WO2012015616A1 - Microwave assisted synthesis of dehydrated sugar derivatives hydroxymethylfurfural, levulinic acid, anhydrosugar alcohols, and ethers thereof - Google Patents
Microwave assisted synthesis of dehydrated sugar derivatives hydroxymethylfurfural, levulinic acid, anhydrosugar alcohols, and ethers thereof Download PDFInfo
- Publication number
- WO2012015616A1 WO2012015616A1 PCT/US2011/044324 US2011044324W WO2012015616A1 WO 2012015616 A1 WO2012015616 A1 WO 2012015616A1 US 2011044324 W US2011044324 W US 2011044324W WO 2012015616 A1 WO2012015616 A1 WO 2012015616A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- hmf
- sugar derivative
- dehydrated sugar
- reactant
- solvent
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D307/00—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
- C07D307/77—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
- C07D307/93—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems condensed with a ring other than six-membered
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D307/00—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
- C07D307/02—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
- C07D307/34—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
- C07D307/38—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms
- C07D307/40—Radicals substituted by oxygen atoms
- C07D307/42—Singly bound oxygen atoms
- C07D307/44—Furfuryl alcohol
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C51/00—Preparation of carboxylic acids or their salts, halides or anhydrides
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C59/00—Compounds having carboxyl groups bound to acyclic carbon atoms and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
- C07C59/185—Saturated compounds having only one carboxyl group and containing keto groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C67/00—Preparation of carboxylic acid esters
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D307/00—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
- C07D307/02—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
- C07D307/04—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having no double bonds between ring members or between ring members and non-ring members
- C07D307/18—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having no double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D307/20—Oxygen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D307/00—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
- C07D307/02—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
- C07D307/34—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
- C07D307/38—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms
- C07D307/40—Radicals substituted by oxygen atoms
- C07D307/46—Doubly bound oxygen atoms, or two oxygen atoms singly bound to the same carbon atom
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D307/00—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
- C07D307/02—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
- C07D307/34—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
- C07D307/38—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms
- C07D307/40—Radicals substituted by oxygen atoms
- C07D307/46—Doubly bound oxygen atoms, or two oxygen atoms singly bound to the same carbon atom
- C07D307/48—Furfural
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D307/00—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
- C07D307/02—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
- C07D307/34—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
- C07D307/38—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms
- C07D307/40—Radicals substituted by oxygen atoms
- C07D307/46—Doubly bound oxygen atoms, or two oxygen atoms singly bound to the same carbon atom
- C07D307/48—Furfural
- C07D307/50—Preparation from natural products
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D493/00—Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
- C07D493/02—Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings
- C07D493/04—Ortho-condensed systems
Definitions
- the present disclosure relates to improved methods of producing the dehydrated sugar derivatives such as 2,5-(hydroxymethyl)furfural, levulinate esters, anhydrosugar alcohols as well as ether and ester derivatives thereof using microwave radiation to catalyze the reactions.
- HMF has strong potential in industrial and commercial applications especially for polymer applications due to its multi-functionality which allows for use as a monomer in polymerization reactions.
- HMF generation of HMF by dehydration of fructose produces three equivalents of water as by products, and the formation of 3 double bonds (two alkenes and one aldehyde).
- HMF must be produced at relatively low cost.
- the production of HMF has been studied for years, but an efficient and cost- effective method of producing HMF has yet to be found.
- Extended reaction times, high temperatures and pressures cause complications to arise from the rehydration of HMF after the dehydration occurs, which often yields the byproducts of levulinic acid and formic acid.
- Another competing side reaction is the polymerization of HMF and/or fructose to form humin.
- a low yield of HMF is typically obtained when the synthesis is performed in aqueous conditions because of the low selectivity of the dehydration reaction. Low selectivity
- HMF reaction product is generally sequestered by organic solvent extraction or adsorption onto a resin as soon as it is formed.
- organic solvent extraction or adsorption onto a resin as soon as it is formed.
- these systems fail to directly address the issue of low selectivity for HMF.
- these systems generally suffer from high dilution or partially irreversible adsorption of HMF and increase cost due to handling and use of the organic solvents or resins.
- a selective aqueous reaction system wherein HMF is the predominant product formed at would be desirable.
- Levulinic acid is made by dehydration of hexose, which generates HMF as an intermediate, followed by deformylation resulting in the loss of formic acid.
- Levulinic acid and levulinate esters have been used as important intermediates in pharmaceutical and fine chemical processes.
- Anhydrosugar alcohols such as sorbitan and isosorbide derived from glucose, are mono cyclic and bi-cyclic ring compounds that are made by the dehydration of 1 or 4 water molecules, respectfully, from a hexitol, which is typically made by hydrogenation of a hexose.
- isosorbide is considered to be one of high importance because of its use in the formation of pharmaceutical compounds, in food production, cosmetic production, plastic and polymer production, and in other potential industrial uses such as in the production of polyurethane, polycarbonate, polyesters, and polyamides (Stoss and Hemmer, 1991).
- dehydrated ring derivatives of hexoses may further be used for making several other compounds, for example, by making ether derivatives of the free alcohol groups as illustrated below: H
- R can be alkyl, allyl,, or aryl
- the anhydrosugar alcohol, isosorbide can be used as a starting material in the formation of isosorbide dimethyl ether and isosorbide dinitrate or as an intermediate in various organic synthesis reactions.
- Isosorbide dimethyl ether is useful as an industrial solvent, a pharmaceutical additive, and in personal care products, while isosorbide dinitrate is useful as a medication to relieve the pain of angina attacks or reduce the number of such attacks by improving blood flow to the heart.
- the methods include forming a reaction mixture comprising a solvent and a reactant selected from the group consisting of a hexose, a sugar alcohol, and an anhydrosugar alcohol; and contacting the mixture with microwave radiation bringing it to temperature of between 130°C and 220°C for a time sufficient to convert at least 40% of the reactant into at least one desired dehydrated sugar derivative product.
