WO2012006419A2 - Pro-neurogenic compounds - Google Patents

Pro-neurogenic compounds Download PDF

Info

Publication number
WO2012006419A2
WO2012006419A2 PCT/US2011/043185 US2011043185W WO2012006419A2 WO 2012006419 A2 WO2012006419 A2 WO 2012006419A2 US 2011043185 W US2011043185 W US 2011043185W WO 2012006419 A2 WO2012006419 A2 WO 2012006419A2
Authority
WO
WIPO (PCT)
Prior art keywords
alkyl
independently selected
optionally substituted
ring atoms
compound
Prior art date
Application number
PCT/US2011/043185
Other languages
French (fr)
Other versions
WO2012006419A3 (en
Inventor
Steven L. Mcknight
Andrew A. Pieper
Joseph M. Ready
Jef K. De Brabander
Original Assignee
Board Of Regents Of The University Of Texas System
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/832,056 external-priority patent/US8362277B2/en
Application filed by Board Of Regents Of The University Of Texas System filed Critical Board Of Regents Of The University Of Texas System
Priority to CN201180042919.1A priority Critical patent/CN103415289B/en
Priority to DK11804335.5T priority patent/DK2590647T3/en
Priority to BR112013000414A priority patent/BR112013000414A2/en
Priority to CA2804161A priority patent/CA2804161A1/en
Priority to AU2011274787A priority patent/AU2011274787B2/en
Priority to EP11804335.5A priority patent/EP2590647B1/en
Priority to JP2013518827A priority patent/JP6126528B2/en
Publication of WO2012006419A2 publication Critical patent/WO2012006419A2/en
Priority to IL223783A priority patent/IL223783B/en
Publication of WO2012006419A3 publication Critical patent/WO2012006419A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/88Carbazoles; Hydrogenated carbazoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to carbon atoms of the ring system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • A61K31/403Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil condensed with carbocyclic rings, e.g. carbazole
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • A61K31/403Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil condensed with carbocyclic rings, e.g. carbazole
    • A61K31/404Indoles, e.g. pindolol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • A61K31/403Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil condensed with carbocyclic rings, e.g. carbazole
    • A61K31/404Indoles, e.g. pindolol
    • A61K31/4045Indole-alkylamines; Amides thereof, e.g. serotonin, melatonin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/4151,2-Diazoles
    • A61K31/41551,2-Diazoles non condensed and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/41641,3-Diazoles
    • A61K31/41881,3-Diazoles condensed with other heterocyclic ring systems, e.g. biotin, sorbinil
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/41921,2,3-Triazoles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/42Oxazoles
    • A61K31/422Oxazoles not condensed and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/4353Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/437Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems the heterocyclic ring system containing a five-membered ring having nitrogen as a ring hetero atom, e.g. indolizine, beta-carboline
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4427Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems
    • A61K31/4439Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems containing a five-membered ring with nitrogen as a ring hetero atom, e.g. omeprazole
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/506Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim not condensed and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • A61P21/02Muscle relaxants, e.g. for tetanus or cramps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/02Drugs for disorders of the nervous system for peripheral neuropathies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/08Antiepileptics; Anticonvulsants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • A61P25/16Anti-Parkinson drugs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/18Antipsychotics, i.e. neuroleptics; Drugs for mania or schizophrenia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/22Anxiolytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/24Antidepressants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/30Drugs for disorders of the nervous system for treating abuse or dependence
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/30Drugs for disorders of the nervous system for treating abuse or dependence
    • A61P25/36Opioid-abuse
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/08Indoles; Hydrogenated indoles with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to carbon atoms of the hetero ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/86Carbazoles; Hydrogenated carbazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/06Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/06Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/12Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/06Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic System
    • C07F5/02Boron compounds
    • C07F5/022Boron compounds without C-boron linkages

Definitions

  • This presently disclosed embodiments relate generally to the discovery of pro-neurogenic compounds capable of promoting neurogenesis and/or reducing neuronal cell death.
  • neuronal stem cells there are two major reservoirs of neuronal stem cells, one located in the subgranular zone (SGZ) of the hippocampal dentate gyrus and another in the subventricular zone (SVZ) (Gross, Natl. Rev. 2000, 1, 67-72).
  • SGZ subgranular zone
  • SVZ subventricular zone
  • Neural stem cells in the SVZ facilitate formation of new neurons that migrate rostrally to populate the olfactory bulb
  • neural stem cells in the SGZ produce neurons that integrate locally in the granular layer of the dentate gyrus, a region of the hippocampus that exhibits lifelong structural and functional plasticity.
  • the process of new neuron formation in the adult mouse brain can be influenced by environmental, chemical and genetic variables. As demonstrated by Gage and colleagues, neurogenesis in the adult mouse brain is enhanced when animals are exposed to an enriched environment (Kempermann et al., Nature 1997, 386, 493-495) or able to exercise voluntarily (van Praag et al., Nat. Neuro-sci. 1999, 2, 266-270). More recently, anti-depressant drugs have been shown to enhance levels of adult neurogenesis in animals, including humans (Schmidt et al., Behav Pharmacol. 2007 Sep; 18(5-6):391-418; Boldrini et al., Neuropsychopharmacology 2009, 34, 2376-2389).
  • NPAS3 neuronal PAS domain protein 3
  • CNS central nervous system
  • This presently disclosed embodiments relate generally to compounds that promote the generation or the survival of existing neurons in the mammalian brain. For the purpose of simplicity these compounds are referred to as being pro-neurogenic. In certain embodiments, the compounds promote the generation or survival of neurons in the post-natal mammalian brain. In certain embodiments, the compounds promote the survival, growth, development and/or function of neurons, particularly CNS, brain, cerebral, and hippocampal neurons.
  • the compounds stimulate post-natal hippocampal neurogenesis, which while not wishing to be bound by theory, is believed to represent a therapeutic target for a variety of neuropsychiatric and neurodegenerative diseases, including (but not limited to) schizophrenia,major depression, bipolar disorder, normal aging, epilepsy, traumatic brain injury, post-traumatic stress disorder, Parkinson's disease, Alzheimer's disease, Down syndrome, spinocerebellar ataxia, amyotrophic lateral sclerosis, Huntington's disease, stroke, radiation therapy, chronic stress, abuse of neuro-active drugs (such as alcohol, opiates, methamphetamine, phencyclidine, and cocaine), retinal degeneration, spinal cord injury, and peripheral nerve injury.
  • neuro-active drugs such as alcohol, opiates, methamphetamine, phencyclidine, and cocaine
  • the compounds stimulate post-natal hypothalamic neurogenesis, which can provide therapeutic benefits in weight management, such as physiological weight loss associated with various conditions, including but not limited to, normal aging, chemotherapy, radiation therapy, stress, drug abuse, anorexia, as well as other diseases discussed herein.
  • compositions e.g., pharmaceutical compositions
  • methods of making, identifying, and using such compounds are described in, or will be apparent from, the present specification and accompanying drawings.
  • methods for promoting post-natal mammalian neurogenesis and/or reducing neuronal cell death in a subject in need thereof comprising administering an effective amount of a compound having formula (I) or a
  • each of R 1 , R 2 , R 3 , and R 4 is independently selected from hydrogen, halo, hydroxyl, sulfhydryl, C1-C6 alkoxy, C1-C6 thioalkoxy, C1-C6 haloalkoxy, C1-C6 thiohaloalkoxy, C1-C6 alkyl, Ci-Ce haloalkyl, C 2 -C 6 alkynyl, cyclopropyl, -N 3 , cyano, -NH 2 , -NH(Ci-C 6 alkyl), -N(Ci-C 6 alkyl) 2 , -NHC(0)(Ci-C 6 alkyl), and nitro;
  • R and R' are defined according to (1), (2), (3), (4), or (5) below:
  • each of R 5 , R 6 , R 7 , and R 8 is independently selected from hydrogen, halo, hydroxyl, sulfhydryl, Ci-Ce alkoxy, Ci-Ce thioalkoxy, Ci-Ce haloalkoxy, Ci-Ce thiohaloalkoxy, Ci-Ce alkyl, C1-C6 haloalkyl, C2-C6 alkynyl, cyclopropyl, -N3, cyano,
  • each of R and R' is, independently, hydrogen, Ci-Ce alkyl, or Ci-Ce haloalkyl
  • R and R' together with C2 and C3, respectively, form a fused heterocyclic ring containing from 5-6 ring atoms, wherein from 1-2 of the ring atoms is independently selected from N, NH, N(Ci-C 6 alkyl), NC(0)(Ci-C 6 alkyl), O, and S; and wherein said heterocyclic ring is optionally substituted with from 1-3 independently selected R ; OR
  • R and R' together with C2 and C3, respectively, form a fused heteroaryl ring containing from 5-6 ring atoms, wherein from 1-2 of the ring atoms is independently selected from N, NH, N(Ci-C 3 alkyl), O, and S; and wherein said heteroaryl ring is optionally substituted with from 1-3 independently selected R b ;
  • L 1 is:
  • A is:
  • heterocycloalkylene containing from 3-5 ring atoms, wherein from 1-2 of the ring atoms is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heterocycloalkylene is (a) substituted with 1 oxo; and (b) is optionally further substituted with from 1-4 independently selected R ;
  • heterocycloalkenyl containing from 5-6 ring atoms, wherein from 1-3 of the ring atoms is independently selected from N, NH, N(Ci-C 6 alkyl), NC(0)(Ci-C 6 alkyl), O, and S; and wherein said heterocycloalkenyl is optionally substituted with from 1-4
  • heteroaryl containing from 5-14 ring atoms, wherein from 1-6 of the ring atoms is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl is optionally substituted with from 1-4 independently selected R b ; or
  • the aryl portion is optionally substituted with from 1-4 independently selected R b , and
  • the cycloalkyl portion is optionally substituted with from 1 -4 independently selected R ;
  • the aryl portion from is optionally substituted with from 1-4 independently selected R b , and
  • (2) from 1-2 of the ring atoms of the heterocyclyl portion is independently selected from N, NH, N(Ci-C 6 alkyl), NC(0)(Ci-C 6 alkyl), O, and S; and wherein said heterocyclyl portion is optionally substituted with from 1-3 independently selected R ;
  • (1) from 1-2 of the ring atoms of the heteroaryl portion is independently selected from N, NH, N(Ci-C 3 alkyl), O, and S; and wherein said heteroaryl portion is optionally substituted with from 1-3 independently selected R b ; and
  • (2) from 1-2 of the ring atoms of the heterocyclyl portion is independently selected from N, NH, N(C C 6 alkyl), NC(0)(C C 6 alkyl), O, and S; and wherein said heterocyclyl portion is optionally substituted with from 1-3 independently selected R ;
  • (1) from 1-2 of the ring atoms of the heteroaryl portion is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl portion is optionally substituted with from 1-3 independently selected R b ; and
  • the cycloalkyl portion is optionally substituted with from 1 -4 independently selected R ;
  • R 9 is hydrogen; or C1-C3 alkyl that is optionally substituted with hydroxyl or C1-C3 alkoxy; each of R 10 and R 11 is independently selected from the substituents delineated collectivelyrough (k) below:
  • heteroaryl containing from 5-14 ring atoms, wherein from 1-6 of the ring atoms is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl is optionally substituted with from 1 -4 R b ;
  • the aryl portion is optionally substituted with from 1-4 independently selected R b
  • the cycloalkyl portion is optionally substituted with from 1 -4 independently selected R ;
  • the aryl portion from is optionally substituted with from 1-4 independently selected R b , and
  • (2) from 1-2 of the ring atoms of the heterocyclyl portion is independently selected from N, NH, N(Ci-C 6 alkyl), NC(0)(Ci-C 6 alkyl), O, and S; and wherein said heterocyclyl portion is optionally substituted with from 1-3 independently selected R ;
  • (1) from 1-2 of the ring atoms of the heteroaryl portion is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl portion is optionally substituted with from 1-3 independently selected R b ; and
  • (2) from 1-2 of the ring atoms of the heterocyclyl portion is independently selected from N, NH, N(Ci-C 6 alkyl), NC(0)(Ci-C 6 alkyl), O, and S; and wherein said heterocyclyl portion is optionally substituted with from 1-3 independently selected R ;
  • (1) from 1-2 of the ring atoms of the heteroaryl portion is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl portion is optionally substituted with from 1-3 independently selected R b ; and
  • the cycloalkyl portion is optionally substituted with from 1 -4 independently selected R ;
  • R 12 is:
  • heteroaryl containing from 5-14 ring atoms, wherein from 1-6 of the ring atoms is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl is optionally substituted with from 1 -4 R b ; or
  • the aryl portion is optionally substituted with from 1-4 independently selected R b , and
  • the aryl portion from is optionally substituted with from 1-4 independently selected R b , and
  • (2) from 1-2 of the ring atoms of the heterocyclyl portion is independently selected from N, NH, N(Ci-C 6 alkyl), NC(0)(Ci-C 6 alkyl), O, and S; and wherein said heterocyclyl portion is optionally substituted with from 1-3 independently selected R ;
  • (1) from 1-2 of the ring atoms of the heteroaryl portion is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl portion is optionally substituted with from 1-3 independently selected R b ; and
  • (2) from 1-2 of the ring atoms of the heterocyclyl portion is independently selected from N, NH, N(Ci-C 6 alkyl), NC(0)(Ci-C 6 alkyl), O, and S; and wherein said heterocyclyl portion is optionally substituted with from 1-3 independently selected R ;
  • (1) from 1-2 of the ring atoms of the heteroaryl portion is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl portion is optionally substituted with from 1-3 independently selected R b ; and
  • R 13 is:
  • the aryl portion is optionally substituted with from 1-4 independently selected R b , and
  • the aryl portion from is optionally substituted with from 1-4
  • (2) from 1-2 of the ring atoms of the heterocyclyl portion is independently selected from N, NH, N(Ci-C 6 alkyl), NC(0)(Ci-C 6 alkyl), O, and S; and wherein said heterocyclyl portion is optionally substituted with from 1-3 independently selected R ;
  • (1) from 1-2 of the ring atoms of the heteroaryl portion is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl portion is optionally substituted with from 1-3 independently selected R b ; and
  • (2) from 1-2 of the ring atoms of the heterocyclyl portion is independently selected from N, NH, N(Ci-C 6 alkyl), NC(0)(Ci-C 6 alkyl), O, and S; and wherein said heterocyclyl portion is optionally substituted with from 1-3 independently selected R ;
  • (1) from 1-2 of the ring atoms of the heteroaryl portion is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl portion is optionally substituted with from 1-3 independently selected R b ; and
  • R b at each occurrence is independently selected from the substituents delineated in (aa) through (dd) below:
  • (cc) C3-C6 cycloalkyl or heterocyclyl containing from 5-6 ring atoms, wherein from 1-2 of the ring atoms of the heterocyclyl is independently selected from N, NH, N(d-d alkyl), NC(0)(d-d alkyl), O, and S; and wherein each of said phenyl and heterocyclyl is optionally substituted with from 1-3 independently selected R ; and
  • R c at each occurrence is, independently selected from halo, d-d alkoxy, d-d thioalkoxy, d-d haloalkoxy, d-C 6 thiohaloalkoxy, d-C 6 alkyl, d-d haloalkyl, -NH 2 , -NH(d-d alkyl), N(d-d alkyl) 2 , -NHC(0)(d-d alkyl), and cyano;
  • R d at each occurrence is, independently selected from hydroxyl, d-d alkoxy, d- thioalkoxy, d-C 6 haloalkoxy, d-d thiohaloalkoxy, d-C 6 alkyl, d-d haloalkyl, -NH 2 , -NH(d- d alkyl), N(d-C 6 alkyl) 2 , -NHC(0)(d-d alkyl), and cyano; and
  • R e at each occurrence is, independently selected from hydroxyl, d-d alkoxy; d-d thioalkoxy; d-d haloalkoxy; d-d thiohaloalkoxy; -NH 2 ; -NH(d-d alkyl); N(d-d alkyl) 2 ; - NHC(0)(d-d alkyl); cyano; -C(0)H; -C(0)(d-C 6 alkyl); -C(0)(d-C 6 haloalkyl); C(0)OH; - C(0)0(d-d alkyl); -C(0)NH 2 ; -C(0)NH(d-C 6 alkyl); C(0)N(d-d alkyl) 2 ; -S0 2 (d-d alkyl); - S0 2 NH 2 ; -S0 2 NH(Ci-C 6 alkyl); -S0 2 N(d-C 6 alkyl) 2 ; and L 3
  • Cy is a saturated, partially unsaturated or aromatic carbocyclic or heterocyclic ring system; or a pharmaceutically acceptable salt thereof.
  • one or more of (A), (B), or (C) apply.
  • each of L 1 and L 2 must be C1-C3 alkylene, which is optionally substituted with from 1-2 independently selected R c when A is CH 2 ; or
  • Z must be other than heteroaryl containing from 5-14 (e.g., 5-6 or 6) ring atoms, wherein from 1-6 of the ring atoms is independently selected from N, NH, (Ci-C3 alkyl), O, and S; and wherein said heteroaryl is optionally substituted with from 1-4 independently selected R b ; e.g., other than substituted pyridyl, e.g., other than pyridyl substituted with C1-C3 alkyl (e.g., CH 3 ), e.g., other than 2 or 6-methylpyridyl.
  • R b e.g., other than substituted pyridyl, e.g., other than pyridyl substituted with C1-C3 alkyl (e.g., CH 3 ), e.g., other than 2 or 6-methylpyridyl.
  • each of R 10 and R 11 cannot be optionally substituted naphthyl (e.g., each of R 10 and R 11 cannot be unsubstituted naphthyl).
  • each of R 10 and R 11 is other than optionally substituted naphthyl (e.g., unsubstituted naphthyl) when R and R' are defined according to definitions (1), (2), and (4); and
  • A is CR A1 R A2 (e.g., CHOR 9 , e.g., CHOH), and each of L 1 and L 2 is C1-C3 alkylene (e.g., each of L 1 and L 2 is CH 2 ).
  • R and/or R cannot be substituted phenyl.
  • R and/or R cannot be substituted phenyl when R and R' are defined according to definition (1); and A is CR A1 R A2 (e.g., CHOR 9 , e.g., CHOH), and each of L 1 and L 2 is C1-C3 alkylene (e.g., each of L 1 and L 2 is CH 2 ).
  • (A), (B), or (C) applies. In other embodiments, (A) and (B); or (A) and (C); or (B) and (C) applies. In still other embodiments, (A), (B), and (C) apply.
  • methods for promoting post-natal mammalian neurogenesis in a subject in need thereof include administering to the subj ect an effective amount of a compound having formula (I) or a pharmaceutically acceptable salt thereof.
  • each of R 1 , R 2 , R 3 , and R 4 is independently selected from hydrogen, halo, hydroxyl, sulfhydryl, Ci-Ce alkoxy, Ci-Ce thioalkoxy, Ci-Ce haloalkoxy, Ci-Ce thiohaloalkoxy, Ci-Ce alkyl, Ci-Ce haloalkyl, cyano, -NH 2 , -NH(Ci-C 6 alkyl), -N(Ci-C 6 alkyl) 2 , -NHC(0)(Ci-C 6 alkyl), and nitro;
  • R and R' are defined according to (1), (2), (3), (4), or (5) below:
  • each of R 5 , R 6 , R 7 , and R 8 is independently selected from hydrogen, halo, hydroxyl, sulfhydryl, Ci-C 6 alkoxy, Ci-C 6 thioalkoxy, Ci-C 6 haloalkoxy, Ci-C 6 halothioalkoxy, Ci-C 6 alkyl, Ci-Ce haloalkyl, cyano, -NH 2 , -NH(C C 6 alkyl), N(C C 6 alkyl) 2 , -NHC(0)(C C 6 alkyl), and nitro; OR
  • each of R and R' is, independently, hydrogen, C1-C6 alkyl, or Ci-Ce haloalkyl
  • R and R' together with C 2 and C3, respectively, form a fused heterocyclic ring containing from 5-6 ring atoms, wherein from 1 -2 of the ring atoms is independently selected from N, NH, N(Ci-C 6 alkyl), NC(0)(Ci-C 6 alkyl), O, and S; and wherein said heterocyclic ring is optionally substituted with from 1-3 independently selected R ; OR
  • R and R' together with C 2 and C3, respectively, form a fused heteroaryl ring containing from 5-6 ring atoms, wherein from 1 -2 of the ring atoms is independently selected from N, NH, (Ci-C3 alkyl), O, and S; and wherein said heteroaryl ring is optionally substituted with from 1-3 independently selected R b ;
  • L 1 is:
  • L 2 is: (i) C1-C3 straight chain alkylene, which is optionally substituted with from 1-2 independently selected R c ; or
  • A is:
  • R A1 and R A2 are independently selected from hydrogen, halo, C1-C3 alkyl, or OR 9 ; or
  • heterocycloalkylene containing from 3-5 ring atoms, wherein from 1-2 of the ring atoms is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heterocycloalkylene is (a) substituted with 1 oxo; and (b) is optionally further substituted with from 1-4 independently selected R ;
  • heterocycloalkenyl containing from 5-6 ring atoms, wherein from 1-3 of the ring atoms is independently selected from N, NH, N(Ci-C 6 alkyl), NC(0)(Ci-C 6 alkyl), O, and S; and wherein said heterocycloalkenyl is optionally substituted with from 1-4
  • heteroaryl containing from 5-14 ring atoms, wherein from 1-6 of the ring atoms is independently selected from N, NH, N(Ci-C 3 alkyl), O, and S; and wherein said heteroaryl is optionally substituted with from 1-4 independently selected R b ; or
  • the aryl portion is optionally substituted with from 1-4 independently selected R b , and
  • the cycloalkyl portion is optionally substituted with from 1 -4 independently selected R ;
  • (2) from 1-2 of the ring atoms of the heterocyclyl portion is independently selected from N, NH, N(Ci-C 6 alkyl), NC(0)(Ci-C 6 alkyl), O, and S; and wherein said heterocyclyl portion is optionally substituted with from 1-3 independently selected R ;
  • (1) from 1-2 of the ring atoms of the heteroaryl portion is independently selected from N, NH, (Ci-C3 alkyl), O, and S; and wherein said heteroaryl portion is optionally substituted with from 1-3 independently selected R b ; and
  • (2) from 1-2 of the ring atoms of the heterocyclyl portion is independently selected from N, NH, N(Ci-C 6 alkyl), NC(0)(Ci-C 6 alkyl), O, and S; and wherein said heterocyclyl portion is optionally substituted with from 1-3 independently selected R ;
  • (1) from 1-2 of the ring atoms of the heteroaryl portion is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl portion is optionally substituted with from 1-3 independently selected R b ; and
  • the cycloalkyl portion is optionally substituted with from 1 -4 independently selected R ;
  • R 9 is hydrogen; or C1-C3 alkyl that is optionally substituted with hydroxyl or C1-C3 alkoxy; each of R 10 and R 11 is independently selected from the substituents delineated collectivelyrough (k) below:
  • heteroaryl containing from 5-14 ring atoms, wherein from 1-6 of the ring atoms is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl is optionally substituted with from 1 -4 R b ;
  • the aryl portion is optionally substituted with from 1-4 independently selected R b , and
  • the cycloalkyl portion is optionally substituted with from 1 -4 independently selected R ;
  • the aryl portion from is optionally substituted with from 1-4 independently selected R b , and
  • (2) from 1-2 of the ring atoms of the heterocyclyl portion is independently selected from N, NH, N(Ci-C 6 alkyl), NC(0)(Ci-C 6 alkyl), O, and S; and wherein said heterocyclyl portion is optionally substituted with from 1-3 independently selected R ;
  • (1) from 1-2 of the ring atoms of the heteroaryl portion is independently selected from N, NH, N(Ci-C 3 alkyl), O, and S; and wherein said heteroaryl portion is optionally substituted with from 1-3 independently selected R b ; and
  • (2) from 1-2 of the ring atoms of the heterocyclyl portion is independently selected from N, NH, N(Ci-C 6 alkyl), NC(0)(Ci-C 6 alkyl), O, and S; and wherein said heterocyclyl portion is optionally substituted with from 1-3 independently selected R ;
  • (1) from 1-2 of the ring atoms of the heteroaryl portion is independently selected from N, NH, N(Ci-C 3 alkyl), O, and S; and wherein said heteroaryl portion is optionally substituted with from 1-3 independently selected R b ; and
  • the cycloalkyl portion is optionally substituted with from 1 -4 independently selected R ;
  • R 12 is:
  • heteroaryl containing from 5-14 ring atoms, wherein from 1-6 of the ring atoms is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl is optionally substituted with from 1 -4 R b ; or
  • the aryl portion is optionally substituted with from 1-4 independently selected R b , and
  • the cycloalkyl portion is optionally substituted with from 1 -4 independently selected R ;
  • the aryl portion from is optionally substituted with from 1-4 independently selected R b , and
  • (2) from 1-2 of the ring atoms of the heterocyclyl portion is independently selected from N, NH, N(Ci-C 6 alkyl), NC(0)(Ci-C 6 alkyl), O, and S; and wherein said heterocyclyl portion is optionally substituted with from 1-3 independently selected R ;
  • (1) from 1-2 of the ring atoms of the heteroaryl portion is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl portion is optionally substituted with from 1-3 independently selected R b ; and
  • (2) from 1-2 of the ring atoms of the heterocyclyl portion is independently selected from N, NH, N(Ci-C 6 alkyl), NC(0)(Ci-C 6 alkyl), O, and S; and wherein said heterocyclyl portion is optionally substituted with from 1-3 independently selected R ;
  • (1) from 1-2 of the ring atoms of the heteroaryl portion is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl portion is optionally substituted with from 1-3 independently selected R b ; and
  • the cycloalkyl portion is optionally substituted with from 1 -4 independently selected R ; (i) C6-C1 0 aryl that is optionally substituted with from 1-4 R b ; or
  • heteroaryl containing from 5-14 ring atoms, wherein from 1-6 of the ring atoms is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl is optionally substituted with from 1 -4 R b ;
  • the aryl portion is optionally substituted with from 1-4 independently selected R b , and
  • the cycloalkyl portion is optionally substituted with from 1 -4 independently selected R ;
  • the aryl portion from is optionally substituted with from 1-4 independently selected R b , and
  • (2) from 1-2 of the ring atoms of the heterocyclyl portion is independently selected from N, NH, N(Ci-C 6 alkyl), NC(0)(Ci-C 6 alkyl), O, and S; and wherein said heterocyclyl portion is optionally substituted with from 1-3 independently selected R ;
  • (1) from 1-2 of the ring atoms of the heteroaryl portion is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl portion is optionally substituted with from 1-3 independently selected R b ; and
  • (2) from 1-2 of the ring atoms of the heterocyclyl portion is independently selected from N, NH, N(Ci-C 6 alkyl), NC(0)(Ci-C 6 alkyl), O, and S; and wherein said heterocyclyl portion is optionally substituted with from 1-3 independently selected R ;
  • (1) from 1-2 of the ring atoms of the heteroaryl portion is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl portion is optionally substituted with from 1-3 independently selected R b ; and
  • the cycloalkyl portion is optionally substituted with from 1 -4 independently selected R ;
  • R b at each occurrence is independently selected from the substituents delineated in (aa) through (dd) below:
  • (cc) C3-C6 cycloalkyl or heterocyclyl containing from 5-6 ring atoms, wherein from 1 -2 of the ring atoms of the heterocyclyl is independently selected from N, NH, (Ci-C6 alkyl), NC(0)(Ci-C6 alkyl), O, and S; and wherein each of said phenyl and heterocyclyl is optionally substituted with from 1 -3 independently selected R ; and
  • R c at each occurrence is, independently selected from halo, C1-C6 alkoxy, C1-C6 thioalkoxy, Ci-Ce haloalkoxy, Ci-C 6 thiohaloalkoxy, Ci-C 6 alkyl, Ci-C 6 haloalkyl, -NH 2 , -NH(Ci-C 6 alkyl), N(Ci-C 6 alkyl) 2 , -NHC(0)(Ci-C 6 alkyl), and cyano;
  • R d at each occurrence is, independently selected from hydroxyl, C1-C6 alkoxy, C1-C6 thioalkoxy, Ci-C 6 haloalkoxy, Ci-C 6 thiohaloalkoxy, Ci-C 6 alkyl, Ci-C 6 haloalkyl, -NH 2 , -NH(Ci- C 6 alkyl), N(Ci-C 6 alkyl) 2 , -NHC(0)(Ci-C 6 alkyl), and cyano; and
  • R e at each occurrence is, independently selected from hydroxyl, C1-C6 alkoxy; C1-C6 thioalkoxy; Ci-C 6 haloalkoxy; Ci-C 6 thiohaloalkoxy; -NH 2 ; -NH(Ci-C 6 alkyl); N(Ci-C 6 alkyl) 2 ; - NHC(0)(Ci-C 6 alkyl); cyano; -C(0)H; -C(0)(Ci-C 6 alkyl); -C(0)(Ci-C 6 haloalkyl); C(0)OH; - C(0)0(Ci-C 6 alkyl); -C(0)NH 2 ; -C(0)NH(Ci-C 6 alkyl); C(0)N(Ci-C 6 alkyl) 2 ; -S0 2 (Ci-C 6 alkyl); - S0 2 NH 2 ; -S0 2 NH(Ci-C 6 alkyl); -S0
  • Cy is a saturated, partially unsaturated or aromatic carbocyclic or heterocyclic ring system
  • one or more of (A), (B), or (C) apply.
  • each of L 1 and L 2 must be C1-C3 alkylene, which is optionally substituted with from 1-2 independently selected R c when A is CH 2 ; or
  • Z must be other than heteroaryl containing from 5-14 (e.g., 5-6 or 6)ring atoms, wherein from 1-6 of the ring atoms is independently selected from N, NH, (Ci-C3 alkyl), O, and S; and wherein said heteroaryl is optionally substituted with from 1-4 independently selected R b ; e.g., other than substituted pyridyl, e.g., other than pyridyl substituted with C1-C3 alkyl (e.g., CH 3 ), e.g., other than 2 or 6-methylpyridyl.
  • each of R 10 and R 11 cannot be optionally substituted naphthyl (e.g., each of R 10 and R 11 cannot be unsubstituted naphthyl).
  • each of R 10 and R 11 is other than optionally substituted naphthyl (e.g., unsubstituted naphthyl) when R and R' are defined according to definitions (1), (2), and (4); and
  • A is CR A1 R A2 (e.g., CHOR 9 , e.g., CHOH), and each of L 1 and L 2 is C1-C3 alkylene (e.g., each of L 1 and L 2 is CH 2 ).
  • R 12 13 ubstituted phenyl.
  • R 12 and/or R 13 are ubstituted phenyl.
  • R and/or R cannot be s cannot be substituted phenyl when R and R' are defined according to definition (1); and A is CR A1 R A2 (e.g., CHOR 9 , e.g., CHOH), and each of L 1 and L 2 is C1-C 3 alkylene (e.g., each of L 1 and L 2 is CH 2 ).
  • (A), (B), or (C) applies. In other embodiments, (A) and (B); or (A) and (C); or (B) and (C) applies. In still other embodiments, (A), (B), and (C) apply.
  • methods for promoting post-natal mammalian neurogenesis in a subject in need thereof include administering to the subj ect an effective amount of a compound having formula (I) or a pharmaceutically acceptable salt thereof, in which R and R' together with C 2 and C 3 , respectively, form a fused phenyl ring having formula (II):
  • R 1 , R 2 , R 3 , R 4 , L 1 , L 2 , A, and Z can be as defined anywhere herein.
  • (A), (B), or (C) applies. In other embodiments, (A) and (B); or (A) and (C); or (B) and (C) applies. In still other embodiments, (A), (B), or (C) apply.
  • methods for promoting post-natal mammalian neurogenesis in a subject in need thereof include administering to the subj ect an effective amount of a compound having formula (I) or a pharmaceutically acceptable salt thereof, in which:
  • R A is CR A1 R A2 , wherein one of R A1 and R A2 is OR 9 , and the other is hydrogen.;
  • Z is -NR 10 R n ;
  • each of R 10 and R 11 is independently selected from
  • (A), (B), or (C) applies.
  • (A) and (B); or (A) and (C); or (B) and (C) applies.
  • (A), (B), and (C) apply.
  • compositions e.g., a pharmaceutical composition
  • a pharmaceutical composition which includes a compound of formula (I) (and/or a compound of any of the other formulae described herein) or a salt (e.g., a pharmaceutically acceptable salt) thereof as defined anywhere herein and a pharmaceutically acceptable carrier.
  • the compositions can include an effective amount of the compound or salt.
  • the compositions can further include one or more additional therapeutic agents. These may include, but are not limited to, antidepressant medications (including selective serotonin reuptake inhibitors, tricyclic
  • antidepressants monoamine oxidase inhibitors, and other antidepressant medications including but not limited to venlafaxine, nefazadone, bupropion, mirtazapine, lithium and trazodone) and acetylcholinesterase inhibitors (including but not limited to Aricept, Reminyl, and Exelon).
  • dosage forms are featured, which includes from about 0.05 milligrams to about 2,000 milligrams (e.g., from about 0.1 milligrams to about 1,000 milligrams, from about 0.1 milligrams to about 500 milligrams, from about 0.1 milligrams to about 250 milligrams, from about 0.1 milligrams to about 100 milligrams, from about 0.1 milligrams to about 50 milligrams, or from about 0.1 milligrams to about 25 milligrams) of a compound of formula (I) (and/or a compound of any of the other formulae described herein) or a salt (e.g., a pharmaceutically acceptable salt) thereof as defined anywhere herein.
  • the dosage forms can further include a pharmaceutically acceptable carrier and/or an additional therapeutic agent.
  • the compounds of formula (I) themselves (and/or a compound of any of the other formulae described herein) or a salt (e.g., a pharmaceutically acceptable salt) thereof as defined anywhere herein are featured.
  • any of the formula (I) compounds specifically described herein are featured.
  • each of R 1 , R 2 , R 3 , and R 4 is independently selected from hydrogen, halo, hydroxyl, sulfhydryl, C1-C6 alkoxy, C1-C6 thioalkoxy, C1-C6 haloalkoxy, C1-C6 thiohaloalkoxy, C1-C6 alkyl, C1-C6 haloalkyl, C2-C6 alkynyl, cyclopropyl, -N3, cyano,
  • R and R' are defined according to (1) or (2) below:
  • each of R 5 , R 6 , R 7 , and R 8 is independently selected from hydrogen, halo, hydroxyl, sulfhydryl, Ci-C 6 alkoxy, Ci-C 6 thioalkoxy, Ci-C 6 haloalkoxy, Ci-C 6 thiohaloalkoxy, Ci- C 6 alkyl, Ci-C 6 haloalkyl, C 2 -C 6 alkynyl, cyclopropyl, -N 3 , cyano,
  • each of L 1 and L 2 is, independently, C1-C3 alkylene, which is optionally substituted with from 1-2 independently selected R c ;
  • A is:
  • CR A1 R A2 wherein each of R A1 and R A2 is independently selected from hydrogen, halo, C1-C3 alkyl, and OR 9 , wherein R 9 is hydrogen or C1-C3 alkyl that is optionally substituted with hydroxyl or C1-C3 alkoxy; or
  • heterocycloalkylene containing from 3-5 ring atoms, wherein from 1-2 of the ring atoms is independently selected from N, NH, (Ci-C3 alkyl), O, and S; and wherein said heterocycloalkylene is (a) substituted with 1 oxo; and (b) is optionally further substituted with from 1-4 independently selected R ;
  • Z is:
  • heterocycloalkenyl containing from 5-6 ring atoms, wherein from 1-3 of the ring atoms is independently selected from N, NH, N(Ci-C 6 alkyl), NC(0)(Ci-C 6 alkyl), O, and S; and wherein said heterocycloalkenyl is optionally substituted with from 1-4
  • heteroaryl containing from 5-14 ring atoms, wherein from 1-6 of the ring atoms is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl is optionally substituted with from 1-4 independently selected R b ; or
  • the aryl portion is optionally substituted with from 1-4 independently selected R b , and
  • the cycloalkyl portion is optionally substituted with from 1 -4 independently selected R ;
  • the aryl portion from is optionally substituted with from 1-4 independently selected R b , and
  • (2) from 1-2 of the ring atoms of the heterocyclyl portion is independently selected from N, NH, N(Ci-C 6 alkyl), NC(0)(Ci-C 6 alkyl), O, and S; and wherein said heterocyclyl portion is optionally substituted with from 1-3 independently selected R ;
  • (1) from 1-2 of the ring atoms of the heteroaryl portion is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl portion is optionally substituted with from 1-3 independently selected R b ; and
  • (2) from 1-2 of the ring atoms of the heterocyclyl portion is independently selected from N, NH, N(Ci-C 6 alkyl), NC(0)(Ci-C 6 alkyl), O, and S; and wherein said heterocyclyl portion is optionally substituted with from 1-3 independently selected R ;
  • (1) from 1-2 of the ring atoms of the heteroaryl portion is independently selected from N, NH, N(Ci-C 3 alkyl), O, and S; and wherein said heteroaryl portion is optionally substituted with from 1-3 independently selected R b ; and
  • heteroaryl containing from 5-14 ring atoms, wherein from 1-6 of the ring atoms is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl is optionally substituted with from 1 -4 R b ;
  • the aryl portion is optionally substituted with from 1-4 independently selected R b , and
  • the cycloalkyl portion is optionally substituted with from 1 -4 independently selected R ;
  • the aryl portion from is optionally substituted with from 1-4 independently selected R b , and
  • (2) from 1-2 of the ring atoms of the heterocyclyl portion is independently selected from N, NH, N(Ci-C 6 alkyl), NC(0)(Ci-C 6 alkyl), O, and S; and wherein said heterocyclyl portion is optionally substituted with from 1-3 independently selected R ;
  • heteroarylheterocyclyl containing from 8-14 ring atoms wherein: (1) from 1-2 of the ring atoms of the heteroaryl portion is independently selected from N, NH, (Ci-C3 alkyl), O, and S; and wherein said heteroaryl portion is optionally substituted with from 1-3 independently selected R b ; and
  • (2) from 1-2 of the ring atoms of the heterocyclyl portion is independently selected from N, NH, N(Ci-C 6 alkyl), NC(0)(Ci-C 6 alkyl), O, and S; and wherein said heterocyclyl portion is optionally substituted with from 1-3 independently selected R ;
  • (1) from 1-2 of the ring atoms of the heteroaryl portion is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl portion is optionally substituted with from 1-3 independently selected R b ; and
  • the cycloalkyl portion is optionally substituted with from 1 -4 independently selected R ;
  • R 10 and R 11 must be selected from (b), (c), (g), (h), (i), (j), and
  • R 12 is:
  • heteroaryl containing from 5-14 ring atoms, wherein from 1-6 of the ring atoms is independently selected from N, NH, N(Ci-C 3 alkyl), O, and S; and wherein said heteroaryl is optionally substituted with from 1 -4 R b ; or
  • the aryl portion is optionally substituted with from 1-4 independently selected R b , and
  • the cycloalkyl portion is optionally substituted with from 1 -4 independently selected R ;
  • the aryl portion from is optionally substituted with from 1-4 independently selected R b
  • from 1-2 of the ring atoms of the heterocyclyl portion is independently selected from N, NH, N(Ci-C 6 alkyl), NC(0)(Ci-C 6 alkyl), O, and S; and wherein said heterocyclyl portion is optionally substituted with from 1-3 independently selected R ;
  • (1) from 1-2 of the ring atoms of the heteroaryl portion is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl portion is optionally substituted with from 1-3 independently selected R b ; and
  • (2) from 1-2 of the ring atoms of the heterocyclyl portion is independently selected from N, NH, N(Ci-C 6 alkyl), NC(0)(Ci-C 6 alkyl), O, and S; and wherein said heterocyclyl portion is optionally substituted with from 1-3 independently selected R ;
  • (1) from 1-2 of the ring atoms of the heteroaryl portion is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl portion is optionally substituted with from 1-3 independently selected R b ; and
  • the cycloalkyl portion is optionally substituted with from 1 -4 independently selected R ;
  • R 13 is:
  • heteroaryl containing from 5-14 ring atoms, wherein from 1-6 of the ring atoms is independently selected from N, NH, N(Ci-C 3 alkyl), O, and S; and wherein said heteroaryl is optionally substituted with from 1 -4 R b ;
  • the aryl portion is optionally substituted with from 1-4 independently selected R b , and
  • the cycloalkyl portion is optionally substituted with from 1 -4 independently selected R ;
  • the aryl portion from is optionally substituted with from 1-4 independently selected R b
  • from 1-2 of the ring atoms of the heterocyclyl portion is independently selected from N, NH, N(Ci-C 6 alkyl), NC(0)(Ci-C 6 alkyl), O, and S; and wherein said heterocyclyl portion is optionally substituted with from 1-3 independently selected R ;
  • (1) from 1-2 of the ring atoms of the heteroaryl portion is independently selected from N, NH, (Ci-C3 alkyl), O, and S; and wherein said heteroaryl portion is optionally substituted with from 1-3 independently selected R b ; and
  • (2) from 1-2 of the ring atoms of the heterocyclyl portion is independently selected from N, NH, N(Ci-C 6 alkyl), NC(0)(Ci-C 6 alkyl), O, and S; and wherein said heterocyclyl portion is optionally substituted with from 1-3 independently selected R ;
  • (1) from 1-2 of the ring atoms of the heteroaryl portion is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl portion is optionally substituted with from 1-3 independently selected R b ; and
  • the cycloalkyl portion is optionally substituted with from 1 -4 independently selected R ;
  • R b at each occurrence is independently selected from the substituents delineated in (aa) through (dd) below:
  • R c at each occurrence is, independently selected from halo, C1-C6 alkoxy, C1-C6 thioalkoxy, Ci-Ce haloalkoxy, Ci-C 6 thiohaloalkoxy, Ci-C 6 alkyl, Ci-C 6 haloalkyl, -NH 2 , -NH(Ci-C 6 alkyl), N(Ci-C 6 alkyl) 2 , -NHC(0)(Ci-C 6 alkyl), and cyano;
  • R d at each occurrence is, independently selected from hydroxyl, C1-C6 alkoxy, C1-C6 thioalkoxy, Ci-C 6 haloalkoxy, Ci-C 6 thiohaloalkoxy, Ci-C 6 alkyl, Ci-C 6 haloalkyl, -NH 2 , -NH(d- C 6 alkyl), N(Ci-C 6 alkyl) 2 , -NHC(0)(Ci-C 6 alkyl), and cyano; and
  • R e at each occurrence is, independently selected from hydroxyl, C1-C6 alkoxy; C1-C6 thioalkoxy; d-C 6 haloalkoxy; Ci-C 6 thiohaloalkoxy; -NH 2 ; -NH(Ci-C 6 alkyl); N(Ci-C 6 alkyl) 2 ; - NHC(0)(Ci-C 6 alkyl); cyano; -C(0)H; -C(0)(Ci-C 6 alkyl); -C(0)(Ci-C 6 haloalkyl); C(0)OH; - C(0)0(Ci-C 6 alkyl); -C(0)NH 2 ; -C(0)NH(Ci-C 6 alkyl); C(0)N(Ci-C 6 alkyl) 2 ; -S0 2 (Ci-C 6 alkyl); - S0 2 NH 2 ; -S0 2 NH(Ci-C 6 alkyl); -S
  • R 3 and R 6 are defined according to definition (1);
  • R 3 and R 6 cannot both be chloro when A is CH 2 , R and R' are defined according to definition (1), Z is -OR 12 , and R 12 is unsubstituted phenyl;
  • R 3 and R 6 cannot both be bromo when A is CH , R and R' are defined according to definition (1), Z is -OR 12 , and R 12 is phenyl that is substituted with pyridyl or alkyl that is substituted with from 1-3 R e ; • provided that R 3 and R 6 cannot both be hydrogen when A is CH(CI3 ⁇ 4), R and R' are defined according to definition (1), Z is NR 10 R n , R 10 is CH 3 , and R 11 is unsubstituted phenyl;
  • compositions are featured that include the above- described compounds (or salts thereof as described herein) and a pharmaceutically acceptable carrier.
  • a pharmaceutically acceptable carrier In embodiments, 1, 2, 3, 4, 5, or 6 of the above described provisions can apply.
  • each of R 1 , R 2 , R 3 , and R 4 is independently selected from hydrogen, halo, hydroxyl, sulfhydryl, Ci-C 6 alkoxy, Ci-C 6 thioalkoxy, Ci-C 6 haloalkoxy, Ci-C 6 thiohaloalkoxy, Ci-C 6 alkyl, C1-C6 haloalkyl, C2-C6 alkynyl, cyclopropyl, -N3, cyano,
  • R and R' are defined according to (1) or (2) below:
  • each of R 5 , R 6 , R 7 , and R 8 is independently selected from hydrogen, halo, hydroxyl, sulfhydryl, Ci-Ce alkoxy, Ci-Ce thioalkoxy, Ci-Ce haloalkoxy, Ci-Ce thiohaloalkoxy, d- Ce alkyl, Ci-Ce haloalkyl, C2-C6 alkynyl, cyclopropyl, -N3, cyano,
  • each of L 1 and L 2 is, independently, C1-C3 alkylene, which is optionally substituted with from 1-2 independently selected R c ;
  • A is:
  • CR A1 R A2 wherein each of R A1 and R A2 is independently selected from hydrogen, halo, C1-C3 alkyl, and OR 9 , wherein R 9 is C1-C3 alkyl that is optionally substituted with hydroxyl or C1-C3 alkoxy; or
  • heterocycloalkylene containing from 3-5 ring atoms, wherein from 1-2 of the ring atoms is independently selected from N, NH, (Ci-C3 alkyl), O, and S; and wherein said heterocycloalkylene is (a) substituted with 1 oxo; and (b) is optionally further substituted with from 1-4 independently selected R ;
  • heterocycloalkenyl containing from 5-6 ring atoms, wherein from 1-3 of the ring atoms is independently selected from N, NH, N(Ci-C 6 alkyl), NC(0)(Ci-C 6 alkyl), O, and S; and wherein said heterocycloalkenyl is optionally substituted with from 1-4
  • R b or (vii) heteroaryl containing from 5-14 ring atoms, wherein from 1-6 of the ring atoms is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl is optionally substituted with from 1-4 independently selected R b ; or
  • the aryl portion is optionally substituted with from 1-4 independently selected R b , and
  • the cycloalkyl portion is optionally substituted with from 1 -4 independently selected R ;
  • the aryl portion from is optionally substituted with from 1-4 independently selected R b , and
  • (2) from 1-2 of the ring atoms of the heterocyclyl portion is independently selected from N, NH, N(Ci-C 6 alkyl), NC(0)(Ci-C 6 alkyl), O, and S; and wherein said heterocyclyl portion is optionally substituted with from 1-3 independently selected R ;
  • (1) from 1-2 of the ring atoms of the heteroaryl portion is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl portion is optionally substituted with from 1-3 independently selected R b ; and
  • (2) from 1-2 of the ring atoms of the heterocyclyl portion is independently selected from N, NH, N(C C 6 alkyl), NC(0)(C C 6 alkyl), O, and S; and wherein said heterocyclyl portion is optionally substituted with from 1-3 independently selected R ;
  • (1) from 1-2 of the ring atoms of the heteroaryl portion is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl portion is optionally substituted with from 1-3 independently selected R b ; and
  • the cycloalkyl portion is optionally substituted with from 1 -4 independently selected R ; each of R and R is independently selected from the substituents delineated collectivelyrough (k) below:
  • heteroaryl containing from 5-14 ring atoms, wherein from 1-6 of the ring atoms is independently selected from N, NH, N(Ci-C 3 alkyl), O, and S; and wherein said heteroaryl is optionally substituted with from 1 -4 R b ;
  • the aryl portion is optionally substituted with from 1-4 independently selected R b , and
  • the cycloalkyl portion is optionally substituted with from 1 -4 independently selected R ;
  • the aryl portion from is optionally substituted with from 1-4 independently selected R b , and
  • (2) from 1-2 of the ring atoms of the heterocyclyl portion is independently selected from N, NH, N(Ci-C 6 alkyl), NC(0)(Ci-C 6 alkyl), O, and S; and wherein said heterocyclyl portion is optionally substituted with from 1-3 independently selected R ;
  • (1) from 1-2 of the ring atoms of the heteroaryl portion is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl portion is optionally substituted with from 1-3 independently selected R b ; and
  • (2) from 1-2 of the ring atoms of the heterocyclyl portion is independently selected from N, NH, N(Ci-C 6 alkyl), NC(0)(Ci-C 6 alkyl), O, and S; and wherein said heterocyclyl portion is optionally substituted with from 1-3 independently selected R ;
  • heteroarylcycloalkyl containing from 8-14 ring atoms, wherein: (1) from 1-2 of the ring atoms of the heteroaryl portion is independently selected from N, NH, (Ci-C3 alkyl), O, and S; and wherein said heteroaryl portion is optionally substituted with from 1-3 independently selected R b ; and
  • the cycloalkyl portion is optionally substituted with from 1 -4 independently selected R ;
  • R 10 and R 11 must be selected from (b), (c), (g), (h), (i), (j), and
  • R 12 is:
  • heteroaryl containing from 5-14 ring atoms, wherein from 1-6 of the ring atoms is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl is optionally substituted with from 1 -4 R b ; or
  • the aryl portion is optionally substituted with from 1-4 independently selected R b , and
  • the cycloalkyl portion is optionally substituted with from 1 -4 independently selected R ;
  • the aryl portion from is optionally substituted with from 1-4 independently selected R b , and
  • (2) from 1-2 of the ring atoms of the heterocyclyl portion is independently selected from N, NH, N(Ci-C 6 alkyl), NC(0)(Ci-C 6 alkyl), O, and S; and wherein said heterocyclyl portion is optionally substituted with from 1-3 independently selected R ;
  • heteroarylheterocyclyl containing from 8-14 ring atoms, wherein: (1) from 1-2 of the ring atoms of the heteroaryl portion is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl portion is optionally substituted with from 1-3 independently selected R b ; and
  • (2) from 1-2 of the ring atoms of the heterocyclyl portion is independently selected from N, NH, N(Ci-C 6 alkyl), NC(0)(Ci-C 6 alkyl), O, and S; and wherein said heterocyclyl portion is optionally substituted with from 1-3 independently selected R ;
  • (1) from 1-2 of the ring atoms of the heteroaryl portion is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl portion is optionally substituted with from 1-3 independently selected R b ; and
  • the cycloalkyl portion is optionally substituted with from 1 -4 independently selected R ;
  • R 13 is:
  • heteroaryl containing from 5-14 ring atoms, wherein from 1-6 of the ring atoms is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl is optionally substituted with from 1 -4 R b ;
  • the aryl portion is optionally substituted with from 1-4 independently selected R b , and
  • the cycloalkyl portion is optionally substituted with from 1 -4 independently selected R ;
  • the aryl portion from is optionally substituted with from 1-4 independently selected R b , and
  • (2) from 1-2 of the ring atoms of the heterocyclyl portion is independently selected from N, NH, N(Ci-C 6 alkyl), NC(0)(Ci-C 6 alkyl), O, and S; and wherein said heterocyclyl portion is optionally substituted with from 1-3 independently selected R ;
  • heteroarylheterocyclyl containing from 8-14 ring atoms, wherein: (1) from 1-2 of the ring atoms of the heteroaryl portion is independently selected from N, NH, (Ci-C3 alkyl), O, and S; and wherein said heteroaryl portion is optionally substituted with from 1-3 independently selected R b ; and
  • (2) from 1-2 of the ring atoms of the heterocyclyl portion is independently selected from N, NH, N(Ci-C 6 alkyl), NC(0)(Ci-C 6 alkyl), O, and S; and wherein said heterocyclyl portion is optionally substituted with from 1-3 independently selected R ;
  • (1) from 1-2 of the ring atoms of the heteroaryl portion is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl portion is optionally substituted with from 1-3 independently selected R b ; and
  • the cycloalkyl portion is optionally substituted with from 1-4 independently selected R ;
  • R b at each occurrence is independently selected from the substituents delineated in (aa) through (dd) below:
  • (cc) C3-C6 cycloalkyl or heterocyclyl containing from 5-6 ring atoms, wherein from 1-2 of the ring atoms of the heterocyclyl is independently selected from N, NH, N(d-d alkyl), NC(0)(Ci-d alkyl), O, and S; and wherein each of said phenyl and heterocyclyl is optionally substituted with from 1-3 independently selected R ; and
  • R c at each occurrence is, independently selected from halo, Ci-Ce alkoxy, Ci-Ce thioalkoxy, Ci-Ce haloalkoxy, C C 6 thiohaloalkoxy, C C 6 alkyl, C C 6 haloalkyl, -NH 2 , -NH(C C 6 alkyl), N(Ci-C 6 alkyl) 2 , - HC(0)(Ci-C 6 alkyl), and cyano;
  • R d at each occurrence is, independently selected from hydroxyl, C1-C6 alkoxy, C1-C6 thioalkoxy, Ci-C 6 haloalkoxy, Ci-C 6 thiohaloalkoxy, Ci-C 6 alkyl, Ci-C 6 haloalkyl, -NH 2 , -NH(C C 6 alkyl), N(Ci-C 6 alkyl) 2 , - HC(0)(Ci-C 6 alkyl), and cyano; and
  • R e at each occurrence is, independently selected from hydroxyl, C1-C6 alkoxy; C1-C6 thioalkoxy; Ci-C 6 haloalkoxy; Ci-C 6 thiohaloalkoxy; -NH 2 ; -NH(Ci-C 6 alkyl); N(Ci-C 6 alkyl) 2 ; - NHC(0)(Ci-C 6 alkyl); cyano; -C(0)H; -C(0)(Ci-C 6 alkyl); -C(0)(Ci-C 6 haloalkyl); C(0)OH; - C(0)0(Ci-C 6 alkyl); -C(0)NH 2 ; -C(0)NH(Ci-C 6 alkyl); C(0)N(Ci-C 6 alkyl) 2 ; -S0 2 (Ci-C 6 alkyl); - S0 2 NH 2 ; -S0 2 NH(Ci-C 6 alkyl); -S0
  • R 3 and R 6 are defined according to definition (1);
  • R 3 and R 6 cannot both be chloro when A is CH 2 , R and R' are defined according to definition (1), Z is -OR 12 , and R 12 is unsubstituted phenyl;
  • R 3 and R 6 cannot both be bromo when A is CH 2
  • R and R' are defined according to definition (1)
  • Z is -OR 12
  • R 12 is phenyl that is substituted with pyridyl or alkyl that is substituted with from 1 -3 R e ;
  • R 3 and R 6 cannot both be hydrogen when A is CH(C3 ⁇ 4)
  • R and R' are defined according to definition (1)
  • Z is NR 10 R n
  • R 10 is CH 3
  • R 11 is unsubstituted phenyl.
  • compositions are featured that include the above- described compounds (or salts thereof as described herein) and a pharmaceutically acceptable carrier.
  • 1, 2, 3, 4, or 5 of the above described provisions can apply.
  • compounds having formula (I) are featured
  • each of R 1 , R 2 , R 3 , and R 4 is independently selected from hydrogen, halo, hydroxyl, sulfhydryl, Ci-Ce alkoxy, Ci-Ce thioalkoxy, Ci-Ce haloalkoxy, Ci-Ce thiohaloalkoxy, Ci-Ce alkyl, Ci-C 6 haloalkyl, C 2 -C 6 alkynyl, cyclopropyl, -N 3 , cyano,
  • R and R' are defined according to (1) or (2) below:
  • each of R 5 , R 6 , R 7 , and R 8 is independently selected from hydrogen, halo, hydroxyl, sulfhydryl, Ci-Ce alkoxy, Ci-Ce thioalkoxy, Ci-Ce haloalkoxy, Ci-Ce thiohaloalkoxy, d- Ce alkyl, Ci-Ce haloalkyl, C 2 -C6 alkynyl, cyclopropyl, -N3, cyano,
  • R A is CR A1 R A2 , wherein one of R A1 and R A2 is -OH, and the other of R A1 and R A2 is hydrogen or C1-C3 alkyl;
  • Z is -OR 12 or -S(0) n R 13 , wherein n is 0, 1, or 2;
  • each of R 12 and R 13 is:
  • heteroaryl containing from 5-14 ring atoms, wherein from 1-6 of the ring atoms is independently selected from N, NH, N(Ci-C 3 alkyl), O, and S; and wherein said heteroaryl is optionally substituted with from 1 -4 R b ;
  • C1-C6 alkyl or C1-C6 haloalkyl e.g., C1-C6 alkyl, each of which is substituted with from 1 -3 R d ;
  • the aryl portion is optionally substituted with from 1-4 independently selected R b , and
  • the cycloalkyl portion is optionally substituted with from 1 -4 independently selected R ;
  • the aryl portion from is optionally substituted with from 1-4
  • (2) from 1-2 of the ring atoms of the heterocyclyl portion is independently selected from N, NH, N(C C 6 alkyl), NC(0)(C C 6 alkyl), O, and S; and wherein said heterocyclyl portion is optionally substituted with from 1-3 independently selected R ;
  • (1) from 1-2 of the ring atoms of the heteroaryl portion is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl portion is optionally substituted with from 1-3 independently selected R b ; and
  • heterocyclyl portion is independently selected from N, NH, N(Ci-C 6 alkyl), NC(0)(Ci-C 6 alkyl), O, and S; and wherein said heterocyclyl portion is optionally substituted with from 1-3 independently selected R ; or
  • (1) from 1-2 of the ring atoms of the heteroaryl portion is independently selected from N, NH, (Ci-C3 alkyl), O, and S; and wherein said heteroaryl portion is optionally substituted with from 1-3 independently selected R b ; and
  • R b at each occurrence is independently selected from the substituents delineated in (aa) through (dd) below:
  • R c at each occurrence is, independently selected from halo, d-d alkoxy, d-d thioalkoxy, d-d haloalkoxy, d-C 6 thiohaloalkoxy, d-C 6 alkyl, d-d haloalkyl, -NH 2 , -NH(d-d alkyl), N(Ci-d alkyl) 2 , -NHC(0)(d-d alkyl), and cyano; R d at each occurrence is, independently selected from hydroxyl, Ci-Ce alkoxy, Ci-Ce thioalkoxy, Ci-C 6 haloalkoxy, Ci-C 6 thiohaloalkoxy, Ci-C 6 alkyl, Ci-C 6 haloalkyl, -NH 2 , -NH(Ci- C 6 alkyl), N(Ci-C 6 alkyl) 2 , - HC(0)(Ci-C 6 alkyl),
  • R e at each occurrence is, independently selected from hydroxyl, C1-C6 alkoxy; C1-C6 thioalkoxy; Ci-C 6 haloalkoxy; d-C 6 thiohaloalkoxy; -NH 2 ; -NH(Ci-C 6 alkyl); N(d-C 6 alkyl) 2 ; - NHC(0)(C C 6 alkyl); cyano; -C(0)H; -C(0)(C C 6 alkyl); -C(0)(C C 6 haloalkyl); C(0)OH; - C(0)0(Ci-C 6 alkyl); -C(0)NH 2 ; -C(0)NH(Ci-C 6 alkyl); C(0)N(Ci-C 6 alkyl) 2 ; -S0 2 (Ci-C 6 alkyl); - S0 2 NH 2 ; -S0 2 NH(Ci-C 6 alkyl); -S0 2 N(Ci-
  • 1, 2, 3, or 4 of the following can apply:
  • R 3 and R 6 cannot both be chloro when R and R' are defined according to definition (1), Z is -OR 12 , and R 12 is phenyl substituted with chloro, formyl, or - NHC(0)CH 3 ;
  • R 3 and R 6 cannot both be bromo when R and R' are defined according to definition (1), Z is -OR 12 , and R 12 is phenyl substituted with -NHC(0)CH 3 ;
  • R 3 and R 6 cannot both be bromo when R and R' are defined according to definition (1)
  • Z is -SR 13
  • R 13 is phenyl substituted with -OH.
  • compositions are featured that include the above- described compounds (or salts thereof as described herein) and a pharmaceutically acceptable carrier.
  • a pharmaceutically acceptable carrier In embodiments, 1 , 2, 3, 4, or 5 of the above described provisions can apply.
