WO2012013829A1 - Sistema y procedimiento para el tratamiento de aguas - Google Patents

Sistema y procedimiento para el tratamiento de aguas Download PDF

Info

Publication number
WO2012013829A1
WO2012013829A1 PCT/ES2010/070513 ES2010070513W WO2012013829A1 WO 2012013829 A1 WO2012013829 A1 WO 2012013829A1 ES 2010070513 W ES2010070513 W ES 2010070513W WO 2012013829 A1 WO2012013829 A1 WO 2012013829A1
Authority
WO
WIPO (PCT)
Prior art keywords
nitrification
reactor
denitrification
nitrites
tank
Prior art date
Application number
PCT/ES2010/070513
Other languages
English (en)
French (fr)
Inventor
Carlos RODRÍGUEZ LÓPEZ
Crístina HERNÁNDEZ ROMERO
Luís LARREA URCOLA
Original Assignee
Acciona Agua S. A. U.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Acciona Agua S. A. U. filed Critical Acciona Agua S. A. U.
Priority to AU2010358297A priority Critical patent/AU2010358297A1/en
Priority to MX2013001094A priority patent/MX2013001094A/es
Priority to PCT/ES2010/070513 priority patent/WO2012013829A1/es
Priority to EP10747060.1A priority patent/EP2599754A1/en
Priority to MA35612A priority patent/MA34401B1/fr
Publication of WO2012013829A1 publication Critical patent/WO2012013829A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/006Regulation methods for biological treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/14NH3-N
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/15N03-N
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/40Liquid flow rate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the object of the invention relates to a process for removing ammonia from wastewater that comes from drains in urban WWTPs.
  • the present invention proposes an original procedure both in the principles for a simpler nitrogen removal system (complete nitrification and denitrification with methanol) and in the automatic control procedure.
  • the object of the invention uses 4 separate units.
  • a retention tank to limit the discontinuous flow of wastewater from drains that can have very different models from one installation to another. In this way, the flow rate to the pre-denitrification reactor (Q fed) is continuous and is regulated by the automatic control system.
  • the retention reservoir also serves as a settler to remove suspended solids.
  • a pre-denitrification reactor designed to remove (in gaseous nitrogen) all the recirculated nitrites from the nitrification reactor (Qrint). Denitrification is mainly caused by the dosage of a carbon source (Qc). In some facilities, wastewater contains soluble biochemical oxygen demand (BOD) from other units in the sludge duct and can be used for pre-denitrification, thus reducing the dosage of the carbon source.
  • BOD biochemical oxygen demand
  • the use of predesnitrification instead of postdesnitrification allows the elimination of influent BOD when it is present, thus preventing the inhibition of ammonium oxidants (XNH) in the posterior aerated biofilm. Therefore, higher and more stable nitrification speeds can be achieved.
  • a nitrification reactor performs the stable transformation of ammonium to nitrite only because nitrite oxidizers (XNO) are removed by regular washing of the system by means of a suitable robust control system.
  • XNO nitrite oxidizers
  • the use of separate units for denitrification and nitrification allows for optimal control.
  • the ammonium oxidants (XNH) and the heterotrophic biomass (XH) for denitrification can be located both in the biofilm of the supports and in suspension.
  • a settler allows a robust automatic system and aims to clarify the inflow of suspended solids and obtain a thickened sludge.
  • Figure 1 represents a diagram of the system of the invention and its parts.
  • the system (1) of the invention obtains wastewater from a drain that is stored and limited by disturbance in a retention deposit (2);
  • the discontinuous flow of sewage from the drains may be different from one facility to another.
  • the flow rate [Q fed] that reaches an anoxic pre-denitrification reactor (3) is continuous and is regulated by an automatic control system (6).
  • the pre-denitrification reactor (3) is designed to remove [in gaseous nitrogen] all recirculated nitrites from a nitrification reactor (4) [Qrint]. Denitrification is mainly caused by the dosage of a carbon source [Qc]. In some facilities, wastewater contains biochemical oxygen demand [BOD] from other units in the sludge duct and could be used for pre-denitrification, thus reducing the dosage of the carbon source.
  • BOD biochemical oxygen demand
  • the use of pre-denitrification instead of post-denitrification allows the elimination of the influent's BOD if there is one, thus avoiding the inhibition of ammonium oxidants [XNH] in the subsequent aerated biofilm. Therefore, higher and stable nitrification rates can be achieved.
  • the nitrification reactor (4) performs the stable transformation of ammonium into nitrite only because nitrite oxidants [XNO] are removed by regular washing of the system by a suitable robust control system.
  • Ammonium oxidants [XNH] and heterotrophic biomass [XH] for denitrification can be located both in the biofilm of the supports and in the suspension.
  • a settler (5) allows a robust automatic system (1) and aims to clarify the inflow of suspended solids and obtain a thickened sludge.
  • the use of a settler (5) provides different operating alternatives.
  • the settler (5) is located at the end of the system (1) and does not use sludge recirculation to the pre-denitrification reactor (3). Therefore, the concentration of suspended solids will be relatively low [200-500 mg / l]. Denitrification and nitrification will take place both in the biofilm of the supports and in suspension.
  • sludge recirculation is used in order to increase the concentration of suspended solids and the corresponding denitrification and nitrification rates.
  • washing separation of XNO is more difficult since the retention time of solids [TRS] increases.
  • the settler (5) is located between the reactors (3,4), with the sludge recycled to the pre-denitrification reactor (3). Therefore, the rate of denitrification can be relatively high and better guarantee nitrification.
  • the inflow of suspended solids to the settler (5) is very high due to the high internal recirculation flow, which therefore demands a larger surface area for the settler (5).
  • the automatic control system (6) involves the following strategies, taking into account that the automatic control system (6) of the system (1) is based on the use of (NH 4 + , NO2 " and NO3 " ) as nutrient analyzers, based on sensors placed throughout the system, preferably in the reactors (3, 4):
  • the dissolved oxygen adjustment value is automatically modified according to:
  • the [Q fed] is manipulated according to the measurements of N-NH 4 + in the nitration reactor (4) and the adjustment value of N-NH 4 +
  • the Qc [external carbon flow rate] is automatically manipulated so that the measurements of N-NO 2 " in the prenitration reactor (3) follow a preset level of N-NO 2 " [setting value of N-NO 2 " in the prenitration reactor (3)]

