飽和ポリエステル樹脂(SC)の結晶化が阻害されやすくなり、ビニル樹脂(A)内に分散している非晶性ポリエステル樹脂(SN)の島相内で、結晶性を有する飽和ポリエステル樹脂(SC)の結晶が形成されにくくなるとともに、島相自体が結晶性を有する飽和ポリエステル樹脂(SC)により可塑化され、保存性の低下を引き起こしやすくなる場合がある。
 本発明において、エステル基濃度は、樹脂1g中に含まれるエステル基の量(mmol)である。ポリエステル樹脂の場合、重合前の原料のカルボキシル基の総量と重合後の樹脂のカルボキシル基の総量の差が、重合により形成されたエステル基の量となる。このため、原料となるカルボン酸成分の量と重合後の酸価からエステル基濃度を計算できる。また、樹脂中に存在するエステル基の量は、重合時に脱水される水分子の量と同じ量である。よって、重合時の脱水量を重合後の樹脂の重量で除することによっても計算することが出来る。また、前述のように、結晶性を有する飽和ポリエステル樹脂(SC)をトナー用バインダー樹脂やトナーから抽出し、結晶性を有する飽和ポリエステル樹脂(SC)の構造解析によりカルボン酸成分の構造、比率を特定し、且つ、結晶性を有する飽和ポリエステル樹脂(SC)の酸価を測定することにより、エステル基濃度を算出することもできる。
<非晶性ポリエステル樹脂(SN)>
 本発明に係る非晶性ポリエステル樹脂(SN)は、少なくとも一種のジオールと少なくとも一種のジカルボン酸とを主成分とした重縮合反応により得られる。この非晶性ポリエステル樹脂(SN)は、少なくとも芳香族環構造を有していることが好ましく、ビスフェノールA由来の骨格を有していることがより好ましい。
 非晶性ポリエステル樹脂(SN)が芳香族環構造を有することにより、ビニル樹脂(A)に対して非相溶ではあるものの、ビニル樹脂(A)の主成分となるスチレン骨格との親和性が増し、ビニル樹脂(A)中における非晶性ポリエステル樹脂(SN)の島相の分散性が良好となる。また、非晶性ポリエステル樹脂(SN)はエステル基を有していることから、ビニル樹脂(A)と比べると結晶性を有する飽和ポリエステル樹脂(SC)との親和性はあるが、芳香族環構造を有することにより、結晶性を有する飽和ポリエステル樹脂(SC)が非晶性ポリエステル樹脂(SN)に相溶することを防止でき、非晶性ポリエステル樹脂(SN)の島相内で結晶性を有する飽和ポリエステル樹脂(SC)が結晶化しやすくなり、保存性が向上しやすい。
 更に、非晶性ポリエステル樹脂(SN)が芳香族環構造としてビスフェノールA由来の骨格を有していると、非晶性ポリエステル樹脂(SN)のエステル基濃度がより低下しやすくなるため、結晶性を有する飽和ポリエステル樹脂(SC)の非晶性ポリエステル樹脂(SN)への相溶を防止しやすくなり、非晶性ポリエステル樹脂(SN)の島相内で結晶性を有する飽和ポリエステル樹脂(SC)がより結晶化しやすくなり、保存性が向上しやすい。
 非晶性ポリエステル樹脂(SN)中の芳香族環構造は、NMRやIRによりベンゼン環の置換基を解析することにより確認できる。
 本発明に係る非晶性ポリエステル樹脂(SN)の原料として使用されるアルコール成分としては、例えば、エチレングリコール、1,2-ブタンジオール、1,2-プロピレングリコール、1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、ジエチレングリコール、トリエチレングリコール、ジプロピレングリコール、1,5-ペンタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール、2-エチル-1,3-ヘキサンジオール、水素添加ビスフェノールA、ビスフェノールAのエチレンオキサイド付加物、ビスフェノールAのプロピレンオキサイド付加物などが挙げられる。これらの中でもビスフェノールAのプロピレンオキサイド付加物、トリエチレングリコール、エチレングリコール、ネオペンチルグリコールが好ましく用いられる。
本発明に係る非晶性ポリエステル樹脂(SN)において、ビスフェノールAのエチレンオキサイド付加物、ビスフェノールAのプロピレンオキサイド付加物などのビスフェノールA誘導体の使用量は、全アルコール成分100mol%に対して、好ましくは20mol%以上であり、より好ましくは40mol%以上であり、更に好ましくは60mol%以上である。これにより、保存性に優れるトナーが得られる。
 本発明に係る非晶性ポリエステル樹脂(SN)の原料として使用されるジカルボン酸としては、脂肪族飽和ジカルボン酸類、脂肪族不飽和ジカルボン酸類、芳香族ジカルボン酸類、前記の各種ジカルボン酸の無水物や前記の各種ジカルボン酸の炭素数1~6の低級アルキルエステルなどが挙げられる。脂肪族飽和ジカルボン酸類としては、マロン酸、コハク酸、グルタル酸、アジピン酸、アゼライン酸、セバシン酸などが挙げられる。脂肪族不飽和ジカルボン酸類としては、マレイン酸、フマル酸、シトラコン酸、イタコン酸などが挙げられる。芳香族ジカルボン酸類としては、フタル酸、テレフタル酸、イソフタル酸などが挙げられる。前記の各種ジカルボン酸の無水物としては、無水コハク酸、無水マレイン酸、無水フタル酸などが挙げられる。前記の各種ジカルボン酸の炭素数1~6の低級アルキルエステルとしては、コハク酸ジメチルエステル、マレイン酸ジエチルエステル、フタル酸ジヘキシルエステルなどが挙げられる。これらの中でもテレフタル酸、イソフタル酸が好ましく用いられる。また、酸価の調整などを目的とし、オクタン酸、デカン酸、ドデカン酸、ミリスチン酸、パルミチン酸、ステアリン酸などの脂肪族モノカルボン酸や安息香酸、ナフタレンカルボン酸などの芳香族モノカルボン酸も使用することができる。
 本発明に係る非晶性ポリエステル樹脂(SN)において、芳香族ジカルボン酸の使用量は、全カルボン酸成分100mol%に対して、好ましくは60mol%以上であり、より好ましくは75mol%以上であり、更に好ましくは85mol%以上である。これにより、保存性に優れるトナーが得られる。
 また、本発明に係る非晶性ポリエステル樹脂(SN)の原料として、トリメリット酸、ピロメリット酸及びこれらの酸無水物などの3価以上の多価カルボン酸や、トリメチロールプロパン、グリセリン、2-メチルプロパントリオール、トリメチロールエタンなどの3価以上の多価アルコールも使用することは出来る。しかし、非晶性ポリエステル樹脂(SN)が架橋構造を有し、THF不溶成分を含有すると、ビニル樹脂(A)中での非晶性ポリエステル樹脂(SN)の分散性が低下しやすくなる。このため、非晶性ポリエステル樹脂(SN)において、THF不溶成分が生成しないように、3価以上の多価カルボン酸の使用量は、全カルボン酸成分に対して10mol%以下が好ましく、3価以上の多価アルコールの使用料は、全アルコール成分に対して10mol%以下が好ましい。
 非晶性ポリエステル樹脂(SN)の重縮合反応を行う際の温度は、一般に、170℃~270℃が好ましく、更に好ましくは180℃~250℃である。反応温度が170℃未満の場合は、反応時間が延び生産性が低下することがある。一方、反応温度が270℃を超える場合は、樹脂の分解が起こることがある。また、重縮合反応の触媒としては、前述の結晶性を有する飽和ポリエステル樹脂(SC)の重縮合反応に用いる触媒と同じものを使用できる。上記触媒の添加量としては、非晶性ポリエステル樹脂(SN)100質量部当たり0.01質量部~0.50質量部であることが好ましい。触媒は、単独で使用しても複数を使用しても良い。また、触媒は、重合開始時に添加しても、重合途中で添加しても良い。
 本発明に係る非晶性ポリエステル樹脂(SN)は、THF可溶分のゲルパーミエーションクロマトグラフィー(GPC)により測定される分子量分布において、0.3×10以上1.0×10以下、好ましくは0.4×10以上0.9×10以下の領域にメインピークを有していることが好ましい。これにより、定着性および保存性に優れたトナーが得られる。上記ピーク分子量が0.3×10より低い場合、ビニル樹脂(A)への相溶性が高くなりすぎ、保存性の悪化を起こすことがある。一方、上記ピーク分子量が1.0×10よりも高い場合、ビニル樹脂(A)への分散性が低下し、保存性低下を引き起こす場合があり、また、溶融流動性も低下することから定着性を悪化させる場合がある。
 本発明に係る非晶性ポリエステル樹脂(SN)は、示差走査型熱量測定法(DSC)による測定において、結晶融点に由来する吸熱ピークを有していない。また、非晶性ポリエステル樹脂(SN)のガラス転移温度(Tg)は、DSCによる測定において、55℃以上70℃以下であることが好ましい。これにより、定着性および保存性に優れたトナーが得られる。上記Tgが55℃未満であると、保存性が低下する場合がある。一方、上記Tgが70℃を超えると定着性が低下する場合がある。
 本発明に係る非晶性ポリエステル樹脂(SN)の酸価は、好ましくは25mgKOH/g以上70mgKOH/g以下であり、より好ましくは25mgKOH/g以上40mgKOH/g以下である。これにより、保存性および耐久性に優れたトナーが得られる。上記酸価が25mgKOH/gより低い場合、カルボキシル基含有ビニル樹脂(C)とグリシジル基含有ビニル樹脂(E)の反応における結晶性を有する非晶性ポリエステル樹脂(SN)の分散工程において、非晶性ポリエステル樹脂(SN)の分散性が悪化する結果、抜け落ちてトナーの保存性が悪化してしまう場合がある。一方、上記酸価が70mgKOH/gより高い場合、実質的に非晶性ポリエステル樹脂(SN)の分子量が低くなりすぎ、保存性の悪化を起こす場合がある。
 本発明に係る非晶性ポリエステル樹脂(SN)のエステル基濃度は、好ましくは3.0mmol/g以上7.0mmol/g以下であり、より好ましくは3.5mmol/g以上5.5mmol/g以下である。これにより、保存性に優れたトナーが得られる。上記エステル基濃度が3.0mmol/gより低すぎると、非晶性ポリエステル樹脂(SN)の疎水性が強くなりすぎ、ビニル樹脂(A)に対して溶解しすぎてしまい、結晶性を有する飽和ポリエステル樹脂(SC)を非晶性ポリエステル樹脂(SN)の島相内に取り込みにくくなって、保存性が低下してしまう場合がある。一方、上記エステル基濃度が7.0mmol/gより高すぎると、ビニル樹脂(A)との親和性が低くなり、非晶性ポリエステル樹脂(SN)の分散性が悪化するとともに、結晶性を有する飽和ポリエステル樹脂(SC)が非晶性ポリエステル樹脂(SN)に溶解しやすくなって、非晶性ポリエステル樹脂(SN)が可塑化してしまい、保存性が悪化してしまう場合がある。
<金属成分(M)>
 本発明において、Zn(亜鉛)、Ca(カルシウム)、Mg(マグネシウム)、Al(アルミニウム)、Ba(バリウム)から選択される金属成分(M)(ただし、金属酸化物を除く)は、少なくとも結晶性を有する飽和ポリエステル樹脂(SC)中に分散している。この金属成分(M)は、滑り効果を目的としていないので、滑剤として外添剤に含まれる金属のようにトナーの表層に偏析するのではない。この金属成分(M)としては、好ましくはZnまたはCaである。
 また、本発明に係る金属成分(M)が、結晶性を有する飽和ポリエステル樹脂(SC)中に存在していることは次の方法で確認できる。すなわち、トナー用バインダー樹脂の場合、トリミング、面出し後、1000倍~5000倍で走査型電子顕微鏡(SEM)/X線マイクロアナライザー(XMA)マッピング分析を行うことにより、確認できる。ここで、観察面積は、1000倍では、114μm×76μm程度、5000倍では、25μm×20μm程度である。トナーの場合、まずトナーをエポキシ樹脂などで包埋した後、バインダー樹脂と同様の操作で確認できる。一方、外添剤に含まれる金属がトナー表層に偏析していることは、走査型電子顕微鏡(SEM)/X線マイクロアナライザー(XMA)マッピング分析を行うことにより、確認できる。
 また、本発明に係る金属成分(M)には、金属酸化物を含まない。すなわち、金属成分(M)には、この磁性材料に含有される金属成分を含まない。
 本発明に係る金属成分(M)と磁性体(金属酸化物)とは、樹脂またはトナーをTHFに溶解し、磁石などを用いて磁性体を取り出すことで区別できる。蛍光X線分析(XRF)などの公知の方法で、取り出した磁性体中に含まれる金属成分を分析できる。
 金属成分(M)は、有機金属塩由来である金属成分(M)とすることができる。より具体的には、金属成分(M)は、下記一般式で表される脂肪酸金属塩由来のZn、Ca、Mg、AlおよびBaから選択される金属成分(M)とすることができる。好ましくはZnまたはCaである。
Figure JPOXMLDOC01-appb-C000002
(上記一般式中、nは11から22の整数であり、mは2または3の整数であり、MはZn、Ca、Mg、AlおよびBaから選択される金属である。)
 また、金属成分(M)の含有量は、ビニル樹脂(A)、結晶性を有する飽和ポリエステル樹脂(SC)、非晶性ポリエステル樹脂(SN)の含有量の合計100質量%に対して、好ましくは0.001質量%以上0.120質量%以下であり、より好ましくは0.010質量%以上0.110質量%以下であり、さらに好ましくは0.015質量%以上0.100質量%以下である。
 本発明のトナー用バインダー樹脂またはトナー中の金属成分(M)の重量は、蛍光X線分析(XRF)などの公知の分析方法で測定することができる。