  • each of R 1 , R 2 , R 3 , and R 4 is independently selected from hydrogen, halo, hydroxyl, sulfhydryl, Ci-Ce alkoxy, Ci-Ce thioalkoxy, Ci-Ce haloalkoxy, Ci-Ce thiohaloalkoxy, Ci-Ce alkyl, C1-C6 haloalkyl, C2-C6 alkynyl, cyclopropyl, -N3, cyano,
  • R and R' together with C2 and C3, respectively, form a fused heterocyclic ring containing from 5-6 ring atoms, wherein from 1-2 of the ring atoms is independently selected from N, NH, (Ci-C6 alkyl), NC(0)(Ci-C6 alkyl), O, and S; and wherein said heterocyclic ring is optionally substituted with from 1-3 independently selected R ;
  • each of L 1 and L 2 is, independently, C1-C3 alkylene, which is optionally substituted with from 1-2 independently selected R c ;
  • A is:
  • R A1 and R ⁇ are independently selected from hydrogen, halo, C1-C3 alkyl, and OR 9 ; and the other of R A1 and R A2 is independently selected from halo, C1-C3 alkyl, and OR 9 ; wherein R 9 is hydrogen or C1-C3 alkyl that is optionally substituted with hydroxyl or C1-C3 alkoxy; or
  • heteroaryl containing from 5- 14 ring atoms, wherein from 1 -6 of the ring atoms is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl is optionally substituted with from 1 -4 independently selected R b ; or
  • each of R 10 and R 11 is independently selected from the substituents delineated collectively in (a) through (k) below:
  • R 10 and R 11 must be selected from (b) and (c);
  • R 12 is:
  • heteroaryl containing from 5-14 ring atoms, wherein from 1-6 of the ring atoms is independently selected from N, NH, (Ci-C3 alkyl), O, and S; and wherein said heteroaryl is optionally substituted with from 1 -4 R b ;
  • R 13 is:
  • heteroaryl containing from 5-14 ring atoms, wherein from 1-6 of the ring atoms is independently selected from N, NH, (Ci-C3 alkyl), O, and S; and wherein said heteroaryl is optionally substituted with from 1 -4 R b ;
  • R b at each occurrence is independently selected from the substituents delineated in (aa) through (dd) below:
  • (cc) C3-C6 cycloalkyl or heterocyclyl containing from 5-6 ring atoms, wherein from 1-2 of the ring atoms of the heterocyclyl is independently selected from N, NH, N(d-d alkyl), NC(0)(Ci-C6 alkyl), O, and S; and wherein each of said phenyl and heterocyclyl is optionally substituted with from 1 -3 independently selected R ; and
  • R c at each occurrence is, independently selected from halo, Ci-C 6 alkoxy, Ci-C 6 thioalkoxy, Ci-Ce haloalkoxy, Ci-C 6 thiohaloalkoxy, Ci-C 6 alkyl, Ci-C 6 haloalkyl, -NH 2 , - H(Ci-C 6 alkyl), N(Ci-C 6 alkyl) 2 , - HC(0)(Ci-C 6 alkyl), and cyano;
  • R d at each occurrence is, independently selected from hydroxyl, C1-C6 alkoxy, Ci-Ce thioalkoxy, Ci-C 6 haloalkoxy, Ci-C 6 thiohaloalkoxy, Ci-C 6 alkyl, Ci-C 6 haloalkyl, -NH 2 , -NH(d- C 6 alkyl), N(Ci-C 6 alkyl) 2 , -NHC(0)(Ci-C 6 alkyl), and cyano; and
  • R e at each occurrence is, independently selected from hydroxyl, C1-C6 alkoxy; C1-C6 thioalkoxy; d-C 6 haloalkoxy; Ci-C 6 thiohaloalkoxy; -NH 2 ; -NH(Ci-C 6 alkyl); N(Ci-C 6 alkyl) 2 ; - NHC(0)(Ci-C 6 alkyl); cyano; -C(0)H; -C(0)(Ci-C 6 alkyl); -C(0)(Ci-C 6 haloalkyl); C(0)OH; - C(0)0(Ci-C 6 alkyl); -C(0)NH 2 ; -C(0)NH(Ci-C 6 alkyl); C(0)N(Ci-C 6 alkyl) 2 ; -S0 2 (Ci-C 6 alkyl); - S0 2 NH 2 ; -S0 2 NH(Ci-C 6 alkyl); -S
  • provision (A) described herein can apply.
  • each of R 1 , R 2 , R 3 , and R 4 is independently selected from hydrogen, halo, hydroxyl, sulfhydryl, Ci-Ce alkoxy, Ci-Ce thioalkoxy, Ci-Ce haloalkoxy, Ci-Ce thiohaloalkoxy, Ci-Ce alkyl, C1-C6 haloalkyl, C2-C6 alkynyl, cyclopropyl, -N3, cyano,
  • each of R and R' is, independently, hydrogen, Ci-Ce alkyl, or Ci-Ce haloalkyl
  • each of L 1 and L 2 is, independently, C1-C3 alkylene, which is optionally substituted with from 1-2 independently selected R c ;
  • A is:
  • R A1 R A2 (i) CR A1 R A2 , wherein one of R A1 and R ⁇ is independently selected from hydrogen, fluoro, chloro, C1-C3 alkyl, and OR 9 ; and the other of R A1 and R A2 is independently selected from fluoro, chloro, C1-C3 alkyl, and OR 9 ; wherein R 9 is hydrogen or C1-C3 alkyl that is optionally substituted with hydroxyl or C1-C3 alkoxy; or
  • heteroaryl containing from 5- 14 ring atoms, wherein from 1 -6 of the ring atoms is independently selected from N, NH, (Ci-C3 alkyl), O, and S; and wherein said heteroaryl is optionally substituted with from 1 -4 independently selected R b ; or
  • each of R 10 and R 11 is independently selected from the substituents delineated collectively in (a) through (k) below:
  • heteroaryl containing from 5- 14 ring atoms, wherein from 1-6 of the ring atoms is independently selected from N, NH, (Ci-C3 alkyl), O, and S; and wherein said heteroaryl is optionally substituted with from 1 -4 R b ;
  • R 10 and R 11 must be selected from (b) and (c);
  • each of R 12 and R 13 is: :
  • heteroaryl containing from 5-14 ring atoms, wherein from 1-6 of the ring atoms is independently selected from N, NH, (Ci-C3 alkyl), O, and S; and wherein said heteroaryl is optionally substituted with from 1-4 R b ;
  • R b at each occurrence is independently selected from the substituents delineated in (aa) through (dd) below:
  • (cc) C3-C6 cycloalkyl or heterocyclyl containing from 5-6 ring atoms, wherein from 1-2 of the ring atoms of the heterocyclyl is independently selected from N, NH, N(Ci-C6 alkyl), NC(0)(Ci-C6 alkyl), O, and S; and wherein each of said phenyl and heterocyclyl is optionally substituted with from 1-3 independently selected R ; and
  • R d at each occurrence is, independently selected from hydroxyl, C1-C6 alkoxy, C1-C6 thioalkoxy, Ci-C 6 haloalkoxy, Ci-C 6 thiohaloalkoxy, Ci-C 6 alkyl, Ci-C 6 haloalkyl, -NH 2 , -NH(C C 6 alkyl), N(Ci-C 6 alkyl) 2 , -NHC(0)(Ci-C 6 alkyl), and cyano; and
  • R e at each occurrence is, independently selected from hydroxyl, C1-C6 alkoxy; C1-C6 thioalkoxy; C C 6 haloalkoxy; C C 6 thiohaloalkoxy; -NH 2 ; -NH(C C 6 alkyl); N(C C 6 alkyl) 2 ; - NHC(0)(Ci-C 6 alkyl); cyano; -C(0)H; -C(0)(Ci-C 6 alkyl); -C(0)(Ci-C 6 haloalkyl); C(0)OH; - C(0)0(Ci-C 6 alkyl); -C(0)NH 2 ; -C(0)NH(Ci-C 6 alkyl); C(0)N(Ci-C 6 alkyl) 2 ; -S0 2 (Ci-C 6 alkyl); - S0 2 NH 2 ; -S0 2 NH(Ci-C 6 alkyl); -S0 2 N(Ci-
  • R A is CR A1 R A2 , in which each of R A1 and R A2 is, independently, hydrogen, halo, or C1-C3 alkyl; or
  • R A is CR A1 R A2 , in which one of R A1 and R ⁇ is halo (e.g., fluoro), and the other of R A1 and R A2 is, independently, hydrogen, halo, or C1-C3 alkyl (e.g., hydrogen); or
  • R A is CR A1 R A2 , in which one of R A1 and R ⁇ is halo (e.g., fluoro), and the other of R A1 and R A2 is hydrogen; and
  • R 1 , R 2 , R 3 , R 4 , L 1 , L 2 , and Z can be as defined anywhere herein; or a salt (e.g.,
  • (B) and/or (C) applies.
  • R A1 and R A2 can be OR 9 .
  • the other of R A1 and R A2 can be as defined anywhere herein; e.g., the other of R A1 and R A2 can be hydrogen or C1-C3 alkyl.
  • one of R A1 and R A2 can be OR 9 , and the other of R A1 and R A2 is hydrogen or C1 -C3 alkyl.
  • R 9 can be hydrogen or C1-C3 alkyl; and
  • R 1 , R 2 , R 3 , R 4 , L 1 , L 2 , and Z can be as defined anywhere herein; or a salt (e.g.,
  • each of R 3 and R 6 is (3 ⁇ 4; and/or each of R 3 and R 6 is bromo; and/or each of R 3 and R 6 is chloro; and/or one of R 3 and R 6 is CH 3 (e.g., R 6 ), and the other is bromo (e.g.,
  • R 10 and R 11 are heteroaryl as defined anywhere herein;
  • L 1 and/or L 2 is C2-C3 alkylene (optionally substituted);
  • compounds of formula (III) are featured in which Z is other than NR 10 R n ; and R 1 , R 2 , R 3 , R 4 , L 1 , L 2 , Z, and A can be as defined anywhere herein; or a salt (e.g.,
  • compounds of formula (III) are featured in which Z is -OR 12 and/or -
  • S(0) n R 1J ; and R , R", R R", L , V, and A can be as defined anywhere herein; or a salt (e.g., pharmaceutically acceptable salt) thereof.
  • (B) and/or (C) applies.
  • heterocycloalkylene is (a) substituted with 1 oxo; and (b) is optionally further substituted with from 1-4 independently selected R ; and R 1 , R 2 , R 3 , R 4 , L 1 , L 2 , and Z can be as defined anywhere herein; or a salt (e.g., pharmaceutically acceptable salt) thereof.
  • Ri - R 5 are each independently selected from hydrogen, halo, hydroxyl, sulfhydryl, Ci-C 6 alkoxy, C1-C6 thioalkoxy, C1-C6 haloalkoxy, C1-C6 thiohaloalkoxy, C1-C6 alkyl, C1-C6 haloalkyl, C 2 -C 6 alkynyl, cyclopropyl, -N 3 , cyano, -NH 2 , -NH(Ci-C 6 alkyl), -N(Ci-C 6 alkyl) 2 , -NHC(0)(Ci-C 6 alkyl), and nitro;
  • X is C6-C1 0 aryl that is optionally substituted with 1-4 R b ; or heteroaryl containing 5-14 ring atoms, wherein from 1-6 of the ring atoms is independently selected from N, NH, (Ci-C3 alkyl), O, and S, and wherein said heteroaryl is optionally substituted with 1-4 R b ;
  • each of L 1 and L 2 is, independently, C1-C3 alkylene, which is optionally substituted with from 1-2 independently selected R c ;
  • R A is CR A1 R A2 , wherein one of R A1 and R A2 is independently selected from hydrogen, fluoro, chloro, C1-C3 alkyl, and OR 9 ; and the other of R A1 and R A2 is independently selected from fluoro, chloro, C1-C3 alkyl, and OR 9 ; wherein R 9 is hydrogen or C1-C3 alkyl that is optionally substituted with hydroxyl or C1-C3 alkoxy;
  • Z is -NR 10 R n or -OR 12 ;
  • each of R 10 and R 11 is independently selected from the substituents delineated collectively in (a) through (k) below:
  • heteroaryl containing from 5-14 ring atoms, wherein from 1-6 of the ring atoms is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl is optionally substituted with from 1 -4 R b ;
  • R 10 and R 11 must be selected from (b) and (c);
  • R 12 is::
  • R b at each occurrence is independently selected from the substituents delineated in (aa) through (dd) below:
  • (cc) C3-C6 cycloalkyl or heterocyclyl containing from 5-6 ring atoms, wherein from 1-2 of the ring atoms of the heterocyclyl is independently selected from N, NH, N(d-d alkyl), NC(0)(d-d alkyl), O, and S; and wherein each of said phenyl and heterocyclyl is optionally substituted with from 1-3 independently selected R ; and
  • R c at each occurrence is, independently selected from halo, d-d alkoxy, d-d thioalkoxy, d-d haloalkoxy, d-C 6 thiohaloalkoxy, d-C 6 alkyl, d-d haloalkyl, -NH 2 , -NH(d-d alkyl), - N(Ci-d alkyl) 2 , -NHC(0)(d-d alkyl), and cyano;
  • R d at each occurrence is, independently selected from hydroxyl, d-d alkoxy, d-d thioalkoxy, d-C 6 haloalkoxy, d-d thiohaloalkoxy, d-C 6 alkyl, d-d haloalkyl, -NH 2 , -NH(d- d alkyl), -N(d-d alkyl) 2 , -NHC(0)(d-C 6 alkyl), and cyano; and
  • R e at each occurrence is, independently selected from hydroxyl, d-d alkoxy; d-d thioalkoxy; d-d haloalkoxy; d-d thiohaloalkoxy; -NH 2 ; -NH(d-d alkyl); -N(d-d alkyl) 2 ; - NHC(0)(d-d alkyl); cyano; -C(0)H; -C(0)(d-C 6 alkyl); -C(0)(d-C 6 haloalkyl); -C(0)OH; - C(0)0(d-d alkyl); -C(0)NH 2 ; -C(0)NH(d-C 6 alkyl); -C(0)N(d-C 6 alkyl) 2 ; -S0 2 (d-d alkyl); -SO2NH2; -S0 2 NH(Ci-C 6 alkyl); -S0 2 N(Ci-C 6 alkyl) 2
  • compound of formula (VI) can have a R3 that is selected from halo, hydroxyl, sulfhydryl, Ci-C 6 alkoxy, Ci-C 6 thioalkoxy, Ci-C 6 haloalkoxy, Ci-C 6 thiohaloalkoxy, Q- C 6 alkyl, Ci-C 6 haloalkyl, C 2 -C 6 alkynyl, cyclopropyl, -N 3 , cyano, -NH 2 , -NH(Ci-C 6 alkyl), -N(d- Ce alkyl) 2 , -NHC(0)(Ci-C6 alkyl), and nitro.
  • R3 is halo such as bromo.
  • each of R ls R 2 , R4 and R 5 is hydrogen.
  • compound of formula (VI) can have X that is C6-C1 0 aryl substituted with one or more halo such as bromo.
  • X can be 4-bromophenyl.
  • X can also be heteroaryl containing 5-14 ring atoms, wherein from 1-6 of the ring atoms is independently selected from N, NH, (Ci-C3 alkyl), O, and S, and wherein said heteroaryl is optionally substituted with 1-4 R b .
  • X can be pyridine optionally substituted with 1-4 R b .
  • compound of formula (VI) can have A that is CR A1 R A2 , wherein each of R A1 and R A2 is, independently, hydrogen, C1-C3 alkyl, or OR 9 .
  • one of R A1 and R A2 is OR 9 ; and the other of R A1 and R A2 is hydrogen or C1-C3 alkyl.
  • one of R A1 and R A2 can be OH; and the other of R A1 and R A2 can be hydrogen.
  • A is CR A1 R A2 and wherein the carbon attached to R A1 and R A2 is substituted with four different substituents.
  • the carbon attached to to R A1 and R A2 can be (R) or (S) configured.
  • the (R) configured formula (VI) compound can be substantially free of a formula (VI) compound that is S configured at the carbon atom attached to to R A1 and R A2 .
  • the (S) configured formula (VI) compound can be substantially free of a formula (VI) compound that is (R) configured at the carbon atom attached to R A1 and R A2 .
  • the compound of formula (VI), in some embodiments, can be (+) or (-) (dextrorotatory).
  • the (+) (dextrorotatory) compound can be substantially free of a formula (I) compound that is (levororotatory).
  • the (-) (levororotatory) compound can be substantially free of a formula (I) compound that is (+) (dextrorotatory).
  • the presently disclosed embodiments relate generally to stimulating neurogenesis (e.g., post-natal neurogenesis, e.g., post-natal hippocampal and/or hypothalamic neurogenesis) and protecting neurons from death with a compound of formula (I) (and/or a compound of any of the other formulae described herein) or a salt (e.g., a pharmaceutically acceptable salt) thereof as defined anywhere herein.
  • neurogenesis e.g., post-natal neurogenesis, e.g., post-natal hippocampal and/or hypothalamic neurogenesis
  • a salt e.g., a pharmaceutically acceptable salt
  • methods of promoting the generation of neurons are featured.
  • methods of promoting the survival, growth, development and/or function of neurons, particularly CNS, brain, cerebral, hippocampal and hypothalamic neurons are featured.
  • methods of stimulating post-natal hippocampal and/or hypothalamic neurogenesis are featured.
  • such methods can include in vitro methods, e.g., contacting a sample (e.g., a cell or tissue) with a compound of formula (I) (and/or a compound of any of the other formulae described herein) or a salt (e.g., a pharmaceutically acceptable salt) thereof as defined anywhere herein.
  • the methods can include administering a compound of formula (I) (and/or a compound of any of the other formulae described herein) or a salt (e.g., a pharmaceutically acceptable salt) thereof as defined anywhere herein to a subject (e.g., a mammal, such as a human).
  • the presently disclosed embodiments include and feature methods of screening for (thereby identifying) compounds that stimulate neurogenesis (e.g., postnatal neurogenesis, e.g., post-natal hippocampal and/or hypothalamic neurogenesis) or protect newborn neurons from cell death.
  • neurogenesis e.g., postnatal neurogenesis, e.g., post-natal hippocampal and/or hypothalamic neurogenesis
  • protect newborn neurons from cell death e.g., such as those described in the Examples section.
  • methods for treating e.g., controlling, relieving, ameliorating, alleviating, or slowing the progression of
  • methods for preventing e.g., delaying the onset of or reducing the risk of developing
  • the methods include administering to the subject an effective amount of a compound of formula (I) (and/or a compound of any of the other formulae described herein) or a salt (e.g., a pharmaceutically acceptable salt) thereof as defined anywhere herein to the subject.
  • a compound of formula (I) (and/or a compound of any of the other formulae described herein) or a salt (e.g., a pharmaceutically acceptable salt) thereof as defined anywhere herein in the preparation of, or for use as, a medicament for the treatment (e.g., controlling, relieving, ameliorating, alleviating, or slowing the progression of) or prevention (e.g., delaying the onset of or reducing the risk of developing) of one or more diseases, disorders, or conditions caused by, or associated with, insufficient (e.g., aberrant) neurogenesis or unwanted neuronal cell death is featured.
  • a salt e.g., a pharmaceutically acceptable salt
  • the one or more diseases, disorders, or conditions can include
  • 57 diseases, disorders, or conditions can be diseases, disorders, or conditions caused by, or associated with insufficient neurogenesis (e.g., aberrant hippocampal and/or hypothalamic neurogenesis) as is believed to occur in neuropsychiatric diseases, or aberrant neuronal cell death as is believed to occur in neurodegenerative diseases.
  • insufficient neurogenesis e.g., aberrant hippocampal and/or hypothalamic neurogenesis
  • Examples of the one or more diseases, disorders, or conditions include, but are not limited to, schizophrenia, major depression, bipolar disorder, normal aging, epilepsy, traumatic brain injury, post-traumatic stress disorder, Parkinson's disease, Alzheimer's disease, Down syndrome, spinocerebellar ataxia, amyotrophic lateral sclerosis, Huntington's disease, stroke, radiation therapy, chronic stress, and abuse of neuro-active drugs (such as alcohol, opiates, methamphetamine, phencyclidine, and cocaine), retinal degeneration, spinal cord injury, peripheral nerve injury, physiological weight loss associated with various conditions, and cognitive decline associated with normal aging, radiation therapy, and
  • neuro-active drugs such as alcohol, opiates, methamphetamine, phencyclidine, and cocaine
  • the subject can be a subject in need thereof (e.g., a subject identified as being in need of such treatment, such as a subject having, or at risk of having, one or more of the diseases or conditions described herein). Identifying a subject in need of such treatment can be in the judgment of a subject or a health care professional and can be subjective (e.g. opinion) or objective (e.g. measurable by a test or diagnostic method).
  • the subject can be a mammal. In certain embodiments, the subject can be a human.
  • methods of making the compounds described herein include taking any one of the intermediate compounds described herein and reacting it with one or more chemical reagents in one or more steps to produce a compound of formula (I) (and/or a compound of any of the other formulae described herein) or a salt (e.g., a pharmaceutically acceptable salt) thereof as defined anywhere herein.
  • compounds in which A is CHOH, and each of L 1 and L 2 is C 1 -C3 alkylene can be converted to compounds in which A is C(O), and each of L 1 and L 2 is C 1 -C3 alkylene (e.g., each of L 1 and L 2 is CH 2 ) that is substituted with C 1 -C6 thioalkoxy (e.g., -SCH 3 ).
  • the methods include contacting the starting material with an oxidizing agent sulfur trioxide pyridine complex (see, e.g., Example 7a and 7b).
  • methods of making the pharmaceutical compositions described herein are featured.
  • the methods include taking any one or more of the compounds of formula (I) (and/or compounds of any of the other formulae described herein) or a salt (e.g., a pharmaceutically acceptable salt) thereof as defined anywhere herein, and mixing said
  • kits for the treatment e.g., controlling, relieving, ameliorating, alleviating, or slowing the progression of
  • prevention e.g., delaying the onset of or reducing the risk of developing
  • the kits include (i) a compound of formula (I) (and/or compounds of any of the other formulae described herein) or a salt (e.g., a pharmaceutically acceptable salt) thereof as defined anywhere herein; and (ii) instructions that include a direction to administer said compound to a subject (e.g., a patient).
  • Embodiments can include, for example, any one or more of the following features.
  • R 3 is selected from halo, hydroxyl, sulfhydryl, Ci-C 6 alkoxy, Ci-C 6 thioalkoxy, Ci-C 6 haloalkoxy, C1-C6 thiohaloalkoxy, C1-C6 alkyl, C1-C6 haloalkyl, C2-C6 alkynyl, cyclopropyl, -N3, cyano, -NH 2 , -NH(Ci-C 6 alkyl), -N(Ci-C 6 alkyl) 2 , -NHC(0)(Ci-C 6 alkyl), and nitro.
  • R 3 is halo (e.g., bromo).
  • each of R 1 , R 2 , and R 4 is hydrogen.
  • R 6 is selected from halo, hydroxyl, sulfhydryl, Ci-Ce alkoxy, Ci-Ce thioalkoxy, Ci-Ce haloalkoxy, C1-C6 thiohaloalkoxy, C1-C6 alkyl, C1-C6 haloalkyl, C2-C6 alkynyl, cyclopropyl, -N3, cyano, -NH 2 , -NH(Ci-C 6 alkyl), -N(Ci-C 6 alkyl) 2 , -NHC(0)(Ci-C 6 alkyl), and nitro.
  • R 6 is halo (e.g., bromo) or C1-C6 alkyl (e.g., CH 3 ). In embodiments, R 6 is halo (e.g., bromo). In embodiments, each of R 5 , R 7 , and R 8 is hydrogen.
  • each of R 3 and R 6 is an independently selected substituent that is other than hydrogen. In certain embodiments, each of R 3 and R 6 is independently selected from halo, hydroxyl, sulfhydryl, C1-C6 alkoxy, C1-C6 thioalkoxy, C1-C6 haloalkoxy, C1-C6 thiohaloalkoxy, Ci- C 6 alkyl, Ci-C 6 haloalkyl, C 2 -C 6 alkynyl, cyclopropyl, -N 3 , cyano, -NH 2 , -NH(Ci-C 6 alkyl), -N(d- Ce alkyl) 2 , -NHC(0)(Ci-C6 alkyl), and nitro.
  • R 3 can be halo (e.g., bromo); and R 6 can be halo (e.g., bromo) or C1-C6 alkyl (e.g., CH 3 ); e.g., halo (e.g., bromo).
  • each of R 1 , R 2 , and R 4 is hydrogen; and each of R 5 , R 7 , and R 8 is hydrogen.
  • R and R' together with C2 and C3, respectively, form a fused heteroaryl ring containing from 5-6 ring atoms, wherein from 1-2 of the ring atoms is independently selected from N, NH, (Ci-C3 alkyl), O, and S; and wherein said heteroaryl ring is optionally substituted with from 1-3 independently selected R b .
  • R and R' together with C2 and C3, respectively, form a fused heteroaryl ring containing -6 ring atoms, wherein from 1-2 independently selected ring atoms is N; and wherein said heteroaryl ring is optionally substituted with from 1-2 independently selected R b .
  • R and R' together with C2 and C3, respectively, form a fused heterocyclic ring containing from 5-6 ring atoms, wherein from 1-2 of the ring atoms is independently selected from N, NH, N(Ci-C 6 alkyl), NC(0)(Ci-C 6 alkyl), O, and S; and wherein said heterocyclic ring is optionally substituted with from 1-3 independently selected R .
  • R and R' together with C2 and C3, respectively, form a fused heterocyclic ring containing 6 ring atoms, wherein from 1-2 of the ring atoms is independently selected from N, NH, N(Ci-C6 alkyl), and NC(0)(Ci-C6 alkyl); and wherein said heterocyclic ring is optionally substituted with from 1-3 independently selected R .
  • R and R' is, independently, hydrogen, C1-C6 alkyl, or C1-C6 haloalkyl (e.g., C1-C6 alkyl, or C1-C6 haloalkyl; e.g., C1-C6 alkyl).
  • Each of L 1 and L 2 is, independently, C1-C3 straight chain alkylene, which is optionally substituted with from 1-2 independently selected R c .
  • each of L 1 and L 2 is CH 2 .
  • R A is CR A1 R A2 , in which each of R A1 and R A2 is, independently, hydrogen, halo, C1-C 3 alkyl, or OR 9 .
  • A is other than C3 ⁇ 4.
  • one of R A1 and R A2 can be independently selected from hydrogen, halo, C1-C 3 alkyl, and OR 9 ; and the other of R A1 and R ⁇ can be independently selected from halo, C1-C3 alkyl, and OR 9 .
  • one of R A1 and R A2 is halo, C1-C 3 alkyl, or OR 9 (e.g., halo or OR 9 ); and the other is hydrogen or C1-C3 alkyl.
  • one of R A1 and R A2 is halo, and the other of R A1 and R A2 is hydrogen or halo.
  • one of R A1 and R ⁇ is fluoro, and the other of R A1 and R A2 is hydrogen or fluoro.
  • one of R A1 and R A2 is OR 9 ; and the other of R A1 and R A2 is C1-C3 alkyl.
  • one of R A1 and R ⁇ is OH; and the other of R A1 and R ⁇ is CH3.
  • the carbon attached to R A1 and R A2 is substituted with four different substituents (for purposes of clarification, these four substituents include R A1 and R A2 ) and is therefore a stereogenic center.
  • the carbon attached to R and R is (R) configured, meaning that the carbon attached to R A1 and R A2 has the (R) configuration (Cahn Ingold Prelog sequence rules notation).
  • Such compounds are sometimes referred to herein as an "(/ ⁇ -configured compound” (this term also includes compounds that further contain one or more stereogenic centers in addition to the (R)-CR A1 R A2 stereogenic center).
  • the carbon attached to R A1 and R A2 is (S) configured, meaning that the carbon attached to R A1 and R A2 has the (5) configuration (Cahn Ingold Prelog sequence rules notation).
  • Such compounds are sometimes referred to herein as an "(S) -configured compound” (this term also includes compounds that further contain one or more stereogenic centers in addition to the (5)-CR A1 R A2 stereogenic center).
  • the (R) configured compound (or salt, e.g., a pharmaceutically acceptable salt, thereof) is substantially free of (e.g., contains less than about 5% of, less than about 2% of, less than about 1%, less than about 0.5% of) a formula (I) compound (or salt thereof as described herein) that is (S) configured at the carbon attached to R A1 and R A2 (i.e., a formula (I) compound in which the carbon attached to R A1 and R A2 has the (5) configuration).
  • the (R) configured compound can be an (R)-enantiomer that is substantially free of its opposing (5) enantiomer.
  • an (R) configured compound can be substantially free of a diastereomer in which the carbon attached to R A1 and R A2 has the (S) configuration.
  • the (R) configured compound can be additionally in substantially pure form (e.g., contains less than about 5% of, less than about 2% of, less than about 1%, less than about 0.5% of other substances, including, for example, one or more of other formula (I) compounds, non- formula (I) compounds, or biological media).
  • the (S) configured compound (or salt, e.g., a pharmaceutically acceptable salt, thereof) is substantially free of (e.g., contains less than about 5% of, less than about 2% of, less than about 1%, less than about 0.5% of) a formula (I) compound (or salt thereof as described herein) that is (R) configured at the carbon attached to R A1 and R A2 (i.e., a formula (I) compound in which the carbon attached to R A1 and R A2 has the (R) configuration).
  • the (S) configured compound can be an (5)-enantiomer that is substantially free of its opposing (R) enantiomer.
  • the (S) configured compound can be substantially free of a diastereomer in which the carbon attached to R A1 and R A2 has the (R) configuration.
  • the (S) configured compound can be additionally in substantially pure form (e.g., contains less than about 5% of, less than about 2% of, less than about 1%, less than about 0.5% of other substances, including, for example, one or more of other formula (I) compounds, non- formula (I) compounds, or biological media).
  • a formula (I) compound is (+) (dextrorotatory) when in the presence of plane polarized light.
  • a formula (I) compound is (-) (levororotatory) when in the presence of plane polarized light.
  • the (+) (dextrorotatory) compound is substantially free of (e.g., contains less than about 5% of, less than about 2% of, less than about 1%, less than about 0.5%) a formula (I) compound (or salt thereof as described herein) that is (-) (levororotatory).
  • the (+) (dextrorotatory) compound can be additionally in substantially pure form (e.g., contains less than about 5% of, less than about 2% of, less than about 1%, less than about 0.5% of other substances, including, for example, one or more of other formula (I) compounds, non-formula (I) compounds, or biological media).
  • the (-) (levororotatory) compound is substantially free of (e.g., contains less than about 5% of, less than about 2% of, less than about 1%, less than about 0.5%) a formula (I) compound (or salt thereof as described herein) that is (+) (dextrorotatory).
  • the (-) (levororotatory) compound can be additionally in substantially pure form (e.g., contains less than about 5% of, less than about 2% of, less than about 1%, less than about 0.5% of other substances, including, for example, one or more of other formula (I) compounds, non-formula (I) compounds, or biological media).
  • R A is CR A1 R A2 , wherein each of R A1 and R A2 is, independently, hydrogen, halo, C1-C3 alkyl, or OR 9 .
  • one of R A1 and R A2 is independently selected from hydrogen, halo, C1-C3 alkyl, and OR 9 ; and the other of R A1 and R A2 is independently selected from halo, C1-C3 alkyl, and OR 9 .
  • one of R A1 and R A2 is halo, and the other of R A1 and R A2 is hydrogen, halo, or C1-C3 alkyl.
  • one of R A1 and R A2 is halo, and the other of R A1 and R A2 is hydrogen.
  • one of R A1 and R A2 is fluoro, and the other of R A1 and R A2 is hydrogen.
  • each of R A1 and R A2 is, independently, halo; e.g., each of R A1 and R A2 is fluoro.
  • one of R A1 and R A2 is -OH, and the other of R A1 and R A2 is hydrogen.
  • A is CR R , wherein one of R and R is independently selected from hydrogen, halo, C 1 -C3 alkyl, and OR 9 ; and the other of R A1 and R A2 is independently selected from halo, C 1 -C3 alkyl, and OR 9 ; wherein R 9 is hydrogen or C 1 -C3 alkyl that is optionally substituted with hydroxyl or C 1 -C3 alkoxy.
  • one of R A1 and R A2 is OR 9 , and the other is hydrogen, wherein R 9 is hydrogen.
  • one of R A1 and R A2 is halo, and the other of R A1 and R A2 is hydrogen or halo.
  • one of R A1 and R ⁇ is fluoro, and the other of R A1 and R A2 is hydrogen or fluoro.
  • one of R A1 and R A2 is OR 9 ; and the other of R A1 and R A2 is C 1 -C3 alkyl.
  • one of R A1 and R ⁇ is OH; and the other of R A1 and R ⁇ is CH3.
  • Z is: (i) -NR 10 R n ; or (ii) -C(O)NR 10 R n ; or (iii) -OR 12 ; or (iv) -S(0) n R 13 , wherein n is 0, 1, or 2.
  • R 10 and R 11 is: (b) C 6 -Ci 0 aryl that is optionally substituted with from 1-4 R b ; or (c) heteroaryl containing from 5-14 ring atoms, wherein from 1-6 of the ring atoms is independently selected from N, NH, (Ci-C3 alkyl), O, and S; and wherein said heteroaryl is optionally substituted with from 1-4 R b ; and the other of R 10 and R 11 is hydrogen or Ci-Ce alkyl.
  • Z is -OR 12 or -S(0) n R 13 .
  • Z is -OR 12 .
  • R 12 is C6-C 10 aryl that is optionally substituted with from 1-4 R b .
  • R 12 is C 1 -C6 alkyl or C 1 -C6 haloalkyl (e.g., C 1 -C6 alkyl), each of which is substituted with from 1-3 R d .
  • R 12 is other than C 1 -C6 alkyl or C 1 -C6 haloalkyl (e.g., Ci-C 6 alkyl), each of which is unsubstituted or substituted with from 1-3 R d .
  • R 3 can be selected from halo, hydroxyl, sulfhydryl, C 1 -C6 alkoxy, C 1 -C6 thioalkoxy, C 1 -C6 haloalkoxy, C 1 -C6 thiohaloalkoxy, C 1 -C6 alkyl, C 1 -C6 haloalkyl, cyano, -NH 2 , - H(Ci-C6 alkyl), N(Ci-C 6 alkyl) 2 , -NHC(0)(Ci-C 6 alkyl), and nitro.
  • R 3 can be halo (e.g., bromo).
  • each of R 1 , R 2 , and R 4 can be hydrogen.
  • L 1 can be C 1 -C3 straight chain alkylene, which is optionally substituted with from 1-2 independently selected R c .
  • L 1 can be CH 2 .
  • L 2 can be C 1 -C3 straight chain alkylene, which is optionally substituted with from 1-2 independently selected R c .
  • L 2 can be CH 2 .
  • Each of L 1 and L 2 can be, independently, C 1 -C3 straight chain alkylene, which is optionally substituted with from 1-2 independently selected R c .
  • each of L 1 and L 2 can be CH 2 .
  • A can be CR R , in which each of R and R is, independently, hydrogen, halo, C1-C3 alkyl, or OR 9 .
  • R A can be CR A1 R A2 , in which each of R A1 and R ⁇ is, independently, hydrogen, halo, or Ci- C 3 alkyl.
  • R A can be CR A1 R A2 , in which one of R A1 and R A2 is halo (e.g., fluoro), and the other of R A1 and R A2 is, independently, hydrogen, halo, or C1-C3 alkyl (e.g., hydrogen).
  • halo e.g., fluoro
  • C1-C3 alkyl e.g., hydrogen
  • R A can be CR A1 R A2 , in which one of R A1 and R A2 is halo (e.g., fluoro), and the other of R A1 and R A2 is hydrogen.
  • halo e.g., fluoro
  • R A1 and R A2 can be halo or OR 9 , and the other is hydrogen.
  • R A1 and R A2 can be OR 9 .
  • the other of R A1 and R A2 can be as defined anywhere herein; e.g., the other of R A1 and R A2 can be hydrogen or C1-C3 alkyl.
  • one of R A1 and R A2 can be OR 9 , and the other of R A1 and R A2 is hydrogen.
  • R 9 can be hydrogen.
  • R A1 and R A2 can be halo.
  • the other of R A1 and R A2 can be as defined anywhere herein; e.g., the other of R A1 and R A2 can be hydrogen, C1-C3 alkyl, or halo.
  • one of R A1 and R A2 can be halo (e.g., fluoro), and the other of R A1 and R A2 is hydrogen.
  • the carbon attached to R A1 and R A2 can have the R configuration.
  • the carbon attached to R A1 and R A2 can have the S configuration.
  • Each of L 1 and L 2 is, independently, C1-C3 alkylene, which is optionally substituted with from 1-2 independently selected R c .
  • each of L 1 and L 2 can be CH2.
  • Z can be -NR 10 R n .
  • R 10 and R 11 can be C6-C1 0 aryl that is optionally substituted with from 1-4 R b .
  • R 10 and R 11 can be C6-C1 0 aryl that is optionally substituted with from 1-4 R b , and the other is hydrogen or Ci-C 6 alkyl.
  • R 10 and R 11 can be C6-C1 0 aryl that is optionally substituted with from 1-4 R b , and the other is hydrogen.
  • one of R 10 and R 11 can be unsubstituted phenyl, and the other is hydrogen.
  • one of R 10 and R 11 can be phenyl that is substituted with 1 R b , and the other is hydrogen.
  • R b can be C1-C6 alkoxy (e.g., OCH 3 ).
  • one of R 10 and R 11 can be 3-methoxyphenyl, and the other is hydrogen.
  • Z can be -OR 12 .
  • R 12 can be C1-C6 alkyl or C1-C6 haloalkyl, each of which is optionally substituted with from 1-3 R c .
  • R 12 can be C6-C1 0 aryl that is optionally substituted with from 1-4 R b .
  • R 12 can be unsubstituted phenyl.
  • Z can be -S(0) n R 13 , in which n can be 0, 1, or 2.
  • R can be C6-C1 0 aryl that is optionally substituted with from 1-4 R b .
  • R 13 can be unsubstituted phenyl.
  • Z can be heterocycloalkenyl containing from 5-6 ring atoms, wherein from 1 -3 of the ring atoms is independently selected from N, NH, N(Ci-C 6 alkyl), NC(0)(Ci-C 6 alkyl), O, and S; and wherein said heterocycloalkenyl is optionally substituted with from 1 -4 independently selected R a
  • R 6 can be selected from halo, hydroxyl, sulfhydryl, Ci-Ce alkoxy, Ci-Ce thioalkoxy, Ci-Ce haloalkoxy, C1-C6 thiohaloalkoxy, C1-C6 alkyl, C1-C6 haloalkyl, cyano, -NH 2 , - H(Ci-C6 alkyl), N(Ci-C 6 alkyl) 2 , -NHC(0)(Ci-C 6 alkyl), and nitro.
  • R 6 can be halo (e.g., bromo).
  • each of R 5 , R 7 , and R 8 can be hydrogen.
  • any one or more of the R 1 , R 2 , R 3 , R 4 , L 1 , L 2 , A, and Z embodiments described herein can be combined with any one or more of the R 5 , R 6 , R 7 , and R 8 embodiments described herein.
  • Each of L 1 and L 2 can be CH 2 .
  • A can be CR A1 R A2 , wherein one of R A1 and R A2 is OR 9 , and the other is hydrogen.
  • Z is -NR R ; and each of R and R can be independently selected from:
  • Each of R 3 and R 6 can be halo (e.g., bromo); and each of R 1 , R 2 , R 4 , R 5 , R 7 , and R 8 can be hydrogen.
  • R 9 can be hydrogen.
  • One of R 10 and R 11 can be C6-C1 0 aryl that is optionally substituted with from 1 -4 R b , and the other is hydrogen.
  • One of R 10 and R 11 can be unsubstituted phenyl, and the other is hydrogen.
  • One of R 10 and R 11 can be phenyl that is substituted with 1 R b , and the other is hydrogen.
  • R b can be C1-C6 alkoxy (e.g., OCH 3 ).
  • One of R 10 and R 11 can be 3-methoxyphenyl, and the other is hydrogen.
  • Each of L 1 and L 2 is CH 2 .
  • A is CR A1 R A2 , wherein one of R A1 and R A2 is OR 9 , and the other
  • R is hydrogen.
  • Z is -NR R ; and each of R and R is independently selected from: (a) hydrogen;
  • Embodiment can include one or more of the following features.
  • Each of R 3 and R 6 is halo (e.g., bromo); and each of R 1 , R 2 , R 4 , R 5 , R 7 , and R 8 is hydrogen.
  • R 9 can be hydrogen.
  • R 10 and R 11 can be C6-C1 0 aryl that is optionally substituted with from 1-4 R b , and the other is hydrogen.
  • One of R 10 and R 11 can be unsubstituted phenyl, and the other is hydrogen.
  • One of R 10 and R 11 can be phenyl that is substituted with 1 R b , and the other is hydrogen.
  • R b can be C1-C6 alkoxy (e.g., OCH 3 ).
  • One of R 10 and R 11 can be 3-methoxyphenyl, and the other is hydrogen.
  • (A), (B), or (C) applies. In other embodiments, (A) and (B); or (A) and (C); or (B) and (C) applies. In still other embodiments, (A), (B), or (C) apply.
  • Each of R and R' can be, independently, hydrogen, Ci-C 6 alkyl, or Ci-C 6 haloalkyl.
  • Each of R and R' can be, independently, C1-C6 alkyl (e.g., each of R and R' can be CH 3 ).
  • Each of R and R' can be hydrogen.
  • the compound having formula (I) can include any one or more of or be selected from:
  • a salt e.g., a pharmaceutically acceptable salt thereof (or any one or a subset thereof, e.g., as delineated in the claims).
  • the compound having formula (I) can be l-(3,6-dibromo-9H- carbazol-9-yl)-3-(phenylamino)propan-2-ol; or a salt (e.g., a pharmaceutically acceptable salt) thereof.
  • the compound having formula (I) can be R-l-(3,6-Dibromo-9H- carbazol-9-yl)-3-(3-methoxyphenylamino)-propan-2-ol; or a salt (e.g., a pharmaceutically acceptable salt) thereof.
  • R-l-(3,6-Dibromo-9H-carbazol-9-yl)-3-(3- methoxyphenylamino)-propan-2-ol or a salt (e.g., a pharmaceutically acceptable salt) thereof can be substantially free of (e.g., contains less than about 5% of, less than about 2% of, less than about 1%, less than about 0.5% of) 5'-l-(3,6-Dibromo-9H-carbazol-9-yl)-3-(3-methoxyphenylamino)- propan-2-ol or a salt (e.g., a pharmaceutically acceptable salt) thereof.
  • the compound having formula (I) can be 5'-l-(3,6-Dibromo-9H- carbazol-9-yl)-3-(3-methoxyphenylamino)-propan-2-ol; or a salt (e.g., a pharmaceutically acceptable salt) thereof.
  • 5-l-(3,6-Dibromo-9H-carbazol-9-yl)-3-(3- methoxyphenylamino)-propan-2-ol or a salt (e.g., a pharmaceutically acceptable salt) thereof can be substantially free of (e.g., contains less than about 5% of, less than about 2% of, less than about 1%, less than about 0.5% of) R-l-(3,6-Dibromo-9H-carbazol-9-yl)-3-(3-methoxyphenylamino)- propan-2-ol or a salt (e.g., a pharmaceutically acceptable salt) thereof.
  • the compound having formula (I) can be the (+) (dextrorotatory) enantiomer of l-(3,6-Dibromo-9H-carbazol-9-yl)-3-(3-methoxyphenylamino)-propan-2-ol as described herein or a salt (e.g., a pharmaceutically acceptable salt) thereof. See, e.g., Example la and lb.
  • the (+) (dextrorotatory) enantiomer of l-(3,6-Dibromo-9H-carbazol-9- yl)-3-(3-methoxyphenylamino)-propan-2-ol as described herein or a salt (e.g., a pharmaceutically acceptable salt) thereof can be substantially free of (e.g., contains less than about 5% of, less than about 2% of, less than about 1%, less than about 0.5% of) the (-) (levorotatory) enantiomer of 1- (3,6-Dibromo-9H-carbazol-9-yl)-3-(3-methoxyphenylamino)-propan-2-ol as described herein or a salt (e.g., a pharmaceutically acceptable salt) thereof.
  • the compound having formula (I) can be the (-) (levorotatory) enantiomer of l-(3,6-Dibromo-9H-carbazol-9-yl)-3-(3-methoxyphenylamino)-propan-2-ol as described herein or a salt (e.g., a pharmaceutically acceptable salt) thereof. See, e.g., Example la and lb.
  • the (-) (levorotatory) enantiomer of l-(3,6-Dibromo-9H-carbazol-9-yl)-3- (3-methoxyphenylamino)-propan-2-ol as described herein or a salt (e.g., a pharmaceutically acceptable salt) thereof can be substantially free of (e.g., contains less than about 5% of, less than about 2% of, less than about 1%, less than about 0.5% of) the (+) (dextrorotatory) enantiomer of 1- (3,6-Dibromo-9H-carbazol-9-yl)-3-(3-methoxyphenylamino)-propan-2-ol as described herein or a salt (e.g., a pharmaceutically acceptable salt) thereof.
  • the compound can be (+) (dextrorotatory)-N-(3 -(3, 6-dibromo-9H- carbazol-9-yl)-2-fluoropropyl)-3-methoxyaniline as described herein or a salt (e.g., a
  • the (+) (levorotatory) enantiomer of N-(3-(3,6-dibromo-9H-carbazol-9-yl)-2-fluoropropyl)-3- methoxyaniline as described herein or a salt (e.g., a pharmaceutically acceptable salt) thereof can be substantially free of (e.g., contains less than about 5% of, less than about 2% of, less than about 1%, less than about 0.5% of) the (-) (dextrorotatory) enantiomer of N-(3-(3,6-dibromo-9H- carbazol-9-yl)-2-fluoropropyl)-3-methoxyaniline as described herein or a salt (e.g., a salt (e.g., a salt (e.g., a salt).
  • the compound can be (-) (dextrorotatory)-N-(3 -(3, 6-dibromo-9H- carbazol-9-yl)-2-fluoropropyl)-3-methoxyaniline as described herein or a salt (e.g., a
  • the (-) (levorotatory) enantiomer of N-(3-(3,6-dibromo-9H-carbazol-9-yl)-2-fluoropropyl)-3- methoxyaniline as described herein or a salt (e.g., a pharmaceutically acceptable salt) thereof can be substantially free of (e.g., contains less than about 5% of, less than about 2% of, less than about 1%, less than about 0.5% of) the (+) (dextrorotatory) enantiomer of N-(3-(3,6-dibromo-9H- carbazol-9-yl)-2-fluoropropyl)-3-methoxyaniline as described herein or a salt (e.g., a salt (e.g., a salt (e.g., a salt).
  • Compounds of formula (I), (II), (III), and (IV) are featured, including title compounds of Examples la, lb, 3a, 3b, 3d, 6a, 10, 13, 21, 22, 88b, 90, 92, 96, 97a, 97b, 102, 116, 117, 118, 119, 120, 121, 122, 132, 143, and 144a; or a pharmaceutically acceptable salt thereof.
  • compounds of formula (I), (II), (III), and (IV) can be used in a method for the treatment of a disease, disorder, or condition caused by unwanted neuronal cell death or associated with insufficient neurogenesis in a subject in need thereof.
  • the method can include administering to the subject an effective amount of a compound having formula (I), (II), (III), or (VI), or a pharmaceutically acceptable salt thereof, as defined herein.
  • the methods can further include detecting a resultant neurotrophism (e.g., neurogenesis; and/or determining that the patient has aberrant neurotrophism, particularly aberrant neurogenesis, particularly aberrant hippocampal and/or hypothalamic neurogenesis, or a disease or disorder associated therewith, particularly by detecting and/or diagnosing the same.
  • a resultant neurotrophism e.g., neurogenesis
  • determining that the patient has aberrant neurotrophism, particularly aberrant neurogenesis, particularly aberrant hippocampal and/or hypothalamic neurogenesis, or a disease or disorder associated therewith particularly by detecting and/or diagnosing the same.
  • the methods can further include detecting a resultant neurotrophism.
  • the methods can further include detecting determining that the subject has aberrant neurogenesis or death of neurons or a disease or disorder associated therewith, by detecting the same in said subject.
  • the methods can further include detecting a resultant hippocampal and/or hypothalamic neurogenesis.
  • the disease, disorder, or condition can be a neuropsychiatric and neurodegenerative disease, including (but not limited to) schizophrenia, major depression, bipolar disorder, normal aging, epilepsy, traumatic brain injury, post-traumatic stress disorder, Parkinson's disease, Alzheimer's disease, Down syndrome, spinocerebellar ataxia, amyotrophic lateral sclerosis, Huntington's disease, stroke, radiation therapy, chronic stress, and abuse of neuro-active drugs (such as alcohol, opiates, methamphetamine, phencyclidine, and cocaine), retinal degeneration, spinal cord injury, peripheral nerve injury, physiological weight loss associated with various conditions, and cognitive decline associated with normal aging, and chemotherapy.
  • neuro-active drugs such as alcohol, opiates, methamphetamine, phencyclidine, and cocaine
  • the compounds having formula (I) or a salt (e.g., a pharmaceutically acceptable salt) thereof provide at least about 27 (xlO 06 ) BrdU+ cells / mm 3 dentate gyrus when evaluated in the assay described in conjunction with Table 1 (i.e., evaluated for pro-neurogenic efficacy / neuroprotection in our standard in vivo assay at 10 ⁇ concentration in four 12 week old adult male C57/B16 mice..
  • the compounds having formula (I) or a salt (e.g., a pharmaceutically acceptable salt) thereof provide at least about 19 (xlO 06 ) BrdU+ cells / mm 3 dentate gyrus when evaluated in the assay described in conjunction with Table 1.
  • the compounds having formula (I) or a salt (e.g., a pharmaceutically acceptable salt) thereof provide from about 18 to about 30 (e.g., 18-27, 19-26, 20-25, 27-30, 27-29) (xlO "06 ) BrdU+ cells / mm dentate gyrus when evaluated in the assay described in conjunction with Table 1.
  • the compounds having formula (I) or a salt (e.g., a pharmaceutically acceptable salt) thereof provide from about 18 to about 26 (e.g., 19-26, 20-25) (xlO 06 ) BrdU+ cells / mm 3 dentate gyrus when evaluated in the assay described in conjunction with Table 1.
  • the compounds having formula (I) or a salt (e.g., a pharmaceutically acceptable salt) thereof provide from about 27 to about 30 (e.g., 27-29) (xlO 06 ) BrdU+ cells / mm 3 dentate gyrus when evaluated in the assay described in conjunction with Table 1.
  • a composition e.g., a pharmaceutical composition
  • any compound, composition, or method described herein can also include any one or more of the other features delineated in the detailed description and/or in the claims.
  • mammal includes organisms, which include mice, rats, cows, sheep, pigs, rabbits, goats, horses, monkeys, dogs, cats, and humans.
  • an effective amount refers to an amount of a compound that confers a therapeutic effect (e.g., treats, e.g., controls, relieves, ameliorates, alleviates, or slows the progression of; or prevents, e.g., delays the onset of or reduces the risk of developing, a disease, disorder, or condition or symptoms thereof) on the treated subject.
  • the therapeutic effect may be objective (i.e., measurable by some test or marker) or subjective (i.e., subject gives an indication of or feels an effect
  • An effective amount of the compound described above may range from about 0.01 mg/kg to about 1000 mg/kg, (e.g., from about 0.1 mg/kg to about 100 mg/kg, from about 1 mg/kg to about 100 mg/kg). Effective doses will also vary depending on route of administration, as well as the possibility of co-usage with other agents.
  • halo refers to any radical of fluorine, chlorine, bromine or iodine.
  • substituent (radical) prefix names are derived from the parent hydride by either (i) replacing the "ane” in the parent hydride with the suffixes "yl,” “diyl,” “triyl,” “tetrayl,” etc.; or (ii) replacing the "e” in the parent hydride with the suffixes "yl,” “diyl,” “triyl,” “tetrayl,” etc. (here the atom(s) with the free valence, when specified, is (are) given numbers as low as is consistent with any established numbering of the parent hydride).
  • Accepted contracted names e.g., adamantyl, naphthyl, anthryl, phenanthryl, furyl, pyridyl, isoquinolyl, quinolyl, and piperidyl, and trivial names, e.g., vinyl, allyl, phenyl, and thienyl are also used herein throughout.
  • Conventional numbering/lettering systems are also adhered to for substituent numbering and the nomenclature of fused, bicyclic, tricyclic, polycyclic rings.
  • radicals, substituents, and ranges are for illustration only; they do not exclude other defined values or other values within defined ranges for the radicals and substituents.
  • alkyl, alkoxy, alkenyl, and the like denote both straight and branched groups.
  • alkyl refers to a saturated hydrocarbon chain that may be a straight chain or branched chain, containing the indicated number of carbon atoms.
  • C ⁇ -Ce alkyl indicates that the group may have from 1 to 6 (inclusive) carbon atoms in it. Any atom can be optionally substituted, e.g., by one or more subsituents.
  • alkyl groups include without limitation methyl, ethyl, w-propyl, isopropyl, and tert-butyl.
  • straight chain C n _ m alkylene refers to a non-branched divalent alkyl linking group having n to m carbon atoms. Any atom can be optionally substituted, e.g., by one or more subsituents. Examples include methylene (i.e., -CH 2 -).
  • haloalkyl refers to an alkyl group, in which at least one hydrogen atom is replaced by halo. In some embodiments, more than one hydrogen atom (e.g., 2, 3, 4, 5, 6, 7, 8, 9, 10, 1 1, 12, 13, or 14 ) are replaced by halo. In these embodiments, the hydrogen atoms can each be replaced by the same halogen (e.g., fluoro) or the hydrogen atoms can be replaced by a combination of different halogens (e.g., fluoro and chloro).
  • Haloalkyl also includes alkyl moieties in which all hydrogens have been replaced by halo (sometimes referred to herein as perhaloalkyl, e.g., perfluoroalkyl, such as trifluoromethyl). Any atom can be optionally substituted, e.g., by one or more substituents.
  • alkoxy refers to a group of formula
  • Alkoxy can be, for example, methoxy (-OCH 3 ), ethoxy, propoxy, isopropoxy, butoxy, iso-butoxy, sec-butoxy, pentoxy, 2-pentoxy, 3-pentoxy, or hexyloxy.
  • thioalkoxy refers to a group of formula -S(alkyl).
  • haloalkoxy and thioalkoxy refer to -0(haloalkyl) and -S(haloalkyl), respectively.
  • sulfhydryl refers to -SH.
  • hydroxyl employed alone or in combination with other terms, refers to a group of formula -OH.
  • aralkyl refers to an alkyl moiety in which an alkyl hydrogen atom is replaced by an aryl group. One of the carbons of the alkyl moiety serves as the point of attachment of the aralkyl group to another moiety. Any ring or chain atom can be optionally substituted e.g., by one or more substituents.
  • aralkyl include benzyl, 2-phenylethyl, and 3- phenylpropyl groups.
  • alkenyl refers to a straight or branched hydrocarbon chain containing the indicated number of carbon atoms and having one or more carbon-carbon double bonds. Any atom can be optionally substituted, e.g., by one or more substituents. Alkenyl groups can include, e.g., vinyl, allyl, 1-butenyl, and 2-hexenyl. One of the double bond carbons can optionally be the point of attachment of the alkenyl substituent.
  • alkynyl refers to a straight or branched hydrocarbon chain containing the indicated number of carbon atoms and having one or more carbon-carbon triple bonds.
  • Alkynyl groups can be optionally substituted, e.g., by one or more substituents.
  • Alkynyl groups can include, e.g., ethynyl, propargyl, and 3-hexynyl.
  • One of the triple bond carbons can optionally be the point of attachment of the alkynyl substituent.
  • heterocyclyl refers to a fully saturated monocyclic, bicyclic, tricyclic or other polycyclic ring system having one or more constituent heteroatom ring atoms independently selected from O, N (it is understood that one or two additional groups may be present to complete the nitrogen valence and/or form a salt), or S.
  • the heteroatom or ring carbon can be the point of attachment of the heterocyclyl substituent to another moiety. Any atom can be optionally substituted, e.g., by one or more substituents.
  • Heterocyclyl groups can include, e.g.,
  • heterocyclic ring containing from 5-6 ring atoms, wherein from 1-2 of the ring atoms is independently selected from N, NH, (Ci-C6 alkyl), NC(0)(Ci-C6 alkyl), O, and S; and wherein said heterocyclic ring is optionally substituted with from 1-3 independently selected R " would include (but not be limited to) tetrahydrofuryl, tetrahydropyranyl, piperidyl (piperidino), piperazinyl, morpholinyl (morpholino), pyrrolinyl, and pyrrolidinyl.
  • heterocycloalkenyl refers to partially unsaturated monocyclic, bicyclic, tricyclic, or other polycyclic hydrocarbon groups having one or more (e.g., 1-4) heteroatom ring atoms independently selected from O, N (it is understood that one or two additional groups may be present to complete the nitrogen valence and/or form a salt), or S.
  • a ring carbon (e.g., saturated or unsaturated) or heteroatom can be the point of attachment of the heterocycloalkenyl substituent. Any atom can be optionally substituted, e.g., by one or more substituents.
  • Heterocycloalkenyl groups can include, e.g., dihydropyridyl, tetrahydropyridyl, dihydropyranyl, 4,5-dihydrooxazolyl, 4,5-dihydro-lH-imidazolyl, 1,2,5,6-tetrahydro-pyrimidinyl, and 5,6-dihydro-2H-[l,3]oxazinyl.
  • cycloalkyl refers to a fully saturated monocyclic, bicyclic, tricyclic, or other polycyclic hydrocarbon groups. Any atom can be optionally substituted, e.g., by one or more substituents. A ring carbon serves as the point of attachment of a cycloalkyl group to another moiety. Cycloalkyl moieties can include, e.g., cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, adamantyl, and norbornyl (bicycle[2.2.1]heptyl).
  • cycloalkenyl refers to partially unsaturated monocyclic, bicyclic, tricyclic, or other polycyclic hydrocarbon groups.
  • a ring carbon e.g., saturated or unsaturated is the point of attachment of the cycloalkenyl substituent. Any atom can be optionally substituted e.g., by one or more substituents.
  • Cycloalkenyl moieties can include, e.g., cyclohexenyl, cyclohexadienyl, or norbornenyl.
  • cycloalkylene refers to a divalent monocyclic cycloalkyl group having the indicated number of ring atoms.
  • heterocycloalkylene refers to a divalent monocyclic heterocyclyl group having the indicated number of ring atoms.
  • aryl refers to an aromatic monocyclic, bicyclic (2 fused rings), or tricyclic (3 fused rings), or polycyclic (> 3 fused rings) hydrocarbon ring system.
  • One or more ring atoms can be optionally substituted, e.g., by one or more substituents.
  • Aryl moieties include, e.g., phenyl and naphthyl.
  • heteroaryl refers to an aromatic monocyclic, bicyclic (2 fused rings), tricyclic (3 fused rings), or polycyclic (> 3 fused rings) hydrocarbon groups having one or more heteroatom ring atoms independently selected from O, N (it is understood that one or two additional groups may be present to complete the nitrogen valence and/or form a salt), or S.
  • One or more ring atoms can be optionally substituted, e.g., by one or more substituents.
  • heteroaryl groups include, but are not limited to, 2H-pyrrolyl, 3H-indolyl, 4H- quinolizinyl, acridinyl, benzo[b]thienyl, benzothiazolyl, ⁇ -carbolinyl, carbazolyl, coumarinyl, chromenyl, cinnolinyl, dibenzo[b,d]furanyl, furazanyl, furyl, imidazolyl, imidizolyl, indazolyl, indolyl, isobenzofuranyl, isoindolyl, isoquinolyl, isothiazolyl, isoxazolyl, naphthyridinyl, oxazolyl, perimidinyl, phenanthridinyl, phenanthrolinyl, phenarsazinyl, phenazinyl, phenothiazinyl, phenoxathiinyl, phen
  • arylcycloalkyl and arylheterocyclyl refer to bicyclic, tricyclic, or other polycyclic ring systems that include an aryl ring fused to a cycloalkyl and heterocyclyl, respectively.
