WO2012008310A1 - Developer liquid for photoresist and developing apparatus - Google Patents

Developer liquid for photoresist and developing apparatus Download PDF

Info

Publication number
WO2012008310A1
WO2012008310A1 PCT/JP2011/065031 JP2011065031W WO2012008310A1 WO 2012008310 A1 WO2012008310 A1 WO 2012008310A1 JP 2011065031 W JP2011065031 W JP 2011065031W WO 2012008310 A1 WO2012008310 A1 WO 2012008310A1
Authority
WO
WIPO (PCT)
Prior art keywords
developer
developing
resist film
organic solvent
wafer
Prior art date
Application number
PCT/JP2011/065031
Other languages
French (fr)
Japanese (ja)
Inventor
真二 小林
信博 高橋
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2012008310A1 publication Critical patent/WO2012008310A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/30Imagewise removal using liquid means
    • G03F7/3042Imagewise removal using liquid means from printing plates transported horizontally through the processing stations
    • G03F7/3071Process control means, e.g. for replenishing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/30Imagewise removal using liquid means
    • G03F7/32Liquid compositions therefor, e.g. developers
    • G03F7/322Aqueous alkaline compositions

Definitions

  • the present invention relates to a photoresist developer for developing a resist film on a substrate and a development processing apparatus using the photoresist developer.
  • a resist coating process is performed on a semiconductor wafer (hereinafter referred to as “wafer”) to form a resist film, and a predetermined pattern is exposed on the resist film.
  • An exposure process, a development process for developing the exposed resist film, and the like are sequentially performed to form a predetermined resist pattern on the wafer.
  • the resist pattern When forming the above-described resist pattern, the resist pattern is required to be miniaturized in order to further increase the integration of the semiconductor device. Further, in order to form such a fine resist pattern with high dimensional accuracy, it is required to develop the resist film with higher accuracy in the development processing described above.
  • Patent Document 1 it has been proposed to develop a resist film using a developing solution and then perform a post-treatment with a quaternary ammonium hydroxide aqueous solution and a mixture of the aqueous solution and a compatible organic solvent.
  • Patent Document 1 it has been proposed to develop a resist film using a developing solution and then perform a post-treatment with a quaternary ammonium hydroxide aqueous solution and a mixture of the aqueous solution and a compatible organic solvent.
  • the outside of the resist pattern is swollen by the developer, and a swollen layer is formed.
  • the swelling amount reaches a predetermined amount, the swelling layer dissolves and the resist film is developed.
  • the developer may enter the resist film between the formation of the swelling layer and dissolution.
  • post-processing is performed with the mixture in a state in which the developer enters the resist film in the development processing. Then, in the post-processing, the resist film may be further dissolved, and the shape of the resist pattern may not be a desired shape.
  • the present invention has been made in view of such a point, and an object thereof is to develop a resist film on a substrate with high accuracy and to improve the dimensional accuracy of a resist pattern formed on the resist film.
  • the present invention provides a photoresist developer for developing a resist film on a substrate, which is soluble in the developer stock solution of the resist film and does not neutralize with the developer stock solution. Has an organic solvent.
  • the present invention when a photoresist developer (hereinafter sometimes simply referred to as “developer”) is supplied to the resist film on the substrate, the outside of the resist film where the resist pattern is formed is developed.
  • the swelling layer is formed by swelling with the liquid.
  • the outside of the swelling layer is dissolved by the organic solvent in the developer. Therefore, development of the resist film proceeds while maintaining the state where the swelling layer is thin.
  • the swelling layer could not be dissolved unless the swelling amount was a predetermined amount, but according to the present invention, this swelling layer that could not be dissolved conventionally can be dissolved.
  • the thickness of a swelling layer can be made thinner than before, the resist film can be dissolved faster than before and the development speed of the resist film can be increased. That is, the sensitivity of the resist film can be improved.
  • the developer does not enter the resist film as in the conventional case. Therefore, the resist film can be developed with high accuracy, and the dimensional accuracy of the resist pattern formed on the resist film can be improved.
  • the resist film may be an EUV resist film.
  • EUV resist refers to a resist used in so-called EUV lithography that performs an exposure process using EUV (Extreme Ultra Violet) that is extreme ultraviolet light having a wavelength of 13 nm to 14 nm, for example.
  • EUV Extreme Ultra Violet
  • exposure light sources for exposure processing include KrF laser (wavelength 248 nm), ArF laser (wavelength 193 nm), and F2 laser (wavelength 157 nm).
  • KrF laser wavelength 248 nm
  • ArF laser wavelength 193 nm
  • F2 laser wavelength 157 nm
  • EUV resists have low sensitivity and a slow dissolution rate with a developer.
  • the line width of the resist pattern formed by performing EUV lithography is extremely fine, for example, 20 nm. For this reason, when developing an EUV resist film, the developer easily enters the EUV resist film between the formation of the swelling layer and dissolution, and it is difficult to form the resist pattern in a desired shape. .
  • the exposure amount of the EUV light source used in EUV lithography is significantly lower than the exposure amount of the conventional exposure light source, and it is technically difficult to increase the exposure amount of the EUV light source at present.
  • the thickness of the swelling layer of the resist film for EUV can be reduced and the development speed of the resist film for EUV can be increased, so that the developer enters the resist film for EUV. There is nothing to do. Therefore, the EUV resist film can be developed with high accuracy, and the dimensional accuracy of the resist pattern formed on the EUV resist film can be improved.
  • the concentration of the organic solvent with respect to the developing stock solution may be set based on the developing speed of the resist film and the cross-sectional shape of the resist pattern formed on the resist film after development. In such a case, the concentration of the organic solvent with respect to the developing stock solution may be 5% by mass or less.
  • Another aspect of the present invention is a development processing apparatus for developing a resist film on a substrate using a photoresist developer, wherein the photoresist developer is soluble in a developing solution for the resist film. And a developing solution that has an organic solvent that does not neutralize with the developing solution, the developing processing apparatus supplying a developing solution for photoresist onto a substrate, and a developing solution that stores the developing solution therein.
  • the resist film on the substrate can be developed with high accuracy, and the dimensional accuracy of the resist pattern formed on the resist film can be improved.
  • FIG. 1 is a plan view showing an outline of a configuration of a coating and developing treatment system 1 including a developing treatment apparatus according to the present embodiment.
  • FIG. 2 is a front view of the coating and developing treatment system 1
  • FIG. 3 is a rear view of the coating and developing treatment system 1.
  • the coating and developing processing system 1 performs so-called EUV lithography processing that performs exposure processing using EUV.
  • the coating and developing treatment system 1 is a cassette that carries, for example, 25 wafers W from the outside to the coating and developing treatment system 1 in a cassette unit, and carries a wafer W into and out of the cassette C.
  • a station 2 a processing station 3 in which a plurality of various processing apparatuses for performing predetermined processing in a single wafer type in a photolithography process are arranged in multiple stages, and an exposure apparatus provided adjacent to the processing station 3 4 and the interface station 5 that transfers the wafer W to and from the unit 4.
  • the exposure apparatus 4 has a light source (not shown) that outputs EUV (wavelength 13 nm to 14 nm).
  • the cassette station 2 is provided with a cassette mounting table 6.
  • the cassette mounting table 6 can mount a plurality of cassettes C in a row in the X direction (vertical direction in FIG. 1).
  • the cassette station 2 is provided with a wafer transfer body 8 that can move in the X direction on the transfer path 7.
  • the wafer carrier 8 is also movable in the wafer arrangement direction (Z direction; vertical direction) of the wafers W accommodated in the cassette C, and is selective to the wafers W in each cassette C arranged in the X direction. Can be accessed.
  • the wafer carrier 8 is rotatable in the ⁇ direction around the Z axis, and a temperature control device 60 belonging to a third processing device group G3 on the processing station 3 side described later, and a transition device 61 for delivering the wafer W. Can also be accessed.
  • the processing station 3 adjacent to the cassette station 2 includes, for example, five processing device groups G1 to G5 in which a plurality of processing devices are arranged in multiple stages.
  • a first processing device group G1 and a second processing device group G2 are sequentially arranged from the cassette station 2 side on the X direction negative direction (downward direction in FIG. 1) side of the processing station 3.
  • a third processing device group G3, a fourth processing device group G4, and a fifth processing device group G5 are sequentially arranged from the cassette station 2 side on the X direction positive direction (upward direction in FIG. 1) side of the processing station 3.
  • a first transfer device A1 is provided between the third processing device group G3 and the fourth processing device group G4, and the wafer W is supported and transferred inside the first transfer device A1.
  • a first transfer arm 10 is provided.
  • the first transfer arm 10 can selectively access each processing apparatus in the first processing apparatus group G1, the third processing apparatus group G3, and the fourth processing apparatus group G4 to transfer the wafer W.
  • a second transfer device A2 is provided between the fourth processing device group G4 and the fifth processing device group G5, and the wafer W is supported and transferred inside the second transfer device A2.
  • a second transfer arm 11 is provided. The second transfer arm 11 can selectively access each processing apparatus in the second processing apparatus group G2, the fourth processing apparatus group G4, and the fifth processing apparatus group G5 to transfer the wafer W.
  • the first processing unit group G1 includes a liquid processing apparatus that supplies a predetermined liquid to the wafer W and performs processing, for example, a resist coating apparatus 20 that applies a resist solution for EUV to the wafer W, 21 and 22 and bottom coating devices 23 and 24 for forming an antireflection film for preventing reflection of light during the exposure process are stacked in five stages in order from the bottom.
  • liquid processing units for example, development processing units 30 to 34 for supplying a developing solution for photoresist to the wafer W and performing development processing are stacked in five stages in order from the bottom.
  • chemical chambers 40 and 41 for supplying various processing liquids to the liquid processing apparatuses in the processing apparatus groups G1 and G2 are provided at the bottom of the first processing apparatus group G1 and the second processing apparatus group G2. Each is provided.
  • the third processing unit group G3 includes a temperature control unit 60, a transition unit 61, high-precision temperature control units 62 and 63 that control the temperature of the wafer W under high-precision temperature control, and the wafer W.
  • High temperature heat treatment apparatuses 64 to 67 for heat treatment at a high temperature are stacked in eight stages in order from the bottom.
  • pre-baking devices 70 to 73 for heat-treating the wafer W after the resist coating treatment and post-baking devices 74 to 77 for heat-processing the wafer W after the development processing are arranged in eight stages in order from the bottom. It is superimposed on.
  • a plurality of heat treatment apparatuses for heat-treating the wafer W for example, high-precision temperature control apparatuses 80 to 82 and post-exposure baking apparatuses 83 to 87 are stacked in eight stages in order from the bottom.
  • a plurality of processing apparatuses are arranged on the positive side in the X direction of the first transfer apparatus A1, and a hydrophobic processing apparatus for hydrophobizing the wafer W as shown in FIG. 90, 91 and heating devices 92, 93 for heating the wafer W are stacked in four stages in order from the bottom.
  • a peripheral exposure device 94 that selectively exposes only the edge portion of the wafer W, for example, is disposed on the positive side in the X direction of the second transfer device A2.
  • the interface station 5 is provided with a wafer transfer body 101 that moves on a transfer path 100 extending in the X direction and a buffer cassette 102 as shown in FIG.
  • the wafer transfer body 101 can move in the Z direction and can also rotate in the ⁇ direction, and accesses the exposure apparatus 4 adjacent to the interface station 5, the buffer cassette 102, and the fifth processing apparatus group G5.
  • the wafer W can be transferred.
  • the development processing apparatus 30 has a processing container 110 in which a loading / unloading port (not shown) for the wafer W is formed on a side surface.
  • a spin chuck 120 that holds and rotates the wafer W is provided at the center in the processing container 110.
  • the spin chuck 120 has a horizontal upper surface, and a suction port (not shown) for sucking the wafer W, for example, is provided on the upper surface. By suction from the suction port, the wafer W can be sucked and held on the spin chuck 120.
  • the spin chuck 120 includes a chuck driving unit 121 including, for example, a motor, and can be rotated at a predetermined speed by the chuck driving unit 121. Further, the chuck driving unit 121 is provided with an elevating drive source such as a cylinder, and the spin chuck 120 is movable up and down.
  • a chuck driving unit 121 including, for example, a motor, and can be rotated at a predetermined speed by the chuck driving unit 121. Further, the chuck driving unit 121 is provided with an elevating drive source such as a cylinder, and the spin chuck 120 is movable up and down.
  • a cup 122 that receives and collects the liquid scattered or dropped from the wafer W.
  • the cup 122 has an opening larger than the wafer W so that the spin chuck 120 can be moved up and down on the upper surface.
  • a lower surface of the cup 122 is connected to a discharge pipe 123 that discharges the collected liquid and an exhaust pipe 124 that exhausts the atmosphere in the cup 122.
  • a rail 130 extending along the Y direction is formed on the negative side of the cup 122 in the X direction (downward direction in FIG. 5).
  • the rail 130 is formed, for example, from the outer side of the cup 122 on the Y direction negative direction (left direction in FIG. 5) to the outer side on the Y direction positive direction (right direction in FIG. 5).
  • two arms 131 and 132 are attached to the rail 130.
  • the first arm 131 supports a developer nozzle 133 for supplying a developer as shown in FIGS.
  • the first arm 131 is movable on the rail 130 by a nozzle driving unit 134 shown in FIG.
  • the developer nozzle 133 can move from the standby unit 135 installed outside the cup 122 on the positive side in the Y direction to above the center of the wafer W in the cup 122, and further on the surface of the wafer W. It can move in the radial direction of the wafer W.
  • the first arm 131 can be moved up and down by a nozzle driving unit 134 and the height of the developer nozzle 133 can be adjusted.
  • a developer supply pipe 137 communicating with the developer supply block 136 is connected to the developer nozzle 133.
  • the detailed configuration of the developer supply block 136 will be described later.
  • the second arm 132 supports a cleaning liquid nozzle 140 for supplying a cleaning liquid, for example, pure water.
  • the second arm 132 is movable on the rail 130 by the nozzle driving unit 141 shown in FIG. 5, and the cleaning liquid nozzle 140 is moved from the standby unit 142 provided on the outer side of the negative side of the cup 122 in the Y direction to the cup. It can be moved to above the center of the wafer W in 122. Further, the second arm 132 can be moved up and down by the nozzle driving unit 141, and the height of the cleaning liquid nozzle 140 can be adjusted.
  • pure water is used as the cleaning liquid for performing the cleaning process on the wafer W, but other cleaning liquid may be used.
  • the cleaning liquid nozzle 140 is connected to a cleaning liquid supply pipe 144 communicating with the cleaning liquid supply source 143 as shown in FIG.
  • a cleaning liquid is stored in the cleaning liquid supply source 143.
  • the cleaning liquid supply pipe 144 is provided with a supply device group 145 including a valve for controlling the flow of the cleaning liquid, a flow rate adjusting unit, and the like.
  • the developer nozzle 133 that supplies the developer and the cleaning nozzle 140 that supplies the cleaning liquid are supported by separate arms, but are supported by the same arm, and development is controlled by controlling the movement of the arms.
  • the movement and supply timing of the liquid nozzle 133 and the cleaning liquid nozzle 140 may be controlled.
  • the developer supply block 136 includes a developer supply source 150 that stores the developer solution therein.
  • a developer supply source 150 that stores the developer solution therein.
  • the developing stock solution for example, an alkaline TMAH developing stock solution (tetramethylammonium hydroxide developing stock solution) or a TBAH developing stock solution (tetrabutylammonium hydroxide developing stock solution) is used.
  • An air supply pipe 151 for supplying air, for example, an inert gas, to the developing solution supply source 150 is connected to the upper portion of the developing solution supply source 150.
  • the air supply pipe 151 communicates with an air supply source 152 that stores air therein.
  • the air supply pipe 151 is provided with a supply device group 153 including a valve for controlling the flow of air, a flow rate adjusting unit, and the like. Then, air is supplied from the air supply source 152 into the developing stock solution supply source 150, the pressure in the developing stock solution supply source 150 is maintained at a predetermined pressure, and the developing stock solution in the developing stock solution supply source 150 is developed as described later.
  • the undiluted solution supply pipe 154 is supplied.
  • a developing solution supply pipe 154 for supplying a developing solution to a developing solution supply source 170 described later is connected to the upper portion of the developing solution supply source 150.
  • the developing solution supply pipe 154 is provided with a supply device group 155 including a valve for controlling the flow of the developing solution, a flow rate adjusting unit, and the like.
  • the developer supply block 136 has an organic solvent supply source 160 for storing the organic solvent therein.
  • the organic solvent for example, an organic solvent that is soluble in the developing stock solution and does not neutralize with the developing stock solution is used. Specifically, for example, isopropyl alcohol (IPA), acetone, ⁇ -butyrolactone (GBL), N-methylpyrrolidinone (NMP), ethanol, tetrahydrofuran (THF), pyridine and the like are used.
  • IPA isopropyl alcohol
  • GBL ⁇ -butyrolactone
  • NMP N-methylpyrrolidinone
  • ethanol ethanol
  • THF tetrahydrofuran
  • pyridine tetrahydrofuran
  • an ester compound such as ethyl lactate (EL) cannot be used for the organic solvent.
  • the upper part of the organic solvent supply source 160 is connected with an air supply pipe 161 for supplying air, for example, an inert gas, into the organic solvent supply source 160.
  • the air supply pipe 161 communicates with an air supply source 162 that stores air therein.