- the reactant is a hexose and the desired dehydrated sugar derivative is HMF.
- the hexose is fructose.
- the reaction mixture further includes an acid catalyst.
- the reactant is a sugar alcohol and the desired dehydrated sugar derivative is an anhydrosugar alcohol.
- the sugar alcohol is sorbitol and the reaction product is sorbitan or isosorbide.
- the reaction mixture further includes an acid catalyst. In typical practices the temperature range is l30°C - 190°C.
- the reactant is a hexose
- the reaction mix contains an R -alcohol and the reaction product is an ether of HMF.
- the product is a levulinate ester. Glucose is preferred for making the levulinateesters.
- the reaction mixture further includes an acid catalyst.
- the catalyst is selected from the group consisting of a solid acidsubstrate and a homogeneous acid.
- an R-alcohol R can be an alkyl, allyl, cycloalkyl, or aryl group
- the desired dehydrated sugar derivative is selected from the group consisting of an R-ether or R-ester of the desired dehydrated sugar derivative.
- the e R-alcohol is the solvent of the reaction mixture.
- the reactant is a hexose
- the desired dehydrated sugar derivative is selected from the group consisting of R-oxy HMF, and R acyl- levulinate.
- the reactant is sorbitol
- the reaction mixture contains an acid catalyst
- the temperature is between 130°C and 190°C
- the desired dehydrated sugar derivative comprises a combination of sorbitan and isosorbide.
- the desired dehydrated sugar derivative is predominantly sorbitan.
- the reaction mixture further contains R- carbonate where R is an alkyl, allyl, cycloalkyl, or aryl group, the solvent is not water, the reaction mixture contains an organic base catalyst, and the desired dehydrated sugar derivative is an R-anhydrosugar alcohol ether.
- isosorbide is the reactant and the dehydrated sugar derivative is mono- or di- R oxy isosorbide.
- the reactant is converted into the desired dehydrated sugar derivatives.
- Many embodiments further include at least partially purifying the desired dehydrated derivative from the reaction mixture.
- the partial purification includes adding an immiscible organic solvent to the mixture thereby partitioning the dehydrated sugar derivative into immiscible organic solvent solution, collecting the partitioned immiscible organic solvent, and evaporating the collected solvent to produce an extract enriched in the desired dehydrated sugar derivative.
- Suitable immiscible organic solvent can selected from ethyl acetate, methyl t-butyl ether, diethyl ether, toluene, methyl ethyl ketone, ethyl lactate, methyl isobutyl ketone, octanol, pentanol, butyl acetate, chloroform, and any combinations thereof.
- the starting reactant is fructose
- the dehydrated sugar derivative is HMF
- the reaction mixture contains and acid catalyst
- the reaction solvent is selected from a group consisting of: dimethylacetamide, dimethylformamide, N-methyl pyrrolidinone, and HMF is purified by partitioning it from the reaction solvent into the immiscible organic solvent.
- Figure 1 is a chart showing conversion of HMF from fructose using microwave radiation according to a series of experiments performed in accordance with one aspect of the present invention.
- Figure 2 is a chart showing the effect of microwave radiation on the dehydration of sugars in comparison to non-microwave methods.
- Figure 2 shows a direct comparison of total product yields from sugar dehydration using microwave radiation vs non-microwave methods.
- microwave radiation total product yields are enhanced. While not being bound by theory, it is believed that microwave energy preferentially activates the carbon-oxygen-hydrogen bonds involved in dehydration and hydrolytic condensation, thereby facilitate faster dehydration and bond formation at lower energy levels than required by conventional heating.
- HMF and HMF derivatives such as HMF ethers and esters, and levulinic acid and derivatives, such as levulinate esters are provided.
- HMF and HMF derivatives such as HMF ethers and esters
- levulinic acid and derivatives such as levulinate esters are provided.
- processes are disclosed involving microwave exposure of reactants either in the presence of an aqueous or organic solvent and may be performed with or without a catalyst.
- any numerical range recited herein is intended to include all sub-ranges subsumed therein.
- a range of “1 to 10" is intended to include all sub-ranges between (and including) the recited minimum value of 1 and the recited maximum value of 10, that is, having a minimum value equal to or greater than 1 and a maximum value of equal to or less than 10.
- the terms "one,” “a,” or “an” as used herein are intended to include “at least one” or “one or more,” unless otherwise indicated.
- microwave irradiation refers to electromagnetic waves comprising frequencies of 300 Megahertz (MHz) to 300 Gigahertz (GHz).
- the microwave irradiation range comprises an alternating current signal with a frequency in a range of 300 MHz to 300 GHz.
- the microwave irradiation comprises an alternating current signal with a frequency in the range of 300 MHz to 30 GHz.
- the microwave irradiation range comprises an alternating current signal with a frequency in the range of 300 MHz to 3 GHz.
- the starting materials for the reactions described herein are sources of sugars anddehydrated sugar derivatives.
- sugar sources that may be converted to HMF or HMF ethers and levulinic acid esters as well as combinations thereof, include, but are not limited to any source of a sugar, including for example, any hexose, polysaccharides comprising at least one hexose, pentose, corn syrup, a dissolved crystalline fructose, high-fructose corn syrup which is typically a 45 to 75 % wt/wt mixture of fructose with glucose made by isomerization of ordinary corn syrup, high-fructose corn syrup refinery intermediates and by-products such as mother liquor, ordinary corn syrup, which is the glucose syrup obtained from direct hydrolysis of corn starch, process streams from making fructose or glucose, sucrose, sugar cane molasses, and any combinations thereof.
- the source of the sugar is not important because all sugars will undergo the dehydrations and hydrolytic synthesis reactions to produce the derivatives described herein, however, the reaction products and selectivity of the reactions will of course vary with the particular source of sugar.
- the desired reaction product is HMF or a derivative of HMF, it is preferred to use a source that contains larger amounts of fructose.