  • heteroarylheterocyclyl and “heteroarylcycloalkyl” refer to bicyclic, tricyclic, or other polycyclic ring systems that include a heteroaryl ring fused to a heterocyclyl and cycloalkyl, respectively. Any atom can be substituted, e.g., by one or more substituents.
  • arylcycloalkyl can include indanyl; arylheterocyclyl can include 2,3- dihydrobenzofuryl, 1,2,3,4-tetrahydroisoquinolyl, and 2,2-dimethylchromanyl.
  • oxo refers to double bonded oxygen when a substituent on carbon.
  • oxo is a substituent on nitrogen or sulfur, it is understood that the resultant groups has the structures N ⁇ 0 " and S(O) and S0 2 , respectively.
  • cyano employed alone or in combination with other terms, refers to a group of formula -CN, wherein the carbon and nitrogen atoms are bound together by a triple bond.
  • substituted refers to a group “substituted” on, e.g., an alkyl, haloalkyl, cycloalkyl, heterocyclyl, heterocycloalkenyl, cycloalkenyl, aryl, or heteroaryl group at any atom of that group.
  • the substituent(s) on a group are independently any one single, or any combination of two or more of the permissible atoms or groups of atoms delineated for that substituent.
  • a substituent may itself be substituted with any one of the above substituents.
  • the phrase "optionally substituted” means unsubstituted (e.g., substituted with a H) or substituted.
  • substituted means that a hydrogen atom is removed and replaced by a substituent. It is understood that substitution at a given atom is limited by valency.
  • Descriptors such as "C6-C10 aryl that is optionally substituted with from 1 -4 independently selected R b " (and the like) is intended to include both an unsubstituted C6-C10 aryl group and a Ce- C10 aryl group that is substituted with from 1 -4 independently selected R b .
  • the use of a substituent (radical) prefix names such as alkyl without the modifier "optionally substituted” or “substituted” is understood to mean that the particular substituent is unsubstituted.
  • haloalkyl without the modifier "optionally substituted” or “substituted” is still understood to mean an alkyl group, in which at least one hydrogen atom is replaced by halo.
  • R b can be as defined in any one, two, three, or all of (aa) through (dd).
  • R b can be as defined in (aa) and (bb) or combinations thereof.
  • Cy is a saturated, partially unsaturated or aromatic carbocyclic or heterocyclic ring system
  • R e is understood to include each of the rings systems defined above (e.g., Cy can be coumarinyl or the ring component of biotin optionally substituted as defined anywhere herein).
  • Figure 1 Pulse-chase analysis of BrdU-labeling identified magnitude and timing of cell death following birth of new neurons in the dentate gyrus. 12 week old wild type male C57/B6 mice were individually housed without access to running wheels and injected on day 0 with BrdU (50 mg/kg, i.p.). Neural precursor cell proliferation in the dentate gyrus (DG) subgranular zone (SGZ) and granular layer (GL) was subsequently monitored through immunohistochemistry for BrdU on days 1, 5, 10, 15, 20, and 25 days post-injection.
  • DG dentate gyrus
  • SGZ subgranular zone
  • GL granular layer
  • mice Four mice were evaluated at each time point, and 25-30 adjacent coronal sections through the hippocampus (progressing posteriorly from the point where the suprapyramidal and infrapyramidal blades are joined at the crest region and the dentate gyrus is oriented horizontally beneath the corpus callosum) from each mouse were examined.
  • days 1 and 5 almost 100% of BrdU-positive cells within the DG were localized in the SGZ.
  • the total number of cells decreased approximately 40% between days 1 and 5, in accordance with the appearance of apoptotic cell bodies in the SGZ.
  • day 10 some BrdU positive cells had migrated into the GL, with no significant change in total number of BrdU-positive cells in the DG.
  • FGF-2 fibroblast growth factor 2

Abstract

This technology relates generally to compounds and methods for stimulating neurogenesis (e.g., post-natal neurogenesis, including post-natal hippocampal and hypothalamic neurogenesis) and/or protecting neuronal cell from cell death. Various compounds are disclosed herein. In vivo activity tests suggest that these compounds may have therapeutic benefits in neuropsychiatric and/or neurodegenerative diseases such as schizophrenia, major depression, bipolar disorder, normal aging, epilepsy, traumatic brain injury, post-traumatic stress disorder, Parkinson's disease, Alzheimer's disease, Down syndrome, spinocerebellar ataxia, amyotrophic lateral sclerosis, Huntington's disease, stroke, radiation therapy, chronic stress, abuse of a neuro-active drug, retinal degeneration, spinal cord injury, peripheral nerve injury, physiological weight loss associated with various conditions, as well as cognitive decline associated with normal aging, chemotherapy, and the like.

Description

PRO-NEUROGENIC COMPOUNDS
CROSS REFERENCE TO RELATED APPLICATIONS
This application is a PCT international application claiming priority to U.S. Application No. 13/177,981 filed on July 7, 2011, and U.S. Application No. 12/832,056 filed on July 7, 2010, which is a continuation-in-part of U. S. Application No. 12/685,652, filed on January 11, 2010, which claims the benefit of and priority to U.S. Provisional Application No. 61/143,755, filed on January 9, 2009; each of these prior applications is incorporated herein by reference in its entirety.
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH
The presently disclosed embodiments were made with government support under Grant 5DP1OD00027605, 5R37MH05938809, and 1RO1MH087986, which were awarded by the National Institute of Health; the Government has certain rights in the presently disclosed embodiments.
TECHNICAL FIELD
This presently disclosed embodiments relate generally to the discovery of pro-neurogenic compounds capable of promoting neurogenesis and/or reducing neuronal cell death.
BACKGROUND
It is now accepted that the adult vertebrate brain fosters the birth and functional
incorporation of newly formed neurons (Goldman and Nottebohm, Proc Natl Acad Sci USA 1983, 80: 2390-2394; Paton and Nottebohm, Science 1984, 225, 1046-1048; Burd and Nottebohm, J Comp Neurol 1985, 240: 143-152). However, it was long thought that no new neurons could be added to the adult mammalian brain. This dogma was challenged in the 1960's when
autoradiographic evidence of new neuron formation in the hippocampal dentate gyrus, olfactory bulb, and cerebral cortex of the adult rat was presented (Altman, J. Science 1962, 135, 1127-1128; Altman, J. J Comp Neurol 1966, 128:431^174; Altman, Anat Rec 1963, 145:573-591 ; Altman and Das, J. Comp. Neurol. 1965, 124, 319-335; Altman and Das, J Comp Neurol 1966, 126:337-390). It is now accepted that within all mammalian species, including humans (Eriksson et al., Nat. Med. 1998, 4(11), 1313-1317), there are two major reservoirs of neuronal stem cells, one located in the subgranular zone (SGZ) of the hippocampal dentate gyrus and another in the subventricular zone (SVZ) (Gross, Natl. Rev. 2000, 1, 67-72). Neural stem cells in the SVZ facilitate formation of new neurons that migrate rostrally to populate the olfactory bulb, while neural stem cells in the SGZ produce neurons that integrate locally in the granular layer of the dentate gyrus, a region of the hippocampus that exhibits lifelong structural and functional plasticity.
The process of new neuron formation in the adult mouse brain can be influenced by environmental, chemical and genetic variables. As demonstrated by Gage and colleagues, neurogenesis in the adult mouse brain is enhanced when animals are exposed to an enriched environment (Kempermann et al., Nature 1997, 386, 493-495) or able to exercise voluntarily (van Praag et al., Nat. Neuro-sci. 1999, 2, 266-270). More recently, anti-depressant drugs have been shown to enhance levels of adult neurogenesis in animals, including humans (Schmidt et al., Behav Pharmacol. 2007 Sep; 18(5-6):391-418; Boldrini et al., Neuropsychopharmacology 2009, 34, 2376-2389). Among many genes reported to impact adult neurogenesis is the gene encoding neuronal PAS domain protein 3 (NPAS3), a central nervous system (CNS)-specific transcription factor that has been associated with schizophrenia and bipolar disorder (Kamnasaran et al., J. Med. Genet. 2003, 40, 325-332; Pickard et al., Am. J. Med. Genet. B. Neuropsychiatr. Genet. 2005, 136B, 26-32; Pickard et al., Ann. Med. 2006, 38, 439-448; Pickard et al., Mol. Psychiatry 2009, 14, 874-884; Lavedan et al., Pharmacogenomics 2008, 9: 289-301). Animals missing both copies of the NPAS3 gene suffer a profound loss of adult hippocampal neurogenesis coupled with significant behavioral deficits (Pieper et al., Proc. Natl. Acad. Sci. USA 2005, 102, 14052-14057). Knowing that impaired post-natal neurogenesis elicits unfavorable phenotypic deficits, it is predicted that pro-neurogenic chemical compounds should exhibit favorable therapeutic benefits.
SUMMARY
This presently disclosed embodiments relate generally to compounds that promote the generation or the survival of existing neurons in the mammalian brain. For the purpose of simplicity these compounds are referred to as being pro-neurogenic. In certain embodiments, the compounds promote the generation or survival of neurons in the post-natal mammalian brain. In certain embodiments, the compounds promote the survival, growth, development and/or function of neurons, particularly CNS, brain, cerebral, and hippocampal neurons. In certain embodiments, the compounds stimulate post-natal hippocampal neurogenesis, which while not wishing to be bound by theory, is believed to represent a therapeutic target for a variety of neuropsychiatric and neurodegenerative diseases, including (but not limited to) schizophrenia,major depression, bipolar disorder, normal aging, epilepsy, traumatic brain injury, post-traumatic stress disorder, Parkinson's disease, Alzheimer's disease, Down syndrome, spinocerebellar ataxia, amyotrophic lateral sclerosis, Huntington's disease, stroke, radiation therapy, chronic stress, abuse of neuro-active drugs (such as alcohol, opiates, methamphetamine, phencyclidine, and cocaine), retinal degeneration, spinal cord injury, and peripheral nerve injury. In certain embodiments, the compounds stimulate post-natal hypothalamic neurogenesis, which can provide therapeutic benefits in weight management, such as physiological weight loss associated with various conditions, including but not limited to, normal aging, chemotherapy, radiation therapy, stress, drug abuse, anorexia, as well as other diseases discussed herein.
The presently disclosed embodiments also feature compositions (e.g., pharmaceutical compositions) that include such compounds as well as methods of making, identifying, and using such compounds. Other features and advantages are described in, or will be apparent from, the present specification and accompanying drawings.
Accordingly, in one aspect, methods for promoting post-natal mammalian neurogenesis and/or reducing neuronal cell death in a subject in need thereof are described, the method comprising administering an effective amount of a compound having formula (I) or a
pharmaceutically acceptable salt thereof:
Figure imgf000004_0001
(I)
wherein:
each of R1, R2, R3, and R4 is independently selected from hydrogen, halo, hydroxyl, sulfhydryl, C1-C6 alkoxy, C1-C6 thioalkoxy, C1-C6 haloalkoxy, C1-C6 thiohaloalkoxy, C1-C6 alkyl, Ci-Ce haloalkyl, C2-C6 alkynyl, cyclopropyl, -N3, cyano, -NH2, -NH(Ci-C6 alkyl), -N(Ci-C6 alkyl)2, -NHC(0)(Ci-C6 alkyl), and nitro;
R and R' are defined according to (1), (2), (3), (4), or (5) below:
(1) R and R' together with C2 and C3, respectively, form a fused phenyl ring having formula (II):
Figure imgf000005_0001
(Π)
wherein each of R5, R6, R7, and R8 is independently selected from hydrogen, halo, hydroxyl, sulfhydryl, Ci-Ce alkoxy, Ci-Ce thioalkoxy, Ci-Ce haloalkoxy, Ci-Ce thiohaloalkoxy, Ci-Ce alkyl, C1-C6 haloalkyl, C2-C6 alkynyl, cyclopropyl, -N3, cyano,
-NH2, -NH(Ci-C6 alkyl), -N(Ci-C6 alkyl)2, -NHC(0)(Ci-C6 alkyl), and nitro; OR
(2) each of R and R' is, independently, hydrogen, Ci-Ce alkyl, or Ci-Ce haloalkyl; OR
(3) R and R' together with C2 and C3, respectively, form a fused heterocyclic ring containing from 5-6 ring atoms, wherein from 1-2 of the ring atoms is independently selected from N, NH, N(Ci-C6 alkyl), NC(0)(Ci-C6 alkyl), O, and S; and wherein said heterocyclic ring is optionally substituted with from 1-3 independently selected R ; OR
(4) R and R' together with C2 and C3, respectively, form a fused C5-C6 cycloalkyl ring that is optionally substituted with from 1-4 independently selected R ; OR
(5) R and R' together with C2 and C3, respectively, form a fused heteroaryl ring containing from 5-6 ring atoms, wherein from 1-2 of the ring atoms is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl ring is optionally substituted with from 1-3 independently selected Rb;
L1 is:
(i) C1-C3 straight chain alkylene, which is optionally substituted with from 1-2 independently selected Rc; or
(ii) a bond that directly connects N in the 5-membered ring of formula (I) to A in formula (I);
L2 is:
(i) C1-C3 straight chain alkylene, which is optionally substituted with from 1-2 independently selected Rc; or
(ii) a bond that directly connects A in formula (I) to Z in formula (I);
A is:
(i) CRA1RA2, wherein each of RA1 and RA2 is independently selected from hydrogen, halo, C1-C3 alkyl, or OR9; or (ii) C=0; or
(iii) C3-C5 cycloalkylene that is (a) substituted with 1 oxo; and (b) optionally further substituted with from 1-4 independently selected R ; or
(iv) heterocycloalkylene containing from 3-5 ring atoms, wherein from 1-2 of the ring atoms is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heterocycloalkylene is (a) substituted with 1 oxo; and (b) is optionally further substituted with from 1-4 independently selected R ;
Z is:
(i) -NR10Rn; or
(ii) -C(O)NR10Rn; or
(iii) -OR12; or
(iv) -S(0)nR13, wherein n is 0, 1, or 2 or
(v) heterocycloalkenyl containing from 5-6 ring atoms, wherein from 1-3 of the ring atoms is independently selected from N, NH, N(Ci-C6 alkyl), NC(0)(Ci-C6 alkyl), O, and S; and wherein said heterocycloalkenyl is optionally substituted with from 1-4
independently selected R ;
(vi) C6-C10 aryl that is optionally substituted with from 1-4 independently selected
Rb; or
(vii) heteroaryl containing from 5-14 ring atoms, wherein from 1-6 of the ring atoms is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl is optionally substituted with from 1-4 independently selected Rb; or
(viii) C8-Ci4 arylcycloalkyl, wherein:
(1) the aryl portion is optionally substituted with from 1-4 independently selected Rb, and
(2) the cycloalkyl portion is optionally substituted with from 1 -4 independently selected R ;
or
(ix) arylheterocyclyl containing from 8-14 ring atoms, wherein:
(1) the aryl portion from is optionally substituted with from 1-4 independently selected Rb, and
(2) from 1-2 of the ring atoms of the heterocyclyl portion is independently selected from N, NH, N(Ci-C6 alkyl), NC(0)(Ci-C6 alkyl), O, and S; and wherein said heterocyclyl portion is optionally substituted with from 1-3 independently selected R ;
or
(x) heteroarylheterocyclyl containing from 8-14 ring atoms, wherein:
(1) from 1-2 of the ring atoms of the heteroaryl portion is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl portion is optionally substituted with from 1-3 independently selected Rb; and
(2) from 1-2 of the ring atoms of the heterocyclyl portion is independently selected from N, NH, N(C C6 alkyl), NC(0)(C C6 alkyl), O, and S; and wherein said heterocyclyl portion is optionally substituted with from 1-3 independently selected R ;
or
(xi) heteroarylcycloalkyl containing from 8-14 ring atoms, wherein:
(1) from 1-2 of the ring atoms of the heteroaryl portion is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl portion is optionally substituted with from 1-3 independently selected Rb; and
(2) the cycloalkyl portion is optionally substituted with from 1 -4 independently selected R ;
R9 is hydrogen; or C1-C3 alkyl that is optionally substituted with hydroxyl or C1-C3 alkoxy; each of R10 and R11 is independently selected from the substituents delineated collectivelyrough (k) below:
(a) hydrogen;
(b) C6-Cio aryl that is optionally substituted with from 1-4 Rb;
(c) heteroaryl containing from 5-14 ring atoms, wherein from 1-6 of the ring atoms is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl is optionally substituted with from 1 -4 Rb;
(d) C1-C6 alkyl or C1-C6 haloalkyl, each of which is optionally substituted with from
1-3 Rd;
(e) -C(0)(Ci-C6 alkyl), -C(0)(Ci-C6 haloalkyl), or -C(0)0(Ci-C6 alkyl);
(f) C2-C6 alkenyl or C2-C6 alkynyl;
(g) Cs-Ci4 arylcycloalkyl, wherein:
(1) the aryl portion is optionally substituted with from 1-4 independently selected Rb, and (2) the cycloalkyl portion is optionally substituted with from 1 -4 independently selected R ;
(h) arylheterocyclyl containing from 8-14 ring atoms, wherein:
(1) the aryl portion from is optionally substituted with from 1-4 independently selected Rb, and
(2) from 1-2 of the ring atoms of the heterocyclyl portion is independently selected from N, NH, N(Ci-C6 alkyl), NC(0)(Ci-C6 alkyl), O, and S; and wherein said heterocyclyl portion is optionally substituted with from 1-3 independently selected R ;
(i) heteroarylheterocyclyl containing from 8-14 ring atoms, wherein:
(1) from 1-2 of the ring atoms of the heteroaryl portion is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl portion is optionally substituted with from 1-3 independently selected Rb; and
(2) from 1-2 of the ring atoms of the heterocyclyl portion is independently selected from N, NH, N(Ci-C6 alkyl), NC(0)(Ci-C6 alkyl), O, and S; and wherein said heterocyclyl portion is optionally substituted with from 1-3 independently selected R ;
j) heteroarylcycloalkyl containing from 8-14 ring atoms, wherein:
(1) from 1-2 of the ring atoms of the heteroaryl portion is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl portion is optionally substituted with from 1-3 independently selected Rb; and
(2) the cycloalkyl portion is optionally substituted with from 1 -4 independently selected R ;
(k) C3-C8 cycloalkyl or C3-C8 cycloalkenyl, each of which is optionally substituted with from 1-4 independently selected R ; and
(1) C7-C12 aralkyl, wherein the aryl portion is optionally the aryl portion from is optionally substituted with from 1-4 independently selected Rb,
R12 is:
(i) C6-C10 aryl that is optionally substituted with from 1-4 Rb; or
(ii) heteroaryl containing from 5-14 ring atoms, wherein from 1-6 of the ring atoms is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl is optionally substituted with from 1 -4 Rb; or
(iii) C1-C6 alkyl or C1-C6 haloalkyl, each of which is optionally substituted with from 1-3 Rd; or (iv) Cs-Ci4 arylcycloalkyl, wherein:
(1) the aryl portion is optionally substituted with from 1-4 independently selected Rb, and
(2) the cycloalkyl portion is optionally substituted with from 1 -4
independently selected R ;
or
(v) arylheterocyclyl containing from 8-14 ring atoms, wherein:
(1) the aryl portion from is optionally substituted with from 1-4 independently selected Rb, and
(2) from 1-2 of the ring atoms of the heterocyclyl portion is independently selected from N, NH, N(Ci-C6 alkyl), NC(0)(Ci-C6 alkyl), O, and S; and wherein said heterocyclyl portion is optionally substituted with from 1-3 independently selected R ;
or
(vi) heteroarylheterocyclyl containing from 8-14 ring atoms, wherein:
(1) from 1-2 of the ring atoms of the heteroaryl portion is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl portion is optionally substituted with from 1-3 independently selected Rb; and
(2) from 1-2 of the ring atoms of the heterocyclyl portion is independently selected from N, NH, N(Ci-C6 alkyl), NC(0)(Ci-C6 alkyl), O, and S; and wherein said heterocyclyl portion is optionally substituted with from 1-3 independently selected R ;
or
(vii) heteroarylcycloalkyl containing from 8-14 ring atoms, wherein:
(1) from 1-2 of the ring atoms of the heteroaryl portion is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl portion is optionally substituted with from 1-3 independently selected Rb; and
(2) the cycloalkyl portion is optionally substituted with from 1 -4
independently selected R ;
R13 is:
(i) C6-C10 aryl that is optionally substituted with from 1-4 Rb; or
(ii) heteroaryl containing from 5-14 ring atoms, wherein from 1-6 of the ring atoms is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl is optionally substituted with from 1 -4 Rb; (iii) Cs-Ci4 arylcycloalkyl, wherein:
(1) the aryl portion is optionally substituted with from 1-4 independently selected Rb, and
(2) the cycloalkyl portion is optionally substituted with from 1 -4
independently selected R ;
or
(iv) arylheterocyclyl containing from 8-14 ring atoms, wherein:
(1) the aryl portion from is optionally substituted with from 1-4
independently selected Rb, and
(2) from 1-2 of the ring atoms of the heterocyclyl portion is independently selected from N, NH, N(Ci-C6 alkyl), NC(0)(Ci-C6 alkyl), O, and S; and wherein said heterocyclyl portion is optionally substituted with from 1-3 independently selected R ;
or
(v) heteroarylheterocyclyl containing from 8-14 ring atoms, wherein:
(1) from 1-2 of the ring atoms of the heteroaryl portion is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl portion is optionally substituted with from 1-3 independently selected Rb; and
(2) from 1-2 of the ring atoms of the heterocyclyl portion is independently selected from N, NH, N(Ci-C6 alkyl), NC(0)(Ci-C6 alkyl), O, and S; and wherein said heterocyclyl portion is optionally substituted with from 1-3 independently selected R ;
or
(vi) heteroarylcycloalkyl containing from 8-14 ring atoms, wherein:
(1) from 1-2 of the ring atoms of the heteroaryl portion is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl portion is optionally substituted with from 1-3 independently selected Rb; and
(2) the cycloalkyl portion is optionally substituted with from 1 -4
independently selected R ;
R at each occurrence is, independently selected from halo, hydroxyl, Ci-Ce alkoxy, Ci-Ce thioalkoxy, Ci-Ce haloalkoxy, Ci-Ce thiohaloalkoxy, oxo, thioxo, =NH, =N(Ci-C6 alkyl), Ci-Ce alkyl, Ci-C6 haloalkyl, -NH2, -NH(Ci-C6 alkyl), N(Ci-C6 alkyl)2,
-NHC(0)(Ci-C6 alkyl), and cyano; Rb at each occurrence is independently selected from the substituents delineated in (aa) through (dd) below:
(aa) C1-C6 alkoxy; d-d haloalkoxy; d-d thioalkoxy; d-d thiohaloalkoxy; -O- (C¾)1,-[0(CH2)1,]1,-H; -d-d alkyl, d-d haloalkyl,
-NH(Ci-C6 alkyl), -N(Ci-C6 alkyl)2, -NHC(0)(Ci-C6 alkyl), wherein the alkyl portion of each is optionally substituted with from 1-3 independently selected Re;
(bb) halo; hydroxyl; cyano; nitro; -NH2; azido; sulfhydryl; C2-C6 alkenyl; C2-C6 alkynyl; -C(0)H; -C(0)(Ci-C6 alkyl); -C(0)(Ci-C6 haloalkyl); C(0)OH;
-C(0)0(C C6 alkyl); -C(0)NH2; -C(0)NH(C C6 alkyl); C(0)N(C C6 alkyl)2; -S02(C C6 alkyl); -S02NH2; -S02NH(d-d alkyl); -S02N(d-C6 alkyl)2;
(cc) C3-C6 cycloalkyl or heterocyclyl containing from 5-6 ring atoms, wherein from 1-2 of the ring atoms of the heterocyclyl is independently selected from N, NH, N(d-d alkyl), NC(0)(d-d alkyl), O, and S; and wherein each of said phenyl and heterocyclyl is optionally substituted with from 1-3 independently selected R ; and
(dd) phenyl or heteroaryl containing from 5-6 ring atoms, wherein from 1-2 of the ring atoms of the heteroaryl is independently selected from N, NH, N(d-d alkyl), O, and S; wherein each of said phenyl and heteroaryl is optionally substituted with from 1-3 substituents independently selected from halo; hydroxyl; cyano; nitro; -NH2; -NH(d-d alkyl), N(d-C6 alkyl)2, -NHC(0)(d-C6 alkyl), d-C6 alkoxy; d-C6 haloalkoxy; d-C6 thioalkoxy; d-d thiohaloalkoxy; d- alkyl, and d-d haloalkyl;
Rc at each occurrence is, independently selected from halo, d-d alkoxy, d-d thioalkoxy, d-d haloalkoxy, d-C6 thiohaloalkoxy, d-C6 alkyl, d-d haloalkyl, -NH2, -NH(d-d alkyl), N(d-d alkyl)2, -NHC(0)(d-d alkyl), and cyano;
Rd at each occurrence is, independently selected from hydroxyl, d-d alkoxy, d- thioalkoxy, d-C6 haloalkoxy, d-d thiohaloalkoxy, d-C6 alkyl, d-d haloalkyl, -NH2, -NH(d- d alkyl), N(d-C6 alkyl)2, -NHC(0)(d-d alkyl), and cyano; and
Re at each occurrence is, independently selected from hydroxyl, d-d alkoxy; d-d thioalkoxy; d-d haloalkoxy; d-d thiohaloalkoxy; -NH2; -NH(d-d alkyl); N(d-d alkyl)2; - NHC(0)(d-d alkyl); cyano; -C(0)H; -C(0)(d-C6 alkyl); -C(0)(d-C6 haloalkyl); C(0)OH; - C(0)0(d-d alkyl); -C(0)NH2; -C(0)NH(d-C6 alkyl); C(0)N(d-d alkyl)2; -S02(d-d alkyl); - S02NH2; -S02NH(Ci-C6 alkyl); -S02N(d-C6 alkyl)2; and L3-(Ci-d alkylene)-Cy, where in L3 is a -0-, -NH-, -NCH3-, -C(O)-,
-C(0)NH-, -C(0)NCH3-, -NHC(O)-, or -NCH3C(0)-, and Cy is a saturated, partially unsaturated or aromatic carbocyclic or heterocyclic ring system; or a pharmaceutically acceptable salt thereof.
In some embodiments, one or more of (A), (B), or (C) apply.
(A) Provided that when R and R' are defined according to definition (3), then:
(i) each of L1 and L2 must be C1-C3 alkylene, which is optionally substituted with from 1-2 independently selected Rc when A is CH2; or
(ii) Z must be other than heteroaryl containing from 5-14 (e.g., 5-6 or 6) ring atoms, wherein from 1-6 of the ring atoms is independently selected from N, NH, (Ci-C3 alkyl), O, and S; and wherein said heteroaryl is optionally substituted with from 1-4 independently selected Rb; e.g., other than substituted pyridyl, e.g., other than pyridyl substituted with C1-C3 alkyl (e.g., CH3), e.g., other than 2 or 6-methylpyridyl.
(B) Each of R10 and R11 cannot be optionally substituted naphthyl (e.g., each of R10 and R11 cannot be unsubstituted naphthyl). In embodiments, each of R10 and R11 is other than optionally substituted naphthyl (e.g., unsubstituted naphthyl) when R and R' are defined according to definitions (1), (2), and (4); and A is CRA1RA2 (e.g., CHOR9, e.g., CHOH), and each of L1 and L2 is C1-C3 alkylene (e.g., each of L1 and L2 is CH2).
12 13 12 13
(C) R and/or R cannot be substituted phenyl. In embodiments, R and/or R cannot be substituted phenyl when R and R' are defined according to definition (1); and A is CRA1RA2 (e.g., CHOR9, e.g., CHOH), and each of L1 and L2 is C1-C3 alkylene (e.g., each of L1 and L2 is CH2).
In some embodiments, (A), (B), or (C) applies. In other embodiments, (A) and (B); or (A) and (C); or (B) and (C) applies. In still other embodiments, (A), (B), and (C) apply.
In another aspect, methods for promoting post-natal mammalian neurogenesis in a subject in need thereof are featured. The method includes administering to the subj ect an effective amount of a compound having formula (I) or a pharmaceutically acceptable salt thereof.
Figure imgf000012_0001
(I)
wherein: each of R1, R2, R3, and R4 is independently selected from hydrogen, halo, hydroxyl, sulfhydryl, Ci-Ce alkoxy, Ci-Ce thioalkoxy, Ci-Ce haloalkoxy, Ci-Ce thiohaloalkoxy, Ci-Ce alkyl, Ci-Ce haloalkyl, cyano, -NH2, -NH(Ci-C6 alkyl), -N(Ci-C6 alkyl)2, -NHC(0)(Ci-C6 alkyl), and nitro;
R and R' are defined according to (1), (2), (3), (4), or (5) below:
(1) R and R' together with C2 and C3, respectively, form a fused phenyl ring having formula (II):
Figure imgf000013_0001
wherein each of R5, R6, R7, and R8 is independently selected from hydrogen, halo, hydroxyl, sulfhydryl, Ci-C6 alkoxy, Ci-C6 thioalkoxy, Ci-C6 haloalkoxy, Ci-C6 halothioalkoxy, Ci-C6 alkyl, Ci-Ce haloalkyl, cyano, -NH2, -NH(C C6 alkyl), N(C C6 alkyl)2, -NHC(0)(C C6 alkyl), and nitro; OR
(2) each of R and R' is, independently, hydrogen, C1-C6 alkyl, or Ci-Ce haloalkyl; OR
(3) R and R' together with C2 and C3, respectively, form a fused heterocyclic ring containing from 5-6 ring atoms, wherein from 1 -2 of the ring atoms is independently selected from N, NH, N(Ci-C6 alkyl), NC(0)(Ci-C6 alkyl), O, and S; and wherein said heterocyclic ring is optionally substituted with from 1-3 independently selected R ; OR
(4) R and R' together with C2 and C3, respectively, form a fused C5-C6 cycloalkyl ring that is optionally substituted with from 1 -4 independently selected R ; OR
(5) R and R' together with C2 and C3, respectively, form a fused heteroaryl ring containing from 5-6 ring atoms, wherein from 1 -2 of the ring atoms is independently selected from N, NH, (Ci-C3 alkyl), O, and S; and wherein said heteroaryl ring is optionally substituted with from 1-3 independently selected Rb;
L1 is:
(i) C1-C3 straight chain alkylene, which is optionally substituted with from 1 -2 independently selected Rc; or
(ii) a bond that directly connects N in the 5-membered ring of formula (I) to A in formula (I);
L2 is: (i) C1-C3 straight chain alkylene, which is optionally substituted with from 1-2 independently selected Rc; or
(ii) a bond that directly connects A in formula (I) to Z in formula (I);
A is:
(i) CR^R^, wherein each of RA1 and RA2 is independently selected from hydrogen, halo, C1-C3 alkyl, or OR9; or
(ii) C=0; or
(iii) C3-C5 cycloalkylene that is (a) substituted with 1 oxo; and (b) optionally further substituted with from 1-4 independently selected R ; or
(iv) heterocycloalkylene containing from 3-5 ring atoms, wherein from 1-2 of the ring atoms is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heterocycloalkylene is (a) substituted with 1 oxo; and (b) is optionally further substituted with from 1-4 independently selected R ;
Z is:
(i) -NR10Rn; or
(ii) -C(O)NR10Rn; or
(iii) -OR12; or
(iv) -S(0)nR13, wherein n is 0, 1, or 2 or
(v) heterocycloalkenyl containing from 5-6 ring atoms, wherein from 1-3 of the ring atoms is independently selected from N, NH, N(Ci-C6 alkyl), NC(0)(Ci-C6 alkyl), O, and S; and wherein said heterocycloalkenyl is optionally substituted with from 1-4
independently selected R ;
(vi) C6-Cio aryl that is optionally substituted with from 1-4 independently selected
Rb; or
(vii) heteroaryl containing from 5-14 ring atoms, wherein from 1-6 of the ring atoms is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl is optionally substituted with from 1-4 independently selected Rb; or
(viii) Cs-Ci4 arylcycloalkyl, wherein:
(1) the aryl portion is optionally substituted with from 1-4 independently selected Rb, and
(2) the cycloalkyl portion is optionally substituted with from 1 -4 independently selected R ;
or
(ix) arylheterocyclyl containing from 8-14 ring atoms, wherein: (1) the aryl portion from is optionally substituted with from 1-4
independently selected Rb, and
(2) from 1-2 of the ring atoms of the heterocyclyl portion is independently selected from N, NH, N(Ci-C6 alkyl), NC(0)(Ci-C6 alkyl), O, and S; and wherein said heterocyclyl portion is optionally substituted with from 1-3 independently selected R ;
or
(x) heteroarylheterocyclyl containing from 8-14 ring atoms, wherein:
(1) from 1-2 of the ring atoms of the heteroaryl portion is independently selected from N, NH, (Ci-C3 alkyl), O, and S; and wherein said heteroaryl portion is optionally substituted with from 1-3 independently selected Rb; and
(2) from 1-2 of the ring atoms of the heterocyclyl portion is independently selected from N, NH, N(Ci-C6 alkyl), NC(0)(Ci-C6 alkyl), O, and S; and wherein said heterocyclyl portion is optionally substituted with from 1-3 independently selected R ;
or
(xi) heteroarylcycloalkyl containing from 8-14 ring atoms, wherein:
(1) from 1-2 of the ring atoms of the heteroaryl portion is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl portion is optionally substituted with from 1-3 independently selected Rb; and
(2) the cycloalkyl portion is optionally substituted with from 1 -4 independently selected R ;
R9 is hydrogen; or C1-C3 alkyl that is optionally substituted with hydroxyl or C1-C3 alkoxy; each of R10 and R11 is independently selected from the substituents delineated collectivelyrough (k) below:
(a) hydrogen;
(b) C6-C10 aryl that is optionally substituted with from 1-4 Rb;
(c) heteroaryl containing from 5-14 ring atoms, wherein from 1-6 of the ring atoms is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl is optionally substituted with from 1 -4 Rb;
(d) C1-C6 alkyl or C1-C6 haloalkyl, each of which is optionally substituted with from
1-3 Rd;
(e) -C(0)(Ci-C6 alkyl), -C(0)(Ci-C6 haloalkyl), or -C(0)0(Ci-C6 alkyl);
(f) C2-C6 alkenyl or C2-C6 alkynyl; (g) Cs-Ci4 arylcycloalkyl, wherein:
(1) the aryl portion is optionally substituted with from 1-4 independently selected Rb, and
(2) the cycloalkyl portion is optionally substituted with from 1 -4 independently selected R ;
(h) arylheterocyclyl containing from 8-14 ring atoms, wherein:
(1) the aryl portion from is optionally substituted with from 1-4 independently selected Rb, and
(2) from 1-2 of the ring atoms of the heterocyclyl portion is independently selected from N, NH, N(Ci-C6 alkyl), NC(0)(Ci-C6 alkyl), O, and S; and wherein said heterocyclyl portion is optionally substituted with from 1-3 independently selected R ;
(i) heteroarylheterocyclyl containing from 8-14 ring atoms, wherein:
(1) from 1-2 of the ring atoms of the heteroaryl portion is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl portion is optionally substituted with from 1-3 independently selected Rb; and
(2) from 1-2 of the ring atoms of the heterocyclyl portion is independently selected from N, NH, N(Ci-C6 alkyl), NC(0)(Ci-C6 alkyl), O, and S; and wherein said heterocyclyl portion is optionally substituted with from 1-3 independently selected R ;
j) heteroarylcycloalkyl containing from 8-14 ring atoms, wherein:
(1) from 1-2 of the ring atoms of the heteroaryl portion is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl portion is optionally substituted with from 1-3 independently selected Rb; and
(2) the cycloalkyl portion is optionally substituted with from 1 -4 independently selected R ;
(k) C3-C8 cycloalkyl or C3-C8 cycloalkenyl, each of which is optionally substituted with from 1-4 independently selected R ; and
(1) C7-C12 aralkyl, wherein the aryl portion is optionally the aryl portion from is optionally substituted with from 1-4 independently selected Rb,
R12 is:
(i) C6-C10 aryl that is optionally substituted with from 1-4 Rb; or
75 (ii) heteroaryl containing from 5-14 ring atoms, wherein from 1-6 of the ring atoms is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl is optionally substituted with from 1 -4 Rb; or
(iii) C1-C6 alkyl or C1-C6 haloalkyl, each of which is optionally substituted with from 1-3 Rd; or
(iv) C8-Ci4 arylcycloalkyl, wherein:
(1) the aryl portion is optionally substituted with from 1-4 independently selected Rb, and
(2) the cycloalkyl portion is optionally substituted with from 1 -4 independently selected R ;
or
(v) arylheterocyclyl containing from 8-14 ring atoms, wherein:
(1) the aryl portion from is optionally substituted with from 1-4 independently selected Rb, and
(2) from 1-2 of the ring atoms of the heterocyclyl portion is independently selected from N, NH, N(Ci-C6 alkyl), NC(0)(Ci-C6 alkyl), O, and S; and wherein said heterocyclyl portion is optionally substituted with from 1-3 independently selected R ;
or
(vi) heteroarylheterocyclyl containing from 8-14 ring atoms, wherein:
(1) from 1-2 of the ring atoms of the heteroaryl portion is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl portion is optionally substituted with from 1-3 independently selected Rb; and
(2) from 1-2 of the ring atoms of the heterocyclyl portion is independently selected from N, NH, N(Ci-C6 alkyl), NC(0)(Ci-C6 alkyl), O, and S; and wherein said heterocyclyl portion is optionally substituted with from 1-3 independently selected R ;
or
(vii) heteroarylcycloalkyl containing from 8-14 ring atoms, wherein:
(1) from 1-2 of the ring atoms of the heteroaryl portion is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl portion is optionally substituted with from 1-3 independently selected Rb; and
(2) the cycloalkyl portion is optionally substituted with from 1 -4 independently selected R ; (i) C6-C10 aryl that is optionally substituted with from 1-4 Rb; or
(ii) heteroaryl containing from 5-14 ring atoms, wherein from 1-6 of the ring atoms is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl is optionally substituted with from 1 -4 Rb;
(iii) C8-Ci4 arylcycloalkyl, wherein:
(1) the aryl portion is optionally substituted with from 1-4 independently selected Rb, and
(2) the cycloalkyl portion is optionally substituted with from 1 -4 independently selected R ;
or
(iv) arylheterocyclyl containing from 8-14 ring atoms, wherein:
(1) the aryl portion from is optionally substituted with from 1-4 independently selected Rb, and
(2) from 1-2 of the ring atoms of the heterocyclyl portion is independently selected from N, NH, N(Ci-C6 alkyl), NC(0)(Ci-C6 alkyl), O, and S; and wherein said heterocyclyl portion is optionally substituted with from 1-3 independently selected R ;
or
(v) heteroarylheterocyclyl containing from 8-14 ring atoms, wherein:
(1) from 1-2 of the ring atoms of the heteroaryl portion is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl portion is optionally substituted with from 1-3 independently selected Rb; and
(2) from 1-2 of the ring atoms of the heterocyclyl portion is independently selected from N, NH, N(Ci-C6 alkyl), NC(0)(Ci-C6 alkyl), O, and S; and wherein said heterocyclyl portion is optionally substituted with from 1-3 independently selected R ;
or
(vi) heteroarylcycloalkyl containing from 8-14 ring atoms, wherein:
(1) from 1-2 of the ring atoms of the heteroaryl portion is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl portion is optionally substituted with from 1-3 independently selected Rb; and
(2) the cycloalkyl portion is optionally substituted with from 1 -4 independently selected R ; R at each occurrence is, independently selected from halo, hydroxyl, Ci-Ce alkoxy, Ci-Ce thioalkoxy, C1-C6 haloalkoxy, C1-C6 thiohaloalkoxy, oxo, thioxo, =NH,
Figure imgf000019_0001
alkyl), C1-C6 alkyl, Ci-C6 haloalkyl, -NH2, -NH(Ci-C6 alkyl), N(Ci-C6 alkyl)2,
-NHC(0)(Ci-C6 alkyl), and cyano;
Rb at each occurrence is independently selected from the substituents delineated in (aa) through (dd) below:
(aa) C1-C6 alkoxy; C1-C6 haloalkoxy; C1-C6 thioalkoxy; C1-C6 thiohaloalkoxy; Ci- C6 alkyl, Ci-C6 haloalkyl, -NH(Ci-C6 alkyl), N(Ci-C6 alkyl)2, -NHC(0)(Ci-C6 alkyl), wherein the alkyl portion of each is optionally substituted with from 1-3 independently selected Re;
(bb) halo; hydroxyl; cyano; nitro; -NH2; azido; sulfhydryl; C2-C6 alkenyl; C2-C6 alkynyl; -C(0)H; -C(0)(Ci-C6 alkyl); -C(0)(Ci-C6 haloalkyl); C(0)OH;
-C(0)0(Ci-C6 alkyl); -C(0)NH2; -C(0)NH(Ci-C6 alkyl); C(0)N(Ci-C6 alkyl)2; - S02(d-C6 alkyl); -S02NH2; -S02NH(d-C6 alkyl); -S02N(d-C6 alkyl)2;
(cc) C3-C6 cycloalkyl or heterocyclyl containing from 5-6 ring atoms, wherein from 1 -2 of the ring atoms of the heterocyclyl is independently selected from N, NH, (Ci-C6 alkyl), NC(0)(Ci-C6 alkyl), O, and S; and wherein each of said phenyl and heterocyclyl is optionally substituted with from 1 -3 independently selected R ; and
(dd) phenyl or heteroaryl containing from 5-6 ring atoms, wherein from 1 -2 of the ring atoms of the heteroaryl is independently selected from N, NH, (Ci-C3 alkyl), O, and S; wherein each of said phenyl and heteroaryl is optionally substituted with from 1-3 substituents independently selected from halo; hydroxyl; cyano; nitro; -NH2; - H(Ci-C6 alkyl), N(C C6 alkyl)2, -NHC(0)(C C6 alkyl), C C6 alkoxy; C C6 haloalkoxy; C C6 thioalkoxy; C1-C6 thiohaloalkoxy; C1-C6 alkyl, and C1-C6 haloalkyl;
Rc at each occurrence is, independently selected from halo, C1-C6 alkoxy, C1-C6 thioalkoxy, Ci-Ce haloalkoxy, Ci-C6 thiohaloalkoxy, Ci-C6 alkyl, Ci-C6 haloalkyl, -NH2, -NH(Ci-C6 alkyl), N(Ci-C6 alkyl)2, -NHC(0)(Ci-C6 alkyl), and cyano;
Rd at each occurrence is, independently selected from hydroxyl, C1-C6 alkoxy, C1-C6 thioalkoxy, Ci-C6 haloalkoxy, Ci-C6 thiohaloalkoxy, Ci-C6 alkyl, Ci-C6 haloalkyl, -NH2, -NH(Ci- C6 alkyl), N(Ci-C6 alkyl)2, -NHC(0)(Ci-C6 alkyl), and cyano; and
Re at each occurrence is, independently selected from hydroxyl, C1-C6 alkoxy; C1-C6 thioalkoxy; Ci-C6 haloalkoxy; Ci-C6 thiohaloalkoxy; -NH2; -NH(Ci-C6 alkyl); N(Ci-C6 alkyl)2; - NHC(0)(Ci-C6 alkyl); cyano; -C(0)H; -C(0)(Ci-C6 alkyl); -C(0)(Ci-C6 haloalkyl); C(0)OH; - C(0)0(Ci-C6 alkyl); -C(0)NH2; -C(0)NH(Ci-C6 alkyl); C(0)N(Ci-C6 alkyl)2; -S02(Ci-C6 alkyl); - S02NH2; -S02NH(Ci-C6 alkyl); -S02N(d-C6 alkyl)2; and L3-(Ci-C6 alkylene)-Cy, where in L3 is a -0-, -NH-, -NCH3-, -C(0)-,
-C(0)NH-, -C(0)NCH3-, -NHC(O)-, or -NCH3C(0)-, and Cy is a saturated, partially unsaturated or aromatic carbocyclic or heterocyclic ring system;
or a salt (e.g., pharmaceutically acceptable salt) thereof.
In some embodiments, one or more of (A), (B), or (C) apply.
(A) Provided that when R and R' are defined according to definition (3), then:
(i) each of L1 and L2 must be C1-C3 alkylene, which is optionally substituted with from 1-2 independently selected Rc when A is CH2; or
(ii) Z must be other than heteroaryl containing from 5-14 (e.g., 5-6 or 6)ring atoms, wherein from 1-6 of the ring atoms is independently selected from N, NH, (Ci-C3 alkyl), O, and S; and wherein said heteroaryl is optionally substituted with from 1-4 independently selected Rb; e.g., other than substituted pyridyl, e.g., other than pyridyl substituted with C1-C3 alkyl (e.g., CH3), e.g., other than 2 or 6-methylpyridyl.
(B) Each of R10 and R11 cannot be optionally substituted naphthyl (e.g., each of R10 and R11 cannot be unsubstituted naphthyl). In embodiments, each of R10 and R11 is other than optionally substituted naphthyl (e.g., unsubstituted naphthyl) when R and R' are defined according to definitions (1), (2), and (4); and A is CRA1RA2 (e.g., CHOR9, e.g., CHOH), and each of L1 and L2 is C1-C3 alkylene (e.g., each of L1 and L2 is CH2).
12 13 ubstituted phenyl. In embodiments, R 12 and/or R 13
(C) R and/or R cannot be s cannot be substituted phenyl when R and R' are defined according to definition (1); and A is CRA1RA2 (e.g., CHOR9, e.g., CHOH), and each of L1 and L2 is C1-C3 alkylene (e.g., each of L1 and L2 is CH2).
In embodiments, (A), (B), or (C) applies. In other embodiments, (A) and (B); or (A) and (C); or (B) and (C) applies. In still other embodiments, (A), (B), and (C) apply.
In another aspect, methods for promoting post-natal mammalian neurogenesis in a subject in need thereof are featured. The methods include administering to the subj ect an effective amount of a compound having formula (I) or a pharmaceutically acceptable salt thereof, in which R and R' together with C2 and C3, respectively, form a fused phenyl ring having formula (II):
Figure imgf000021_0001
For purposes of clarification, it is understood that compounds in which R and R' together with C2 and C3, respectively, form a fused phenyl ring having formula (II) correspond to compounds having the following general formula:
Figure imgf000021_0002
(III)
in which R1, R2, R3, R4, L1, L2, A, and Z can be as defined anywhere herein.
In embodiments, (A), (B), or (C) applies. In other embodiments, (A) and (B); or (A) and (C); or (B) and (C) applies. In still other embodiments, (A), (B), or (C) apply.
In another aspect, methods for promoting post-natal mammalian neurogenesis in a subject in need thereof are featured. The method includes administering to the subj ect an effective amount of a compound having formula (I) or a pharmaceutically acceptable salt thereof, in which:
Figure imgf000021_0003
A is CRA1RA2, wherein one of RA1 and RA2 is OR9, and the other is hydrogen.;
Z is -NR10Rn; and
each of R10 and R11 is independently selected from
(a) hydrogen;
(b) C6-C10 aryl that is optionally substituted with from 1-4 Rb;
(d) C1-C6 alkyl or C1-C6 haloalkyl, each of which is optionally substituted with from 1-3 Rd; (f) C2-C6 alkenyl or C2-C6 alkynyl. In embodiments, (A), (B), or (C) applies. In other embodiments, (A) and (B); or (A) and (C); or (B) and (C) applies. In still other embodiments, (A), (B), and (C) apply.
In one aspect, compositions (e.g., a pharmaceutical composition) are featured, which includes a compound of formula (I) (and/or a compound of any of the other formulae described herein) or a salt (e.g., a pharmaceutically acceptable salt) thereof as defined anywhere herein and a pharmaceutically acceptable carrier. In some embodiments, the compositions can include an effective amount of the compound or salt. In some embodiments, the compositions can further include one or more additional therapeutic agents. These may include, but are not limited to, antidepressant medications (including selective serotonin reuptake inhibitors, tricyclic
antidepressants, monoamine oxidase inhibitors, and other antidepressant medications including but not limited to venlafaxine, nefazadone, bupropion, mirtazapine, lithium and trazodone) and acetylcholinesterase inhibitors (including but not limited to Aricept, Reminyl, and Exelon).
In another aspect, dosage forms are featured, which includes from about 0.05 milligrams to about 2,000 milligrams (e.g., from about 0.1 milligrams to about 1,000 milligrams, from about 0.1 milligrams to about 500 milligrams, from about 0.1 milligrams to about 250 milligrams, from about 0.1 milligrams to about 100 milligrams, from about 0.1 milligrams to about 50 milligrams, or from about 0.1 milligrams to about 25 milligrams) of a compound of formula (I) (and/or a compound of any of the other formulae described herein) or a salt (e.g., a pharmaceutically acceptable salt) thereof as defined anywhere herein. The dosage forms can further include a pharmaceutically acceptable carrier and/or an additional therapeutic agent.
In one aspect, the compounds of formula (I) themselves (and/or a compound of any of the other formulae described herein) or a salt (e.g., a pharmaceutically acceptable salt) thereof as defined anywhere herein are featured. In another aspect, any of the formula (I) compounds specifically described herein are featured.
In one aspect, compounds having formula (I) are featured.
Figure imgf000022_0001
(I)
wherein: each of R1, R2, R3, and R4 is independently selected from hydrogen, halo, hydroxyl, sulfhydryl, C1-C6 alkoxy, C1-C6 thioalkoxy, C1-C6 haloalkoxy, C1-C6 thiohaloalkoxy, C1-C6 alkyl, C1-C6 haloalkyl, C2-C6 alkynyl, cyclopropyl, -N3, cyano,
-NH2, -NH(Ci-C6 alkyl), -N(Ci-C6 alkyl)2, -NHC(0)(Ci-C6 alkyl), and nitro;
R and R' are defined according to (1) or (2) below:
(1) R and R' together with C2 and C3, respectively, form a fused phenyl ring having formula (II):
Figure imgf000023_0001
wherein each of R5, R6, R7, and R8 is independently selected from hydrogen, halo, hydroxyl, sulfhydryl, Ci-C6 alkoxy, Ci-C6 thioalkoxy, Ci-C6 haloalkoxy, Ci-C6 thiohaloalkoxy, Ci- C6 alkyl, Ci-C6 haloalkyl, C2-C6 alkynyl, cyclopropyl, -N3, cyano,
-NH2, -NH(Ci-C6 alkyl), -N(Ci-C6 alkyl)2, -NHC(0)(Ci-C6 alkyl), and nitro; OR
(2) R and R' together with C2 and C3, respectively, form a fused R and R' together with C2 and C3, respectively, form a fused heteroaryl ring containing 6 ring atoms, wherein from 1-2 independently selected ring atoms is N; and wherein said heteroaryl ring is optionally substituted with from 1-2 independently selected Rb;
each of L1 and L2 is, independently, C1-C3 alkylene, which is optionally substituted with from 1-2 independently selected Rc;
A is:
(i) CRA1RA2, wherein each of RA1 and RA2 is independently selected from hydrogen, halo, C1-C3 alkyl, and OR9, wherein R9 is hydrogen or C1-C3 alkyl that is optionally substituted with hydroxyl or C1-C3 alkoxy; or
(ii) C=0; or
(iii) C3-C5 cycloalkylene that is (a) substituted with 1 oxo; and (b) optionally further substituted with from 1-4 independently selected R ; or
(iv) heterocycloalkylene containing from 3-5 ring atoms, wherein from 1-2 of the ring atoms is independently selected from N, NH, (Ci-C3 alkyl), O, and S; and wherein said heterocycloalkylene is (a) substituted with 1 oxo; and (b) is optionally further substituted with from 1-4 independently selected R ; Z is:
(i) -NR10Rn; or
(ii) -C(O)NR10Rn; or
(iii) -OR12; or
(iv) -S(0)nR13, wherein n is 0, 1, or 2 or
(v) heterocycloalkenyl containing from 5-6 ring atoms, wherein from 1-3 of the ring atoms is independently selected from N, NH, N(Ci-C6 alkyl), NC(0)(Ci-C6 alkyl), O, and S; and wherein said heterocycloalkenyl is optionally substituted with from 1-4
independently selected R ;
(vi) C6-C10 aryl that is optionally substituted with from 1-4 independently selected
Rb; or
(vii) heteroaryl containing from 5-14 ring atoms, wherein from 1-6 of the ring atoms is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl is optionally substituted with from 1-4 independently selected Rb; or
(viii) Cs-Ci4 arylcycloalkyl, wherein:
(1) the aryl portion is optionally substituted with from 1-4 independently selected Rb, and
(2) the cycloalkyl portion is optionally substituted with from 1 -4 independently selected R ;
or
(ix) arylheterocyclyl containing from 8-14 ring atoms, wherein:
(1) the aryl portion from is optionally substituted with from 1-4 independently selected Rb, and
(2) from 1-2 of the ring atoms of the heterocyclyl portion is independently selected from N, NH, N(Ci-C6 alkyl), NC(0)(Ci-C6 alkyl), O, and S; and wherein said heterocyclyl portion is optionally substituted with from 1-3 independently selected R ;
or
(x) heteroarylheterocyclyl containing from 8-14 ring atoms, wherein:
(1) from 1-2 of the ring atoms of the heteroaryl portion is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl portion is optionally substituted with from 1-3 independently selected Rb; and
(2) from 1-2 of the ring atoms of the heterocyclyl portion is independently selected from N, NH, N(Ci-C6 alkyl), NC(0)(Ci-C6 alkyl), O, and S; and wherein said heterocyclyl portion is optionally substituted with from 1-3 independently selected R ;
or
(xi) heteroarylcycloalkyl containing from 8-14 ring atoms, wherein:
(1) from 1-2 of the ring atoms of the heteroaryl portion is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl portion is optionally substituted with from 1-3 independently selected Rb; and
(2) the cycloalkyl portion is optionally substituted with from 1 -4 independently selected R ; each of R10 and R11 is independently selected from the substituents delineated collectivelyrough (k) below:
(a) hydrogen;
(b) C6-C10 aryl that is optionally substituted with from 1-4 Rb;
(c) heteroaryl containing from 5-14 ring atoms, wherein from 1-6 of the ring atoms is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl is optionally substituted with from 1 -4 Rb;
(d) C1-C6 alkyl or C1-C6 haloalkyl, each of which is optionally substituted with from
1-3 Rd;
(e) -C(0)(Ci-C6 alkyl), -C(0)(Ci-C6 haloalkyl), or -C(0)0(Ci-C6 alkyl);
(f) C2-C6 alkenyl or C2-C6 alkynyl;
(g) Cs-Ci4 arylcycloalkyl, wherein:
(1) the aryl portion is optionally substituted with from 1-4 independently selected Rb, and
(2) the cycloalkyl portion is optionally substituted with from 1 -4 independently selected R ;
(h) arylheterocyclyl containing from 8-14 ring atoms, wherein:
(1) the aryl portion from is optionally substituted with from 1-4 independently selected Rb, and
(2) from 1-2 of the ring atoms of the heterocyclyl portion is independently selected from N, NH, N(Ci-C6 alkyl), NC(0)(Ci-C6 alkyl), O, and S; and wherein said heterocyclyl portion is optionally substituted with from 1-3 independently selected R ;
(i) heteroarylheterocyclyl containing from 8-14 ring atoms, wherein: (1) from 1-2 of the ring atoms of the heteroaryl portion is independently selected from N, NH, (Ci-C3 alkyl), O, and S; and wherein said heteroaryl portion is optionally substituted with from 1-3 independently selected Rb; and
(2) from 1-2 of the ring atoms of the heterocyclyl portion is independently selected from N, NH, N(Ci-C6 alkyl), NC(0)(Ci-C6 alkyl), O, and S; and wherein said heterocyclyl portion is optionally substituted with from 1-3 independently selected R ;
(j) heteroarylcycloalkyl containing from 8-14 ring atoms, wherein:
(1) from 1-2 of the ring atoms of the heteroaryl portion is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl portion is optionally substituted with from 1-3 independently selected Rb; and
(2) the cycloalkyl portion is optionally substituted with from 1 -4 independently selected R ;
(k) C3-C8 cycloalkyl or C3-C8 cycloalkenyl, each of which is optionally substituted with from 1-4 independently selected R ; and
(1) C7-C12 aralkyl, wherein the aryl portion is optionally the aryl portion from is optionally substituted with from 1-4 independently selected Rb,
provided that one of R10 and R11 must be selected from (b), (c), (g), (h), (i), (j), and
(k);
R12 is:
(i) C6-C10 aryl that is optionally substituted with from 1-4 Rb; or
(ii) heteroaryl containing from 5-14 ring atoms, wherein from 1-6 of the ring atoms is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl is optionally substituted with from 1 -4 Rb; or
(iii) C1-C6 alkyl or C1-C6 haloalkyl, each of which is substituted with from 1-3 Rd;
(iv) Cs-Ci4 arylcycloalkyl, wherein:
(1) the aryl portion is optionally substituted with from 1-4 independently selected Rb, and
(2) the cycloalkyl portion is optionally substituted with from 1 -4 independently selected R ;
or
(v) arylheterocyclyl containing from 8-14 ring atoms, wherein:
(1) the aryl portion from is optionally substituted with from 1-4 independently selected Rb, and (2) from 1-2 of the ring atoms of the heterocyclyl portion is independently selected from N, NH, N(Ci-C6 alkyl), NC(0)(Ci-C6 alkyl), O, and S; and wherein said heterocyclyl portion is optionally substituted with from 1-3 independently selected R ;
or
(vi) heteroarylheterocyclyl containing from 8-14 ring atoms, wherein:
(1) from 1-2 of the ring atoms of the heteroaryl portion is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl portion is optionally substituted with from 1-3 independently selected Rb; and
(2) from 1-2 of the ring atoms of the heterocyclyl portion is independently selected from N, NH, N(Ci-C6 alkyl), NC(0)(Ci-C6 alkyl), O, and S; and wherein said heterocyclyl portion is optionally substituted with from 1-3 independently selected R ;
or
(vii) heteroarylcycloalkyl containing from 8-14 ring atoms, wherein:
(1) from 1-2 of the ring atoms of the heteroaryl portion is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl portion is optionally substituted with from 1-3 independently selected Rb; and
(2) the cycloalkyl portion is optionally substituted with from 1 -4 independently selected R ;
R13 is:
(i) C6-C10 aryl that is optionally substituted with from 1-4 Rb; or
(ii) heteroaryl containing from 5-14 ring atoms, wherein from 1-6 of the ring atoms is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl is optionally substituted with from 1 -4 Rb;
(iii) Cs-Ci4 arylcycloalkyl, wherein:
(1) the aryl portion is optionally substituted with from 1-4 independently selected Rb, and
(2) the cycloalkyl portion is optionally substituted with from 1 -4 independently selected R ;
or
(iv) arylheterocyclyl containing from 8-14 ring atoms, wherein:
(1) the aryl portion from is optionally substituted with from 1-4 independently selected Rb, and (2) from 1-2 of the ring atoms of the heterocyclyl portion is independently selected from N, NH, N(Ci-C6 alkyl), NC(0)(Ci-C6 alkyl), O, and S; and wherein said heterocyclyl portion is optionally substituted with from 1-3 independently selected R ;
or
(v) heteroarylheterocyclyl containing from 8-14 ring atoms, wherein:
(1) from 1-2 of the ring atoms of the heteroaryl portion is independently selected from N, NH, (Ci-C3 alkyl), O, and S; and wherein said heteroaryl portion is optionally substituted with from 1-3 independently selected Rb; and
(2) from 1-2 of the ring atoms of the heterocyclyl portion is independently selected from N, NH, N(Ci-C6 alkyl), NC(0)(Ci-C6 alkyl), O, and S; and wherein said heterocyclyl portion is optionally substituted with from 1-3 independently selected R ;
or
(vi) heteroarylcycloalkyl containing from 8-14 ring atoms, wherein:
(1) from 1-2 of the ring atoms of the heteroaryl portion is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl portion is optionally substituted with from 1-3 independently selected Rb; and
(2) the cycloalkyl portion is optionally substituted with from 1 -4 independently selected R ;
R at each occurrence is, independently selected from halo, hydroxyl, d-d alkoxy, d-d thioalkoxy, d-d haloalkoxy, d-d thiohaloalkoxy, oxo, thioxo, =NH, =N(Ci-C6 alkyl), d-d alkyl, d-d haloalkyl, -NH2, -NH(C C6 alkyl), N(C C6 alkyl)2,
-NHC(0)(C C6 alkyl), and cyano;
Rb at each occurrence is independently selected from the substituents delineated in (aa) through (dd) below:
(aa) C1-C6 alkoxy; d-d haloalkoxy; d-d thioalkoxy; d-d thiohaloalkoxy; -O- (C¾)1,-[0(CH2)1,]1,-H; -d-d alkyl, d-d haloalkyl,
-NH(Ci-C6 alkyl), -N(Ci-C6 alkyl)2, -NHC(0)(Ci-C6 alkyl), wherein the alkyl portion of each is optionally substituted with from 1-3 independently selected Re;
(bb) halo; hydroxyl; cyano; nitro; -NH2; azido; sulfhydryl; C2-C6 alkenyl; C2-C6 alkynyl; -C(0)H; -C(0)(Ci-C6 alkyl); -C(0)(Ci-C6 haloalkyl); C(0)OH;
-C(0)0(Ci-C6 alkyl); -C(0)NH2; -C(0)NH(Ci-C6 alkyl); C(0)N(Ci-C6 alkyl)2; -S02(Ci-C6 alkyl); -S02NH2; -S02NH(d-d alkyl); -S02N(d-C6 alkyl)2; (cc) C3-C6 cycloalkyl or heterocyclyl containing from 5-6 ring atoms, wherein from 1-2 of the ring atoms of the heterocyclyl is independently selected from N, NH, (Ci-C6 alkyl), NC(0)(Ci-C6 alkyl), O, and S; and wherein each of said phenyl and heterocyclyl is optionally substituted with from 1-3 independently selected R ; and
(dd) phenyl or heteroaryl containing from 5-6 ring atoms, wherein from 1-2 of the ring atoms of the heteroaryl is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; wherein each of said phenyl and heteroaryl is optionally substituted with from 1-3 substituents independently selected from halo; hydroxyl; cyano; nitro; -NH2; - H(Ci-C6 alkyl), N(C C6 alkyl)2, -NHC(0)(C C6 alkyl), C C6 alkoxy; C C6 haloalkoxy; C C6 thioalkoxy; C1-C6 thiohaloalkoxy; C1-C6 alkyl, and C1-C6 haloalkyl;
Rc at each occurrence is, independently selected from halo, C1-C6 alkoxy, C1-C6 thioalkoxy, Ci-Ce haloalkoxy, Ci-C6 thiohaloalkoxy, Ci-C6 alkyl, Ci-C6 haloalkyl, -NH2, -NH(Ci-C6 alkyl), N(Ci-C6 alkyl)2, -NHC(0)(Ci-C6 alkyl), and cyano;
Rd at each occurrence is, independently selected from hydroxyl, C1-C6 alkoxy, C1-C6 thioalkoxy, Ci-C6 haloalkoxy, Ci-C6 thiohaloalkoxy, Ci-C6 alkyl, Ci-C6 haloalkyl, -NH2, -NH(d- C6 alkyl), N(Ci-C6 alkyl)2, -NHC(0)(Ci-C6 alkyl), and cyano; and
Re at each occurrence is, independently selected from hydroxyl, C1-C6 alkoxy; C1-C6 thioalkoxy; d-C6 haloalkoxy; Ci-C6 thiohaloalkoxy; -NH2; -NH(Ci-C6 alkyl); N(Ci-C6 alkyl)2; - NHC(0)(Ci-C6 alkyl); cyano; -C(0)H; -C(0)(Ci-C6 alkyl); -C(0)(Ci-C6 haloalkyl); C(0)OH; - C(0)0(Ci-C6 alkyl); -C(0)NH2; -C(0)NH(Ci-C6 alkyl); C(0)N(Ci-C6 alkyl)2; -S02(Ci-C6 alkyl); - S02NH2; -S02NH(Ci-C6 alkyl); -S02N(Ci-C6 alkyl)2; and L3-(Ci-C6 alkylene)-biotin, where in L3 is a -0-, -NH-, -NCH3-, -C(O)-, -C(0)NH-, -C(0)NCH3-, -NHC(O)-, or -NCH3C(0)-;
or a pharmaceutically acceptable salt thereof.