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

La invención se refiere a un procedimiento robusto para la eliminación biológica de amonio, específicamente aplicado a las aguas residuales de la corriente de retorno del desagüe de fangos digeridos en EDAR urbanas, por implementación en la línea de sensores de amonio, nitrito y nitrato, en un sistema que comprende las siguientes unidades: un depósito de retención en el que se almacenan las aguas residuales; un depósito anóxico para la predesnitrificación usando una fuente externa que contiene carbono con biomasa, tanto en Ia biopelícula como en suspensión; un depósito aireado para Ia nitrificación en Ia biopelícula y en suspensión y recirculación al depósito anóxico; y un depósito de sedimentación para la clarificación del efluente y recirculación de fangos, si conviene. El diseño del sistema y los controladores se basan en un modelo calibrado.

Description

SISTEMA Y PROCEDIMIENTO PARA EL TRATAMIENTO DE AGUAS
Descripción
OBJETO DE LA INVENCIÓN
El objeto de la invención se refiere a un procedimiento para eliminar amonio de aguas residuales que vienen de desagües en las EDAR urbanas.
ANTECEDENTES DE LA INVENCIÓN
Tradicionalmente, la eliminación de nitrógeno de las aguas residuales urbanas se lleva a cabo por procedimientos de predesnitrificación-nitrificación completos con biomasa en suspensión (reacciones 1 y 2). La robustez de su funcionamiento se ha mostrado en la EDAR de Galindo, en la que se aplican sensores de amonio y nitrato en línea en el procedimiento de fangos activos, el tratamiento secundario de la tubería de agua (Ayesa y col., 2006).
Nitrificación: NH4 + + 202→ N03 " + H20 + 2H+ (Reacción 1 )
Etapa 1 Nitrificación: NH4 + + 1 ,502→ N02 " + H20 + 2H+ por oxidantes de amonio XNH (Reacción 1a)
Etapa 2 Nitración: N02 " + 0,5O2→ NO3" por oxidantes de nitrito XNO
(Reacción 1 b)
Desnitrificación;
6NO3" + 5CH3OH→ 3N2 + 5C02 + 7H20 + 60H" por biomasa heterotrófica (XH) (Reacción 2)
Etapa 1 : 6NO3" + 2CH3OH→ 6N02 " + 2C02 + 4H20 (Reacción 2a) Etapa 2: 6N02 " + 3CH3OH→ 3N2 + 3C02 + 3H20 + 60H" (Reacción 2b) Para la nitrificación de las aguas residuales de retorno ricas en amonio a altas temperaturas (25-35°C), actualmente es factible la nitrificación parcial (nitritación), produciendo nitrito mediante oxidantes de amonio (XNH) (Reacción 1a) y solo un poco de nitrato, eliminando por lavado los oxidantes de nitrito (XNO) (Reacción 1 b). Se han propuesto diferentes procedimientos usando biomasa en suspensión (Patente n° US 6.183.642 B1 , 2001 y Hellinga y col., 1998) o biomasa en soportes (Patente n° GB 2.333.522 A, 1999; Gut y col., 2006) y basados en la regulación del tiempo de retención de sólidos (TRS), pH y oxígeno disuelto (OD).
Para la eliminación de nitrito, se ha desarrollado una invención reciente (Patente n° US 6.383.390 B1 , 2002 y Van Dongen y col., 2001 ), que combina la nitrificación parcial y la nueva reacción K de oxidación de amonio anaerobia (anammox), reacciones 3 y 4
Nitrificación parcial:
NH4 + + 0,75O2 + HC03 "→ 0,5NH4 + 0,5NO2 " + 1 ,5H20 + C02 " por XNH (Reacción 3)
Anammox: NH4 + + 1 ,32N02 " + 0,066HCO3 " + 0,13H+ → → 1 ,02N2 + 0,26NO3 " + 2,03H2O + 0,066CH200.5No.i5 por XAN (Reacción 4)
Para este propósito, la nitrificación parcial se debe llevar a cabo en un primer reactor aireado, de modo que debe obtenerse una relación exacta de N- NH47lM-N02 " = 1 :1 ,3 en el efluente. Esta es una tarea difícil considerando las fluctuaciones de la entrada de aguas residuales y las condiciones medioambientales (temperatura, pH, etc.) y se han propuesto algunas invenciones para lograr esto (Patente n° US 7.144.508 B2, 2006; Strous y col., 1997). Además, la bacteria de la anammox tiene una velocidad de crecimiento muy lenta, de modo que la etapa secundaria es muy sensible a fluctuaciones en condiciones de trabajo y por consiguiente es inhibida con facilidad. De hecho, solo hay algunas instalaciones a escala industrial en funcionamiento en el mundo, y hasta la fecha no se ha documentado claramente un funcionamiento fiable.
En este contexto, se ha publicado una patente reciente (Patente n° US 7.645.385 B2, 2010) basada en este procedimiento que usa un reactor RBS con biomasa en suspensión. También recientemente se ha patentado un procedimiento para el control automático de la nitrificación completa con biomasa en suspensión, usando controladores de pH, oxígeno disuelto y tiempo de retención de sólidos (Patente n° WO2009/046415 A1 ). DESCRIPCIÓN