 本発明に係る金属成分(M)を含有することにより、耐オフセット性、保存性、耐久性、耐感光体汚染性に優れたトナーを得ることが出来る。また、脂肪酸金属塩は結晶性を有する飽和ポリエステル樹脂(SC)に対して不溶であることから、結晶性を有する飽和ポリエステル樹脂(SC)中にドメインとして存在し、その部分が結晶核剤として機能することにより結晶化を促進させる。これにより、結晶性を有する飽和ポリエステル樹脂(SC)中に存在するベタツキの原因となる非晶質部分を低減でき、保存性に優れたトナーが得られる。
 更に、本発明に係る金属成分(M)である上記脂肪酸金属塩は、カルボキシル基含有ビニル樹脂(C)とグリシジル基含有ビニル樹脂(E)の反応工程において、カルボキシル基とグリシジル基の反応触媒としての機能を有している。このため、非晶性ポリエステル樹脂(SN)と結晶性を有する飽和ポリエステル樹脂(SC)の混合物が脂肪酸金属塩を含有することにより、上記反応工程において、非晶性ポリエステル樹脂(SN)の島相の界面近傍で、カルボキシル基含有ビニル樹脂(C)とグリシジル基含有ビニル樹脂(E)の反応が加速される。これにより、混錬シェアが効率的に非晶性ポリエステル樹脂(SN)の島相の形成や分散を促進する。これにより、非晶性ポリエステル樹脂(SN)の島相がカルボキシル基含有ビニル樹脂(C)とグリシジル基含有ビニル樹脂(E)及びその反応物の中で分散されやすくなる。その結果、非晶性ポリエステル樹脂(SN)や、この島相内に存在する結晶性を有する飽和ポリエステル樹脂(SC)が、トナーから抜け落ちにくくなり、優れた耐久性を発現するとともに、カルボキシル基含有ビニル樹脂(C)とグリシジル基含有ビニル樹脂(E)の架橋体形成が進みやすくなることから、耐オフセット性にも優れたトナーが得られる。
 本発明係る脂肪酸金属塩は、例えばラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、ベヘニン酸のZn塩、Ca塩などが挙げられ、特に好ましくはステアリン酸亜鉛、ステアリン酸カルシウムである。
 上記脂肪酸金属塩の導入方法としては、結晶性を有する飽和ポリエステル樹脂(SC)、または、結晶性を有する飽和ポリエステル樹脂(SC)と非晶性ポリエステル樹脂(SN)の混合物を、結晶性を有する飽和ポリエステル樹脂(SC)の融点及び脂肪酸金属塩の融点以上170℃以下、好ましくは160℃以下に加熱後、脂肪酸金属塩を添加して攪拌しながら分散する方法が、脂肪酸金属塩の分散性の観点から好ましい。
<トナー用バインダー樹脂>
 本発明のトナー用バインダー樹脂は、上記のカルボキシル基含有ビニル樹脂(C)、グリシジル基含有ビニル樹脂(E)、及びこれらの反応物からなるビニル樹脂(A)と、非晶性ポリエステル樹脂(SN)と、金属成分(M)を含有する結晶性を有する飽和ポリエステル樹脂(SC)と、を含有する。このような構成とすることで低温定着性、耐オフセット性、保存性のバランスに優れたトナーとすることができる。
 ビニル樹脂(A)の含有量は、ビニル樹脂(A)、非晶性ポリエステル樹脂(SN)および結晶性を有する飽和ポリエステル樹脂(SC)の含有量の合計値100質量%に対して、好ましくは65質量%以上95質量%以下であり、より好ましくは70質量%以上90質量%以下であり、更には75質量%以上90質量%以下である。これにより、低温定着性、耐オフセット性、保存性のバランスに優れたトナーが得られる。ビニル樹脂(A)の含有量が65質量%より低い場合、低温定着性は向上するものの、ビニル樹脂(A)の架橋成分の含有量が低下してしまうことから耐オフセット性に劣る場合がある。また、ビニル樹脂(A)の含有量が65質量%より低すぎると、トナーにした際、非晶性ポリエステル樹脂(SN)と結晶性を有する飽和ポリエステル樹脂(SC)からなる島相が2μm以下に分散できなかったり、更には島相が形成されず、非晶性ポリエステル樹脂(SN)と結晶性を有する飽和ポリエステル樹脂(SC)が連続相となり、上記ポリエステル樹脂成分がトナーから脱離して保存性が著しく低下してしまう場合がある。一方、ビニル樹脂(A)の含有量が95質量%より高い場合、結晶性を有する飽和ポリエステル樹脂(SC)が十分に低温定着性に効果を発揮できない場合がある。
 また、非晶性ポリエステル樹脂(SN)および結晶性を有する飽和ポリエステル樹脂(SC)の合計値の含有量は、ビニル樹脂(A)、非晶性ポリエステル樹脂(SN)および結晶性を有する飽和ポリエステル樹脂(SC)の含有量の合計値100質量%に対して、好ましくは5質量%以上35質量%以下であり、より好ましくは10質量%以上30質量%以下、更には10質量%以上25質量%以下である。これにより、低温定着性、耐オフセット性、保存性のバランスに優れたトナーが得られる。
 本発明のトナー用バインダー樹脂は、ビニル樹脂(A)中に非晶性ポリエステル樹脂(SN)が島状に分散し、且つ、結晶性を有する飽和ポリエステル樹脂(SC)が非晶性ポリエステル樹脂(SN)の島相内に存在し、且つ、かかる島相内に結晶性を有する飽和ポリエステル樹脂(SC)に由来の結晶構造を有している。すなわち、本発明のトナー用バインダー樹脂は、ビニル樹脂(A)が海相を形成し、この海相に非晶性ポリエステル樹脂(SN)の島相が分散している海島構造を有している。結晶性を有する飽和ポリエステル樹脂(SC)は、島相である非晶性ポリエステル樹脂(SN)の内部に偏在する構造を有している。
また、本発明のトナー用バインダー樹脂においては、非晶性ポリエステル樹脂(SN)の相内に、結晶性を有する飽和ポリエステル樹脂(SC)の相が形成されている。
 また、本発明のトナー用バインダー樹脂においては、結晶性を有する飽和ポリエステル樹脂(SC)は、少なくともビニル樹脂(A)中に分散している非晶性ポリエステル樹脂(SN)の島相内に存在しているとともに、微量であれば、かかる島相外のビニル樹脂(A)中に存在してもよいが、好ましくは、結晶性を有する飽和ポリエステル樹脂(SC)は実質的に非晶性ポリエステル樹脂(SN)の島相内のみに存在する。
 結晶性を有する飽和ポリエステル樹脂(SC)が非晶性ポリエステル樹脂(SN)の島相内のみに存在するかは、結晶性を有する飽和ポリエステル樹脂(SC)と非晶性ポリエステル樹脂(SN)の含有比率による。非晶性ポリエステル樹脂(SN)の含有比率が低い場合は、結晶性を有する飽和ポリエステル樹脂(SC)が非晶性ポリエステル樹脂(SN)の島相外のビニル樹脂(A)中に存在することもある。
 非晶性ポリエステル樹脂(SN)の島相同士は各々が島相を保持していれば(連続相となっていなければ)接触していてもよい。
 ここで、本発明のトナー用バインダー樹脂が、このような非晶性ポリエステル樹脂(SN)の島相内に、結晶性を有する飽和ポリエステル樹脂(SC)が存在する構造を有するメカニズムについて、以下推察する。
 まず、本発明において、結晶性を有する飽和ポリエステル樹脂(SC)はエステル基を多く含有することから、非晶性ポリエステル樹脂(SN)やビニル樹脂(A)と比較すると極めて親水性が高い。一方、ビニル樹脂(A)は、スチレンを主成分とすることから親水性が低い。よって、結晶性を有する飽和ポリエステル樹脂(SC)はビニル樹脂(A)に対して親和性が極めて低く、溶解性も無い。これに対し、本発明において非晶性ポリエステル樹脂(SN)は芳香族環構造を有していることから、結晶性を有する飽和ポリエステル樹脂(SC)よりもビニル樹脂(A)に対する親和性が高い。更に、非晶性ポリエステル樹脂(SN)は、結晶性を有する飽和ポリエステル樹脂(SC)と同じくポリエステル樹脂であることから、ビニル樹脂(A)よりも結晶性を有する飽和ポリエステル樹脂(SC)に対する親和性が高い。よって、ビニル樹脂(A)中に非晶性ポリエステル樹脂(SN)と結晶性を有する飽和ポリエステル樹脂(SC)を分散させると、非晶性ポリエステル樹脂(SN)の島相内に結晶性を有する飽和ポリエステル樹脂(SC)が取り込まれることとなる。また、本発明では結晶性を有する飽和ポリエステル樹脂(SC)のエステル基濃度などの化学構造を制御し、且つ、脂肪酸金属塩などの金属成分(M)を添加することにより、島相内で結晶性を有する飽和ポリエステル樹脂(SC)の結晶化を促進し、島相内に結晶性を有する飽和ポリエステル樹脂(SC)に由来の結晶構造を形成できる。このような構造をバインダー樹脂内に形成させることにより、結晶性を有する飽和ポリエステル樹脂(SC)によるトナーのベタツキが非晶性ポリエステル樹脂(SN)により抑えられ、低温定着性と保存性のバランスにすぐれたトナーを得ることが出来る。脂肪酸金属塩などの金属成分(M)が存在しない場合、結晶性を有する飽和ポリエステル樹脂(SC)が結晶化せず、島相全体がベタツキの原因となり保存性が悪化してしまう。
 上記のような構造は、透過型電子顕微鏡(TEM)を用いて、10000倍~60000倍の倍率で観察することにより確認できる。ここで、観察面積は、10000倍では、25.5μm×16μm程度、60000倍では、4.25μm×2.67μm程度である。測定試料がバインダー樹脂の場合は、トリミング・面出し後、RuOで染色し、超薄切片を作成して観察を行い、測定試料がトナーの場合、エポキシ樹脂埋包後、樹脂の場合と同様に観察することにより確認できる。島相内の結晶構造は、結晶構造に由来する縞模様が濃く染色され、非晶部分は薄く染色される為、島相内の結晶構造の有無を確認できる。また、上記手法により観察することで、ビニル樹脂(A)と非晶性ポリエステル樹脂(SN)の結晶性を有する飽和ポリエステル樹脂(SC)島相の面積が確認でき、面積比よりビニル樹脂(A)の比率も確認できる。
 本発明のトナー用バインダー樹脂のDSCによって測定されるガラス転移温度(Tg)は、好ましくは50℃以上65℃以下であり、より好ましくは53℃以上62℃以下である。これにより、低温定着性と保存性に優れたトナーが得られる。上記Tgが50℃よりもが低い場合、トナーの保存性に劣る場合があり、一方、上記Tgが65℃よりも高い場合は、低温定着性に劣る場合がある。
 本発明のトナー用バインダー樹脂は、テトラヒドロフラン(THF)可溶分が、ゲルパーミエーションクロマトグラフィー(GPC)により測定される分子量分布において、好ましくは分子量0.3×10以上2.0×10未満であり、より好ましくは分子量0.4×10以上1.8×10未満の領域にメインピークを有している。これにより、低温定着性に優れたトナーが得られる。上記ピーク分子量が0.3×10よりも低い場合、トナーの保存性や耐久性への悪影響が出やすくなる場合がある。一方、上記ピーク分子量が2.0×10よりも高い場合、定着性能を悪化させる場合がある。
 本発明のトナー用バインダー樹脂において、テトラヒドロフラン(THF)不溶分の含有量が、好ましくは5質量%以上40質量%未満であり、より好ましくは10質量%以上35質量%未満である。本発明において、テトラヒドロフラン(THF)不溶分には、カルボキシル基含有ビニル樹脂(C)とグリシジル基含有ビニル樹脂(E)の反応によって形成された架橋体を少なくとも含有している。このため、本発明のトナー用バインダー樹脂において、テトラヒドロフラン(THF)不溶分が上記範囲よりも少ない場合は、トナーとした際に、弾性が不足し耐オフセット性が悪化してしまう場合があり、上記範囲よりも多い場合は、架橋成分が収縮し過ぎて架橋体の網目構造内に低分子成分が入り込めずに非架橋成分と相分離し過ぎ、結果的に架橋成分が耐オフセット性に効果が無くなってしまう場合がある。
 カルボキシル基含有ビニル樹脂(C)とグリシジル基含有ビニル樹脂(E)の比率(C/E)は、質量比で87/13~99/1が好ましく、89/11~97/3がより好ましい。これにより、耐オフセット性に優れたトナーが得られる。上記グリシジル基含有ビニル樹脂(E)の含有量が、カルボキシル基含有ビニル樹脂(C)およびグリシジル基含有ビニル樹脂(E)の含有量の合計100質量%に対して、13質量%を超える場合、耐オフセット性の低下が発生することがある。これは、カルボキシル基とグリシジル基の反応において、架橋体の架橋点間分子量が短くなり、反応の進行に伴って架橋成分が収縮し過ぎて架橋体の網目構造内に低分子成分が入り込めずに非架橋成分と相分離し過ぎ、結果的に架橋成分が耐オフセット性に効果が無くなってしまうことに起因すると考えられる。また、上記グリシジル基含有ビニル樹脂(E)の含有量が1質量%より低い場合、カルボキシル基含有ビニル樹脂とグリジジル基含有ビニル樹脂の反応による架橋成分が十分に生成せず、耐オフセット性に劣る場合がある。
 次に、上述の特許文献に記載の技術と比較して、本発明の効果をさらに説明する。
 トナーの技術分野において、低温定着性と保存性はトレードオフの関係となっている。
 上記の文献に記載の技術は、このトレードオフと改善するものではなく、結晶性ポリエステルの量を制御することにより、低温定着性と保存性との程度を適宜調整する技術であった。つまり、結晶性ポリエステルの量を多くすると、トナーの低温定着性を向上させるものの、トナーから脱離しやすく、トナーの保存性を低下させてしまうことがあった。一方、結晶性ポリエステルの量を少なくすると、保存性は向上するが、低温定着性は低下していた。
 これに対して、本発明においては、ビニル樹脂(A)の海相中に、非晶性ポリエステル樹脂(SN)の島相を分散し、この島相内に結晶性を有する飽和ポリエステル樹脂(SC)を内包する構造を採用している。これにより、結晶性を有する飽和ポリエステル樹脂(SC)の低温定着性の効果を得つつ、結晶性を有する飽和ポリエステル樹脂(SC)の脱離を抑制し、且つ結晶性を有する飽和ポリエステル樹脂(SC)がトナーの表面に存在する確率を低減することにより、トナーの保存性の低下を防いでいる。このようにして、本発明においては、低温定着性と保存性とのトレードオフの関係を改善している。