In embodiments, 1, 2, 3, 4, 5, or 6 of the following can apply
• provided that R3 and R6 cannot both be hydrogen when A is CH2, and R and R' are defined according to definition (1);
• provided that R3 cannot be hydrogen when A is CH2, and R and R' are defined
according to definition (2);
• provided that R3 and R6 cannot both be chloro when A is CH2, R and R' are defined according to definition (1), Z is -OR12, and R12 is unsubstituted phenyl;
• provided that R3 and R6 cannot both be bromo when A is CH , R and R' are defined according to definition (1), Z is -OR12, and R12 is phenyl that is substituted with pyridyl or alkyl that is substituted with from 1-3 Re; • provided that R3 and R6 cannot both be hydrogen when A is CH(CI¾), R and R' are defined according to definition (1), Z is NR10Rn, R10 is CH3, and R11 is unsubstituted phenyl;
• provided that when A is CRA1RA2, and one of RA1and RA2 is OH (i.e., R9 is H), then the other of RA1and RA2 is C1-C3 alkyl.
In another aspect, pharmaceutical compositions are featured that include the above- described compounds (or salts thereof as described herein) and a pharmaceutically acceptable carrier. In embodiments, 1, 2, 3, 4, 5, or 6 of the above described provisions can apply.
In one aspect, compounds having formula (I) are featured.
Figure imgf000030_0001
(I)
wherein:
each of R1, R2, R3, and R4 is independently selected from hydrogen, halo, hydroxyl, sulfhydryl, Ci-C6 alkoxy, Ci-C6 thioalkoxy, Ci-C6 haloalkoxy, Ci-C6 thiohaloalkoxy, Ci-C6 alkyl, C1-C6 haloalkyl, C2-C6 alkynyl, cyclopropyl, -N3, cyano,
-NH2, -NH(Ci-C6 alkyl), -N(Ci-C6 alkyl)2, -NHC(0)(Ci-C6 alkyl), and nitro;
R and R' are defined according to (1) or (2) below:
(1) R and R' together with C2 and C3, respectively, form a fused phenyl ring having formula (II):
Figure imgf000030_0002
(Π) wherein each of R5, R6, R7, and R8 is independently selected from hydrogen, halo, hydroxyl, sulfhydryl, Ci-Ce alkoxy, Ci-Ce thioalkoxy, Ci-Ce haloalkoxy, Ci-Ce thiohaloalkoxy, d- Ce alkyl, Ci-Ce haloalkyl, C2-C6 alkynyl, cyclopropyl, -N3, cyano,
-NH2, -NH(Ci-C6 alkyl), -N(Ci-C6 alkyl)2, -NHC(0)(Ci-C6 alkyl), and nitro; OR
(2) R and R' together with C2 and C3, respectively, form a fused R and R' together with C2 and C3, respectively, form a fused heteroaryl ring containing 6 ring atoms, wherein from 1-2 independently selected ring atoms is N; and wherein said heteroaryl ring is optionally substituted with from 1-2 independently selected Rb;
each of L1 and L2 is, independently, C1-C3 alkylene, which is optionally substituted with from 1-2 independently selected Rc;
A is:
(i) CRA1RA2, wherein each of RA1 and RA2 is independently selected from hydrogen, halo, C1-C3 alkyl, and OR9, wherein R9 is C1-C3 alkyl that is optionally substituted with hydroxyl or C1-C3 alkoxy; or
(ii) C=0; or
(iii) C3-C5 cycloalkylene that is (a) substituted with 1 oxo; and (b) optionally further substituted with from 1-4 independently selected R ; or
(iv) heterocycloalkylene containing from 3-5 ring atoms, wherein from 1-2 of the ring atoms is independently selected from N, NH, (Ci-C3 alkyl), O, and S; and wherein said heterocycloalkylene is (a) substituted with 1 oxo; and (b) is optionally further substituted with from 1-4 independently selected R ;
Z is:
(i) -NR10Rn; or
(ii) -C(O)NR10Rn; or
(iii) -OR12; or
(iv) -S(0)nR13, wherein n is 0, 1, or 2 or
(v) heterocycloalkenyl containing from 5-6 ring atoms, wherein from 1-3 of the ring atoms is independently selected from N, NH, N(Ci-C6 alkyl), NC(0)(Ci-C6 alkyl), O, and S; and wherein said heterocycloalkenyl is optionally substituted with from 1-4
independently selected R ;
(vi) C6-C10 aryl that is optionally substituted with from 1-4 independently selected
Rb; or (vii) heteroaryl containing from 5-14 ring atoms, wherein from 1-6 of the ring atoms is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl is optionally substituted with from 1-4 independently selected Rb; or
(viii) Cs-Ci4 arylcycloalkyl, wherein:
(1) the aryl portion is optionally substituted with from 1-4 independently selected Rb, and
(2) the cycloalkyl portion is optionally substituted with from 1 -4 independently selected R ;
or
(ix) arylheterocyclyl containing from 8-14 ring atoms, wherein:
(1) the aryl portion from is optionally substituted with from 1-4 independently selected Rb, and
(2) from 1-2 of the ring atoms of the heterocyclyl portion is independently selected from N, NH, N(Ci-C6 alkyl), NC(0)(Ci-C6 alkyl), O, and S; and wherein said heterocyclyl portion is optionally substituted with from 1-3 independently selected R ;
or
(x) heteroarylheterocyclyl containing from 8-14 ring atoms, wherein:
(1) from 1-2 of the ring atoms of the heteroaryl portion is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl portion is optionally substituted with from 1-3 independently selected Rb; and
(2) from 1-2 of the ring atoms of the heterocyclyl portion is independently selected from N, NH, N(C C6 alkyl), NC(0)(C C6 alkyl), O, and S; and wherein said heterocyclyl portion is optionally substituted with from 1-3 independently selected R ;
or
(xi) heteroarylcycloalkyl containing from 8-14 ring atoms, wherein:
(1) from 1-2 of the ring atoms of the heteroaryl portion is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl portion is optionally substituted with from 1-3 independently selected Rb; and
(2) the cycloalkyl portion is optionally substituted with from 1 -4 independently selected R ; each of R and R is independently selected from the substituents delineated collectivelyrough (k) below:
(a) hydrogen;
(b) C6-C10 aryl that is optionally substituted with from 1-4 Rb;
(c) heteroaryl containing from 5-14 ring atoms, wherein from 1-6 of the ring atoms is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl is optionally substituted with from 1 -4 Rb;
(d) C1-C6 alkyl or C1-C6 haloalkyl, each of which is optionally substituted with from
1-3 Rd;
(e) -C(0)(Ci-C6 alkyl), -C(0)(Ci-C6 haloalkyl), or -C(0)0(Ci-C6 alkyl);
(f) C2-C6 alkenyl or C2-C6 alkynyl;
(g) Cs-Ci4 arylcycloalkyl, wherein:
(1) the aryl portion is optionally substituted with from 1-4 independently selected Rb, and
(2) the cycloalkyl portion is optionally substituted with from 1 -4 independently selected R ;
(h) arylheterocyclyl containing from 8-14 ring atoms, wherein:
(1) the aryl portion from is optionally substituted with from 1-4 independently selected Rb, and
(2) from 1-2 of the ring atoms of the heterocyclyl portion is independently selected from N, NH, N(Ci-C6 alkyl), NC(0)(Ci-C6 alkyl), O, and S; and wherein said heterocyclyl portion is optionally substituted with from 1-3 independently selected R ;
(i) heteroarylheterocyclyl containing from 8-14 ring atoms, wherein:
(1) from 1-2 of the ring atoms of the heteroaryl portion is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl portion is optionally substituted with from 1-3 independently selected Rb; and
(2) from 1-2 of the ring atoms of the heterocyclyl portion is independently selected from N, NH, N(Ci-C6 alkyl), NC(0)(Ci-C6 alkyl), O, and S; and wherein said heterocyclyl portion is optionally substituted with from 1-3 independently selected R ;
j) heteroarylcycloalkyl containing from 8-14 ring atoms, wherein: (1) from 1-2 of the ring atoms of the heteroaryl portion is independently selected from N, NH, (Ci-C3 alkyl), O, and S; and wherein said heteroaryl portion is optionally substituted with from 1-3 independently selected Rb; and
(2) the cycloalkyl portion is optionally substituted with from 1 -4 independently selected R ;
(k) C3-C8 cycloalkyl or C3-C8 cycloalkenyl, each of which is optionally substituted with from 1-4 independently selected R ; and
(1) C7-C12 aralkyl, wherein the aryl portion is optionally the aryl portion from is optionally substituted with from 1-4 independently selected Rb,
provided that one of R10 and R11 must be selected from (b), (c), (g), (h), (i), (j), and
(k);
R12 is:
(i) C6-C10 aryl that is optionally substituted with from 1-4 Rb; or
(ii) heteroaryl containing from 5-14 ring atoms, wherein from 1-6 of the ring atoms is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl is optionally substituted with from 1 -4 Rb; or
(iii) C1-C6 alkyl or C1-C6 haloalkyl, each of which is substituted with from 1-3 Rd;
(iv) Cs-Ci4 arylcycloalkyl, wherein:
(1) the aryl portion is optionally substituted with from 1-4 independently selected Rb, and
(2) the cycloalkyl portion is optionally substituted with from 1 -4 independently selected R ;
or
(v) arylheterocyclyl containing from 8-14 ring atoms, wherein:
(1) the aryl portion from is optionally substituted with from 1-4 independently selected Rb, and
(2) from 1-2 of the ring atoms of the heterocyclyl portion is independently selected from N, NH, N(Ci-C6 alkyl), NC(0)(Ci-C6 alkyl), O, and S; and wherein said heterocyclyl portion is optionally substituted with from 1-3 independently selected R ;
or
(vi) heteroarylheterocyclyl containing from 8-14 ring atoms, wherein: (1) from 1-2 of the ring atoms of the heteroaryl portion is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl portion is optionally substituted with from 1-3 independently selected Rb; and
(2) from 1-2 of the ring atoms of the heterocyclyl portion is independently selected from N, NH, N(Ci-C6 alkyl), NC(0)(Ci-C6 alkyl), O, and S; and wherein said heterocyclyl portion is optionally substituted with from 1-3 independently selected R ;
or
(vii) heteroarylcycloalkyl containing from 8-14 ring atoms, wherein:
(1) from 1-2 of the ring atoms of the heteroaryl portion is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl portion is optionally substituted with from 1-3 independently selected Rb; and
(2) the cycloalkyl portion is optionally substituted with from 1 -4 independently selected R ;
R13 is:
(i) C6-C10 aryl that is optionally substituted with from 1-4 Rb; or
(ii) heteroaryl containing from 5-14 ring atoms, wherein from 1-6 of the ring atoms is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl is optionally substituted with from 1 -4 Rb;
(iii) Cs-Ci4 arylcycloalkyl, wherein:
(1) the aryl portion is optionally substituted with from 1-4 independently selected Rb, and
(2) the cycloalkyl portion is optionally substituted with from 1 -4 independently selected R ;
or
(iv) arylheterocyclyl containing from 8-14 ring atoms, wherein:
(1) the aryl portion from is optionally substituted with from 1-4 independently selected Rb, and
(2) from 1-2 of the ring atoms of the heterocyclyl portion is independently selected from N, NH, N(Ci-C6 alkyl), NC(0)(Ci-C6 alkyl), O, and S; and wherein said heterocyclyl portion is optionally substituted with from 1-3 independently selected R ;
or
(v) heteroarylheterocyclyl containing from 8-14 ring atoms, wherein: (1) from 1-2 of the ring atoms of the heteroaryl portion is independently selected from N, NH, (Ci-C3 alkyl), O, and S; and wherein said heteroaryl portion is optionally substituted with from 1-3 independently selected Rb; and
(2) from 1-2 of the ring atoms of the heterocyclyl portion is independently selected from N, NH, N(Ci-C6 alkyl), NC(0)(Ci-C6 alkyl), O, and S; and wherein said heterocyclyl portion is optionally substituted with from 1-3 independently selected R ;
or
(vi) heteroarylcycloalkyl containing from 8-14 ring atoms, wherein:
(1) from 1-2 of the ring atoms of the heteroaryl portion is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl portion is optionally substituted with from 1-3 independently selected Rb; and
(2) the cycloalkyl portion is optionally substituted with from 1-4 independently selected R ;
R at each occurrence is, independently selected from halo, hydroxyl, C1-C6 alkoxy, C1-C6 thioalkoxy, C1-C6 haloalkoxy, C1-C6 thiohaloalkoxy, oxo, thioxo, =NH, =N(Ci-C6 alkyl), C1-C6 alkyl, Ci-C6 haloalkyl, -NH2, -NH(Ci-C6 alkyl), N(Ci-C6 alkyl)2,
-NHC(0)(Ci-C6 alkyl), and cyano;
Rb at each occurrence is independently selected from the substituents delineated in (aa) through (dd) below:
(aa) C1-C6 alkoxy; C1-C6 haloalkoxy; C1-C6 thioalkoxy; C1-C6 thiohaloalkoxy; -O- (C¾)1,-[0(CH2)1,]1,-H; -d-C6 alkyl, d-C6 haloalkyl,
-NH(C C6 alkyl), -N(C C6 alkyl)2, -NHC(0)(C C6 alkyl), wherein the alkyl portion of each is optionally substituted with from 1-3 independently selected Re;
(bb) halo; hydroxyl; cyano; nitro; -NH2; azido; sulfhydryl; C2-C6 alkenyl; C2-C6 alkynyl; -C(0)H; -C(0)(Ci-C6 alkyl); -C(0)(Ci-C6 haloalkyl); C(0)OH;
-C(0)0(Ci-C6 alkyl); -C(0)NH2; -C(0)NH(Ci-C6 alkyl); C(0)N(Ci-C6 alkyl)2; -S02(Ci-C6 alkyl); -S02NH2; -S02NH(d-C6 alkyl); -S02N(d-C6 alkyl)2;
(cc) C3-C6 cycloalkyl or heterocyclyl containing from 5-6 ring atoms, wherein from 1-2 of the ring atoms of the heterocyclyl is independently selected from N, NH, N(d-d alkyl), NC(0)(Ci-d alkyl), O, and S; and wherein each of said phenyl and heterocyclyl is optionally substituted with from 1-3 independently selected R ; and
(dd) phenyl or heteroaryl containing from 5-6 ring atoms, wherein from 1-2 of the ring atoms of the heteroaryl is independently selected from N, NH, N(d-d alkyl), O, and S; wherein each of said phenyl and heteroaryl is optionally substituted with from 1-3 substituents independently selected from halo; hydroxyl; cyano; nitro; -NH2; -NH(d-C6 alkyl), N(Ci-C6 alkyl)2, -NHC(0)(Ci-C6 alkyl), Ci-C6 alkoxy; Ci-C6 haloalkoxy; Ci-C6 thioalkoxy;
Figure imgf000037_0001
thiohaloalkoxy; alkyl, and haloalkyl;
Rc at each occurrence is, independently selected from halo, Ci-Ce alkoxy, Ci-Ce thioalkoxy, Ci-Ce haloalkoxy, C C6 thiohaloalkoxy, C C6 alkyl, C C6 haloalkyl, -NH2, -NH(C C6 alkyl), N(Ci-C6 alkyl)2, - HC(0)(Ci-C6 alkyl), and cyano;
Rd at each occurrence is, independently selected from hydroxyl, C1-C6 alkoxy, C1-C6 thioalkoxy, Ci-C6 haloalkoxy, Ci-C6 thiohaloalkoxy, Ci-C6 alkyl, Ci-C6 haloalkyl, -NH2, -NH(C C6 alkyl), N(Ci-C6 alkyl)2, - HC(0)(Ci-C6 alkyl), and cyano; and
Re at each occurrence is, independently selected from hydroxyl, C1-C6 alkoxy; C1-C6 thioalkoxy; Ci-C6 haloalkoxy; Ci-C6 thiohaloalkoxy; -NH2; -NH(Ci-C6 alkyl); N(Ci-C6 alkyl)2; - NHC(0)(Ci-C6 alkyl); cyano; -C(0)H; -C(0)(Ci-C6 alkyl); -C(0)(Ci-C6 haloalkyl); C(0)OH; - C(0)0(Ci-C6 alkyl); -C(0)NH2; -C(0)NH(Ci-C6 alkyl); C(0)N(Ci-C6 alkyl)2; -S02(Ci-C6 alkyl); - S02NH2; -S02NH(Ci-C6 alkyl); -S02N(Ci-C6 alkyl)2; and L3-(Ci-C6 alkylene)-biotin, where in L3 is a -0-, -NH-, -NCH3-, -C(O)-, -C(0)NH-, -C(0)NCH3-, -NHC(O)-, or -NCH3C(0)-;
or a pharmaceutically acceptable salt thereof.
In embodiments, 1, 2, 3, 4, or 5 of the following can apply
• provided that R3 and R6 cannot both be hydrogen when A is CH2, and R and R' are defined according to definition (1);
• provided that R3 cannot be hydrogen when A is CH2, and R and R' are defined
according to definition (2);
• provided that R3 and R6 cannot both be chloro when A is CH2, R and R' are defined according to definition (1), Z is -OR12, and R12 is unsubstituted phenyl;
• provided that R3 and R6 cannot both be bromo when A is CH2, R and R' are defined according to definition (1), Z is -OR12, and R12 is phenyl that is substituted with pyridyl or alkyl that is substituted with from 1 -3 Re; and
• provided that R3 and R6 cannot both be hydrogen when A is CH(C¾), R and R' are defined according to definition (1), Z is NR10Rn, R10 is CH3, and R11 is unsubstituted phenyl.
In another aspect, pharmaceutical compositions are featured that include the above- described compounds (or salts thereof as described herein) and a pharmaceutically acceptable carrier. In embodiments, 1, 2, 3, 4, or 5 of the above described provisions can apply. In another aspect, compounds having formula (I) are featured
Figure imgf000038_0001
(I)
wherein:
each of R1, R2, R3, and R4 is independently selected from hydrogen, halo, hydroxyl, sulfhydryl, Ci-Ce alkoxy, Ci-Ce thioalkoxy, Ci-Ce haloalkoxy, Ci-Ce thiohaloalkoxy, Ci-Ce alkyl, Ci-C6 haloalkyl, C2-C6 alkynyl, cyclopropyl, -N3, cyano,
-NH2, -NH(C C6 alkyl), -N(C C6 alkyl)2, -NHC(0)(C C6 alkyl), and nitro;
R and R' are defined according to (1) or (2) below:
(1) R and R' together with C2 and C3, respectively, form a fused phenyl ring having formula (II):
Figure imgf000038_0002
wherein each of R5, R6, R7, and R8 is independently selected from hydrogen, halo, hydroxyl, sulfhydryl, Ci-Ce alkoxy, Ci-Ce thioalkoxy, Ci-Ce haloalkoxy, Ci-Ce thiohaloalkoxy, d- Ce alkyl, Ci-Ce haloalkyl, C2-C6 alkynyl, cyclopropyl, -N3, cyano,
-NH2, -NH(Ci-C6 alkyl), -N(Ci-C6 alkyl)2, -NHC(0)(Ci-C6 alkyl), and nitro; OR
(2) R and R' together with C2 and C3, respectively, form a fused R and R' together with C2 and C3, respectively, form a fused heteroaryl ring containing 6 ring atoms, wherein from 1-2 independently selected ring atoms is N; and wherein said heteroaryl ring is optionally substituted with from 1 -2 independently selected Rb; each of L1 and L2 is, independently, C1-C3 alkylene, which is optionally substituted with from 1-2 independently selected Rc;
A is CRA1RA2, wherein one of RA1 and RA2 is -OH, and the other of RA1 and RA2 is hydrogen or C1-C3 alkyl;
Z is -OR12 or -S(0)nR13, wherein n is 0, 1, or 2;
each of R12 and R13 is:
(i) C6-C10 aryl that is optionally substituted with from 1-4 Rb; or
(ii) heteroaryl containing from 5-14 ring atoms, wherein from 1-6 of the ring atoms is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl is optionally substituted with from 1 -4 Rb;
(iii) C1-C6 alkyl or C1-C6 haloalkyl (e.g., C1-C6 alkyl), each of which is substituted with from 1 -3 Rd; or
(iv) Cs-Ci4 arylcycloalkyl, wherein:
(1) the aryl portion is optionally substituted with from 1-4 independently selected Rb, and
(2) the cycloalkyl portion is optionally substituted with from 1 -4 independently selected R ;
or
(v) arylheterocyclyl containing from 8-14 ring atoms, wherein:
(1) the aryl portion from is optionally substituted with from 1-4
independently selected Rb, and
(2) from 1-2 of the ring atoms of the heterocyclyl portion is independently selected from N, NH, N(C C6 alkyl), NC(0)(C C6 alkyl), O, and S; and wherein said heterocyclyl portion is optionally substituted with from 1-3 independently selected R ;
or
(vi) heteroarylheterocyclyl containing from 8-14 ring atoms, wherein:
(1) from 1-2 of the ring atoms of the heteroaryl portion is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl portion is optionally substituted with from 1-3 independently selected Rb; and
(2) from 1-2 of the ring atoms of the heterocyclyl portion is independently selected from N, NH, N(Ci-C6 alkyl), NC(0)(Ci-C6 alkyl), O, and S; and wherein said heterocyclyl portion is optionally substituted with from 1-3 independently selected R ; or
(vii) heteroarylcycloalkyl containing from 8-14 ring atoms, wherein:
(1) from 1-2 of the ring atoms of the heteroaryl portion is independently selected from N, NH, (Ci-C3 alkyl), O, and S; and wherein said heteroaryl portion is optionally substituted with from 1-3 independently selected Rb; and
(2) the cycloalkyl portion is optionally substituted with from 1 -4
independently selected R ;
R at each occurrence is, independently selected from halo, hydroxyl, d-d alkoxy, d-d thioalkoxy, Ci-C6 haloalkoxy, Ci-C6 thiohaloalkoxy, oxo, thioxo, =NH, =N(Ci-C6 alkyl), Ci-C6 alkyl, Ci-C6 haloalkyl, -NH2, -NH(Ci-C6 alkyl), N(Ci-C6 alkyl)2,
-NHC(0)(Ci-C6 alkyl), and cyano;
Rb at each occurrence is independently selected from the substituents delineated in (aa) through (dd) below:
(aa) C1-C6 alkoxy; C1-C6 haloalkoxy; C1-C6 thioalkoxy; C1-C6 thiohaloalkoxy; -O- (C¾)1,-[0(CH2)1,]1,-H; -d-d alkyl, d-d haloalkyl,
-NH(Ci-C6 alkyl), -N(Ci-C6 alkyl)2, -NHC(0)(Ci-C6 alkyl), wherein the alkyl portion of each is optionally substituted with from 1-3 independently selected Re;
(bb) halo; hydroxyl; cyano; nitro; -NH2; azido; sulfhydryl; C2-C6 alkenyl; C2-C6 alkynyl; -C(0)H; -C(0)(Ci-C6 alkyl); -C(0)(Ci-C6 haloalkyl); C(0)OH;
-C(0)0(Ci-C6 alkyl); -C(0)NH2; -C(0)NH(Ci-C6 alkyl); C(0)N(Ci-C6 alkyl)2; -S02(Ci-C6 alkyl); -S02NH2; -S02NH(d-d alkyl); -S02N(d-d alkyl)2;
(cc) d-d cycloalkyl or heterocyclyl containing from 5-6 ring atoms, wherein from 1-2 of the ring atoms of the heterocyclyl is independently selected from N, NH, N(d-d alkyl), NC(0)(d-d alkyl), O, and S; and wherein each of said phenyl and heterocyclyl is optionally substituted with from 1-3 independently selected R ; and
(dd) phenyl or heteroaryl containing from 5-6 ring atoms, wherein from 1-2 of the ring atoms of the heteroaryl is independently selected from N, NH, N(d-d alkyl), O, and S; wherein each of said phenyl and heteroaryl is optionally substituted with from 1-3 substituents independently selected from halo; hydroxyl; cyano; nitro; -NH2; -NH(d-d alkyl), N(d-d alkyl)2, -NHC(0)(d-C6 alkyl), d-d alkoxy; d-C6 haloalkoxy; d-d thioalkoxy; d-d thiohaloalkoxy; d-d alkyl, and d-d haloalkyl;
Rc at each occurrence is, independently selected from halo, d-d alkoxy, d-d thioalkoxy, d-d haloalkoxy, d-C6 thiohaloalkoxy, d-C6 alkyl, d-d haloalkyl, -NH2, -NH(d-d alkyl), N(Ci-d alkyl)2, -NHC(0)(d-d alkyl), and cyano; Rd at each occurrence is, independently selected from hydroxyl, Ci-Ce alkoxy, Ci-Ce thioalkoxy, Ci-C6 haloalkoxy, Ci-C6 thiohaloalkoxy, Ci-C6 alkyl, Ci-C6 haloalkyl, -NH2, -NH(Ci- C6 alkyl), N(Ci-C6 alkyl)2, - HC(0)(Ci-C6 alkyl), and cyano; and
Re at each occurrence is, independently selected from hydroxyl, C1-C6 alkoxy; C1-C6 thioalkoxy; Ci-C6 haloalkoxy; d-C6 thiohaloalkoxy; -NH2; -NH(Ci-C6 alkyl); N(d-C6 alkyl)2; - NHC(0)(C C6 alkyl); cyano; -C(0)H; -C(0)(C C6 alkyl); -C(0)(C C6 haloalkyl); C(0)OH; - C(0)0(Ci-C6 alkyl); -C(0)NH2; -C(0)NH(Ci-C6 alkyl); C(0)N(Ci-C6 alkyl)2; -S02(Ci-C6 alkyl); - S02NH2; -S02NH(Ci-C6 alkyl); -S02N(Ci-C6 alkyl)2; and L3-(Ci-C6 alkylene)-biotin, where in L3 is a -0-, -NH-, -NCH3-, -C(O)-, -C(0)NH-, -C(0)NCH3-, -NHC(O)-, or -NCH3C(0)-;
or a pharmaceutically acceptable salt thereof.
In embodiments, 1, 2, 3, or 4 of the following can apply:
• provided that R3 and R6 cannot both be hydrogen when R and R' are defined
according to definition (1);
• provided that R3 and R6 cannot both be chloro when R and R' are defined according to definition (1), Z is -OR12, and R12 is phenyl substituted with chloro, formyl, or - NHC(0)CH3;
• provided that R3 and R6 cannot both be bromo when R and R' are defined according to definition (1), Z is -OR12, and R12 is phenyl substituted with -NHC(0)CH3; and
• provided that R3 and R6 cannot both be bromo when R and R' are defined according to definition (1), Z is -SR13, and R13 is phenyl substituted with -OH.
In another aspect, pharmaceutical compositions are featured that include the above- described compounds (or salts thereof as described herein) and a pharmaceutically acceptable carrier. In embodiments, 1 , 2, 3, 4, or 5 of the above described provisions can apply.
In another aspect, compounds having formula (I) are featured:
Figure imgf000041_0001
(I)
wherein: each of R1, R2, R3, and R4 is independently selected from hydrogen, halo, hydroxyl, sulfhydryl, Ci-Ce alkoxy, Ci-Ce thioalkoxy, Ci-Ce haloalkoxy, Ci-Ce thiohaloalkoxy, Ci-Ce alkyl, C1-C6 haloalkyl, C2-C6 alkynyl, cyclopropyl, -N3, cyano,
-NH2, -NH(Ci-C6 alkyl), -N(Ci-C6 alkyl)2, -NHC(0)(Ci-C6 alkyl), and nitro;
R and R' together with C2 and C3, respectively, form a fused heterocyclic ring containing from 5-6 ring atoms, wherein from 1-2 of the ring atoms is independently selected from N, NH, (Ci-C6 alkyl), NC(0)(Ci-C6 alkyl), O, and S; and wherein said heterocyclic ring is optionally substituted with from 1-3 independently selected R ;
each of L1 and L2 is, independently, C1-C3 alkylene, which is optionally substituted with from 1-2 independently selected Rc;
A is:
(i) CR^R^, wherein one of RA1 and R^ is independently selected from hydrogen, halo, C1-C3 alkyl, and OR9; and the other of RA1 and RA2 is independently selected from halo, C1-C3 alkyl, and OR9; wherein R9 is hydrogen or C1-C3 alkyl that is optionally substituted with hydroxyl or C1-C3 alkoxy; or
(ii) C=0;
Z is:
(i) -NR10Rn; or
(ii) -C(O)NR10Rn; or
(iii) -OR12; or
(iv) -S(0)nR13, wherein n is 0, 1 , or 2 or
(vi) C6-Cio aryl that is optionally substituted with from 1-4 independently selected
Rb; or
(vii) heteroaryl containing from 5- 14 ring atoms, wherein from 1 -6 of the ring atoms is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl is optionally substituted with from 1 -4 independently selected Rb; or
each of R10 and R11 is independently selected from the substituents delineated collectively in (a) through (k) below:
(a) hydrogen;
(b) C6-C10 aryl that is optionally substituted with from 1-4 Rb;
(c) heteroaryl containing from 5- 14 ring atoms, wherein from 1-6 of the ring atoms is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl is optionally substituted with from 1 -4 Rb; (d) C1-C6 alkyl or d-d haloalkyl, each of which is optionally substituted with from
1-3 Rd;
(e) -C(0)(Ci-C6 alkyl), -C(0)(Ci-C6 haloalkyl), or -C(0)0(Ci-C6 alkyl);
(f) C2-C6 alkenyl or C2-C6 alkynyl;
and
(1) C7-C12 aralkyl, wherein the aryl portion is optionally the aryl portion from is optionally substituted with from 1-4 independently selected Rb,
provided that one of R10 and R11 must be selected from (b) and (c);
R12 is:
(i) C6-C10 aryl that is optionally substituted with from 1-4 Rb; or
(ii) heteroaryl containing from 5-14 ring atoms, wherein from 1-6 of the ring atoms is independently selected from N, NH, (Ci-C3 alkyl), O, and S; and wherein said heteroaryl is optionally substituted with from 1 -4 Rb;
R13 is:
(i) C6-C10 aryl that is optionally substituted with from 1-4 Rb; or
(ii) heteroaryl containing from 5-14 ring atoms, wherein from 1-6 of the ring atoms is independently selected from N, NH, (Ci-C3 alkyl), O, and S; and wherein said heteroaryl is optionally substituted with from 1 -4 Rb;
R at each occurrence is, independently selected from halo, hydroxyl, C1-C6 alkoxy, C1-C6 thioalkoxy, C1-C6 haloalkoxy, C1-C6 thiohaloalkoxy, oxo, thioxo, =NH,
Figure imgf000043_0001
alkyl), C1-C6 alkyl, Ci-C6 haloalkyl, -NH2, -NH(Ci-C6 alkyl), N(Ci-C6 alkyl)2,
-NHC(0)(Ci-C6 alkyl), and cyano;
Rb at each occurrence is independently selected from the substituents delineated in (aa) through (dd) below:
(aa) C1-C6 alkoxy; C1-C6 haloalkoxy; C1-C6 thioalkoxy; C1-C6 thiohaloalkoxy; -O- (C¾)1,-[0(CH2)1,]1,-H; -d-d alkyl, d-d haloalkyl,
-NH(Ci-C6 alkyl), -N(Ci-C6 alkyl)2, -NHC(0)(Ci-C6 alkyl), wherein the alkyl portion of each is optionally substituted with from 1-3 independently selected Re;
(bb) halo; hydroxyl; cyano; nitro; -NH2; azido; sulfhydryl; C2-C6 alkenyl; C2-C6 alkynyl; -C(0)H; -C(0)(Ci-C6 alkyl); -C(0)(Ci-C6 haloalkyl); C(0)OH;
-C(0)0(Ci-C6 alkyl); -C(0)NH2; -C(0)NH(Ci-C6 alkyl); C(0)N(Ci-C6 alkyl)2; -S02(Ci-C6 alkyl); -S02NH2; -S02NH(d-d alkyl); -S02N(d-d alkyl)2;
(cc) C3-C6 cycloalkyl or heterocyclyl containing from 5-6 ring atoms, wherein from 1-2 of the ring atoms of the heterocyclyl is independently selected from N, NH, N(d-d alkyl), NC(0)(Ci-C6 alkyl), O, and S; and wherein each of said phenyl and heterocyclyl is optionally substituted with from 1 -3 independently selected R ; and
(dd) phenyl or heteroaryl containing from 5-6 ring atoms, wherein from 1 -2 of the ring atoms of the heteroaryl is independently selected from N, NH, (Ci-C3 alkyl), O, and S; wherein each of said phenyl and heteroaryl is optionally substituted with from 1-3 substituents independently selected from halo; hydroxyl; cyano; nitro; -NH2; -NH(Ci-C6 alkyl), N(Ci-C6 alkyl)2, -NHC(0)(Ci-C6 alkyl), Ci-C6 alkoxy; Ci-C6 haloalkoxy; Ci-C6 thioalkoxy; C1-C6 thiohaloalkoxy; C1-C6 alkyl, and C1-C6 haloalkyl;
Rc at each occurrence is, independently selected from halo, Ci-C6 alkoxy, Ci-C6 thioalkoxy, Ci-Ce haloalkoxy, Ci-C6 thiohaloalkoxy, Ci-C6 alkyl, Ci-C6 haloalkyl, -NH2, - H(Ci-C6 alkyl), N(Ci-C6 alkyl)2, - HC(0)(Ci-C6 alkyl), and cyano;
Rd at each occurrence is, independently selected from hydroxyl, C1-C6 alkoxy, Ci-Ce thioalkoxy, Ci-C6 haloalkoxy, Ci-C6 thiohaloalkoxy, Ci-C6 alkyl, Ci-C6 haloalkyl, -NH2, -NH(d- C6 alkyl), N(Ci-C6 alkyl)2, -NHC(0)(Ci-C6 alkyl), and cyano; and
Re at each occurrence is, independently selected from hydroxyl, C1-C6 alkoxy; C1-C6 thioalkoxy; d-C6 haloalkoxy; Ci-C6 thiohaloalkoxy; -NH2; -NH(Ci-C6 alkyl); N(Ci-C6 alkyl)2; - NHC(0)(Ci-C6 alkyl); cyano; -C(0)H; -C(0)(Ci-C6 alkyl); -C(0)(Ci-C6 haloalkyl); C(0)OH; - C(0)0(Ci-C6 alkyl); -C(0)NH2; -C(0)NH(Ci-C6 alkyl); C(0)N(Ci-C6 alkyl)2; -S02(Ci-C6 alkyl); - S02NH2; -S02NH(Ci-C6 alkyl); -S02N(Ci-C6 alkyl)2; and L3-(Ci-C6 alkylene)-biotin, where in L3 is a -0-, -NH-, -NCH3-, -C(O)-, -C(0)NH-, -C(0)NCH3-, -NHC(O)-, or -NCH3C(0)-;
or a pharmaceutically acceptable salt thereof.
In embodiments, provision (A) described herein can apply.
Figure imgf000044_0001
each of R1, R2, R3, and R4 is independently selected from hydrogen, halo, hydroxyl, sulfhydryl, Ci-Ce alkoxy, Ci-Ce thioalkoxy, Ci-Ce haloalkoxy, Ci-Ce thiohaloalkoxy, Ci-Ce alkyl, C1-C6 haloalkyl, C2-C6 alkynyl, cyclopropyl, -N3, cyano,
-NH2, -NH(Ci-C6 alkyl), -N(Ci-C6 alkyl)2, -NHC(0)(Ci-C6 alkyl), and nitro;
each of R and R' is, independently, hydrogen, Ci-Ce alkyl, or Ci-Ce haloalkyl;
each of L1 and L2 is, independently, C1-C3 alkylene, which is optionally substituted with from 1-2 independently selected Rc;
A is:
(i) CRA1RA2, wherein one of RA1 and R^ is independently selected from hydrogen, fluoro, chloro, C1-C3 alkyl, and OR9; and the other of RA1 and RA2 is independently selected from fluoro, chloro, C1-C3 alkyl, and OR9; wherein R9 is hydrogen or C1-C3 alkyl that is optionally substituted with hydroxyl or C1-C3 alkoxy; or
(ii) C=0;
Z is:
(i) -NR10Rn; or
(ii) -C(O)NR10Rn; or
(iii) -OR12; or
(iv) -S(0)nR13, wherein n is 0, 1 , or 2 or
(vi) C6-C10 aryl that is optionally substituted with from 1-4 independently selected
Rb; or
(vii) heteroaryl containing from 5- 14 ring atoms, wherein from 1 -6 of the ring atoms is independently selected from N, NH, (Ci-C3 alkyl), O, and S; and wherein said heteroaryl is optionally substituted with from 1 -4 independently selected Rb; or
each of R10 and R11 is independently selected from the substituents delineated collectively in (a) through (k) below:
(a) hydrogen;
(b) C6-C10 aryl that is optionally substituted with from 1-4 Rb;
(c) heteroaryl containing from 5- 14 ring atoms, wherein from 1-6 of the ring atoms is independently selected from N, NH, (Ci-C3 alkyl), O, and S; and wherein said heteroaryl is optionally substituted with from 1 -4 Rb;
(d) C1-C6 alkyl or C1-C6 haloalkyl, each of which is optionally substituted with from
1 -3 Rd;
(e) -C(0)(Ci-C6 alkyl), -C(0)(Ci-C6 haloalkyl), or -C(0)0(Ci-C6 alkyl);
(f) C2-C6 alkenyl or C2-C6 alkynyl; and
(1) C7-C12 aralkyl, wherein the aryl portion is optionally the aryl portion from is optionally substituted with from 1-4 independently selected Rb,
provided that one of R10 and R11 must be selected from (b) and (c);
each of R12 and R13 is: :
(i) C6-Cio aryl that is optionally substituted with from 1-4 Rb; or
(ii) heteroaryl containing from 5-14 ring atoms, wherein from 1-6 of the ring atoms is independently selected from N, NH, (Ci-C3 alkyl), O, and S; and wherein said heteroaryl is optionally substituted with from 1-4 Rb;
R at each occurrence is, independently selected from halo, hydroxyl, Ci-Ce alkoxy, Ci-Ce thioalkoxy, Ci-Ce haloalkoxy, Ci-Ce thiohaloalkoxy, oxo, thioxo, =NH,
Figure imgf000046_0001
alkyl), Ci-Ce alkyl, Ci-C6 haloalkyl, -NH2, - H(Ci-C6 alkyl), N(Ci-C6 alkyl)2,
-NHC(0)(Ci-C6 alkyl), and cyano;
Rb at each occurrence is independently selected from the substituents delineated in (aa) through (dd) below:
(aa) C1-C6 alkoxy; Ci-Ce haloalkoxy; Ci-Ce thioalkoxy; Ci-Ce thiohaloalkoxy; -O- (C¾)1,-[0(CH2)1,]1,-H; -d-C6 alkyl, d-C6 haloalkyl,
-NH(Ci-C6 alkyl), -N(Ci-C6 alkyl)2, -NHC(0)(Ci-C6 alkyl), wherein the alkyl portion of each is optionally substituted with from 1-3 independently selected Re;
(bb) halo; hydroxyl; cyano; nitro; -NH2; azido; sulfhydryl; C2-C6 alkenyl; C2-C6 alkynyl; -C(0)H; -C(0)(Ci-C6 alkyl); -C(0)(Ci-C6 haloalkyl); C(0)OH;
-C(0)0(Ci-C6 alkyl); -C(0)NH2; -C(0)NH(Ci-C6 alkyl); C(0)N(Ci-C6 alkyl)2; -S02(Ci-C6 alkyl); -S02NH2; -S02NH(C C6 alkyl); -S02N(C C6 alkyl)2;
(cc) C3-C6 cycloalkyl or heterocyclyl containing from 5-6 ring atoms, wherein from 1-2 of the ring atoms of the heterocyclyl is independently selected from N, NH, N(Ci-C6 alkyl), NC(0)(Ci-C6 alkyl), O, and S; and wherein each of said phenyl and heterocyclyl is optionally substituted with from 1-3 independently selected R ; and
(dd) phenyl or heteroaryl containing from 5-6 ring atoms, wherein from 1-2 of the ring atoms of the heteroaryl is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; wherein each of said phenyl and heteroaryl is optionally substituted with from 1-3 substituents independently selected from halo; hydroxyl; cyano; nitro; -NH2; -NH(Ci-C6 alkyl), N(Ci-C6 alkyl)2, -NHC(0)(Ci-C6 alkyl), Ci-C6 alkoxy; Ci-C6 haloalkoxy; Ci-C6 thioalkoxy;
Figure imgf000046_0002
thiohaloalkoxy; alkyl, and haloalkyl; Rc at each occurrence is, independently selected from halo, Ci-Ce alkoxy, Ci-Ce thioalkoxy, Ci-Ce haloalkoxy, Ci-C6 thiohaloalkoxy, Ci-C6 alkyl, Ci-C6 haloalkyl, -NH2, - H(Ci-C6 alkyl), N(Ci-C6 alkyl)2, - HC(0)(Ci-C6 alkyl), and cyano;
Rd at each occurrence is, independently selected from hydroxyl, C1-C6 alkoxy, C1-C6 thioalkoxy, Ci-C6 haloalkoxy, Ci-C6 thiohaloalkoxy, Ci-C6 alkyl, Ci-C6 haloalkyl, -NH2, -NH(C C6 alkyl), N(Ci-C6 alkyl)2, -NHC(0)(Ci-C6 alkyl), and cyano; and
Re at each occurrence is, independently selected from hydroxyl, C1-C6 alkoxy; C1-C6 thioalkoxy; C C6 haloalkoxy; C C6 thiohaloalkoxy; -NH2; -NH(C C6 alkyl); N(C C6 alkyl)2; - NHC(0)(Ci-C6 alkyl); cyano; -C(0)H; -C(0)(Ci-C6 alkyl); -C(0)(Ci-C6 haloalkyl); C(0)OH; - C(0)0(Ci-C6 alkyl); -C(0)NH2; -C(0)NH(Ci-C6 alkyl); C(0)N(Ci-C6 alkyl)2; -S02(Ci-C6 alkyl); - S02NH2; -S02NH(Ci-C6 alkyl); -S02N(Ci-C6 alkyl)2; and L3-(Ci-C6 alkylene)-biotin, where in L3 is a -0-, -NH-, -NCH3-, -C(O)-, -C(0)NH-, -C(0)NCH3-, -NHC(O)-, or -NCH3C(0)-;
or a pharmaceutically acceptable salt thereof.
In one aspect, compounds of formula (III) are featured in which:
A is CRA1RA2, in which each of RA1 and RA2 is, independently, hydrogen, halo, or C1-C3 alkyl; or
A is CRA1RA2, in which one of RA1 and R^ is halo (e.g., fluoro), and the other of RA1 and RA2 is, independently, hydrogen, halo, or C1-C3 alkyl (e.g., hydrogen); or
A is CRA1RA2, in which one of RA1 and R^ is halo (e.g., fluoro), and the other of RA1 and RA2 is hydrogen; and
R1, R2, R3, R4, L1, L2, and Z can be as defined anywhere herein; or a salt (e.g.,
pharmaceutically acceptable salt) thereof.
In embodiments, (B) and/or (C) applies.
In one aspect, compounds of formula (III) are featured in which:
one of RA1 and RA2 can be OR9. In embodiments, the other of RA1 and RA2 can be as defined anywhere herein; e.g., the other of RA1 and RA2 can be hydrogen or C1-C3 alkyl. For example, one of RA1 and RA2 can be OR9, and the other of RA1 and RA2 is hydrogen or C1 -C3 alkyl. In embodiments, R9 can be hydrogen or C1-C3 alkyl; and
R1, R2, R3, R4, L1, L2, and Z can be as defined anywhere herein; or a salt (e.g.,
pharmaceutically acceptable salt) thereof.
In embodiments, one or more of the following apply, e.g., when A is CHOH and Z is NR10Rn : • each of R3 and R6 is (¾; and/or each of R3 and R6 is bromo; and/or each of R3 and R6 is chloro; and/or one of R3 and R6 is CH3 (e.g., R6), and the other is bromo (e.g.,
R3);
• each of R10 and R11 is other than hydrogen;
• each of R10 and R11 is hydrogen;
• one of R10 and R11 is heteroaryl as defined anywhere herein;
• L1 and/or L2 is C2-C3 alkylene (optionally substituted);
• (B) and/or (C) applies.
In one aspect, compounds of formula (III) are featured in which Z is other than NR10Rn; and R1, R2, R3, R4, L1, L2, Z, and A can be as defined anywhere herein; or a salt (e.g.,
pharmaceutically acceptable salt) thereof. In embodiments, (B) and/or (C) applies.
In one aspect, compounds of formula (III) are featured in which Z is -OR12 and/or -
13 1 2 3 4 1 2
S(0)nR1J; and R , R", R R", L , V, and A can be as defined anywhere herein; or a salt (e.g., pharmaceutically acceptable salt) thereof. In embodiments, (B) and/or (C) applies.
In one aspect, compounds of formula (III) are featured in which A is (ii) C=0; and/or (iv) heterocycloalkylene containing from 3-5 ring atoms, wherein from 1-2 of the ring atoms is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said
heterocycloalkylene is (a) substituted with 1 oxo; and (b) is optionally further substituted with from 1-4 independently selected R ; and R1, R2, R3, R4, L1, L2, and Z can be as defined anywhere herein; or a salt (e.g., pharmaceutically acceptable salt) thereof.
In yet another aspect, compounds of formula (VI) are feutured:
Figure imgf000048_0001
wherein:
Ri - R5 are each independently selected from hydrogen, halo, hydroxyl, sulfhydryl, Ci-C6 alkoxy, C1-C6 thioalkoxy, C1-C6 haloalkoxy, C1-C6 thiohaloalkoxy, C1-C6 alkyl, C1-C6 haloalkyl, C2-C6 alkynyl, cyclopropyl, -N3, cyano, -NH2, -NH(Ci-C6 alkyl), -N(Ci-C6 alkyl)2, -NHC(0)(Ci-C6 alkyl), and nitro;
X is C6-C10 aryl that is optionally substituted with 1-4 Rb; or heteroaryl containing 5-14 ring atoms, wherein from 1-6 of the ring atoms is independently selected from N, NH, (Ci-C3 alkyl), O, and S, and wherein said heteroaryl is optionally substituted with 1-4 Rb;
each of L1 and L2 is, independently, C1-C3 alkylene, which is optionally substituted with from 1-2 independently selected Rc;
A is CRA1RA2, wherein one of RA1 and RA2 is independently selected from hydrogen, fluoro, chloro, C1-C3 alkyl, and OR9; and the other of RA1 and RA2 is independently selected from fluoro, chloro, C1-C3 alkyl, and OR9; wherein R9 is hydrogen or C1-C3 alkyl that is optionally substituted with hydroxyl or C1-C3 alkoxy;
Z is -NR10Rn or -OR12;
each of R10 and R11 is independently selected from the substituents delineated collectively in (a) through (k) below:
(a) hydrogen;
(b) C6-C10 aryl that is optionally substituted with from 1-4 Rb;
(c) heteroaryl containing from 5-14 ring atoms, wherein from 1-6 of the ring atoms is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl is optionally substituted with from 1 -4 Rb;
(d) C1-C6 alkyl or C1-C6 haloalkyl, each of which is optionally substituted with from
1-3 Rd;
(e) -C(0)(Ci-C6 alkyl), -C(0)(Ci-C6 haloalkyl), or -C(0)0(Ci-C6 alkyl);
(f) C2-C6 alkenyl or C2-C6 alkynyl;
and
(1) C7-Ci2 aralkyl, wherein the aryl portion is optionally the aryl portion from is optionally substituted with from 1-4 independently selected Rb,
provided that one of R10 and R11 must be selected from (b) and (c);
R12 is::
(i) C6-C10 aryl that is optionally substituted with from 1-4 Rb; or
(ii) heteroaryl containing from 5-14 ring atoms, wherein from 1-6 of the ring atoms is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl is optionally substituted with from 1 -4 Rb; R at each occurrence is, independently selected from halo, hydroxyl, d-d alkoxy, d-d thioalkoxy, C1-C6 haloalkoxy, C1-C6 thiohaloalkoxy, oxo, thioxo, =NH,
Figure imgf000050_0001
alkyl), C1-C6 alkyl, Ci-C6 haloalkyl, -NH2, -NH(Ci-C6 alkyl), -N(Ci-C6 alkyl)2, -NHC(0)(Ci-C6 alkyl), and cyano;
Rb at each occurrence is independently selected from the substituents delineated in (aa) through (dd) below:
(aa) C1-C6 alkoxy; C1-C6 haloalkoxy; C1-C6 thioalkoxy; C1-C6 thiohaloalkoxy; - 0(CH2)1_3[0(CH2)1.3]i-3H; d-d alkyl, d-d haloalkyl, -NH(d-d alkyl), -N(d-d alkyl)2, -NHC(0)(Ci-C6 alkyl), wherein the alkyl portion of each is optionally substituted with from 1-3 independently selected Re;
(bb) halo; hydroxyl; cyano; nitro; -NH2; azido; sulfhydryl; -d alkenyl; d-d alkynyl; -C(0)H; -C(0)(Ci-d alkyl); -C(0)(Ci-C6 haloalkyl); -C(0)OH; -C(0)0(Ci-C6 alkyl); -C(0)NH2; -C(0)NH(d-C6 alkyl); C(0)N(Ci-d alkyl)2; -S02(Ci-C6 alkyl); - S02NH2; -S02NH(d-d alkyl); -S02N(d-d alkyl)2;
(cc) C3-C6 cycloalkyl or heterocyclyl containing from 5-6 ring atoms, wherein from 1-2 of the ring atoms of the heterocyclyl is independently selected from N, NH, N(d-d alkyl), NC(0)(d-d alkyl), O, and S; and wherein each of said phenyl and heterocyclyl is optionally substituted with from 1-3 independently selected R ; and
(dd) phenyl or heteroaryl containing from 5-6 ring atoms, wherein from 1-2 of the ring atoms of the heteroaryl is independently selected from N, NH, N(d-d alkyl), O, and S; wherein each of said phenyl and heteroaryl is optionally substituted with from 1-3 substituents independently selected from halo; hydroxyl; cyano; nitro; -NH2; -NH(d-d alkyl), -N(d-C6 alkyl)2, -NHC(0)(d-C6 alkyl), d-C6 alkoxy; d-d haloalkoxy; d-d thioalkoxy; d-d thiohaloalkoxy; d-d alkyl, and d-d haloalkyl;
Rc at each occurrence is, independently selected from halo, d-d alkoxy, d-d thioalkoxy, d-d haloalkoxy, d-C6 thiohaloalkoxy, d-C6 alkyl, d-d haloalkyl, -NH2, -NH(d-d alkyl), - N(Ci-d alkyl)2, -NHC(0)(d-d alkyl), and cyano;
Rd at each occurrence is, independently selected from hydroxyl, d-d alkoxy, d-d thioalkoxy, d-C6 haloalkoxy, d-d thiohaloalkoxy, d-C6 alkyl, d-d haloalkyl, -NH2, -NH(d- d alkyl), -N(d-d alkyl)2, -NHC(0)(d-C6 alkyl), and cyano; and
Re at each occurrence is, independently selected from hydroxyl, d-d alkoxy; d-d thioalkoxy; d-d haloalkoxy; d-d thiohaloalkoxy; -NH2; -NH(d-d alkyl); -N(d-d alkyl)2; - NHC(0)(d-d alkyl); cyano; -C(0)H; -C(0)(d-C6 alkyl); -C(0)(d-C6 haloalkyl); -C(0)OH; - C(0)0(d-d alkyl); -C(0)NH2; -C(0)NH(d-C6 alkyl); -C(0)N(d-C6 alkyl)2; -S02(d-d alkyl); -SO2NH2; -S02NH(Ci-C6 alkyl); -S02N(Ci-C6 alkyl)2; and L3-(Ci-C6 alkylene)-biotin, where in L3 is a -0-, -NH-, -NCH3-, -C(0)-, -C(0)NH-, -C(0)NCH3-, -NHC(O)-, or -NCH3C(0)-;
or a pharmaceutically acceptable salt thereof.
In certain embodiments, compound of formula (VI) can have a R3 that is selected from halo, hydroxyl, sulfhydryl, Ci-C6 alkoxy, Ci-C6 thioalkoxy, Ci-C6 haloalkoxy, Ci-C6 thiohaloalkoxy, Q- C6 alkyl, Ci-C6 haloalkyl, C2-C6 alkynyl, cyclopropyl, -N3, cyano, -NH2, -NH(Ci-C6 alkyl), -N(d- Ce alkyl)2, -NHC(0)(Ci-C6 alkyl), and nitro. In some embodiments, R3 is halo such as bromo. In certain embodiments, each of Rls R2, R4 and R5 is hydrogen.
In certain embodiments, compound of formula (VI) can have X that is C6-C10 aryl substituted with one or more halo such as bromo. For example, X can be 4-bromophenyl. X can also be heteroaryl containing 5-14 ring atoms, wherein from 1-6 of the ring atoms is independently selected from N, NH, (Ci-C3 alkyl), O, and S, and wherein said heteroaryl is optionally substituted with 1-4 Rb. For example, X can be pyridine optionally substituted with 1-4 Rb.
In certain embodiments, compound of formula (VI) can have A that is CRA1RA2, wherein each of RA1 and RA2 is, independently, hydrogen, C1-C3 alkyl, or OR9. In some embodiments, one of RA1 and RA2 is OR9; and the other of RA1 and RA2 is hydrogen or C1-C3 alkyl. For example, one of RA1 and RA2 can be OH; and the other of RA1 and RA2 can be hydrogen.
In some embodiments, A is CRA1RA2 and wherein the carbon attached to RA1 and RA2 is substituted with four different substituents. The carbon attached to to RA1 and RA2 can be (R) or (S) configured. In an embodiment, the (R) configured formula (VI) compound can be substantially free of a formula (VI) compound that is S configured at the carbon atom attached to to RA1 and RA2. In some embodiments, the (S) configured formula (VI) compound can be substantially free of a formula (VI) compound that is (R) configured at the carbon atom attached to to RA1 and RA2.
The compound of formula (VI), in some embodiments, can be (+) or (-) (dextrorotatory). In some embodiments, the (+) (dextrorotatory) compound can be substantially free of a formula (I) compound that is (levororotatory). In some embodiments, the (-) (levororotatory) compound can be substantially free of a formula (I) compound that is (+) (dextrorotatory).
Any of the aforementioned compounds can be used in any of the methods or compositions described anywhere herein.
The presently disclosed embodiments relate generally to stimulating neurogenesis (e.g., post-natal neurogenesis, e.g., post-natal hippocampal and/or hypothalamic neurogenesis) and protecting neurons from death with a compound of formula (I) (and/or a compound of any of the other formulae described herein) or a salt (e.g., a pharmaceutically acceptable salt) thereof as defined anywhere herein.
For example, methods of promoting the generation of neurons are featured. As another example, methods of promoting the survival, growth, development and/or function of neurons, particularly CNS, brain, cerebral, hippocampal and hypothalamic neurons are featured. As a further example, methods of stimulating post-natal hippocampal and/or hypothalamic neurogenesis are featured.
In some embodiments, such methods can include in vitro methods, e.g., contacting a sample (e.g., a cell or tissue) with a compound of formula (I) (and/or a compound of any of the other formulae described herein) or a salt (e.g., a pharmaceutically acceptable salt) thereof as defined anywhere herein. In other embodiments, the methods can include administering a compound of formula (I) (and/or a compound of any of the other formulae described herein) or a salt (e.g., a pharmaceutically acceptable salt) thereof as defined anywhere herein to a subject (e.g., a mammal, such as a human).