- the desired reaction product is a levulinic acid ester, the desired starting material should contain larger amounts of glucose.
- reaction yield is calculated using the equation (moles of HMF produced/moles of fructose consumed) X 100.
- Product purity is reported on a weight percent basis.
- greater than 25% of the sugar can be converted to HMF or HMF ethers and esters and levulinic acid and levulinate esters, as well as combinations thereof.
- greater than 50% of the sugar, such as hexose can be converted to HMF or HMF ethers and esters, as well as combinations thereof.
- greater than 70% or more of the sugar, such as hexose can be converted to HMF or HMF ethers and esters, as well as combinations thereof.
- a hexose source - most preferably one containing fructose - is combined with a solvent, and optionally with a catalyst to form a mixture that irradiated with microwaves for a sufficient time to convert at least a portion of the sugar into HMF.
- the reaction mixture includes an acid catalyst, Suitable examples of acid catalysts include homogenous acids such as dissolved inorganic acids, soluble organic acids, soluble Bransted-Lowry acids, and heterogeneous solid acid catalysts, acidic ion- exchange resins, acid zeolites, Lewis acids, acidic clays, molecular sieves, and any combinations thereof.
- the homogeneous acid may have a range of 0.1% to 10% by weight starting sugar. In typical embodiments, the homogeneous acid may have a range of 1% to 10% by weight. In other embodiments, the homogeneous acid may have a range of 0.1% to 5% by weight.
- the heterogeneous solid acid catalysts often comprise a solid material which has been functionalizing to impart acid groups that are catalytically active. Solid acid catalysts may have a broad range of composition, porosity, density, type of acid groups, and distribution of acid groups. Solid acid catalysts may be recovered and reused, optionally with a treatment to regenerate any activity that may have been lost in use.
- solid acid catalysts that may be used include, but are not limited to, Amberlyst 35, Amberlyst 36, Amberlyst 70, Amberlyst 15, Amberlyst 131 (Rohm and Haas, Woodridge, IL), Lewatit S2328, Lewatit K2431, Lewatit S2568, Lewatit K2629 (Sybron Corp, Birmingham, NJ), Dianion SK 104, Dianion PK228, Dianion RCPI60, RCP21H, Relite RAD/F (Mitsubishi Chemical, White Plains, NY), Dowex 50WX4 (Dow Chemical) and any combination thereof.
- the solid acid catalyst may have a range of 1% to 50% by weight. In some embodiments, the solid acid catalyst may have a range of 1% to 25% by weight. In other embodiments, the solid acid catalyst may have a range of 1% to 10% by weight.
- either a heterogeneous solid acid catalyst like Amberlyst 35 resin, or a homogeneous acid catalyst exemplified by H2SO 4 was used.
- the reaction contains fructose
- the microwave radiation is used to raise and hold the temperature to between 120 and 170°C, typically from between 130 and 160°C and reaction time is sufficient to convert at least 40% of the fructose to HMF in 15 minutes.
- the temperature is between 1 0 and 160°C
- the time is less than 30 minutes - more like 20 minutes, and at least 65% of the fructose is converted to HMF.
- Suitable organic solvents for the reaction mixture are polar organic aprotic solvents.
- polar organic aprotic solvents examples include, but are not limited to, l-methyl-2-pyrrolidinone, dimethylacetamide, dimethylformamide, dimethyl sulfoxide, methyl ethyl ketone, methyl isobutyl ketone, acetonitrile, propionitrile, and any combinations thereof.
- Suitable heterogeneous acids catalysts that may be used include, but are not limited to, Amberlyst 35, Amberlyst 36, Amberlyst 70, Amberlyst 15, Amberlyst 131 (Rohm and Haas, Woodridge, IL), Lewatit S2328, Lewatit K2431, Lewatit S2568, Lewatit K2629 (Sybron Corp, Birmingham, NJ), Dianion SK 104, Dianion PK228, Dianion RCPI60, RCP21H, Relite RAD/F (Mitsubishi Chemical, White Plains, NY), Dowex 50WX4 (Dow Chemical) and any combination thereof.
- the solid acid catalyst may have a range of 1% to 50% by weight. In some embodiments, the solid acid catalyst may have a range of 1% to 25% by weight. In typical embodiments, the solid acid catalyst is used at a range of 1% to 10% by weight of the starting sugar.
- Suitable homogeneous acids include inorganic acids such as such as H 2 S0 4 , H3PO4, HC1, as well as strong organic acids such as oxalic acid, levulinic acid, and p- toluene sulfonic acid.
- catalysts not exemplified may also be used. These include, but are not limited to boron trifluoride etherate, and metals, such as Zn, Al, Cr, Ti, Th, Zr, and V.
- the reaction may, for example, be conducted in an aqueous solvent with or without added catalyst. Under aqueous conditions without catalyst, the reaction temperature should be brought to about 200-210°C using the microwave radiation, however, the time should be shortened to less than 5 minutes to avoid rehydration and production of levulinic acid and other non selective by-products. Yields of greater than 50% HMF from fructose were obtained in an aqueous solvent in the absence of acid catalyst at reaction temperatures of 200-210°C for 3 to 3.5 minutes after a 3 to 3.5 minute ramp up to temperature.
- HMF ethers can also be made directly under similar reaction conditions if fructose is used as the starting material and reaction solvent is an alcohol. Any organic alcohol or alcohol mixture can be used, including allyl, alkyl, aryl, and cycloalkyl alcohols. In most practical embodiments a CI to C8 alcohol would be used, such as methanol, ethanol, propanols, primary and branched alcohols, and amyl or isoamyl alcohol.
- Exemplary HMF ethers include, but are not limited to, ethoxymethylfurfural, butoxymethylfurfural, isoamyioxyfurfural, and methoxymethylfurfural inter alia or any combination thereof.
- the reaction product may comprise corresponding HMF esters, exemplified, 5-acetoxymemylfurfural, inter alia and any combination thereof.