 次に、本発明のトナー用バインダー樹脂の製造方法について説明する。
 本発明のトナー用バインダー樹脂を製造する方法は、上記非晶性ポリエステル樹脂(SN)、結晶性を有する飽和ポリエステル樹脂(SC)および金属成分(M)の混合物を得る工程と、得られた該混合物、カルボキシル基含有ビニル樹脂(C)、およびグリシジル基含有ビニル樹脂(E)を溶融状態で混合する工程を含む。
 本発明のトナー用バインダー樹脂を製造する方法において、非晶性ポリエステル樹脂(SN)と結晶性を有する飽和ポリエステル樹脂(SC)は、バインダー樹脂内で効率的に非晶性ポリエステル樹脂(SN)の島相内に結晶性を有する飽和ポリエステル樹脂(SC)が取り込まれるようにするため、予め、非晶性ポリエステル樹脂(SN)と結晶性を有する飽和ポリエステル樹脂(SC)及び金属成分(M)を溶融状態で混合しておき、後述するカルボキシル基含有ビニル樹脂(C)、グリシジル基含有ビニル樹脂(E)の反応の際に添加することが好ましい。
 また、本発明のトナー用バインダー樹脂を製造する方法において、非晶性ポリエステル樹脂(SN)の含有量が、非晶性ポリエステル樹脂(SN)および結晶性を有する飽和ポリエステル樹脂(SC)の含有量の合計値100質量%に対して、好ましくは15質量%以上70質量%以下であり、より好ましくは20質量%以上65質量%以下である。これにより、保存性や耐久性に優れたトナーが得られる。また、結晶性を有する飽和ポリエステル樹脂(SC)の含有量を上記範囲内とすることにより、結晶性を有する飽和ポリエステル樹脂(SC)が非晶性ポリエステル樹脂(SN)の島相に取り込まれ、トナーとした際に、トナー表面に結晶性を有する飽和ポリエステル樹脂(SC)が存在する確率を低減でき、トナーのベタツキを抑えられ、保存性に優れたトナーとすることができる。非晶性ポリエステル樹脂(SN)の含有量が15質量%よりも低い場合、非晶性ポリエステル樹脂(SN)の島相とビニル樹脂(A)の界面に結晶性を有する飽和ポリエステル樹脂(SC)が多く存在しやすくなり、トナーとした際に、トナー表面に結晶性を有する飽和ポリエステル樹脂(SC)が露出する可能性が高くなり、保存性が悪化してしまう場合がある。また、この場合は、島相とビニル樹脂(A)との親和性が低下して結晶性を有する飽和ポリエステル樹脂(SC)がトナーから抜け落ちやすくなってしまい、耐久性や保存性が低下してしまう場合がある。一方、非晶性ポリエステル樹脂(SN)の含有量が70質量%より高い場合、結晶性を有する飽和ポリエステル樹脂(SC)の多くが非晶性ポリエステル樹脂(SN)に溶解してしまい、島相内で結晶性を有する飽和ポリエステル樹脂(SC)が結晶化しにくくなり、保存性が低下してしまう場合がある。
 カルボキシル基含有ビニル樹脂(C)とグリシジル基含有ビニル樹脂(E)とを反応させる方法としては、少なくとも脂肪酸金属塩などの金属成分(M)を含有する結晶性を有する飽和ポリエステル樹脂(SC)の存在下で、カルボキシル基含有ビニル樹脂(C)とグリシジル基含有ビニル樹脂(E)とを溶融状態で混合し反応させる方法が好ましい。
これにより、耐オフセット性、保存性、耐久性に優れたトナーが得られる。このような方法は、従来公知のいかなる方法、例えば攪拌機付きの反応容器等に両樹脂を仕込み、加熱して溶融状態で反応させる方法や溶剤存在下で反応させ脱溶剤する方法も採用できるが、特に2軸混錬機を用いる方法が好ましい。具体的には、カルボキシル基含有ビニル樹脂(C)とグリシジル基含有ビニル樹脂(E)及び少なくとも脂肪酸金属塩などの金属成分(M)を含有する結晶性を有する飽和ポリエステル樹脂(SC)の粉体をヘンシェルミキサー等で混合後、2軸混練機を用いて溶融混練、反応させる方法、もしくは、溶融状態のカルボキシル基含有ビニル樹脂(C)とグリシジル基含有ビニル樹脂(E)及び少なくとも脂肪酸金属塩などの金属成分(M)を含有する結晶性を有する飽和ポリエステル樹脂(SC)を2軸混練機にフィードして溶融混練、反応させる方法が挙げられる。
 溶融混練、反応時の温度は、カルボキシル基含有ビニル樹脂(C)やグリシジル基含有ビニル樹脂(E)の官能基量や分子量によって異なるが、好ましくは100℃~220℃、より好ましくは120℃~200℃、さらに好ましくは130℃~180℃の範囲である。反応温度が100℃より低いと架橋体形成が起きても混練のシェアが強すぎて形成された架橋体が切断されてしまい耐オフセット性に劣る場合がある。220℃を超えると架橋反応が進みすぎて架橋成分が非架橋成分と相分離してしまい耐オフセット性に効果がなくなってしまう場合や、解重合が起きトナー用バインダー樹脂中の残存揮発分が増加しトナーの現像維持特性や臭気等の問題が発生する場合がある。
 また、2軸混練機を用いて溶融混練、反応させる方法においては、2軸混練機に水を、好ましくは1MPa以上3MPa以下、より好ましくは1.7MPa以上2.3MPa以下の圧力で、樹脂100質量部に対して、好ましくは0.5質量部以上2.5質量部以下、より好ましくは1.0質量部以上2.0質量部以下で注入する。そして、圧入より出口側に設置した減圧口より、好ましくは0.001~0.200MPa、より好ましくは0.050~0.150MPaで減圧して水および揮発成分を除去する方法が好ましい。なお、本発明において、圧力は特に断らない限りゲージ圧力、すなわち真空を基準とした絶対圧力から大気圧を減じた値である。注入圧力を上記範囲内とすることで十分に水が樹脂に混合され、減圧した際に樹脂中に残存していたモノマーや溶剤などの揮発成分が除去されやすくなる。また、水の注入量が少なすぎる場合、十分に揮発成分が除去できないことがある。一方、水の注入量が多すぎる場合、樹脂中の水の分散状態が悪化し、その結果、揮発成分が除去しにくくなることがある。また、減圧圧力は上記範囲内とすることで揮発成分を樹脂から十分に除去できる。また、このような手法を用いることにより、バインダー樹脂の残存揮発分を200ppm以下にでき、かつ分子量1,000以下のオリゴマー成分も同時に低減できるため好ましい。
 また、このようにして得られた樹脂を冷却・粉砕してトナー用バインダー樹脂とする。冷却・粉砕する方法は従来公知のいかなる方法も採用できる。また、冷却方法として、スチールベルトクーラー等を使用して急冷することも可能である。
<トナー>
 次に、本発明のトナーについて説明する。
 本発明のトナーは、上記トナー用バインダー樹脂と、着色剤と、離型剤と、を含む。
 本発明のトナーでは、非晶性ポリエステル樹脂(SN)の島相の分散径が、好ましくは2.0μm以下であり、より好ましくは1.0μm以下である。上記島相の分散径が2.0μmよりも大きい場合、トナーが攪拌されたときにトナーから島相が脱離しやすくなり、結果として保存性が悪化してしまう場合がある。
 本発明のトナーは、結晶性を有する飽和ポリエステル樹脂(SC)の融点に対し-40℃以上5℃以下、更に好ましくは-35℃以上0℃以下に融点を有する少なくとも1種の離型剤を1質量%以上10質量%以下、更には2質量%以上8質量%以下含有することを特徴とする。上記範囲に融点を有する離型剤を少なくとも1種含有することによって、結晶性を有する飽和ポリエステル樹脂(SC)の定着ロールへの付着を防止し耐オフセット性を向上できる。
 本発明のトナーにおいて、テトラヒドロフラン(THF)可溶分が、ゲルパーミエーションクロマトグラフィー(GPC)により測定される分子量分布において、好ましくは分子量0.3×10以上2.0×10未満であり、より好ましくは0.4×10以上1.8×10未満の領域にメインピークを有する。これにより、低温定着性に優れたトナーが得られる。上記ピーク分子量が0.3×10よりも低い場合、トナーの保存性や耐久性への悪影響が出やすくなる場合がある。上記ピーク分子量が2.0×10よりも高い場合、定着性能を悪化させる場合がある。
 本発明のトナーにおいて、バインダー樹脂由来のTHF不溶分が、好ましは5質量%以上40質量%未満であり、更に好ましくは10質量%以上35質量%未満である。これにより、耐オフセット性に優れたトナーが得られる。上記THF不溶分の含有量を上記範囲に調整することにより、良好な低温定着性を損なうことなく耐オフセット性を向上することが出来る。
 本発明のトナーのDSCによって測定されるガラス転移温度(Tg)は、好ましくは50℃以上65℃以下であり、より好ましくは52℃以上60℃以下である。これにより、低温定着性と保存性とに優れたトナーが得られる。上記Tgが50℃よりもが低い場合、トナーの保存性に劣る場合があり、上記Tgが65℃よりも高い場合は、低温定着性に劣る場合がある。
 次に、本発明のトナーの製造方法について説明する。
 本発明のトナーの製造方法は、上記トナー用バインダー樹脂を得る工程と、トナー用バインダー樹脂と着色剤とを混合する工程と、を含む。
 本発明のトナーは、本発明のトナー用バインダー樹脂を用いて、従来公知の方法によって製造される。例えば、バインダー樹脂と着色剤、離型剤、帯電調整剤などの添加剤をヘンシェルミキサーなどの粉体混合機により充分に混合した後、2軸混練機、オープンロール混練機などの混練機を用いて溶融、混練して各構成成分を充分に混合する。これを冷却後、粉砕、分級を行って、通常4~15μmの範囲の粒子を集め、粉体混合法により表面処理剤をまぶしてトナーを得る方法が挙げられる。また、必要に応じて、表面処理装置等により、トナーを球形化処理してもよい。表面処理の方法としては、例えば、高温空気噴流中に流入させトナーを球形化する方法や機械的な衝撃によりトナーの角を取る方法が挙げられ、画質の向上などを目的として、これらの表面処理を行って、フロー式粒子像測定装置(例えばシスメックス社製 FIPA-3000)によって測定される平均円形度を0.960以上に調整してもよい。
 以下、トナーの各成分を説明する。
<離型剤>
 本発明のトナーは、離型剤として、結晶性を有する飽和ポリエステル樹脂(SC)の融点に対し好ましくは-40℃以上5℃以下に融点を有し、且つ、融点60℃以上120℃以下の条件を満たす従来公知の離型剤を少なくとも1種含有することが好ましい。
 従来公知の離型剤としては、例えば、低分子量ポリエチレン、低分子量ポリプロピレン、ポリオレフィン共重合体、ポリオレフィンワックス、パラフィンワックス、マイクロクリスタリンワックス、フィッシャートロプシュワックス等の脂肪族炭化水素系ワックス、酸化ポリエチレンワックスのような脂肪族炭化水素系ワックスの酸化物、キャンデリラワックス、カルナバワックス、木ろう、ライスワックス、ホホバろうのような植物系ワックス、蜜蝋、ラノリン、鯨ろうのような動物系ワックス、オゾケライト、セレシン、ペトロラタムのような鉱物系ワックス、モンタン酸エステル、カスターワックスのような脂肪酸エステルを主成分とするワックス、脱酸カルナバワックスのような脂肪酸エステルの一部または全部を脱酸化したワックス、さらに、パルミチン酸、ステアリン酸、モンタン酸、またはさらに長鎖のアルキル基を有する長鎖アルキルカルボン酸類のような飽和直鎖脂肪酸、ブラシジン酸、エレオステアリン酸、バリナリン酸のような不飽和脂肪酸、ステアリルアルコール、エイコシルアルコール、ベヘニルアルコール、カルナウビルアルコール、セリルアルコール、メリシルアルコール、またはさらに長鎖のアルキル基を有する長鎖アルキルアルコールのような飽和アルコール、ソルビトールのような多価アルコール、リノール酸アミド、オレイン酸アミド、ラウリン酸アミドのような脂肪酸アミド、メチレンビスステアリン酸アミド、エチレンビスカプリン酸アミド、エチレンビスラウリン酸アミド、ヘキサメチレンビスステアリン酸アミドのような飽和脂肪酸ビスアミド、エチレンビスオレイン酸アミド、ヘキサメチレンビスオレイン酸アミド、N,N'-ジオレイルアジピン酸アミド、N,N'-ジオレイルセバシン酸アミドのような不飽和脂肪酸アミド、m-キシレンビスステアリン酸アミド、N,N'-ジステアリルイソフタル酸アミドのような芳香族系ビスアミド、脂肪族炭化水素系ワックスにスチレン系単量体やアクリル系単量体、カルボキシル基含有単量体、グリシジル基含有単量体のようなビニル系単量体を用いてグラフト化させたワックス、ベヘニン酸モノグリセリドのような脂肪族と多価アルコールの部分エステル化物、植物性油脂を水素添加することにより得られるヒドロキシル基を有するメチルエステル化合物、さらにはエチレン重合法や石油系炭化水素の熱分解によるオレフィン化法で得られる二重結合を1個以上有する高級脂肪族炭化水素や石油留分から得られるn-パラフィン混合物やエチレン重合法により得られるポリエチレンワックスやフィッシャートロプシュ合成法により得られる高級脂肪族炭化水素などをホウ酸及び無水ホウ酸の存在下で分子状酸素含有ガスで液相酸化することにより得られる水酸基やエステル基やカルボキシル基などの官能基を有するワックス、メタロセン触媒によって合成されたポリエチレン、ポリプロピレン、ポリブテン、ポリペンテン、ポリヘキセン、ポリヘプタン、ポリオクテン、エチレン-プロピレン共重合体、エチレン-ブテン共重合体、ブテン-プロピレン共重合体や、長鎖アルキルカルボン酸と多価アルコールを縮合したり長鎖アルキルカルボン酸のハロゲン化物と多価アルコールの反応にて得られるエステル基含有ワックスなどが挙げられる。これらの離型剤は、単独または2種以上組み合わせて使用してもよいが、2種以上組み合わせる場合は、少なくとも1種の離型剤が結晶性を有する飽和ポリエステル樹脂(SC)の融点に対し-40℃以上5℃以下に融点を有していればよい。