La presente invención propone un procedimiento original tanto en los principios para un sistema de eliminación de nitrógeno más sencillo (nitrificación completa y desnitrificación con metanol) como en el procedimiento de control automático.
Por lo tanto, en el presente documento se propone un sistema más sencillo con el fin de garantizar un funcionamiento robusto y fiable a escala industrial. Por lo tanto, se propone la nitrificación completa en la primera etapa y se añade una fuente de carbono para la desnitrificación de los nitritos. De esta forma, se ahorra 25% de consumo de oxígeno y 40% de la fuente de carbono con respecto a la predesnitrificación-nitrificación convencional.
Nitrificación completa NH4 + + 1 ,502→ N02 " + H20 + 2H+ (5)
Desnitrificación con metanol 6N02 " + 3CH3OH→ 3N2 + 3C02 + 3H20 +
60H"
Con respecto a la eliminación de nitrógeno, el objeto de la invención usa 4 unidades separadas.
Un depósito de retención, para limitar el caudal discontinuo de las aguas residuales de los desagües que pueden tener modelos muy diferentes de una instalación a otra. De esta forma, el caudal al reactor de predesnitrificación (Q alimentado) es continuo y está regulado mediante el sistema de control automático. El depósito de retención también sirve como un sedimentador para eliminar los sólidos suspendidos.
Un reactor de predesnitrificación, diseñado para eliminar (en nitrógeno gaseoso) todos los nitritos recirculados del reactor de nitrificación (Qrint). La desnitrificación se produce principalmente por la dosificación de una fuente de carbón (Qc). En algunas instalaciones, las aguas residuales contienen demanda bioquímica de oxígeno (DBO) soluble de otras unidades en el conducto de fangos y se puede usar para la predesnitrificación, reduciendo así la dosificación de la fuente de carbono. El uso de la predesnitrificación en lugar de la postdesnitrificación permite la eliminación de la DBO influente cuando está presente, evitando así la inhibición de oxidantes de amonio (XNH) en la posterior biopelícula aireada. Por consiguiente, se pueden lograr velocidades de nitrificación más altas y estables.
Un reactor de nitrificación lleva a cabo la transformación estable de amonio a solo nitrito porque los oxidantes de nitrito (XNO) se eliminan por lavado regularmente del sistema mediante un sistema de control robusto adecuado. El uso de unidades separadas para la desnitrificación y nitrificación (comparado con otras propuestas) permite su control óptimo. Los oxidantes de amonio (XNH) y la biomasa heterotrófica (XH) para la desnitrificación pueden estar localizados tanto en la biopelícula de los soportes como en suspensión.
Un sedimentador permite un sistema automático robusto y tiene como objetivo clarificar el flujo de entrada de sólidos suspendidos y obtener un fango espesado.
El uso de un sistema de control basado en analizadores de nutrientes (NH4 +, N02 " y N03 ") en contraposición a procedimientos de control basados en sensores convencionales (pH, ORP, etc.).
Todas estas características aumentan la flexibilidad y versatilidad del sistema, de modo que puede adaptarse a escenarios muy diferentes de características de aguas residuales presentados en la corriente de retorno de EDAR urbanos de escala completa.
DESCRIPCIÓN DE LAS FIGU RAS
Los objetos anteriores y otros objetos y ventajas de la invención se apreciarán de forma más completa a partir de la siguiente descripción adicional de la misma, con referencia al dibujo que acompaña, en el que:
La Figura 1 representa un diagrama del sistema de la invención y sus partes.
REALIZACIÓN PREFERIDA
En una realización preferida, el sistema (1 ) de la invención obtiene aguas residuales de un desagüe que se almacenan y limitan mediante alortiguación en un depósito de retención (2); el caudal discontinuo de las aguas residuales de los desagües pueden ser diferentes de una instalación a otra. De esta forma, el caudal [Q alimentado] que llega a un reactor de predesnitrificación anóxico (3) es continuo y está regulado por un sistema de control automático (6).