- the reaction mixture preferably contains a catalyst and exemplary catalyst include the same heterogeneous and homogeneous acid catalyst in the same amounts mentioned for HMF synthesis.
- Typical reaction conditions include irradiating the mixture containing fructose, the catalyst and the alcohol solvent to bring it a temperature of between 140 to about 200°C for a time sufficient to convert at least 50% of the fructose to the HMF ether derivative of the alcohol solvent.
- Typical reaction times are only 30 minutes or less. Temperatures toward the higher end of the range will lead to production of more HMF ether, but also more levulinic acid ester derivatives than lower temperatures.
- Levulinic acid esters To selectively make the levulinic acid ester derivatives, it is preferable to start with a sugar source that contains larger amounts of glucose. Formation of the levulinic acid esters also entails use of the heterogeneous or homogeneous acid catalyst and the solvent again should be, or contain, the same type of alcohols mentioned above from making HMF derivatives.
- dextrose (glucose obtained by hydrolysis of starch) is combined with the alcohol and acid catalyst and heated to a temperature of between 130 and 200°C by contact with microwave radiation for a period of 15 to 45 minutes to yield a reaction product that is at least 40% levulinate ester.
- dextrose in ethanol was combined with a heterogeneous acidic resin (Amberlyst 35) and heated to 170°C for a period of 30 minutes after a temperature ramp-up period of 7 minutes.
- the product yield was typically about 50 % of ethyl levulinate from dextrose.
- Smaller side products included HMF at about 12% and the HMF ether derivative, ethoxymethyl furfural at about 25.4%
- Exemplary levulinic esters include, but are not limited to, butyl levulinate, ethyl levulinate, and isoamyl levulinate inter alia and any combination thereof.
- reaction yields of levulinate esters can be very high.
- an immiscible organic solvent may be added to the mixture, which can be filtered or unfiltered, thereby partitioning the HMF and its derivatives into an organic phase solution; the organic phase solution may be collected; and the solvent may be evaporated, e.g., under a reduced atmospheric pressure, from the organic phase solution to produce an extract enriched with HMF and its derivatives or levulnic acid derivatives.
- organic solvents examples include, but are not limited to, ethyl acetate, methyl t-butyl ether, diether ether, toluene, methyl ethyl ketone, ethyl lactate, methyl isobutyl ketone, octanol, pentanol, butyl acetate, chloroform, and any combination thereof.
- the aqueous phase may be collected and the unreacted fructose can be irradiated again to produce HMF and its derivatives and levulinate esters, or it can be recycled for another purpose disclosed herein or known in the art.
- the disclosed extraction method is particularly advantageous, as it eliminates the need for a multi-step purification process, thereby improving speed and efficiency while reducing costs and waste.
- the extracted reaction products may then be used as a reactant source for further transformation into a variety of useful derivatives or recrystallized to further increase the purity of the reaction product.
- anhydrosugar alcohols can also be efficiently made using microwave radiation.
- the initial reagent is typically a sugar alcohol, particularly a hexitol, that is irradiated for a sufficient time to dehydrate the sugar alcohol into a mono- or di- anhydrosugar alcohol.
- the solvent can be an aqueous solvent or a polar organic solvent or combinations of the same.
- Preferred polar organic solvents are aprotic solvent. Examples of possible solvents include, but are not limited to, l-methyl-2-pyrrolidinone, dimethylacetamide,
- the reaction mixture typically also includes a heterogeneous or homogeneous acid a catalyst as has been described herein before for HMF production.
- a mixture containing the sugar alcohol with the optional catalyst is heated with microwave irradiation for a time and at a temperature needed to promote the dehydration of sugar alcohol into an anhydrosugar alcohol.
- the process is performed at a temperature range of 130°C to 200°C. In some other embodiments, a temperature range of 170°C to 190°C may be employed. In certain embodiments, the process may be performed at a time range of 3 to 45 minutes. Typical embodiments employ a ramp up to temperature time in a range of 3 to 4 minutes. In typical embodiments, 30 minutes is sufficient for of greater than 50 % of the hexitol into a mixture of monoanhydro and dianhydrosugar alcohols.
- the predominant reaction product is a mono anhydrosugar alcohol, exemplified by sorbitan. Longer reaction times will result in further dehydration to produce greater amounts of the dianhydrosugar alcohol exemplified by isosorbide. It is anticipated that reaction times of less than 2 hours will be sufficient to convert most of the hexitol into the dianhydrosugar alcohol derivative.
- Microwave assisted synthesis of isosorbide and sorbitan allows for the enhancement of reaction rates, ease of manipulation, and precise control over reaction rates.
- the anhydrosugar alcohols may be further purified. One preferred purification is accomplished by use of a film evaporator.
- Anhydrosugar alcohol ethers can also be efficiently made from the anhydrosugar alcohols using microwave assisted irradiaton. Isosorbide dimethyl ether may be used for various applications including, but not limited to, industrial solvents, pharmaceutical additives, and personal care products.
- One aspect of forming ethers from anhydrosugar alcohols is the use of dialkyl carbonates at greatly reduced temperatures pressures, and times.
- use of dialkyl carbonates to form the corresponding alkyl ether derivatives of isosorbide required temperatures of 240-260°C, pressures of 4 MPa, and reaction times of two hours or greater.
- the reaction can be done by irradiating the mixture with microwaves to temperatures as low as 120-170°C in as little as 10-30 minutes.
- the microwave power was 1000 watts
- the reaction temperature was 150°C with a ramp-up to temperature time of 2 minutes and continued microwave exposure was use to maintain that temperature for only 15 minutes.
- the starting anhydrosugar alcohol is dissolved in a dialkyl carbonate solvent, which also serves as the alkylating reactant, however any solvent that can dissolve the reactants and products would be suitable so long as sufficient molar amounts of dialkyl carbonate are present.