 本発明のトナーにおいては、結晶性を有する飽和ポリエステル樹脂(SC)の融点に対し、好ましくは-40℃以上5℃以下、更に好ましくは-35℃以上0℃以下に融点を有する離型剤を少なくとも1種を用いる。離型剤の融点を上記の範囲とすることにより、定着性、耐オフセット性に優れたトナーを得ることが出来る。
 本発明に係る結晶性を有する飽和ポリエステル樹脂(SC)は、炭素数2~4の脂肪族ジオールから選ばれるアルコール成分と炭素数4~6の脂肪族ジカルボン酸から選ばれるカルボン酸成分を主成分としており、長鎖アルキルユニットを殆ど含有していないため、結晶性を有する飽和ポリエステル樹脂(SC)自体には離型性が無い。よって、含有される全ての離型剤の融点が、結晶性を有する飽和ポリエステル樹脂(SC)の融点よりも高い場合、トナーを紙に定着する際に、結晶性を有する飽和ポリエステル樹脂(SC)の方が離型剤よりも先に溶融して定着ロールに付着し、オフセットが発生してしまう場合がある。このため離型剤の融点は上記範囲であることが好ましい。
 これらの離型剤は、トナー中での分散状態を良化させるために、高分子量ビニル樹脂(H)、低分子量ビニル樹脂(L)、カルボキシル基含有ビニル樹脂(C)、グリシジル基含有ビニル樹脂(E)、非晶性ポリエステル樹脂(SN)、結晶性を有する飽和ポリエステル樹脂(SC)の製造工程、非晶性ポリエステル樹脂(SN)と結晶性を有する飽和ポリエステル樹脂(SC)及び金属成分(M)の混合工程、または、後述するカルボキシル基含有ビニル樹脂(C)とグリシジル基含有ビニル樹脂(E)の反応工程、若しくは各工程に分けて、添加することが好ましい。更に好ましくは、カルボキシル基含有ビニル樹脂(C)の製造段階において、溶剤とエチレン系炭化水素および/または共役ジエン系炭化水素由来の構成単位の連鎖からなるブロックとスチレン由来の連鎖からなるブロックとからなるブロック共重合体、および/またはそれらの水素添加物である水素添加ブロック共重合体の共存下で離型剤を添加して脱溶剤を行う方法である。しかし、これらの添加方法に何ら限定されるものではなく、上述の方法もしくはそれらの組み合わせで添加し、更に必要に応じてトナー製造時に添加することもできる。
 本発明において、離型剤の添加量は、カルボキシル基含有ビニル樹脂(C)、グリシジル基含有ビニル樹脂(E)、およびこれらの反応物、非晶性ポリエステル樹脂(SN)、結晶性を有する飽和ポリエステル樹脂(SC)の添加量の合計値100質量%に対して、好ましくは1質量%以上10質量%以下であり、更に好ましくは2質量%以上8質量%以下である。これにより、耐オフセット性、保存性のバランスに優れたトナーが得られる。離型剤の添加量が1質量%より少ない場合、結晶性を有する飽和ポリエステル樹脂(SC)のオフセットの抑制に効果が無い場合があり、10質量%を超えると離型剤がバインダー樹脂を可塑化しやすくなり外添剤がトナー表面に埋没してしまうことに起因すると思われる保存性の悪化や、感光体とクリーニングブレードとの摩擦熱によりトナー溶融してしまうことに起因すると思われる耐感光体汚染性の悪化が起こる場合があり、更には離型剤の分散が悪化してトナーから抜け落ち、トナーの耐久性を低下させてしまう場合がある。
<荷電制御剤>
 本発明のトナーは、正帯電性または負帯電性を保持させるために荷電制御剤を含有することが好ましい。荷電制御剤としては従来公知のものを使用できる。
 正帯電性の荷電制御剤としては、例えば、ニグロシン及び脂肪酸金属塩等による変性物;トリブチルベンジルアンモニウム-1-ヒドロキシ-4-ナフトスルホン酸塩、テトラブチルアンモニウムテトラフルオロボレートのような四級アンモニウム塩、及びこれらの類似体であるホスホニウム塩のようなオニウム塩及びこれらのレーキ顔料;トリフェニルメタン染料及びこれらのレーキ顔料(レーキ化剤としては、燐タングステン酸、燐モリブデン酸、燐タングステンモリブデン酸、タンニン酸、ラウリン酸、没食子酸、フェリシアン化物、フェロシアン化物など);高級脂肪酸の金属塩;ジブチル錫オキサイド、ジオクチル錫オキサイド、ジシクロヘキシル錫オキサイドのようなジオルガノ錫オキサイド;ジブチル錫ボレート、ジオクチル錫ボレート、ジシクロヘキシル錫ボレートのようなジオルガノ錫ボレート類、グアニジン化合物、イミダゾール化合物、イミダゾリウム塩類、更にはジアルキルアミノアルキル(メタ)アクリレートとスチレン系単量体と必要によりアクリル系単量体を共重合した後にパラトルエンスルホン酸アルキルエステルで四級化する等の手法によって得られる四級アンモニウム塩基含有共重合体が挙げられる。
 負帯電性の荷電制御剤としては、例えば、有機金属錯体、キレート化合物が有効であり、モノアゾ金属錯体、アセチルアセトン金属錯体、芳香族ヒドロキシカルボン酸金属錯体、芳香族ジカルボン酸金属錯体、芳香族ヒドロキシカルボン酸や芳香族者カルボン酸や芳香族ポリカルボン酸及びその金属塩や無水物やエステル類、ビスフェノールのようなビスフェノール誘導体があり、更には配位中心金属がSc、Ti、V、Cr、Co、Ni、Mn、Feから選択され且つカチオンが水素イオン、ナトリウムイオン、カリウムイオン、アンモニウムイオンから選択されるアゾ系金属化合物や、配位中心金属がCr、Co、Ni、Mn、Fe、Ti、Zr、Zn、Si、B、Alから選択され且つカチオンが水素イオン、ナトリウムイオン、カリウムイオン、アンモニウムイオン、脂肪族アンモニウムから選択される芳香族ヒドロキシカルボン酸誘導体や芳香族ポリカルボン酸誘導体の金属化合物(芳香族ヒドロキシカルボン酸誘導体及び芳香族ポリカルボン酸は置換基としてアルキル基、アリール基、シクロアルキル基、アルケニル基、アルコキシ基、アリールオキシ基、水酸基、アルコキシカルボニル基、アリールオキシカルボニル基、アシル基、アシルオキシ基、カルボキシル基、ハロゲン、ニトロ基、シアノ基、アミド基、アミノ基、カルバモイル基を有していてもよい)、スルホン酸基含有アクリルアミド系単量体とスチレン系単量体とアクリル系単量体の共重合体のようなスルホン酸基含有単量体を構成成分とする重合体などが挙げられる。これらの荷電制御剤は単独で使用しても2種以上を組み合わせて使用しても良い。
 荷電制御剤のトナーへの添加量は、帯電量とトナーの流動性のバランスから、バインダー樹脂100質量%に対して0.05~10質量%が好ましく、より好ましくは0.1~5質量%、更には0.2~3質量%である。また、添加方法としては、トナー内部に添加する方法と外添する方法やそれらを組み合わせたものが適用できる。なお、本発明のトナー用バインダー樹脂中に、金属成分(M)以外の任意の金属酸化物が含まれてもよい。
<着色剤>
 本発明のカラートナーは、着色剤を含有する。着色剤としては、従来公知の顔料および染料を使用することができる。
 顔料としては例えば、ミネラルファストイエロー、ネーブルイエロー、ナフトールイエローS、ハンザイエローG、パーマネントイエローNCG、タートラジンレーキ、モリブデンオレンジ、パーマネントオレンジGTR、ピラゾロンオレンジ、ベンジジンオレンジG、パーマネントレッド4R、ウオッチングレッドカルシウム塩、エオシンレーキ、ブリリアントカーミン3B、マンガン紫、ファストバイオレットB、メチルバイオレットレーキ、コバルトブルー、アルカリブルーレーキ、ビクトリアブルーレーキ、フタロシアニンブルー、ファーストスカイブルー、インダンスレンブルーBC、クロムグリーン、ピグメントグリーンB、マラカイトグリーンレーキ、ファイナルイエローグリーンG等が挙げられる。マゼンタ用着色顔料としては、C.I.ピグメントレッド1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、21、22、23、30、31、32、37、38、39、40、41、48、49、50、51、52、53、54、55、57、58、60、63、64、68、81、83、87、88、89、90、112、114、122、123、163、202、206、207、209、238、C.I.ピグメントバイオレット19、C.I.バットレッド1、2、10、13、15、23、29、35等が挙げられる。シアン用着色顔料としては、C.I.ピグメントブルー2、3、15、15:1、15:2、15:3、16、17、C.I.アシッドブルー6、C.I.アシッドブルー45又はフタロシアニン骨格にフタルイミドメチル基を1~5個置換した銅フタロシアニン顔料等が挙げられる。イエロー用着色顔料としては、C.I.ピグメントイエロー1、2、3、4、5、6、7、10、11、12、13、14、15、16、17、23、65、73、74、83、93、97、155、180、185、C.I.バットイエロー1、3、20等が挙げられる。黒色顔料としては、ファーネスブラック、チャンネルブラック、アセチレンブラック、サーマルブラック、ランプブラックなどのカーボンブラック等が挙げられる。染料としては、C.I.ダイレクトレッド1、C.I.ダイレクトレッド4、C.I.アシッドレッド1、C.I.ベーシックレッド1、C.I.モーダントレッド30、C.I.ダイレクトブルー1、C.I.ダイレクトブルー2、C.I.アシッドブルー9、C.I.アシッドブルー15、C.I.ベーシックブルー3、C.I.ベーシックブルー5、C.I.モーダントブルー7、C.I.ダイレクトグリーン6、C.I.ベーシックグリーン4、C.I.ベーシックグリーン6、ソルベントイエロー162等が挙げられる。これらの着色剤は単独で使用しても2種以上を組み合わせて使用してもよい。
 着色剤のトナーへの添加量は、バインダー樹脂100質量%に対して、0.05~20質量%が好ましく、より好ましくは0.1~15質量%、さらに好ましくは0.2~10質量%である。
 また、これらの着色剤の代わりとして磁性体を使用することも出来る。磁性材料としては、鉄、コバルト、ニッケル、銅、マグネシウム、マンガン、アルミニウム、ケイ素などの元素を含む金属酸化物などが挙げられ、具体的には四三酸化鉄、三二酸化鉄、酸化鉄亜鉛、酸化鉄イットリウム、酸化鉄カドミウム、酸化鉄ガドリニウム、酸化鉄銅、酸化鉄鉛、酸化鉄ニッケル、酸化鉄ネオジム、酸化鉄バリウム、酸化鉄マグネシウム、酸化鉄マンガン、酸化鉄ランタン、鉄粉、コバルト粉、ニッケル粉などが挙げられる。これらの磁性材料は必要に応じて2種以上を組み合わせて使用しても良い。また、その形状としては、球形、八面体、六面体のものを使用することが好ましく、更には球形のものを使用することが磁性粉をトナー中に均一に分散させる点で好ましい。
 磁性粉の窒素吸着法によるBET比表面積は、1~30m/gのものを使用することが好ましく、更には、2~20m/gのものを使用することが好ましく、更にモース硬度が4~8の磁性粉を使用することが好ましい。磁性体の平均粒子径は0.01~0.8μmが好ましく、更には0.05~0.5μmのものを使用することが好ましい。また、磁性材料の磁気特性は、795.8kA/m印加にて抗磁力が1~20kA/m、飽和磁化が50~200Am/kg、残留磁化が1~20Am/kgのものが好ましい。磁性体の添加量はバインダー樹脂100質量%に対して4~200質量%が好ましく、より好ましくは10~170質量%、更には20~150質量%である。
 また、本発明のトナーは、必要に応じて本発明の効果を阻害しない範囲において、例えばポリ塩化ビニル、ポリ酢酸ビニル、ポリエステル、ポリビニルブチラール、ポリウレタン、ポリアミド、ポリスチレン、ロジン、重合ロジン、変性ロジン、テルペン樹脂、フェノール樹脂、芳香族石油樹脂、塩ビ樹脂、スチレン-ブタジエン樹脂、スチレン-(メタ)アクリル共重合体、クロマン-インデン樹脂、メラミン樹脂等を一部添加して使用してもよい。
 また、顔料分散の向上を目的として、着色剤をバインダー樹脂もしくはそれら原料樹脂に予め分散して、いわゆるマスターバッチを製造しておき、それをトナーに添加する方法を行っても良い。具体的には着色剤20~60質量%、樹脂成分80~40質量%を粉体状態で混合し、得られた混合物を二軸混練機、オープンロール混練機や、加圧ニーダーなどのバッチ式混練機などで混練し、それを粉砕したものをトナー製造時に使用してもよい。
<表面処理剤>
 本発明のトナーは、トナーの表面に対して表面処理剤を添加することによって、トナーとキャリア、あるいはトナー相互の間に該表面処理剤を存在させることが好ましい。表面処理剤を添加することにより、粉体流動性、保存性、帯電安定性、および環境安定性が向上され、かつさらに現像剤の寿命をも向上させることができる。