  • the air supply pipe 161 is provided with a supply device group 163 including a valve for controlling the flow of air, a flow rate adjusting unit, and the like. Then, air is supplied from the air supply source 162 into the organic solvent supply source 160, the pressure in the organic solvent supply source 160 is maintained at a predetermined pressure, and the organic solvent in the organic solvent supply source 160 is an organic material described later.
  • the solvent is supplied to the solvent supply pipe 164.
  • an organic solvent supply pipe 164 for supplying an organic solvent to a developer supply source 170 described later is connected to the upper part of the organic solvent supply source 160.
  • the organic solvent supply pipe 164 is provided with a supply device group 165 including a valve for controlling the flow of the organic solvent, a flow rate adjusting unit, and the like.
  • the developer supply block 136 has a developer supply source 170 that generates a developing stock solution therein.
  • the developing solution supply source 170 is connected to the developing solution supply pipe 154 that communicates with the developing solution supply source 150 and the organic solvent supply pipe 164 that communicates with the organic solvent supply source 160. Then, a developing solution is supplied from the developing solution supply source 150 to the developing solution supply source 170 and an organic solvent is supplied from the organic solvent supply source 160. Thereafter, the developer stock solution and the organic solvent are mixed in the developer supply source 170 to generate a developer. That is, the developer supply source 170 functions as a mixer.
  • the developer supply source 170 is connected to a developer supply pipe 137 communicating with the developer nozzle 133 described above. Then, the developer is supplied from the developer supply source 170 to the developer nozzle 133.
  • the configuration of the development processing apparatuses 31 to 34 is the same as the configuration of the development processing apparatus 30 described above, and a description thereof will be omitted.
  • the control unit 200 is a computer, for example, and has a program storage unit (not shown).
  • the program storage unit stores a program for executing development processing of the wafer W in the development processing apparatuses 30 to 34.
  • the program storage unit controls the transfer of the wafer W between the cassette station 2, the processing station 3, the exposure apparatus 4, and the interface station 5, the operation of the drive system in the processing station 3, and the like.
  • a program for executing wafer processing in the development processing system 1 is stored.
  • This program is recorded on a computer-readable storage medium H such as a computer-readable hard disk (HD), flexible disk (FD), compact disk (CD), magnetic optical desk (MO), or memory card. May have been installed in the control unit 200 from the storage medium H.
  • the coating and developing treatment system 1 according to the present embodiment is configured as described above. Next, wafer processing performed in the coating and developing processing system 1 will be described.
  • the wafers W in the cassette C are taken out one by one by the wafer carrier 8, and the third process is performed. It is conveyed to the temperature control device 60 of the device group G3.
  • the wafer W transferred to the temperature adjusting device 60 is adjusted to a predetermined temperature. Thereafter, the wafer W is transferred to the bottom coating device 23 by the first transfer device A1, and an antireflection film is formed on the wafer W.
  • the wafer W on which the antireflection film is formed is sequentially transferred by the first transfer device A1 to the heating device 92, the high-precision temperature adjusting device 62, and the hydrophobization processing device 90, and is subjected to predetermined processing in each device. Thereafter, the wafer W is transferred to the resist coating apparatus 20 by the first transfer apparatus A1. In the resist coating apparatus 20, a resist solution for EUV is applied on the wafer W, and an EUV resist film is formed on the wafer W.
  • the wafer W on which the EUV resist film is formed is transported to the pre-baking device 70 by the first transport device A1, and pre-baked. Subsequently, the wafer is sequentially transported to the peripheral exposure device 94 and the high-precision temperature control device 82 by the second transport device A2, and predetermined processing is performed in each device. Thereafter, the wafer W is transferred to the exposure apparatus 4 by the wafer transfer body 101 of the interface station 5. In the exposure apparatus 4, the EUV resist film on the wafer W is irradiated with EUV, and a predetermined pattern is selectively exposed to the EUV resist film.
  • the wafer W that has been subjected to the exposure processing is transferred to the post-exposure baking apparatus 83 by the wafer transfer body 101, and post-exposure baking is performed. Thereafter, the wafer W is transferred to the high-accuracy temperature adjusting device 81 by the second transfer device A2, and the temperature is adjusted.
  • the wafer W is transferred to the development processing apparatus 30 by the second transfer apparatus A2.
  • the development processing apparatus 30 a developer is supplied to the EUV resist film on the wafer W, and the EUV resist film is developed.
  • the development processing of the wafer W in the development processing apparatus 30 will be described later.
  • the wafer W is transferred to the post-baking apparatus 74 by the second transfer apparatus A2, and after the post-baking process is performed, the first W The temperature is adjusted by being conveyed to the high-precision temperature adjusting device 63 by the conveying device A1. Then, the wafer W is transferred to the transition device 61 by the first transfer device A1, and returned to the cassette C by the wafer transfer body 8 to complete a series of photolithography steps.
  • the wafer W carried into the development processing apparatus 30 is first sucked and held by the spin chuck 120. Subsequently, the first arm 131 moves the developer nozzle 133 of the standby unit 135 to above the outer peripheral portion of the wafer W.
  • the chuck driving unit 121 is controlled to rotate the wafer W at a predetermined rotational speed by the spin chuck 120. Subsequently, the developing solution is supplied from the developing solution supply block 136 to the developing solution nozzle 133, and the developing solution is applied from the developing solution nozzle 133 to the outer peripheral portion of the wafer W.
  • a predetermined amount of the developer stock adjusted by the supply device group 155 is supplied from the developer stock supply 150 to the developer supply 170.
  • a predetermined amount of the organic solvent adjusted by the supply device group 165 is supplied from the organic solvent supply source 160 to the developer supply source 170.
  • the organic solvent is supplied so that the concentration with respect to the developing stock solution is, for example, 5% by mass or less.
  • the developer supply source 170 the developing stock solution and the organic solvent are mixed to generate a developer.
  • the generated developer is supplied from the developer supply source 170 to the developer nozzle 133.
  • the developer nozzle 133 supplies the developer to the EUV resist film on the wafer W while moving to the center of the wafer W. Then, the belt-like developer supplied from the developer nozzle 133 is supplied onto the wafer W in a spiral shape. Then, the developer uniformly diffuses over the wafer W, and the entire surface of the wafer W is covered with the developer. As a result, the EUV resist film on the wafer W is developed, the exposed portion of the EUV resist film is dissolved, and a resist pattern is formed on the wafer W.
  • the diagonally downward slanting line portion shows the resist layer R that is a region not swollen by the developer in the EUV resist film on the wafer W.
  • the upward slanting hatched portion indicates the swollen layer S that is a region swollen by the developer in the EUV resist film.
  • a dotted line portion indicates a desired resist pattern P to be finally formed.
  • the developing solution as in the prior art is composed of only the undiluted developer solution, when the organic solvent as in the present embodiment is not mixed, the thickness of the swollen layer S P, as shown in FIG. 8 is thicker. That is, conventionally, when the swelling amount of the developing solution does not become a predetermined amount, it was not possible to dissolve the swollen layer S P. For this reason, the developer may enter the resist layer R of the resist film for EUV after the swelling layer SP is formed and dissolved, and the shape of the resist pattern may not be a desired shape. there were.
  • the organic solvent in the developer because of dissolving the outside of the swelling layer S P the thickness of the swollen layer S as shown in FIG. 7 become thinner . That is, in the present embodiment, development of the resist film for EUV proceeds while the swelling layer S is kept thin. Therefore, it is possible to dissolve the EUV resist film faster than before, and to increase the development speed of the EUV resist film. That is, the sensitivity of the resist film for EUV can be improved. If it does so, a developing solution will not enter into the resist layer R like the past. Therefore, the EUV resist film can be developed with high accuracy, and a desired resist pattern P can be formed on the EUV resist film.
  • the concentration of the organic solvent with respect to the developing stock solution was set to 5% by mass or less as described above.
  • the concentration of the organic solvent is set based on the developing speed of the EUV resist film and the cross-sectional shape of the resist pattern formed on the EUV resist film after development. That is, the concentration of the organic solvent, the organic solvent dissolves the outer swelling layer S P at an appropriate speed, to properly maintain the development rate of the EUV resist film, so that the developer does not enter into the resist layer R Set to
  • the concentration of the organic solvent is set so that the resist pattern is not deformed by the organic solvent and an appropriate cross-sectional shape, for example, a rectangular cross-sectional shape is maintained. And when the inventors investigated, it turned out that 5 mass% or less is suitable for the density
  • an organic solvent that is soluble in the developing stock solution and does not neutralize with the developing stock solution is used.
  • the organic solvent directly dissolves the EUV resist, and the resist pattern itself cannot be formed. Therefore, it is necessary to use an organic solvent soluble in the developing stock solution.
  • an organic solvent that neutralizes with the developing stock solution for example, an ester compound such as ethyl lactate (EL) described above that saponifies with the developing stock solution, the ethyl lactate is hydrolyzed by the alkali of the developing stock solution, and lactic acid And is broken down into ethanol.
  • EL ethyl lactate
  • a TMAH developing stock solution As the developing stock solution, as described above, a TMAH developing stock solution, a TBAH developing stock solution, or the like is used, but a TBAH developing stock solution is more preferable. Since the molecular size of TBAH is larger than that of TMAH, the thickness of the swelling layer S can be reduced by using the TBAH developing stock solution. Further, since the TBAH molecular size is large, the TBAH developing stock solution is difficult to enter the resist layer R. Therefore, the dimensional accuracy of the resist pattern formed on the EUV resist film can be further improved.
  • the first arm 131 moves the developer nozzle 133 from the upper center of the wafer W to the standby unit 135.
  • the cleaning liquid nozzle 140 of the standby unit 142 moves to above the center of the wafer W by the second arm 132. Thereafter, the wafer W is rotated, and the cleaning liquid is supplied from the cleaning liquid nozzle 140 to the center of the wafer W, whereby the wafer W is cleaned.
  • the supply of the cleaning liquid from the cleaning liquid nozzle 140 is stopped, and the wafer W is rotated at an accelerated speed to dry and remove the cleaning liquid on the wafer W.
  • a series of development processing of the wafer W is completed.
  • the developer used for the development processing of the wafer W has the organic solvent that is soluble in the developing stock solution and does not neutralize with the developing stock solution.
  • the organic solvent dissolves the outer swelling layer S P, can reduce the thickness of the swollen layer S. That is, development of the resist film for EUV can be advanced while maintaining the state where the swelling layer S is thin. For this reason, the developing speed of the resist film for EUV can be made faster than before, and the sensitivity of the resist film for EUV can be improved. Then, the developer does not enter the resist layer R as in the conventional case. Therefore, the EUV resist film can be developed with high accuracy, and the dimensional accuracy of the resist pattern formed on the EUV resist film can be improved.
  • the concentration of the organic solvent with respect to the developing stock solution is set based on the developing speed of the resist film for EUV and the cross-sectional shape of the resist pattern formed on the resist film for EUV after development. It is as follows. In such a case, the organic solvent dissolves the outer swelling layer S P at an appropriate speed, to properly maintain the development rate of the EUV resist film, it is possible to prevent the developer from entering the resist layer R . Further, the resist pattern is not deformed by the organic solvent, and an appropriate cross-sectional shape, for example, a rectangular cross-sectional shape can be maintained. Therefore, a desired resist pattern can be formed on the EUV resist film.
  • the sensitivity of the EUV resist film can be improved.
  • the exposure amount of the EUV light source can be reduced in the exposure process performed before the development process. Therefore, it is possible to shorten the exposure time and improve the wafer processing throughput.
  • the sensitivity of the resist film for EUV is improved by about 10%
  • the exposure amount can be reduced by about 10% and the exposure time can be shortened by about 10%.
  • the throughput of wafer processing can be improved by about 10%.
  • the inventors verified the effect of reducing the exposure amount described above.
  • the resist film was exposed using an exposure light source that outputs a KrF laser, and the resist film was developed using three types of developers.
  • a specific developing solution a conventional developing solution containing only 2.38% by mass of TMAH developing stock solution (hereinafter referred to as “conventional developing solution”) and 5% by mass with respect to 2.38% by mass of TMAH developing stock solution.
  • IPA-containing developer % Isopropyl alcohol (IPA) mixed with the developer according to this embodiment
  • TMAH developing stock solution 3% by mass of ethyl lactate
  • EL-containing developer A developer mixed with (EL) was used. And it verified by making target line width of the resist pattern after image development into 120 nm.
  • FIG. 9 This verification result is shown in FIG.
  • the vertical axis in FIG. 9 indicates the line width of the resist pattern, and the horizontal axis indicates the exposure amount.
  • “Reference” is a graph when a conventional developer is used
  • “IPA 5%” is a graph when an IPA-containing developer is used
  • “EL 3%” is an EL-containing developer. It is a graph at the time of using.
  • the target line width of the resist pattern was set to 120 nm by performing KrF exposure. However, even when the target line width of the resist pattern is reduced to, for example, 20 nm by performing EUV exposure, the tendency shown in FIG. This has been confirmed by the inventors.
  • the exposure amount necessary for setting the resist pattern to the target line width of 120 nm is about 22 mJ / m 2 .
  • the exposure amount necessary for setting the resist pattern to the target line width of 120 nm was about 19.5 mJ / m 2 . Therefore, it has been found that the use of the developer of the present embodiment makes it possible to form a resist pattern having a desired dimension while reducing the exposure amount by about 11%.
  • the resist pattern could not be formed with a target line width of 120 nm.
  • the reason for this is as described above, because the developing ability of the alkaline developer is reduced by lactic acid hydrolyzed from ethyl lactate.
  • the thickness of the swollen layer S As described above, the developing solution remaining after the development is a small amount compared with the conventional thick swelling layer S P. For this reason, the time required for the cleaning process can be reduced as compared with the conventional case.
  • the organic solvent is mixed in the developing stock solution, the surface tension of the developing solution is reduced.
  • the surface tension acts on the resist pattern, the resist pattern tilts and falls, so-called pattern collapse may occur.
  • the surface tension of the developer is reduced, the occurrence of such pattern collapse can be suppressed.
  • the developer supply block 136 includes a developer solution supply source 150 that stores the developer solution, an organic solvent supply source 160 that stores the organic solvent, and a mixture of the developer solution and the organic solvent. Since the developer supply sources 170 for generating the developer are provided, the concentration of the organic solvent relative to the developing solution can be freely set according to the target dimension of the resist pattern formed on the wafer W. Therefore, the dimensional accuracy of the resist pattern can be further improved. Further, immediately before the developer is supplied from the developer supply block 136 to the developer nozzle 133, the developer can be generated in the developer supply source 170, so that the developer mixed with the organic solvent is stored in advance. Compared to the case, the deterioration of the developer can be suppressed.
  • the resist film for EUV is developed, but the present invention can also be applied to the case of developing other resist films.
  • the present invention is useful when a fine resist pattern is formed on the wafer W by so-called double patterning.
  • Double patterning is a method of forming a fine resist pattern by performing two photolithography processes and synthesizing two resist patterns. Specifically, the first resist film is formed, exposed, and developed to form a first resist pattern on the first resist film, and then the second second resist film is formed, exposed, and A second resist pattern is formed on the second resist film by development. A fine resist pattern is realized by synthesizing the first resist pattern and the second resist pattern.
  • the developer containing the organic solvent described in the above embodiment is used. Then, in each developing process, the thickness of the swelling layer S of the resist film can be reduced, and the developing speed of the resist film can be increased. Therefore, the dimensional accuracy of each of the first resist pattern and the second resist pattern can be improved, and a desired resist pattern P can be formed on the wafer W. Further, since the sensitivity of the resist film can be improved, the exposure amount of the exposure process can be reduced, the exposure time can be shortened, and the throughput of the wafer process can be improved.
  • the second photolithography process cannot be performed properly, so that the first resist film is developed and cleaned properly after the first development. It is necessary to perform processing.
  • the first development process since the thickness of the swelling layer S of the first resist film is thin, the time required for cleaning can be shortened as compared with the prior art. For example, when the thickness of the swollen layer S becomes 1/2 of the thickness of conventional swelling layer S P, the time required for the cleaning process can be shortened to the conventional 1/4. Specifically, for example, the cleaning process, which conventionally took 60 seconds, can be changed to 15 seconds in the present embodiment. Therefore, the throughput of wafer processing can be improved.
  • the present invention is not limited to such examples. It is obvious for those skilled in the art that various changes or modifications can be conceived within the scope of the idea described in the claims, and these naturally belong to the technical scope of the present invention. It is understood.
  • the present invention is not limited to this example and can take various forms.
  • the present invention can also be applied to a case where the substrate is another substrate such as an FPD (flat panel display) other than a wafer or a mask reticle for a photomask.
  • FPD flat panel display