Tal y como se representa en la figura 1 , el reactor de predesnitrificación (3) está diseñado para eliminar [en nitrógeno gaseoso] todos los nitritos recirculados de un reactor de nitrificación (4) [Qrint]. La desnitrificación se produce principalmente por la dosificación de una fuente de carbono [Qc]. En algunas instalaciones, las aguas residuales contienen demanda bioquímica de oxígeno [DBO] procedente de otras unidades en el conducto de fangos y se podría usar para la predesnitrificación, reduciendo así la dosificación de la fuente de carbono. El uso de predesnitrificación en lugar de postdesnitrificación permite la eliminación de la DBO del influente si lo hubiere, evitando de esta forma la inhibición de oxidantes de amonio [XNH] en la posterior biopelícula aireada. Por consiguiente, se pueden lograr tasas de nitrificación mayores y estables.
El reactor de nitrificación (4) lleva a cabo la transformación estable de amonio en solo nitrito porque los oxidantes de nitrito [XNO] se eliminan por lavado regularmente del sistema por un sistema de control robusto adecuado. Los oxidantes de amonio [XNH] y la biomasa heterótrofa [XH] para la desnitrificación se pueden localizar tanto en la biopelícula de los soportes como en la suspensión.
Un sedimentador (5) permite un sistema automático robusto (1 ) y tiene como objetivo clarificar el flujo de entrada de sólidos suspendidos y obtener un fango espesado. El uso de un sedimentador (5) proporciona diferentes alternativas de funcionamiento.
En esta realización preferida de la invención, el sedimentador (5) se encuentra ubicado al final del sistema (1 ) y no usa la recirculación de fangos al reactor de predesnitrificación (3). Por lo tanto, la concentración de sólidos suspendidos será relativamente baja [200-500 mg/l]. La desnitrificación y nitrificación tendrán lugar tanto en la biopelícula de los soportes como en suspensión.
En otra realización, se usa el recirculación de fangos con el fin de aumentar la concentración de los sólidos suspendidos y las correspondientes tasas de desnitrificación y nitrificación. Sin embargo, la separación por lavado de XNO es más difícil puesto que aumenta el tiempo de retención de sólidos [TRS].
En otra realización más de la invención, el sedimentador (5) se sitúa entre los reactores (3,4), con los fangos reciclados al reactor de predesnitrificación (3). Por lo tanto, la tasa de desnitrificación puede ser relativamente alta y garantizar mejor la nitrificación. Sin embargo, el flujo de entrada de sólidos suspendidos al sedimentador (5) es muy alto debido al alto caudal de recirculación interna, que por lo tanto demanda una superficie mayor para el sedimentador (5).
Siguiendo el diagrama de la figura 1 , el sistema de control automático (6) implica las siguientes estrategias, teniendo en cuenta que el sistema de control automático (6) del sistema (1 ) se basa en el uso de (NH4 +, NO2" y NO3") como analizadores de nutrientes, basado en unos sensores colocados a lo largo del sistema, preferiblemente en los reactores (3, 4):
- El control automático de oxígeno disuelto en el reactor de nitrificación (4): el [Qaire] es manipulado automáticamente de acuerdo con las discrepancias entre un valor de oxígeno disuelto de preajuste [valor de ajuste de oxígeno disuelto] y las mediciones de oxígeno disuelto en el reactor de nitración (4).
La regulación automática del valor de ajuste de oxígeno disuelto: el valor de ajuste de oxígeno disuelto se modifica automáticamente de acuerdo con:
un valor de preajuste de N-NH4 + [valor de ajuste de N- NH4 +], y
las mediciones de N-NH4 + y N-N03+ en el reactor de nitración (4).
El [Q alimentado] se manipula en función de las mediciones de N- NH4 + en el reactor de nitración (4) y el valor de ajuste de N-NH4 + El control automático de N-N02 " en el reactor de predesnitrifica- ción (3): El Qc [caudal de carbono externo] se manipula automáticamente de modo que las mediciones de N-NO2 " en el reactor de prenitración (3) siguen un nivel de preajuste de N-NO2 " [valor de ajuste de N-NO2 " en el reactor de prenitración (3)]
El control automático de N-NO2 " en el reactor de nitrificación (4): El Qnnt se manipula automáticamente en función de:
un valor de preajuste de N-NO2 " [valor de ajuste de N-NO2 " en el reactor de nitración (4)], y
las mediciones de N-NO2 " en el reactor de nitración (4).