 表面処理剤としては、従来公知のものを使用することができる。例えば、シリカ微粉体、酸化チタン微粉体、およびそれらの疎水化物などが挙げられる。シリカ微粉体は、湿式シリカ、乾式シリカ、乾式シリカと金属酸化物の複合体などが使用でき、さらに、これらを有機ケイ素化合物等で疎水化処理されたものが使用できる。疎水化処理は、例えば、ケイ素ハロゲン化合物の蒸気相酸化により生成されたシリカ微粉体をシラン化合物で処理し、有機ケイ素化合物で処理する方法などが挙げられる。疎水化処理に用いられるシラン化合物としては、例えば、ヘキサメチルジシラザン、トリメチルシラン、トリメチルクロルシラン、トリメチルエトキシシラン、ジメチルジクロルシラン、メチルトリクロルシラン、アリルジメチルクロルシラン、アリルフェニルジクロルシラン、ベンジルジメチルクロルシラン、ブロムメチルジメチルクロルシラン、α―クロルエチルトリクロルシラン、β―クロルエチルトリクロルシラン、クロルメチルジメチルクロルシラン、トリオルガノシリルメルカプタン、トリメチルシリルメルカプタン、トリオルガノシリルアクリレート、ビニルジメチルアセトキシシラン、ジメチルジエトキシシラン、ジメチルジメトキシシラン、ジフェニルジエトキシシラン、ヘキサメチルジシロキサン、1,3-ジビニルテトラメチルジシロキサン、1,3-ジフェニルテトラメチルジシロキサンなどが挙げられる。疎水化処理に用いられる有機ケイ素化合物としては、例えば、ジメチルシリコーンオイル、メチルフェニルシリコーンオイル、α-メチルスチレン変性シリコーンオイル、クロルフェニルシリコーンオイル、フッ素変性シリコーンオイルなどのシリコーンオイル類が挙げられる。また、酸化チタン微粉末にオイル処理したものや、0.03μm~1μmのビニル樹脂の微粒子なども使用してもよい。
 これら以外の表面処理剤として、ポリフッ化エチレン、ステアリン酸亜鉛、ポリフッ化ビニリデンのような滑剤、酸化セリウム、炭化ケイ素、チタン酸ストロンチウム、磁性粉、アルミナ等の研磨剤、カーボンブラック、酸化亜鉛、酸化アンチモン、酸化錫等の導電性付与剤なども使用してもよい。さらには、表面処理剤の形状として、粒径が100nm以下の小粒径の粒子、粒径が100nm以上の大粒径の粒子、八面体状、六面体状、針状、繊維状など様々な形状のものを使用してもよい。表面処理剤は単独または2種以上を組み合わせて使用してよい。
 該表面処理剤の添加量は、トナー100質量部中、好ましくは0.1~10質量部、より好ましくは0.1~5質量部である。
<キャリア>
 本発明のトナーを二成分現像剤として使用する場合、キャリアとして従来公知のものを使用できる。例えば、表面酸化または未酸化の鉄、コバルト、マンガン、クロム、銅、亜鉛、ニッケル、マグネシウム、リチウム、希土類のような金属およびそれらの合金または酸化物からなる個数平均粒径15~300μmの粒子が使用できる。これらのキャリアはスチレン系樹脂、アクリル系樹脂、シリコーン系樹脂、ポリエステル樹脂、フッ素系樹脂などにより表面コートされているものを使用してもよい。さらには、樹脂に磁性微粒子が分散されてなる磁性微粒子分散型コアと該磁性微粒子分散型コアの表面を被覆する被覆樹脂を含有する被服層を有する磁性キャリアを使用してもよい。
 本発明により得られるトナーは、公知の種々の現像プロセスに用いることができる。例えば、限定されないが、カスケード現像法、磁気ブラシ法、パウダー・クラウド法、タッチダウン現像法、キャリアとして粉砕法によって製造された磁性トナーを用いる所謂マイクロトーニング法、磁性トナー同士の摩擦帯電によって必要なトナー電荷を得る所謂バイポーラー・マグネチックトナー法等が挙げられる。また、本発明により得られるカラートナーは、従来公知のファーブラシ法、ブレード法等の種々のクリーニング方法にも用いることができる。また、本発明により得られるカラートナーは、従来公知の種々の定着方法に用いることができる。具体的には、オイルレスヒートロール法、オイル塗布ヒートロール法、熱ベルト定着法、フラッシュ法、オーブン法、圧力定着法などが例示される。また、電磁誘導加熱方式を採用した定着装置に使用してもよい。さらには中間転写工程を有する画像形成方法に用いてもよい。
 以下、実施例により本発明を具体的に説明するが本発明はこれに限定されるものではない。また、データの測定法および判定法は次の通りである。さらに、表中、Stはスチレン、Macはメタクリル酸、BAはアクリル酸n-ブチル、GMAはメタクリル酸グリシジルを表す。
<酸価>
 本実施例における酸価(AV)は、以下の通り算出した。キシレン:n―ブタノール=1:1質量比の混合溶媒に精秤した試料を溶解した。予め標定されたN/10水酸化カリウムのアルコール(特級水酸化カリウム7gにイオン交換水5gを添加し、1級エチルアルコールで1L(リットル)とし、N/10塩酸と1%フェノールフタレイン溶液にて力価=Fを標定したもの)で滴定し、その中和量から次式に従って算出した。
 酸価(mgKOH/g)=(N/10 KOH滴定量(ml)×F×5.61)/(試料g×0.01)
<エポキシ価>
 エポキシ価は以下の手順で計算した。樹脂試料0.2~5gを精秤し、200mlの三角フラスコに入れた。その後、ジオキサン25mlを加えて溶解させた。1/5規定の塩酸溶液(ジオキサン溶媒)25mlを加え、密栓して十分に混合した。その後、30分間静置した。次に、トルエン‐エタノール混合溶液(1:1容量比)50mlを加えた後、クレゾールレッドを指示薬として1/10規定水酸化ナトリウム水溶液で滴定した。滴定結果に基づいて、下記式にしたがってエポキシ価(Eq/100g)を計算した。
 エポキシ価(Eq/100g)=[(B-S)×N×F]/(10×W)
 ここで、Wは試料採取量(g)、Bは空試験に要した水酸化ナトリウム水溶液の量(ml)、Sは試料の試験に要した水酸化ナトリウム水溶液の量(ml)、Nは水酸化ナトリウム水溶液の規定度、およびFは水酸化ナトリウム水溶液の力価である。
<分子量>
 本実施例におけるピーク分子量(結晶性を有する飽和ポリエステル樹脂(SC)の分子量を除く)は、GPC(ゲルパーミエーションクロマトグラフィー)法により求めたものであり、単分散標準ポリスチレンで検量線を作成した換算分子量である。測定条件は下記の通りである。
GPC装置:SHODEX(登録商標) GPC SYSTEM-21(昭和電工株式会社製)
検出器:SHODEX(登録商標) RI SE-31 (昭和電工株式会社製)
カラム:SHODEX(登録商標) GPC KF-Gを1本、 GPC KF-807Lを3本、およびGPC KF-800Dを1本(昭和電工株式会社製)、をこの順番に直列に連結して用いた。
溶媒:テトラヒドロフラン(THF)
流速:1.2ml/分
サンプル濃度:0.002g-resin/ml-THF
注入量:100μL
 サンプル溶液は、測定直前にフィルターを用い、THFに不溶な成分を除去した。また、トナーの分子量を測定する際には、トナー10質量部をTHF90質量部に十分溶解させた後、シムゴンタルク50質量部、チタン(CR-95)50質量部を添加し、遠心分離を行い、得られた上澄み液を所定の濃度に調整し測定した。
 また、結晶性を有する飽和ポリエステル樹脂(SC)の分子量に関してもGPC(ゲルパーミエーションクロマトグラフィー)法により求めたものであり、単分散標準ポリスチレンで検量線を作成した換算分子量である。測定条件は下記の通りである。
GPC装置:GPC Waters社製
検出器:Waters社製2414
カラム:SHODEX(登録商標) LF-Gを1本と、LF-804(昭和電工株式会社製)を1本とをこの順番に直列に連結して用いた。
溶媒:クロロホルム
流速:1.0ml /分
サンプル濃度:0.001g-resin/ml-クロロホルム
注入量:100μL
 サンプル溶液は、測定直前にフィルターを用い、クロロホルムに不溶な成分を除去した。
 本願では分子量として、上記の方法でメインピークの分子量を求めた。
<ガラス転移温度(Tg)及び融点>
 本実施例におけるTgは、示差走査型熱量測定法(DSC)に従い、DSC-20(セイコー電子工業社製)によって測定した。試料約10mgを室温から200℃まで30℃/分で昇温し、その試料を20℃の環境下で空冷した。その後、試料を-20℃から200℃の温度範囲で10℃/分の昇温速度の条件で測定し、得られたカーブのベースラインと吸熱ピークの傾線の交点よりTgを求めた。また、離型剤及び結晶性ポリエステル樹脂の融点も上記の装置を用い、吸熱ピークより融点を求めた。
<SCのSN中への分散状態の確認>
 透過型電子顕微鏡H-7000(日立製)を用いて、60000倍の倍率でポリエステル樹脂の分散状態を確認した。測定試料がバインダー樹脂の場合は、トリミング・面出し後、RuOで染色し、超薄切片を作成して観察を行い、下記評価基準で判定した。測定試料がトナーの場合、エポキシ樹脂埋包後、樹脂の場合と同様に観察を行った。
(評価基準)
○ : ポリエステル樹脂島相内に結晶構造に由来の縞状構造が確認される
× : ポリエステル樹脂島相内に結晶構造に由来の縞状構造が確認できない
<THF不溶分>
 本発明におけるバインダー樹脂のTHF不溶分は以下の通り求めた。
 樹脂0.4g、THF39.5gを50ml蓋付ガラス製サンプル管に投入し、このサンプル管を回転数50rpm、22℃の条件で48時間攪拌した後、22℃で48時間静置した。その後、サンプル管の上澄み液5gを150℃で1時間乾燥させた後の重量を測定し、その重量をXgとして以下の式にてTHF不溶分率(質量%)を計算した。
Figure JPOXMLDOC01-appb-M000001
 本発明におけるトナーのTHF不溶分は、バインダー樹脂の不溶分と同様にしてトナーのTHF可溶成分量を測定し、その重量をXgとする。トナー中の樹脂以外の成分量をYgとして、下記式よりTHF不溶分率(質量%)を計算した。
Figure JPOXMLDOC01-appb-M000002
<ポリエステル樹脂成分の分散状態の確認>
 透過型電子顕微鏡H-7000(日立製)を用いて、10000倍の倍率でポリエステル樹脂の分散状態を確認した。観察面積は、10000倍では、25.5μm×16μmとした。
 測定試料がバインダー樹脂の場合は、トリミング・面出し後、RuOで染色し、超薄切片を作成して観察を行い、観察されるポリエステル樹脂島相の長軸径を50個測定しその平均値を分散径とし、下記評価基準で判定した。
測定試料がトナーの場合、2軸混練機にて混練され、冷却後、粗粉砕されたトナーチップを採取し、エポキシ樹脂埋包後、樹脂の場合と同様に分散状態を確認した。
(評価基準)
○ :     分散径≦1μm
△ : 1μm<分散径≦2μm
× : 2μm<分散径
<定着評価>
 市販の電子写真複写機を改造した複写機にて未定着画像を作成した。その後、この未定着画像を市販の複写機の定着部を改造した熱ローラー定着装置を用いて、熱ローラーの定着速度を190mm/秒とし、それぞれ130℃で定着させた。得られた定着画像を砂消しゴム(株式会社トンボ鉛筆製)により、1.0kgfの荷重をかけ、6回摩擦させ、この摩擦試験前後の画像濃度をマクベス式反射濃度計により測定した。摩擦後の画像濃度÷摩擦前の画像濃度×100を変化率とした。画像の濃度を変えて同様に変化率を測定し、変化率の最も低い数値を定着率として算出し、下記評価基準で判定した。なお、ここで用いた熱ローラー定着装置はシリコーンオイル供給機構を有しないものであった。また、環境条件は、常温常圧(温度22℃、相対湿度55%)とした。
(評価基準)
○ : 60%≦定着率
△ : 55%<定着率<60%
× :     定着率≦55%
<耐オフセット性>
 上記定着評価の測定に準じて行った。すなわち、上記複写機にて未定着画像を作成した。その後、上述の熱ローラー定着装置により定着処理を行い、非画像部分にトナー汚れが生ずるか否かを観察した。前記熱ローラー定着装置の熱ローラーの設定温度を130℃から5℃ずつ順次250℃まで上昇させた状態で繰り返し、トナーによる汚れの生じない設定温度の上限値をもって耐オフセット温度とした。また、上記複写機の雰囲気は、温度22℃、相対湿度55%とした。
(評価基準)
○ : 240℃≦耐オフセット性
△ : 220℃≦耐オフセット性<240℃
× :      耐オフセット性<220℃
<保存性>
 トナーから結晶性を有する飽和ポリエステル樹脂(SC)の脱離を促す為に、温度22℃、相対湿度55%の条件下、トナー10gを100ml蓋付ガラス製サンプル管に投入し、このサンプル管を回転数50rpmで48時間攪拌して、トナーの前処理をした。つづいて、温度50℃、相対湿度60%の環境条件下、トナー5gを48時間放置した。これを150メッシュのふるいにのせ、パウダーテスター(細川粉体工学研究所)の加減抵抗機の目盛りを3にして、30秒間振動を加えた。振動後の150メッシュのふるいの上に残った質量を測定し、残存質量比を求めた。
(評価基準)
○ :     残存質量比<45%
△ : 45%≦残存質量比<65%
× : 65%≦残存質量比
[グリシジル基含有ビニル樹脂(E)の製造例]
(製造例E-1)
 キシレン50質量部を窒素置換したフラスコに仕込み昇温し、キシレン還流下において、予め表1記載の単量体100質量部にジ-t-ブチルパーオキサイド0.5質量部を混合溶解しておいた混合液を5時間かけて連続添加し、さらに1時間還流を継続する。その後内温130℃に保ち、ジ-t-ブチルパーオキサイド0.5質量部を加えて2時間反応を継続し、重合液を得た。これを160℃、1.33kPaの容器中にフラッシュして溶剤等を留去し、樹脂E-1を得た。その物性値を表1に示す。
Figure JPOXMLDOC01-appb-T000001
[低分子量ビニル樹脂(L)の製造例]
(製造例L-1)
 キシレン75質量部を窒素置換したフラスコに仕込み昇温し、キシレン還流下において、予め表2記載の単量体100質量部にt-ブチルパーオキシ-2-エチルヘキサノエート2.5質量部を混合溶解しておいた混合液を5時間かけて連続添加し、さらに1時間還流を継続する。その後内温98℃に保ち、更にt-ブチルパーオキシ-2-エチルヘキサノエート0.5質量部を加えて1時間反応を継続し、更にt-ブチルパーオキシ-2-エチルヘキサノエート0.5質量部を加えて2時間反応を継続し、L-1の重合液を得た。物性値を表2に示す。