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

Disclosed is a developing apparatus wherein a developer liquid supply block for supplying a developer liquid to a developer liquid nozzle is connected to the developer liquid nozzle. The developer liquid supply block comprises a developer liquid concentrate supply source that holds a developer liquid concentrate inside, an organic solvent supply source that holds an organic solvent inside, and a developer liquid supply source that produces a developer liquid by mixing the developer liquid concentrate and the organic solvent. As the organic solvent, one that is soluble in the developer liquid concentrate but is not neutralized with the developer liquid concentrate is used. The developer liquid is produced by mixing the developer liquid concentrate and the organic solvent so that the concentration of the organic solvent with respect to the developer liquid concentrate is 5% by mass or less.

Description

フォトレジスト用現像液及び現像処理装置Photoresist developer and development processing apparatus
 本発明は、基板上のレジスト膜を現像するフォトレジスト用現像液、及び当該フォトレジスト用現像液を用いた現像処理装置に関する。 The present invention relates to a photoresist developer for developing a resist film on a substrate and a development processing apparatus using the photoresist developer.
 例えば半導体デバイスの製造プロセスにおけるフォトリソグラフィー工程では、例えば半導体ウェハ(以下、「ウェハ」という。)上にレジスト液を塗布しレジスト膜を形成するレジスト塗布処理、当該レジスト膜に所定のパターンを露光する露光処理、露光されたレジスト膜を現像する現像処理などが順次行われ、ウェハ上に所定のレジストパターンが形成される。 For example, in a photolithography process in a semiconductor device manufacturing process, for example, a resist coating process is performed on a semiconductor wafer (hereinafter referred to as “wafer”) to form a resist film, and a predetermined pattern is exposed on the resist film. An exposure process, a development process for developing the exposed resist film, and the like are sequentially performed to form a predetermined resist pattern on the wafer.
 上述したレジストパターンを形成する際には、半導体デバイスのさらなる高集積化を図るため、当該レジストパターンの微細化が求められている。また、このように微細なレジストパターンを高い寸法精度で形成するため、上述した現像処理においてレジスト膜をより高い精度で現像することが要求されている。 When forming the above-described resist pattern, the resist pattern is required to be miniaturized in order to further increase the integration of the semiconductor device. Further, in order to form such a fine resist pattern with high dimensional accuracy, it is required to develop the resist film with higher accuracy in the development processing described above.
 そこで、例えば現像液を用いてレジスト膜を現像した後、第四級アンモニウムヒドロキシド水溶液及び該水溶液と相溶性の有機溶剤との混合物で後処理することが提案されている(特許文献1)。かかる場合、後処理において、現像処理後のレジストパターン端部とウェハとの境界部に付着したレジスト残渣を除去して、レジストパターンの寸法精度の向上を図っている。 Therefore, for example, it has been proposed to develop a resist film using a developing solution and then perform a post-treatment with a quaternary ammonium hydroxide aqueous solution and a mixture of the aqueous solution and a compatible organic solvent (Patent Document 1). In such a case, in post-processing, the resist residue adhering to the boundary between the resist pattern end portion and the wafer after the development processing is removed to improve the dimensional accuracy of the resist pattern.
日本国特公平6-38161号公報Japanese Patent Publication No. 6-38161
 ところで、現像処理では、レジストパターンの外側が現像液によって膨潤し、膨潤層が形成される。そして、膨潤量が所定量になった時に、当該膨潤層が溶解してレジスト膜が現像される。 By the way, in the development process, the outside of the resist pattern is swollen by the developer, and a swollen layer is formed. When the swelling amount reaches a predetermined amount, the swelling layer dissolves and the resist film is developed.
 しかしながら、所望のレジストパターンの寸法が微細であるため、膨潤層が形成されてから溶解するまでの間に、現像液がレジスト膜の内部に進入する場合があった。かかる場合、特許文献1の方法を用いると、現像処理において現像液がレジスト膜内に進入した状態で混合物によって後処理が行われる。そうすると、後処理において、レジスト膜がさらに溶解する場合があり、レジストパターンの形状が所望の形状にならない場合があった。 However, since the dimensions of the desired resist pattern are fine, the developer may enter the resist film between the formation of the swelling layer and dissolution. In such a case, when the method of Patent Document 1 is used, post-processing is performed with the mixture in a state in which the developer enters the resist film in the development processing. Then, in the post-processing, the resist film may be further dissolved, and the shape of the resist pattern may not be a desired shape.
 本発明は、かかる点に鑑みてなされたものであり、基板上のレジスト膜を高精度で現像し、当該レジスト膜に形成されるレジストパターンの寸法精度を向上させることを目的とする。 The present invention has been made in view of such a point, and an object thereof is to develop a resist film on a substrate with high accuracy and to improve the dimensional accuracy of a resist pattern formed on the resist film.
 前記の目的を達成するため、本発明は、基板上のレジスト膜を現像するフォトレジスト用現像液であって、前記レジスト膜の現像原液に可溶であり、且つ前記現像原液と中和反応しない有機溶剤を有する。 In order to achieve the above object, the present invention provides a photoresist developer for developing a resist film on a substrate, which is soluble in the developer stock solution of the resist film and does not neutralize with the developer stock solution. Has an organic solvent.
 本発明によれば、フォトレジスト用現像液(以下、単に「現像液」という場合がある)が基板上のレジスト膜に供給されると、レジストパターンが形成される部分のレジスト膜の外側が現像液によって膨潤して膨潤層が形成される。そして、この膨潤層の外側が現像液内の有機溶剤によって溶解する。したがって、膨潤層の厚みが薄い状態を維持して、レジスト膜の現像が進行する。換言すれば、従来は膨潤量が所定量にならないと膨潤層を溶解させることができなかったが、本発明によれば、この従来溶解させることができなかった膨潤層を溶解させることができる。そして、このように従来よりも膨潤層の厚みが薄くできるので、従来よりもレジスト膜を速く溶解させて、当該レジスト膜の現像速度を速くすることができる。すなわち、レジスト膜の感度を向上させることができる。そうすると、従来のようにレジスト膜の内部に現像液が進入することがない。したがって、レジスト膜を高精度で現像することができ、当該レジスト膜に形成されるレジストパターンの寸法精度を向上させることができる。 According to the present invention, when a photoresist developer (hereinafter sometimes simply referred to as “developer”) is supplied to the resist film on the substrate, the outside of the resist film where the resist pattern is formed is developed. The swelling layer is formed by swelling with the liquid. The outside of the swelling layer is dissolved by the organic solvent in the developer. Therefore, development of the resist film proceeds while maintaining the state where the swelling layer is thin. In other words, conventionally, the swelling layer could not be dissolved unless the swelling amount was a predetermined amount, but according to the present invention, this swelling layer that could not be dissolved conventionally can be dissolved. And since the thickness of a swelling layer can be made thinner than before, the resist film can be dissolved faster than before and the development speed of the resist film can be increased. That is, the sensitivity of the resist film can be improved. Then, the developer does not enter the resist film as in the conventional case. Therefore, the resist film can be developed with high accuracy, and the dimensional accuracy of the resist pattern formed on the resist film can be improved.
 前記レジスト膜は、EUV用レジスト膜であってもよい。なお、EUV用レジストとは、例えば波長が13nm~14nmの極紫外線であるEUV(Extreme Ultra Violet)を用いた露光処理を行う、いわゆるEUVリソグラフィーで用いられるレジストをいう。 The resist film may be an EUV resist film. Note that the EUV resist refers to a resist used in so-called EUV lithography that performs an exposure process using EUV (Extreme Ultra Violet) that is extreme ultraviolet light having a wavelength of 13 nm to 14 nm, for example.
 ここで、近年、レジストパターンの微細化要求に応えて、露光処理に使用される露光光源には、従来用いられていたKrFレーザ(波長248nm)、ArFレーザ(波長193nm)、F2レーザ(波長157nm)よりさらに短波長の上記EUVを出力する光源を用いることが検討されている。 Here, in recent years, in response to demands for miniaturization of resist patterns, conventionally used exposure light sources for exposure processing include KrF laser (wavelength 248 nm), ArF laser (wavelength 193 nm), and F2 laser (wavelength 157 nm). The use of a light source that outputs the EUV having a shorter wavelength is being studied.
 しかしながら、EUV用レジストは感度が低く、現像液による溶解速度が遅い。しかも、EUVリソグラフィーを行って形成されるレジストパターンの線幅は例えば20nmと極めて微細である。このため、EUV用レジスト膜を現像する場合、膨潤層が形成されてから溶解するまでの間に、現像液がEUV用レジスト膜内に進入し易くなり、レジストパターンを所望の形状に形成し難い。 However, EUV resists have low sensitivity and a slow dissolution rate with a developer. Moreover, the line width of the resist pattern formed by performing EUV lithography is extremely fine, for example, 20 nm. For this reason, when developing an EUV resist film, the developer easily enters the EUV resist film between the formation of the swelling layer and dissolution, and it is difficult to form the resist pattern in a desired shape. .
 そこで、EUV用レジストに酸発生剤(PAG;Photo Acid Generator)を添加して、当該EUV用レジストの感度を向上させることが考えられる。しかしながら、現状ではEUV用レジスト内の酸発生剤の添加量はほぼ限界であり、これ以上のEUV用レジストの感度向上は望めない。 Therefore, it is conceivable to add an acid generator (PAG; Photo Acid Generator) to the EUV resist to improve the sensitivity of the EUV resist. However, at present, the addition amount of the acid generator in the EUV resist is almost the limit, and no further improvement in sensitivity of the EUV resist can be expected.
 また、露光処理におけるEUV光源の露光量を増加させて、現像速度を速くすることも考えられる。しかしながら、EUVリソグラフィーで用いられているEUV光源の露光量は従来の露光光源の露光量と比較すると著しく低く、現状ではEUV光源の露光量を増加させることは技術的に困難である。 It is also conceivable to increase the exposure amount of the EUV light source in the exposure process to increase the development speed. However, the exposure amount of the EUV light source used in EUV lithography is significantly lower than the exposure amount of the conventional exposure light source, and it is technically difficult to increase the exposure amount of the EUV light source at present.
 この点、本発明によれば、上述したようにEUV用レジスト膜の膨潤層の厚みを薄くして、EUV用レジスト膜の現像速度を速くできるので、EUV用レジスト膜の内部に現像液が進入することがない。したがって、EUV用レジスト膜を高精度で現像することができ、当該EUV用レジスト膜に形成されるレジストパターンの寸法精度を向上させることができる。 In this respect, according to the present invention, as described above, the thickness of the swelling layer of the resist film for EUV can be reduced and the development speed of the resist film for EUV can be increased, so that the developer enters the resist film for EUV. There is nothing to do. Therefore, the EUV resist film can be developed with high accuracy, and the dimensional accuracy of the resist pattern formed on the EUV resist film can be improved.
 前記現像原液に対する前記有機溶剤の濃度は、前記レジスト膜の現像速度と、現像後にレジスト膜に形成されるレジストパターンの断面形状とに基づいて設定してもよい。かかる場合、前記現像原液に対する前記有機溶剤の濃度は、5質量%以下であってもよい。 The concentration of the organic solvent with respect to the developing stock solution may be set based on the developing speed of the resist film and the cross-sectional shape of the resist pattern formed on the resist film after development. In such a case, the concentration of the organic solvent with respect to the developing stock solution may be 5% by mass or less.
 別な観点による本発明は、フォトレジスト用現像液を用いて基板上のレジスト膜を現像処理する現像処理装置であって、前記フォトレジスト用現像液は、前記レジスト膜の現像原液に可溶であり、且つ前記現像原液と中和反応しない有機溶剤を有し、前記現像処理装置は、基板上に前記フォトレジスト用現像液を供給する現像液ノズルと、内部に前記現像原液を貯留する現像原液供給源と、内部に前記有機溶剤を貯留する有機溶剤供給源と、前記現像原液供給源から供給された前記現像原液と前記有機溶剤供給源から供給された前記有機溶剤とを混合して前記フォトレジスト用現像液を生成し、当該フォトレジスト用現像液を前記現像液ノズルに供給するための現像液供給源と、を有する。 Another aspect of the present invention is a development processing apparatus for developing a resist film on a substrate using a photoresist developer, wherein the photoresist developer is soluble in a developing solution for the resist film. And a developing solution that has an organic solvent that does not neutralize with the developing solution, the developing processing apparatus supplying a developing solution for photoresist onto a substrate, and a developing solution that stores the developing solution therein. A mixture of a supply source, an organic solvent supply source storing the organic solvent therein, the developing solution supplied from the developing solution supply source, and the organic solvent supplied from the organic solvent supply source; A developer supply source for generating a resist developer and supplying the photoresist developer to the developer nozzle.
 本発明によれば、基板上のレジスト膜を高精度で現像し、当該レジスト膜に形成されるレジストパターンの寸法精度を向上させることができる。 According to the present invention, the resist film on the substrate can be developed with high accuracy, and the dimensional accuracy of the resist pattern formed on the resist film can be improved.
本実施の形態にかかる現像処理装置を備えた塗布現像処理システムの構成の概略を示す平面図である。It is a top view which shows the outline of a structure of the coating development processing system provided with the developing processing apparatus concerning this Embodiment. 本実施の形態にかかる塗布現像処理システムの正面図である。It is a front view of the coating and developing treatment system according to the present embodiment. 本実施の形態にかかる塗布現像処理システムの背面図である。It is a rear view of the coating and developing treatment system according to the present embodiment. 現像処理装置の構成の概略を示す縦断面図である。It is a longitudinal cross-sectional view which shows the outline of a structure of a development processing apparatus. 現像処理装置の構成の概略を示す横断面図である。It is a cross-sectional view which shows the outline of a structure of a development processing apparatus. 現像液供給ブロックの構成の概略を示す説明図である。It is explanatory drawing which shows the outline of a structure of a developing solution supply block. 本実施の形態の現像液によって、EUV用レジスト膜にレジストパターンが形成される様子を示す説明図である。It is explanatory drawing which shows a mode that a resist pattern is formed in the resist film for EUV with the developing solution of this Embodiment. 従来の現像液によって、EUV用レジスト膜にレジストパターンが形成される様子を示す説明図である。It is explanatory drawing which shows a mode that a resist pattern is formed in the resist film for EUV with the conventional developing solution. レジストパターンの線幅と露光量との関係を示すグラフである。It is a graph which shows the relationship between the line width of a resist pattern, and exposure amount.
 以下、本発明の実施の形態について説明する。図1は、本実施の形態にかかる現像処理装置を備えた塗布現像処理システム1の構成の概略を示す平面図である。図2は、塗布現像処理システム1の正面図であり、図3は、塗布現像処理システム1の背面図である。なお、本実施の形態において、塗布現像処理システム1では、EUVを用いた露光処理を行う、いわゆるEUVリソグラフィー処理が行われる。 Hereinafter, embodiments of the present invention will be described. FIG. 1 is a plan view showing an outline of a configuration of a coating and developing treatment system 1 including a developing treatment apparatus according to the present embodiment. FIG. 2 is a front view of the coating and developing treatment system 1, and FIG. 3 is a rear view of the coating and developing treatment system 1. In the present embodiment, the coating and developing processing system 1 performs so-called EUV lithography processing that performs exposure processing using EUV.
 塗布現像処理システム1は、図1に示すように例えば25枚のウェハWをカセット単位で外部から塗布現像処理システム1に対して搬入出したり、カセットCに対してウェハWを搬入出したりするカセットステーション2と、フォトリソグラフィー工程の中で枚葉式に所定の処理を施す複数の各種処理装置を多段に配置している処理ステーション3と、この処理ステーション3に隣接して設けられている露光装置4との間でウェハWの受け渡しをするインターフェイスステーション5とを一体に接続した構成を有している。なお、露光装置4は、EUV(波長13nm~14nm)を出力する光源(図示せず)を有している。 As shown in FIG. 1, the coating and developing treatment system 1 is a cassette that carries, for example, 25 wafers W from the outside to the coating and developing treatment system 1 in a cassette unit, and carries a wafer W into and out of the cassette C. A station 2, a processing station 3 in which a plurality of various processing apparatuses for performing predetermined processing in a single wafer type in a photolithography process are arranged in multiple stages, and an exposure apparatus provided adjacent to the processing station 3 4 and the interface station 5 that transfers the wafer W to and from the unit 4. The exposure apparatus 4 has a light source (not shown) that outputs EUV (wavelength 13 nm to 14 nm).
 カセットステーション2には、カセット載置台6が設けられ、当該カセット載置台6は、複数のカセットCをX方向(図1中の上下方向)に一列に載置自在になっている。カセットステーション2には、搬送路7上をX方向に向かって移動可能なウェハ搬送体8が設けられている。ウェハ搬送体8は、カセットCに収容されたウェハWのウェハ配列方向(Z方向;鉛直方向)にも移動自在であり、X方向に配列された各カセットC内のウェハWに対して選択的にアクセスできる。 The cassette station 2 is provided with a cassette mounting table 6. The cassette mounting table 6 can mount a plurality of cassettes C in a row in the X direction (vertical direction in FIG. 1). The cassette station 2 is provided with a wafer transfer body 8 that can move in the X direction on the transfer path 7. The wafer carrier 8 is also movable in the wafer arrangement direction (Z direction; vertical direction) of the wafers W accommodated in the cassette C, and is selective to the wafers W in each cassette C arranged in the X direction. Can be accessed.
 ウェハ搬送体8は、Z軸周りのθ方向に回転可能であり、後述する処理ステーション3側の第3の処理装置群G3に属する温度調節装置60やウェハWの受け渡しを行うためのトランジション装置61に対してもアクセスできる。 The wafer carrier 8 is rotatable in the θ direction around the Z axis, and a temperature control device 60 belonging to a third processing device group G3 on the processing station 3 side described later, and a transition device 61 for delivering the wafer W. Can also be accessed.