Claims

REIVINDICACIONES
1. Un sistema (1 ) para el tratamiento de aguas caracterizado porque comprende:
un depósito de retención (2) adaptado para limitar un caudal discontinuo de aguas residuales procedentes de desagües,
un reactor de nitrificación (4) adaptado para transformar amonio contenido en las aguas residuales que vienen del depósito de retención (2), en nitritos,
un reactor de predesnitrificación (3) adaptado para eliminar los nitritos transformados por la reacción de nitrificación (4),
un sedimentador (5) para clarificar el efluente y recircular los fangos, y
unos sensores colocados en el reactor de nitrificación (4) y el reactor de predesnitrificación (3) adaptados para detectar al menos amonio, nitritos y nitratos.
2. Sistema (1 ) de acuerdo con la reivindicación 1 , caracterizado porque adicionalmente comprende un sistema de control automático (6) para controlar y regular el caudal que entra en el depósito de retención (2).
3. Sistema (1 ) de acuerdo con la reivindicación 2, caracterizado porque el control automático se basa en analizadores de nutrientes.
4. Sistema (1 ) de acuerdo con la reivindicación 3, caracterizado porque los analizadores de nutrientes se seleccionan del grupo que consiste en: NH4+, N02 " y N03 ".
5. Sistema (1 ) de acuerdo con la reivindicación 1 , caracterizado porque el sedimentador (5) se encuentra ubicado al final del sistema (1 ).
6. Sistema (1 ) de acuerdo con la reivindicación 1 , caracterizado porque el sedimentador (5) está colocado entre el reactor de nitrificación (4) y el reactor de predesnitrificación (3).
7. Procedimiento para el tratamiento de agua que usa el sistema (1 ) descrito en una cualquiera de las reivindicaciones 1 a 7, caracterizado porque comprende las siguientes etapas:
almacenar y limitar las aguas residuales en el depósito de retención (2) con el fin de limitar y normalizar el caudal,
transformar el amonio presente en las aguas residuales en nitritos usando oxidantes de nitrito en el reactor de nitrificación (4), y
eliminar los nitritos obtenidos usando el reactor de predesnitrificación (3) mediante dosificación de una fuente que contiene carbono con biomasa, tanto en biopelícula como en suspensión.
8. Procedimiento de acuerdo con la reivindicación 7, caracterizado porque además comprende controlar y regular el caudal que entra en el depósito de retención (2) usando los analizadores de nutrientes haciendo uso de los sensores.
9. Procedimiento de acuerdo con la reivindicación 7, caracterizado porque además comprende separar sólidos presentes en el agua mediante el almacenamiento y confinación de dicha agua en el depósito de retención (2) hasta que se produzca una sedimentación.
PCT/ES2010/070513 2010-07-26 2010-07-26 Sistema y procedimiento para el tratamiento de aguas WO2012013829A1 (es)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU2010358297A AU2010358297A1 (en) 2010-07-26 2010-07-26 System and method for treating water
MX2013001094A MX2013001094A (es) 2010-07-26 2010-07-26 Sistema y procedimiento para el tratamiento de aguas.
PCT/ES2010/070513 WO2012013829A1 (es) 2010-07-26 2010-07-26 Sistema y procedimiento para el tratamiento de aguas
EP10747060.1A EP2599754A1 (en) 2010-07-26 2010-07-26 System and method for treating water
MA35612A MA34401B1 (fr) 2010-07-26 2012-02-02 Système et procédé pour le traitement des eaux