(製造例L-2)
 キシレン75質量部を窒素置換したフラスコに仕込み昇温し、キシレン還流下において、予め表2記載の単量体100質量部にt-ブチルパーオキシ-2-エチルヘキサノエート12質量部を混合溶解しておいた混合液を5時間かけて連続添加し、さらに1時間還流を継続する。その後内温98℃に保ち、更にt-ブチルパーオキシ-2-エチルヘキサノエート0.3質量部を加えて1時間反応を継続し、更にt-ブチルパーオキシ-2-エチルヘキサノエート0.5質量部を加えて2時間反応を継続し、L-2の重合液を得た。物性値を表2に示す。
(製造例L-3)
 キシレン100質量部を窒素置換したフラスコに仕込み昇温し、キシレン還流下において、予め表2記載の単量体100質量部にt-ブチルパーオキシ-2-エチルヘキサノエート10質量部を混合溶解しておいた混合液を5時間かけて連続添加し、さらに1時間還流を継続する。その後内温98℃に保ち、更にt-ブチルパーオキシ-2-エチルヘキサノエート0.5質量部を加えて1時間反応を継続し、更にt-ブチルパーオキシ-2-エチルヘキサノエート0.5質量部を加えて2時間反応を継続し、L-3の重合液を得た。物性値を表2に示す。
Figure JPOXMLDOC01-appb-T000002
[高分子量ビニル樹脂(H)の製造例]
(製造例H-1)
 表3記載の単量体100質量部を窒素置換したフラスコに仕込み、内温120℃に昇温後同温度に保ち、バルク重合を8時間行った。ついで、キシレン30質量部を加え、130℃に昇温した。予め混合溶解しておいたジビニルベンゼン0.3質量部、ジ-t-ブチルパーオキサイド0.1質量部、キシレン50質量部を、フラスコの内温を130℃に保ちながら4時間かけて連続添加した後、1時間反応を継続し、ジ-t-ブチルパーオキサイド0.2質量部を加え2時間反応を継続し、更にジ-t-ブチルパーオキサイドを0.2質量部加え2時間反応を継続して重合を完結し、H-1の重合液を得た。物性値を表3に示す。
Figure JPOXMLDOC01-appb-T000003
[非晶性ポリエステル樹脂(SN)及び結晶性を有する飽和ポリエステル樹脂(SC)の製造例]
(製造例SN-1)
 四つ口フラスコに還流冷却器、水分離装置、窒素ガス導入管、温度計及び撹拌装置を取り付け、表4に示す仕込み組成でアルコール成分、カルボン酸成分を仕込み、アルコール成分とカルボン酸成分の総量100質量部に対し、0.3質量部のジブチル錫オキサイドを仕込み、フラスコ内に窒素を導入しながら180℃~220℃に昇温し8時間反応後、更に8.0kPa以下の減圧下で1時間反応し、脱水重縮合を行った。得られた樹脂をフラスコより抜き出し冷却、粉砕して非晶性ポリエステル樹脂SN-1を得た。物性値を表4に示す。また、SN-1のTgは61℃であった。表4中、KB300は、ビスフェノールAプロピレンオキサイド付加物(三井化学株式会社製)を示す。
(製造例SN-2)
 表4に示す仕込み組成とした以外は、SN-1と同様にして脱水重縮合を行った。得られた樹脂をフラスコより抜き出し冷却、粉砕して非晶性ポリエステル樹脂SN-2を得た。物性値を表4に示す。また、SN-2のTgは59℃であった。
(製造例SC-1)
 四つ口フラスコに還流冷却器、水分離装置、窒素ガス導入管、温度計及び撹拌装置を取り付け、表4に示す仕込み組成でアルコール成分、カルボン酸成分を仕込み、アルコール成分とカルボン酸成分の総量100質量部に対し、0.15質量部のチタンラクテートの2-プロパノール溶液(濃度45%)(松本製薬工業株式会社製;オルガチックスTC-310)を仕込み、フラスコ内に窒素を導入しながら150℃で2時間反応後、220℃に昇温し5時間反応後、更に8.0kPa以下の減圧下で2時間反応し、脱水重縮合を行った。得られた樹脂をフラスコより抜き出し冷却、粉砕して結晶性を有する飽和ポリエステル樹脂SC-1を得た。物性値を表4に示す。
(製造例SC-2~SC-4)
 表4に示す仕込み組成で、製造例SC-1と同様の方法で、SC-2~SC-4の結晶性を有する飽和ポリエステル樹脂を得た。物性値を表4に示す。
(製造例SC-5)
 四つ口フラスコに還流冷却器、水分離装置、窒素ガス導入管、温度計及び撹拌装置を取り付け、表4に示す仕込み組成でアルコール成分、カルボン酸成分を仕込み、アルコール成分とカルボン酸成分の総量100質量部に対し、0.15質量部のチタンラクテートの2-プロパノール溶液(濃度45%)(松本製薬工業株式会社製;オルガチックスTC-310)及び0.2質量部のハイドロキノンを仕込み、フラスコ内に窒素を導入しながら150℃で2時間反応後、220℃に昇温し5時間反応後、更に8.0kPa以下の減圧下で2時間反応し、脱水重縮合を行った。得られた樹脂をフラスコより抜き出し冷却、粉砕して結晶性を有する不飽和ポリエステル樹脂SC-5を得た。物性値を表4に示す。
Figure JPOXMLDOC01-appb-T000004
[非晶性ポリエステル樹脂(SN)と結晶性を有する飽和ポリエステル樹脂(SC)及び脂肪酸金属塩の混合物(S)の製造例]
(製造例S-1)
 四つ口フラスコに窒素ガス導入管、温度計及び撹拌装置を取り付け、表5に示す仕込み組成で非晶性ポリエステル樹脂(SN)と結晶性を有する飽和ポリエステル樹脂(SC)及び脂肪酸金属塩を仕込み、フラスコ内に窒素を導入しながら150℃に昇温し、常圧で30分混合後、フラスコより抜き出し冷却、粉砕して、非晶性ポリエステル樹脂(SN)と結晶性を有する飽和ポリエステル樹脂(SC)及び脂肪酸金属塩の混合物S-1を得た。表5において脂肪酸金属塩の添加量は、非晶性ポリエステル樹脂(SN)と結晶性を有する飽和ポリエステル樹脂(SC)の総量100質量%としたときの数値である。
 表5中において、結晶性を有する飽和ポリエステル樹脂(SC)およびと非晶性ポリエステル樹脂(SN)の質量%は、SCとSNとの総量(100質量%)に対する質量%を示す。また、表5中において、脂肪酸金属塩の添加量の単位は、SCとSNとの総量(100質量%)に対する質量%で表す。
(製造例S-2~S-9、S-13~S-14)
 表5に示す仕込み組成で、製造例S-1と同様の方法で、非晶性ポリエステル樹脂(SN)と結晶性を有する飽和ポリエステル樹脂(SC)及び脂肪酸金属塩の混合物S-2~S-9、S-13、およびS-14を得た。
(製造例S-10)
 四つ口フラスコに窒素ガス導入管、温度計及び撹拌装置を取り付け、表5に示す仕込み組成で非晶性ポリエステル樹脂(SN)と結晶性を有する飽和ポリエステル樹脂(SC)を仕込み、フラスコ内に窒素を導入しながら150℃に昇温し、常圧で30分混合後、フラスコより抜き出し冷却、粉砕して、非晶性ポリエステル樹脂(SN)と結晶性を有する飽和ポリエステル樹脂(SC)の混合物S-10を得た。
(製造例S-11)
 四つ口フラスコに窒素ガス導入管、温度計及び撹拌装置を取り付け、表5に示す仕込み組成で結晶性を有する飽和ポリエステル樹脂(SC)と脂肪酸金属塩を仕込み、フラスコ内に窒素を導入しながら150℃に昇温し、常圧で30分混合後、フラスコより抜き出し冷却、粉砕して、結晶性を有する飽和ポリエステル樹脂(SC)及び脂肪酸金属塩の混合物S-11を得た。
(製造例S-12)
 四つ口フラスコに窒素ガス導入管、温度計及び撹拌装置を取り付け、表5に示す仕込み組成で非晶性ポリエステル樹脂(SN)と脂肪酸金属塩を仕込み、フラスコ内に窒素を導入しながら150℃に昇温し、常圧で30分混合後、フラスコより抜き出し冷却、粉砕して、非晶性ポリエステル樹脂(SN)及び脂肪酸金属塩の混合物S-12を得た。
Figure JPOXMLDOC01-appb-T000005
[カルボキシル基含有ビニル樹脂(C)の製造例]
(製造例C-1)
 高分子量ビニル樹脂(H)、低分子量ビニル樹脂(L)を表6に示す仕込み組成となるように混合した。その後、キシレン還流下において30分間混合し、これを190℃、1.33kPaのベッセル(容器)中にフラッシュして溶剤等を留去し、樹脂C-1を得た。物性値を表6に示す。
(製造例C-2~C-3)
 表6に示す仕込み組成で、製造例C-1と同様の方法で、C-2~C-3の樹脂を得た。物性値を表6に示す。
(製造例C-4)
 高分子量ビニル樹脂(H)、低分子量ビニル樹脂(L)、及び離型剤としてFT100(日本精鑞株式会社製)を表6に示す仕込み組成となるように混合し、さらに、 高分子量ビニル樹脂(H)と低分子量ビニル樹脂(L)の総量100質量部に対し、添加剤としてスチレン-エチレン-ブチレン-スチレンブロック共重合体(SEBS)(商品名Kraton G1652;クレイトンポリマージャパン株式会社製)0.5質量部を混合した。その後、キシレン還流下において30分間混合し、これを190℃、1.33kPaのベッセル(容器)中にフラッシュして溶剤等を留去し、樹脂C-4を得た。物性値を表6に示す。
(製造例C-5)
 離型剤をWEP-5(日油株式会社製)とした以外はC-4と同様にして樹脂C-5を得た。物性値を表6に示す。
Figure JPOXMLDOC01-appb-T000006
[バインダー樹脂(R)の製造例]
(製造例R-1~R-26)
 カルボキシル基含有ビニル樹脂(C)、グリシジル基含有ビニル樹脂(E)、表5記載の非晶性ポリエステル樹脂(SN)と結晶性を有する飽和ポリエステル樹脂(SC)及び脂肪酸金属塩の混合物(S)又は結晶性を有する飽和ポリエステル樹脂(SC)単独、を表8に記載の比率となるように各樹脂を混合した。その後、表8に記載の反応温度に温度設定した2軸混練機(KEXN S-40型、栗本鐵工所製)にて、25kg/hr、モーター回転数1400rpmで混練反応し、この混練物をスチールベルトクーラー(NR3-Hiダブルクーラ、日本ベルティング株式会社製)を使用して冷却水温10℃、冷却水量90L/分、ベルトスピード6m/分の条件で急冷した後、粉砕し、バインダー樹脂R-1~R-26を得た。物性値を表8に示す。なお、表8中のバインダー樹脂の構成における各比率やM含有量の計算において、C(カルボキシル基含有ビニル樹脂(C))の質量には、離型剤の質量は含まない。また、表5記載の非晶性ポリエステル樹脂(SN)と結晶性を有する飽和ポリエステル樹脂(SC)及び脂肪酸金属塩の混合物(S)が脂肪酸金属塩を含む場合、表8中のバインダー樹脂の原料組成においてポリエステル樹脂混合物の質量%には脂肪酸金属塩の質量を除いて計算した。
 表8中においては、カルボキシル基含有ビニル樹脂(C)、グリシジル基含有ビニル樹脂(E)、(非晶性ポリエステル樹脂(SN)+結晶性を有する飽和ポリエステル樹脂(SC))のそれぞれの質量%は、C、EおよびSN+SCの総量(100質量%)に対する質量%を示す。また、表8中において、脂肪酸金属塩、M含有量の質量%は、C、EおよびSN+SCの総量(100質量%)に対する質量%を示す。
 R-14及びR-15の製造においては、予め離型剤が含まれたカルボキシル基含有ビニル樹脂(C)を使用している。よって、表8のR-14及びR-15における離型剤成分の記載は、カルボキシル基含有ビニル樹脂(C)に含有されている離型剤成分を意味しており、バインダー樹脂(R)の製造工程で新たに添加することを意味するものではない。
Figure JPOXMLDOC01-appb-T000007
[電子写真トナー(T)の製造例]
(製造例T-1~T-26)
 バインダー樹脂(R)100質量%に対し、着色剤としてカーボンブラック(MA100;三菱化学株式会社製)6質量%、荷電調整剤(T-77;保土谷化学工業社製)0.5質量%添加し、更に各種離型剤(表7記載)を表9に記載の比率となるように添加し、ヘンシェルミキサーにて混合した。その後、2軸混練機(PCM-30型、池貝機械製)にて、2軸混錬機吐出部樹脂温度120℃、滞留時間30秒で混練させた。ついで冷却・粉砕・分級後、トナー粒子100質量%に対して疎水性シリカ微粉体(R-812、日本アエロジル株式会社製)0.5質量%、疎水性酸化チタン(NKT-90、日本アエロジル株式会社製)0.2質量%添加し、コールターカウンターにて測定した体積中位径D50が約7.5μmのトナーT-1~T-26を得た。物性値を表9に示す。なお、バインダー樹脂(R)中に離型剤を含む場合には、離型剤の質量を除いてバインダー樹脂(R)100質量%とした。
 表9中において、離型剤の質量%は、バインダー樹脂(離型剤を含む場合は、バインダー樹脂中の離型剤を除く)100質量%に対する質量%を示す。
Figure JPOXMLDOC01-appb-T000008
(実施例1~15、及び比較例1~11)
 表9に記載のトナー3質量%に対し、キャリア(パウダーテック株式会社製、F-150)97質量%を混合して現像剤とし、各種評価を行った。結果を表9に示す。
Figure JPOXMLDOC01-appb-T000009
 表9の結果から明らかなように、本発明により製造されたトナー用バインダー樹脂および該樹脂を用いたトナーはいずれも、種々の特性のバランスに優れたものであった。
 この出願は、2010年8月5日に出願された日本出願特願2010-176788号を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (13)