 カセットステーション2に隣接する処理ステーション3は、複数の処理装置が多段に配置された、例えば5つの処理装置群G1~G5を備えている。処理ステーション3のX方向負方向(図1中の下方向)側には、カセットステーション2側から第1の処理装置群G1、第2の処理装置群G2が順に配置されている。処理ステーション3のX方向正方向(図1中の上方向)側には、カセットステーション2側から第3の処理装置群G3、第4の処理装置群G4及び第5の処理装置群G5が順に配置されている。第3の処理装置群G3と第4の処理装置群G4の間には、第1の搬送装置A1が設けられており、第1の搬送装置A1の内部には、ウェハWを支持して搬送する第1の搬送アーム10が設けられている。第1の搬送アーム10は、第1の処理装置群G1、第3の処理装置群G3及び第4の処理装置群G4内の各処理装置に選択的にアクセスしてウェハWを搬送できる。第4の処理装置群G4と第5の処理装置群G5の間には、第2の搬送装置A2が設けられており、第2の搬送装置A2の内部には、ウェハWを支持して搬送する第2の搬送アーム11が設けられている。第2の搬送アーム11は、第2の処理装置群G2、第4の処理装置群G4及び第5の処理装置群G5内の各処理装置に選択的にアクセスしてウェハWを搬送できる。 The processing station 3 adjacent to the cassette station 2 includes, for example, five processing device groups G1 to G5 in which a plurality of processing devices are arranged in multiple stages. A first processing device group G1 and a second processing device group G2 are sequentially arranged from the cassette station 2 side on the X direction negative direction (downward direction in FIG. 1) side of the processing station 3. A third processing device group G3, a fourth processing device group G4, and a fifth processing device group G5 are sequentially arranged from the cassette station 2 side on the X direction positive direction (upward direction in FIG. 1) side of the processing station 3. Has been placed. A first transfer device A1 is provided between the third processing device group G3 and the fourth processing device group G4, and the wafer W is supported and transferred inside the first transfer device A1. A first transfer arm 10 is provided. The first transfer arm 10 can selectively access each processing apparatus in the first processing apparatus group G1, the third processing apparatus group G3, and the fourth processing apparatus group G4 to transfer the wafer W. A second transfer device A2 is provided between the fourth processing device group G4 and the fifth processing device group G5, and the wafer W is supported and transferred inside the second transfer device A2. A second transfer arm 11 is provided. The second transfer arm 11 can selectively access each processing apparatus in the second processing apparatus group G2, the fourth processing apparatus group G4, and the fifth processing apparatus group G5 to transfer the wafer W.
 図2に示すように第1の処理装置群G1には、ウェハWに所定の液体を供給して処理を行う液処理装置、例えばウェハWにEUV用のレジスト液を塗布するレジスト塗布装置20、21、22、露光処理時の光の反射を防止する反射防止膜を形成するボトムコーティング装置23、24が下から順に5段に重ねられている。第2の処理装置群G2には、液処理装置、例えばウェハWにフォトレジスト用現像液を供給して現像処理する現像処理装置30~34が下から順に5段に重ねられている。また、第1の処理装置群G1及び第2の処理装置群G2の最下段には、各処理装置群G1、G2内の液処理装置に各種処理液を供給するためのケミカル室40、41がそれぞれ設けられている。 As shown in FIG. 2, the first processing unit group G1 includes a liquid processing apparatus that supplies a predetermined liquid to the wafer W and performs processing, for example, a resist coating apparatus 20 that applies a resist solution for EUV to the wafer W, 21 and 22 and bottom coating devices 23 and 24 for forming an antireflection film for preventing reflection of light during the exposure process are stacked in five stages in order from the bottom. In the second processing unit group G2, liquid processing units, for example, development processing units 30 to 34 for supplying a developing solution for photoresist to the wafer W and performing development processing are stacked in five stages in order from the bottom. In addition, chemical chambers 40 and 41 for supplying various processing liquids to the liquid processing apparatuses in the processing apparatus groups G1 and G2 are provided at the bottom of the first processing apparatus group G1 and the second processing apparatus group G2. Each is provided.
 図3に示すように第3の処理装置群G3には、温度調節装置60、トランジション装置61、精度の高い温度管理下でウェハWを温度調節する高精度温度調節装置62、63及びウェハWを高温で加熱処理する高温度熱処理装置64~67が下から順に8段に重ねられている。 As shown in FIG. 3, the third processing unit group G3 includes a temperature control unit 60, a transition unit 61, high-precision temperature control units 62 and 63 that control the temperature of the wafer W under high-precision temperature control, and the wafer W. High temperature heat treatment apparatuses 64 to 67 for heat treatment at a high temperature are stacked in eight stages in order from the bottom.
 第4の処理装置群G4には、レジスト塗布処理後のウェハWを加熱処理するプリベーキング装置70~73及び現像処理後のウェハWを加熱処理するポストベーキング装置74~77が下から順に8段に重ねられている。 In the fourth processing unit group G4, pre-baking devices 70 to 73 for heat-treating the wafer W after the resist coating treatment and post-baking devices 74 to 77 for heat-processing the wafer W after the development processing are arranged in eight stages in order from the bottom. It is superimposed on.
 第5の処理装置群G5には、ウェハWを熱処理する複数の熱処理装置、例えば高精度温度調節装置80~82、ポストエクスポージャーベーキング装置83~87が下から順に8段に重ねられている。 In the fifth processing apparatus group G5, a plurality of heat treatment apparatuses for heat-treating the wafer W, for example, high-precision temperature control apparatuses 80 to 82 and post-exposure baking apparatuses 83 to 87 are stacked in eight stages in order from the bottom.
 図1に示すように第1の搬送装置A1のX方向正方向側には、複数の処理装置が配置されており、図3に示すようにウェハWを疎水化処理するための疎水化処理装置90、91、ウェハWを加熱する加熱装置92、93が下から順に4段に重ねられている。図1に示すように第2の搬送装置A2のX方向正方向側には、例えばウェハWのエッジ部のみを選択的に露光する周辺露光装置94が配置されている。 As shown in FIG. 1, a plurality of processing apparatuses are arranged on the positive side in the X direction of the first transfer apparatus A1, and a hydrophobic processing apparatus for hydrophobizing the wafer W as shown in FIG. 90, 91 and heating devices 92, 93 for heating the wafer W are stacked in four stages in order from the bottom. As shown in FIG. 1, a peripheral exposure device 94 that selectively exposes only the edge portion of the wafer W, for example, is disposed on the positive side in the X direction of the second transfer device A2.
 インターフェイスステーション5には、図1に示すようにX方向に向けて延伸する搬送路100上を移動するウェハ搬送体101と、バッファカセット102が設けられている。ウェハ搬送体101は、Z方向に移動可能でかつθ方向にも回転可能であり、インターフェイスステーション5に隣接した露光装置4と、バッファカセット102及び第5の処理装置群G5に対してアクセスしてウェハWを搬送できる。 The interface station 5 is provided with a wafer transfer body 101 that moves on a transfer path 100 extending in the X direction and a buffer cassette 102 as shown in FIG. The wafer transfer body 101 can move in the Z direction and can also rotate in the θ direction, and accesses the exposure apparatus 4 adjacent to the interface station 5, the buffer cassette 102, and the fifth processing apparatus group G5. The wafer W can be transferred.
 次に、上述した現像処理装置30~34の構成について説明する。現像処理装置30は、図4に示すように側面にウェハWの搬入出口(図示せず)が形成された処理容器110を有している。 Next, the configuration of the development processing apparatuses 30 to 34 described above will be described. As shown in FIG. 4, the development processing apparatus 30 has a processing container 110 in which a loading / unloading port (not shown) for the wafer W is formed on a side surface.
 処理容器110内の中央部には、ウェハWを保持して回転させるスピンチャック120が設けられている。スピンチャック120は、水平な上面を有し、当該上面には、例えばウェハWを吸引する吸引口(図示せず)が設けられている。この吸引口からの吸引により、ウェハWをスピンチャック120上に吸着保持できる。 A spin chuck 120 that holds and rotates the wafer W is provided at the center in the processing container 110. The spin chuck 120 has a horizontal upper surface, and a suction port (not shown) for sucking the wafer W, for example, is provided on the upper surface. By suction from the suction port, the wafer W can be sucked and held on the spin chuck 120.
 スピンチャック120は、例えばモータなどを備えたチャック駆動部121を有し、そのチャック駆動部121により所定の速度に回転できる。また、チャック駆動部121には、シリンダなどの昇降駆動源が設けられており、スピンチャック120は昇降自在になっている。 The spin chuck 120 includes a chuck driving unit 121 including, for example, a motor, and can be rotated at a predetermined speed by the chuck driving unit 121. Further, the chuck driving unit 121 is provided with an elevating drive source such as a cylinder, and the spin chuck 120 is movable up and down.
 スピンチャック120の周囲には、ウェハWから飛散又は落下する液体を受け止め、回収するカップ122が設けられている。カップ122は、上面にスピンチャック120が昇降できるようにウェハWよりも大きい開口部が形成されている。カップ122の下面には、回収した液体を排出する排出管123と、カップ122内の雰囲気を排気する排気管124が接続されている。 Around the spin chuck 120, there is provided a cup 122 that receives and collects the liquid scattered or dropped from the wafer W. The cup 122 has an opening larger than the wafer W so that the spin chuck 120 can be moved up and down on the upper surface. A lower surface of the cup 122 is connected to a discharge pipe 123 that discharges the collected liquid and an exhaust pipe 124 that exhausts the atmosphere in the cup 122.
 図5に示すようにカップ122のX方向負方向(図5の下方向)側には、Y方向(図5の左右方向)に沿って延伸するレール130が形成されている。レール130は、例えばカップ122のY方向負方向(図5の左方向)側の外方からY方向正方向(図5の右方向)側の外方まで形成されている。レール130には、例えば二本のアーム131、132が取り付けられている。 As shown in FIG. 5, a rail 130 extending along the Y direction (left and right direction in FIG. 5) is formed on the negative side of the cup 122 in the X direction (downward direction in FIG. 5). The rail 130 is formed, for example, from the outer side of the cup 122 on the Y direction negative direction (left direction in FIG. 5) to the outer side on the Y direction positive direction (right direction in FIG. 5). For example, two arms 131 and 132 are attached to the rail 130.
 第1のアーム131には、図4及び図5に示すように現像液を供給する現像液ノズル133が支持されている。第1のアーム131は、図5に示すノズル駆動部134により、レール130上を移動自在である。これにより、現像液ノズル133は、カップ122のY方向正方向側の外方に設置された待機部135からカップ122内のウェハWの中心部上方まで移動でき、さらに当該ウェハWの表面上をウェハWの径方向に移動できる。また、第1のアーム131は、ノズル駆動部134によって昇降自在であり、現像液ノズル133の高さを調整できる。 The first arm 131 supports a developer nozzle 133 for supplying a developer as shown in FIGS. The first arm 131 is movable on the rail 130 by a nozzle driving unit 134 shown in FIG. As a result, the developer nozzle 133 can move from the standby unit 135 installed outside the cup 122 on the positive side in the Y direction to above the center of the wafer W in the cup 122, and further on the surface of the wafer W. It can move in the radial direction of the wafer W. The first arm 131 can be moved up and down by a nozzle driving unit 134 and the height of the developer nozzle 133 can be adjusted.
 現像液ノズル133には、図4に示すように、現像液供給ブロック136に連通する現像液供給管137が接続されている。なお、この現像液供給ブロック136の詳細な構成については後述する。 As shown in FIG. 4, a developer supply pipe 137 communicating with the developer supply block 136 is connected to the developer nozzle 133. The detailed configuration of the developer supply block 136 will be described later.
 第2のアーム132には、洗浄液、例えば純水を供給する洗浄液ノズル140が支持されている。第2のアーム132は、図5に示すノズル駆動部141によってレール130上を移動自在であり、洗浄液ノズル140を、カップ122のY方向負方向側の外方に設けられた待機部142からカップ122内のウェハWの中心部上方まで移動させることができる。また、ノズル駆動部141によって、第2のアーム132は昇降自在であり、洗浄液ノズル140の高さを調節できる。なお、本実施の形態では、ウェハWの洗浄処理を行う洗浄液として純水を用いたが、他の洗浄液を用いてもよい。 The second arm 132 supports a cleaning liquid nozzle 140 for supplying a cleaning liquid, for example, pure water. The second arm 132 is movable on the rail 130 by the nozzle driving unit 141 shown in FIG. 5, and the cleaning liquid nozzle 140 is moved from the standby unit 142 provided on the outer side of the negative side of the cup 122 in the Y direction to the cup. It can be moved to above the center of the wafer W in 122. Further, the second arm 132 can be moved up and down by the nozzle driving unit 141, and the height of the cleaning liquid nozzle 140 can be adjusted. In the present embodiment, pure water is used as the cleaning liquid for performing the cleaning process on the wafer W, but other cleaning liquid may be used.
 洗浄液ノズル140には、図4に示すように洗浄液供給源143に連通する洗浄液供給管144が接続されている。洗浄液供給源143内には、洗浄液が貯留されている。洗浄液供給管144には、洗浄液の流れを制御するバルブや流量調節部等を含む供給機器群145が設けられている。なお、以上の構成では、現像液を供給する現像液ノズル133と洗浄液を供給する洗浄液ノズル140が別々のアームに支持されていたが、同じアームに支持され、そのアームの移動の制御により、現像液ノズル133と洗浄液ノズル140の移動と供給タイミングを制御してもよい。 The cleaning liquid nozzle 140 is connected to a cleaning liquid supply pipe 144 communicating with the cleaning liquid supply source 143 as shown in FIG. A cleaning liquid is stored in the cleaning liquid supply source 143. The cleaning liquid supply pipe 144 is provided with a supply device group 145 including a valve for controlling the flow of the cleaning liquid, a flow rate adjusting unit, and the like. In the above configuration, the developer nozzle 133 that supplies the developer and the cleaning nozzle 140 that supplies the cleaning liquid are supported by separate arms, but are supported by the same arm, and development is controlled by controlling the movement of the arms. The movement and supply timing of the liquid nozzle 133 and the cleaning liquid nozzle 140 may be controlled.
 次に、上述した現像液供給ブロック136の構成について説明する。現像液供給ブロック136は、図6に示すように内部に現像原液を貯留する現像原液供給源150を有している。現像原液としては、例えばアルカリ性のTMAH現像原液(テトラメチルアンモニウムハイドロオキサイド現像原液)やTBAH現像原液(テトラブチルアンモニウムハイドロオキサイド現像原液)等が用いられる。 Next, the configuration of the developer supply block 136 described above will be described. As shown in FIG. 6, the developer supply block 136 includes a developer supply source 150 that stores the developer solution therein. As the developing stock solution, for example, an alkaline TMAH developing stock solution (tetramethylammonium hydroxide developing stock solution) or a TBAH developing stock solution (tetrabutylammonium hydroxide developing stock solution) is used.
 現像原液供給源150の上部には、当該現像原液供給源150内に空気、例えば不活性ガスを供給するための空気供給管151が接続されている。空気供給管151は、内部に空気を貯留する空気供給源152に連通している。また、空気供給管151には、空気の流れを制御するバルブや流量調節部等を含む供給機器群153が設けられている。そして、空気供給源152から現像原液供給源150内に空気が供給され、現像原液供給源150内の圧力が所定の圧力に維持されると共に、現像原液供給源150内の現像原液が後述する現像原液供給管154に供給されるようになっている。 An air supply pipe 151 for supplying air, for example, an inert gas, to the developing solution supply source 150 is connected to the upper portion of the developing solution supply source 150. The air supply pipe 151 communicates with an air supply source 152 that stores air therein. Further, the air supply pipe 151 is provided with a supply device group 153 including a valve for controlling the flow of air, a flow rate adjusting unit, and the like. Then, air is supplied from the air supply source 152 into the developing stock solution supply source 150, the pressure in the developing stock solution supply source 150 is maintained at a predetermined pressure, and the developing stock solution in the developing stock solution supply source 150 is developed as described later. The undiluted solution supply pipe 154 is supplied.
 また、現像原液供給源150の上部には、後述する現像液供給源170に現像原液を供給するための現像原液供給管154が接続されている。現像原液供給管154には、現像原液の流れを制御するバルブや流量調節部等を含む供給機器群155が設けられている。 Further, a developing solution supply pipe 154 for supplying a developing solution to a developing solution supply source 170 described later is connected to the upper portion of the developing solution supply source 150. The developing solution supply pipe 154 is provided with a supply device group 155 including a valve for controlling the flow of the developing solution, a flow rate adjusting unit, and the like.
 また、現像液供給ブロック136は、内部に有機溶剤を貯留する有機溶剤供給源160を有している。有機溶剤としては、例えば現像原液に可溶であり、且つ現像原液と中和反応しない有機溶剤が用いられる。具体的には、例えばイソプロピルアルコール(IPA)、アセトン、γブチロラクトン(GBL)、Nメチルピロリジノン(NMP)、エタノール、テトラヒドロフラン(THF)、ピリジン等が用いられる。また、当該有機溶剤には、乳酸エチル(EL)のようなエステル化合物を用いることはできない。 The developer supply block 136 has an organic solvent supply source 160 for storing the organic solvent therein. As the organic solvent, for example, an organic solvent that is soluble in the developing stock solution and does not neutralize with the developing stock solution is used. Specifically, for example, isopropyl alcohol (IPA), acetone, γ-butyrolactone (GBL), N-methylpyrrolidinone (NMP), ethanol, tetrahydrofuran (THF), pyridine and the like are used. In addition, an ester compound such as ethyl lactate (EL) cannot be used for the organic solvent.
 有機溶剤供給源160の上部には、当該有機溶剤供給源160内に空気、例えば不活性ガスを供給するための空気供給管161が接続されている。空気供給管161は、内部に空気を貯留する空気供給源162に連通している。また、空気供給管161には、空気の流れを制御するバルブや流量調節部等を含む供給機器群163が設けられている。そして、空気供給源162から有機溶剤供給源160内に空気が供給され、有機溶剤供給源160内の圧力が所定の圧力に維持されると共に、有機溶剤供給源160内の有機溶剤が後述する有機溶剤供給管164に供給されるようになっている。 The upper part of the organic solvent supply source 160 is connected with an air supply pipe 161 for supplying air, for example, an inert gas, into the organic solvent supply source 160. The air supply pipe 161 communicates with an air supply source 162 that stores air therein. The air supply pipe 161 is provided with a supply device group 163 including a valve for controlling the flow of air, a flow rate adjusting unit, and the like. Then, air is supplied from the air supply source 162 into the organic solvent supply source 160, the pressure in the organic solvent supply source 160 is maintained at a predetermined pressure, and the organic solvent in the organic solvent supply source 160 is an organic material described later. The solvent is supplied to the solvent supply pipe 164.
 また、有機溶剤供給源160の上部には、後述する現像液供給源170に有機溶剤を供給するための有機溶剤供給管164が接続されている。有機溶剤供給管164には、有機溶剤の流れを制御するバルブや流量調節部等を含む供給機器群165が設けられている。 Further, an organic solvent supply pipe 164 for supplying an organic solvent to a developer supply source 170 described later is connected to the upper part of the organic solvent supply source 160. The organic solvent supply pipe 164 is provided with a supply device group 165 including a valve for controlling the flow of the organic solvent, a flow rate adjusting unit, and the like.