- the alkyl group of the dialkyl carbonates can be of any length soluble in the solvent and may comprise aryl, or cycloalkyl or allyl moieties.
- a base catalyst is preferentially used.
- One exemplary base catalyst is dimethlyaminopyridine (DMAP).
- DMAP dimethlyaminopyridine
- Other bases including non nucleophilic organic bases, sodium methoxide, solid supported bases, basic resins, weak inorganic bases, and strong inorganic bases may also be applied. This method is very beneficial as it increases the selectivity of the reaction. For example, a weak base would increase the product selectivity towards the monoalkylether. Alternatively, if a strong base is used, the dialkylether would
- Isosorbide dinitrate Another derivative compound of isosorbide that can be made by a similar process is isosorbide dinitrate.
- Isosorbide dinitrate may be used for various applications including, but not limited to, medication to relieve the pain of angina attacks and reduce attacks by increasing blood flow to the heart. It is made by substituting dimethyl nitrate for the dialkyl carbonate and otherwise conducting the same steps with microwave irradiation.
- dimethyl nitrate for the dialkyl carbonate and otherwise conducting the same steps with microwave irradiation.
- Example 5 The material prepared as described in Example 5 was filtered by gravity filtration. Ethyl acetate (120 mL) was added to the solution, and two layers separated. The organic layer was dried over M g S0 4 , and the solvent evaporated to provide 3.36 g of bright red oil which was 64.4% HMF.
- the sample was heated from room temperature to 170°C in 3 minutes, and kept at 170°C for 30 minutes using microwave iiTadiation at a power of 1000 watts.
- the reaction mixture was then cooled.
- the final product was composed of 50.4% sorbitan, 7.8% isosorbide, and 11.9% sorbitol.
- a 70% sorbitol solution (50 g) and concentrated sulfuric acid (0.20 mL) was placed in a TEFLON ® -lined reaction vessel inside a high density rotor for treatment in a MicroSYNTH ® Microwave Labstation.
- the sample was heated from room temperature to 190°C in 4 minutes, and kept at 190°C for 30 min using a microwave irradiation at a power of 1000 watts.
- the vessel was cooled.
- the final product was composed of 39.6% sorbitan, 16.5% isosorbide, and
- a 70%) sorbitol solution (50 g) and concentrated sulfuric acid (0.10 mL) was placed in a TEFLON ® -lined reaction vessel inside a high density rotor for treatment in a MicroSYNTH ® Microwave Labstation.
- the sample was heated from room temperature to 190°C in 4 minutes, and kept at 190°C for 30 minutes using a microwave irradiation at a power of 1000 watts.
- the vessel was cooled.
- the final product was composed of 43.4% sorbitan, 9.5% isosorbide, and 6.0% sorbitol.
- Isosorbide (3 g), dimethylaminopyridine (0.16 g), and dimethyl carbonate (30 mL) was placed in a Teflon-lined reaction vessel inside a high density rotor for treatment in a MicroSYNTH Microwave Labstation.
- the sample was heated from room temperature to 150°C in 2 min, and kept at 150°C for 15 min using an irradiation power of 1000 Watt.
- the vessel was cooled.
- TLC analysis indicates a decrease in the amount of isosorbide and a significant amount of dimethyl isosorbide.
- Monomethyl isosorbide may also be present.
- the use of MW with dimethyl carbonate as a means of alkylating anhydrosugar alcohols is novel.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
Abstract
Description
Claims
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201180035990.7A CN103025697B (en) | 2010-07-30 | 2011-07-18 | The synthesis of the anhydrosugar derivative hydroxymethylfurfural of microwave-assisted, levulinic acid, anhydrous sugar alcohol and ether thereof |
BR112013002023A BR112013002023A2 (en) | 2010-07-30 | 2011-07-18 | method to produce a dehydrated sugar derivative |
US13/811,759 US9090550B2 (en) | 2010-07-30 | 2011-07-18 | Microwave assisted synthesis of dehydrated sugar derivatives hydroxymethylfurfural, levulinic acid, anhydrosugar alcohols, and ethers thereof |
EP11812946.9A EP2598466B1 (en) | 2010-07-30 | 2011-07-18 | Microwave assisted synthesis of dehydrated sugar derivatives hydroxymethylfurfural, levulinic acid, anhydrosugar alcohols, and ethers thereof |
US14/745,546 US20150284354A1 (en) | 2010-07-30 | 2015-06-22 | Microwave assisted synthesis of dehydrated sugar derivatives hydroxymethylfurfural, levulinic acid, anhydrosugar alcohols, and ethers thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US36935010P | 2010-07-30 | 2010-07-30 | |
US61/369,350 | 2010-07-30 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/811,759 A-371-Of-International US9090550B2 (en) | 2010-07-30 | 2011-07-18 | Microwave assisted synthesis of dehydrated sugar derivatives hydroxymethylfurfural, levulinic acid, anhydrosugar alcohols, and ethers thereof |
US14/745,546 Continuation US20150284354A1 (en) | 2010-07-30 | 2015-06-22 | Microwave assisted synthesis of dehydrated sugar derivatives hydroxymethylfurfural, levulinic acid, anhydrosugar alcohols, and ethers thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012015616A1 true WO2012015616A1 (en) | 2012-02-02 |
Family
ID=45530445