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2010/070513 WO2012013829A1 (es) 2010-07-26 2010-07-26 Sistema y procedimiento para el tratamiento de aguas

Publications (1)

Publication Number Publication Date
WO2012013829A1 true WO2012013829A1 (es) 2012-02-02

Family

ID=43902584

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2010/070513 WO2012013829A1 (es) 2010-07-26 2010-07-26 Sistema y procedimiento para el tratamiento de aguas

Country Status (5)

Country Link
EP (1) EP2599754A1 (es)
AU (1) AU2010358297A1 (es)
MA (1) MA34401B1 (es)
MX (1) MX2013001094A (es)
WO (1) WO2012013829A1 (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102826719A (zh) * 2012-09-14 2012-12-19 广州环保投资有限公司 应用短程硝化反硝化进行生物脱氮的方法
CN111484200A (zh) * 2020-04-22 2020-08-04 云南大学 低碳氮比生活污水双污泥部分亚硝化反硝化超深度脱氮除磷工艺

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4056465A (en) * 1976-04-12 1977-11-01 Air Products And Chemicals, Inc. Production of non-bulking activated sludge
US5626755A (en) * 1995-11-08 1997-05-06 Micronair, Inc. Method and apparatus for waste digestion using multiple biological processes
GB2333522A (en) 1998-01-23 1999-07-28 Aw Creative Technologies Ltd Waste water treatment
US6183642B1 (en) 1997-08-21 2001-02-06 Grontmij Advies & Techniek B.V. Biological treatment of wastewater
US6383390B1 (en) 1996-08-23 2002-05-07 Technische Universiteit Delft Method of treating ammonia-comprising waste water
US7144508B2 (en) 2004-03-25 2006-12-05 Hitachi Plant Engineering & Construction Co., Ltd. Method and apparatus of removing nitrogen
US20070163952A1 (en) * 2004-01-30 2007-07-19 Scheier Etal Dissimilatory sulfate reduction as a process to promote denitrification in marine recirculating aquaculture systems
WO2009046415A1 (en) 2007-10-04 2009-04-09 The Trustees Of Columbia University In The City Of New York Systems and methods for achieving partial nitrification in a biological nitrogen removal reactor
US7645385B2 (en) 2005-08-01 2010-01-12 Suez Environment Method and arrangement for processing nitrogen-concentrated effluents in a sequential fractionated cycle biological reactor
US20100096339A1 (en) * 2008-10-17 2010-04-22 Rememberance Newcombe Water Denitrification