 さらに、現像液供給ブロック136は、内部で現像原液を生成する現像液供給源170を有している。現像液供給源170には、上述した現像原液供給源150に連通する現像原液供給管154と、有機溶剤供給源160に連通する有機溶剤供給管164とが接続されている。そして、現像液供給源170に対して、現像原液供給源150から現像原液が供給されると共に、有機溶剤供給源160から有機溶剤が供給される。その後、現像液供給源170内で現像原液と有機溶剤が混合され、現像液が生成される。すなわち、現像液供給源170はミキサーとして機能する。また、現像液供給源170には、上述した現像液ノズル133に連通する現像液供給管137が接続されている。そして、現像液供給源170から現像液ノズル133に現像液が供給される。 Further, the developer supply block 136 has a developer supply source 170 that generates a developing stock solution therein. The developing solution supply source 170 is connected to the developing solution supply pipe 154 that communicates with the developing solution supply source 150 and the organic solvent supply pipe 164 that communicates with the organic solvent supply source 160. Then, a developing solution is supplied from the developing solution supply source 150 to the developing solution supply source 170 and an organic solvent is supplied from the organic solvent supply source 160. Thereafter, the developer stock solution and the organic solvent are mixed in the developer supply source 170 to generate a developer. That is, the developer supply source 170 functions as a mixer. The developer supply source 170 is connected to a developer supply pipe 137 communicating with the developer nozzle 133 described above. Then, the developer is supplied from the developer supply source 170 to the developer nozzle 133.
 なお、現像処理装置31~34の構成は、上述した現像処理装置30の構成と同様であるので説明を省略する。 The configuration of the development processing apparatuses 31 to 34 is the same as the configuration of the development processing apparatus 30 described above, and a description thereof will be omitted.
 以上の塗布現像処理システム1には、図1に示すように制御部200が設けられている。制御部200は、例えばコンピュータであり、プログラム格納部(図示せず)を有している。プログラム格納部には、現像処理装置30~34におけるウェハWの現像処理を実行するプログラムが格納されている。またこれに加えて、プログラム格納部には、カセットステーション2、処理ステーション3、露光装置4、インターフェイスステーション5間のウェハWの搬送や、処理ステーション3における駆動系の動作などを制御して、塗布現像処理システム1におけるウェハ処理を実行するプログラムが格納されている。なお、このプログラムは、例えばコンピュータ読み取り可能なハードディスク(HD)、フレキシブルディスク(FD)、コンパクトディスク(CD)、マグネットオプティカルデスク(MO)、メモリーカードなどのコンピュータに読み取り可能な記憶媒体Hに記録されていたものであって、その記憶媒体Hから制御部200にインストールされたものであってもよい。 In the coating and developing treatment system 1 described above, a control unit 200 is provided as shown in FIG. The control unit 200 is a computer, for example, and has a program storage unit (not shown). The program storage unit stores a program for executing development processing of the wafer W in the development processing apparatuses 30 to 34. In addition to this, the program storage unit controls the transfer of the wafer W between the cassette station 2, the processing station 3, the exposure apparatus 4, and the interface station 5, the operation of the drive system in the processing station 3, and the like. A program for executing wafer processing in the development processing system 1 is stored. This program is recorded on a computer-readable storage medium H such as a computer-readable hard disk (HD), flexible disk (FD), compact disk (CD), magnetic optical desk (MO), or memory card. May have been installed in the control unit 200 from the storage medium H.
 本実施の形態にかかる塗布現像処理システム1は以上のように構成されている。次に、その塗布現像処理システム1で行われるウェハ処理について説明する。 The coating and developing treatment system 1 according to the present embodiment is configured as described above. Next, wafer processing performed in the coating and developing processing system 1 will be described.
 先ず、未処理のウェハWが複数枚収容されたカセットCがカセット載置台6上に載置されると、カセットC内のウェハWがウェハ搬送体8によって一枚ずつ取り出され、第3の処理装置群G3の温度調節装置60に搬送される。温度調節装置60に搬送されたウェハWは、所定温度に温度調節される。その後ウェハWは、第1の搬送装置A1によってボトムコーティング装置23に搬送され、ウェハW上に反射防止膜が形成される。反射防止膜が形成されたウェハWは、第1の搬送装置A1によって加熱装置92、高精度温度調節装置62、疎水化処理装置90に順次搬送され、各装置で所定の処理が施される。その後ウェハWは、第1の搬送装置A1によってレジスト塗布装置20に搬送される。レジスト塗布装置20では、ウェハW上にEUV用のレジスト液が塗布され、当該ウェハW上にEUV用レジスト膜が形成される。 First, when the cassette C containing a plurality of unprocessed wafers W is placed on the cassette mounting table 6, the wafers W in the cassette C are taken out one by one by the wafer carrier 8, and the third process is performed. It is conveyed to the temperature control device 60 of the device group G3. The wafer W transferred to the temperature adjusting device 60 is adjusted to a predetermined temperature. Thereafter, the wafer W is transferred to the bottom coating device 23 by the first transfer device A1, and an antireflection film is formed on the wafer W. The wafer W on which the antireflection film is formed is sequentially transferred by the first transfer device A1 to the heating device 92, the high-precision temperature adjusting device 62, and the hydrophobization processing device 90, and is subjected to predetermined processing in each device. Thereafter, the wafer W is transferred to the resist coating apparatus 20 by the first transfer apparatus A1. In the resist coating apparatus 20, a resist solution for EUV is applied on the wafer W, and an EUV resist film is formed on the wafer W.
 EUV用レジスト膜が形成されたウェハWは、第1の搬送装置A1によってプリベーキング装置70に搬送され、プリベーク処理が施される。続いて第2の搬送装置A2によって周辺露光装置94、高精度温度調節装置82に順次搬送されて、各装置において所定の処理が施される。その後ウェハWは、インターフェイスステーション5のウェハ搬送体101によって露光装置4に搬送される。露光装置4では、ウェハW上のEUV用レジスト膜にEUVが照射され、当該EUV用レジスト膜に所定のパターンが選択的に露光される。 The wafer W on which the EUV resist film is formed is transported to the pre-baking device 70 by the first transport device A1, and pre-baked. Subsequently, the wafer is sequentially transported to the peripheral exposure device 94 and the high-precision temperature control device 82 by the second transport device A2, and predetermined processing is performed in each device. Thereafter, the wafer W is transferred to the exposure apparatus 4 by the wafer transfer body 101 of the interface station 5. In the exposure apparatus 4, the EUV resist film on the wafer W is irradiated with EUV, and a predetermined pattern is selectively exposed to the EUV resist film.
 露光処理の終了したウェハWは、ウェハ搬送体101によってポストエクスポージャーベーキング装置83に搬送され、露光後ベーク処理が施される。その後ウェハWは、第2の搬送装置A2によって高精度温度調節装置81に搬送されて温度調節される。 The wafer W that has been subjected to the exposure processing is transferred to the post-exposure baking apparatus 83 by the wafer transfer body 101, and post-exposure baking is performed. Thereafter, the wafer W is transferred to the high-accuracy temperature adjusting device 81 by the second transfer device A2, and the temperature is adjusted.
 その後ウェハWは、第2の搬送装置A2によって現像処理装置30に搬送される。現像処理装置30では、ウェハW上のEUV用レジスト膜に現像液が供給され、当該EUV用レジスト膜が現像される。なお、この現像処理装置30におけるウェハWの現像処理については後述する。 Thereafter, the wafer W is transferred to the development processing apparatus 30 by the second transfer apparatus A2. In the development processing apparatus 30, a developer is supplied to the EUV resist film on the wafer W, and the EUV resist film is developed. The development processing of the wafer W in the development processing apparatus 30 will be described later.
 現像処理装置30においてウェハW上のEUV用レジスト膜が現像されると、ウェハWは、第2の搬送装置A2によってポストベーキング装置74に搬送され、ポストベーク処理が施された後、第1の搬送装置A1によって高精度温度調節装置63に搬送され温度調節される。そしてウェハWは、第1の搬送装置A1によってトランジション装置61に搬送され、ウェハ搬送体8によってカセットCに戻されて一連のフォトリソグラフィー工程が終了する。 When the EUV resist film on the wafer W is developed in the development processing apparatus 30, the wafer W is transferred to the post-baking apparatus 74 by the second transfer apparatus A2, and after the post-baking process is performed, the first W The temperature is adjusted by being conveyed to the high-precision temperature adjusting device 63 by the conveying device A1. Then, the wafer W is transferred to the transition device 61 by the first transfer device A1, and returned to the cassette C by the wafer transfer body 8 to complete a series of photolithography steps.
 次に、上述した現像処理装置30においてウェハWのEUV用レジスト膜を現像する一連の現像処理について説明する。 Next, a series of development processes for developing the EUV resist film on the wafer W in the above-described development processing apparatus 30 will be described.
 現像処理装置30に搬入されたウェハWは、先ず、スピンチャック120に吸着保持される。続いて第1のアーム131により待機部135の現像液ノズル133がウェハWの外周部上方まで移動する。 The wafer W carried into the development processing apparatus 30 is first sucked and held by the spin chuck 120. Subsequently, the first arm 131 moves the developer nozzle 133 of the standby unit 135 to above the outer peripheral portion of the wafer W.
 次に、チャック駆動部121を制御してスピンチャック120によりウェハWを所定の回転数で回転させる。続いて現像液供給ブロック136から現像液ノズル133に現像液が供給され、さらに当該現像液ノズル133からウェハWの外周部に現像液がされる。 Next, the chuck driving unit 121 is controlled to rotate the wafer W at a predetermined rotational speed by the spin chuck 120. Subsequently, the developing solution is supplied from the developing solution supply block 136 to the developing solution nozzle 133, and the developing solution is applied from the developing solution nozzle 133 to the outer peripheral portion of the wafer W.
 このとき、現像液供給ブロック136では、供給機器群155によって調節された所定量の現像原液が現像原液供給源150から現像液供給源170に供給される。また、供給機器群165によって調節された所定量の有機溶剤が有機溶剤供給源160から現像液供給源170に供給される。有機溶剤は、現像原液に対する濃度が例えば5質量%以下になるように供給される。そして、現像液供給源170において、これら現像原液と有機溶剤が混合され、現像液が生成される。生成された現像液は、現像液供給源170から現像液ノズル133に供給される。 At this time, in the developer supply block 136, a predetermined amount of the developer stock adjusted by the supply device group 155 is supplied from the developer stock supply 150 to the developer supply 170. A predetermined amount of the organic solvent adjusted by the supply device group 165 is supplied from the organic solvent supply source 160 to the developer supply source 170. The organic solvent is supplied so that the concentration with respect to the developing stock solution is, for example, 5% by mass or less. Then, in the developer supply source 170, the developing stock solution and the organic solvent are mixed to generate a developer. The generated developer is supplied from the developer supply source 170 to the developer nozzle 133.
 その後、現像液ノズル133は、ウェハWの中心部に移動しながら、ウェハW上のEUV用レジスト膜に現像液を供給する。そうすると、現像液ノズル133から供給された帯状の現像液は、螺旋状にウェハW上に供給されることになる。そして、現像液はウェハW上を均一に拡散し、ウェハWの全面が現像液に覆われる。これにより、ウェハW上のEUV用レジスト膜が現像され、EUV用レジスト膜の露光部分が溶解して、ウェハW上にレジストパターンが形成される。 Thereafter, the developer nozzle 133 supplies the developer to the EUV resist film on the wafer W while moving to the center of the wafer W. Then, the belt-like developer supplied from the developer nozzle 133 is supplied onto the wafer W in a spiral shape. Then, the developer uniformly diffuses over the wafer W, and the entire surface of the wafer W is covered with the developer. As a result, the EUV resist film on the wafer W is developed, the exposed portion of the EUV resist film is dissolved, and a resist pattern is formed on the wafer W.
 ここで、EUV用レジスト膜の現像について、図7に基づいて詳しく説明する。図7中、右下がり斜線部分は、ウェハW上のEUV用レジスト膜において、現像液によって膨潤していない領域であるレジスト層Rを示している。また右上がり斜線部分は、EUV用レジスト膜において、現像液によって膨潤した領域である膨潤層Sを示している。また点線部分は、最終的に形成される所望のレジストパターンPを示している。 Here, development of the resist film for EUV will be described in detail with reference to FIG. In FIG. 7, the diagonally downward slanting line portion shows the resist layer R that is a region not swollen by the developer in the EUV resist film on the wafer W. Moreover, the upward slanting hatched portion indicates the swollen layer S that is a region swollen by the developer in the EUV resist film. A dotted line portion indicates a desired resist pattern P to be finally formed.
 EUV用レジスト膜上に現像液が供給されると、図7に示すようにEUV用レジスト膜の外側が現像液によって膨潤して膨潤層Sが形成される。このとき、従来のように現像液が現像原液のみから構成され、本実施の形態のように有機溶剤が混合されていない場合、図8に示すように膨潤層Sの厚みは厚くなる。すなわち、従来は現像液による膨潤量が所定量にならないと、膨潤層Sを溶解させることができなかった。このため、膨潤層Sが形成されてから溶解するまでの間に、現像液がEUV用レジスト膜のレジスト層Rの内部に進入してしまい、レジストパターンの形状が所望の形状にならない場合があった。これに対して、本実施の形態の現像液を用いた場合、現像液中の有機溶剤がこの膨潤層Sの外側を溶解するので、図7に示すように膨潤層Sの厚みが薄くなる。すなわち、本実施の形態では、膨潤層Sの厚みが薄い状態を維持して、EUV用レジスト膜の現像が進行する。したがって、従来よりもEUV用レジスト膜を速く溶解させて、当該EUV用レジスト膜の現像速度を速くすることができる。すなわち、EUV用レジスト膜の感度を向上させることができる。そうすると、従来のようにレジスト層R内に現像液が進入することがない。したがって、EUV用レジスト膜を高精度で現像することができ、当該EUV用レジスト膜に所望のレジストパターンPを形成することができる。 When the developing solution is supplied onto the EUV resist film, the outside of the EUV resist film is swollen by the developing solution as shown in FIG. At this time, the developing solution as in the prior art is composed of only the undiluted developer solution, when the organic solvent as in the present embodiment is not mixed, the thickness of the swollen layer S P, as shown in FIG. 8 is thicker. That is, conventionally, when the swelling amount of the developing solution does not become a predetermined amount, it was not possible to dissolve the swollen layer S P. For this reason, the developer may enter the resist layer R of the resist film for EUV after the swelling layer SP is formed and dissolved, and the shape of the resist pattern may not be a desired shape. there were. In contrast, in the case of using the developer of this embodiment, the organic solvent in the developer because of dissolving the outside of the swelling layer S P, the thickness of the swollen layer S as shown in FIG. 7 become thinner . That is, in the present embodiment, development of the resist film for EUV proceeds while the swelling layer S is kept thin. Therefore, it is possible to dissolve the EUV resist film faster than before, and to increase the development speed of the EUV resist film. That is, the sensitivity of the resist film for EUV can be improved. If it does so, a developing solution will not enter into the resist layer R like the past. Therefore, the EUV resist film can be developed with high accuracy, and a desired resist pattern P can be formed on the EUV resist film.
 なお、このようにEUV用レジスト膜に所望のレジストパターンPを形成するため、上述したように現像原液に対する有機溶剤の濃度を5質量%以下とした。有機溶剤の濃度は、EUV用レジスト膜の現像速度と、現像後にEUV用レジスト膜に形成されるレジストパターンの断面形状に基づいて設定される。すなわち、有機溶剤の濃度は、有機溶剤が膨潤層Sの外側を適切な速度で溶解して、EUV用レジスト膜の現像速度を適切に維持し、現像液がレジスト層R内に進入しないように設定される。また、有機溶剤の濃度は、有機溶剤によってレジストパターンの形状が崩れず、適切な断面形状、例えば矩形の断面形状を維持するように設定される。そして、発明者らが調べたところ、このような条件を満たす有機溶剤の濃度は5質量%以下が適切であることが分かった。 In order to form the desired resist pattern P on the EUV resist film in this way, the concentration of the organic solvent with respect to the developing stock solution was set to 5% by mass or less as described above. The concentration of the organic solvent is set based on the developing speed of the EUV resist film and the cross-sectional shape of the resist pattern formed on the EUV resist film after development. That is, the concentration of the organic solvent, the organic solvent dissolves the outer swelling layer S P at an appropriate speed, to properly maintain the development rate of the EUV resist film, so that the developer does not enter into the resist layer R Set to In addition, the concentration of the organic solvent is set so that the resist pattern is not deformed by the organic solvent and an appropriate cross-sectional shape, for example, a rectangular cross-sectional shape is maintained. And when the inventors investigated, it turned out that 5 mass% or less is suitable for the density | concentration of the organic solvent which satisfy | fills such conditions.
 また、このようにEUV用レジスト膜に所望のレジストパターンPを形成するため、上述したように有機溶剤として、現像原液に可溶であり、且つ現像原液と中和反応しない有機溶剤が用いられる。例えば現像原液に不溶な有機溶剤を用いた場合、この有機溶剤が直接EUV用レジストを全て溶解させてしまい、レジストパターン自体を形成することができない。したがって、現像原液に可溶な有機溶剤を用いることが必要となる。また、現像原液と中和反応する有機溶剤、例えば現像原液と鹸化反応する上述した乳酸エチル(EL)のようなエステル化合物を用いた場合、当該乳酸エチルは現像原液のアルカリによって加水分解され、乳酸とエタノールに分解される。この乳酸はアルカリを中和させるため、アルカリ性の現像液の現像能力が低減し、EUV用レジスト膜の現像速度が低下する。このようにEUV用レジスト膜の感度を向上させることができないため、所望のレジストパターンPを形成することができない。したがって、現像原液と中和反応しない有機溶剤を用いることが必要となる。 Further, in order to form a desired resist pattern P on the EUV resist film in this way, as described above, an organic solvent that is soluble in the developing stock solution and does not neutralize with the developing stock solution is used. For example, when an organic solvent insoluble in the developing stock solution is used, the organic solvent directly dissolves the EUV resist, and the resist pattern itself cannot be formed. Therefore, it is necessary to use an organic solvent soluble in the developing stock solution. In addition, when an organic solvent that neutralizes with the developing stock solution, for example, an ester compound such as ethyl lactate (EL) described above that saponifies with the developing stock solution, the ethyl lactate is hydrolyzed by the alkali of the developing stock solution, and lactic acid And is broken down into ethanol. Since this lactic acid neutralizes the alkali, the developing ability of the alkaline developer is reduced, and the developing speed of the resist film for EUV is lowered. Thus, since the sensitivity of the resist film for EUV cannot be improved, the desired resist pattern P cannot be formed. Accordingly, it is necessary to use an organic solvent that does not neutralize with the developing solution.