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2011/044324 WO2012015616A1 (en) | 2010-07-30 | 2011-07-18 | Microwave assisted synthesis of dehydrated sugar derivatives hydroxymethylfurfural, levulinic acid, anhydrosugar alcohols, and ethers thereof |
Country Status (5)
Country | Link |
---|---|
US (2) | US9090550B2 (en) |
EP (1) | EP2598466B1 (en) |
CN (3) | CN105418550A (en) |
BR (1) | BR112013002023A2 (en) |
WO (1) | WO2012015616A1 (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013117585A1 (en) * | 2012-02-07 | 2013-08-15 | Annikki Gmbh | Method for the production of furan derivatives from glucose |
EP2703395A1 (en) * | 2012-09-03 | 2014-03-05 | Annikki GmbH | Process for the production of furan derivatives |
WO2014033734A2 (en) * | 2012-07-19 | 2014-03-06 | Praj Industries Limited | Process and system for the preparation of esters of levulinic acid |
WO2014154676A1 (en) * | 2013-03-27 | 2014-10-02 | Annikki Gmbh | Method for isomerisation of glucose |
WO2015075540A1 (en) | 2013-11-21 | 2015-05-28 | Arvind Mallinath Lali | A process for synthesis of furan derivative using an acid catalyst and preparation thereof |
US9073841B2 (en) | 2012-11-05 | 2015-07-07 | Segetis, Inc. | Process to prepare levulinic acid |
EP2851365A4 (en) * | 2012-03-05 | 2015-11-25 | Korea Ind Tech Inst | Method for producing 5-hydroxymethyl-2-furfural from maize syrup containing fructose |
EP3083638A1 (en) * | 2013-12-20 | 2016-10-26 | Archer Daniels Midland Company | Synthesis of isohexide ethers and carbonates |
WO2017034985A1 (en) * | 2015-08-21 | 2017-03-02 | Gfbiochemicals Limited | Process to prepare hydroxymethylfurfural derivatives |
US10208006B2 (en) | 2016-01-13 | 2019-02-19 | Stora Enso Oyj | Processes for the preparation of 2,5-furandicarboxylic acid and intermediates and derivatives thereof |
US10618864B2 (en) | 2011-11-23 | 2020-04-14 | Gfbiochemicals Ip Assets B.V. | Process to prepare levulinic acid |
US11192872B2 (en) | 2017-07-12 | 2021-12-07 | Stora Enso Oyj | Purified 2,5-furandicarboxylic acid pathway products |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105829322A (en) * | 2013-12-19 | 2016-08-03 | 阿彻丹尼尔斯米德兰德公司 | An improved glycol acylation process |
CN106061979B (en) * | 2013-12-19 | 2018-09-28 | 阿彻丹尼尔斯米德兰德公司 | The regioselectivity for the enhancing that ethylene glycol is acylated |
CN104761519A (en) * | 2014-01-02 | 2015-07-08 | 湖南师范大学 | Method used for effective conversion of carbohydrate into 5-hydroxymethylfurfural in pure water |
EP3114230A4 (en) * | 2014-03-04 | 2017-07-26 | Yale University | Novel methods of isomerizing carbohydrates |
JP6242747B2 (en) * | 2014-05-30 | 2017-12-06 | 国立大学法人山口大学 | Method for producing isosorbide and method for recycling ionic liquid used therein |
CN107108645A (en) * | 2014-12-18 | 2017-08-29 | 阿彻丹尼尔斯米德兰德公司 | The CO of bio-based dihydric alcohol2The etherificate of mediation |
CN108473455A (en) * | 2015-11-04 | 2018-08-31 | 巴斯夫欧洲公司 | The method for being used to prepare the mixture comprising 5- (hydroxymethyl) furfurals and specific HMF esters |
CN109134485B (en) * | 2017-06-16 | 2021-02-09 | 中国科学院大连化学物理研究所 | Method for preparing isosorbide |
CN111606874B (en) * | 2020-05-28 | 2022-07-08 | 浙江恒逸石化研究院有限公司 | Method and device for preparing 2,5-furandicarboxylic acid by microwave-induced strengthening and azeotropic distillation dewatering combined technology |
CN114315768B (en) * | 2021-12-08 | 2023-06-16 | 南京工业大学 | Method for one-step synthesis of 5-hydroxymethylfurfural and derivatives thereof by using microwave-microreactor to catalyze fructose |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4564692A (en) | 1982-08-14 | 1986-01-14 | Cpc International Inc. | Process for recovering pure crystalline monoanhydrohexitols and dianhydrohexitols |
US5558899A (en) * | 1994-01-10 | 1996-09-24 | Cooperatie Suikerunie U.A. | Method for the preparation of polysaccharide derivatives |
WO2000014081A1 (en) | 1998-09-09 | 2000-03-16 | E.I. Du Pont De Nemours And Company | Continuous process for the production of anhydrosugar alcohols |
US20070213544A1 (en) | 2006-03-09 | 2007-09-13 | Sanborn Alexandra J | Process for the production of anhydrosugar alcohols |
US20090156841A1 (en) | 2007-12-12 | 2009-06-18 | Sanborn Alexandra J | Conversion of carbohydrates to hydroxymethylfurfural (hmf) and derivatives |
US20090253920A1 (en) | 2008-03-24 | 2009-10-08 | Sanborn Alexandra J | Method for preparation of anhydrosugar ethers |
US20090281338A1 (en) * | 2004-12-10 | 2009-11-12 | Sanborn Alexandra J | Processes for the preparation and purification of hydroxymethylfuraldehyde derivatives |
WO2009155020A2 (en) | 2008-05-28 | 2009-12-23 | Archer Daniels Midland Company | Production of 5-membered and 6-membered cyclic esters of polyols |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7393963B2 (en) * | 2004-12-10 | 2008-07-01 | Archer-Daniels-Midland Company | Conversion of 2,5-(hydroxymethyl)furaldehyde to industrial derivatives, purification of the derivatives, and industrial uses therefor |
DE102008009933A1 (en) * | 2008-02-18 | 2009-08-20 | Friedrich-Schiller-Universität Jena | Preparing 5-hydroxymethylfurfural, useful e.g. to manufacture pharmaceutical products such as fungicides, comprises thermally reacting carbohydrates in ionic liquid and discharging formed 5-hydroxymethylfurfural using extracting agent |
-
2011
- 2011-07-18 CN CN201510725117.0A patent/CN105418550A/en active Pending