Accordingly, in yet another aspect, the presently disclosed embodiments include and feature methods of screening for (thereby identifying) compounds that stimulate neurogenesis (e.g., postnatal neurogenesis, e.g., post-natal hippocampal and/or hypothalamic neurogenesis) or protect newborn neurons from cell death. E.g., such as those described in the Examples section.
In one aspect, methods for treating (e.g., controlling, relieving, ameliorating, alleviating, or slowing the progression of) or methods for preventing (e.g., delaying the onset of or reducing the risk of developing) one or more diseases, disorders, or conditions caused by, or associated with insufficient (e.g., aberrant) neurogenesis or unwanted neuronal cell death in a subject in need thereof are featured. The methods include administering to the subject an effective amount of a compound of formula (I) (and/or a compound of any of the other formulae described herein) or a salt (e.g., a pharmaceutically acceptable salt) thereof as defined anywhere herein to the subject.
In another aspect, the use of a compound of formula (I) (and/or a compound of any of the other formulae described herein) or a salt (e.g., a pharmaceutically acceptable salt) thereof as defined anywhere herein in the preparation of, or for use as, a medicament for the treatment (e.g., controlling, relieving, ameliorating, alleviating, or slowing the progression of) or prevention (e.g., delaying the onset of or reducing the risk of developing) of one or more diseases, disorders, or conditions caused by, or associated with, insufficient (e.g., aberrant) neurogenesis or unwanted neuronal cell death is featured.
In embodiments, the one or more diseases, disorders, or conditions can include
neuropathies, nerve trauma, and neurodegenerative diseases. In embodiments, the one or more
57 diseases, disorders, or conditions can be diseases, disorders, or conditions caused by, or associated with insufficient neurogenesis (e.g., aberrant hippocampal and/or hypothalamic neurogenesis) as is believed to occur in neuropsychiatric diseases, or aberrant neuronal cell death as is believed to occur in neurodegenerative diseases. Examples of the one or more diseases, disorders, or conditions include, but are not limited to, schizophrenia, major depression, bipolar disorder, normal aging, epilepsy, traumatic brain injury, post-traumatic stress disorder, Parkinson's disease, Alzheimer's disease, Down syndrome, spinocerebellar ataxia, amyotrophic lateral sclerosis, Huntington's disease, stroke, radiation therapy, chronic stress, and abuse of neuro-active drugs (such as alcohol, opiates, methamphetamine, phencyclidine, and cocaine), retinal degeneration, spinal cord injury, peripheral nerve injury, physiological weight loss associated with various conditions, and cognitive decline associated with normal aging, radiation therapy, and
chemotherapy.
In some embodiments, the subject can be a subject in need thereof (e.g., a subject identified as being in need of such treatment, such as a subject having, or at risk of having, one or more of the diseases or conditions described herein). Identifying a subject in need of such treatment can be in the judgment of a subject or a health care professional and can be subjective (e.g. opinion) or objective (e.g. measurable by a test or diagnostic method). In some embodiments, the subject can be a mammal. In certain embodiments, the subject can be a human.
In another aspect, methods of making the compounds described herein are featured. In embodiments, the methods include taking any one of the intermediate compounds described herein and reacting it with one or more chemical reagents in one or more steps to produce a compound of formula (I) (and/or a compound of any of the other formulae described herein) or a salt (e.g., a pharmaceutically acceptable salt) thereof as defined anywhere herein.
In some embodiments, compounds in which A is CHOH, and each of L1 and L2 is C1-C3 alkylene (e.g., each of L1 and L2 is CH2) can be converted to compounds in which A is C(O), and each of L1 and L2 is C1-C3 alkylene (e.g., each of L1 and L2 is CH2) that is substituted with C1-C6 thioalkoxy (e.g., -SCH3). The methods include contacting the starting material with an oxidizing agent sulfur trioxide pyridine complex (see, e.g., Example 7a and 7b).
In one aspect, methods of making the pharmaceutical compositions described herein are featured. In embodiments, the methods include taking any one or more of the compounds of formula (I) (and/or compounds of any of the other formulae described herein) or a salt (e.g., a pharmaceutically acceptable salt) thereof as defined anywhere herein, and mixing said
compound(s) with one or more pharmaceutically acceptable carriers. In one aspect, kits for the treatment (e.g., controlling, relieving, ameliorating, alleviating, or slowing the progression of) or prevention (e.g., delaying the onset of or reducing the risk of developing) of one or more diseases, disorders, or conditions caused by, or associated with insufficient (e.g., aberrant) neurogenesis or unwanted neuronal cell death are featured. The kits include (i) a compound of formula (I) (and/or compounds of any of the other formulae described herein) or a salt (e.g., a pharmaceutically acceptable salt) thereof as defined anywhere herein; and (ii) instructions that include a direction to administer said compound to a subject (e.g., a patient).
Embodiments can include, for example, any one or more of the following features.
R3 is selected from halo, hydroxyl, sulfhydryl, Ci-C6 alkoxy, Ci-C6 thioalkoxy, Ci-C6 haloalkoxy, C1-C6 thiohaloalkoxy, C1-C6 alkyl, C1-C6 haloalkyl, C2-C6 alkynyl, cyclopropyl, -N3, cyano, -NH2, -NH(Ci-C6 alkyl), -N(Ci-C6 alkyl)2, -NHC(0)(Ci-C6 alkyl), and nitro. In
embodiments, R3 is halo (e.g., bromo). In embodiments, each of R1, R2, and R4 is hydrogen.
R and R' together with C2 and C3, respectively, form a fused phenyl ring having formula
(II):
Figure imgf000054_0001
(II).
R6 is selected from halo, hydroxyl, sulfhydryl, Ci-Ce alkoxy, Ci-Ce thioalkoxy, Ci-Ce haloalkoxy, C1-C6 thiohaloalkoxy, C1-C6 alkyl, C1-C6 haloalkyl, C2-C6 alkynyl, cyclopropyl, -N3, cyano, -NH2, -NH(Ci-C6 alkyl), -N(Ci-C6 alkyl)2, -NHC(0)(Ci-C6 alkyl), and nitro. In
embodiments, R6 is halo (e.g., bromo) or C1-C6 alkyl (e.g., CH3). In embodiments, R6 is halo (e.g., bromo). In embodiments, each of R5, R7, and R8 is hydrogen.
In embodiments, each of R3 and R6 is an independently selected substituent that is other than hydrogen. In certain embodiments, each of R3 and R6 is independently selected from halo, hydroxyl, sulfhydryl, C1-C6 alkoxy, C1-C6 thioalkoxy, C1-C6 haloalkoxy, C1-C6 thiohaloalkoxy, Ci- C6 alkyl, Ci-C6 haloalkyl, C2-C6 alkynyl, cyclopropyl, -N3, cyano, -NH2, -NH(Ci-C6 alkyl), -N(d- Ce alkyl)2, -NHC(0)(Ci-C6 alkyl), and nitro. For example, R3 can be halo (e.g., bromo); and R6 can be halo (e.g., bromo) or C1-C6 alkyl (e.g., CH3); e.g., halo (e.g., bromo). In embodiments, each of R1, R2, and R4 is hydrogen; and each of R5, R7, and R8 is hydrogen. In embodiments, R and R' together with C2 and C3, respectively, form a fused heteroaryl ring containing from 5-6 ring atoms, wherein from 1-2 of the ring atoms is independently selected from N, NH, (Ci-C3 alkyl), O, and S; and wherein said heteroaryl ring is optionally substituted with from 1-3 independently selected Rb.
For example, R and R' together with C2 and C3, respectively, form a fused heteroaryl ring containing -6 ring atoms, wherein from 1-2 independently selected ring atoms is N; and wherein said heteroaryl ring is optionally substituted with from 1-2 independently selected Rb.
In embodiments, R and R' together with C2 and C3, respectively, form a fused heterocyclic ring containing from 5-6 ring atoms, wherein from 1-2 of the ring atoms is independently selected from N, NH, N(Ci-C6 alkyl), NC(0)(Ci-C6 alkyl), O, and S; and wherein said heterocyclic ring is optionally substituted with from 1-3 independently selected R .
For example, R and R' together with C2 and C3, respectively, form a fused heterocyclic ring containing 6 ring atoms, wherein from 1-2 of the ring atoms is independently selected from N, NH, N(Ci-C6 alkyl), and NC(0)(Ci-C6 alkyl); and wherein said heterocyclic ring is optionally substituted with from 1-3 independently selected R .
In embodiments, R and R' is, independently, hydrogen, C1-C6 alkyl, or C1-C6 haloalkyl (e.g., C1-C6 alkyl, or C1-C6 haloalkyl; e.g., C1-C6 alkyl).
Each of L1 and L2 is, independently, C1-C3 straight chain alkylene, which is optionally substituted with from 1-2 independently selected Rc. For example, each of L1 and L2 is CH2.
A is CRA1RA2, in which each of RA1 and RA2 is, independently, hydrogen, halo, C1-C3 alkyl, or OR9.
In some embodiments, A is other than C¾.
In embodiments, one of RA1 and RA2 can be independently selected from hydrogen, halo, C1-C3 alkyl, and OR9; and the other of RA1 and R^ can be independently selected from halo, C1-C3 alkyl, and OR9. For example, one of RA1 and RA2 is halo, C1-C3 alkyl, or OR9 (e.g., halo or OR9); and the other is hydrogen or C1-C3 alkyl.
In embodiments, one of RA1 and RA2 is halo, and the other of RA1 and RA2 is hydrogen or halo. For example, one of RA1 and R^ is fluoro, and the other of RA1 and RA2 is hydrogen or fluoro. In either embodiments, one of RA1 and RA2 is OR9; and the other of RA1 and RA2 is C1-C3 alkyl. For example, one of RA1 and R^ is OH; and the other of RA1 and R^ is CH3.
In embodiments, the carbon attached to RA1 and RA2 is substituted with four different substituents (for purposes of clarification, these four substituents include RA1 and RA2) and is therefore a stereogenic center. In certain embodiments, the carbon attached to R and R is (R) configured, meaning that the carbon attached to RA1 and RA2 has the (R) configuration (Cahn Ingold Prelog sequence rules notation). Such compounds are sometimes referred to herein as an "(/^-configured compound" (this term also includes compounds that further contain one or more stereogenic centers in addition to the (R)-CRA1RA2 stereogenic center).
In other embodiments, the carbon attached to RA1 and RA2 is (S) configured, meaning that the carbon attached to RA1 and RA2 has the (5) configuration (Cahn Ingold Prelog sequence rules notation). Such compounds are sometimes referred to herein as an "(S) -configured compound" (this term also includes compounds that further contain one or more stereogenic centers in addition to the (5)-CRA1RA2 stereogenic center).
In embodiments, the (R) configured compound (or salt, e.g., a pharmaceutically acceptable salt, thereof) is substantially free of (e.g., contains less than about 5% of, less than about 2% of, less than about 1%, less than about 0.5% of) a formula (I) compound (or salt thereof as described herein) that is (S) configured at the carbon attached to RA1 and RA2 (i.e., a formula (I) compound in which the carbon attached to RA1 and RA2 has the (5) configuration). For example, the (R) configured compound can be an (R)-enantiomer that is substantially free of its opposing (5) enantiomer. As another example, an (R) configured compound can be substantially free of a diastereomer in which the carbon attached to RA1 and RA2 has the (S) configuration. In certain embodiments, the (R) configured compound can be additionally in substantially pure form (e.g., contains less than about 5% of, less than about 2% of, less than about 1%, less than about 0.5% of other substances, including, for example, one or more of other formula (I) compounds, non- formula (I) compounds, or biological media).
In embodiments, the (S) configured compound (or salt, e.g., a pharmaceutically acceptable salt, thereof) is substantially free of (e.g., contains less than about 5% of, less than about 2% of, less than about 1%, less than about 0.5% of) a formula (I) compound (or salt thereof as described herein) that is (R) configured at the carbon attached to RA1 and RA2 (i.e., a formula (I) compound in which the carbon attached to RA1 and RA2 has the (R) configuration). For example, the (S) configured compound can be an (5)-enantiomer that is substantially free of its opposing (R) enantiomer. As another example, the (S) configured compound can be substantially free of a diastereomer in which the carbon attached to RA1 and RA2 has the (R) configuration. In certain embodiments, the (S) configured compound can be additionally in substantially pure form (e.g., contains less than about 5% of, less than about 2% of, less than about 1%, less than about 0.5% of other substances, including, for example, one or more of other formula (I) compounds, non- formula (I) compounds, or biological media). In certain embodiments, a formula (I) compound is (+) (dextrorotatory) when in the presence of plane polarized light.
In certain embodiments, a formula (I) compound is (-) (levororotatory) when in the presence of plane polarized light.
In embodiments, the (+) (dextrorotatory) compound is substantially free of (e.g., contains less than about 5% of, less than about 2% of, less than about 1%, less than about 0.5%) a formula (I) compound (or salt thereof as described herein) that is (-) (levororotatory). In certain embodiments, the (+) (dextrorotatory) compound can be additionally in substantially pure form (e.g., contains less than about 5% of, less than about 2% of, less than about 1%, less than about 0.5% of other substances, including, for example, one or more of other formula (I) compounds, non-formula (I) compounds, or biological media).
In embodiments, the (-) (levororotatory) compound is substantially free of (e.g., contains less than about 5% of, less than about 2% of, less than about 1%, less than about 0.5%) a formula (I) compound (or salt thereof as described herein) that is (+) (dextrorotatory). In certain embodiments, the (-) (levororotatory) compound can be additionally in substantially pure form (e.g., contains less than about 5% of, less than about 2% of, less than about 1%, less than about 0.5% of other substances, including, for example, one or more of other formula (I) compounds, non-formula (I) compounds, or biological media).
A is: (i) CRA1RA2, wherein each of RA1 and R^ is independently selected from hydrogen, halo, C1-C3 alkyl, and OR9, wherein R9 is C1-C3 alkyl that is optionally substituted with hydroxyl or C1-C3 alkoxy; or (ii) C=0.
A is CRA1RA2, wherein each of RA1 and RA2 is, independently, hydrogen, halo, C1-C3 alkyl, or OR9.
In embodiments, one of RA1 and RA2 is independently selected from hydrogen, halo, C1-C3 alkyl, and OR9; and the other of RA1 and RA2 is independently selected from halo, C1-C3 alkyl, and OR9.
In certain embodiments, one of RA1 and RA2 is halo, and the other of RA1 and RA2 is hydrogen, halo, or C1-C3 alkyl. In embodiments, one of RA1 and RA2 is halo, and the other of RA1 and RA2 is hydrogen. For example, one of RA1 and RA2 is fluoro, and the other of RA1 and RA2 is hydrogen.
In other embodiments, each of RA1 and RA2 is, independently, halo; e.g., each of RA1 and RA2 is fluoro.
In embodiments, one of RA1 and RA2 is -OH, and the other of RA1 and RA2 is hydrogen. In embodiments, A is CR R , wherein one of R and R is independently selected from hydrogen, halo, C1-C3 alkyl, and OR9; and the other of RA1 and RA2 is independently selected from halo, C1-C3 alkyl, and OR9; wherein R9 is hydrogen or C1-C3 alkyl that is optionally substituted with hydroxyl or C1-C3 alkoxy.
In certain embodiments, one of RA1 and RA2 is OR9, and the other is hydrogen, wherein R9 is hydrogen.
In embodiments, one of RA1 and RA2 is halo, and the other of RA1 and RA2 is hydrogen or halo. For example, one of RA1 and R^ is fluoro, and the other of RA1 and RA2 is hydrogen or fluoro.
In other embodiments, one of RA1 and RA2 is OR9; and the other of RA1 and RA2 is C1-C3 alkyl. For example, one of RA1 and R^ is OH; and the other of RA1 and R^ is CH3.
Z is: (i) -NR10Rn; or (ii) -C(O)NR10Rn; or (iii) -OR12; or (iv) -S(0)nR13, wherein n is 0, 1, or 2.
Z is -NR10Rn. In embodiments, one of R10 and R11 is: (b) C6-Ci0 aryl that is optionally substituted with from 1-4 Rb; or (c) heteroaryl containing from 5-14 ring atoms, wherein from 1-6 of the ring atoms is independently selected from N, NH, (Ci-C3 alkyl), O, and S; and wherein said heteroaryl is optionally substituted with from 1-4 Rb; and the other of R10 and R11 is hydrogen or Ci-Ce alkyl.
Z is -OR12 or -S(0)nR13.
In embodiments, Z is -OR12. In certain embodiments, R12 is C6-C10 aryl that is optionally substituted with from 1-4 Rb.
In embodiments, R12 is C1-C6 alkyl or C1-C6 haloalkyl (e.g., C1-C6 alkyl), each of which is substituted with from 1-3 Rd. In other embodiments, R12 is other than C1-C6 alkyl or C1-C6 haloalkyl (e.g., Ci-C6 alkyl), each of which is unsubstituted or substituted with from 1-3 Rd.
R3 can be selected from halo, hydroxyl, sulfhydryl, C1-C6 alkoxy, C1-C6 thioalkoxy, C1-C6 haloalkoxy, C1-C6 thiohaloalkoxy, C1-C6 alkyl, C1-C6 haloalkyl, cyano, -NH2, - H(Ci-C6 alkyl), N(Ci-C6 alkyl)2, -NHC(0)(Ci-C6 alkyl), and nitro. E.g., R3 can be halo (e.g., bromo). In embodiments, each of R1, R2, and R4 can be hydrogen.
L1 can be C1-C3 straight chain alkylene, which is optionally substituted with from 1-2 independently selected Rc. E.g., L1 can be CH2.
L2 can be C1-C3 straight chain alkylene, which is optionally substituted with from 1-2 independently selected Rc. E.g., L2 can be CH2.
Each of L1 and L2 can be, independently, C1-C3 straight chain alkylene, which is optionally substituted with from 1-2 independently selected Rc. E.g., each of L1 and L2 can be CH2. A can be CR R , in which each of R and R is, independently, hydrogen, halo, C1-C3 alkyl, or OR9.
A can be CRA1RA2, in which each of RA1 and R^ is, independently, hydrogen, halo, or Ci- C3 alkyl.
A can be CRA1RA2, in which one of RA1 and RA2 is halo (e.g., fluoro), and the other of RA1 and RA2 is, independently, hydrogen, halo, or C1-C3 alkyl (e.g., hydrogen).
A can be CRA1RA2, in which one of RA1 and RA2 is halo (e.g., fluoro), and the other of RA1 and RA2 is hydrogen.
One of RA1 and RA2 can be halo or OR9, and the other is hydrogen.
One of RA1 and RA2 can be OR9. In embodiments, the other of RA1 and RA2 can be as defined anywhere herein; e.g., the other of RA1 and RA2 can be hydrogen or C1-C3 alkyl. For example, one of RA1 and RA2 can be OR9, and the other of RA1 and RA2 is hydrogen. In embodiments, R9 can be hydrogen.
One of RA1 and RA2 can be halo. In embodiments, the other of RA1 and RA2 can be as defined anywhere herein; e.g., the other of RA1 and RA2 can be hydrogen, C1-C3 alkyl, or halo. For example, one of RA1 and RA2 can be halo (e.g., fluoro), and the other of RA1 and RA2 is hydrogen.
The carbon attached to RA1 and RA2 can have the R configuration.
The carbon attached to RA1 and RA2 can have the S configuration.
Each of L1 and L2 is, independently, C1-C3 alkylene, which is optionally substituted with from 1-2 independently selected Rc. E.g., each of L1 and L2 can be CH2.
Z can be -NR10Rn.
One of R10 and R11 can be C6-C10 aryl that is optionally substituted with from 1-4 Rb.
One of R10 and R11 can be C6-C10 aryl that is optionally substituted with from 1-4 Rb, and the other is hydrogen or Ci-C6 alkyl.
One of R10 and R11 can be C6-C10 aryl that is optionally substituted with from 1-4 Rb, and the other is hydrogen. For example, one of R10 and R11 can be unsubstituted phenyl, and the other is hydrogen. As another example, one of R10 and R11 can be phenyl that is substituted with 1 Rb, and the other is hydrogen. In embodiments, Rb can be C1-C6 alkoxy (e.g., OCH3). For example, one of R10 and R11 can be 3-methoxyphenyl, and the other is hydrogen.
Z can be -OR12. In embodiments, R12 can be C1-C6 alkyl or C1-C6 haloalkyl, each of which is optionally substituted with from 1-3 Rc. In other embodiments, R12 can be C6-C10 aryl that is optionally substituted with from 1-4 Rb. For example, R12 can be unsubstituted phenyl.
Z can be -S(0)nR13, in which n can be 0, 1, or 2. In other embodiments, R can be C6-C10 aryl that is optionally substituted with from 1-4 Rb. For example, R13 can be unsubstituted phenyl. Z can be heterocycloalkenyl containing from 5-6 ring atoms, wherein from 1 -3 of the ring atoms is independently selected from N, NH, N(Ci-C6 alkyl), NC(0)(Ci-C6 alkyl), O, and S; and wherein said heterocycloalkenyl is optionally substituted with from 1 -4 independently selected Ra
R and R' together with C2 and C3, respectively, form a fused phenyl ring having formula
(II):
Figure imgf000060_0001
R6 can be selected from halo, hydroxyl, sulfhydryl, Ci-Ce alkoxy, Ci-Ce thioalkoxy, Ci-Ce haloalkoxy, C1-C6 thiohaloalkoxy, C1-C6 alkyl, C1-C6 haloalkyl, cyano, -NH2, - H(Ci-C6 alkyl), N(Ci-C6 alkyl)2, -NHC(0)(Ci-C6 alkyl), and nitro. E.g., R6 can be halo (e.g., bromo). In embodiments, each of R5, R7, and R8 can be hydrogen. Any one or more of the R1, R2, R3, R4, L1, L2, A, and Z embodiments described herein can be combined with any one or more of the R5, R6, R7, and R8 embodiments described herein.
Each of L1 and L2 can be CH2.; A can be CRA1RA2, wherein one of RA1 and RA2 is OR9, and the other is hydrogen.; Z is -NR R ; and each of R and R can be independently selected from:
(a) hydrogen; (b) C6-C10 aryl that is optionally substituted with from 1-4 Rb; (d) C1-C6 alkyl or Ci- Ce haloalkyl, each of which is optionally substituted with from 1-3 Rd; and (f) C2-C6 alkenyl or C2- Ce alkynyl.
Each of R3 and R6 can be halo (e.g., bromo); and each of R1, R2, R4, R5, R7, and R8 can be hydrogen. R9 can be hydrogen. One of R10 and R11 can be C6-C10 aryl that is optionally substituted with from 1 -4 Rb, and the other is hydrogen. One of R10 and R11 can be unsubstituted phenyl, and the other is hydrogen. One of R10 and R11 can be phenyl that is substituted with 1 Rb, and the other is hydrogen. Rb can be C1-C6 alkoxy (e.g., OCH3). One of R10 and R11 can be 3-methoxyphenyl, and the other is hydrogen.
Each of L1 and L2 is CH2.; A is CRA1RA2, wherein one of RA1 and RA2 is OR9, and the other
10 11 10 11
is hydrogen.; Z is -NR R ; and each of R and R is independently selected from: (a) hydrogen;
(b) C6-C10 aryl that is optionally substituted with from 1 -4 Rb; (d) C1-C6 alkyl or C1-C6 haloalkyl, each of which is optionally substituted with from 1 -3 Rd; and (f) C2-C6 alkenyl or C2-C6 alkynyl. Embodiment can include one or more of the following features. Each of R3 and R6 is halo (e.g., bromo); and each of R1, R2, R4, R5, R7, and R8 is hydrogen. R9 can be hydrogen. One of R10 and R11 can be C6-C10 aryl that is optionally substituted with from 1-4 Rb, and the other is hydrogen. One of R10 and R11 can be unsubstituted phenyl, and the other is hydrogen. One of R10 and R11 can be phenyl that is substituted with 1 Rb, and the other is hydrogen. Rb can be C1-C6 alkoxy (e.g., OCH3). One of R10 and R11 can be 3-methoxyphenyl, and the other is hydrogen.
In embodiments, (A), (B), or (C) applies. In other embodiments, (A) and (B); or (A) and (C); or (B) and (C) applies. In still other embodiments, (A), (B), or (C) apply.
Each of R and R' can be, independently, hydrogen, Ci-C6 alkyl, or Ci-C6 haloalkyl. Each of R and R' can be, independently, C1-C6 alkyl (e.g., each of R and R' can be CH3). Each of R and R' can be hydrogen.
The compound having formula (I) can include any one or more of or be selected from:
R-l-(3,6-Dibromo-9H-carbazol-9-yl)-3-(3-methoxyphenylamino)-propan-2-ol;
5'-l-(3,6-Dibromo-9H-carbazol-9-yl)-3-(3-methoxyphenylamino)-propan-2-ol;
l-(3,6-dibromo-9H-carbazol-9-yl)-3-(2-iminopyridin-l(2H)-yl)propan-2-ol;
l-(3,6-dibromo-9H-carbazol-9-yl)-3-(phenylthio)propan-2-ol;
N-(3-(3,6-dibromo-9H-carbazol-9-yl)-2-hydroxypropyl)-N-(3-methoxyphenyl)acetamide;
5-((3,6-dibromo-9H-carbazol-9-yl)methyl)-3-(3-methoxyphenyl)-oxazolidin-2-one;
N-(3-(3,6-dibromo-9H-carbazol-9-yl)-2-fluoropropyl)-3-methoxyaniline;
l-(3,6-dibromo-9H-carbazol-9-yl)-3-(3-methoxyphenylamino)-propan-2-one;
N-(3-(3,6-dibromo-9H-carbazol-9-yl)-2-methoxypropyl)-3-methoxyaniline;
l-(3,6-Dimethyl-9H-carbazol-9-yl)-3-(3-methoxyphenylamino)propan-2-ol;
1 -(3 -Bromo-6-methyl-9H-carbazol-9-yl)-3 -(3 -methoxyphenylamino)-propan-2-ol;
l-(3,6-Dichloro-9H-carbazol-9-yl)-3-(3-methoxyphenylamino)propan-2-ol;
1 -(5-bromo-2,3 -dimethyl- 1 H-indol- 1 -yl)-3 -(phenylamino)propan-2-ol;
l-(3,6-Dibromo-9H-pyrido[3,4-b]indol-9-yl)-3-(phenylamino)propan-2-ol;
1 -(3 -Azidophenylamino)-3 -(3 ,6-dibromo-9H-carbazol-9-yl)propan-2-ol;
l,3-Bis(3,6-dibromo-9H-carbazol-9-yl)propan-2-ol;
l-(9H-Carbazol-9-yl)-3-(3,6-dibromo-9H-carbazol-9-yl)propan-2-ol;
3- (3,6-Dibromo-9H-carbazol-9-yl)-2-hydroxy-N-(3-methoxyphenyl)-propanamide;
Ethyl 5-(2-Hydroxy-3 -(3 -methoxyphenylamino)propyl)-8-methyl-3 ,4-dihydro- 1 H- pyrido[4,3-b]indole-2(5H)-carboxylate;
4- (3,6-dibromo-9H-carbazol-9-yl)-l-(phenylamino)butan-2-ol;
N-(3-(3,6-dibromo-9H-carbazol-9-yl)propyl)aniline; l-(3,6-dibromo-9H-carbazol-9-yl)-4-(phenylamino)butan-2-ol;
l-(3,6-dibromo-9H-carbazol-9-yl)-3-(pyridin-2-ylamino)propan-2-ol;
l-(3,6-dibromo-9H-carbazol-9-yl)-3-((3-methoxyphenyl)(methyl)-amino)propan-2-ol;
3 -(3 ,6-dibromo-9H-carbazol-9-yl)- 1 -(3 -methoxyphenylamino)- 1 -(methylthio)propan-2-one;
3-amino-l-(3-(3,6-dibromo-9H-carbazol-9-yl)-2-hydroxypropyl)pyridinium;
l-(3,6-dibromo-9H-carbazol-9-yl)-3-(pyrimidin-2-ylamino)propan-2-ol;
N-(3-(3,6-dibromo-9H-carbazol-9-yl)-2-fluoropropyl)-3-methoxy-N-methylaniline;
l-(3,6-dibromo-9H-carbazol-9-yl)-3-methoxypropan-2-ol;
l-(3,6-dibromo-9H-carbazol-9-yl)-4-phenylbutan-2-ol;
l-(3,6-dibromo-9H-carbazol-9-yl)-3-(lH-indol-l-yl)propan-2-ol;
3 -( 1 -(3 -(3 ,6-dibromo-9H-carbazol-9-yl)-2-hydroxypropyl)- 1 H- 1 ,2,3 -triazol-4-yl)propan- 1 - ol;
l-(3,6-dibromo-9H-carbazol-9-yl)-3-(3-ethoxyphenylamino)propan-2-ol;
l-(3,6-dibromo-9H-carbazol-9-yl)-3-(3,5-dimethyl-lH-pyrazol-l-yl)propan-2-ol;
l-(3,6-dibromo-9H-carbazol-9-yl)-3-(phenylsulfinyl)propan-2-ol;
l-(3,6-dibromo-9H-carbazol-9-yl)-3-(phenylsulfonyl)propan-2-ol;
l-(3-bromo-9H-carbazol-9-yl)-3-(3-methoxyphenylamino)propan-2-ol;
N-(5-(3-(3-(3,6-dibromo-9H-carbazol-9-yl)-2-hydroxypropylamino)phenoxy)pentyl)-2-(7- (dimethylamino)-2-oxo-2H-chromen-4-yl)acetamide;
l-(3,6-dibromo-9H-carbazol-9-yl)-3-phenoxypropan-2-ol;
N-(2-(3-(3,6-dibromo-9H-carbazol-9-yl)-2-hydroxypropoxy)ethyl)-acetamide;
l-(3,6-dibromo-9H-carbazol-9-yl)-3-(pyridin-3-ylamino)propan-2-ol;
l-(3,6-dibromo-9H-carbazol-9-yl)-3-(pyridin-4-ylamino)propan-2-ol;
l-(2,8-dimethyl-3,4-dihydro-lH-pyrido[4,3-b]indol-5(2H)-yl)-3-(phenylamino)propan-2-ol;
N-(3-(3,6-dibromo-9H-carbazol-9-yl)-2,2-difluoropropyl)-3-methoxyaniline;
l-(3,6-dibromo-9H-carbazol-9-yl)-3-phenoxypropan-2-ol;
l-(3,6-dibromo-9H-carbazol-9-yl)-3-(phenylamino)propan-2-ol;
l-(3,6-dibromo-9H-carbazol-9-yl)-3-(o-tolylamino)propan-2-ol;
l-(3,6-dibromo-9H-carbazol-9-yl)-3-(m-tolylamino)propan-2-ol;
l-(3,6-dibromo-9H-carbazol-9-yl)-3-(2-methoxyphenylamino)propan-2-ol;
l-(3,6-dibromo-9H-carbazol-9-yl)-3-(naphthalen-l-ylamino)propan-2-ol;
l-(4-bromophenylamino)-3-(3,6-dichloro-9H-carbazol-9-yl)propan-2-ol;
l-(4-bromophenylamino)-3-(3,6-dibromo-9H-carbazol-9-yl)propan-2-ol;
l-(3,6-dibromo-9H-carbazol-9-yl)-3-(4-ethoxyphenylamino)propan-2-ol; l-(4-chlorophenylamino)-3-(3,6-dibromo-9H-carbazol-9-yl)propan-2-ol; l-(3,6-dibromo-9H-carbazol-9-yl)-3-(phenethylamino)propan-2-ol;
l-(3,6-dibromo-9H-carbazol-9-yl)-3-(2-hydroxyethylamino)propan-2-ol; l-(3,6-dibromo-9H-carbazol-9-yl)-3-(2,4-dimethoxyphenylamino)propan-2-ol; l-(3,6-dibromo-9H-carbazol-9-yl)-3-(2,3-dimethylphenylamino)propan-2-ol; l-(2-chlorophenylamino)-3-(3,6-dibromo-9H-carbazol-9-yl)propan-2-ol; l-(tert-butylamino)-3-(3,6-dibromo-9H-carbazol-9-yl)propan-2-ol;
l-(3,6-dibromo-9H-carbazol-9-yl)-3-(isopropylamino)propan-2-ol;
l-(3,6-dibromo-9H-carbazol-9-yl)-3-(4-methoxyphenylamino)propan-2-ol; l-(3,6-dibromo-9H-carbazol-9-yl)-3-(3-methoxyphenylamino)propan-2-ol; l-(3,6-dibromo-9H-carbazol-9-yl)-3-(m-tolylamino)propan-2-ol;
l-(3,6-dibromo-9H-carbazol-9-yl)-3-(3,5-dimethylphenylamino)propan-2-ol; l-(3,6-dibromo-9H-carbazol-9-yl)-3-(3,4-dimethylphenylamino)propan-2-ol; l-(3,6-dibromo-9H-carbazol-9-yl)-3-(3,4-dimethylphenylamino)propan-2-ol; l-(3,6-dibromo-9H-carbazol-9-yl)-3-(2,5-dimethylphenylamino)propan-2-ol;
1 -(4-bromophenylamino)-3 -(2,3 -dimethyl- 1 H-indol- 1 -yl)propan-2-ol;
1 -(2,3-dimethyl- 1 H-indol- 1 -yl)-3 -(4-methoxyphenylamino)propan-2-ol;
1 -(2, 3-dim ethyl- 1 H-indol- 1 -yl)-3 -(4-ethoxyphenylamino)propan-2-ol;
l-(2,3-dimethyl-lH-indol-l-yl)-3-(p-tolylamino)propan-2-ol;
1 -(2,3-dimethyl- 1 H-indol- 1 -yl)-3 -(phenylamino)propan-2-ol oxalate;
1 -( 1 H-indol- 1 -yl)-3 -(4-methoxyphenylamino)propan-2-ol hydrochloride; l-(lH-indol-l-yl)-3-(phenylamino)propan-2-ol oxalate;
l-(3,4-dihydro-lH-carbazol-9(2H)-yl)-3-(m-tolylamino)propan-2-ol;
l-(9H-carbazol-9-yl)-3-(phenylamino)propan-2-ol;
l-(3,6-dichloro-9H-carbazol-9-yl)-3-(phenylamino)propan-2-ol;
l-(9H-carbazol-9-yl)-3-(p-tolylamino)propan-2-ol;
l-(3,6-dichloro-9H-carbazol-9-yl)-3-(p-tolylamino)propan-2-ol;
l-(3,6-dibromo-9H-carbazol-9-yl)-3-(p-tolylamino)propan-2-ol;
N-(4-(3-(9H-carbazol-9-yl)-2-hydroxypropoxy)phenyl)acetamide;
l-(9H-carbazol-9-yl)-3-phenoxypropan-2-ol;
l-(9H-carbazol-9-yl)-3-(4-methoxyphenylamino)propan-2-ol;
l-(benzylamino)-3-(9H-carbazol-9-yl)propan-2-ol;
methyl 4-(3-(9H-carbazol-9-yl)-2-hydroxypropoxy)benzoate;
l-(9H-carbazol-9-yl)-3-(4-methoxyphenoxy)propan-2-ol; l-amino-3-(3,6-dibromo-9H-carbazol-9-yl)propan-2-ol;
(S)-l-(3,6-dibromo-9H-carbazol-9-yl)-3-phenoxypropan-2-ol;
(R)-l-(3,6-dibromo-9H-carbazol-9-yl)-3-phenoxypropan-2-ol;
3,6-dibromo-9-(2-fluoro-3-phenoxypropyl)-9H-carbazole;
l-(3,6-dibromo-9H-carbazol-9-yl)-3-(3-methoxyphenylamino)-2-methylpropan-2-ol; 1 -(2, 8-dimethyl-3 ,4-dihydro- 1 H-pyrido[4,3 -b]indol-5(2H)-yl)-3 -(3 - methoxyphenylamino)propan-2-ol;
l-(4-azidophenylamino)-3-(3,6-dibromo-9H-carbazol-9-yl)propan-2-ol;
1 -(3 -azido-6-bromo-9H-carbazol-9-yl)-3 -(3 -methoxyphenylamino)propan-2-ol;
l-(3,6-dibromo-9H-carbazol-9-yl)-3-(4-methoxyphenoxy) propan-2-ol;
l-(3,6-dichloro-9H-carbazol-9-yl)-3-(phenylsulfonyl)propan-2-ol;
3,6-dibromo-9-(2-fluoro-3-(phenylsulfonyl)propyl)-9H-carbazole;
S)-l-(3,6-dibromo-9H-carbazol-9-yl)-3-(phenylsulfonyl) propan-2-ol;
(R)-l-(3,6-dibromo-9H-carbazol-9-yl)-3-(phenylsulfonyl) propan-2-ol;
l-(3,6-dicyclopropyl-9H-carbazol-9-yl)-3-(phenylamino) propan-2-ol;
l-(3,6-diiodo-9H-carbazol-9-yl)-3-(phenylamino)propan-2-ol;
1- (3,6-diethynyl-9H-carbazol-9-yl)-3-(3-methoxyphenylamino) propan-2-ol;
9-(2-hydroxy-3-(3-methoxyphenylamino)propyl)-9H-carbazole-3,6-dicarbonitrile;
N-(3-(3,6-dibromo-9H-carbazol-9-yl)-2-fluoropropyl)aniline;
3,6-dibromo-9-(2,2-difluoro-3-phenoxypropyl)-9H-carbazole;
N-(3-(3,6-dibromo-9H-carbazol-9-yl)-2-fluoropropyl)-4-methoxyaniline;
N-(2-bromo-3-(3,6-dibromo-9H-carbazol-9-yl)propyl)-N-(4-methoxyphenyl)-4- nitrobenzenesulfonamide;
Ethyl 2-(4-(3-(3,6-dibromo-9H-carbazol-9-yl)-2-fluoropropylamino)phenoxy)acetate; and
N-(3-(3,6-dibromo-9H-carbazol-9-yl)-2-fluoropropyl)-4-(2-(2- methoxyethoxy)ethoxy)aniline;
N-(2-(2-(4-(3-(3,6-dibromo-9H-carbazol-9-yl)-2- fluoropropylamino)phenoxy)acetamido)ethyl)-5-(2-oxohexahydro-lH-thieno[3,4-d]imidazol-4- yl)pentanamide;
2- (4-(3-(3,6-dibromo-9H-carbazol-9-yl)-2-fluoropropylamino)phenoxy)-N,N- dimethylacetamide;
2-(4-(3-(3,6-dibromo-9H-carbazol-9-yl)-2-fluoropropylamino)phenoxy)-N-(2- hydroxyethyl)acetamide;
l-(bis(4-bromophenyl)amino)-3-(phenylamino)propan-2-ol; (E)-3,6-dibromo-9-(3-phenoxyallyl)-9H-carbazole;
(E)-3 ,6-dibromo-9-(3 -phenoxyprop- 1 -en- 1 -yl)-9H-carbazole;
l-(3,6-bis(trifluoromethyl)-9H-carbazol-9-yl)-3-(phenylamino)propan-2-ol;
l-(2,8-Dibromo-10,l l-dihydro-5H-dibenzo[¾ |azepin-5-yl)-3-(3- methoxyphenylamino)propan-2-ol;
l-(3,6-Dibromo-9H-carbazol-9-yl)-3-(3-methoxyphenylthio)propan-2-ol;
l-(3,6-Dibromo-9H-carbazol-9-yl)-3-(4-methoxyphenylthio)propan-2-ol;
3,6-Dibromo-9-(2-fluoro-3-(3-methoxyphenylthio)propyl)-9H-carbazole;
3,6-Dibromo-9-(2-fluoro-3-(4-methoxyphenylthio)propyl)-9H-carbazole;
3,6-Dibromo-9-(2-fluoro-3-(3-methoxyphenylsulfonyl)propyl)-9H-carbazole;
l-(3,6-Dibromo-9H-carbazol-9-yl)-3-(3-methoxyphenylsulfonyl)propan-2-ol;
3,6-Dibromo-9-(2-fluoro-3-(4-methoxyphenylsulfonyl)propyl)-9H-carbazole;
l-(3,6-Dibromo-9H-carbazol-9-yl)-3-(4-methoxyphenylsulfonyl)propan-2-ol;
3- (3-(3,6-Dibromo-9H-carbazol-9-yl)-2-hydroxypropylthio)phenol;
4- (3-(3,6-Dibromo-9H-carbazol-9-yl)-2-hydroxypropylthio)phenol;
3- (3-(3,6-Dibromo-9H-carbazol-9-yl)-2-hydroxypropylsulfonyl)phenol;
4- (3-(3,6-Dibromo-9H-carbazol-9-yl)-2-hydroxypropylsulfonyl)phenol;
l-(3-Aminophenylthio)-3-(3,6-dibromo-9H-carbazol-9-yl)propan-2-ol;
l-(4-Aminophenylthio)-3-(3,6-dibromo-9H-carbazol-9-yl)propan-2-ol;
l-(3,6-dibromo-9H-carbazol-9-yl)-3-phenoxypropan-2-amine;
N-Benzyl-2-(3-(3-(3,6-dibromo-9H-carbazol-9-yl)-2-hydroxypropylthio)- phenoxy)acetamide;
N-Benzyl-2-(4-(3-(3,6-dibromo-9H-carbazol-9-yl)-2-hydroxypropylthio)- phenoxy)acetamide;
3- (3-(3,6-Dibromo-9H-carbazol-9-yl)-2-fluoropropylsulfonyl)phenol;N-Benzyl-2-(3-(3- (3,6-dibromo-9H-carbazol-9-yl)-2-hydroxypropylsulfonyl)-phenoxy)acetamide;
4- (3-(3,6-Dibromo-9H-carbazol-9-yl)-2-fluoropropylsulfonyl)phenol;
5- (5-(3-(3-(3,6-dibromo-9H-carbazol-9-yl)-2- hydroxypropylamino)phenoxy)pentylcarbamoyl)-2-(6-hydroxy-3-oxo-3H-xanthen-9-yl)benzoic acid;
l-(8-bromo-3,4-dihydro-lH-pyrido[4,3-b]indol-5(2H)-yl)-3-phenoxypropan-2-ol;
l-(8-bromo-2-cyclopropyl-3,4-dihydro-lH-pyrido[4,3-b]indol-5(2H)-yl)-3-phenoxypropan-
2-ol; 8-bromo-5-(2-hydroxy-3-phenoxypropyl)-3,4-dihydro-lH-pyrido[4,3-b]indole-2(5H)- carbonitrile;
8- bromo-5-(2-fluoro-3-phenoxypropyl)-2,3,4,5-tetrahydro-lH-pyrido[4,3-b]indole;
1- (cyclohexylamino)-3-(3,6-dibromo-9H-carbazol-9-yl)propan-2-ol;
(9-(2-hydroxy-3-(phenylthio)propyl)-9H-carbazole-3,6-dicarbonitrile;
9- (2-hydroxy-3-phenoxypropyl)-9H-carbazole-3,6-dicarbonitrile;
?-N-(3-(3,6-dibromo-9H-carbazol-9-yl)-2-fluoropropyl)-3-methoxyaniline
5- N-(3-(3,6-dibromo-9H-carbazol-9-yl)-2-fluoropropyl)-3-methoxyaniline
N-(2-(3,6-dibromo-9H-carbazol-9-yl)ethyl)aniline;
2- (6-Amino-3-imino-3H-xanthen-9-yl)-4-(6-(5-(3-(3-(3,6-dibromo-9H-carbazol-9-yl)-2- hydroxypropylamino)phenoxy)pentylamino)-6-oxohexylcarbamoyl)benzoic acid AND 2-(6-amino- 3-imino-3H-xanthen-9-yl)-5-(6-(5-(3-(3-(3,6-dibromo-9H-carbazol-9-yl)-2- hydroxypropylamino)phenoxy)pentylamino)-6-oxohexylcarbamoyl)benzoic acid;
l-(8-bromo-2-methyl-3,4-dihydro-lH-pyrido[4,3-/?]indol-5(2H)-yl)-3-phenoxypropan-2-ol;
6- ((4-bromophenyl)(2-hydroxy-3-phenoxypropyl)amino)nicotinonitrile;
l-(3-(3,6-dibromo-9H-carbazol-9-yl)-2-hydroxypropyl)pyridin-2(lH)-one;
or a salt (e.g., a pharmaceutically acceptable salt) thereof (or any one or a subset thereof, e.g., as delineated in the claims).
In certain embodiments, the compound having formula (I) can be l-(3,6-dibromo-9H- carbazol-9-yl)-3-(phenylamino)propan-2-ol; or a salt (e.g., a pharmaceutically acceptable salt) thereof.
In certain embodiments, the compound having formula (I)can be R-l-(3,6-Dibromo-9H- carbazol-9-yl)-3-(3-methoxyphenylamino)-propan-2-ol; or a salt (e.g., a pharmaceutically acceptable salt) thereof. In embodiments, R-l-(3,6-Dibromo-9H-carbazol-9-yl)-3-(3- methoxyphenylamino)-propan-2-ol or a salt (e.g., a pharmaceutically acceptable salt) thereof can be substantially free of (e.g., contains less than about 5% of, less than about 2% of, less than about 1%, less than about 0.5% of) 5'-l-(3,6-Dibromo-9H-carbazol-9-yl)-3-(3-methoxyphenylamino)- propan-2-ol or a salt (e.g., a pharmaceutically acceptable salt) thereof.
In certain embodiments, the compound having formula (I) can be 5'-l-(3,6-Dibromo-9H- carbazol-9-yl)-3-(3-methoxyphenylamino)-propan-2-ol; or a salt (e.g., a pharmaceutically acceptable salt) thereof. In embodiments, 5-l-(3,6-Dibromo-9H-carbazol-9-yl)-3-(3- methoxyphenylamino)-propan-2-ol or a salt (e.g., a pharmaceutically acceptable salt) thereof can be substantially free of (e.g., contains less than about 5% of, less than about 2% of, less than about 1%, less than about 0.5% of) R-l-(3,6-Dibromo-9H-carbazol-9-yl)-3-(3-methoxyphenylamino)- propan-2-ol or a salt (e.g., a pharmaceutically acceptable salt) thereof.
In certain embodiments, the compound having formula (I) can be the (+) (dextrorotatory) enantiomer of l-(3,6-Dibromo-9H-carbazol-9-yl)-3-(3-methoxyphenylamino)-propan-2-ol as described herein or a salt (e.g., a pharmaceutically acceptable salt) thereof. See, e.g., Example la and lb. In embodiments, the (+) (dextrorotatory) enantiomer of l-(3,6-Dibromo-9H-carbazol-9- yl)-3-(3-methoxyphenylamino)-propan-2-ol as described herein or a salt (e.g., a pharmaceutically acceptable salt) thereof can be substantially free of (e.g., contains less than about 5% of, less than about 2% of, less than about 1%, less than about 0.5% of) the (-) (levorotatory) enantiomer of 1- (3,6-Dibromo-9H-carbazol-9-yl)-3-(3-methoxyphenylamino)-propan-2-ol as described herein or a salt (e.g., a pharmaceutically acceptable salt) thereof.
In certain embodiments, the compound having formula (I) can be the (-) (levorotatory) enantiomer of l-(3,6-Dibromo-9H-carbazol-9-yl)-3-(3-methoxyphenylamino)-propan-2-ol as described herein or a salt (e.g., a pharmaceutically acceptable salt) thereof. See, e.g., Example la and lb. In embodiments, the (-) (levorotatory) enantiomer of l-(3,6-Dibromo-9H-carbazol-9-yl)-3- (3-methoxyphenylamino)-propan-2-ol as described herein or a salt (e.g., a pharmaceutically acceptable salt) thereof can be substantially free of (e.g., contains less than about 5% of, less than about 2% of, less than about 1%, less than about 0.5% of) the (+) (dextrorotatory) enantiomer of 1- (3,6-Dibromo-9H-carbazol-9-yl)-3-(3-methoxyphenylamino)-propan-2-ol as described herein or a salt (e.g., a pharmaceutically acceptable salt) thereof.
In certain embodiments, the compound can be (+) (dextrorotatory)-N-(3 -(3, 6-dibromo-9H- carbazol-9-yl)-2-fluoropropyl)-3-methoxyaniline as described herein or a salt (e.g., a
pharmaceutically acceptable salt) thereof. See, e.g., Example 144a and 144b. In embodiments, the (+) (levorotatory) enantiomer of N-(3-(3,6-dibromo-9H-carbazol-9-yl)-2-fluoropropyl)-3- methoxyaniline as described herein or a salt (e.g., a pharmaceutically acceptable salt) thereof can be substantially free of (e.g., contains less than about 5% of, less than about 2% of, less than about 1%, less than about 0.5% of) the (-) (dextrorotatory) enantiomer of N-(3-(3,6-dibromo-9H- carbazol-9-yl)-2-fluoropropyl)-3-methoxyaniline as described herein or a salt (e.g., a
pharmaceutically acceptable salt) thereof.
In certain embodiments, the compound can be (-) (dextrorotatory)-N-(3 -(3, 6-dibromo-9H- carbazol-9-yl)-2-fluoropropyl)-3-methoxyaniline as described herein or a salt (e.g., a
pharmaceutically acceptable salt) thereof. See, e.g., Example 144a and 144b. In embodiments, the (-) (levorotatory) enantiomer of N-(3-(3,6-dibromo-9H-carbazol-9-yl)-2-fluoropropyl)-3- methoxyaniline as described herein or a salt (e.g., a pharmaceutically acceptable salt) thereof can be substantially free of (e.g., contains less than about 5% of, less than about 2% of, less than about 1%, less than about 0.5% of) the (+) (dextrorotatory) enantiomer of N-(3-(3,6-dibromo-9H- carbazol-9-yl)-2-fluoropropyl)-3-methoxyaniline as described herein or a salt (e.g., a
pharmaceutically acceptable salt) thereof.
Compounds of formula (I), (II), (III), and (IV) are featured, including title compounds of Examples la, lb, 3a, 3b, 3d, 6a, 10, 13, 21, 22, 88b, 90, 92, 96, 97a, 97b, 102, 116, 117, 118, 119, 120, 121, 122, 132, 143, and 144a; or a pharmaceutically acceptable salt thereof.
In various embodiments, compounds of formula (I), (II), (III), and (IV) can be used in a method for the treatment of a disease, disorder, or condition caused by unwanted neuronal cell death or associated with insufficient neurogenesis in a subject in need thereof. The method can include administering to the subject an effective amount of a compound having formula (I), (II), (III), or (VI), or a pharmaceutically acceptable salt thereof, as defined herein.
The methods can further include detecting a resultant neurotrophism (e.g., neurogenesis; and/or determining that the patient has aberrant neurotrophism, particularly aberrant neurogenesis, particularly aberrant hippocampal and/or hypothalamic neurogenesis, or a disease or disorder associated therewith, particularly by detecting and/or diagnosing the same.
The methods can further include detecting a resultant neurotrophism.
The methods can further include detecting determining that the subject has aberrant neurogenesis or death of neurons or a disease or disorder associated therewith, by detecting the same in said subject.
The methods can further include detecting a resultant hippocampal and/or hypothalamic neurogenesis.
The disease, disorder, or condition can be a neuropsychiatric and neurodegenerative disease, including (but not limited to) schizophrenia, major depression, bipolar disorder, normal aging, epilepsy, traumatic brain injury, post-traumatic stress disorder, Parkinson's disease, Alzheimer's disease, Down syndrome, spinocerebellar ataxia, amyotrophic lateral sclerosis, Huntington's disease, stroke, radiation therapy, chronic stress, and abuse of neuro-active drugs (such as alcohol, opiates, methamphetamine, phencyclidine, and cocaine), retinal degeneration, spinal cord injury, peripheral nerve injury, physiological weight loss associated with various conditions, and cognitive decline associated with normal aging, and chemotherapy.
In some embodiments, the compounds having formula (I) or a salt (e.g., a pharmaceutically acceptable salt) thereof provide at least about 27 (xlO 06) BrdU+ cells / mm3 dentate gyrus when evaluated in the assay described in conjunction with Table 1 (i.e., evaluated for pro-neurogenic efficacy / neuroprotection in our standard in vivo assay at 10 μΜ concentration in four 12 week old adult male C57/B16 mice..
In some embodiments, the compounds having formula (I) or a salt (e.g., a pharmaceutically acceptable salt) thereof provide at least about 19 (xlO 06) BrdU+ cells / mm3 dentate gyrus when evaluated in the assay described in conjunction with Table 1.
In some embodiments, the compounds having formula (I) or a salt (e.g., a pharmaceutically acceptable salt) thereof provide from about 18 to about 30 (e.g., 18-27, 19-26, 20-25, 27-30, 27-29) (xlO"06) BrdU+ cells / mm dentate gyrus when evaluated in the assay described in conjunction with Table 1.
In some embodiments, the compounds having formula (I) or a salt (e.g., a pharmaceutically acceptable salt) thereof provide from about 18 to about 26 (e.g., 19-26, 20-25) (xlO 06) BrdU+ cells / mm3 dentate gyrus when evaluated in the assay described in conjunction with Table 1.
In some embodiments, the compounds having formula (I) or a salt (e.g., a pharmaceutically acceptable salt) thereof provide from about 27 to about 30 (e.g., 27-29) (xlO 06) BrdU+ cells / mm3 dentate gyrus when evaluated in the assay described in conjunction with Table 1.
In embodiments, a composition (e.g., a pharmaceutical composition) can include an amount effective to achieve the levels described above.
In embodiments, any compound, composition, or method described herein can also include any one or more of the other features delineated in the detailed description and/or in the claims.
Definitions
The term "mammal" includes organisms, which include mice, rats, cows, sheep, pigs, rabbits, goats, horses, monkeys, dogs, cats, and humans.
"An effective amount" refers to an amount of a compound that confers a therapeutic effect (e.g., treats, e.g., controls, relieves, ameliorates, alleviates, or slows the progression of; or prevents, e.g., delays the onset of or reduces the risk of developing, a disease, disorder, or condition or symptoms thereof) on the treated subject. The therapeutic effect may be objective (i.e., measurable by some test or marker) or subjective (i.e., subject gives an indication of or feels an effect An effective amount of the compound described above may range from about 0.01 mg/kg to about 1000 mg/kg, (e.g., from about 0.1 mg/kg to about 100 mg/kg, from about 1 mg/kg to about 100 mg/kg). Effective doses will also vary depending on route of administration, as well as the possibility of co-usage with other agents.
The term "halo" or "halogen" refers to any radical of fluorine, chlorine, bromine or iodine. In general, and unless otherwise indicated, substituent (radical) prefix names are derived from the parent hydride by either (i) replacing the "ane" in the parent hydride with the suffixes "yl," "diyl," "triyl," "tetrayl," etc.; or (ii) replacing the "e" in the parent hydride with the suffixes "yl," "diyl," "triyl," "tetrayl," etc. (here the atom(s) with the free valence, when specified, is (are) given numbers as low as is consistent with any established numbering of the parent hydride).
Accepted contracted names, e.g., adamantyl, naphthyl, anthryl, phenanthryl, furyl, pyridyl, isoquinolyl, quinolyl, and piperidyl, and trivial names, e.g., vinyl, allyl, phenyl, and thienyl are also used herein throughout. Conventional numbering/lettering systems are also adhered to for substituent numbering and the nomenclature of fused, bicyclic, tricyclic, polycyclic rings.
The following definitions are used, unless otherwise described. Specific and general values listed below for radicals, substituents, and ranges, are for illustration only; they do not exclude other defined values or other values within defined ranges for the radicals and substituents. Unless otherwise indicated, alkyl, alkoxy, alkenyl, and the like denote both straight and branched groups.
The term "alkyl" refers to a saturated hydrocarbon chain that may be a straight chain or branched chain, containing the indicated number of carbon atoms. For example, C\-Ce alkyl indicates that the group may have from 1 to 6 (inclusive) carbon atoms in it. Any atom can be optionally substituted, e.g., by one or more subsituents. Examples of alkyl groups include without limitation methyl, ethyl, w-propyl, isopropyl, and tert-butyl.
As used herein, the term "straight chain Cn_m alkylene," employed alone or in combination with other terms, refers to a non-branched divalent alkyl linking group having n to m carbon atoms. Any atom can be optionally substituted, e.g., by one or more subsituents. Examples include methylene (i.e., -CH2-).
The term "haloalkyl" refers to an alkyl group, in which at least one hydrogen atom is replaced by halo. In some embodiments, more than one hydrogen atom (e.g., 2, 3, 4, 5, 6, 7, 8, 9, 10, 1 1, 12, 13, or 14 ) are replaced by halo. In these embodiments, the hydrogen atoms can each be replaced by the same halogen (e.g., fluoro) or the hydrogen atoms can be replaced by a combination of different halogens (e.g., fluoro and chloro). "Haloalkyl" also includes alkyl moieties in which all hydrogens have been replaced by halo (sometimes referred to herein as perhaloalkyl, e.g., perfluoroalkyl, such as trifluoromethyl). Any atom can be optionally substituted, e.g., by one or more substituents.
As referred to herein, the term "alkoxy" refers to a group of formula
-O(alkyl). Alkoxy can be, for example, methoxy (-OCH3), ethoxy, propoxy, isopropoxy, butoxy, iso-butoxy, sec-butoxy, pentoxy, 2-pentoxy, 3-pentoxy, or hexyloxy. Likewise, the term
"thioalkoxy" refers to a group of formula -S(alkyl). Finally, the terms "haloalkoxy" and "thioalkoxy" refer to -0(haloalkyl) and -S(haloalkyl), respectively. The term "sulfhydryl" refers to -SH. As used herein, the term "hydroxyl," employed alone or in combination with other terms, refers to a group of formula -OH.
The term "aralkyl" refers to an alkyl moiety in which an alkyl hydrogen atom is replaced by an aryl group. One of the carbons of the alkyl moiety serves as the point of attachment of the aralkyl group to another moiety. Any ring or chain atom can be optionally substituted e.g., by one or more substituents. Non-limiting examples of "aralkyl" include benzyl, 2-phenylethyl, and 3- phenylpropyl groups.
The term "alkenyl" refers to a straight or branched hydrocarbon chain containing the indicated number of carbon atoms and having one or more carbon-carbon double bonds. Any atom can be optionally substituted, e.g., by one or more substituents. Alkenyl groups can include, e.g., vinyl, allyl, 1-butenyl, and 2-hexenyl. One of the double bond carbons can optionally be the point of attachment of the alkenyl substituent.
The term "alkynyl" refers to a straight or branched hydrocarbon chain containing the indicated number of carbon atoms and having one or more carbon-carbon triple bonds. Alkynyl groups can be optionally substituted, e.g., by one or more substituents. Alkynyl groups can include, e.g., ethynyl, propargyl, and 3-hexynyl. One of the triple bond carbons can optionally be the point of attachment of the alkynyl substituent.
The term "heterocyclyl" refers to a fully saturated monocyclic, bicyclic, tricyclic or other polycyclic ring system having one or more constituent heteroatom ring atoms independently selected from O, N (it is understood that one or two additional groups may be present to complete the nitrogen valence and/or form a salt), or S. The heteroatom or ring carbon can be the point of attachment of the heterocyclyl substituent to another moiety. Any atom can be optionally substituted, e.g., by one or more substituents. Heterocyclyl groups can include, e.g.,
tetrahydrofuryl, tetrahydropyranyl, piperidyl (piperidino), piperazinyl, morpholinyl (morpholino), pyrrolinyl, and pyrrolidinyl. By way of example, the phrase "heterocyclic ring containing from 5-6 ring atoms, wherein from 1-2 of the ring atoms is independently selected from N, NH, (Ci-C6 alkyl), NC(0)(Ci-C6 alkyl), O, and S; and wherein said heterocyclic ring is optionally substituted with from 1-3 independently selected R " would include (but not be limited to) tetrahydrofuryl, tetrahydropyranyl, piperidyl (piperidino), piperazinyl, morpholinyl (morpholino), pyrrolinyl, and pyrrolidinyl.