 さらに、現像原液としては、上述したようにTMAH現像原液やTBAH現像原液等が用いられるが、TBAH現像原液がより好ましい。TBAHの分子サイズはTMAHの分子サイズよりも大きいため、TBAH現像原液を用いた方が膨潤層Sの厚みを薄くできる。また、TBAHの分子サイズが大きいため、TBAH現像原液はレジスト層Rの内部に入り難い。したがって、EUV用レジスト膜に形成されるレジストパターンの寸法精度をさらに向上させることができる。 Furthermore, as the developing stock solution, as described above, a TMAH developing stock solution, a TBAH developing stock solution, or the like is used, but a TBAH developing stock solution is more preferable. Since the molecular size of TBAH is larger than that of TMAH, the thickness of the swelling layer S can be reduced by using the TBAH developing stock solution. Further, since the TBAH molecular size is large, the TBAH developing stock solution is difficult to enter the resist layer R. Therefore, the dimensional accuracy of the resist pattern formed on the EUV resist film can be further improved.
 以上のようにウェハW上のEUV用レジスト膜が現像されると、第1のアーム131により現像液ノズル133がウェハWの中心部上方から待機部135に移動する。同時に、第2のアーム132により待機部142の洗浄液ノズル140がウェハWの中心部上方まで移動する。その後、ウェハWを回転させると共に、洗浄液ノズル140から洗浄液がウェハWの中心部に供給され、ウェハWの洗浄処理が行われる。 When the EUV resist film on the wafer W is developed as described above, the first arm 131 moves the developer nozzle 133 from the upper center of the wafer W to the standby unit 135. At the same time, the cleaning liquid nozzle 140 of the standby unit 142 moves to above the center of the wafer W by the second arm 132. Thereafter, the wafer W is rotated, and the cleaning liquid is supplied from the cleaning liquid nozzle 140 to the center of the wafer W, whereby the wafer W is cleaned.
 かかるウェハWの洗浄処理を行う際には、膨潤層Sの厚みが薄いため、従来の厚い膨潤層Sに比べて残存する現像液が少量となっている。このため、洗浄処理にかかる時間を従来よりも短縮することができる。発明者らが調べたところ、例えば膨潤層Sの厚みが従来の膨潤層Sの厚みの1/2である場合、洗浄処理にかかる時間を従来の約1/4に短縮できることが分かった。 When performing a cleaning process of such wafer W, because the small thickness of the swollen layer S, developing solution remaining as compared to the conventional thick swelling layer S P is a small amount. For this reason, the time required for the cleaning process can be reduced as compared with the conventional case. When the inventors examined, for example, when the thickness of the swollen layer S is 1/2 of the thickness of conventional swelling layer S P, the time required for the cleaning process was found to be reduced to about 1/4 of the conventional.
 ウェハWの洗浄処理後、洗浄液ノズル140からの洗浄液の供給を停止すると共に、ウェハWを加速回転させて、ウェハW上の洗浄液を乾燥させて除去する。こうして一連のウェハWの現像処理が終了する。 After the cleaning process of the wafer W, the supply of the cleaning liquid from the cleaning liquid nozzle 140 is stopped, and the wafer W is rotated at an accelerated speed to dry and remove the cleaning liquid on the wafer W. Thus, a series of development processing of the wafer W is completed.
 以上の実施の形態によれば、ウェハWの現像処理に用いられる現像液は、現像原液に可溶であり、且つ現像原液と中和反応しない有機溶剤を有している。この有機溶剤は膨潤層Sの外側を溶解し、膨潤層Sの厚みを薄くできる。すなわち、膨潤層Sの厚みが薄い状態を維持して、EUV用レジスト膜の現像を進行させることができる。このため、EUV用レジスト膜の現像速度を従来よりも速くすることができ、EUV用レジスト膜の感度を向上させることができる。そうすると、従来のようにレジスト層Rの内部に現像液が進入することがない。したがって、EUV用レジスト膜を高精度で現像することができ、当該EUV用レジスト膜に形成されるレジストパターンの寸法精度を向上させることができる。 According to the above embodiment, the developer used for the development processing of the wafer W has the organic solvent that is soluble in the developing stock solution and does not neutralize with the developing stock solution. The organic solvent dissolves the outer swelling layer S P, can reduce the thickness of the swollen layer S. That is, development of the resist film for EUV can be advanced while maintaining the state where the swelling layer S is thin. For this reason, the developing speed of the resist film for EUV can be made faster than before, and the sensitivity of the resist film for EUV can be improved. Then, the developer does not enter the resist layer R as in the conventional case. Therefore, the EUV resist film can be developed with high accuracy, and the dimensional accuracy of the resist pattern formed on the EUV resist film can be improved.
 また、本実施の形態では、現像原液に対する有機溶剤の濃度はEUV用レジスト膜の現像速度と、現像後にEUV用レジスト膜に形成されるレジストパターンの断面形状に基づいて設定され、例えば5質量%以下である。かかる場合、有機溶剤が膨潤層Sの外側を適切な速度で溶解して、EUV用レジスト膜の現像速度を適切に維持し、現像液がレジスト層Rに進入するのを防止することができる。また、有機溶剤によってレジストパターンの形状が崩れず、適切な断面形状、例えば矩形の断面形状を維持することができる。したがって、EUV用レジスト膜に所望のレジストパターンを形成することができる。 In the present embodiment, the concentration of the organic solvent with respect to the developing stock solution is set based on the developing speed of the resist film for EUV and the cross-sectional shape of the resist pattern formed on the resist film for EUV after development. It is as follows. In such a case, the organic solvent dissolves the outer swelling layer S P at an appropriate speed, to properly maintain the development rate of the EUV resist film, it is possible to prevent the developer from entering the resist layer R . Further, the resist pattern is not deformed by the organic solvent, and an appropriate cross-sectional shape, for example, a rectangular cross-sectional shape can be maintained. Therefore, a desired resist pattern can be formed on the EUV resist film.
 以上のように、本実施の形態の現像液を用いてウェハWの現像処理を行った場合、EUV用レジスト膜の感度を向上させることができる。その結果、現像処理の前に行われる露光処理において、そのEUV光源の露光量を低減することができる。したがって、露光時間を短縮させて、ウェハ処理のスループットを向上させることができる。例えばEUV用レジスト膜の感度を約10%向上させると、露光量を約10%低減して露光時間を約10%短縮することができる。そうすると、ウェハ処理のスループットも約10%向上させることができる。 As described above, when developing the wafer W using the developer of the present embodiment, the sensitivity of the EUV resist film can be improved. As a result, the exposure amount of the EUV light source can be reduced in the exposure process performed before the development process. Therefore, it is possible to shorten the exposure time and improve the wafer processing throughput. For example, when the sensitivity of the resist film for EUV is improved by about 10%, the exposure amount can be reduced by about 10% and the exposure time can be shortened by about 10%. Then, the throughput of wafer processing can be improved by about 10%.
 ここで、発明者らは、上述した露光量を低減できる効果について検証を行った。本検証では、KrFレーザを出力する露光光源を用いてレジスト膜を露光し、当該レジスト膜を3種類の現像液を用いて現像した。具体的な現像液としては、2.38質量%のTMAH現像原液のみの従来の現像液(以下、「従来の現像液」という)と、2.38質量%のTMAH現像原液に対して5質量%のイソプロピルアルコール(IPA)を混合させた本実施の形態にかかる現像液(以下、「IPA含有現像液」という)と、2.38質量%のTMAH現像原液に対して3質量%の乳酸エチル(EL)を混合させた現像液(以下、「EL含有現像液」という)を用いた。そして、現像後のレジストパターンの目標線幅を120nmとして検証を行った。 Here, the inventors verified the effect of reducing the exposure amount described above. In this verification, the resist film was exposed using an exposure light source that outputs a KrF laser, and the resist film was developed using three types of developers. As a specific developing solution, a conventional developing solution containing only 2.38% by mass of TMAH developing stock solution (hereinafter referred to as “conventional developing solution”) and 5% by mass with respect to 2.38% by mass of TMAH developing stock solution. % Isopropyl alcohol (IPA) mixed with the developer according to this embodiment (hereinafter referred to as “IPA-containing developer”) and 2.38% by mass of TMAH developing stock solution with 3% by mass of ethyl lactate A developer mixed with (EL) (hereinafter referred to as “EL-containing developer”) was used. And it verified by making target line width of the resist pattern after image development into 120 nm.
 本検証結果を図9に示す。図9の縦軸はレジストパターンの線幅を示し、横軸は露光量を示している。また、図9中、「Reference」は従来の現像液を用いた場合のグラフであり、「IPA5%」はIPA含有現像液を用いた場合のグラフであり、「EL3%」はEL含有現像液を用いた場合のグラフである。なお、本検証はKrF露光を行ってレジストパターンの目標線幅を120nmとしたが、EUV露光を行ってレジストパターンの目標線幅を例えば20nmの微細にした場合にも、図9に示す傾向がみられることが発明者らによって確認されている。 This verification result is shown in FIG. The vertical axis in FIG. 9 indicates the line width of the resist pattern, and the horizontal axis indicates the exposure amount. In FIG. 9, “Reference” is a graph when a conventional developer is used, “IPA 5%” is a graph when an IPA-containing developer is used, and “EL 3%” is an EL-containing developer. It is a graph at the time of using. In this verification, the target line width of the resist pattern was set to 120 nm by performing KrF exposure. However, even when the target line width of the resist pattern is reduced to, for example, 20 nm by performing EUV exposure, the tendency shown in FIG. This has been confirmed by the inventors.
 図9を参照すると、従来の現像液を用いた場合、レジストパターンを目標線幅120nmにするために必要な露光量は約22mJ/mであった。これに対して、本実施の形態に係るIPA含有現像液を用いた場合、レジストパターンを目標線幅120nmにするために必要な露光量は約19.5mJ/mであった。したがって、本実施の形態の現像液を用いれば、露光量を約11%低減しつつ、所望の寸法のレジストパターンを形成できることが分かった。 Referring to FIG. 9, when a conventional developer is used, the exposure amount necessary for setting the resist pattern to the target line width of 120 nm is about 22 mJ / m 2 . On the other hand, when the IPA-containing developer according to the present embodiment was used, the exposure amount necessary for setting the resist pattern to the target line width of 120 nm was about 19.5 mJ / m 2 . Therefore, it has been found that the use of the developer of the present embodiment makes it possible to form a resist pattern having a desired dimension while reducing the exposure amount by about 11%.
 なお、このように本実施の形態にかかるIPA含有現像液を用いた場合、レジストパターンのLWR(Line Width Roughness)が悪化しないことも確認されている。 In addition, when the IPA containing developer concerning this Embodiment is used in this way, it has also been confirmed that the LWR (Line Width Roughness) of a resist pattern does not deteriorate.
 また、EL含有現像液を用いた場合には、レジストパターンを目標線幅120nmに形成することができなかった。この原因は上述した通りであり、乳酸エチルから加水分解された乳酸によって、アルカリ性の現像液の現像能力が低減したためである。 Further, when the EL-containing developer was used, the resist pattern could not be formed with a target line width of 120 nm. The reason for this is as described above, because the developing ability of the alkaline developer is reduced by lactic acid hydrolyzed from ethyl lactate.
 以上の実施の形態によれば、上述のように膨潤層Sの厚みを薄くできるので、従来の厚い膨潤層Sに比べて現像後に残存する現像液が少量となる。このため、洗浄処理にかかる時間を従来よりも短縮することができる。 According to the above embodiment, it is possible to reduce the thickness of the swollen layer S, as described above, the developing solution remaining after the development is a small amount compared with the conventional thick swelling layer S P. For this reason, the time required for the cleaning process can be reduced as compared with the conventional case.
 また、以上の実施の形態によれば、現像原液に有機溶剤を混合させているので、現像液の表面張力が小さくなる。ここで、表面張力がレジストパターンに作用すると当該レジストパターンが傾斜して倒れる、いわゆるパターン倒れが発生する場合がある。本実施の形態では、現像液の表面張力が小さくなるので、かかるパターン倒れの発生を抑制することができる。 Further, according to the above embodiment, since the organic solvent is mixed in the developing stock solution, the surface tension of the developing solution is reduced. Here, when the surface tension acts on the resist pattern, the resist pattern tilts and falls, so-called pattern collapse may occur. In this embodiment, since the surface tension of the developer is reduced, the occurrence of such pattern collapse can be suppressed.
 また、以上の実施の形態によれば、現像液供給ブロック136には、現像原液を貯留する現像原液供給源150、有機溶剤を貯留する有機溶剤供給源160、現像原液と有機溶剤を混合して現像液を生成する現像液供給源170がそれぞれ設けられているので、ウェハW上に形成されるレジストパターンの目標寸法に応じて、現像原液に対する有機溶剤の濃度を自由に設定することができる。したがって、レジストパターンの寸法精度をさらに向上させることができる。また、現像液供給ブロック136から現像液ノズル133に現像液を供給する直前に、現像液供給源170において現像液を生成することができるので、予め有機溶剤を混合した現像液を貯留しておく場合に比べて、現像液の劣化を抑制することができる。 Further, according to the above embodiment, the developer supply block 136 includes a developer solution supply source 150 that stores the developer solution, an organic solvent supply source 160 that stores the organic solvent, and a mixture of the developer solution and the organic solvent. Since the developer supply sources 170 for generating the developer are provided, the concentration of the organic solvent relative to the developing solution can be freely set according to the target dimension of the resist pattern formed on the wafer W. Therefore, the dimensional accuracy of the resist pattern can be further improved. Further, immediately before the developer is supplied from the developer supply block 136 to the developer nozzle 133, the developer can be generated in the developer supply source 170, so that the developer mixed with the organic solvent is stored in advance. Compared to the case, the deterioration of the developer can be suppressed.
 以上の実施の形態では、EUV用レジスト膜を現像していたが、本発明は他のレジスト膜を現像する場合にも適用できる。例えばいわゆるダブルパターニングによってウェハW上に微細なレジストパターンを形成する際にも、本発明は有用である。 In the above embodiment, the resist film for EUV is developed, but the present invention can also be applied to the case of developing other resist films. For example, the present invention is useful when a fine resist pattern is formed on the wafer W by so-called double patterning.
 ダブルパターニングは、2回のフォトリソグラフィー工程を行い、2つのレジストパターンを合成して、微細なレジストパターンを形成する方法である。具体的には、1回目の第1のレジスト膜の形成、露光、現像により、第1のレジスト膜に第1のレジストパターンを形成し、その後2回目の第2のレジスト膜の形成、露光、現像により、第2のレジスト膜に第2のレジストパターンを形成する。そして、これら第1のレジストパターンと第2のレジストパターンとを合成することにより、微細なレジストパターンが実現されている。 Double patterning is a method of forming a fine resist pattern by performing two photolithography processes and synthesizing two resist patterns. Specifically, the first resist film is formed, exposed, and developed to form a first resist pattern on the first resist film, and then the second second resist film is formed, exposed, and A second resist pattern is formed on the second resist film by development. A fine resist pattern is realized by synthesizing the first resist pattern and the second resist pattern.
 これら第1のレジスト膜の現像処理と第2のレジスト膜の現像処理において、上記実施の形態で述べた有機溶剤を有する現像液を用いる。そうすると、それぞれの現像処理において、レジスト膜の膨潤層Sの厚みを薄くして、レジスト膜の現像速度を速くすることができる。したがって、第1のレジストパターンと第2のレジストパターンのそれぞれの寸法精度を向上させることができ、ウェハW上に所望のレジストパターンPを形成することができる。また、レジスト膜の感度を向上させることができるので、露光処理の露光量を低減することができ、露光時間を短縮させて、ウェハ処理のスループットを向上させることができる。 In the development process of the first resist film and the development process of the second resist film, the developer containing the organic solvent described in the above embodiment is used. Then, in each developing process, the thickness of the swelling layer S of the resist film can be reduced, and the developing speed of the resist film can be increased. Therefore, the dimensional accuracy of each of the first resist pattern and the second resist pattern can be improved, and a desired resist pattern P can be formed on the wafer W. Further, since the sensitivity of the resist film can be improved, the exposure amount of the exposure process can be reduced, the exposure time can be shortened, and the throughput of the wafer process can be improved.
 また、1回目の現像処理後に現像液中のTMAHが残存していると、2回目のフォトリソグラフィー工程を適切に行うことができないため、1回目の第1のレジスト膜の現像後、適切に洗浄処理を行う必要がある。この点、本実施の形態では1回目の現像処理において、第1のレジスト膜の膨潤層Sの厚みが薄いため、洗浄にかかる時間を従来よりも短縮できる。例えば膨潤層Sの厚みを従来の膨潤層Sの厚みの1/2となった場合、洗浄処理にかかる時間を従来の1/4に短縮できる。具体的には、例えば従来60秒かかっていた洗浄処理を、本実施の形態では15秒にすることができた。したがって、ウェハ処理のスループットを向上させることができる。 In addition, if TMAH in the developer remains after the first development process, the second photolithography process cannot be performed properly, so that the first resist film is developed and cleaned properly after the first development. It is necessary to perform processing. In this respect, in the present embodiment, in the first development process, since the thickness of the swelling layer S of the first resist film is thin, the time required for cleaning can be shortened as compared with the prior art. For example, when the thickness of the swollen layer S becomes 1/2 of the thickness of conventional swelling layer S P, the time required for the cleaning process can be shortened to the conventional 1/4. Specifically, for example, the cleaning process, which conventionally took 60 seconds, can be changed to 15 seconds in the present embodiment. Therefore, the throughput of wafer processing can be improved.
 以上、添付図面を参照しながら本発明の好適な実施の形態について説明したが、本発明はかかる例に限定されない。当業者であれば、特許請求の範囲に記載された思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。本発明はこの例に限らず種々の態様を採りうるものである。本発明は、基板がウェハ以外のFPD(フラットパネルディスプレイ)、フォトマスク用のマスクレチクルなどの他の基板である場合にも適用できる。 The preferred embodiments of the present invention have been described above with reference to the accompanying drawings, but the present invention is not limited to such examples. It is obvious for those skilled in the art that various changes or modifications can be conceived within the scope of the idea described in the claims, and these naturally belong to the technical scope of the present invention. It is understood. The present invention is not limited to this example and can take various forms. The present invention can also be applied to a case where the substrate is another substrate such as an FPD (flat panel display) other than a wafer or a mask reticle for a photomask.
  1  塗布現像処理システム
  4  露光装置
  30~34 現像処理装置
  133 現像液ノズル
  136 現像液供給ブロック
  140 洗浄液ノズル
  150 現像原液供給源
  160 有機溶剤供給源
  170 現像液供給源
  200 制御部
  R  レジスト層
  S  膨潤層
  P  (所望の)レジストパターン
  W  ウェハ
DESCRIPTION OF SYMBOLS 1 Coating development processing system 4 Exposure apparatus 30-34 Development processing apparatus 133 Developer liquid nozzle 136 Developer liquid supply block 140 Cleaning liquid nozzle 150 Developing stock solution supply source 160 Organic solvent supply source 170 Developer supply source 200 Control part R Resist layer S Swelling layer P (desired) resist pattern W wafer