- 2011-07-18 CN CN201410521309.5A patent/CN104447779A/en active Pending
- 2011-07-18 US US13/811,759 patent/US9090550B2/en not_active Expired - Fee Related
- 2011-07-18 WO PCT/US2011/044324 patent/WO2012015616A1/en active Application Filing
- 2011-07-18 CN CN201180035990.7A patent/CN103025697B/en not_active Expired - Fee Related
- 2011-07-18 BR BR112013002023A patent/BR112013002023A2/en not_active IP Right Cessation
- 2011-07-18 EP EP11812946.9A patent/EP2598466B1/en not_active Not-in-force
-
2015
- 2015-06-22 US US14/745,546 patent/US20150284354A1/en not_active Abandoned
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4564692A (en) | 1982-08-14 | 1986-01-14 | Cpc International Inc. | Process for recovering pure crystalline monoanhydrohexitols and dianhydrohexitols |
US5558899A (en) * | 1994-01-10 | 1996-09-24 | Cooperatie Suikerunie U.A. | Method for the preparation of polysaccharide derivatives |
WO2000014081A1 (en) | 1998-09-09 | 2000-03-16 | E.I. Du Pont De Nemours And Company | Continuous process for the production of anhydrosugar alcohols |
US20090281338A1 (en) * | 2004-12-10 | 2009-11-12 | Sanborn Alexandra J | Processes for the preparation and purification of hydroxymethylfuraldehyde derivatives |
US20070213544A1 (en) | 2006-03-09 | 2007-09-13 | Sanborn Alexandra J | Process for the production of anhydrosugar alcohols |
US20090156841A1 (en) | 2007-12-12 | 2009-06-18 | Sanborn Alexandra J | Conversion of carbohydrates to hydroxymethylfurfural (hmf) and derivatives |
US20090253920A1 (en) | 2008-03-24 | 2009-10-08 | Sanborn Alexandra J | Method for preparation of anhydrosugar ethers |
WO2009155020A2 (en) | 2008-05-28 | 2009-12-23 | Archer Daniels Midland Company | Production of 5-membered and 6-membered cyclic esters of polyols |
Non-Patent Citations (5)
Title |
---|
GOODWIN ET AL., CARBOHYDRATE RES., vol. 79, 1980, pages 133 - 141 |
QI X ET AL.: "Catalysis Communications", vol. 9, 20 July 2008, ELSEVIER SCIENCE, article "Catalytical conversion of fructose and glucose into 5-hydroxymethylfurfural in hot compressed water by microwave heating", pages: 2244 - 2249 |
See also references of EP2598466A4 * |
THOMAS S. HANSEN ET AL.: "Efficient microwave-assisted synthesis of 5-hydroxymethylfurfural from concentrated aqueous fructose", CARBOHYDRATE RESEARCH, vol. 344, no. 18, 1 December 2009 (2009-12-01), pages 2568 - 2572, XP055097102, DOI: doi:10.1016/j.carres.2009.09.036 |
XINHUA QI ET AL.: "Catalytic dehydration of fructose into 5-hydroxymethylfurfural by ionexchange resin in mixed-aqueous system by microwave heating", GREEN CHEMISTRY, vol. 10, no. 7, 1 January 2008 (2008-01-01), pages 799, XP055043574, DOI: doi:10.1039/b801641k |
Cited By (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10618864B2 (en) | 2011-11-23 | 2020-04-14 | Gfbiochemicals Ip Assets B.V. | Process to prepare levulinic acid |
US9902981B2 (en) | 2012-02-07 | 2018-02-27 | Annikki Gmbh | Process for the production of furan derivatives from glucose |
WO2013117585A1 (en) * | 2012-02-07 | 2013-08-15 | Annikki Gmbh | Method for the production of furan derivatives from glucose |
EP2851365A4 (en) * | 2012-03-05 | 2015-11-25 | Korea Ind Tech Inst | Method for producing 5-hydroxymethyl-2-furfural from maize syrup containing fructose |
WO2014033734A2 (en) * | 2012-07-19 | 2014-03-06 | Praj Industries Limited | Process and system for the preparation of esters of levulinic acid |
WO2014033734A3 (en) * | 2012-07-19 | 2014-10-02 | Praj Industries Limited | Process and system for preparation of esters of levulinic acid |
US9475787B2 (en) * | 2012-09-03 | 2016-10-25 | Annikki Gmbh | Process for the production of furan derivatives |
EP2703395A1 (en) * | 2012-09-03 | 2014-03-05 | Annikki GmbH | Process for the production of furan derivatives |
WO2014033289A1 (en) * | 2012-09-03 | 2014-03-06 | Annikki Gmbh | Process for the production of furan derivatives |
AU2013310894B2 (en) * | 2012-09-03 | 2017-09-07 | Annikki Gmbh | Process for the production of furan derivatives |
US20150218118A1 (en) * | 2012-09-03 | 2015-08-06 | Annikki Gmbh | Process for the production of furan derivatives |
JP2015526494A (en) * | 2012-09-03 | 2015-09-10 | アニッキ ゲーエムベーハーAnnikki Gmbh | Method for producing furan derivative |
US9598341B2 (en) | 2012-11-05 | 2017-03-21 | Gfbiochemicals Limited | Process to prepare levulinic acid |
US9073841B2 (en) | 2012-11-05 | 2015-07-07 | Segetis, Inc. | Process to prepare levulinic acid |
US10253340B2 (en) | 2013-03-27 | 2019-04-09 | Annikki Gmbh | Method for the isomerisation of glucose |
JP2016521121A (en) * | 2013-03-27 | 2016-07-21 | アニッキ ゲーエムベーハーAnnikki Gmbh | Method for isomerization of glucose |
CN105102626B (en) * | 2013-03-27 | 2019-01-01 | 安尼基有限责任公司 | The method of glucose isomerization |
CN105102626A (en) * | 2013-03-27 | 2015-11-25 | 安尼基有限责任公司 | Method for isomerisation of glucose |
WO2014154676A1 (en) * | 2013-03-27 | 2014-10-02 | Annikki Gmbh | Method for isomerisation of glucose |
WO2015075540A1 (en) | 2013-11-21 | 2015-05-28 | Arvind Mallinath Lali | A process for synthesis of furan derivative using an acid catalyst and preparation thereof |
US9975866B2 (en) | 2013-11-21 | 2018-05-22 | Department Of Biotechnology. Ministry Of Science And Technology, Government Of India | Process for synthesis of furan derivative using an acid catalyst and preparation thereof |