The term "heterocycloalkenyl" refers to partially unsaturated monocyclic, bicyclic, tricyclic, or other polycyclic hydrocarbon groups having one or more (e.g., 1-4) heteroatom ring atoms independently selected from O, N (it is understood that one or two additional groups may be present to complete the nitrogen valence and/or form a salt), or S. A ring carbon (e.g., saturated or unsaturated) or heteroatom can be the point of attachment of the heterocycloalkenyl substituent. Any atom can be optionally substituted, e.g., by one or more substituents. Heterocycloalkenyl groups can include, e.g., dihydropyridyl, tetrahydropyridyl, dihydropyranyl, 4,5-dihydrooxazolyl, 4,5-dihydro-lH-imidazolyl, 1,2,5,6-tetrahydro-pyrimidinyl, and 5,6-dihydro-2H-[l,3]oxazinyl.
The term "cycloalkyl" refers to a fully saturated monocyclic, bicyclic, tricyclic, or other polycyclic hydrocarbon groups. Any atom can be optionally substituted, e.g., by one or more substituents. A ring carbon serves as the point of attachment of a cycloalkyl group to another moiety. Cycloalkyl moieties can include, e.g., cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, adamantyl, and norbornyl (bicycle[2.2.1]heptyl).
The term "cycloalkenyl" refers to partially unsaturated monocyclic, bicyclic, tricyclic, or other polycyclic hydrocarbon groups. A ring carbon (e.g., saturated or unsaturated) is the point of attachment of the cycloalkenyl substituent. Any atom can be optionally substituted e.g., by one or more substituents. Cycloalkenyl moieties can include, e.g., cyclohexenyl, cyclohexadienyl, or norbornenyl.
As used herein, the term "cycloalkylene" refers to a divalent monocyclic cycloalkyl group having the indicated number of ring atoms.
As used herein, the term "heterocycloalkylene" refers to a divalent monocyclic heterocyclyl group having the indicated number of ring atoms.
The term "aryl" refers to an aromatic monocyclic, bicyclic (2 fused rings), or tricyclic (3 fused rings), or polycyclic (> 3 fused rings) hydrocarbon ring system. One or more ring atoms can be optionally substituted, e.g., by one or more substituents. Aryl moieties include, e.g., phenyl and naphthyl.
The term "heteroaryl" refers to an aromatic monocyclic, bicyclic (2 fused rings), tricyclic (3 fused rings), or polycyclic (> 3 fused rings) hydrocarbon groups having one or more heteroatom ring atoms independently selected from O, N (it is understood that one or two additional groups may be present to complete the nitrogen valence and/or form a salt), or S. One or more ring atoms can be optionally substituted, e.g., by one or more substituents.
Examples of heteroaryl groups include, but are not limited to, 2H-pyrrolyl, 3H-indolyl, 4H- quinolizinyl, acridinyl, benzo[b]thienyl, benzothiazolyl, β-carbolinyl, carbazolyl, coumarinyl, chromenyl, cinnolinyl, dibenzo[b,d]furanyl, furazanyl, furyl, imidazolyl, imidizolyl, indazolyl, indolyl, isobenzofuranyl, isoindolyl, isoquinolyl, isothiazolyl, isoxazolyl, naphthyridinyl, oxazolyl, perimidinyl, phenanthridinyl, phenanthrolinyl, phenarsazinyl, phenazinyl, phenothiazinyl, phenoxathiinyl, phenoxazinyl, phthalazinyl, pteridinyl, purinyl, pyranyl, pyrazinyl, pyrazolyl, pyridazinyl, pyridyl, pyrimidinyl, pyrrolyl, quinazolinyl, quinolyl, quinoxalinyl, thiadiazolyl, thianthrenyl, thiazolyl, thienyl, triazolyl, and xanthenyl.
The terms "arylcycloalkyl" and "arylheterocyclyl" refer to bicyclic, tricyclic, or other polycyclic ring systems that include an aryl ring fused to a cycloalkyl and heterocyclyl, respectively. Similarly, the terms "heteroarylheterocyclyl," and "heteroarylcycloalkyl" refer to bicyclic, tricyclic, or other polycyclic ring systems that include a heteroaryl ring fused to a heterocyclyl and cycloalkyl, respectively. Any atom can be substituted, e.g., by one or more substituents. For example, arylcycloalkyl can include indanyl; arylheterocyclyl can include 2,3- dihydrobenzofuryl, 1,2,3,4-tetrahydroisoquinolyl, and 2,2-dimethylchromanyl.
The descriptors "C=0" or "C(O)" refers to a carbon atom that is doubly bonded to an oxygen atom.
The term "oxo" refers to double bonded oxygen when a substituent on carbon. When oxo is a substituent on nitrogen or sulfur, it is understood that the resultant groups has the structures N→0" and S(O) and S02, respectively.
As used herein, the term "cyano," employed alone or in combination with other terms, refers to a group of formula -CN, wherein the carbon and nitrogen atoms are bound together by a triple bond.
In general, when a definition for a particular variable includes both hydrogen and non- hydrogen (halo, alkyl, aryl, etc.) possibilities, the term "substituent(s) other than hydrogen" refers collectively to the non-hydrogen possibilities for that particular variable.
The term "substituent" refers to a group "substituted" on, e.g., an alkyl, haloalkyl, cycloalkyl, heterocyclyl, heterocycloalkenyl, cycloalkenyl, aryl, or heteroaryl group at any atom of that group. In one aspect, the substituent(s) on a group are independently any one single, or any combination of two or more of the permissible atoms or groups of atoms delineated for that substituent. In another aspect, a substituent may itself be substituted with any one of the above substituents.
Further, as used herein, the phrase "optionally substituted" means unsubstituted (e.g., substituted with a H) or substituted. As used herein, the term "substituted" means that a hydrogen atom is removed and replaced by a substituent. It is understood that substitution at a given atom is limited by valency.
Descriptors such as "C6-C10 aryl that is optionally substituted with from 1 -4 independently selected Rb" (and the like) is intended to include both an unsubstituted C6-C10 aryl group and a Ce- C10 aryl group that is substituted with from 1 -4 independently selected Rb. The use of a substituent (radical) prefix names such as alkyl without the modifier "optionally substituted" or "substituted" is understood to mean that the particular substituent is unsubstituted. However, the use of "haloalkyl" without the modifier "optionally substituted" or "substituted" is still understood to mean an alkyl group, in which at least one hydrogen atom is replaced by halo.
In some embodiments, Rb can be as defined in any one, two, three, or all of (aa) through (dd). For example, Rb can be as defined in (aa) and (bb) or combinations thereof.
The phrase "Cy is a saturated, partially unsaturated or aromatic carbocyclic or heterocyclic ring system" in the definition of Re is understood to include each of the rings systems defined above (e.g., Cy can be coumarinyl or the ring component of biotin optionally substituted as defined anywhere herein).
The details of one or more embodiments are set forth in the description below. Other features and advantages of the presently disclosed embodiments will be apparent from the description and from the claims.
BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1: Pulse-chase analysis of BrdU-labeling identified magnitude and timing of cell death following birth of new neurons in the dentate gyrus. 12 week old wild type male C57/B6 mice were individually housed without access to running wheels and injected on day 0 with BrdU (50 mg/kg, i.p.). Neural precursor cell proliferation in the dentate gyrus (DG) subgranular zone (SGZ) and granular layer (GL) was subsequently monitored through immunohistochemistry for BrdU on days 1, 5, 10, 15, 20, and 25 days post-injection. Four mice were evaluated at each time point, and 25-30 adjacent coronal sections through the hippocampus (progressing posteriorly from the point where the suprapyramidal and infrapyramidal blades are joined at the crest region and the dentate gyrus is oriented horizontally beneath the corpus callosum) from each mouse were examined. On days 1 and 5, almost 100% of BrdU-positive cells within the DG were localized in the SGZ. The total number of cells decreased approximately 40% between days 1 and 5, in accordance with the appearance of apoptotic cell bodies in the SGZ. By day 10, some BrdU positive cells had migrated into the GL, with no significant change in total number of BrdU-positive cells in the DG. By day 15, BrdU-positive cells in the SGZ declined as the number of BrdU-positive cells in the GL stayed constant, suggesting that some of the cells migrating out of the SGZ and into the GL between days 10 and 15 underwent apoptosis. This trend continued through days 20-25. These results indicated that daily injection of BrdU over a one week period of continuous molecule infusion, a time period during which 40% of newborn cells in the SGZ normally die, would allow detection of compounds that enhance either proliferation or survival of newborn cells in the dentate gyrus. Figure 2: Surgical placement of cannula and pumps did not affect hippocampal neurogenesis or survival of newborn neurons on the contralateral side of the brain. Mice infused with vehicle (artificial cerebrospinal fluid) over seven days by means of surgically implanted Alzet osmotic minipumps (Vehicle Infusion, n=5) displayed no difference in hippocampal neural precursor cell proliferation, as assessed by BrdU incorporation normalized for dentate gyrus volume, from mice treated identically except not having undergone surgery (No Surgery, n=4). When Alzet osmotic minipumps were loaded with fibroblast growth factor 2 (FGF-2; 10 mg/mL) (n=5), however, hippocampal neural precursor cell proliferation roughly doubled with respect to both of the other two groups(*, p<0.001, Student's / test).
Figure 3: Ectopic incorporation of BrdU served to eliminate molecules from further consideration. Immunohistochemical staining of BrdU in the hippocampal field should normally be restricted to the SGZ of the dentate gyrus, as shown on the left. The in vivo neurogenic screen employed was designed to detect small molecules that selectively stimulated BrdU incorporation into replicating cells of the SGZ. Infrequently, some compounds exhibited non-specific BrdU incorporation in ectopic regions, such as CA3, CA1, cortex, and striatum, as shown on the right. Any molecules that demonstrated ectopic incorporation of BrdU were eliminated from the study.
Figure 4: Screening of 100 pools of 10 compounds identified 10 pools with pro-neurogenic efficacy. The total number of BrdU-labeled cells in the dentate gyrus subgranular zone (SGZ) approximately doubled following seven day infusion with fibroblast growth factor 2 (FGF-2; 10 mg/mL) (n=5) relative to mice infused with vehicle (artificial cerebrospinal fluid (aCSF) (n=5). Each pool of ten compounds was tested for pro-neurogenic efficacy over a 7 day period in two independent mice at 10 μΜ concentration for each individual compound. Pools 7, 14, 18, 19, 41, 53, 54, 61, 69 and 70 displayed comparable stimulation of neural precursor cell proliferation as FGF-2 infusion. The majority of pools displayed no effect on hippocampal neural precursor cell proliferation.
Figure 5: Re-evaluation of positive pools verified statistical significance of enhanced BrdU- incorporation. Subsequent to their initial identification, pools 7, 14, 18, 19, 41, 53, 54, 61, 69, and 70 were re-evaluated in 2 additional mice each. Results shown are average with SEM of all 4 mice evaluated for each compound. All pools significantly (*, PO.001, Student's t test) stimulated neural precursor cell proliferation in the hippocampal dentate gyrus SGZ relative to vehicle control. Figure 6: Pro-neurogenic pools were broken down to identify individual pro-neurogenic compounds. (A) In vivo evaluation of the ten individual compounds that composed pool #7 revealed that compound #3 stimulated either the proliferation or survival of neural precursor cells in the SGZ, whereas the remaining individual components of pool #7 did not. In this document this molecule is interchangeably referred to as "P7C3" or "Example 45 Compound." Each compound was infused at two different concentrations (100 μΜ (A and B) and 10 μΜ (C and D)) in two mice each. Example 45 Compound showed either pro-neurogenic or neuroprotective activity at both concentrations. Below the graphs are typical results of BrdU incorporation in the SGZ, which is notably greater in animals infused with either Pool #7 or Example 45 Compound. (B) Molecular formulas and weights of individual pro-neurogenic compounds identified through the in vivo screen. (C) Re-supplied compounds were evaluated in three mice per compound at 10μΜ concentration to verify that the pro-neurogenic or neuroprotective effect on neural stem cells was not an artifact of storage conditions in the UTSWMC chemical compound library. Re-supplied compounds were verified to be 99% pure by mass spectrometry and shown to retain either pro- pro liferative or neuroprotective properties in vivo in neural stem cells. All compounds significantly (*, PO.001, Student's t test) stimulated neural precursor cell proliferation in the hippocampal dentate gyrus SGZ relative to vehicle control.
Figure 7: Neurogenic efficacy of orally administered Example 45 Compound was dose-related. The graph on the top shows that the concentration of Example 45 Compound in brain tissue of mice that were administered compound by daily oral gavage for 7 consecutive days correlated with the dose of Example 45 Compound administered. The graph on the bottom shows that pro-neurogenic or neuroprotective efficacy of Example 45 Compound was roughly double that of vehicle control at doses ranging from 5 to 40 mg/kg. At decreasing dosage of Example 45 Compound the amount of neurogenesis decreased accordingly, until it reached levels no greater than vehicle control at compound doses below 1.0 mg/kg. Results shown are the average obtained from analysis of 5 adult wild type male mice at each dose.
Figure 8: Analysis of molecules related structurally to Example 45 Compound (P7C3) revealed a region of the compound that could be chemically modified without loss of in vivo activity. An in vivo SAR study was conducted using 37 chemical analogs of Example 45 Compound, each evaluated in 4 or 5 adult C57/B6 male mice. Some analogs revealed activity comparable to the parent compound, whereas others showed significantly diminished activity, or evidence of pro- neurogenic effect intermediate between vehicle and FGF controls. This exercise enabled identification of regions of the parent compound that might be amenable to chemical modification without loss of activity. As an example, Example 62 Compound retained robust activity with the aniline ring of Example 45 Compound substituted by an anisidine. This derivative compound was exploited to yield a fluorescent derivative by attaching a coumarin moiety to the N-phenyl ring.
Figure 9: Activity of Example 62 Compound is enantiomer-specific. (A) (+) and (-) enantiomers of Example 62 Compound were prepared. (B) Evaluation of Example 62 Compound enantiomers showed that in vivo pro-neurogenic or neuroprotective efficacy was fully retained by the (+) enantiomer in a dose-dependent manner, while the (-) enantiomer showed diminished activity. Each enantiomer was evaluated at each dose in between 3 and 5 three month old adult wild type male C57/B6 mice.
Figure 10: Example 45 Compound enhances the survival of newborn neurons in the dentate gyrus. (A) Immunohistochemical staining for doublecortin (DCX), an antigen specifically and transiently expressed in proliferating hippocampal neural precursor cells when they become irreversibly committed to neuronal differentiation, was substantially increased in newborn neurons in mice that were administered Example 45 Compound (20 mg/kg) daily for 30 days by oral gavage, relative to that seen in mice that received vehicle only. These results are representative of 10 sections each from 5 mice in each group, and demonstrate that Example 45 Compound specifically promoted hippocampal neurogenesis. (B) Example 45 Compound enhances hippocampal neurogenesis by promoting survival of newborn neurons. Three month old wild type C57/B6 male mice were exposed to orally-delivered Example 45 Compound or vehicle for 30 days (n=5 animals / group), administered a single pulse of BrdU via IP injection (150 mg/kg), and then sacrificed 1 hour, 1 day, 5 days or 30 days later for immunohistochemical detection of BrdU incorporation into cells localized in the subgranular layer of the dentate gyrus. No significant differences were observed between groups at the 1 hour or 1 day time points, though at one day there was a trend towards increased BrdU+ cells in the Example 45 Compound-treated group. At the 5 day time point, by which time 40% of newborn neurons normally die, animals that received Example 45 Compound showed a statistically significant (*, PO.001, Student's t test) 25% increase in BrdU+ cells compared to the vehicle-only control group. This difference between groups progressed with time such that mice that received a daily oral dose of Example 45 Compound for 30 days, starting 24 hours after the pulse administration of BrdU, exhibited a 5-fold increase in the abundance of BrdU+ cells in the dentate gyrus relative to vehicle-only controls. In this longer-term trial, BrdU+ cells were observed both in the SGZ and the granular layer of the dentate gyrus. Figure 11: Quantification of short term (1 hour pulse) BrdU incorporation and cleaved-caspase 3 (CCSP3) formation in the dentate gyrus showed that NPAS3 -deficient mice have the same rate of proliferation of newborn cells in the dentate as wild type littermates (BrdU), but roughly twice the level of programmed cell death (CCSP3) (*, PO.01, Student's t test). Three 6 week old male mice ( PAS3 -deficient or wild type littermates) in each group were evaluated.
Figure 12: Granule cell neurons in the dentate gyrus of NPAS3 -deficient mice displayed morphological deficits in dendritic branching and spine density. (A) Golgi-Cox staining of the dentate gyrus illustrates that dendritic arborization of dentate gyrus granule cell neurons in npas3~l~ mice is substantially less developed than in wild type littermates. Results shown are representative of 15 sections from five 12-14 week old adult male mice of each genotype. (B) In addition to obviously reduced dendritic length and branching, granular neurons in the dentate gyrus oinpas3~A mice also exhibited significantly reduced spine density relative to wild type littermates (*, P < 0.00001, Student's t test). These genotype-specific differences were not exhibited by neurons in the CA1 region of the hippocampus.
Figure 13: In hippocampal slice preparation from npas3~l~ mice, synaptic transmission was increased both in the outer molecular layer of the dentate gyrus (A) and the CA1 region of the hippocampus (B) relative to hippocampal slices from wild type mice. Extended treatment with Example 45 Compound normalized synaptic responses in the dentate gyrus but not the CA1 region of npas3~l~ mice. Extended treatment with Example 45 Compound did not affect wild-type responses. Data are presented as the mean ±SEM. Each group consisted of 1 or 2 slice preparation from each of 5 mice.
Figure 14: Example 45 Compound has pro-neurogenic or neuroprotective efficacy in the dentate gyrus of NPAS3 -deficient animals. Six 12 week old npas3~l~ mice were orally administered vehicle or Example 45 Compound (20 mg/kg/d) for 12 days, and also injected daily with BrdU (50 mg/kg). At the end of day 12, mice were sacrificed and tissue was stained for BrdU and doublecortin (DCX). BrdU staining showed that Example 45 Compound increased the magnitude of neurogenesis in npas3~l~ mice by roughly 4-fold, as graphically represented above (*, PO.001, Student's t test). DCX staining shows that Example 45 Compound also promoted more extensive process formation in differentiating neurons of the adult dentate gyrus in npas3~l~ mice. Figure 15: Golgi-Cox staining of neurons in the dentate gyrus shows that extended daily treatment of npas3~A mice with Example 45 Compound (20 mg/kg/d) enhanced dendritic arborization. Hi- power micrographs are shown on top, and a lower power micrograph illustrating the entire dentate gyrus is shown below.
Figure 16: Measured thickness of hippocampal subfields in npas3~A and wild type littermate mice that were treated with Example 45 Compound (20 mg/kg/d) or vehicle every day from embryonic day 14 until 3 months of age demonstrated that Example 45 Compound selectively increased the thickness of the dentate gyrus granular cell layer to a level approaching wild type thickness (*, PO.01, Student's t test), without affecting thickness of the pyramidal cell layers of CA1 or CA3 regions.
Figure 17: Immunohistochemical detection of cleaved caspase 3 (CCSP3), a marker of apoptosis, showed elevated levels of programmed cell death in the dentate gyrus of NPAS3 -deficient animals. Apoptosis in NPAS3 -deficient animals was inhibited by treatment with Example 45 Compound (20 mg/kg/d, p.o., for 12 days), whereas analogous treatment with vehicle alone had no effect. Images shown are representative of 10-12 sections evaluated per animal, with 3-5 eight-week-old male NPAS3-deficient mice per group.
Figure 18: Example 45 Compound acts mechanistically in the mitochondria. (A) Example 45 Compound preserved mitochondrial membrane potential following exposure to the calcium ionophore A23187 in a dose dependent manner as judged by fluorescent imaging of TMRM dye, a cell-permeant, cationic red-orange fluorescent dye that is readily sequestered by intact
mitochondria. (B) The protective effect of Example 62 Compound was enantiomeric specific, with the (+) enantiomer retaining activity more so than the (-) enantiomer.
Figure 19: Example 45 Compound as compared to a known drug. (A) Both Example 45
Compound and the Dimebon anti-histamine enhanced hippocampal neurogenesis (B), and protected mitochondria from dissolution following toxic exposure to the calcium ionophore A23187 (C). In the in vivo assay of neurogenesis the Example 45 Compound exhibited a higher ceiling of efficacy than the Dimebon anti-histamine. In all three assays, the Example 45 Compound performed with greater relative potency than the Dimebon anti-histamine. Figure 20: Effect of Example 45 Compound in aged rats. (A) Example 45 Compound (20 mg/kg/d, i.p.) and BrdU (50 mg / kg, i.p.) were administered daily for 7 days to 12-18 month old Fisher 344 rats (n = 4 in each group). P7C3 promoted neural precursor cell proliferation by roughly 5 fold compared to vehicle. (*p < 0.001, Students t test). DCX staining demonstrates that P7C3 specifically promoted neuronal differentiation and dendritic branching. These micrographs were taken at the same magnification. Scale bar = 50 mm. Data are expressed as mean +/- SEM. (B) Latency to find the hidden platform in the Morris water maze task, as well as (C) swim speed and locomotor activity (D) in aged rats treated with P7C3 or vehicle both before and after 2 months of treatment did not differ between groups. Data are expressed as mean +/- SEM. (E) Quantification of food intake (upper panel) and fasting blood glucose levels in aged rats did not differ with respect to whether rats received P7C3 or vehicle. Data are expressed as mean +/- SEM.
Figure 21: Example 45 Compound Enhances Hippocampal Neurogenesis, Ameliorates Cognitive Decline, and Prevents Weight Loss in Terminally Aged Rats (A) Prior to treatment, both groups (n — 23 for each group) showed similar frequency of crossings through the goal platform. After 2 months of treatment, however, Example 45 Compound-treated rats displayed a statistically significant increase of crossings through the goal platform area relative to vehicle treated rats. (B) Example 45 Compound-treated rats displayed significantly enhanced hippocampal neurogenesis, as assessed by BrdU incorporation, relative to vehicle treated rats. Many more of the BrdU-labeled cells were noted to have migrated into the granular layer in Example 45 Compound-treated rats in comparison to vehicle treated animals, consistent with their functional incorporation into the dentate gyms as properly wired neurons. The scale bar represents 50 mM. (C) Relative to vehicle- treated animals, Example 45 Compound-treated rats displayed significantly lower number of cleaved caspase 3-positive cells in the dentate gyrus, indicating that P7C3 was capable of inhibiting apoptosis in the aged rat brain. The scale bar represents 50 mM. (D) Relative to vehicle -treated animals, Example 45 Compound-treated rats were observed to maintain stable body weight as a function of terminal aging. In all graphs data are expressed as mean ^SEM.
Figure 22: Example 45 Compound Preserves Mitochondrial Membrane Potential in Parallel to Proneurogenic Activity U20S cells were loaded with tetramethylrhodamine methyl ester (TMRM) dye and then exposed to the calcium ionophore A23187 either in the presence or absence of test compounds. Example 45 Compound (A) preserved mitochondrial membrane potential following exposure to the calcium ionophore A23187 in a dose-dependent manner. The protective effect of P7C3 was enantiomeric specific. The (R)-enantiomer of another compound (B) blocked dye release at levels as low as 1 nM, whereas the (S)-enantiomer (C) failed to block dye release even at the highest drug dose tested (100 nM). A proneurogenic compound, P7C3A20 (D) exhibited dye release protection at all doses tested, yet compounds having less proneurogenic activity (E and Γ) were less effective in preserving mitochondrial membrane potential at any test dose. Each compound was evaluated in triplicate with similar results.
Figure 23: Example 45 Compound Preserves Mitochondrial Membrane Potential in Cultured Primary Cortical Neurons. Cortical neurons cultures from rats on embryonic day 14 were loaded with tetramethylrhodamine methyl ester (TMRM) dye after 6 days of maturation. The top panels (no calcium ionophore) show that the dye alone did not affect the health of neurons. The remaining panels are from cells that were exposed to the calcium ionophore A23187 at time zero. With vehicle-alone, cortical neuron mitochondrial membrane potential was rapidly lost after exposure to the ionophore. Escalating doses of Example 45 Compound (A) preserved mitochondrial membrane potential following exposure to the calcium ionophore A23187 in a dose dependent manner, with full protection achieved at 1 mM. The less active compound (B) was less effective in preserving mitochondrial membrane potential at any dose tested. Results shown are representative of 10 fields analyzed in each of 2 experimental runs for all conditions.
Figure 24. Example 45 Compound (P7C3) Provides Therapeutic Benefit in Animal Model of Amyotrophic Lateral Sclerosis (ALS). Female G93A SOD1 mice (n=30 in each group, with all mice sibling matched across treatment groups) were treated with either vehicle or P7C3 (10 mg/kg i.p. twice daily) starting at 40 days of age. P7C3-treated mice showed a significant delay in disease progression, as evidenced by the later age by which they dropped to 10% below their maximum weight (A). P7C3 -treated mice also attain a neurological severity score of 2 at a later age than vehicle treated mice (B), again indicating that P7C3 -treatment slows disease progression. This score is determined as follows: '0' = full extension of hind legs away from lateral midline when the test mouse is suspended by its tail, and can hold this for 2 seconds, suspended 2-3 times; Ί ' = collapse or partial collapse of leg extension towards lateral midline (weakness) or trembling of hind legs during tail suspension; '2' = toes curl under at least twice during walking of 12 inches, or any part of foot drags along cage bottom / table; '3 ' = rigid paralysis or minimal joint movement, foot not being used for forward motion; and '4' = mouse cannot right itself within 30 seconds from either side. With further disease progression, vehicle-treated mice show the expected decline in retention time on the accelerating rotarod, with retention time averaged across 4 trials (C, open bars). P7C3 -treated mice, however, show a consistent trend towards improved performance on this task after onset of disease (C, filled bars), with statistically significant improvement on days 131, 138 and 145 (*, pO.001, Student's t Test). All graphical data shown above is mean +/- SEM, with statistical analysis conducted using the Student's t Test). As another means of disease progression, walking gait was evaluated. Figure 24D shows footprint data from two sisters (VEH and P7C3) on day 92 (before disease onset) and day 118 (after disease onset). Front paws are dipped in red ink, and back paws are dipped in black ink. The VEH-treated mouse shows the expected decline in gait after disease onset on day 188, while her P7C3-treated sister showed preservation of normal gait on day 118. All analysis was conducted blind to treatment group.
Figure 25. Example 6a Compound (P7C3A20) Provides Therapeutic Benefit in Animal Model of Parkinson's Disease. Mice were treated with MPTP (30 mg/kg i.p.) or Vehicle only for 5 days and then immunohistochemically analyzed for tyrosine hydroxylase staining (TH) 21 days later (A). Treatment with MPTP and Vehicle (n=6) reduced the number of TH+ neurons in the substantia nigra (B) by approximately 50% (*, p=0.0002, Student's t test) relative to mice that received Vehicle only (n=8). MPTP-mediated cell death in the substantia nigra was significantly attenuated (**, p=0.005) in mice that additionally received P7C3A20 (10 mg/kg i.p. twice daily) (n=5). TH+ neurons in the substantia nigra of every mouse were counted blind to treatment group by two investigators using Image J software, and results were averaged.
Figure 26. Example 45 Compound (P7C3) Provides Therapeutic Benefit in Animal Model of Huntington's Disease. 40 female R6/2 mice were included in each of VEH (vehicle) and P7C3 (10 mg/kg P7C3 i.p. twice daily) groups, and treatment was begun at 6 weeks of age. (A) Treatment with P7C3 statistically significantly extends survival of R6/2 mice (p<0.001, Gehan-Breslow- Wilcoxon test). (B) At 14 weeks of age, P7C3-treated R6/2 mice also show statistically improved objective measures of general condition (lower score corresponds to better general better condition, * p<0.0001, Student's t Test). All measurements were conducted blind to genotype and treatment group.
Figure 27. Example 45 Compound (P7C3) Augments Hypothalamic Neurogenesis.
Administration of P7C3 for a one month period of time augments proliferation of hypothalamic neural precursor cells (shown in red) in the arcuate nucleus (ARC), dorsomedial hypothalamus (DMH) and ventralmedial hypothalamus (VMH). Micrographs shown are representative of staining from every third section throughout the hypothalamus in 4-6 mice for each treatment group. DETAILED DESCRIPTION
The presently disclosed embodiments relate generally to stimulating neurogenesis (e.g., post-natal neurogenesis, e.g., post-natal hippocampal and/or hypothalamic neurogenesis) and/or promoting the survival of existing neurons by reducing neuronal cell death.
COMPOUNDS
In one aspect, the presently disclosed embodiments feature compounds having general formula
Figure imgf000083_0001
(I)
Here and throughout this specification, R1, R2, R3, R4, R, R', L1, L2, A, and Z can be as defined anywhere herein.
It is appreciated that certain features of the presently disclosed embodiments, which are, for clarity, described in the context of separate embodiments, can also be provided in combination in a single embodiment. Conversely, various features of the presently disclosed embodiments which are, for brevity, described in the context of a single embodiment, can also be provided separately or in any suitable sub-combination.
Thus, for ease of exposition, it is also understood that where in this specification, a variable (e.g., R1) is defined by "as defined anywhere herein" (or the like), the definitions for that particular variable include the first occurring and broadest generic definition as well as any sub-generic and specific definitions delineated anywhere in this specification.
Variables R1. R2. R3. R4
In some embodiments, one or two of R1, R2, R3, and R4 (e.g., one of, e.g., R3) is selected from halo, hydroxyl, sulfhydryl, Ci-Ce alkoxy, Ci-Ce thioalkoxy, Ci-Ce haloalkoxy, Ci-Ce thiohaloalkoxy, Ci-C6 alkyl, Ci-C6 haloalkyl, cyano, -NH2, -NH(Ci-C6 alkyl), N(Ci-C6 alkyl)2, - NHC(0)(Ci-C6 alkyl), and nitro; and the others are hydrogen. In certain embodiments, one or two of R1, R2, R3, and R4 (e.g., one of, e.g., R3) is selected from halo, Ci-Ce alkoxy, Ci-Ce haloalkoxy, Ci-Ce alkyl, Ci-Ce haloalkyl, cyano, and nitro; and the others are hydrogen.
In certain embodiments, one or two of R1, R2, R3, and R4 (e.g., one of, e.g., R3) is selected from halo, C\-Ce alkyl, and C\-Ce haloalkyl; and the others are hydrogen.
In certain embodiments, one or two of R1, R2, R3, and R4 (e.g., one of, e.g., R3) is selected from halo and C\-Ce alkyl; and the others are hydrogen.
In certain embodiments, one or two of R1, R2, R3, and R4 (e.g., one of, e.g., R3) is halo (e.g., bromo or chloro) and C -Ce alkyl; and the others are hydrogen.
In certain embodiments, one or two of R1, R2, R3, and R4 (e.g., one of, e.g., R3) is bromo; and the others are hydrogen.
In some embodiments, R3 is selected from halo, hydroxyl, sulfhydryl, Ci-Ce alkoxy, Ci-Ce thioalkoxy, C1-C6 haloalkoxy, C1-C6 thiohaloalkoxy, C1-C6 alkyl, C1-C6 haloalkyl, cyano, -NH2, - NH(Ci-C6 alkyl), N(Ci-C6 alkyl)2, -NHC(0)(Ci-C6 alkyl), and nitro; and each of R1, R2, and R4 can be as defined anywhere herein.
In certain embodiments, R3 is selected from halo, hydroxyl, sulfhydryl, C1-C6 alkoxy, C1-C6 thioalkoxy, C1-C6 haloalkoxy, C1-C6 thiohaloalkoxy, C1-C6 alkyl, C1-C6 haloalkyl, cyano, -NH2, - NH(Ci-C6 alkyl), N(Ci-C6 alkyl)2, -NHC(0)(Ci-C6 alkyl), and nitro; and each of R1, R2, and R4 is hydrogen.
In some embodiments, R3 is selected from halo, C1-C6 alkoxy, C1-C6 haloalkoxy, C1-C6 alkyl, C1-C6 haloalkyl, cyano, and nitro; and each of R1, R2, and R4 can be as defined anywhere herein.
In certain embodiments, R3 is selected from halo, Ci-C6 alkoxy, Ci-C6 haloalkoxy, Ci-C6 alkyl, Ci-C6 haloalkyl, cyano, and nitro; and each of R1, R2, and R4 is hydrogen.
In some embodiments, R3 is selected from halo, C1-C6 alkyl, and C1-C6 haloalkyl; and each of R1, R2, and R4 can be as defined anywhere herein.
In certain embodiments, R3 is selected from halo, C1-C6 alkyl, and C1-C6 haloalkyl; and each of R1, R2, and R4 is hydrogen.
In some embodiments, R3 is selected from halo and C1-C6 alkyl; and each of R1, R2, and R4 can be as defined anywhere herein.
In certain embodiments, R3 is selected from halo and C1-C6 alkyl; and each of R1, R2, and R4 is hydrogen.
In some embodiments, R3 is halo (e.g., bromo or chloro); and each of R1, R2, and R4 can be as defined anywhere herein.. In certain embodiments, R3 is halo (e.g., bromo or chloro); and each of R1, R2, and R4 is hydrogen.
In some embodiments, R3 is bromo; and each of R1, R2, and R4 can be as defined anywhere herein..
In certain embodiments, R3 is bromo; and each of R1, R2, and R4 is hydrogen.
In some embodiments, each of R1, R2, R3, and R4 is independently selected from hydrogen, halo, and alkyl.
In certain embodiments, each of R1, R2, R3, and R4 is independently selected from hydrogen and halo(e.g., bromo or chloro).
In some embodiments, each of R1, R2, R3, and R4 is hydrogen.
In some embodiments, when any one or more of R1, R2, R3, and R4 can be a substituent other than hydrogen, said substituent, or each of said substituents, is other than Ci-Ce alkyl (e.g., other than C1-C3 alkyl, e.g., other than CH3).
Variable L1
In some embodiments, L1 is C1-C3 (e.g., C1-C2) straight chain alkylene, which is optionally substituted with from 1-2 independently selected Rc.
In certain embodiments, L1 is methylene (i.e., -CH2-). In other embodiments, L1 is methylene that is substituted with 1 or 2 (e.g., 1) independently selected Rc. In embodiments, Rc is d-C6 alkyl (e.g., C1-C3 alkyl, e.g., CH3).
In certain embodiments, L1 is ethylene (i.e., -CH2CH2-). In other embodiments, L1 is ethylene that is substituted with 1 or 2 (e.g., 1) independently selected Rc. In embodiments, Rc is Ci-Ce alkyl (e.g., C1-C3 alkyl, e.g., CH3).
Variable L2
In some embodiments, L2 is C1-C3 (e.g., Ci-C2) straight chain alkylene, which is optionally substituted with from 1-2 independently selected Rc.
In certain embodiments, L2 is methylene (i.e., -CH2-). In other embodiments, L1 is methylene that is substituted with 1 or 2 (e.g., 1) independently selected Rc. In embodiments, Rc is C1-C6 alkyl (e.g., C1-C3 alkyl, e.g., CH3). In embodiments, Rc is Ci-Ce alkoxy, Ci-Ce thioalkoxy, C1-C6 haloalkoxy, or Ci-Ce thiohaloalkoxy. For example, Rc can be Ci-Ce (e.g., C1-C3) thioalkoxy, such as -SCH3.
In certain embodiments, L2 is ethylene (i.e., -CH2CH2-). In other embodiments, L2 is ethylene that is substituted with 1 or 2 (e.g., 1) independently selected Rc. For example, the ethylene carbon more proximal to Z in formula (I) can be substituted as described in the preceding paragraph. In certain embodiments, L2 is a bond that directly connects A in formula (I) to Z in formula
(I).
Non-Limiting Combinations of Variables L1 and L2
In some embodiments, each of L1 and L2 is, independently, C1-C3 alkylene, which is optionally substituted with from 1-2 independently selected Rc.
In certain embodiments, each of L1 and L2 is CH2.
In certain embodiments, one of L1 and L2 is CH2 (e.g., L1), and the other (e.g., L2) is methylene that is substituted with 1 or 2 (e.g., 1) independently selected Rc, in which Rc can be as defined anywhere herein.
In certain embodiments, each of L1 and L2 is methylene that is substituted with 1 or 2 (e.g., 1) independently selected Rc, in which Rc can be as defined anywhere herein.
In some embodiments, L1 is C1-C3 (e.g., C1-C2) straight chain alkylene, which is optionally substituted with from 1-2 independently selected Rc, and L2 is a bond that directly connects A in formula (I) to Z in formula (I). In embodiments, L1 can be, for example, methylene (i.e., -CH2-) or methylene that is substituted with 1 or 2 (e.g., 1) independently selected Rc (e.g., C1-C6 alkyl, e.g., C1-C3 alkyl, e.g., CH3).
Variable A
[I] In some embodiments, A is:
(i) CRA1RA2, wherein each of RA1 and RA2 is independently selected from hydrogen, halo, C1-C3 alkyl, or OR9; or
(ii) C=0; or
(iv) heterocycloalkylene containing from 3-5 ring atoms, wherein from 1-2 of the ring atoms is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heterocycloalkylene is (a) substituted with 1 oxo; and (b) is optionally further substituted with from 1-4 independently selected R . In some embodiments, A is CRA1RA2, in which each of RA1 and RA2 is, independently, hydrogen, halo, C1-C3 alkyl, or OR9 (e.g., hydrogen, halo, or OR9).
In certain embodiments, A can be CRA1RA2, in which each of RA1 and R^ is, independently, hydrogen, halo, or C1-C3 alkyl.
In certain embodiments, A can be CRA1RA2, in which one of RA1 and RA2 is halo (e.g., fluoro), and the other of RA1 and RA2 is, independently, hydrogen, halo, or C1-C3 alkyl (e.g., hydrogen).
In certain embodiments, one of RA1 and RA2 is hydrogen. In embodiments, one of RA1 and RA2 is halo or OR9, and the other is hydrogen. In certain embodiments, one of RA1 and RA2 can be OR9. In embodiments, the other of RA1 and RA2 can be as defined anywhere herein; e.g., the other of RA1 and RA2 can be hydrogen or C1-C3 alkyl. For example, one of RA1 and R^ can be OR9, and the other of RA1 and RA2 is hydrogen. In embodiments, R9 can be hydrogen or R9 can be C1-C3 alkyl (e.g., CH3).
In certain embodiments, one of RA1 and RA2 can be halo. In embodiments, the other of RA1 and RA2 can be as defined anywhere herein; e.g., the other of RA1 and RA2 can be hydrogen, C1-C3 alkyl, or halo. For example, one of RA1 and RA2 can be halo (e.g., fluoro), and the other of RA1 and RA2 is hydrogen.
In embodiments, one of RA1 and RA2 is halo or OR9, and the other is hydrogen.
For example, one of RA1 and RA2 can be OR9, and the other is hydrogen. In embodiments, R9 can be hydrogen. R9 can be C1-C3 alkyl (e.g., CH3).
As another example, one of RA1 and RA2 can be halo (e.g., fluoro), and the other is hydrogen.
In other embodiments, each of RA1 and RA2 is a substituent other than hydrogen.
For example, each of RA1 and RA2 can be halo (e.g., fluoro).
As another example, one of RA1 and RA2 can be OR9 (e.g., in which R9 is hydrogen), and the other is C1-C3 alkyl (e.g., CH3).
As a further example, each of RA1 and RA2 can be C1-C3 alkyl (e.g., CH3).
In still other embodiments, each of RA1 and RA2 is hydrogen.
Embodiments can further include any one or more of the following features.
When the carbon attached to RA1 and RA2 is substituted with four different substituents, the carbon attached to RA1 and RA2 can have the R configuration.
When the carbon attached to RA1 and RA2 is substituted with four different substituents, the carbon attached to RA1 and RA2 can have the S configuration.
[II] In some embodiments, A is C=0.
[III] In some embodiments, A is heterocycloalkylene containing from 3-5 ring atoms, in which from 1-2 of the ring atoms is independently selected from N, NH, (Ci-C3 alkyl), O, and S; and wherein said heterocycloalkylene is (a) substituted with 1 oxo (e.g., 1 oxo on a ring carbon); and (b) is optionally further substituted with from 1-4 independently selected R .
In certain embodiments, A is heterocycloalkylene containing 5 ring atoms, in which from 1- 2 of the ring atoms is independently selected from , NH, N(Ci-C3 alkyl), O, and S; and wherein said heterocycloalkylene is (a) substituted with 1 oxo; and (b) is optionally further substituted with from 1-4 independently selected R . For example, A can be:
Figure imgf000088_0001
Non-Limiting Combinations of Variables L1, L2, and A
In some embodiments:
A is (i) CR^R^, wherein each of RA1 and RA2 is independently selected from hydrogen, halo, C1-C3 alkyl, or OR9; or (ii) C=0; and
each of L1 and L2 is, independently, C1-C3 alkylene, which is optionally substituted with from 1 -2 independently selected Rc.
In some embodiments:
A is CRA1RA2, wherein each of RA1 and RA2 is independently selected from hydrogen, halo, C1-C3 alkyl, or OR9; and
each of L1 and L2 is, independently, C1-C3 alkylene, which is optionally substituted with from 1 -2 independently selected Rc.
Embodiments can include one or more of the following features
Each of RA1 and RA2 can be as defined anywhere herein.
Figure imgf000088_0002
One of L1 and L2 is CH2 (e.g., L1), and the other (e.g., L2) is methylene that is substituted with 1 or 2 (e.g., 1) independently selected Rc, in which Rc can be as defined anywhere herein. For example:
Figure imgf000088_0003
• One of RA1 and RA2 is hydrogen; and
• L2 can be methylene that is substituted with 1 or 2 (e.g., 1) independently selected Rc (e.g., C1-C6 (e.g., C1-C3) alkyl, such as CH3; or Ci-Ce (e.g., C1-C3) thioalkoxy, such
Figure imgf000088_0004
Each of L1 and L2 is methylene that is substituted with 1 or 2 (e.g., 1) independently selected Rc, in which Rc can be as defined anywhere herein. For example:
• each of RA1 and R^ can be a substituent other than hydrogen (e.g., one of which is CH3), and
• each of L1 and L2 is methylene that is substituted with C1-C3 alkyl, such as CH3). In some embodiments:
A is heterocycloalkylene containing from 3-5 (e.g., 5) ring atoms, in which from 1-2 of the ring atoms is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heterocycloalkylene is (a) substituted with 1 oxo; and (b) is optionally further substituted with from 1-4 independently selected R ; and
L1 is C1-C3 (e.g., C1-C2) straight chain alkylene, which is optionally substituted with from 1- 2 independently selected Rc, and
L2 is a bond that directly connects A in formula (I) to Z in formula (I).
Variable Z
[I] In some embodiments, Z is:
(i) -NR10Rn; or
(ii) -C(O)NR10Rn; or
(iii) -OR12; or
(iv) -S(0)nR13, wherein n is 0, 1, or 2; or
(v) heterocycloalkenyl containing from 5-6 ring atoms, wherein from 1-3 of the ring atoms is independently selected from N, NH, N(d-C6 alkyl), NHC(0)(Ci-C6 alkyl), O, and S; and wherein said heterocycloalkenyl is optionally substituted with from 1-4
independently selected R ;
(vi) C6-C10 aryl that is optionally substituted with from 1-4 independently selected
Rb; or
(vii) heteroaryl containing from 5-14 ring atoms, wherein from 1-6 of the ring atoms is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl is optionally substituted with from 1 -4 independently selected Rb.
In certain embodiments, Z is as defined in (i), (iii), (iv), (v), (vi), or (vii) in the preceding paragraph.
In certain embodiments, Z is as defined in (i), (iii), (iv), (v), or (vii) in the preceding paragraph.
In certain embodiments, Z is as defined in (i), (iii), (v), or (vii) in the preceding paragraph. In certain embodiments, Z is as defined in (i), (iii), or (iv) in the preceding paragraph.
In certain embodiments, Z is:
(i) -NR10Rn; or
(iii) -OR12; or
(v) heterocycloalkenyl containing from 5-6 ring atoms, wherein from 1-3 of the ring atoms is independently selected from N, NH, N(Ci-C6 alkyl), NC(0)(Ci-C6 alkyl), O, and S; and wherein said heterocycloalkenyl is optionally substituted with from 1-4
independently selected R .
In certain embodiments, Z is: (i) -NR10Rn; or (iii) -OR12. In certain embodiments, Z is: (i) -NR10Rn; or (iv) -S(0)nR13, wherein n is 0, 1, or 2.
In certain embodiments, Z is: (iii) -OR12; or (iv) -S(0)nR13, wherein n is 0, 1, or 2.
In certain embodiments, Z does not include heterocyclyl (e.g., a nitrogenous heterocyclyl, e.g., piperazinyl or piperidinyl) as part of its structure (e.g., as a fused ring or attached to another ring by a bond).
In certain embodiments, Z is other than heterocycloalkenyl containing from 5-6 ring atoms, wherein from 1-3 of the ring atoms is independently selected from N, NH, (Ci-C6 alkyl), NC(0)(Ci-C6 alkyl), O, and S; and wherein said heterocycloalkenyl is optionally substituted with from 1-4 independently selected R .
In certain embodiments, Z is other than heteroaryl containing from 5-14 ring atoms, wherein from 1-6 of the ring atoms is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl is optionally substituted with from 1-4 independently selected Rb (e.g., other than pyridyl).
[II] In some embodiments, Z is -NR10Rn.
[A] In some embodiments, one of R10 and R11 is hydrogen, and the other of R10 and R11 is a substituent other than hydrogen.
In some embodiments, one of R10 and R11 is hydrogen or a substituent other than hydrogen, and the other of R10 and R11 is a substituent other than hydrogen.
In some embodiments, each of R10 and R11 is a substituent other than hydrogen.
In some embodiments, each of R10 and R11 is hydrogen.
[B] In some embodiments, one of R10 and R11 is independently selected from the substituents delineated collectively in (b), (c), (g) through (k), and (1) below:
(b) C6-Cio aryl that is optionally substituted with from 1-4 Rb;
(c) heteroaryl containing from 5-14 ring atoms, wherein from 1-6 of the ring atoms is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl is optionally substituted with from 1 -4 Rb;
(g) Cs-Ci4 arylcycloalkyl, wherein:
(1) the aryl portion is optionally substituted with from 1-4 independently selected Rb, and
(2) the cycloalkyl portion is optionally substituted with from 1 -4
independently selected R ;
(h) arylheterocyclyl containing from 8-14 ring atoms, wherein:
(1) the aryl portion from is optionally substituted with from 1-4
independently selected Rb, and (2) from 1-2 of the ring atoms of the heterocyclyl portion is independently selected from N, NH, N(Ci-C6 alkyl), NC(0)(Ci-C6 alkyl), O, and S; and wherein said heterocyclyl portion is optionally substituted with from 1-3 independently selected R ;
(i) heteroarylheterocyclyl containing from 8-14 ring atoms, wherein:
(1) from 1-2 of the ring atoms of the heteroaryl portion is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl portion is optionally substituted with from 1-3 independently selected Rb; and
(2) from 1-2 of the ring atoms of the heterocyclyl portion is independently selected from N, NH, N(Ci-C6 alkyl), NC(0)(Ci-C6 alkyl), O, and S; and wherein said heterocyclyl portion is optionally substituted with from 1-3 independently selected R ;
(j) heteroarylcycloalkyl containing from 8-14 ring atoms, wherein:
(1) from 1-2 of the ring atoms of the heteroaryl portion is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl portion is optionally substituted with from 1-3 independently selected Rb; and
(2) the cycloalkyl portion is optionally substituted with from 1 -4
independently selected R ;
(k) C3-C8 cycloalkyl or C3-C8 cycloalkenyl, each of which is optionally substituted with from 1-4 independently selected R ; and
(1) C7-C12 aralkyl, wherein the aryl portion is optionally the aryl portion from is optionally substituted with from 1-4 independently selected Rb,
and the other of R10 and R11 can be as defined anywhere herein.
In some embodiments, R10 and R11 cannot be C3-C8 cycloalkyl or C3-C8 cycloalkenyl, each of which is optionally substituted with from 1-4 independently selected R .
In some embodiments, one of R10 and R11 is independently selected from the substituents delineated collectively in (b), (c), (g) through (j), and (1) above; and the other of R10 and R11 can be as defined anywhere herein.
In some embodiments, one of R10 and R11 is independently selected from the substituents delineated collectively in (b), (c), and (g) through (j); and the other of R10 and R11 can be as defined anywhere herein.
In some embodiments, one of R10 and R11 is independently selected from:
(b) C6-C10 aryl that is optionally substituted with from 1-4 Rb; (c) heteroaryl containing from 5-14 ring atoms, wherein from 1-6 of the ring atoms is independently selected from N, NH, (Ci-C3 alkyl), O, and S; and wherein said heteroaryl is optionally substituted with from 1-4 Rb;
and the other of R10 and R11 can be as defined anywhere herein.
In some embodiments, one of R10 and R11 is C6-C10 aryl (e.g., Ce) that is optionally substituted with from 1-4 (e.g., 1-3, 1-2, or 1) Rb; and the other of R10 and R11 can be as defined anywhere herein.
In certain embodiments, Rb at each occurrence is independently selected from halo; or Ci- C6 alkoxy; Ci-C6 haloalkoxy; Ci-C6 thioalkoxy; Ci-C6 thiohaloalkoxy; Ci-C6 alkyl, Ci-C6 haloalkyl, -NH(Ci-C6 alkyl), N(Ci-C6 alkyl)2, and -NHC(0)(Ci-C6 alkyl), each of which is optionally substituted with from 1-3 independently selected Re.
In certain embodiments, Rb at each occurrence is independently selected from C1-C6 alkoxy; C1-C6 haloalkoxy; C1-C6 thioalkoxy; and C1-C6 thiohaloalkoxy, each of which is optionally substituted with from 1-3 independently selected Re. In embodiments, Rb can further include halo.
In certain embodiments, Rb at each occurrence is independently selected from C1-C6 alkoxy and C1-C6 haloalkoxy, each of which is optionally substituted with from 1 -3 independently selected Re. In embodiments, Rb can further include halo.
In certain embodiments, Rb at each occurrence is independently selected from C1-C6 alkoxy, each of which is optionally substituted with from 1-3 independently selected Re. In embodiments, Rb is C1-C6 alkoxy (e.g., OCH3). In embodiments, Rb can further include halo.
In certain embodiments, one of R10 and R11 is unsubstituted phenyl, and the other of R10 and R11 can be as defined anywhere herein.
In certain embodiments, one of R10 and R11 is phenyl that is substituted with 1 Rb, and the other of R10 and R11 can be as defined anywhere herein. Rb can be as defined anywhere herein (e.g., Rb can be C1-C6 alkoxy, e.g., OCH3). For example, one of R10 and R11 can be 3- methoxyphenyl. In embodiments, Rb can further include halo.
[C] In some embodiments, when one of R10 and R11 is independently selected from the substituents delineated collectively in (b), (c), (g) through (k), and (1) above, the other of R10 and R11 can be:
(a) hydrogen; or
(d) C1-C6 alkyl or C1-C6 haloalkyl (e.g., C1-C6 alkyl), each of which is optionally substituted with from 1-3 Rd; or
(e) -C(0)(Ci-C6 alkyl), -C(0)(Ci-C6 haloalkyl), or -C(0)0(Ci-C6 alkyl); or
(f) C2-C6 alkenyl or C2-C6 alkynyl. In certain embodiments, the other of R10 and R11 is:
(a) hydrogen; or
(d) C1-C6 alkyl or C1-C6 haloalkyl (e.g., C1-C6 alkyl), each of which is optionally substituted with from 1-3 Rd; or
(e) -C(0)(Ci-C6 alkyl), -C(0)(Ci-C6 haloalkyl), or -C(0)0(Ci-C6 alkyl).
In certain embodiments, the other of R10 and R11 is:
(a) hydrogen; or
(d) C1-C6 alkyl or C1-C6 haloalkyl (e.g., C1-C6 alkyl), each of which is optionally substituted with from 1-3 Rd; or
(e) -C(0)(Ci-C6 alkyl), or-C(0)(Ci-C6 haloalkyl).
In certain embodiments, the other of R10 and R11 can be:
(a) hydrogen; or
(d) C1-C6 alkyl (e.g., C1-C3 alkyl, e.g., CH3), which is optionally substituted with from 1 -3
Rd; or
(e) -C(0)(d-C6 alkyl), e.g., C1-C3 alkyl, e.g., CH3.
In certain embodiments, the other of R10 and R11 can be:
(a) hydrogen; or
(d) C1-C6 alkyl (e.g., C1-C3 alkyl, e.g., CH3), which is optionally substituted with from 1 -3
Rd.
In certain embodiments, the other of R10 and R11 can be hydrogen.
In certain embodiments, the other of R10 and R11 can be (d) or (e) or any subset thereof.
[E] In some embodiments, one of R10 and R11 is C6-C10 (e.g., Ce) aryl that is optionally substituted with from 1-4 Rb, and the other is hydrogen or Ci-C6 alkyl (e.g., C1-C3 alkyl, e.g., CH3).
In some embodiments, one of R10 and R11 is C6-Ci0 (e.g., C6) aryl that is optionally substituted with from 1-4 Rb, and the other is hydrogen.
In certain embodiments, one of R10 and R11 is unsubstituted phenyl, and the other is hydrogen.
In certain embodiments, one of R10 and R11 is phenyl that is substituted with 1 Rb, and the other is hydrogen. In embodiments, Rb is C1-C6 alkoxy (e.g., C1-C3 alkoxy, e.g., OCH3). For example, one of R10 and R11 is 3-methoxyphenyl, and the other is hydrogen.
[Γ] In some embodiments, each of R10 and R11 cannot be optionally substituted naphthyl (e.g., each of R10 and R11 cannot be unsubstituted naphthyl). In embodiments, each of R10 and R11 is other than optionally substituted naphthyl (e.g., unsubstituted naphthyl) when R and R' are defined according to definitions (1), (2), and (4); and A is CRA1RA2 (e.g., CHOR9, e.g., CHOH), and each of L1 and L2 is C1-C3 alkylene (e.g., each of L1 and L2 is C¾).
[G] In some embodiments, one of R10 and R11 is hydrogen, and the other is heteroaryl containing from 5-14 ring atoms, wherein from 1-6 of the ring atoms is independently selected from N, NH, (Ci-C3 alkyl), O, and S; and wherein said heteroaryl is optionally substituted with from 1-4 Rb.
In certain embodiments, one of R10 and R11 is hydrogen, and the other is heteroaryl containing from 5-6 ring atoms, wherein from 1 -2 of the ring atoms is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl is optionally substituted with from 1 - 2 Rb.
[Ill] In some embodiments, Z is -OR12.
In some embodiments, R12 is C1-C6 alkyl or C1-C6 haloalkyl, each of which is optionally substituted with from 1-3 Rc.
In some embodiments, R12 is C1-C6 alkyl, which is optionally substituted with from 1-3 Rc.
In certain embodiments, R12 is C1-C6 alkyl (e.g., C1-C3 alkyl, e.g., CH3).
In certain embodiments, R12 is C1-C6 alkyl (e.g., C1-C3 alkyl, e.g., CH3), which is optionally substituted with from 1-3 (e.g., 1 or 2, e.g., 1) Rc. In embodiments, each occurrence of Rc can be independently selected from -NH2, -NH(Ci-C6 alkyl), N(Ci-C6 alkyl)2, and -NHC(0)(Ci-C6 alkyl).
In some embodiments, R12 is C6-C10 aryl that is optionally substituted with from 1-4 (e.g., 1 -3, 1-2, or l) Rb.
In certain embodiments, Rb at each occurrence is independently selected from halo; or Ci- Ce alkoxy; C1-C6 haloalkoxy; C1-C6 thioalkoxy; C1-C6 thiohaloalkoxy; C1-C6 alkyl, C1-C6 haloalkyl, -NH(C C6 alkyl), N(C C6 alkyl)2, and -NHC(0)(C C6 alkyl), each of which is optionally substituted with from 1-3 independently selected Re.
In certain embodiments, Rb at each occurrence is independently selected from C1-C6 alkoxy; C1-C6 haloalkoxy; C1-C6 thioalkoxy; and C1-C6 thiohaloalkoxy, each of which is optionally substituted with from 1-3 independently selected Re.
In certain embodiments, Rb at each occurrence is independently selected from C1-C6 alkoxy and C1-C6 haloalkoxy, each of which is optionally substituted with from 1 -3 independently selected Re.
In certain embodiments, Rb at each occurrence is independently selected from C1-C6 alkoxy, each of which is optionally substituted with from 1-3 independently selected Re. In embodiments, Rb is Ci-Ce alkoxy (e.g., OCH3).
In embodiments, Rb can further include halo. In certain embodiments, R is unsubstituted phenyl.
In certain embodiments, R12 is phenyl that is substituted with 1 Rb. Rb can be as defined anywhere herein (e.g., Rb can be C\-Ce alkoxy, e.g., OCH3). For example, R12 can be 3- methoxyphenyl.
[IV] In some embodiments, Z is -S(0)nR13, in which n can be 0, 1, or 2.
In some embodiments, R13 is C6-Ci0 aryl that is optionally substituted with from 1-4 (e.g., 1-3, 1-2, or l) Rb.
In certain embodiments, Rb at each occurrence is independently selected from halo; or Ci- C6 alkoxy; Ci-C6 haloalkoxy; Ci-C6 thioalkoxy; Ci-C6 thiohaloalkoxy; Ci-C6 alkyl, Ci-C6 haloalkyl, -NH(Ci-C6 alkyl), N(Ci-C6 alkyl)2, and -NHC(0)(Ci-C6 alkyl), each of which is optionally substituted with from 1-3 independently selected Re.
In certain embodiments, Rb at each occurrence is independently selected from C1-C6 alkoxy; C1-C6 haloalkoxy; C1-C6 thioalkoxy; and C1-C6 thiohaloalkoxy, each of which is optionally substituted with from 1-3 independently selected Re.
In certain embodiments, Rb at each occurrence is independently selected from C1-C6 alkoxy and C1-C6 haloalkoxy, each of which is optionally substituted with from 1-3 independently selected Re.
In certain embodiments, Rb at each occurrence is independently selected from C1-C6 alkoxy, each of which is optionally substituted with from 1-3 independently selected Re. In embodiments, Rb is Ci-Ce alkoxy (e.g., OCH3).
In embodiments, Rb can further include halo.
In certain embodiments, R13 is unsubstituted phenyl.
In certain embodiments, R13 is phenyl that is substituted with 1 Rb. Rb can be as defined anywhere herein (e.g., Rb can be Ci-C6 alkoxy, e.g., OCH3). For example, R13 can be 3- methoxyphenyl.
In embodiments, R12 and/or R13 cannot be substituted phenyl. In embodiments, R12 and/or R13 cannot be substituted phenyl when R and R' are defined according to definition (1); and A is CRAIRA2 ^ g ^ CHOR9, e.g., CHOH), and each of L1 and L2 is C1-C3 alkylene (e.g., each of L1 and L2 is CH2).
[V] In some embodiments, Z is heterocycloalkenyl containing from 5-6 ring atoms, wherein from 1-3 of the ring atoms is independently selected from N, NH, (Ci-C6 alkyl), NC(0)(Ci-C6 alkyl), O, and S; and wherein said heterocycloalkenyl is optionally substituted with from 1-4 independently selected R . In certain embodiments, Z is heterocycloalkenyl containing 6 ring atoms, wherein from 1-3 of the ring atoms is independently selected from N, NH, N(Ci-C6 alkyl), NC(0)(Ci-C6 alkyl), O, and S; and wherein said heterocycloalkenyl is optionally substituted with from 1-4 independently selected R .
In certain embodiments, from 1-3 of the ring atoms is independently selected from N, NH, N(C C6 alkyl), and NC(0)(C C6 alkyl).
In certain embodiments, R at each occurrence is, independently selected from oxo, thioxo, =NH, and =N(Ci-C6 alkyl), e.g., =NH.
For example, Z can be:
Figure imgf000096_0001
In some embodiments, Z is heteroaryl containing from 5-14 ring atoms, wherein from 1-6 of the ring atoms is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl is optionally substituted with from 1 -4 Rb.