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4056465A (en) * 1976-04-12 1977-11-01 Air Products And Chemicals, Inc. Production of non-bulking activated sludge
US5626755A (en) * 1995-11-08 1997-05-06 Micronair, Inc. Method and apparatus for waste digestion using multiple biological processes
US6383390B1 (en) 1996-08-23 2002-05-07 Technische Universiteit Delft Method of treating ammonia-comprising waste water
US6183642B1 (en) 1997-08-21 2001-02-06 Grontmij Advies & Techniek B.V. Biological treatment of wastewater
GB2333522A (en) 1998-01-23 1999-07-28 Aw Creative Technologies Ltd Waste water treatment
US20070163952A1 (en) * 2004-01-30 2007-07-19 Scheier Etal Dissimilatory sulfate reduction as a process to promote denitrification in marine recirculating aquaculture systems
US7144508B2 (en) 2004-03-25 2006-12-05 Hitachi Plant Engineering & Construction Co., Ltd. Method and apparatus of removing nitrogen
US7645385B2 (en) 2005-08-01 2010-01-12 Suez Environment Method and arrangement for processing nitrogen-concentrated effluents in a sequential fractionated cycle biological reactor
WO2009046415A1 (en) 2007-10-04 2009-04-09 The Trustees Of Columbia University In The City Of New York Systems and methods for achieving partial nitrification in a biological nitrogen removal reactor
US20100096339A1 (en) * 2008-10-17 2010-04-22 Rememberance Newcombe Water Denitrification

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102826719A (zh) * 2012-09-14 2012-12-19 广州环保投资有限公司 应用短程硝化反硝化进行生物脱氮的方法
CN102826719B (zh) * 2012-09-14 2014-01-22 广州环保投资有限公司 应用短程硝化反硝化进行生物脱氮的方法
CN111484200A (zh) * 2020-04-22 2020-08-04 云南大学 低碳氮比生活污水双污泥部分亚硝化反硝化超深度脱氮除磷工艺

Also Published As

Publication number Publication date
EP2599754A1 (en) 2013-06-05
AU2010358297A1 (en) 2013-02-14
MA34401B1 (fr) 2013-07-03
MX2013001094A (es) 2013-06-03

Similar Documents

Publication Publication Date Title
ES2362211T3 (es) Procedimiento para el tratamiento de aguas residuales que contienen amonio mediante regulación del ph.
US20140367330A1 (en) Wastewater treatment process that utilizes granular sludge to reduce cod concentration in wastewater
ES2695055T3 (es) Procedimiento e instalación de tratamiento del agua por nitritación - desnitritación, que comprende al menos una etapa aireada y una etapa de control de la aportación de oxígeno durante la etapa aireada
JP5211675B2 (ja) 安水からのアンモニア性窒素およびcod成分の除去方法
KR101288503B1 (ko) 하·폐수처리장치
TWI248918B (en) Method for treating water containing ammonium-nitrogen
WO2016112835A1 (en) Internal sulfur cycling sani (isc-sani) process for biological wastewater treatment
JP2005246136A (ja) アンモニア性窒素含有水の硝化方法及び処理方法
ES2466090A1 (es) Método de puesta en marcha y control de un proceso biológico para eliminación de amonio mediante la acción de bacterias autótrofas en aguas residuales
KR100719434B1 (ko) 혐기성 처리수의 고농도 질소 제거 방법 및 장치
WO2010016268A1 (ja) 水処理システム及び水処理方法
WO2018136350A1 (en) Mainstream deammonification process for treating wastewater that suppresses the growth of nitrite oxidizing bacteria
JP3460745B2 (ja) 生物学的硝化脱窒素方法と装置
JP4106203B2 (ja) 安水からの窒素の除去方法
US10556816B2 (en) Wastewater treatment apparatus
JP2012120937A (ja) アンモニア性窒素含有液の処理方法及び処理システム
JP5149717B2 (ja) 脱窒処理方法及び脱窒処理装置
Song et al. A novel system of two-stage partial nitritation/hydroxyapatite (HAP)-anammox treating effluent of anaerobic membrane reactor: Performance, elemental flow and nutrient recovery potentials
JP4837706B2 (ja) アンモニア性窒素の除去装置
Udert et al. Biological nitrogen conversion processes
JP5451283B2 (ja) 窒素含有排水の処理方法
JP2005211832A (ja) 廃水からのアンモニア性窒素の除去方法
CN103112947A (zh) 一种适用于低温低氨氮sbr亚硝化稳定运行的方法
WO2012013829A1 (es) Sistema y procedimiento para el tratamiento de aguas
JP2004230338A (ja) 廃水からのアンモニア性窒素化合物の除去方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10747060

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2013/001094

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2010358297

Country of ref document: AU

Date of ref document: 20100726

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2010747060

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010747060

Country of ref document: EP