  1.  ビニル樹脂(A)と、
     非晶性ポリエステル樹脂(SN)と、
     結晶性を有する飽和ポリエステル樹脂(SC)と、
     Zn、Ca、Mg、AlおよびBaからなる群から選択される少なくとも一種を含む金属成分(M)(ただし、金属酸化物を除く)と、を含み、
     前記ビニル樹脂(A)の含有量は、前記ビニル樹脂(A)、前記非晶性ポリエステル樹脂(SN)および前記結晶性を有する飽和ポリエステル樹脂(SC)の含有量の合計値100質量%に対して、65質量%以上95質量%以下であり、
     前記ビニル樹脂(A)が、カルボキシル基含有ビニル樹脂(C)、グリシジル基含有ビニル樹脂(E)、およびこれらの反応物から構成されており、
     前記結晶性を有する飽和ポリエステル樹脂(SC)のエステル基濃度が、10.0mmol/g以上13.5mmol/g以下であり、
     前記ビニル樹脂(A)中に、前記非晶性ポリエステル樹脂(SN)が島状に分散しており、かつ、前記非晶性ポリエステル樹脂(SN)の島相内に前記結晶性を有する飽和ポリエステル樹脂(SC)が含まれており、
     前記金属成分(M)が、少なくとも前記結晶性を有する飽和ポリエステル樹脂(SC)中に含まれている、トナー用バインダー樹脂。
  2.  前記非晶性ポリエステル樹脂(SN)が少なくとも芳香族環構造を有している、請求項1に記載のトナー用バインダー樹脂。
  3.  前記結晶性を有する飽和ポリエステル樹脂(SC)の融点が75℃以上120℃以下である、請求項1または2に記載のトナー用バインダー樹脂。
  4.  ガラス転移温度が50℃以上65℃以下であり、
     テトラヒドロフラン可溶分が、ゲルパーミエーションクロマトグラフィーで測定される分子量分布において、分子量0.3×10以上2.0×10未満の領域にメインピークを有し、
     テトラヒドロフラン不溶分が5質量%以上40質量%未満である、請求項1から3のいずれか1項に記載のトナー用バインダー樹脂。
  5.  前記結晶性を有する飽和ポリエステル樹脂(SC)の酸価が25mgKOH/g以上70mgKOH/g以下である、請求項1から4のいずれか1項に記載のトナー用バインダー樹脂。
  6.  前記非晶性ポリエステル樹脂(SN)の含有量が、前記非晶性ポリエステル樹脂(SN)および前記結晶性を有する飽和ポリエステル樹脂(SC)の含有量の合計値100質量%に対して、15質量%以上70質量%以下である、請求項1から5のいずれか1項に記載のトナー用バインダー樹脂。
  7.  前記非晶性ポリエステル樹脂(SN)は、
     エステル基濃度が3.0mmol/g以上7.0mmol/g以下であり、
     酸価が25mgKOH/g以上70mgKOH/g以下であり、
     テトラヒドロフラン可溶分が、ゲルパーミエーションクロマトグラフィーで測定される分子量分布において、分子量0.3×10以上1.0×10未満の領域にメインピークを有する、請求項1から6のいずれか1項に記載のトナー用バインダー樹脂。
  8.  前記非晶性ポリエステル樹脂(SN)の相内に、前記結晶性を有する飽和ポリエステル樹脂(SC)の相が含まれている、請求項1から7のいずれか1項に記載のトナー用バインダー樹脂。
  9.  前記金属成分(M)が下記一般式で表される脂肪酸金属塩由来である、請求項1から8のいずれか1項に記載のトナー用バインダー樹脂。
    Figure JPOXMLDOC01-appb-C000003
     (nは11から22の整数であり、mは2または3の整数であり、MはZn、Ca、Mg、AlおよびBaから選択される金属である。)
  10.  トナー用バインダー樹脂と、着色剤と、離型剤と、を含み、
     前記トナー用バインダー樹脂が、請求項1から9のいずれか1項に記載のトナー用バインダー樹脂であって、
     前記離型剤の少なくとも1種は、結晶性を有する飽和ポリエステル樹脂(SC)の融点に対し-40℃以上5℃以下の融点を有しており、
     ビニル樹脂(A)中の非晶性ポリエステル樹脂(SN)の島相の分散径が2.0μm以下である、トナー。
  11.  ガラス転移温度が50℃以上65℃以下であり、
     テトラヒドロフラン可溶分が、ゲルパーミエーションクロマトグラフィーで測定される分子量分布において、分子量0.3×10以上2×10未満の領域にメインピークを有しており、
     テトラヒドロフラン不溶分が5質量%以上40質量%未満である、請求項10に記載のトナー。
  12.  非晶性ポリエステル樹脂(SN)、結晶性を有する飽和ポリエステル樹脂(SC)および、Zn、Ca、Mg、AlおよびBaからなる群から選択される少なくとも一種を含む金属成分(M)(ただし、金属酸化物を除く)の混合物を得る工程と、
     得られた前記混合物、カルボキシル基含有ビニル樹脂(C)、およびグリシジル基含有ビニル樹脂(E)を溶融状態で混合する工程を含む、トナー用バインダー樹脂の製造方法。
  13.  トナー用バインダー樹脂を得る工程と、
     前記トナー用バインダー樹脂と着色剤とを混合する工程と、を含み、
     前記トナー用バインダー樹脂は、請求項12に記載の製造方法で得られる、トナーの製造方法。
PCT/JP2011/004323 2010-08-05 2011-07-29 トナー用バインダー樹脂、トナーおよびその製造方法 WO2012017635A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201180038672.6A CN103069344B (zh) 2010-08-05 2011-07-29 调色剂用粘合剂树脂、调色剂及其制造方法
US13/813,427 US8679717B2 (en) 2010-08-05 2011-07-29 Binder resin for toner, toner and method for producing the same
CA2807017A CA2807017C (en) 2010-08-05 2011-07-29 Binder resin for toner, toner and method for producing the same
JP2012527587A JP5248712B2 (ja) 2010-08-05 2011-07-29 トナー用バインダー樹脂、トナーおよびその製造方法
KR1020137005508A KR101293412B1 (ko) 2010-08-05 2011-07-29 토너용 바인더 수지, 토너 및 그의 제조방법
EP11814272.8A EP2602664B1 (en) 2010-08-05 2011-07-29 Toner binder resin, toner, and manufacturing method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010176788 2010-08-05
JP2010-176788 2010-08-05