In certain embodiments, Z is heteroaryl containing from 5-10 ring atoms, wherein from 1-4 of the ring atoms is independently selected from N, NH, and N(Ci-C3 alkyl); and wherein said heteroaryl is optionally substituted with from 1 -2 Rb.
Variables R and R'
[I] In some embodiments, R and R' together with C2 and C3, respectively, form a fused phenyl ring having formula (II):
Figure imgf000096_0002
(Π)
in which each of R5, R6, R7, and R8 is independently selected from hydrogen, halo, hydroxyl, sulfhydryl, C1-C6 alkoxy, C1-C6 thioalkoxy, C1-C6 haloalkoxy, C1-C6 halothioalkoxy, d- C6 alkyl, Ci-C6 haloalkyl, cyano, -NH2, -NH(Ci-C6 alkyl), N(Ci-C6 alkyl)2, -NHC(0)(Ci-C6 alkyl), and nitro. For purposes of clarification, it is understood that compounds in which R and R' together with C2 and C3, respectively, form a fused phenyl ring having formula (II) correspond to compounds having the following general formula:
Figure imgf000097_0001
(III)
in which R1, R2, R3, R4, L1, L2, A, and Z can be as defined anywhere herein.
In some embodiments, one or two of R5, R6, R7, and R8 (e.g., one of, e.g., R6) is selected from halo, hydroxyl, sulfhydryl, C1-C6 alkoxy, C1-C6 thioalkoxy, C1-C6 haloalkoxy, C1-C6 thiohaloalkoxy, Ci-C6 alkyl, Ci-C6 haloalkyl, cyano, -NH2, -NH(Ci-C6 alkyl), N(Ci-C6 alkyl)2, - NHC(0)(Ci-C6 alkyl), and nitro; and the others are hydrogen.
In certain embodiments, one or two of R5, R6, R7, and R8 (e.g., one of, e.g., R6) is selected from halo, C1-C6 alkoxy, C1-C6 haloalkoxy, C1-C6 alkyl, C1-C6 haloalkyl, cyano, and nitro; and the others are hydrogen.
In certain embodiments, one or two of R5, R6, R7, and R8 (e.g., one of, e.g., R6) is selected from halo, C1-C6 alkyl, and C1-C6 haloalkyl; and the others are hydrogen.
In certain embodiments, one or two of R5, R6, R7, and R8 (e.g., one of, e.g., R6) is selected from halo and C1-C6 alkyl; and the others are hydrogen.
In certain embodiments, one or two of R5, R6, R7, and R8 (e.g., one of, e.g., R6) is halo (e.g., bromo or chloro) and C1-C6 alkyl; and the others are hydrogen.
In certain embodiments, one or two of R5, R6, R7, and R8 (e.g., one of, e.g., R6) is bromo; and the others are hydrogen.
In some embodiments, R6 is selected from halo, hydroxyl, sulfhydryl, C1-C6 alkoxy, C1-C6 thioalkoxy, Ci-C6 haloalkoxy, Ci-C6 thiohaloalkoxy, Ci-C6 alkyl, Ci-C6 haloalkyl, cyano, -NH2, - NH(C C6 alkyl), N(C C6 alkyl)2, -NHC(0)(C C6 alkyl), and nitro; and each of R5, R7, and R8 can be as defined anywhere herein.
In certain embodiments, R6 is selected from halo, hydroxyl, sulfhydryl, C1-C6 alkoxy, C1-C6 thioalkoxy, C1-C6 haloalkoxy, C1-C6 thiohaloalkoxy, C1-C6 alkyl, C1-C6 haloalkyl, cyano, -NH2, - NH(Ci-C6 alkyl), N(Ci-C6 alkyl)2, -NHC(0)(Ci-C6 alkyl), and nitro; and each of R5, R7, and R8 is hydrogen.
In some embodiments, R6 is selected from halo, C1-C6 alkoxy, C1-C6 haloalkoxy, C1-C6 alkyl, C1-C6 haloalkyl, cyano, and nitro; and each of R1, R2, and R4 can be as defined anywhere herein.
In certain embodiments, R6 is selected from halo, Ci-C6 alkoxy, Ci-C6 haloalkoxy, Ci-C6 alkyl, C1-C6 haloalkyl, cyano, and nitro; and each of R5, R7, and R8 is hydrogen.
In some embodiments, R6 is selected from halo, C1-C6 alkyl, and C1-C6 haloalkyl; and each of R5, R7, and R8 can be as defined anywhere herein.
In certain embodiments, R6 is selected from halo, C1-C6 alkyl, and C1-C6 haloalkyl; and each of R5, R7, and R8 is hydrogen.
In some embodiments, R6 is selected from halo and C1-C6 alkyl; and each of R5, R7, and R8 can be as defined anywhere herein.
In certain embodiments, R6 is selected from halo and C1-C6 alkyl; and each of R5, R7, and R8 is hydrogen.
In some embodiments, R6 is halo (e.g., bromo or chloro); and each of R5, R7, and R8 can be as defined anywhere herein..
In certain embodiments, R6 is halo (e.g., bromo or chloro); and each of R5, R7, and R8 is hydrogen.
In some embodiments, R6 is bromo; and each of R5, R7, and R8 can be as defined anywhere herein..
In certain embodiments, R6 is bromo; and each of R5, R7, and R8 is hydrogen.
In some embodiments, each of R5, R6, R7, and R8 is independently selected from hydrogen, halo, and C1-C6 alkyl.
In certain embodiments, each of R5, R6, R7, and R8 is independently selected from hydrogen and halo(e.g., bromo or chloro).
In some embodiments, each of R5, R6, R7, and R8 is hydrogen.
In some embodiments, when any one or more of R5, R6, R7, and R8 can be a substituent other than hydrogen, said substituent, or each of said substituents, is other than C1-C6 alkyl (e.g., C1-C3 alkyl, e.g., CH3).
Embodiments can include any one or more of the features described anywhere herein, including (but not limited to) those described below.
{A}
Each of R1, R2, R3, and R4 can be as defined anywhere herein. R3 is selected from halo, hydroxyl, sulfhydryl, Ci-Ce alkoxy, Ci-Ce thioalkoxy, Ci-Ce haloalkoxy, C1-C6 thiohaloalkoxy, C1-C6 alkyl, C1-C6 haloalkyl, cyano, -NH2, - H(Ci-C6 alkyl), N(Ci-C6 alkyl)2, -NHC(0)(Ci-C6 alkyl), and nitro; and each of R1, R2, and R4 can be as defined anywhere herein (e.g., each of R1, R2, and R4 is hydrogen).
R3 is selected from halo and C1-C6 alkyl; and each of R1, R2, and R4 can be as defined anywhere herein (e.g., each of R1, R2, and R4 is hydrogen).
R3 is halo (e.g., bromo or chloro); and each of R1, R2, and R4 can be as defined anywhere herein (e.g., each of R1, R2, and R4 is hydrogen).
R3 is bromo; and each of R1, R2, and R4 can be as defined anywhere herein (e.g., each of R1, R2, and R4 is hydrogen).
Each of R1, R2, R3, and R4 is independently selected from hydrogen and halo(e.g., bromo or chloro).
Each of R1, R2, R3, and R4 is hydrogen.
{B}
Each of L1 and L2 is, independently, C1-C3 alkylene, which is optionally substituted with from 1-2 independently selected Rc.
Each of L1 and L2 is CI¾.
One of L1 and L2 is CH2 (e.g., L1), and the other (e.g., L2) is methylene that is substituted with 1 or 2 (e.g., 1) independently selected Rc, in which Rc can be as defined anywhere herein.
Each of L1 and L2 is methylene that is substituted with 1 or 2 (e.g., 1) independently selected Rc, in which Rc can be as defined anywhere herein.
L1 is C1-C3 (e.g., C1-C2) straight chain alkylene, which is optionally substituted with from 1- 2 independently selected Rc, and L2 is a bond that directly connects A in formula (I) to Z in formula
(I).
{C}
One of RA1 and RA2 is OR9, and the other is hydrogen. In embodiments, R9 can be hydrogen. R9 can be C1-C3 alkyl (e.g., CH3).
One of RA1 and RA2 can be halo (e.g., fluoro), and the other is hydrogen.
Each of RA1 and RA2 can be a substituent other than hydrogen. For example, each of RA1 and RA2 can be halo (e.g., fluoro). As another example, one of RA1 and RA2 can be OR9 (e.g., in which R9 is hydrogen), and the other is C1-C3 alkyl (e.g., CH3).
Each of RA1 and RA2 is hydrogen. A is CR R , wherein each of R and R is independently selected from hydrogen, halo, C1-C3 alkyl, or OR9; and each of L1 and L2 is, independently, C1-C3 alkylene, which is optionally substituted with from 1-2 independently selected Rc.
{D}
Z is -NR10Rn, in which R10 and R11 can be as defined anywhere herein.
One of R10 and R11 is C6-C10 aryl that is optionally substituted with from 1-4 Rb. In embodiments, the other of R10 and R11 is hydrogen or C1-C3 alkyl (e.g., CH3). In embodiments, the other of R10 and R11 is hydrogen.
In certain embodiments, one of R10 and R11 is unsubstituted phenyl, and the other is hydrogen.
In certain embodiments, one of R10 and R11 is phenyl that is substituted with 1 Rb, and the other is hydrogen. In embodiments, Rb is C1-C6 alkoxy (e.g., C1-C3 alkoxy, e.g., OCH3). For example, one of R10 and R11 is 3-methoxyphenyl, and the other is hydrogen.
Z is -OR or -S(0)nR , in which R and R can be as defined anywhere herein.
Embodiments can include features from any one, two, three, or four of {A}, {B}, {C}, and {D}; or any combinations thereof.
In some embodiments:
R3 is a substituent other than hydrogen (e.g., halo and C1-C6 alkyl; e.g., halo, e.g., bromo); and each of R 1 , R2 , and R 4 can be as defined anywhere herein (e.g., each of R 1 , R2 , and R 4 is hydrogen); and
R6 is a substituent other than hydrogen (e.g., halo and C1-C6 alkyl; e.g., halo, e.g., bromo); and each of R 5 , R 7 , and R 8 can be as defined anywhere herein (e.g., each of R 5 , R 7 , and R 8 is hydrogen).
In some embodiments:
R3 is a substituent other than hydrogen (e.g., halo and C1-C6 alkyl; e.g., halo, e.g., bromo); and each of R 1 , R2 , and R 4 can be as defined anywhere herein (e.g., each of R 1 , R2 , and R 4 is hydrogen); and
R6 is a substituent other than hydrogen (e.g., halo and C1-C6 alkyl; e.g., halo, e.g., bromo); and each of R 5 , R 7 , and R 8 can be as defined anywhere herein (e.g., each of R 5 , R 7 , and R 8 is hydrogen); and
A is CRA1RA2, wherein each of RA1 and RA2 is independently selected from hydrogen, halo, C1-C3 alkyl, or OR9; and each of L1 and L2 is, independently, C1-C3 alkylene, which is optionally substituted with from 1-2 independently selected Rc. Embodiments can include any one or more features described herein (e.g., as described under {B} and {C} above).
In some embodiments:
R3 is a substituent other than hydrogen (e.g., halo and Ci-Ce alkyl; e.g., halo, e.g., bromo);
1 2 4 1 2 4 and each of R , R , and R can be as defined anywhere herein (e.g., each of R , R , and R is hydrogen); and
R6 is a substituent other than hydrogen (e.g., halo and C1-C6 alkyl; e.g., halo, e.g., bromo);
5 7 8 5 7 8 and each of R , R , and R can be as defined anywhere herein (e.g., each of R , R , and R is hydrogen); and
A is CRA1RA2, wherein each of RA1 and RA2 is independently selected from hydrogen, halo, C1-C3 alkyl, or OR9; and each of L1 and L2 is, independently, C1-C3 alkylene, which is optionally substituted with from 1-2 independently selected Rc; and
Z is -NR10Rn, in which R10 and R11 can be as defined anywhere herein.
Embodiments can include any one or more features described herein (e.g., as described under {B}, {C} , and {D} above).
In some embodiments:
each of L1 and L2 is CI¾.;
A is CRA1RA2, wherein one of RA1 and RA2 is OR9, and the other is hydrogen.;
Z is -NR10Rn; and
each of R10 and R11 is independently selected from
(a) hydrogen;
(b) C6-C10 aryl that is optionally substituted with from 1-4 Rb;
(d) Ci-C6 alkyl or Ci-C6 haloalkyl, each of which is optionally substituted with from 1-3 Rd (f) C2-C6 alkenyl or C2-C6 alkynyl.
Embodiments can include any one or more features described herein (e.g., as described under {A}, {C} , and {D} above).
In some embodiments:
A is CRA1RA2, in which each of RA1 and RA2 is, independently, hydrogen, halo, or C1-C3 alkyl; or
A is CRA1RA2, in which one of RA1 and R^ is halo (e.g., fluoro), and the other of RA1 and RA2 is, independently, hydrogen, halo, or C1-C3 alkyl (e.g., hydrogen); or
A is CRA1RA2, in which one of RA1 and R^ is halo (e.g., fluoro), and the other of RA1 and RA2 is hydrogen; and R1, R2, R3, R4, L1, L2, and Z can be as defined anywhere herein; or a salt (e.g.,
pharmaceutically acceptable salt) thereof.
Embodiments can include features from any one, two, three, or four of {A}, {B}, {C}, and {D}; or any combinations thereof.
In some embodiments:
one of RA1 and RA2 can be OR9. In embodiments, the other of RA1 and RA2 can be as defined anywhere herein; e.g., the other of RA1 and RA2 can be hydrogen or C1-C3 alkyl. For example, one of RA1 and RA2 can be OR9, and the other of RA1 and RA2 is hydrogen. In embodiments, R9 can be hydrogen; and
R1, R2, R3, R4, L1, L2, and Z can be as defined anywhere herein; or a salt (e.g.,
pharmaceutically acceptable salt) thereof.
In embodiments, one or more of the following apply, e.g., when A is CHOH and Z is NR10Rn :
• each of R3 and R6 is CH3; and/or each of R3 and R6 is bromo; and/or each of R3 and R6 is chloro; and/or one of R3 and R6 is CH3 (e.g., R6), and the other is bromo (e.g.,
R3);
• each of R10 and R11 is other than hydrogen;
• each of R10 and R11 is hydrogen;
• one of R10 and R11 is heteroaryl as defined anywhere herein;
• L1 and/or L2 is C2-C3 alkylene (optionally substituted);
• (B) and/or (C) applies.
Embodiments can include features from any one, two, three, or four of {A}, {B}, {C}, and {D}; or any combinations thereof.
In some embodiments, Z is other than NR10Rn; and R1, R2, R3, R4, L1, L2, Z, and A can be as defined anywhere herein; or a salt (e.g., pharmaceutically acceptable salt) thereof. In embodiments, (B) and/or (C) applies. Embodiments can include features from any one, two, three, or four of {A}, {B}, {C}, and {D}; or any combinations thereof.
In some embodiments, Z is -OR12 and/or -S(0)nR13; and R1, R2, R3, R4, L1, L2, and A can be as defined anywhere herein; or a salt (e.g., pharmaceutically acceptable salt) thereof. In embodiments, (B) and/or (C) applies. Embodiments can include features from any one, two, three, or four of {A}, {B}, {C}, and {D}; or any combinations thereof.
In some embodiments, A is (ii) C=0; and/or (iv) heterocycloalkylene containing from 3-5 ring atoms, wherein from 1-2 of the ring atoms is independently selected from N, NH, (Ci-C3 alkyl), O, and S; and wherein said heterocycloalkylene is (a) substituted with 1 oxo; and (b) is optionally further substituted with from 1-4 independently selected R ; and R1, R2, R3, R4, L1, L2, and Z can be as defined anywhere herein; or a salt (e.g., pharmaceutically acceptable salt) thereof. Embodiments can include features from any one, two, three, or four of {A}, {B}, {C}, and {D}; or any combinations thereof.
[II] In some embodiments, each of R and R' is, independently, hydrogen, C1-C6 alkyl, or C1-C6 haloalkyl.
In embodiments, R and R' can each be the same or different.
In certain embodiments, each of R and R' is, independently, C1-C6 alkyl, e.g., each of R and R' is CH3.
In other embodiments, each of R and R' is hydrogen.
Embodiments can include any one or more of the features described anywhere herein, including (but not limited to) those described in conjunction with Formula (III).
[III] In some embodiments, R and R' together with C2 and C3, respectively, form a fused heterocyclic ring containing from 5-6 ring atoms, wherein from 1-2 of the ring atoms is independently selected from N, NH, N(Ci-C6 alkyl), NC(0)(Ci-C6 alkyl), O, and S; and wherein said heterocyclic ring is optionally substituted with from 1-3 independently selected R . For purposes of clarification and illustration, a non- limiting example of these compounds is provided below (formula (IV)):
Figure imgf000103_0001
(IV)
in which R1, R2, R3, R4, L1, L2, A, and Z can be as defined anywhere herein. Here, R and R' together with C2 and C3, respectively, form a fused heterocyclic ring containing 5-6 ring atoms.
Embodiments can include any one or more of the features described anywhere herein, including (but not limited to) those described in conjunction with Formula (III). In certain embodiments, R63 can be hydrogen or C1-C3 alkyl (e.g., CH3).
In some embodiments, it is provided: (i) each of L1 and L2 must be C1-C3 alkylene, which is optionally substituted with from 1 -2 independently selected Rc when A is CH2; or
(ii) Z must be other than heteroaryl containing from 5-14 (e.g., 5-6 or 6)ring atoms, wherein from 1-6 of the ring atoms is independently selected from N, NH, (Ci-C3 alkyl), O, and S; and wherein said heteroaryl is optionally substituted with from 1 -4 independently selected Rb; e.g., other than substituted pyridyl, e.g., other than pyridyl substituted with C1-C3 alkyl (e.g., CH3), e.g., other than 2 or 6-methylpyridyl.
[IV] In some embodiments, R and R' together with C2 and C3, respectively, form a fused C5-C6 cycloalkyl ring that is optionally substituted with from 1-4 independently selected R . For purposes of clarification and illustration, a non-limiting example of such compounds is provided below (formula (V)):
Figure imgf000104_0001
in which R1, R2, R3, R4, L1, L2, A, and Z can be as defined anywhere herein. Here, R and R' together with C2 and C3, respectively, form a fused Ce cycloalkyl ring. Embodiments can include any one or more of the features described anywhere herein, including (but not limited to) those described in conjunction with Formula (III).
[V] In some embodiments, R and R' together with C2 and C3, respectively, form a fused heteroaryl ring containing from 5-6 ring atoms, wherein from 1-2 of the ring atoms is
independently selected from N, NH, (Ci-C3 alkyl), O, and S; and wherein said heteroaryl ring is optionally substituted with from 1-3 independently selected Rb. See, e.g., the title compound of Example 13. Embodiments can include any one or more of the features described anywhere herein, including (but not limited to) those described in conjunction with Formula (III).
Any genus, subgenus, or specific compound described herein can include one or more of the stereochemistry features described herein (e.g., as delineated in the Summary). Compound Forms and Salts
The compounds of the presently disclosed embodiments may contain one or more asymmetric centers and thus occur as racemates and racemic mixtures, enantiomerically enriched mixtures, single enantiomers, individual diastereomers and diastereomeric mixtures. All such isomeric forms of these compounds are expressly included in the presently disclosed embodiments. The compounds of the presently disclosed embodiments may also contain linkages (e.g., carbon- carbon bonds, carbon-nitrogen bonds such as amide bonds) wherein bond rotation is restricted about that particular linkage, e.g. restriction resulting from the presence of a ring or double bond. Accordingly, all cis/trans and E/Z isomers and rotational isomers are expressly included in the presently disclosed embodiments. The compounds of the presently disclosed embodiments may also be represented in multiple tautomeric forms, in such instances, the presently disclosed embodiments expressly includes all tautomeric forms of the compounds described herein, even though only a single tautomeric form may be represented. All such isomeric forms of such compounds are expressly included in the presently disclosed embodiments.
Optical isomers can be obtained in pure form by standard procedures known to those skilled in the art, and include, but are not limited to, diastereomeric salt formation, kinetic resolution, and asymmetric synthesis. See, for example, Jacques, et al., Enantiomers, Racemates and Resolutions (Wiley Interscience, New York, 1981); Wilen, S.H., et al., Tetrahedron 33:2725 (1977); Eliel, E.L. Stereochemistry of Carbon Compounds (McGraw-Hill, NY, 1962); Wilen, S.H. Tables of
Resolving Agents and Optical Resolutions p. 268 (E.L. Eliel, Ed., Univ. of Notre Dame Press, Notre Dame, IN 1972), each of which is incorporated herein by reference in their entireties. It is also understood that the presently disclosed embodiments encompass all possible regioisomers, and mixtures thereof, which can be obtained in pure form by standard separation procedures known to those skilled in the art, and include, but are not limited to, column chromatography, thin-layer chromatography, and high-performance liquid chromatography.
The compounds of the presently disclosed embodiments include the compounds themselves, as well as their salts and their prodrugs, if applicable. A salt, for example, can be formed between an anion and a positively charged substituent (e.g., amino) on a compound described herein.
Suitable anions include chloride, bromide, iodide, sulfate, nitrate, phosphate, citrate,
methanesulfonate, trifluoroacetate, and acetate. Likewise, a salt can also be formed between a cation and a negatively charged substituent (e.g., carboxylate) on a compound described herein. Suitable cations include sodium ion, potassium ion, magnesium ion, calcium ion, and an ammonium cation such as tetramethylammonium ion. Examples of prodrugs include Ci_6 alkyl esters of carboxylic acid groups, which, upon administration to a subject, are capable of providing active compounds.
Pharmaceutically acceptable salts of the compounds of the presently disclosed embodiments include those derived from pharmaceutically acceptable inorganic and organic acids and bases. As used herein, the term "pharmaceutically acceptable salt" refers to a salt formed by the addition of a pharmaceutically acceptable acid or base to a compound disclosed herein. As used herein, the phrase "pharmaceutically acceptable" refers to a substance that is acceptable for use in
pharmaceutical applications from a toxicological perspective and does not adversely interact with the active ingredient.
Examples of suitable acid salts include acetate, adipate, alginate, aspartate, benzoate, benzenesulfonate, bisulfate, butyrate, citrate, camphorate, camphorsulfonate, digluconate, dodecylsulfate, ethanesulfonate, formate, fumarate, glucoheptanoate, glycolate, hemisulfate, heptanoate, hexanoate, hydrochloride, hydrobromide, hydroiodide, 2-hydroxyethanesulfonate, lactate, maleate, malonate, methanesulfonate, 2-naphthalenesulfonate, nicotinate, nitrate, palmoate, pectinate, persulfate, 3-phenylpropionate, phosphate, picrate, pivalate, propionate, salicylate, succinate, sulfate, tartrate, thiocyanate, tosylate and undecanoate. Other acids, such as oxalic, while not in themselves pharmaceutically acceptable, may be employed in the preparation of salts useful as intermediates in obtaining the compounds of the presently disclosed embodiments and their pharmaceutically acceptable acid addition salts. Salts derived from appropriate bases include alkali metal (e.g., sodium), alkaline earth metal (e.g., magnesium), ammonium and N-(alkyl)4 + salts. The presently disclosed embodiments also envision the quaternization of any basic nitrogen- containing groups of the compounds disclosed herein. Water or oil-soluble or dispersible products may be obtained by such quaternization. Salt forms of the compounds of any of the formulae herein can be amino acid salts of carboxyl groups (e.g. L-arginine, -lysine, -histidine salts).
Lists of suitable salts are found in Remington's Pharmaceutical Sciences, 17th ed., Mack Publishing Company, Easton, Pa., 1985, p. 1418; Journal of Pharmaceutical Science, 66, 2 (1977); and "Pharmaceutical Salts: Properties, Selection, and Use A Handbook; Wermuth, C. G. and Stahl, P. H. (eds.) Verlag Helvetica Chimica Acta, Zurich, 2002 [ISBN 3-906390-26-8] each of which is incorporated herein by reference in their entireties.
The neutral forms of the compounds may be regenerated by contacting the salt with a base or acid and isolating the parent compound in the conventional manner. The parent form of the compound differs from the various salt forms in certain physical properties, such as solubility in polar solvents, but otherwise the salts are equivalent to the parent form of the compound for the purposes of the presently disclosed embodiments. In addition to salt forms, the presently disclosed embodiments provide compounds which are in a prodrug form. Prodrugs of the compounds described herein are those compounds that undergo chemical changes under physiological conditions to provide the compounds of the presently disclosed embodiments. Additionally, prodrugs can be converted to the compounds of the presently disclosed embodiments by chemical or biochemical methods in an ex vivo environment. For example, prodrugs can be slowly converted to the compounds of the presently disclosed embodiments when placed in a transdermal patch reservoir with a suitable enzyme or chemical reagent. Prodrugs are often useful because, in some situations, they may be easier to administer than the parent drug. They may, for instance, be more bioavailable by oral administration than the parent drug. The prodrug may also have improved solubility in pharmacological compositions over the parent drug. A wide variety of prodrug derivatives are known in the art, such as those that rely on hydro lytic cleavage or oxidative activation of the prodrug. An example, without limitation, of a prodrug would be a compound of the presently disclosed embodiments which is administered as an ester (the "prodrug"), but then is metabolically hydrolyzed to the carboxylic acid, the active entity. Additional examples include peptidyl derivatives of a compound of the presently disclosed embodiments.
The presently disclosed embodiments also include various hydrate and solvate forms of the compounds.
The compounds of the presently disclosed embodiments may also contain unnatural proportions of atomic isotopes at one or more of the atoms that constitute such compounds. For example, the compounds may be radiolabeled with radioactive isotopes, such as for example tritium (3H), iodine- 125 (125I) or carbon- 14 (14C). All isotopic variations of the compounds of the presently disclosed embodiments, whether radioactive or not, are intended to be encompassed within the scope of the presently disclosed embodiments.
SYNTHESIS
The compounds of the presently disclosed embodiments can be conveniently prepared in accordance with the procedures outlined in the Examples section, from commercially available starting materials, compounds known in the literature, or readily prepared intermediates, by employing standard synthetic methods and procedures known to those skilled in the art. Standard synthetic methods and procedures for the preparation of organic molecules and functional group transformations and manipulations can be readily obtained from the relevant scientific literature or from standard textbooks in the field. It will be appreciated that where typical or preferred process conditions (i.e., reaction temperatures, times, mole ratios of reactants, solvents, pressures, etc.) are
706 given, other process conditions can also be used unless otherwise stated. Optimum reaction conditions may vary with the particular reactants or solvent used, but such conditions can be determined by one skilled in the art by routine optimization procedures. Those skilled in the art of organic synthesis will recognize that the nature and order of the synthetic steps presented may be varied for the purpose of optimizing the formation of the compounds described herein.
Synthetic chemistry transformations (including protecting group methodologies) useful in synthesizing the compounds described herein are known in the art and include, for example, those such as described in R.C. Larock, Comprehensive Organic Transformations, 2d.ed., Wiley-VCH Publishers (1999); P.G.M. Wuts and T.W. Greene, Protective Groups in Organic Synthesis, 4th Ed., John Wiley and Sons (2007); L. Fieser and M. Fieser, Fieser and Fieser's Reagents for Organic Synthesis, John Wiley and Sons (1994); and L. Paquette, ed., Encyclopedia of Reagents for Organic Synthesis, John Wiley and Sons (1995), and subsequent editions thereof.
The processes described herein can be monitored according to any suitable method known in the art. For example, product formation can be monitored by spectroscopic means, such as nuclear magnetic resonance spectroscopy (e.g., ¾ or 13C), infrared spectroscopy (FT-IR), spectrophotometry (e.g., UV-visible), or mass spectrometry (MS), or by chromatography such as high performance liquid chromatography (HPLC) or thin layer chromatography (TLC).
Preparation of compounds can involve the protection and deprotection of various chemical groups. The need for protection and deprotection, and the selection of appropriate protecting groups can be readily determined by one skilled in the art. The chemistry of protecting groups can be found, for example, in Greene, et al., Protective Groups in Organic Synthesis, 2d. Ed., Wiley & Sons, 1991, which is incorporated herein by reference in its entirety.
The reactions of the processes described herein can be carried out in suitable solvents which can be readily selected by one of skill in the art of organic synthesis. Suitable solvents can be substantially nonreactive with the starting materials (reactants), the intermediates, or products at the temperatures at which the reactions are carried out, i.e., temperatures which can range from the solvent's freezing temperature to the solvent's boiling temperature. A given reaction can be carried out in one solvent or a mixture of more than one solvents. Depending on the particular reaction step, suitable solvents for a particular reaction step can be selected.
Resolution of racemic mixtures of compounds can be carried out by any of numerous methods known in the art. An example method includes preparation of the Mosher's ester or amide derivative of the corresponding alcohol or amine, respectively. The absolute configuration of the ester or amide is then determined by proton and/or 19F NMR spectroscopy. An example method includes fractional recrystallization using a "chiral resolving acid" which is an optically active, salt-
707 forming organic acid. Suitable resolving agents for fractional recrystallization methods are, for example, optically active acids, such as the D and L forms of tartaric acid, diacetyltartaric acid, dibenzoyltartaric acid, mandelic acid, malic acid, lactic acid or the various optically active camphorsulfonic acids. Resolution of racemic mixtures can also be carried out by elution on a column packed with an optically active resolving agent (e.g., dinitrobenzoylphenylglycine).
Suitable elution solvent compositions can be determined by one skilled in the art.
The compounds of the presently disclosed embodiments can be prepared, for example, using the reaction pathways and techniques as described below.
A series of carbazole 1 ,2-aminoalcohol compounds of formula 3 may be prepared by the method outlined in Scheme 1. The 9-oxiranylmethyl-9H-carbazole of formula 2 may be prepared from an appropriately substituted carbazole of formula 1 and epichlorohydrin in the presence of a strong base such as sodium hydride.
Scheme 1
Figure imgf000109_0001
The oxiranyl ring of formula 2 may be opened in the presence of a primary or secondary amine to produce the 1,2-amino alcohol of formula 3. Such reactive primary or secondary amines can be, but are not limited to, phenethylamine, 3-phenylallyl amine, and N-substituted piperazines and the like.
Alternatively, a variety of carbazole 1,2-aminoalcohol compounds of formula 8 may be prepared by the method outlined in Scheme 2. The epoxide of 9-oxiranylmethyl-9H-carbazole of formula 2 may be opened with a primary amine, ]¾NR10, to produce the secondary aminoalcohol of formula 4 and then protected with an amine protecting group (P) such as tert-butoxycarbonyl (Boc) to afford the protected aminoalochol of formula 5. Next, the hydroxyl group of formula 5 may be alkylated with a strong base such as sodium hydride and an alkylating agent (RX) such as an alkyl halide, tosylate, triflate or mesylate to produce the ether of formula 6. Removal of the amine protecting group in the presence of a suitable acid can provide the desired OR ether compounds of formula 7. Finally, reductive alkylation of the secondary amine of formula 7 may be achieved in the presence of an aldehyde and a reducing agent such as sodium cyano borohydride (NaCNBH3) to provide the tertiary 1,2-aminoalcohol of formula 8. Scheme 2
Figure imgf000110_0001
A series of substituted indole compounds of formula 11 and 12 may be prepared by the method outlined below in Scheme 3. Compounds of formula 11 may be prepared by the alkylation of an indole of formula 9 with an epoxide A, for example with epichlorohydrin or epibromohydrin, in the presence of a strong base such as potassium hydroxide (KOH) or n-butyllithium (n-BuLi) to produce the oxiranyl indole of formula 10. Next, opening of the epoxide of compounds of formula 10 with a primary amine, substituted alcohol or thiol in the presence of a strong base or a mild Lewis acid such as lithium bromide (LiBr) or bismuth chloride (B1CI3) can provide the alcohol of formula 11. Additionally, compounds of formula 12 may be prepared by opening an epoxide B at the less hindered position with the indole nitrogen of formula 9.
Scheme 3
Figure imgf000111_0001
In addition, a variety of epoxide derivatives may be prepared by following the methods outlined in Scheme 4. The secondary alcohol of compounds of formula 11 may be oxidized using an oxidizing agent or under Swern-like oxidation conditions to provide the ketone of formula 13 which can further undergo reductive amination to provide the amine of compound 14.
Alternatively, the secondary alcohol may be converted into an ester using a carboxylic acid anhydride (where Z=R"C(0)) or an ether (where Z=alklyl) using standard alkylation conditions to produce compounds of formula 15. Fluorine compounds of formula 16 may be prepared by reaction of the alcohol of formula 11 with a fluorinating agent such as diethylaminosulfur trifluoride (DAST). Nitrogen-heteroarylated compounds of formula 17 may be prepared in the presence of a catalytic amount of copper iodide and a heteroaryl iodide starting from compounds of formula 11 (where Y=N). Finally, sulfoxides and sulfones of formula 18 may be prepared under oxidative conditions, for example in the presence of m-chloroperoxybenzoic acid (m-CPBA), starting from sulfides of formula 11 (where Y=S).
Scheme 4
Figure imgf000112_0001
PHARMACEUTICAL COMPOSITIONS
The term "pharmaceutically acceptable carrier" refers to a carrier or adjuvant that may be administered to a subject (e.g., a patient), together with a compound of the presently disclosed embodiments, and which does not destroy the pharmacological activity thereof and is nontoxic when administered in doses sufficient to deliver a therapeutic amount of the compound.
Pharmaceutically acceptable carriers, adjuvants and vehicles that may be used in the compositions of the presently disclosed embodiments include, but are not limited to, ion exchangers, alumina, aluminum stearate, lecithin, self-emulsifying drug delivery systems (SEDDS) such as d-a-tocopherol polyethyleneglycol 1000 succinate, surfactants used in pharmaceutical dosage forms such as Tweens or other similar polymeric delivery matrices, serum proteins, such as human serum albumin, buffer substances such as phosphates, glycine, sorbic acid, potassium sorbate, partial glyceride mixtures of saturated vegetable fatty acids, water, salts, or electrolytes, such as protamine sulfate, disodium hydrogen phosphate, potassium hydrogen phosphate, sodium chloride, zinc salts, colloidal silica, magnesium trisilicate, polyvinyl pyrrolidone, cellulose-based substances, polyethylene glycol, sodium carboxymethylcellulose, polyacrylates, waxes, polyethylene-polyoxypropylene-block polymers, polyethylene glycol and wool fat. Cyclodextrins such as α-, β-, and γ-cyclodextrin, or chemically modified derivatives such as
hydroxyalkylcyclodextrins, including 2- and 3-hydroxypropyl-P-cyclodextrins, or other solubilized derivatives may also be advantageously used to enhance delivery of compounds of the formulae described herein.
The compositions for administration can take the form of bulk liquid solutions or suspensions, or bulk powders. More commonly, however, the compositions are presented in unit dosage forms to facilitate accurate dosing. The term "unit dosage forms" refers to physically discrete units suitable as unitary dosages for human subjects and other mammals, each unit containing a predetermined quantity of active material calculated to produce the desired therapeutic effect, in association with a suitable pharmaceutical excipient. Typical unit dosage forms include prefilled, premeasured ampules or syringes of the liquid compositions or pills, tablets, capsules, losenges or the like in the case of solid compositions. In such compositions, the compound is usually a minor component (from about 0.1 to about 50% by weight or preferably from about 1 to about 40% by weight) with the remainder being various vehicles or carriers and processing aids helpful for forming the desired dosing form.
The amount administered depends on the compound formulation, route of administration, etc. and is generally empirically determined in routine trials, and variations will necessarily occur depending on the target, the host, and the route of administration, etc. Generally, the quantity of active compound in a unit dose of preparation may be varied or adjusted from about 1, 3, 10 or 30 to about 30, 100, 300 or 1000 mg, according to the particular application. In a particular embodiment, unit dosage forms are packaged in a multipack adapted for sequential use, such as blisterpack, comprising sheets of at least 6, 9 or 12 unit dosage forms. The actual dosage employed may be varied depending upon the requirements of the patient and the severity of the condition being treated. Determination of the proper dosage for a particular situation is within the skill of the art. Generally, treatment is initiated with smaller dosages which are less than the optimum dose of the compound. Thereafter, the dosage is increased by small amounts until the optimum effect under the circumstances is reached. For convenience, the total daily dosage may be divided and administered in portions during the day if desired.
The following are examples (Formulations 1-4) of capsule formulations. Capsule Formulations
Figure imgf000114_0001
Preparation of Solid Solution
Crystalline carbazole (80 g/batch) and the povidone (NF K29/32 at 160 g/batch) are dissolved in methylene chloride (5000 mL). The solution is dried using a suitable solvent spray dryer and the residue reduced to fine particles by grinding. The powder is then passed through a 30 mesh screen and confirmed to be amorphous by x-ray analysis.
The solid solution, silicon dioxide and magnesium stearate are mixed in a suitable mixer for 10 minutes. The mixture is compacted using a suitable roller compactor and milled using a suitable mill fitted with 30 mesh screen. Croscarmellose sodium, Pluronic F68 and silicon dioxide are added to the milled mixture and mixed further for 10 minutes. A premix is made with magnesium stearate and equal portions of the mixture. The premix is added to the remainder of the mixture, mixed for 5 minutes and the mixture encapsulated in hard shell gelatin capsule shells.
USE
In one aspect, methods for treating (e.g., controlling, relieving, ameliorating, alleviating, or slowing the progression of) or methods for preventing (e.g., delaying the onset of or reducing the risk of developing) one or more diseases, disorders, or conditions caused by, or associated with, aberrant (e.g., insufficient) neurogenesis or accelerated neuron cell death in a subject in need thereof are featured. The methods include administering to the subject an effective amount of a compound of formula (I) (and/or a compound of any of the other formulae described herein) or a salt (e.g., a pharmaceutically acceptable salt) thereof as defined anywhere herein to the subject.
In another aspect, the use of a compound of formula (I) (and/or a compound of any of the other formulae described herein) or a salt (e.g., a pharmaceutically acceptable salt) thereof as defined anywhere herein in the preparation of, or for use as, a medicament for the treatment (e.g., controlling, relieving, ameliorating, alleviating, or slowing the progression of) or prevention (e.g., delaying the onset of or reducing the risk of developing) of one or more diseases, disorders, or conditions caused by, or associated with, aberrant (e.g., insufficient) neurogenesis or exacerbated neuronal cell death is featured.
In embodiments, the one or more diseases, disorders, or conditions can include
neuropathies, nerve trauma, and neurodegenerative diseases. In embodiments, the one or more diseases, disorders, or conditions can be diseases, disorders, or conditions caused by, or associated with aberrant (e.g., insufficient) neurogenesis (e.g., aberrant hippocampal neurogenesis as is believed to occur in neuropsychiatric diseases) or accelerated death of existing neurons. Examples of the one or more neuropsychiatric and neurodegenerative diseases include, but are not limited to, schizophrenia,major depression, bipolar disorder, normal aging, epilepsy, traumatic brain injury, post-traumatic stress disorder, Parkinson's disease, Alzheimer's disease, Down syndrome, spinocerebellar ataxia, amyotrophic lateral sclerosis, Huntington's disease, stroke, radiation therapy, chronic stress, and abuse of neuro-active drugs (such as alcohol, opiates,
methamphetamine, phencyclidine, and cocaine), retinal degeneration, spinal cord injury, peripheral nerve injury, physiological weight loss associated with various conditions, and cognitive decline associated with normal aging, radiation therapy, and chemotherapy. The resultant promotion of neurogenesis or survival of existing neurons ( i.e. a resultant promotion of survival, growth, development, function and/or generation of neurons) may be detected directly, indirectly or inferentially from an improvement in, or an amelioration of one or more symptoms of the disease or disorder caused by or associated with aberrant neurogenesis or survival of existing neurons. Suitable assays which directly or indirectly detect neural survival, growth, development, function and/or generation are known in the art, including axon regeneration in rat models (e.g. Park et al., Science. 2008 Nov 7; 322:963-6), nerve regeneration in a rabbit facial nerve injury models (e.g. Zhang et al., J Transl Med. 2008 Nov 5;6(1):67); sciatic nerve regeneration in rat models (e.g. Sun et al., Cell Mol Neurobiol. 2008 Nov 6); protection against motor neuron degeneration in mice (e.g. Poesen et al., J. Neurosci. 2008 Oct 15;28(42): 10451-9); rat model of Alzheimer's disease, (e.g. Xuan et al., Neurosci Lett. 2008 Aug 8;440(3):331-5); animal models of depression (e.g. Schmidt et al., Behav Pharmacol. 2007 Sep;18(5-6):391-418; Krishnan et al., Nature 2008, 455, 894-902); and/or those exemplified herein.
ADMINISTRATION
The compounds and compositions described herein can, for example, be administered orally, parenterally (e.g., subcutaneous ly, intracutaneously, intravenously, intramuscularly, intraarticularly, intraarterially, intrasynovially, intrasternally, intrathecally, intralesionally and by intracranial injection or infusion techniques), by inhalation spray, topically, rectally, nasally, buccally, vaginally, via an implanted reservoir, by injection, subdermally, intraperitoneally, transmucosally, or in an ophthalmic preparation, with a dosage ranging from about 0.01 mg/kg to about 1000 mg/kg, (e.g., from about 0.01 to about 100 mg/kg, from about 0.1 to about 100 mg/kg, from about 1 to about 100 mg/kg, from about 1 to about 10 mg/kg) every 4 to 120 hours, or according to the requirements of the particular drug. The interrelationship of dosages for animals and humans (based on milligrams per meter squared of body surface) is described by Freireich et al., Cancer Chemother. Rep. 50, 219 (1966). Body surface area may be approximately determined from height and weight of the patient. See, e.g., Scientific Tables, Geigy Pharmaceuticals, Ardsley, New York, 537 (1970). In certain embodiments, the compositions are administered by oral administration or administration by injection. The methods herein contemplate administration of an effective amount of compound or compound composition to achieve the desired or stated effect. Typically, the pharmaceutical compositions of the presently disclosed embodiments will be administered from about 1 to about 6 times per day or alternatively, as a continuous infusion. Such administration can be used as a chronic or acute therapy.
Lower or higher doses than those recited above may be required. Specific dosage and treatment regimens for any particular patient will depend upon a variety of factors, including the activity of the specific compound employed, the age, body weight, general health status, sex, diet, time of administration, rate of excretion, drug combination, the severity and course of the disease, condition or symptoms, the patient's disposition to the disease, condition or symptoms, and the judgment of the treating physician.
Upon improvement of a patient's condition, a maintenance dose of a compound, composition or combination of the presently disclosed embodiments may be administered, if necessary. Subsequently, the dosage or frequency of administration, or both, may be reduced, as a function of the symptoms, to a level at which the improved condition is retained when the symptoms have been alleviated to the desired level. Patients may, however, require intermittent treatment on a long-term basis upon any recurrence of disease symptoms.
In some embodiments, the compounds described herein can be coadministered with one or more other therapeutic agents. In certain embodiments, the additional agents may be administered separately, as part of a multiple dose regimen, from the compounds of the presently disclosed embodiments (e.g., sequentially, e.g., on different overlapping schedules with the administration of one or more compounds of formula (I) (including any subgenera or specific compounds thereof)). In other embodiments, these agents may be part of a single dosage form, mixed together with the compounds of the presently disclosed embodiments in a single composition. In still another embodiment, these agents can be given as a separate dose that is administered at about the same time that one or more compounds of formula (I) (including any subgenera or specific compounds thereof) are administered (e.g., simultaneously with the administration of one or more compounds of formula (I) (including any subgenera or specific compounds thereof)). When the compositions of the presently disclosed embodiments include a combination of a compound of the formulae described herein and one or more additional therapeutic or prophylactic agents, both the compound and the additional agent can be present at dosage levels of between about 1 to 100%, and more preferably between about 5 to 95% of the dosage normally administered in a monotherapy regimen.
The compositions of the presently disclosed embodiments may contain any conventional non-toxic pharmaceutically-acceptable carriers, adjuvants or vehicles. In some cases, the pH of the formulation may be adjusted with pharmaceutically acceptable acids, bases or buffers to enhance the stability of the formulated compound or its delivery form.
The compositions may be in the form of a sterile injectable preparation, for example, as a sterile injectable aqueous or oleaginous suspension. This suspension may be formulated according to techniques known in the art using suitable dispersing or wetting agents (such as, for example, Tween 80) and suspending agents. The sterile injectable preparation may also be a sterile injectable solution or suspension in a non-toxic parenterally acceptable diluent or solvent, for example, as a solution in 1,3-butanediol. Among the acceptable vehicles and solvents that may be employed are mannitol, water, Ringer's solution and isotonic sodium chloride solution. In addition, sterile, fixed oils are conventionally employed as a solvent or suspending medium. For this purpose, any bland fixed oil may be employed including synthetic mono- or diglycerides. Fatty acids, such as oleic acid and its glyceride derivatives are useful in the preparation of injectables, as are natural pharmaceutically-acceptable oils, such as olive oil or castor oil, especially in their polyoxyethylated versions. These oil solutions or suspensions may also contain a long-chain alcohol diluent or dispersant, or carboxymethyl cellulose or similar dispersing agents which are commonly used in the formulation of pharmaceutically acceptable dosage forms such as emulsions and or suspensions. Other commonly used surfactants such as Tweens or Spans and/or other similar emulsifying agents or bioavailability enhancers which are commonly used in the manufacture of pharmaceutically acceptable solid, liquid, or other dosage forms may also be used for the purposes of formulation.
The compositions of the presently disclosed embodiments may be orally administered in any orally acceptable dosage form including, but not limited to, capsules, tablets, emulsions and aqueous suspensions, dispersions and solutions. In the case of tablets for oral use, carriers which are commonly used include lactose and corn starch. Lubricating agents, such as magnesium stearate, are also typically added. For oral administration in a capsule form, useful diluents include lactose and dried corn starch. When aqueous suspensions and/or emulsions are administered orally, the active ingredient may be suspended or dissolved in an oily phase is combined with emulsifying and/or suspending agents. If desired, certain sweetening and/or flavoring and/or coloring agents may be added.
The compositions of the presently disclosed embodiments may also be administered in the form of suppositories for rectal administration. These compositions can be prepared by mixing a compound of the presently disclosed embodiments with a suitable non-irritating excipient which is solid at room temperature but liquid at the rectal temperature and therefore will melt in the rectum to release the active components. Such materials include, but are not limited to, cocoa butter, beeswax and polyethylene glycols.
Topical administration of the compositions of the presently disclosed embodiments is useful when the desired treatment involves areas or organs readily accessible by topical application. For application topically to the skin, the composition should be formulated with a suitable ointment containing the active components suspended or dissolved in a carrier. Carriers for topical administration of the compounds of the presently disclosed embodiments include, but are not limited to, mineral oil, liquid petroleum, white petroleum, propylene glycol, polyoxyethylene polyoxypropylene compound, emulsifying wax and water. Alternatively, the composition can be formulated with a suitable lotion or cream containing the active compound suspended or dissolved in a carrier with suitable emulsifying agents. Suitable carriers include, but are not limited to, mineral oil, sorbitan monostearate, polysorbate 60, cetyl esters wax, cetearyl alcohol, 2- octyldodecanol, benzyl alcohol and water. The compositions of the presently disclosed
embodiments may also be topically applied to the lower intestinal tract by rectal suppository formulation or in a suitable enema formulation.
In some embodiments, topical administration of the compounds and compositions described herein may be presented in the form of an aerosol, a semi-solid pharmaceutical composition, a powder, or a solution. By the term "a semi-solid composition" is meant an ointment, cream, salve, jelly, or other pharmaceutical composition of substantially similar consistency suitable for application to the skin. Examples of semi-solid compositions are given in Chapter 17 of The Theory and Practice of Industrial Pharmacy, Lachman, Lieberman and Kanig, published by Lea and Febiger (1970) and in Remington's Pharmaceutical Sciences, 21st Edition (2005) published by Mack Publishing Company, which is incorporated herein by reference in its entirety.
Topically-transdermal patches are also included in the presently disclosed embodiments. Also within the presently disclosed embodiments is a patch to deliver active chemotherapeutic combinations herein. A patch includes a material layer (e.g., polymeric, cloth, gauze, bandage) and the compound of the formulae herein as delineated herein. One side of the material layer can have a protective layer adhered to it to resist passage of the compounds or compositions. The patch can additionally include an adhesive to hold the patch in place on a subject. An adhesive is a composition, including those of either natural or synthetic origin, that when contacted with the skin of a subject, temporarily adheres to the skin. It can be water resistant. The adhesive can be placed on the patch to hold it in contact with the skin of the subject for an extended period of time. The adhesive can be made of a tackiness, or adhesive strength, such that it holds the device in place subject to incidental contact, however, upon an affirmative act (e.g., ripping, peeling, or other intentional removal) the adhesive gives way to the external pressure placed on the device or the adhesive itself, and allows for breaking of the adhesion contact. The adhesive can be pressure sensitive, that is, it can allow for positioning of the adhesive (and the device to be adhered to the skin) against the skin by the application of pressure (e.g., pushing, rubbing,) on the adhesive or device.
The compositions of the presently disclosed embodiments may be administered by nasal aerosol or inhalation. Such compositions are prepared according to techniques well-known in the art of pharmaceutical formulation and may be prepared as solutions in saline, employing benzyl alcohol or other suitable preservatives, absorption promoters to enhance bioavailability, fluorocarbons, and/or other solubilizing or dispersing agents known in the art.
A composition having the compound of the formulae herein and an additional agent (e.g., a therapeutic agent) can be administered using any of the routes of administration described herein. In some embodiments, a composition having the compound of the formulae herein and an additional agent (e.g., a therapeutic agent) can be administered using an implantable device.
Implantable devices and related technology are known in the art and are useful as delivery systems where a continuous, or timed-release delivery of compounds or compositions delineated herein is desired. Additionally, the implantable device delivery system is useful for targeting specific points of compound or composition delivery (e.g., localized sites, organs). Negrin et al., Biomaterials, 22(6):563 (2001). Timed-release technology involving alternate delivery methods can also be used in the presently disclosed embodiments. For example, timed-release formulations based on polymer technologies, sustained-release techniques and encapsulation techniques (e.g., polymeric, liposomal) can also be used for delivery of the compounds and compositions delineated herein.
The presently disclosed embodiments will be further described in the following examples. It should be understood that these examples are for illustrative purposes only and are not to be construed as limiting the presently disclosed embodiments in any manner.
EXAMPLES
Example la and lb. P7C3-S16 and P7C3-S17: S- and /?-l-(3,6-Dibromo-9H-carbazol-9-yl)-3- (3-methoxyphenylamino)-propan-2-ol
Figure imgf000120_0001
Representative Procedure 1.
Step 1. Synthesis of 3,6-Dibromo-9-(oxiran-2-ylmethyl)-9H-carbazole (Epoxide 2-A)
r
Figure imgf000120_0002
Following a literature procedure (Asso, V.; Ghilardi, E.; Bertini, S.; Digiacomo, M.;
Granchi, C; Minutolo, F.; Rapposelli, S.; Bortolato, A.; Moro, S. Macchia, M. ChemMedChem, 2008, 3, 1530-1534) powdered KOH (0.103 g, 1.85 mmol) was added to a solution of 3,6- dibromocarbazole (0.500 g, 1.54 mmol) in DMF (1.5 mL) at ambient temperature and stirred for 30 min until dissolved. Epibromohydrin (0.32 mL, 3.8 mmol) was added via syringe and the reaction was stirred at room temperature overnight. Upon completion, the solution was partitioned between EtOAc and H20. The aqueous layer was washed 3 x with EtOAc, and the combined organics were washed with saturated aqueous NaCl, dried over a2S04, filtered, and concentrated in vacuo. The crude residue was recrystallized from EtOAc/Hexane to afford the desired product (389 mg, 66%).
¾ NMR (CDC13, 500 MHz) δ 8.10 (d, 2H, J = 2.0 Hz), 7.54 (dd, 2H, J = 2.0, 8.5 Hz), 7.31 (d, 2H, J = 8.5 Hz), 4.62 (dd, 1H, J = 2.5, 16.0 Hz), 4.25 (dd, 1H, J = 5.5, 16.0 Hz), 3.29 (m, 1H), 2.79 (dd, 1H, J = 4.0, 4.5 Hz), 2.46 (dd, 1H, J = 2.5, 5.0 Hz).
ESI m/z 381.0 ([M+H]+, Ci5H12Br2NO requires 379.9)
Representative Procedure 2
Step 2. Synthesis of l-(3, 6-dibromo-9H-carbazol-9-yl)-3-(3-methoxyphenylamino)propan-2-ol
Figure imgf000121_0001
Following a literature procedure (Asso, V.; Ghilardi, E.; Bertini, S.; Digiacomo, M.;
Granchi, C; Minutolo, F.; Rapposelli, S.; Bortolato, A.; Moro, S. Macchia, M. ChemMedChem, 2008, 3, 1530-1534) m-Anisidine (1.0 mL, 8.95 mmol) was added to a suspension of epoxide 2-A (3.02 g, 7.92 mmol) in cyclohexane (73 mL). B1CI3 (0.657 g, 2.08 mmol) was added and the mixture was heated to reflux overnight. Upon completion, the reaction was partitioned between EtOAc and H20. The aqueous layer was washed 3 x with EtOAc, and the combined organics were washed with saturated aqueous NaCl, dried over Na2S04, filtered, and concentrated in vacuo. The crude residue was purified by chromatography (Si02, 0-50% EtOAc/Hexane) to afford the desired alcohol as an opaque yellow solid (998 mg, 25%).
¾ NMR (CDCI3, 400 MHz) δ 8.12 (d, 2H, J = 1.6 Hz), 7.52 (dd, 2H, J = 2.0, 8.8 Hz), 7.32 (d, 2H, J = 8.8 Hz), 7.07 (dd, 1H, J = 8.0 Hz), 6.3 1 (dd, 1H, J = 2.4, 8.0 Hz), 6.21 (dd, 1H, J = 2.0, 8.0 Hz), 6.12 (dd, 1H, J = 2.0, 2.4 Hz), 4.34-4.39 (m, 3H), 4.00 (br s, 1H), 3.71 (s, 3H), 3.30 (dd, 1H, J = 3.6, 13.2 Hz), 3.16 (dd, 1H, J = 6.4, 13.2 Hz), 2.16 (br s, 1H).
13C NMR (CDCI3, 100 MHz) δ 161.0, 149.2, 139.9 (2C), 130.4 (2C), 129.5 (2C), 123.8 (2C), 123.5 (2C), 112.8, 11 1.0 (2C), 106.7, 103.8, 99.8, 69.5, 55.3, 48.0, 47.4
ESI m/z 502.9 ([M+H]+, C22H21Br2N202 requires 503.0) Step 3. Synthesis of l-(3,6-Dibromo-9H-carbazol-9-yl)-3-(3-methoxyphenylamino)propan-2-yl 3, 3, 3-trifluoro-2-methoxy-2-phenylpropanoate
Figure imgf000122_0001
l-(3,6-dibromo-9H-carbazol-9-yl)-3-(3-methoxyphenylamino)propan-2-ol (0.150 g, 0.298 mmol) was dissolved in anhydrous dichloromethane (6 mL) and cooled to 0 °C. Pyridine (0.053 mL, 0.655 mmol) was added, followed by 5'-(+)-a-methoxy-a-trifluoromethylphenylacetyl chloride (S-Mosher's acid chloride, 0.083 mL, 0.446 mmol) and dimethylaminopyridine (0.004 g, 0.030 mmol). The reaction was allowed to warm to room temperature over 4 hours, after which it was quenched by addition of saturated aqueous aHC03. The mixture was extracted 3x with EtOAc, and the combined organics were washed with saturated aqueous NaCl, dried over a2S04, filtered, and concentrated in vacuo. The crude residue was purified by chromatography (S1O2, 0-50% EtOAc/Hexane) to afford a mixture of both possible esters and both possible amides (~5: 1 estenamide ratio by 1H NMR, 132 mg, 64%). Separation of the mixture was achieved using HPLC (Phenomenex S1O2 Luna, 21 x250 mm, 15% EtOAc/Hexane, 16 mL/min; HPLC Retention time: 25.6 min (ester 1) and 41.2 min (ester 2).
Ester 1 : !H NMR (CDC13, 500 MHz) δ 8.11 (d, 2H, J = 2.0 Hz), 7.45 (dd, 2H, J = 8.5 Hz), 7.24 (m, 2H), 7.22 (m, 4H), 7.05 (t, 1H, J = 8.0 Hz), 6.32 (dd, 1H, J = 2.0, 8.0 Hz), 6.12 (dd, 1H, J = 2.0, 8.0 Hz), 6.05 (dd, 1H, J = 2.0, 2.5 Hz), 5.59 (m, 1H), 4.54 (d, 2H, J = 6.5 Hz), 3.71 (br s, 1H), 3.69 (s, 3H), 3.43 (m, 1H), 3.29 (ddd, 1H, J = 5.5, 13.5 Hz), 3.19 (s, 3H).
Ester 2: !H NMR (CDC13, 500 MHz) δ 8.08 (d, 2H, J = 2.0 Hz), 7.42 (dd, 2H, J = 2.0, 9.0 Hz), 7.28 (m, 2H), 7.24 (m, 4H), 7.04 (t, 1H, J = 8.0 Hz), 6.31 (dd, 1H, J = 2.0, 8.5 Hz), 6.11 (dd, 1H, J = 2.0, 8.0 Hz), 6.01 (dd, 1H, J = 2.0, 2.5 Hz), 5.63 (m, 1H), 4.49 (d, 2H, J = 6.5 Hz), 3.82 (dd, 1H, J = 5.5, 6.0 Hz), 3.66 (s, 3H), 3.42 (s, 3H), 3.39 (m, 1H), 3.28 (dd, 1H, J = 5.0, 13.5 Hz)
Step 4. Synthesis of S- and R-l-(3,6-Dibromo-9H-carbazol-9-yl)-3-(3-methoxyphenylamino)- propan-2-ol
Figure imgf000123_0001
Following a literature procedure (Abad, J-L.; Casas, J.; Sanchez-Baeza, F.; Messeguer, A. J. Org. Chem. 1995, 60, 3648-3656) ester 1 from example 3 (0.011 g, 0.015 mmol) was dissolved in degassed Et20 (0.150 mL) and cooled to 0 °C. Lithium aluminum hydride (1M in THF, 0.018 mL, 0.018 mmol) was added via syringe and the reaction was stirred for 20 min. Upon completion by TLC the reaction was quenched by the addition of MeOH and stirred for 45 min. The mixture was partitioned between EtOAc and H 0. The aqueous layer was extracted 3x with EtOAc, and the combined organics were washed with saturated aqueous NaCl, dried over Na2S04, filtered, and concentrated in vacuo. The crude residue was purified by chromatography (Si02, 0-30%
EtOAc/Hexane) to afford the desired alcohol (4.7 mg, 64%).
(From Ester 1): [<x]D = +10° (c = 0.1, CH2C12); Example la
(From Ester 2): [<x]D = -14° (c = 0.1, CH2C12); Example lb
Example 2. P7C3-S5: l-(3,6-dibromo-9H-carbazol-9-yl)-3-(2-iminopyridin-l(2H)-yl)propan-
2-ol
Figure imgf000123_0002
Example 2 was prepared following Representative Procedure 2, except with a reaction time of 2 days at 80 °C. The crude product was used without further purification.
¾ NMR (CDC13, 400 MHz) d= 8.14 (2H, J = 1.9 Hz), 7.55 (dd, 2H, J = 1.9, 8.8 Hz), 7.35 (d, 2H, J = 8.7 Hz), 6.83 (t, 1H, J = 7.6 Hz), 6.37 (d, 1H, J = 6.8), 6.32 (d, 1H, J = 9.1 Hz) , 5.65 (t, 1H, J = 6.7 Hz), 4.39 (dm, 5H), 3.54 (d, 1H, J = 13.9 Hz). MS (ESI), m/z: found 473.9 (M+l)+ ([M+l]+ for C2oHi8Br2N30 requires 474.0) Example 3a. P7C3-S7: l-(3,6-dibrom -3-(phenylthio)propan-2-ol
Figure imgf000124_0001
Benzenethiol (30 Tl, 0.29 mmol) was added to a solution of 3,6-dibromo-9-(oxiran-2- ylmethyl)-9H-carbazole (epoxide 2-A, 101.6 mg, 0.27 mmol) in 5.0 ml MeOH at r.t. The reaction mixture was heated to 80 °C and stirred overnight at the same temperature. The reaction was monitored by lc/ms for the consumption of SM. The reaction was cooled, diluted with ethyl acetate and washed with water and brine. The organic layer was dried over a2S04, filtered and condensed.