Claims (5)

  1. 基板上のレジスト膜を現像するフォトレジスト用現像液であって、
    前記レジスト膜の現像原液に可溶であり、且つ前記現像原液と中和反応しない有機溶剤を有する。
    A photoresist developer for developing a resist film on a substrate,
    It has an organic solvent that is soluble in the developing solution of the resist film and does not neutralize with the developing solution.
  2. 請求項1に記載のフォトレジスト用現像液であって、
    前記レジスト膜は、EUV用レジスト膜である。
    The photoresist developer according to claim 1,
    The resist film is a resist film for EUV.
  3. 請求項1に記載のフォトレジスト用現像液であって、
    前記現像原液に対する前記有機溶剤の濃度は、前記レジスト膜の現像速度と、現像後にレジスト膜に形成されるレジストパターンの断面形状とに基づいて設定される。
    The photoresist developer according to claim 1,
    The concentration of the organic solvent with respect to the developing stock solution is set based on the developing speed of the resist film and the cross-sectional shape of the resist pattern formed on the resist film after development.
  4. 請求項3に記載のフォトレジスト用現像液であって、
    前記現像原液に対する前記有機溶剤の濃度は、5質量%以下である。
    The photoresist developer according to claim 3,
    The concentration of the organic solvent with respect to the developing stock solution is 5% by mass or less.
  5. フォトレジスト用現像液を用いて基板上のレジスト膜を現像処理する現像処理装置であって、
    前記フォトレジスト用現像液は、前記レジスト膜の現像原液に可溶であり、且つ前記現像原液と中和反応しない有機溶剤を有し、
    前記現像処理装置は、
    基板上に前記フォトレジスト用現像液を供給する現像液ノズルと、
    内部に前記現像原液を貯留する現像原液供給源と、
    内部に前記有機溶剤を貯留する有機溶剤供給源と、
    前記現像原液供給源から供給された前記現像原液と前記有機溶剤供給源から供給された前記有機溶剤とを混合して前記フォトレジスト用現像液を生成し、当該フォトレジスト用現像液を前記現像液ノズルに供給するための現像液供給源と、を有する。
    A development processing apparatus for developing a resist film on a substrate using a photoresist developer,
    The photoresist developer has an organic solvent that is soluble in the developing solution of the resist film and does not neutralize with the developing solution.
    The development processing apparatus includes:
    A developer nozzle for supplying the photoresist developer on the substrate;
    A developing solution supply source for storing the developing solution therein;
    An organic solvent supply source for storing the organic solvent therein;
    The developing solution supplied from the developing solution supply source and the organic solvent supplied from the organic solvent supply source are mixed to produce the photoresist developing solution, and the photoresist developing solution is used as the developing solution. A developer supply source for supplying to the nozzle.
PCT/JP2011/065031 2010-07-16 2011-06-30 Developer liquid for photoresist and developing apparatus WO2012008310A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010161715A JP2012022244A (en) 2010-07-16 2010-07-16 Developing solution for photoresist, and developing device
JP2010-161715 2010-07-16