EP3083638A4 (en) * | 2013-12-20 | 2017-05-03 | Archer Daniels Midland Co. | Synthesis of isohexide ethers and carbonates |
EP3083638A1 (en) * | 2013-12-20 | 2016-10-26 | Archer Daniels Midland Company | Synthesis of isohexide ethers and carbonates |
US10316009B2 (en) | 2015-08-21 | 2019-06-11 | Gfbiochemicals Ip Assets B.V. | Process to prepare hydroxymethylfurfural derivatives |
WO2017034985A1 (en) * | 2015-08-21 | 2017-03-02 | Gfbiochemicals Limited | Process to prepare hydroxymethylfurfural derivatives |
US10654819B2 (en) | 2016-01-13 | 2020-05-19 | Stora Enso Oyj | Processes for the preparation of 2,5-furandicarboxylic acid and intermediates and derivatives thereof |
US10442780B2 (en) | 2016-01-13 | 2019-10-15 | Stora Enso Oyj | Processes for the preparation of 2,5-furandicarboxylic acid and intermediates and derivatives thereof |
US10851074B2 (en) | 2016-01-13 | 2020-12-01 | Stora Enso Oyj | Processes for the preparation of 2,5-furandicarboxylic acid and intermediates and derivatives thereof |
US11613523B2 (en) | 2016-01-13 | 2023-03-28 | Stora Enso Oyj | Processes for the preparation of 2,5-furandicarboxylic acid and intermediates and derivatives thereof |
US11891370B2 (en) | 2016-01-13 | 2024-02-06 | Stora Enso Ojy | Processes for the preparation of 2,5-furandicarboxylic acid and intermediates and derivatives thereof |
US10208006B2 (en) | 2016-01-13 | 2019-02-19 | Stora Enso Oyj | Processes for the preparation of 2,5-furandicarboxylic acid and intermediates and derivatives thereof |
US12049456B2 (en) | 2017-07-12 | 2024-07-30 | Stora Enso Oyj | Purified 2,5-furandicarboxylic acid pathway products |
US11192872B2 (en) | 2017-07-12 | 2021-12-07 | Stora Enso Oyj | Purified 2,5-furandicarboxylic acid pathway products |
Also Published As
Publication number | Publication date |
---|---|
US20130123520A1 (en) | 2013-05-16 |
CN105418550A (en) | 2016-03-23 |
EP2598466A4 (en) | 2014-02-26 |
CN103025697B (en) | 2015-10-21 |
CN103025697A (en) | 2013-04-03 |
EP2598466A1 (en) | 2013-06-05 |
US20150284354A1 (en) | 2015-10-08 |
US9090550B2 (en) | 2015-07-28 |
BR112013002023A2 (en) | 2017-09-19 |
CN104447779A (en) | 2015-03-25 |
EP2598466B1 (en) | 2016-09-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9090550B2 (en) | Microwave assisted synthesis of dehydrated sugar derivatives hydroxymethylfurfural, levulinic acid, anhydrosugar alcohols, and ethers thereof | |
Mukherjee et al. | Sustainable production of hydroxymethylfurfural and levulinic acid: Challenges and opportunities | |
Agirrezabal-Telleria et al. | Heterogeneous acid-catalysts for the production of furan-derived compounds (furfural and hydroxymethylfurfural) from renewable carbohydrates: A review | |
EP2233477B1 (en) | Preparation of levulinic acid from fructose using an acid catalyst, a polyethylene glycol and an end-capped polyethylene glycol | |
US8058458B2 (en) | Processes for the preparation and purification of hydroxymethylfuraldehyde derivatives | |
EP1999134A2 (en) | Process for the production of anhydrosugar alcohols | |
Delbecq et al. | Isosorbide: Recent advances in catalytic production | |
EP2825543B1 (en) | Process for making sugar and/or sugar alcohol dehydration products | |
Coumans et al. | Protection strategies for the conversion of biobased furanics to chemical building blocks | |
EP3317263B1 (en) | Process for the preparation of a furfural derivative | |
EP3337790A1 (en) | Process to prepare hydroxymethylfurfural derivatives | |
CN107848996B (en) | Process for the preparation of furfural derivatives comprising neutralization of the acidic reaction mixture | |
EP2703395A1 (en) | Process for the production of furan derivatives | |
JP2019099544A (en) | Manufacturing method of 5-hydroxymethyl-2-furfural with suppressing generation of byproduct | |
Tahvildari et al. | The study of hydroxymethylfurfural as a basic reagent for liquid alkanes fuel manufacture from agricultural wastes | |
Chatterjee et al. | An overview of different approaches for sustainable production and convertibility of hydroxymethylfurfural | |
KR20140101849A (en) | Preparation of 5-hydroxymethylfurfural (hmf) from hexose solutions in the presence of steam | |
Souzanchi | Catalytic Conversion of Fructose, Glucose and Industrial Grade Sugar Syrups to 5-Hydroxymethylfurfural, A Platform for Fuels and Chemicals | |
JP2016117716A (en) | Method for producing 2-furaldehyde and composition for producing 2-furaldehyde | |
Aregawi | Production of 5-hydroxymethylfurfural (5-HMF)/2-furfural (2-F), platform molecules for the manufacture of bioplastics, from renewable resources |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180035990.7 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11812946 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13811759 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2011812946 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011812946 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112013002023 Country of ref document: BR |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01E Ref document number: 112013002023 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112013002023 Country of ref document: BR Kind code of ref document: A2 Effective date: 20130128 |