Publications (1)

Publication Number Publication Date
WO2012017635A1 true WO2012017635A1 (ja) 2012-02-09

Family

ID=45559157

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/004323 WO2012017635A1 (ja) 2010-08-05 2011-07-29 トナー用バインダー樹脂、トナーおよびその製造方法

Country Status (8)

Country Link
US (1) US8679717B2 (ja)
EP (1) EP2602664B1 (ja)
JP (1) JP5248712B2 (ja)
KR (1) KR101293412B1 (ja)
CN (1) CN103069344B (ja)
CA (1) CA2807017C (ja)
TW (1) TWI502010B (ja)
WO (1) WO2012017635A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013121981A1 (ja) * 2012-02-14 2013-08-22 シャープ株式会社 静電荷現像用トナー、及びそれを用いる画像形成装置、並びに画像形成方法
WO2013176016A1 (ja) * 2012-05-22 2013-11-28 三井化学株式会社 トナー用バインダー樹脂及びトナー
WO2014112488A1 (ja) * 2013-01-21 2014-07-24 花王株式会社 樹脂粒子分散液の製造方法及び静電荷像現像用トナーの製造方法
JP2014206610A (ja) * 2013-04-12 2014-10-30 コニカミノルタ株式会社 静電荷像現像用トナー
JP2015143823A (ja) * 2013-12-27 2015-08-06 花王株式会社 トナー用結着剤の製造方法
JP2017167446A (ja) * 2016-03-18 2017-09-21 キヤノン株式会社 トナー
JP2017173576A (ja) * 2016-03-24 2017-09-28 三井化学株式会社 トナーおよびトナーの製造方法
JP2017223839A (ja) * 2016-06-15 2017-12-21 株式会社リコー トナー、現像剤、画像形成装置、画像形成方法及びトナー収容ユニット
JP2018004879A (ja) * 2016-06-30 2018-01-11 キヤノン株式会社 トナー、及び該トナーを備えた現像装置
JP2018116183A (ja) * 2017-01-19 2018-07-26 京セラドキュメントソリューションズ株式会社 静電潜像現像用トナー
JP2018124460A (ja) * 2017-02-02 2018-08-09 コニカミノルタ株式会社 静電荷像現像用トナー
JP2018151619A (ja) * 2017-03-10 2018-09-27 三洋化成工業株式会社 トナーバインダー及びトナー
JP2018185363A (ja) * 2017-04-24 2018-11-22 三井化学株式会社 トナー用バインダー樹脂、トナー、トナー用バインダー樹脂の製造方法およびトナーの製造方法
JP7543019B2 (ja) 2020-07-31 2024-09-02 キヤノン株式会社 トナー及び粉末接着剤を含む電子写真用現像剤セット並びに接着物の製造方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5709065B2 (ja) 2011-10-17 2015-04-30 株式会社リコー トナー、該トナーを用いた現像剤、画像形成装置
JP5768837B2 (ja) * 2013-06-05 2015-08-26 コニカミノルタ株式会社 静電潜像現像用トナー及び電子写真画像形成方法
JP2015004723A (ja) * 2013-06-19 2015-01-08 コニカミノルタ株式会社 静電荷像現像用トナー
JP5884796B2 (ja) * 2013-09-05 2016-03-15 コニカミノルタ株式会社 静電潜像現像用トナー
WO2015170705A1 (ja) * 2014-05-09 2015-11-12 三洋化成工業株式会社 トナーバインダー及びトナー
JP2016004228A (ja) * 2014-06-19 2016-01-12 コニカミノルタ株式会社 静電荷像現像用トナー
JP6168088B2 (ja) * 2015-04-02 2017-07-26 コニカミノルタ株式会社 静電潜像現像用トナーの製造方法
JP6690545B2 (ja) * 2015-09-07 2020-04-28 三菱ケミカル株式会社 トナーとその製造方法
CN107526257B (zh) * 2016-06-15 2020-11-24 株式会社理光 调色剂,调色剂收纳单元,图像形成装置及图像形成方法
JP6904801B2 (ja) * 2016-06-30 2021-07-21 キヤノン株式会社 トナー、該トナーを備えた現像装置及び画像形成装置
JP6869819B2 (ja) 2016-06-30 2021-05-12 キヤノン株式会社 トナー、現像装置及び画像形成装置
JP6781850B2 (ja) * 2017-12-01 2020-11-04 三洋化成工業株式会社 トナーバインダー及びトナー

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03221966A (ja) * 1990-01-29 1991-09-30 Mitsubishi Petrochem Co Ltd 電子写真用トナーの帯電値調整方法
JP2872347B2 (ja) 1990-05-23 1999-03-17 コニカ株式会社 トナー用バインダー樹脂およびその製造方法ならびにトナー
JP2931899B1 (ja) 1998-02-27 1999-08-09 三洋化成工業株式会社 電子写真用トナーバインダー
JP2002258530A (ja) * 2001-02-28 2002-09-11 Ricoh Co Ltd トナー及び画像形成方法
JP2003215845A (ja) * 2002-01-25 2003-07-30 Ricoh Co Ltd 静電荷像現像用カラートナー
JP2004046095A (ja) * 2002-05-24 2004-02-12 Ricoh Co Ltd 静電荷像現像用カラートナー
JP3532033B2 (ja) 1996-05-27 2004-05-31 三井化学株式会社 電子写真用トナー
JP2004309517A (ja) 2003-04-01 2004-11-04 Kao Corp トナーの製造方法
JP2006171364A (ja) 2004-12-16 2006-06-29 Mitsui Chemicals Inc トナー用バインダー樹脂および電子写真用トナー
JP3794762B2 (ja) 1996-09-11 2006-07-12 三井化学株式会社 電子写真用トナー
JP2007071993A (ja) 2005-09-05 2007-03-22 Canon Inc トナー
JP2007127828A (ja) 2005-11-04 2007-05-24 Ricoh Co Ltd 画像形成用トナーの製造方法
JP3971228B2 (ja) 2002-04-11 2007-09-05 花王株式会社 電子写真用トナー
JP2008102390A (ja) 2006-10-20 2008-05-01 Canon Inc トナー
JP2010176788A (ja) 2008-12-29 2010-08-12 Nippon Shokubai Co Ltd 光ディスク用硬化性樹脂組成物および光ディスク

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4612788B2 (ja) * 2002-05-21 2011-01-12 キヤノン株式会社 水不溶性色材を含む粒子の分散体及びその製造方法
DE60325440D1 (de) 2002-05-24 2009-02-05 Ricoh Kk Farbtoner für die Entwicklung elektrostatischer Bilder, diesen Farbtoner enthaltender Behälter, diesen Farbtoner verwendendes Bildherstellungsverfahren, sowie diesen Farbtoner verwendender Apparat
JP4505293B2 (ja) * 2004-01-16 2010-07-21 テクノポリマー株式会社 多色発色レーザーマーキング用有彩色着色剤、多色発色レーザーマーキング用組成物及びそれを含む成形品並びにレーザーマーキング方法
KR100657415B1 (ko) * 2004-05-13 2006-12-13 주식회사 엘지화학 대전부 오염을 낮춘 칼라토너
US8133938B2 (en) * 2005-11-01 2012-03-13 Ppg Industries Ohio, Inc. Radiation diffraction colorants
US8614041B2 (en) * 2006-12-20 2013-12-24 Mitsui Chemicals, Inc. Toner for electrophotography and binder resin for toner
EP2192449B1 (en) * 2007-08-30 2015-06-17 Mitsui Chemicals, Inc. Binder resin for color toners and color toners made by using the same

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03221966A (ja) * 1990-01-29 1991-09-30 Mitsubishi Petrochem Co Ltd 電子写真用トナーの帯電値調整方法
JP2872347B2 (ja) 1990-05-23 1999-03-17 コニカ株式会社 トナー用バインダー樹脂およびその製造方法ならびにトナー
JP3532033B2 (ja) 1996-05-27 2004-05-31 三井化学株式会社 電子写真用トナー
JP3794762B2 (ja) 1996-09-11 2006-07-12 三井化学株式会社 電子写真用トナー
JP2931899B1 (ja) 1998-02-27 1999-08-09 三洋化成工業株式会社 電子写真用トナーバインダー
JP2002258530A (ja) * 2001-02-28 2002-09-11 Ricoh Co Ltd トナー及び画像形成方法
JP2003215845A (ja) * 2002-01-25 2003-07-30 Ricoh Co Ltd 静電荷像現像用カラートナー
JP3971228B2 (ja) 2002-04-11 2007-09-05 花王株式会社 電子写真用トナー
JP2004046095A (ja) * 2002-05-24 2004-02-12 Ricoh Co Ltd 静電荷像現像用カラートナー
JP2004309517A (ja) 2003-04-01 2004-11-04 Kao Corp トナーの製造方法
JP2006171364A (ja) 2004-12-16 2006-06-29 Mitsui Chemicals Inc トナー用バインダー樹脂および電子写真用トナー
JP2007071993A (ja) 2005-09-05 2007-03-22 Canon Inc トナー
JP2007127828A (ja) 2005-11-04 2007-05-24 Ricoh Co Ltd 画像形成用トナーの製造方法
JP2008102390A (ja) 2006-10-20 2008-05-01 Canon Inc トナー
JP2010176788A (ja) 2008-12-29 2010-08-12 Nippon Shokubai Co Ltd 光ディスク用硬化性樹脂組成物および光ディスク

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2602664A4 *

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104115070B (zh) * 2012-02-14 2018-01-26 夏普株式会社 静电显影用调色剂及使用该调色剂的图像形成装置以及图像形成方法
CN104115070A (zh) * 2012-02-14 2014-10-22 夏普株式会社 静电显影用调色剂及使用该调色剂的图像形成装置以及图像形成方法
WO2013121981A1 (ja) * 2012-02-14 2013-08-22 シャープ株式会社 静電荷現像用トナー、及びそれを用いる画像形成装置、並びに画像形成方法
JP2013167702A (ja) * 2012-02-14 2013-08-29 Sharp Corp 静電荷現像用トナー、及びそれを用いる画像形成装置、並びに画像形成方法
EP2853944A4 (en) * 2012-05-22 2015-12-30 Mitsui Chemicals Inc BINDER RESIN FOR TONER AND TONER
CN104246619A (zh) * 2012-05-22 2014-12-24 三井化学株式会社 调色剂用粘合剂树脂及调色剂
WO2013176016A1 (ja) * 2012-05-22 2013-11-28 三井化学株式会社 トナー用バインダー樹脂及びトナー
CN104246619B (zh) * 2012-05-22 2017-10-31 三井化学株式会社 调色剂用粘合剂树脂及调色剂
KR20140139592A (ko) * 2012-05-22 2014-12-05 미쓰이 가가쿠 가부시키가이샤 토너용 바인더 수지 및 토너
JPWO2013176016A1 (ja) * 2012-05-22 2016-01-12 三井化学株式会社 トナー用バインダー樹脂及びトナー
KR101676935B1 (ko) * 2012-05-22 2016-11-16 미쓰이 가가쿠 가부시키가이샤 토너용 바인더 수지 및 토너
US9594321B2 (en) 2012-05-22 2017-03-14 Mitsui Chemicals, Inc. Binder resin for toner and toner
JP2014156592A (ja) * 2013-01-21 2014-08-28 Kao Corp 樹脂粒子分散液の製造方法及び静電荷像現像用トナーの製造方法
WO2014112488A1 (ja) * 2013-01-21 2014-07-24 花王株式会社 樹脂粒子分散液の製造方法及び静電荷像現像用トナーの製造方法
US9557667B2 (en) 2013-01-21 2017-01-31 Kao Corporation Method for producing resin particle dispersion, and method for producing toner for electrostatic charge image development use
JP2014206610A (ja) * 2013-04-12 2014-10-30 コニカミノルタ株式会社 静電荷像現像用トナー
JP2015143823A (ja) * 2013-12-27 2015-08-06 花王株式会社 トナー用結着剤の製造方法
JP2017167446A (ja) * 2016-03-18 2017-09-21 キヤノン株式会社 トナー
JP2017173576A (ja) * 2016-03-24 2017-09-28 三井化学株式会社 トナーおよびトナーの製造方法
JP2017223839A (ja) * 2016-06-15 2017-12-21 株式会社リコー トナー、現像剤、画像形成装置、画像形成方法及びトナー収容ユニット
JP2018004879A (ja) * 2016-06-30 2018-01-11 キヤノン株式会社 トナー、及び該トナーを備えた現像装置
JP2018116183A (ja) * 2017-01-19 2018-07-26 京セラドキュメントソリューションズ株式会社 静電潜像現像用トナー
JP2018124460A (ja) * 2017-02-02 2018-08-09 コニカミノルタ株式会社 静電荷像現像用トナー
JP2018151619A (ja) * 2017-03-10 2018-09-27 三洋化成工業株式会社 トナーバインダー及びトナー
JP2018185363A (ja) * 2017-04-24 2018-11-22 三井化学株式会社 トナー用バインダー樹脂、トナー、トナー用バインダー樹脂の製造方法およびトナーの製造方法
JP7543019B2 (ja) 2020-07-31 2024-09-02 キヤノン株式会社 トナー及び粉末接着剤を含む電子写真用現像剤セット並びに接着物の製造方法

Also Published As

Publication number Publication date
KR20130030826A (ko) 2013-03-27
US20130130166A1 (en) 2013-05-23
CA2807017C (en) 2014-09-30
TWI502010B (zh) 2015-10-01
CN103069344A (zh) 2013-04-24
EP2602664A4 (en) 2015-07-08
TW201207032A (en) 2012-02-16
EP2602664B1 (en) 2016-08-31
US8679717B2 (en) 2014-03-25
JP5248712B2 (ja) 2013-07-31
KR101293412B1 (ko) 2013-08-05
CN103069344B (zh) 2014-09-17
CA2807017A1 (en) 2012-02-09
EP2602664A1 (en) 2013-06-12
JPWO2012017635A1 (ja) 2013-10-03

Similar Documents

Publication Publication Date Title
JP5248712B2 (ja) トナー用バインダー樹脂、トナーおよびその製造方法
JP5254465B2 (ja) トナー用バインダー樹脂、トナーおよびその製造方法
JP5118704B2 (ja) カラートナー用バインダー樹脂およびこれを用いるカラートナー
JP5072113B2 (ja) 電子写真用トナーおよびトナー用バインダー樹脂
JP5118141B2 (ja) カラートナー用バインダー樹脂およびこれを用いるカラートナー
JP5747122B2 (ja) トナー用バインダー樹脂及びトナー
JP2019020690A (ja) トナー
JP6675244B2 (ja) トナーおよびトナーの製造方法
JP6882922B2 (ja) トナー用バインダー樹脂、トナー、トナー用バインダー樹脂の製造方法およびトナーの製造方法
JP2019199534A (ja) 着色剤マスターバッチ用ベース樹脂、着色剤マスターバッチ、着色剤マスターバッチの製造方法およびトナー
JP2019211518A (ja) トナー用バインダー樹脂、トナー用樹脂組成物、トナーおよび現像剤
JP2003098754A (ja) 静電荷像現像用トナー
JP2003280275A (ja) 正帯電性緑色トナー

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180038672.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11814272

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012527587

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2807017

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 13813427

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011814272

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011814272

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137005508

Country of ref document: KR

Kind code of ref document: A