Publications (1)

Publication Number Publication Date
WO2012008310A1 true WO2012008310A1 (en) 2012-01-19

Family

ID=45469315

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/065031 WO2012008310A1 (en) 2010-07-16 2011-06-30 Developer liquid for photoresist and developing apparatus

Country Status (3)

Country Link
JP (1) JP2012022244A (en)
TW (1) TW201224682A (en)
WO (1) WO2012008310A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5919210B2 (en) 2012-09-28 2016-05-18 東京エレクトロン株式会社 Substrate processing method, program, computer storage medium, and substrate processing system
JP5543633B2 (en) * 2012-11-26 2014-07-09 東京エレクトロン株式会社 Substrate cleaning system, substrate cleaning method, and storage medium
JP5827939B2 (en) 2012-12-17 2015-12-02 東京エレクトロン株式会社 Film forming method, program, computer storage medium, and film forming apparatus
JP2014175357A (en) 2013-03-06 2014-09-22 Tokyo Electron Ltd Substrate processing method, program, computer storage medium, and substrate processing system
JP5871844B2 (en) 2013-03-06 2016-03-01 東京エレクトロン株式会社 Substrate processing method, program, computer storage medium, and substrate processing system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63164217A (en) * 1986-12-26 1988-07-07 Toshiba Corp Method and apparatus for developing photoresist film
JPH03502256A (en) * 1988-01-06 1991-05-23 オリン・ハント・スペシヤルテイ・プロダクツ・インコーポレイテツド Aqueous developers and their use in developing positive photoresist compositions
JPH056002A (en) * 1991-06-21 1993-01-14 Tokuyama Soda Co Ltd Developer for photoresist
JP2006152311A (en) * 2006-02-14 2006-06-15 Daicel Chem Ind Ltd Method for producing resin for far ultraviolet-sensitive material for semiconductor integrated circuit, and method for forming semiconductor pattern
JP2009258598A (en) * 2008-03-26 2009-11-05 Jsr Corp Radiation-sensitive composition and pattern forming method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63164217A (en) * 1986-12-26 1988-07-07 Toshiba Corp Method and apparatus for developing photoresist film
JPH03502256A (en) * 1988-01-06 1991-05-23 オリン・ハント・スペシヤルテイ・プロダクツ・インコーポレイテツド Aqueous developers and their use in developing positive photoresist compositions
JPH056002A (en) * 1991-06-21 1993-01-14 Tokuyama Soda Co Ltd Developer for photoresist
JP2006152311A (en) * 2006-02-14 2006-06-15 Daicel Chem Ind Ltd Method for producing resin for far ultraviolet-sensitive material for semiconductor integrated circuit, and method for forming semiconductor pattern
JP2009258598A (en) * 2008-03-26 2009-11-05 Jsr Corp Radiation-sensitive composition and pattern forming method

Also Published As

Publication number Publication date
JP2012022244A (en) 2012-02-02
TW201224682A (en) 2012-06-16

Similar Documents

Publication Publication Date Title
KR101447759B1 (en) Application processing method and application processing apparatus
JP4369325B2 (en) Development device and development processing method
US20090214985A1 (en) Method for reducing surface defects on patterned resist features
US20090220892A1 (en) Method of manufacturing semiconductor device, and resist coating and developing system
WO2012008310A1 (en) Developer liquid for photoresist and developing apparatus
JP2016111345A (en) Development processing method, computer storage medium and development processing device
US20120302066A1 (en) Method for manufacturing semiconductor device and apparatus for manufacturing semiconductor device
US8069816B2 (en) Coating film processing method and apparatus
KR101760310B1 (en) Developing processing apparatus, developing processing method and computer readable storage medium
JP2007173732A (en) Substrate processing apparatus
KR20110066081A (en) Develop processing method and computer readable storage medium
JP4678740B2 (en) Coating processing method and coating processing apparatus
JP4343022B2 (en) Substrate processing method and substrate processing apparatus
JP2010272802A (en) Processing method for applying resist, and method for forming resist pattern
JP4733192B2 (en) Coating processing method and coating processing apparatus
JP2010182715A (en) Development processing method and development processor
JP5059082B2 (en) Substrate processing method, program, and computer storage medium
JP3909028B2 (en) Development processing method and development processing apparatus
JP5012393B2 (en) Coating, developing device, coating, developing method and storage medium
JP2013251316A (en) Development processing method, development processor, program, and computer storage medium
US12019370B2 (en) Method and system for manufacturing a semiconductor device
US20240295810A1 (en) Method and system for manufacturing a semiconductor device
JP5501086B2 (en) Development processing method
JP2007088256A (en) Pattern forming method and manufacturing method of semiconductor device
JP5159913B2 (en) Substrate coating method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11806640

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11806640

Country of ref document: EP

Kind code of ref document: A1