!H NMR (CDC13, 400 MHz) Λ 8.03 (d, 2H, J = 2.1 Hz), 7.48 (dd, 2H, J = 2.0, 8.7 Hz), 7.33- 7.20 (m, 7H), 4.33 (dd, IH, J = 4.3, 14.9 Hz), 4.20 (dd, IH, J = 6.9, 14.9 Hz), 4.00-4.12 (m, IH), 3.05 (dd, IH, J = 5.3, 13.9 Hz), 2.93 (dd, 1H, J = 7.2, 13.9 Hz), 2.51 (bs, IH); 13C NMR (CDC13, 126 MHz) 5139.9, 134.5, 130.4, 129.6, 129.4, 127.4, 123.8, 123.4, 112.7, 111.1, 69.3, 48.1, 39.4; MS (ESI), m/z: found: 505.9 [M+O-1]" ([M+O-1]- for C2iH17Br2NOS requires 504.9; (oxidation occurred under MS conditions; NMR not consistent with sulfoxide)
Example 3b. P7C3-S39: l-(3,6-dibromo-9H-carbazol-9-yl)-3-phenoxypropan-2-ol
Figure imgf000124_0002
Following Representative Procedure 1, the title compound of Example 3b was prepared from dibromocarbazole and phenoxymethyloxirane in 61% yield.
¾ NMR (CDCI3, 400 MHz) δ 8.14 (d, 2H, J = 1.9 Hz), 7.51 (dd, 2H, J = 1.9, 8.7 Hz), 7.36
(d, 2H, J = 8.8 Hz), 7.127-7.32 (m, 2H), 7.00 (t, IH, J = 7.3 Hz), 6.87 (dd, 2H, J = 0.8, 8.9 Hz), 4.58 (dd, IH, J=7.9, 16.7 Hz), 4.41-4.49 (m, 2H), 4.00 (dd, IH, J-4.4, 9.6 Hz), 3.89 (dd, IH, J=4.5, 9.5 Hz), 2.38 (d=lH, J=5.7Hz). MS (ESI), m/z: 517.9 [M+HCOO]" ([M+HCOO]- for
C21H17Br2N02 requires 518.0 Example 3c. P7C3-S27: l-(3,6-dibro -9H-carbazol-9-yl)-3-(phenylsulfinyl)propan-2-ol
Figure imgf000125_0001
An aqueous solution of NaI04 (5.14 g) was added to silica gel (20 g) and shaken until a free-flowing solid was obtained. Thio-ether (l-(3,6-dibromo-9H-carbazol-9-yl)-3-
(phenylthio)propan-2-ol, (0.0120 g, 0.0244 mmol) and NaI04/silica gel (0.1018 g NaI04, 0.122 mmol) were suspended in CH2C12 (1 mL). The white suspension was heated to 50 °C in a sealed vial for 4 hours until TLC showed complete disappearance of starting material. The reaction mixture was subjected to silica gel chromatography using Hexanes/EtOAc (1 :9) to afford 0.0081g white solid as product, yield 65.4% as a 1: 1 mixture of diastereomers.
*H NMR (CDC13, 400 MHz) 5ppm = 2.39 (dd, J=13.7, 1.7 Hz, 1 H diastereomer A) 2.83 (dd, J=13.2, 2.9 Hz, 1 Dias. B) 2.97 (dd, J=13.2, 8.6 Hz, 1 H Diast. B) 3.15 (dd, J=13.7, 9.3 Hz, 1 H Diast. A) 3.90 (d, J = 1.7 Hz, 1 H Dias. B) 3.96 (d, J = 2.6 Hz, 1 H Diast. A), 4.24 (dd, J = 15.0, 6.3 Hz, 1H Dias A), 4.30 (dd, J = 15.2, 6.7, 1H Diast. B), 4.35 (dd, J = 15.2, 6.0 Hz, 1 H Diast. B), 4.45 (dd, J = 15.1, 6.4 Hz, 1H Diast. B), 4.65 - 4.55 (m, 1 H Diast. A) 4.87 - 4.76 (m, 1 H Diast. B) 7.16 (d, J= 8.7 Hz, 2 H Diast. A) 7.34 (d, J= 8.8 Hz, 2H Diast B) 7.60 - 7.30 (m, 7 H Diast A + 7 H Dast. B) 8.08 (d, J = 1.9 Hz, 2 H Diast. A) 8.13 (d, J = 1.9 Hz, 2 H Diast B). MS (ESI) m/z: 549.9 [M + HCOO]" ([M+CHOO]- for C2iH17Br2 02S requires 549.9). Example 3d. P7C3-S28: l-(3,6-dibromo-9H-carbazol-9-yl)-3-(phenylsulfonyl)propan-2-ol
Figure imgf000125_0002
To a solution of thio-ether (l-(3,6-dibromo-9H-carbazol-9-yl)-3-(phenylthio)propan-2-ol, (0.0113 g, 0.0230 mmol) in 0.5 mL CH2C12, a solution of mCPBA (ca. 77% pure, 0.0129 g, 0.0575 mmol) in 0.5 mL CH2C12 was added dropwise. The mixture was stirred at room temperature overnight. The crude reaction mixture was neutralized by 9 mL Et3 and stirred for 30 min then diluted with 30 mL EtOAc and washed with saturated aHC03 3 x 30 mL and brine 1 x 30 mL. The organic layer was dried over anhydrous Na2S04 and evaporated to afford the crude product, which was subjected to silica gel chromatography using Hexanes/EtOAc (3:7) to afford white solid as product (0.0120 g, yield 99.7%).
¾ NMR (CDC13, 400 MHz) 5ppm 3.15 (dd, J=14.2, 3.0 Hz, 1 H) 3.21 - 3.31 (m, 2 H) 4.38 (d, J=6.3 Hz, 2 H) 4.60 - 4.76 (m, 1 H) 7.25 - 7.31 (m, 2 H) 7.47 - 7.56 (m, 4 H) 7.60 - 7.70 (m, 1H) 7.79 (dd, J=8.4, 1.2 Hz, 2 H) 8.11 (d, J=1.9 Hz, 2 H);MS (ESI) m/z: 565.9 [M + HCOO]; 543.7 [M + Na]+ ([M+HCOO]" for C21H17Br2N03S requires 595.9; [M+Na]+ requires 543.9).
Example 4. P7C3-S9: N-(3-(3,6-dibromo-9H-carbazol-9-yl)-2-hydroxypropyl)-N-(3- methoxyphenyl)acetamide
Figure imgf000126_0001
Following a literature procedure (Morcuende et al., J. Org. Chem. 1996, 5264-5270) triethylamine (14 Tl, 0.10 mmol) and acetyl chloride (8 Tl, 0.11 mmol) were added to a heterogeneous mixture of l-(3,6-dibromo-9H-carbazol-9-yl)-3-(3-methoxyphenylamino)propan-2- ol (53 mg, 0.11 mmol) and dibutyltin oxide (5.5 mg, 0.022 mmol) in anhydrous toluene (1.5 ml). The reaction vessel was purged with nitrogen, sealed and heated under microwave radiation to 150 °C for 9 minutes. The reaction was monitored by lc/ms and all SM had been consumed. The heterogeneous solution was filtered under vacuum to yield a white solid. The crude product was used without purification.
¾ NMR (CDCI3, 500 MHz) Λ 8.09 (2H, j = 1.6 Hz), 7.52 (dd, 2H, J = 1.8, 8.7 Hz), 7.29 (d, 2H, J = 8.8 Hz), 7.26 (t, 1H, J = 8.2 Hz), 6.86 (dd, 1H, J = 2.5, 8.4 Hz), 6.68 (dd, 1H, J = 1.3, 7.7 Hz), 6.62 (s, 1H,), 4.33-4.40 (m, 1H), 4.29 (dd, 2H, J = 2.6, 6.0 Hz), 3.94 (d, 1H, J = 4.1 Hz), 3.76 (s, 3H), 3.51 (dd, 1H, J = 2.3, 14.0 Hz), 1.9 (s, 3H);
13C MR (CDC13, 126 MHz) δ 173.6, 160.9, 144.5, 139.9, 131.0, 129.4, 123.8, 123.4, 119.7, 113.9, 113.5, 112.6, 111.1, 70.9, 55.7, 55.2, 46.0, 22.8.
MS (ESI), m/z: 544.9 (M+l)+ ([M+l]+ for C24H22Br2 203 requires 545.0)
Example 5. P7C3-S12: 5-((3,6-dibromo-9H-carbazol-9-yl)methyl)-3-(3-methoxyphenyl)- oxazolidin-2-one
Figure imgf000127_0001
Methyl chloroformate (10 Tl, 0.13 mmol) was added to a stirring solution of jn- 128- 186 (55.0 mg, 0.11 mmol) and indium powder (3.5 mg, 0.030 mmol) in acetonitrile (3.0 ml), and the reaction mixture was stirred overnight at r.t. An additional 3.1 mg (0.027 mmol) of indium and 20 Tl (2.6 eq.) of methyl chloroformate were added. After several hours, the reaction was diluted with ethyl actetate, and washed with water and then brine. The organic layer was dried over a2S04, filtered and concentrated. The methyl carbonate was purified via flash chromatography in 20-40% ethyl acetate/hexanes. Sodium methoxide (3.0 ml) was added to a solution of carbonate (21.3 mg, 0.038 mmol) and methanol (1.0 ml). After an hour at ambient temperature the solution was diluted with water and extracted with ethyl acetate. The organic layer was washed with water and brine and condensed.
!H NMR (CD3COCD3, 500 MHz) Λ 8.40 (s, 2H), 7.78 (d, 2H, J = 8.5 Hz), 7.64 (d, 2H, J = 8.9 Hz), 7.23-7.28 (m, 2H), 7.05 (d, 1H, J = 8.3 Hz), 6.70 (d, 1H, J = 8.3 Hz), 5.24-5.31 (m, 1H), 5.00 (dd, 1H, J = 7.9, 15.7 Hz), 4.91 (dd, 1H, J = 3.2, 15.8 Hz), 4.38 (t, 1H, J = 9.3 Hz), 4.05 (m, 1H), 3.78 (s, 3H);
13C MR (CDC13, 126 MHz) δ 160.4, 153.9, 140.3, 140.2, 129.8, 129.4, 124.0, 123.5, 112.4, 112.1, 110.3, 109.0, 104.4, 71.9, 54.9, 47.9, 46.6.
MS (ESI), m/z: 528.9 (Μ+1)+' . ([M+l]+ for C23H19Br2N203 calculated 529.0)
Example 6a. P7C3-S10: N-(3-(3,6-dibromo-9H-carbazol-9-yl)-2-fluoropropyl)-3- methoxyaniline (also designated as "P ")
Figure imgf000127_0002
Representative Procedure 3: Epoxide opening with Ns-protected anilines. N-(3-(3,6-dibromo-9H-carbazol-9-yl)-2-hydroxypropyl)-N-(3-methoxyphenyl)-4- nitrobenzenesulfonamide
Figure imgf000128_0001
A heterogeneous mixture of N-(4-methoxyphenyl)-4-nitrobenzenesulfonamide (100.2 mg, 0.32 mmol) in toluene (2.5 ml, 0.13 M) under a 2 atmosphere was cooled in a dry ice/acetone bath before dropwise addition of n-butyllithium (200ul of 1.78 M in hexanes, 0.36 mmol). The reaction was stirred at -78 °C for 10 minutes before addition of carbazole epoxide 2-A. The heterogeneous mixture was stirred at room temperature for 5 minutes before heating at 100 °C for 48 hours. The cooled reaction was diluted with EtOAc and washed three times with 5% acetic acid solution, followed by a brine wash. The organic layer was dried over a2S04, filtered and condensed. The crude mixture was purified in 100% dichloromethane. Yield=88%.
¾ NMR (CDCI3, 400 MHz) δ 8.23(d, 2H, J= 8.5 Hz), 8.06 (d, 2H, J= 1.9 Hz), 7.65 (d, 2H, J=8.5 Hz), 7.46, (dd, 2H, J=8.6, 1.9 Hz), 7.22 (d, 2H, J=8.8 Hz), 6.94 (d, 2H, 8.8 Hz), 6.83 (d, 2H, 9.1 Hz), 4.44 (dd, 1H, J=14.9, 3.6 Hz), 4.26-4.34 (m, 1H), 4.17-4.24 (bs, 1H), 3.81 (s, 3H), 3.62- 3.75 (m, 2H). MS (ESI), m/z: 732.0 [(M+HCOO"); C28H23Br2N306S (M) requires 687]
Representative Procedure 4: Fluorination of Secondary Alcohol
N-(3-(3,6-dibromo-9H-carbazol-9-yl)-2-fluoropropyl)-N-(3-methoxyphenyl)-4- nitrobenzenesulfonamide
Figure imgf000128_0002
An oven dried 20 ml scintillation vial containing N-(3-(3,6-dibromo-9H-carbazol-9-yl)-2- hydroxypropyl)-N-(3-methoxyphenyl)-4-nitrobenzenesulfonamide (18.3 mg, 0.027 mmol; see representative procedure 3 above) was purged with 2 and charged with anhydrous dichloromethane (1.5 ml, 0.018 M). The sealed vial was cooled in a dry ice acetone bath before the dropwise addition of diethylaminosulfur trifluoride (DAST, 7 ul, 0.053 mmol). The reaction temperature was maintained at -78 °C for an hour and then slowly warmed to room temperature and stirred overnight. The reaction was quenched with 2.0 ml of saturated NaHCC solution and diluted with 6 ml CH2CI2 and extracted three times. The combined organics were dried over a2S04, filtered and condensed. Crude product carried forward. Quantitative yield.
Alternatively, morpholinosulfur trifluoride (MORPHO-DAST) can be used at rt.
¾ NMR (CDCI3, 400 MHz) δ 8.28 (d, 2H, J= 8.0 Hz), 8.13 (s, 2H), 7.72 (d, 2H, J=8.7 Hz), 7.54, (d, 2H, J=8.0 Hz), 7.21 (d, 3H, J=8.1 Hz), 6.89 (dd,lH, 8.3, 2.4 Hz), 6.67 (t, 1H, J=2.0 Hz), 6.55 (d, 1H, J=8.0 Hz) 4.93 (m, 1H), 4.43-4.68 (m, 2H), 4.20 (t, 1H, J=6.2 Hz), 3.81 -3.99(m, 2H), 3.75 (s, 3H).
MS (ESI), m/z: calculated 688.96, found 733.9 (M+HCOO ) .
Representative Procedure 5: nosyl group deprotection (see Fukuyama, T.; Jow, C.-K.; Cheung, M. Tetrahedron Lett. 1995, 36, 6373-6374)
N-(3-(3,6-dibromo-9H-carbazol-9-yl)-2-fluoropropyl)-3-methoxyaniline
Figure imgf000129_0001
To a vial containing N-(3-(3,6-dibromo-9H-carbazol-9-yl)-2-fluoropropyl)-N-(3- methoxyphenyl)-4-nitrobenzenesulfonamide (21.0 mg, 0.030 mmol; see representative procedure 4) was added lithium hydroxide (3.2 mg, 0.134 mmol), dimethylformamide (0.5 ml, 0.06 M) and mercaptoacetic acid (4.2 ul 0.060 mmol). After stirring at rt for lh the reaction mixture was diluted with EtOAc and washed sequentially with water, saturated sodium bicarbonate solution, water (3x) and brine. The organic layer was dried over a2S04, filtered and condensed. The crude reaction mixture was purified in 30% EtOAc/hexanes (+0.2% TEA), with 13.6 mg isolated. Yield=88%
Additional Representative Procedure
DAST [(Et2NSF3) 0.12 ml, 0.916 mmol] was added dropwise to a solution of l-(3,6- dibromo-9H-carbazol-9-yl)-3-(3-methoxyphenylamino)propan-2-ol (0.102 g, 0.203 mmol) in 6.0 ml of anhydrous DCM at -78 °C. The reaction was stirred at -78 °C for one hour before being slowly warmed to 0 C over 5 hours. The reaction was quenched by addition of phosphate buffer (pH=8) and extracted with DCM. The aqueous phase was extracted twice with 10 ml DCM. The combined organics were dried over a2S04, filtered and concentrated. The crude reaction material was purified by flash chromatography on Si02 (20% EtOAc/hexanes/0.2%TEA). Fractions containing the desired fluorinated product were further purified with 40% EtOAc/hexanes (+ 0.1%TEA). Isolated 5.7 mg desired product.
Analytical Data for the title compound of Example 6a
¾ NMR (CDC13, 500 MHz) A 8.16 (2H, J = 2.0 Hz), 7.56 (dd, 2H, J = 1.9, 8.7 Hz), 7.31 (d, 2H, J = 8.6 Hz), 7.11 (t, 1H, J = 8.1 Hz), 6.36 (dd, 1H, J = 2.2, 8.1 Hz), 6.23 (dd, 1H, J = 2.0, 8.0 Hz), 6.15 (t, 1H, J = 2.3 Hz), 5.11 (dddd, 1H, J= 4.6, 5.8, 10.4, 47.7 Hz ), 4.60 (m, 2H), 4.39 (dm, 2H), 3.95 (t, 1H, J = 6.3 Hz), 3.75 (s, 3H)
MS (ESI), m/z: 504.9 (M+l)+ . ([M+l]+ for C22H19Br2FN20 calculated 505.0)
Example 6b. P7C3-S11: N-(3-(3,6-dibromo-9H-carbazol-9-yl)-2-fluoropropyl)-3-methoxy-N- methylaniline
Figure imgf000130_0001
The title compound of Example 6b was prepared according to the procedure described in Representative Procedure 4 except using l-(3,6-dibromo-9H-carbazol-9-yl)-3-((3- methoxyphenyl)(methyl)-amino)propan-2-ol (see Example 23)
¾ NMR (CDCI3, 500 MHz) δ 8.13 (d, 2H, J = 1.9 Hz), 7.54 (dd, 2H, J = 1.9, 8.8 Hz), 7.23 (d, 2H, J = 8.7 Hz), 7.12 (t, 1H, J = 8.2 Hz), 6.32 (dd, 1H, J = 2.2, 8.1 Hz), 6.26 (dd, 1H, J = 2.3, 8.0 Hz), 6.17 (t, 1H, J = 2.4 Hz), 5.10 (dddd, 1H, J= 4.6, 6.4, 10.7, 48.5 Hz ), 4.37-4.48 (m, 2H), 3.72 (s, 3H), 3.60-3.71 (m, 1H), 3.53 (td, 1H, J = 6.9, 15.9 Hz), 2.99 (s, 3H).
MS (ESI), m/z: 518.9 [M+1]+ ([M+H]+ for C23H21Br2FN20 requires 519.0.)
Example 7a. P7C3-S3: l-(3,6-dibromo-9H-carbazol-9-yl)-3-(3-methoxyphenylamino)- propan-2-one
Figure imgf000131_0001
Trietheylamine (1.65 ml, 11.8 mmol ) was added to a stirring solution of l-(3,6-dibromo- 9H-carbazol-9-yl)-3-(3-methoxyphenylamino)propan-2-ol (1.02 g, 2.02 mmol) in DMSO (21 ml). The solution was stirred for 30 minutes before addition of sulfur trioxide pyridine complex (0.659 g, 4.14 mmol). After stirring overnight, additional triethylamine (1.0 ml, 7.17 mmol) was added, followed by sulfur trioxide pyridine complex (0.663 mg, 4.17 mmol) an hour later. After stirring for 1 h, the orange solution was diluted with ~ 150 ml ethyl acetate and washed several times with water and then brine. The organic layer was dried over a2S04, filtered and concentrated to yield brown foam. Flash chromatography on S1O2 100% (CH2CI2 + 0.2%TEA) provided a higher Rf ketone (thioether, 18%) and a lower Rf ketone (Yield= 40%).
Major product: ¾ NMR (CDC13, 400 MHz) δ 8.18 (2H, J = 1.9 Hz), 7.56 (dd, 2H, J = 1.9, 8.7 Hz), 7.11 (d, 2H, J = 8.8 Hz), 7.06 (t, 1H, J = 8.1 Hz), 6.30 (dd, 1H, J = 2.3, 8.2 Hz), 6.07 (dd, 1H, J = 2.0, 8.0 Hz), 6.11 (t, 1H, J = 2.2 Hz), 5.08 (s, 2H,), 4.41 (t, 1H, J = 4.8 Hz), 3.90 (d, 2H, J = 5.1 Hz), 3.72 (s, 3H)
13C NMR (CDCI3, 126 MHz) δ = 202.9, 161.1, 147.9 (2 C), 139.5, 130.6 (2 C), 129.9 (2 C), 124.1(2 C), 123.9(2 C), 113.5, 110.1(2 C), 103.7, 99.3, 55.4, 51.9, 51.0.
MS (ESI), m/z: 500.9 (M+l)+ ([M+l]+ for C22H18Br2N202 requires 501.0)
Example 7b. P7C3-S4: 3-(3,6-dibromo-9H-carbazol-9-yl)-l-(3-methoxyphenylamino)-l- (methylthio)propan-2-one
Figure imgf000131_0002
The title compound of Example 7b was obtained as a minor product in the preparation of the title compound of Example 7a.
¾ NMR (CDCI3, 400 MHz): δ 8.16 (d, 2H, J = 2.0 Hz), 7.55 (dd, 2H, J= 1.7, 8.8 Hz), 7.25 (d, J = 8.8 Hz, 2H), 7.12 (t, 1H, J= 8.4 Hz), 6.39 (dd, 1H, J= 2.2, 8.2 Hz), 6.33 (dd, 1H, J= 2.2, 8.0 Hz), 6.29 (t, 1H, J = 2.2 Hz), 5.50 (d, 1H, J= 18.0 Hz), 5.22 (d, 1H, J= 18.4 Hz), 5.25 (d, J = 8.0 Hz, 1H), 4.50 (d, J= 8.0 Hz, 1H, exchangeable), 3.76 (s, 3H), 1.74 (s, 3H) C NMR (CDCI3, 126 MHz) δ = 193.2, 160.9, 143.9 (2 C), 139.8(2C), 130.4, 129.8(2C), 124.1, 123.7(2C), 113.4(2C), 110.3(2C), 107.8, 104.7, 101.0, 60.3, 55.4, 48.9, 9.0
ESI m/z 498.9 [M-SMe+H]+ ([M-SMe+H]+ for C^oB^C^S requires 499.0.
HRMS m/z: 546.9675 [M+H]+ ([M+H]+ for CzsHzoB^OzS requires 545.9612.
Example 8. P7C3-S13: N-(3-(3,6-dibromo-9H-carbazol-9-yl)-2-methoxypropyl)-3- methoxyaniline
Figure imgf000132_0001
Sodium hydride (9.0 mg, 0.23 mmol) was added to a stirring solution of l-(3,6-dibromo- 9H-carbazol-9-yl)-3-(3-methoxyphenylamino)propan-2-ol (99.3 mg, 0.20 mmol) in DMF 0.5 ml, 0.39 M). The solution was stirred at room temperature for about 70 minutes before the dropwise addition of a solution of methyl iodide (14 ml. 0.22 mol) in DMF (1.0 ml). The reaction was monitored by lc/ms for the consumption of SM and the appearance of O and N-methyl products. After 2.5 hours of stirring at r.t, conversion was about 30% and about 5% N-methyl product had formed. The reaction was stopped when an increase of N-Me to O-Me had been observed and conversion was about 50%. The brown solution was diluted with ethyl acetate and washed several times with water and finally brine. The organic layer was dried over Na2S04, filtered and condensed. The mixture was purified by preparative TLC 30% EtOAc/hexanes.
¾ NMR (CDCI3, 400 MHz) Λ 8.13(s, 2H), 7.51 (dd, 2H, J = 1.8, 8.8 Hz), 7.31 (d, 2H, J = 8.7 Hz), 7.09 (t, IH, J=8.2 Hz), 6.33 (dd, IH, J= 2.3, 8.3 Hz), 6.21 (dd, IH, J=2.1, 8.0 Hz), 6.12 (m, IH), 4.42 (m, IH), 4.03 (bs, IH), 3.85 (m, IH), 3.74(s, 3H), 3.29 (s, 3H), 3.09(m, 2H)
13C NMR (CDCI3, 126 MHz) δ 161.0, 149.4, 139.8, 130.4, 129.5, 123.8, 123.5, 1 12.7, 110.9, 106.7, 103.6, 99.7, 78.2, 58.3, 55.3, 45.3, 44.3.
MS (ESI), m/z: 516.9 (M+l)+ ([M+l]+ for C23H22Br2N202 requires 517.0).
Example 9. P7C3-S2: l-(3,6-Dimethyl-9H-carbazol-9-yl)-3-(3-methoxyphenylamino)propan-
2-ol
Figure imgf000133_0001
Step 1. Synthesis of 3 ,6-Dimethyl-9-(oxiran-2- lmeth l -9H-carbazole
Figure imgf000133_0002
Following Representative Procedure 1, 3,6-dimethyl carbazole (Beyer etal., O. J. Org. Chem. 2003, 68, 2209-2215) was added to epichlorohydrin in 69% yield.
!H NMR (CDC13, 500 MHz) Λ 7.84 (d, 2H, J = 1.0 Hz), 7.30 (d, 2H, J = 8.5 Hz), 7.26 (dd, 2H, J = 1.0, 8.5 Hz), 4.54 (dd, 1H, J = 3.5, 16.0 Hz), 4.35 (dd, 1H, J = 4.5, 16.0 Hz), 3.30 (m, 1H), 2.76 (dd, 1H, J = 4.0, 5.0 Hz), 2.52 (s, 6H), 2.51 (m, 1H)
Step 2. Synthesis of l-(3, 6-Dimethyl-9H- -methoxyphenylamino)propan-2-ol
Figure imgf000133_0003
Following Representative procedure 2, l-(3,6-Dimethyl-9H-carbazol-9-yl)-3-(3- methoxyphenylamino)propan-2-ol was prepared from 3,6-Dimethyl-9-(oxiran-2-ylmethyl)-9H- carbazole in 22 % following purification by preparative TLC.
!H NMR (CDCI3, 500 MHz) δ 7.84 (d, 2H, J = 0.5 Hz), 7.30 (d, 2H, J = 8.0 Hz), 7.23 (d, 2H, J = 8.0 Hz), 7.05 (t, 1H, J = 8.0 Hz), 6.28 (dd, 1H, J = 2.5, 8.0 Hz), 6.21 (dd, 1H, J = 2.5, 8.0 Hz), 6.12 (dd, 1H, J = 2.0, 2.5 Hz), 4.39 (m, 3H), 4.01 (br s, 1H), 3.68 (s, 3H), 3.31 (dd, 1H, J = 3.0, 11.5 Hz), 3.17 (dd, 1H, J = 6.5, 13.0 Hz), 2.51 (s, 6H), 2.13 (br s, 1H) liC NMR (CDCI3, 125 MHz) δ 161.0, 149.5, 139.5 (2C), 130.3 (2C), 128.7, 127.3 (2C), 123.2 (2C), 120.5 (2C), 108.7 (2C), 106.7, 103.7, 99.5, 69.7, 55.2, 48.0, 47.4, 21.6 (2C).
ESI m/z 375.2 ([M+H]+, C24H27 2O2 requires 375.2) Example 10. P7C3-S14: l-(3-Bromo-6-methyl-9H-carbazol-9-yl)-3-(3-methoxyphenylamino)- propan-2-ol
Figure imgf000134_0001
Step 1. Synthesis of 3-Bromo-6-methyl-9-(oxiran-2-ylmethyl)-9H-carbazole
e
Figure imgf000134_0002
Following Representative Procedure 2, Example 14 was prepared in 74% yield.
¾ NMR (CDCI3, 500 MHz) δ 8.13 (d, 1H, J = 1.5 Hz), 7.80 (d, 1H, J = 1.0 Hz), 7.50 (dd, 1H, J = 2.0, 8.5 Hz), 7.33-7.28 (m, 3H), 4.57 (dd, 1H, J = 3.0, 15.5 Hz), 4.29 (dd, 1H, J = 5.0, 15.5 Hz), 3.29 (m, 1H), 2.77 (dd, 1H, J = 4.0, 4.5 Hz), 2.51 (s, 3H), 2.48 (dd, 1H, J = 2.5, 4.5 Hz)
Step 2. Synthesis of l-(3-Bromo-6-methyl-9H-carbazol-9-yl)-3-(3-methoxyphenylamino)-propan-2- ol
Figure imgf000134_0003
Following Representative Procedure 2, Example 15 was prepared from 3-Bromo-6-methyl- 9-(oxiran-2-ylmethyl)-9H-carbazole in 41% yield.
'EI NMR (CDCI3, 500 MHz) δ 8.14 (d, 1H, J = 2.0 Hz), 7.81 (s, 1H), 7.48 (dd, 1H, J = 2.0, 8.5 Hz), 7.31 (d, 1H, J = 5.0 Hz), 7.29 (br s, 1H), 7.06 (t, 1H, J = 8.5 Hz), 6.29 (dd, 1H, J = 2.0, 8.0 Hz), 6.21 (dd, 1H, J = 2.0, 8.0 Hz), 6.11 (t, 1H, J = 2.0 Hz), 4.37 (m, 3H), 3.99 (br s, 1H), 3.70 (s, 3H), 3.30 (dd, 1H, J = 3.5, 13.5 Hz), 3.16 (dd, 1H, J = 6.5, 13.5 Hz), 2.51 (s, 3H), 2.14 (br s, 1H)
13C NMR (CDCI3, 125 MHz) δ 161.0, 149.4, 139.8, 139.5, 130.3, 129.4, 128.5, 128.2, 124.7, 123.2, 122.3 120.7, 112.1, 110.6, 109.0, 106.7, 103.7, 99.6, 69.5, 55.3, 47.9, 47.4, 21.5.
ESI m/z 439.1 ([M+H]+, C23H24Br 202 requires 439.1)
Example 11. P7C3-S15: l-(3,6-Dichloro-9H-carbazol-9-yl)-3-(3- methoxyphenylamino)propan-2-ol
Figure imgf000135_0001
Step 1. Synthesis of 3,6-Dichloro-9-(oxiran-2-ylmethyl)-9H-carbazole
I
Figure imgf000135_0002
Following Representative Procedure 1, 3,6-Dichloro-9-(oxiran-2-ylmethyl)-9H-carbazole was prepared in 23% yield.
!H NMR (CDCI3, 600 MHz) δ 7.92 (d, 2H, J = 1.8 Hz), 7.40 (dd, 2H, J = 1.8, 9.0 Hz), 7.32 (d, 2H, J = 9.0 Hz), 4.59 (dd, 1H, J = 3.0, 16.2 Hz), 4.22 (dd, 1H, J = 5.4, 16.2 Hz), 3.27 (m, 1H), 2.78 (dd, 1H, J = 4.2, 4.8 Hz), 2.46 (dd, 1H, J = 2.4, 4.8 Hz)
Step 2. Synthesis of l-(3,6-Dichloro-9H-carbazol-9-yl)-3-(3-methoxyphenylamino)propan-2-ol
Figure imgf000136_0001
Following Representative Procedure 2, l-(3,6-dichloro-9H-carbazol-9-yl)-3-(3- methoxyphenylamino)propan-2-ol was prepared from 3,6-Dichloro-9-(oxiran-2-ylmethyl)-9H- carbazole in 37% yield.
!H NMR (CDC13, 500 MHz) δ 7.95 (d, 2H, J = 2.0 Hz), 7.38 (dd, 2H, J = 2.0, 8.5 Hz), 7.33
(d, 2H, J = 9.0 Hz), 7.06 (t, 1H, J = 8.0 Hz), 6.30 (dd, 1H, J = 2.0, 8.0 Hz), 6.20 (dd, 1H, J = 2.0, 8.0 Hz), 6.11 (dd, 1H, J = 2.0, 2.5 Hz), 4.30-4.35 (m, 3H), 3.70 (s, 3H), 3.28 (dd, 1H, J = 3.5, 13.0 Hz), 3.13 (dd, 1H, J = 6.5, 13.0 Hz)
13C NMR (CDCI3, 150 MHz) δ 161.0, 149.3, 139.7, 130.4 (2C), 126.9 (2C), 125.5 (2C), 123.4 (2C), 120.4 (2C), 110.5 (2C), 106.7, 103.8, 99.8, 69.6, 55.3, 48.0, 47.5.
ESI m/z 415.0 ([M+H]+, C22H20CI2 2O2 requires 415.1)
Example 12. P7C3-S18: l-(5-bromo-2,3-dimethyl-lH-indol-l-yl)-3-(phenylamino)propan-2-ol
Figure imgf000136_0002
Step 1. Synthesis of 5-Bromo-2,3-dimethyl-lH-indole
Figure imgf000136_0003
Following a published procedure (Gundersen, E. G. U.S. Patent App. Publ. US
2005/070592) 2-Butanone (0.11 mL, 1.278 mmol) was added to a solution of 4- bromophenylhydrazine hydrochloride (0.300 g, 1.342 mmol in EtOH (3.8 mL). The mixture
735 heated to reflux for 22 h, concentrated in vacuo, and partitioned between EtOAc and IN HCl. The organic layer was washed with H20 and saturated aqueous NaHC03, dried over Na2S04, filtered, and concentrated. The crude residue was purified by chromatography (S1O2, 0-20%
EtOAc/Hexane) to afford the desired indole as a pink powder (200 mg, 67%).
!H NMR (CDCI3, 500 MHz) δ 7.69 (br s, 1H), 7.55 (d, 1H, J = 2.0 Hz), 7.15 (dd, 1H, J = 2.0, 8.5 Hz), 7.09 (dd, 1H, J = 0.5, 8.5 Hz), 2.34 (s, 3H), 2.15 (d, 3H, J = 0.5 Hz)
ESI m/z 224.0 ([M+H]+, Ci0HnBrN requires 224.0)
Step 2. Synthesis of 5-Bromo-2,3-dimethyl-l-(oxiran-2-ylmethyl)-lH-indole
Figure imgf000137_0001
Following Representative Procedure 1, 5-bromo-2,3-dimethyl-l-(oxiran-2-ylmethyl)-lH- indole was prepared from 5-Bromo-2,3-dimethyl-lH-indole in 48% yield.
!H NMR (CDCI3, 500 MHz) δ 7.58 (d, 1H, J = 2.0 Hz), 7.20 (dd, 1H, J = 2.0, 8.5 Hz), 7.10 (d, 1H, J = 8.5 Hz), 4.35 (dd, 1H, J = 3.0, 16.0 Hz), 4.09 (dd, 1H, J = 4.5, 16.0 Hz), 3.17 (m, 1H), 2.72 (t, 1H, J = 4.5 Hz), 2.35 (dd, 1H, J = 3.0, 5.0 Hz), 2.33 (s, 3H), 2.19 (s, 3H).
ESI m/z 280.0 ([M+H]+, Ci3H15BrNO requires 280.0)
Step 3. Synthesis of l-(5-bromo-2,3-dimethyl-lH-indol-l-yl)-3-(phenylamino)propan-2-ol
Figure imgf000137_0002
Following Representative Procedure 2, 1 -(5 -bromo-2,3 -dimethyl- lH-indol-l-yl)-3 - (phenylamino)propan-2-ol was prepared from 5-Bromo-2,3-dimethyl-l-(oxiran-2-ylmethyl)-lH- indole in 39% yield.
!H NMR (CDCI3, 500 MHz) δ 7.58 (d, 1H, J = 2.0 Hz), 7.17 (dd, 2H, J = 7.0, 8.5 Hz), 7.11 (d, 1H, J = 8.5 Hz), 6.75 (t, 1H, J = 7.0 Hz), 6.60 (d, 2H, J = 8.5 Hz), 4.17 (m, 1H), 4.15 (m, 2H), 3.27 (dd, 1H, J = 3.0, 8.5 Hz), 3.12 (dd, 1H, J = 7.0, 13.0 Hz), 2.34 (s, 3H), 2.19 (s, 3H) 1JC NMR (CDC13, 125 MHz) δ 147.9, 135.1, 134.3, 130.6, 129.6 (2C), 123.6, 120.9, 118.6, 113.7 (2C), 112.5, 110.5, 107.1, 69.9, 47.7, 47.4, 10.7, 9.0
ESI m/z 373.0 ([M+H]+, Ci9H22Br 20 requires 373.1).
Example 13. P7C3-S26: l-(3,6-Dibromo-9H-pyrido[3,4-b]indol-9-yl)-3- (phenylamino)propan-2-ol
Figure imgf000138_0001
Step 1. Synthesis of 3,6-Dibromo-fi-carboline
Figure imgf000138_0002
Following a literature procedure (Ponce, M. A.; Erra-Balsells, R. J. Heterocyclic Chem. 2001, 38, 1087) β-Carboline (0.100 g, 0.595 mmol) and Si02 (1.00 g) were suspended in CH2C12 (15 mL). N-Bromosuccinimde (0.212 g, 1.189 mmol) was dissolved in CH2C12 (15 mL) and the solution was added to the carboline mixture slowly via syringe in the absence of light. The reaction was stirred at ambient temperature for 2.5 h, after which the silica gel was filtered off and washed 3 xCH2Cl2. The combined organic layer was extracted with 0.1 M NaOH and saturated aqueous NaCl, dried over Na2S04, filtered, and concentrated in vacuo. The crude product was purified by chromatography (Si02, 0-100% EtOAc/Hexane) to afford the desired 3,6-dibrominated carboline (25 mg, 13%) as well as 6,8-dibrominated carboline (15 mg, 8%) and the tribrominated carboline (36 mg, 19%).
¾ NMR (ifc-DMSO, 500 MHz) δ 8.72 (s, 1H), 8.58 (d, 1H, J = 1.5 Hz), 8.48 (s, 1H), 7.70 (dd, 1H, J = 1.5, 9.0 Hz), 7.58 (d, 1H, J = 9.0 Hz).
ESI m/z 326.9 ([M+H]+, CnH7Br2N2 requires 326.9).
Step 2. Synthesis of 3 ,6-Dibromo-9-(oxiran-2-ylmethyl)-9H-pyrido [3 ,4-bj 'indole
Figure imgf000139_0001
Following Representative Procedure 1, 3,6-dibromo-9-(oxiran-2-ylmethyl)-9H-pyrido[3,4- b]indole was prepared from 3,6-dibromo-&-carboline in 73% yield.
!H NMR (CDCI3, 400 MHz) δ 8.62 (d, 1H, J = 0.8 Hz), 8.17 (d, 1H, J = 2.0 Hz), 8.02 (d, 1H, J = 1.2 Hz), 7.69 (dd, 1H, J = 2.0, 8.8 Hz), 7.41 (d, 1H, J = 8.8 Hz), 5.34 (br s, 1H), 4.73 (dd, 1H, J = 2.4, 16.0 Hz), 4.27 (dd, 1H, J = 5.2, 16.0 Hz), 3.32 (m, 1H), 2.83 (dd, 1H, J = 4.0, 4.4 Hz), 2.49 (dd, 1H, J = 2.4, 4.4 Hz).
ESI m/z 382.9 ([M+H]+, CwHnB^O requires 382.9). Step 3. Synthesis of l-(3,6-Dibromo-9H-pyridof3,4-bJindol-9-yl)-3-(phenylamino)propan-2-ol
Figure imgf000139_0002
Following Representative Procedure 2, l-(3,6-dibromo-9H-pyrido[3,4-b]indol-9-yl)-3- (phenylamino)propan-2-ol was prepared from 3,6-dibromo-9-(oxiran-2-ylmethyl)-9H-pyrido[3,4- b]indole in 14% yield after purification by preparative TLC.
'H NMR (CDCI3, 500 MHz) δ 8.64 (s, 1H), 8.18 (d, 1H, J = 2.0 Hz), 7.99 (s, 1H), 7.66 (dd,
1H, J = 1.5, 9.0 Hz), 7.40 (d, 1H, J = 9.0 Hz), 7.18 (dd, 2H, J = 7.5 Hz), 6.76 (t, 1H, J = 7.5 Hz), 6.63 (d, 2H, J = 8.5 Hz), 5.33 (br s, 1H), 4.38^1.49 (m, 3H), 3.37 (dd, 1H, J = 4.0, 13.0 Hz), 3.21 (dd, 1H, J = 7.0, 13.0 Hz)
13C NMR (CDCI3, 125 MHz) δ 147.7, 141.2, 137.0, 132.6, 132.5, 130.9, 130.1, 129.7 (2C), 125.0, 122.0, 119.0, 118.6, 113.8 (2C), 113.4, 111.9, 69.6, 48.1, 47.9
ESI m/z 475.9 ([M+H]+, C2oH18Br2 30 requires 476.0)
Example 14. P7C3-S36: l-(3-Azidophenylamino)-3-(3,6-dibromo-9H-carbazol-9-yl)propan-2- ol
Figure imgf000140_0001
Following Representative Procedure 2, Example 14 was prepared in 14% yield.
¾ NMR (CDC13, 500 MHz) δ 8.13 (d, 2H, J = 2.0 Hz), 7.53 (dd, 2H, J = 2.0, 8.5 Hz), 7.31 (d, 2H, J = 8.5 Hz), 7.12 (t, 1H, J = 8.0 Hz), 6.44 (dd, 1H, J = 1.5, 8.0 Hz), 6.36 (dd, 1H, J = 1.5, 8.0 Hz), 6.20 (dd, 1H, J = 2.0 Hz), 4.35^1.41 (m, 3H), 4.10 (br s, 1H), 3.31 (dd, 1H, J = 3.0, 13.0 Hz), 3.17 (dd, 1H, J = 6.5, 13.0 Hz), 2.11 (br s, 1H)
ESI m/z 513.9 ([M+H]+, C2iH18Br2 50 requires 514.0)
Example 15. P7C3-S34: l,3-Bis(3,6-dibromo-9H-carbazol-9-yl)propan-2-ol
r
Figure imgf000140_0002
3,6-Dibromocarbazole (0.050 g, 0.154 mmol) was dissolved in DMF (1.5 mL) and cooled to 0 °C. NaH (60% dispersion in mineral oil, 0.007 g, 0.169 mmol) was added and the reaction was stirred for 45 min at 0 °C. 3,6-Dibromo-9-(oxiran-2-ylmethyl)-9H-carbazole (0.059 g, 0.154 mmol) was added and the reaction was stirred at ambient temperature for 24 h. Upon consumption of the starting material by TLC, the reaction was partitioned between EtOAc and H2O. The aqueous layer was washed 3x with EtOAc, and the combined organics were washed with saturated aqueous NaCl, dried over Na2S04, filtered, and concentrated in vacuo. The crude residue was purified by chromatography (S1O2, 0-50% EtOAc/Hexane) to afford the desired product (37 mg, 34%).
*H NMR (acetone-i¾, 400 MHz) δ 8.36 (d, 4H, J = 2.0 Hz), 7.64 (d, 4H, J = 8.8 Hz), 7.56 (dd, 4H, J = 2.0, 8.8 Hz), 4.72 (m, 5H), 2.78 (br s, 1H) "C MR (acetone-i/6, 100 MHz) δ 141.2 (4C), 129.8 (4C), 124.6 (4C), 124.1 (4C), 112.9 (4C), 112.7 (4C), 70.3, 48.3 (2C).
ESI m/z 747.0 ([M+C02H]", C28H19Br4 203 requires 746.8) Example 16. P7C3-S35: l-(9H-Carbazol-9-yl)-3-(3,6-dibromo-9H-carbazol-9-yl)propan-2-ol r
Figure imgf000141_0001
Following a procdure analogous to that used to prepare Example 15, Example 16 was prepared in 48% yield.
*H NMR (acetone-i¾, 400 MHz) δ 8.36 (m, 2H), 8.14 (d, 2H, J = 8.0 Hz), 7.63 (d, 2H, J = 8.4 Hz), 7.55 (s, 2H), 7.42 (dt, 2H, J = 1.2, 7.2 Hz), 7.20 (dt, 2H, J = 0.8, 7.2 Hz), 4.76 (m, 1H), 4.64^1.72 (m, 4H), 2.77 (br s, 1H).
13C NMR (acetone-i/6, 100 MHz) δ 142.0 (2C), 141.0 (2C), 129.8 (2C), 126.6 (2C), 124.5 (2C), 124.1 (2C), 123.8 (2C), 121.0 (2C), 119.9 (2C), 112.7 (2C), 112.6 (2C), 110.5 (2C), 70.3, 48.4, 48.1.
ESI m/z 591.0 ([M+C02H]", CzsHziB^Os requires 591.0).
Example 17. P7C3-S31: 3-(3,6-Dibromo-9H-carbazol-9-yl)-2-hydroxy-N-(3-methoxyphenyl)- propanamide
Figure imgf000141_0002
Step 1. Synthesis of Methyl 3-(3, 6-Dibromo-9H-carbazol-9-yl)-2-hydroxypropanoate
Figure imgf000142_0001
3,6-Dibromocarbazole (0.300 g, 0.923 mmol) was dissolved in DMF (1.2 mL) and cooled to 0 °C. NaH (60% dispersion in mineral oil, 0.074 g, 1.846 mmol) was added and the reaction stirred for 1 h at 0 °C. Methyl glycidate (0.471 g, 4.615 mmol) was added and the reaction was stirred and warmed to ambient temperature over 3.5 h. Upon completion by TLC the reaction mixture was partitioned between EtOAc and H 0. The aqueous layer was extracted 3x with EtOAc, and the combined organics were washed with saturated aqueous NaCl, dried over Na2S04, filtered, and concentrated in vacuo. The crude residue was purified by chromatography (Si02, 0-30%
EtOAc/Hexane) to afford the desired product (125 mg, 32%).
!H NMR (CDCI3, 500 MHz) 8 8.10 (d, 2H, J = 2.0 Hz), 7.53 (dd, 2H, J = 2.0, 9.0 Hz), 7.36 (d, 2H, J = 9.0 Hz), 4.63^1.55 (m, 3H), 3.69 (s, 3H), 2.94 (d, 1H, J = 5.5 Hz).
ESI m/z 425.8 ([M+H]+, Ci6H14Br2N03 requires 425.9)
Step 2. Synthesis of 3-(3,6-Dibromo-9H-carbazol-9-yl)-2-hydroxypropanoic acid
Figure imgf000142_0002
NaOH (0.64 mL, 1M solution in H20) was added to a suspension of methyl 3-(3,6-dibromo- 9H-carbazol-9-yl)-2-hydroxypropanoate (0.055 g, 0.129 mmol) in EtOH (2.6 mL) and the reaction was stirred at ambient temperature for 2.5 h. The reaction was concentrated in vacuo and the residue was acidified with IN aqueous HCl. The mixture was extracted with EtOAc (3 x), and the combined organics were washed with saturated aqueous NaCl, dried over Na2S04, filtered, and concentrated in vacuo to afford the desired product as a white solid (53 mg, 99%).
¾ NMR (CDCI3, 500 MHz) δ 8.10 (d, 2H, J = 1.5 Hz), 7.52 (dd, 2H, J = 1.5, 8.5 Hz), 7.40 (d, 2H, J = 9.0 Hz), 4.68 (m, 2H), 4.60 (dd, 1H, J = 6.5, 15.5 Hz).
ESI m/z 411.9 ([M+H]+, Ci5H12Br2N03 requires 411.9) Step 3. Synthesis of 3-(3,6-Dibromo-9H-carbazol-9-yl)-2-hydroxy-N-(3-methoxyphenyl)- propanamide
Figure imgf000143_0001
3-(3,6-Dibromo-9H-carbazol-9-yl)-2-hydroxypropanoic acid (0.025 g, 0.061 mmol) was suspended in anhydrous CH2C12 and cooled to 0 °C. Thionyl chloride (0.005 mL, 0.073 mmol) was added dropwise and the reaction was stirred at 0 °C for 1 h. m-Anisidine (0.008 mL, 0.073 mmol) and Et3 (0.010 mL, 0.073 mmol) were added and the reaction was allowed to warm to ambient temperature over 2.5 h. Upon completion, the solution was partitioned between EtOAc and H20. The aqueous layer was washed 3x with EtOAc, and the combined organics were washed with saturated aqueous NaCl, dried over a2S04, filtered, and concentrated in vacuo. The crude residue was purified by chromatography (Si02, 0-30% EtOAc/Hexane) to afford the desired product (15 mg, 48%).
!H NMR (acetone-i/6, 500 MHz) δ 9.22 (br s, 1H), 8.34 (d, 2H, J = 1.5 Hz), 7.65 (d, 2H, J = 8.5 Hz), 7.59 (dd, 2H, J = 4.0, 8.5 Hz), 7.42 (dd, 1H, J = 2.0 Hz), 7.24 (m, 1H), 7.20 (dd, 1H, J = 8.0 Hz), 6.67 (dd, 1H, J = 2.0, 8.0 Hz), 5.56 (br s, 1H), 4.82 (m, 1H), 4.73 (m, 2H), 3.77 (s, 3H)
13C NMR (CDC13, 100 MHz) δ 170.9, 161.1, 141.1, 140.3, 130.3 (2C), 129.8 (2C), 124.6 (2C), 124.0 (2C), 113.1 (2C), 112.8 (2C), 112.7, 110.5, 106.4, 72.7, 55.6, 48.4.
ESI m/z 514.9 ([M-H]~ C22H17Br2N203 requires 515.0)
Example 18. Ethyl 5-(2-Hydroxy-3-(3-methoxyphenylamino)propyl)-8-methyl-3,4-dihydro- lH-pyrido[4,3-Z>]indole-2(5H)-carboxylate
Figure imgf000143_0002
Step 1. Synthesis of Ethyl 8-Methyl-3, -dihydro-lH-pyridof4,3-bJindole-2(5H)-carboxylate
Figure imgf000144_0001
Following a literature procedure (Harbert et al., J. Med. Chem. 1980, 23, 635-643) p- tolylhydrazine hydrochloride (0.500 g, 3.15 mmol) and l-carbethoxy-4-piperidone (0.18 mL, 1.17 mmol) were suspended in EtOH (0.880 mL) and heated to reflux for 2 hours. The reaction mixture was removed from heat and allowed to stand overnight at ambient temperature. The resulting mixture was filtered and washed with 50% aqueous EtOH to afford the desired product as a beige powder (259 mg, 86%).
¾ NMR (CDC13, 500 MHz) δ 7.73 (br s, 1H), 7.23 (s, 1H), 7.18 (d, 1H, J = 8.0 Hz), 6.96 (d, 1H, J = 8.0 Hz), 4.64 (br s, 2H), 4.18 (q, 2H, J = 7.0 Hz), 3.85 (m, 2H), 2.81 (br s, 2H), 2.42 (s, 3H), 1.28 (t, 3H, J = 7.0 Hz).
Step 2. Synthesis of Ethyl 8-Methyl-5-(oxiran-2-ylmethyl)-3, 4-dihydro-lH-pyrido[4,3-b]indole- 2(5H)-carboxylate
Figure imgf000144_0002
Ethyl 8-methyl-3,4-dihydro-lH-pyrido[4,3-/?]indole-2(5H)-carboxylate (0.025 g, 0.097 mmol) was dissolved in anhydrous degassed THF and was cooled to -78 °C. A solution of w-BuLi (0.082 mL, 1.78 M in hexanes) was added dropwise and the reaction was stirred at -78 °C for 30 min. Epibromohydrin (0.016 mL, 0.194 mmol) was added and the reaction was allowed to warm slowly to ambient temperature. After 3.5 h, epibromohydrin (0.008 mL, 0.097 mmol) was added and the reaction was stirred overnight at ambient temperature. Upon completion, saturated aqueous NH4C1 was added to quench the reaction and the mixture was extracted with EtOAc (3x). The combined organic layers were washed with brine, dried over Na2S04, filtered, and concentrated. The crude residue was purified by chromatography (S1O2, 0-50% EtOAc/Hexane) to afford the desired product (15 mg, 49%). ¾ NMR (CDCI3, 500 MHz) δ 7.19 (m, 1H), 7.00 (d, 1H, J = 8.5 Hz), 4.65 (br s, 2H), 4.32 (dd, 1H, J = 3.0, 15.5 Hz), 4.18 (q, 2H, J = 7.0 Hz), 4.08 (dd, 1H, J = 5.0, 15.5 Hz), 3.85 (m, 2H), 3.18 (m, 1H), 2.81 (br s, 2H), 2.73 (dd, 1H, J = 4.0, 4.5 Hz), 2.44 (s, 3H), 2.38 (br s, 1H), 1.29 (t, 3H, J = 7.0 Hz)
Step 3. Synthesis of Ethyl 5-(2-Hydroxy-3-(3-methoxyphenylamino)propyl)-8-methyl-3,4-dihydro- lH-pyrido[ 4, 3-b] indole-2(5H)-carboxylate
Figure imgf000145_0001
Following a literature procedure (Chakraborti et al., Eur. J. Org. Chem. 2004, 3597-3600) LiBr (0.001 g, 0.010 mmol) and m-anisidine (0.011 mL, 0.102 mmol) were added to ethyl 8- Methyl-5-(oxiran-2-ylmethyl)-3,4-dihydro-lH-pyrido[4,3-b]indole-2(5H)-carboxylate (0.032 g, 0.102 mmol) and stirred vigorously at ambient temperature overnight. Upon completion the reaction was partitioned between EtOAc/H20, and the organic layer was concentrated to an orange oil. The crude residue was purified by chromatography (S1O2, 0-50% EtOAc/Hexane) to afford the desired product (30 mg, 67%).
¾ NMR (CDCI3, 500 MHz) δ 7.23 (br s, 1H), 7.17 (d, 1H, J = 8.0 Hz), 7.05 (dd, 1H, J = 8.0 Hz), 6.97 (d, 1H, J = 8.5 Hz), 6.28 (dd, 1H, J = 1.5, 8.0 Hz), 6.19 (d, 1H, J = 8.0 Hz), 6.11 (br s, 1H), 4.64 (br s, 2H), 4.18 (m, 1H), 4.16 (q, 2H, J = 7.5 Hz), 4.12 (m, 1H), 3.80 (br s, 2H), 3.71 (s, 3H), 3.23 (dd, 1H, J = 3.5, 13.0 Hz), 3.07 (dd, 1H, J = 7.5, 13.0 Hz), 2.83 (m, 1H), 2.76 (m, 1H), 2.42 (s, 3H), 1.27 (t, 3H, J = 7.0 Hz).
ESI m/z 438.2 ([M+H]+, C25H32 3O4 requires 438.2).
Example 19. P7C3-S26: 4-(3,6- -(phenylamino)butan-2-ol
Figure imgf000145_0002
Figure imgf000146_0001
Crushed KOH (0.0054g, 0.0954mmol, 1.2equiv) was added to 3,6-dibromocarbazole (0.0258g, 0.0795mmol, 1 equiv.) in 0.5mL DMF solution and the mixture was stirred for 30min. 1- Bromo-3,4-epoxybutane (0.0300g, 0.199mmol) in 0.5mL DMF solution was dropwise added into the mixture and it was stirred at room temperature for overnight. Reaction crude was diluted with 20mL EtOAc and washed with water 5 x lOmL. The organic layer was dried over anhydrous Na2S04 and evaporated to afford 31.2mg white solid as product, yield 97.9%.
¾ NMR (CDC13, 400 MHz) δ ppm 1.65 - 1.81 (m, 1H) 2.13 - 2.27 (m, 1H) 2.34 (dd, J=4.88, 2.64 Hz, 1H) 2.64 (dd, J=4.78, 4.05 Hz, 1H) 2.69 - 2.80 (m, 1H) 4.26 - 4.54 (m, 2H) 7.27 (d, J=8.69 Hz, 2H) 7.50 (dd, J=8.69, 1.90 Hz, 2H) 8.08 (d, J=1.90 Hz, 2H)
Step 2. Synthesis of 4-(3,6-dibro -9H-carbazol-9-yl)-l-(phenylamino)butan-2-ol
Figure imgf000146_0002
According to Representative Procedure 2, Example 19 was isolated as a white solid in 31% yield.
¾ NMR (CDCI3, 400 MHz) 5ppm 1.87 - 1.98 (m, 1H) 2.05 - 2.14 (m, 1H) 2.99 - 3.07 (dd, J=13.24, 3.43 Hz, 1H) 3.09 - 3.17 (dd, J=13.24, 8.27 Hz, 1H) 3.60 - 3.74 (m, 1H) 4.39 - 4.48 (m, 1H) 4.51 - 4.60 (m, 1H) 6.57 (d, J=7.71 Hz, 2H) 6.74 (t, J=7.34 Hz, 1H) 7.15 (dd, J=8.27, 7.59 Hz, 2H) 7.38 (d, J=8.69 Hz, 2H) 7.56 (dd, J=8.69, 1.90 Hz, 2H) 8.14 (d, J=1.85 Hz, 2H)
C NMR (CDCI3, 500 MHz) δ = 148.1, 139.6, 129.6, 129.4, 123.8, 123.6, 118.7, 113.6, 112.4, 110.8, 67.7, 51.0, 39.9, 33.7.
m/z (ESI): 486.9 (M + H+) ([M+l] for C22H20Br2N2O requires 467.0)
Example 20. P7C3-S33: N-(3-(3,6-dibromo-9H-carbazol-9-yl)propyl)aniline
Figure imgf000147_0001
Step 1. Synthesis of 3,6-dibromo-9-(3-bromopropyl)-9H-carbazole
Figure imgf000147_0002
Crushed KOH (0.0673g, 1.20mmol, 1.2equiv) was added to 3,6-dibromocarbazole (0.3250 g, 1.00 mmol) in 2mL DMF solution and the mixture was stirred for 30min. 1,3-dibromopropane (0.5047g, 2.50mmol, 2.5equiv) in 3mL DMF solution was added dropwise into the mixture and it was stirred at room temperature overnight. The crude reaction mixture was diluted with 30mL EtOAc and washed with 1M HCl 2 x lOmL and water 3 x lOmL. The organic layer was dried over anhydrous Na2S04 and evaporated to afford the crude product, which was subjected to silica gel chromatography using Hexanes/EtOAc to afford 0.1275g colorless oil as product, yield 28.6%.
!H NMR (CDC13, 400 MHz) 5ppm 2.24 - 2.44 (m, 2H) 3.29 (t, J=6.05 Hz, 2H) 4.33 (t, J=6.59 Hz, 2H) 7.26 (d, J=8.83 Hz, 2H) 7.51 (dd, J=8.69, 1.95 Hz, 2H) 8.02 (d, J=1.71 Hz, 2H)
Step 2. Synthesis ofN-(3-(3,6-dibromo-9H-carbazol-9-yl)propyl)-2-nitro-N- phenyibenzenesuifonamide
Figure imgf000147_0003
Crushed KOH (0.0024g, 0.0431 mmol) was added to 2-nitro-N-phenylbenzenesulfonamide (0.0100 g, 0.0359 mmol) in 0.2mL DMF solution and the mixture was stirred for 30min. 3,6- dibromo-9-(3-bromopropyl)-9H-carbazole (Example 35, 0.0240g, 0.0538 mmol) in 0.3 mL DMF solution was added dropwise into the mixture and it was stirred at room temperature overnight. The crude reaction mixture was diluted with 20mL EtOAc and washed with water 5 x lOmL. The organic layer was dried over anhydrous Na2S04 and evaporated to afford the crude product, which was subjected to silica gel chromatography using Hexanes/EtOAc to afford 0.0082g white solid as impure product, purity 66.9% (impurity is starting Ns -aniline; used without additional purification), yield 35.5%.
¾ NMR (CDC13, 400 MHz) 5ppm 1.89 - 2.01 (m, 2H) 3.95 (t, J=6.61 Hz, 2H) 4.32 - 4.38 (m, 2H) 7.15 (s, 1H) 7.17 (s, 1H) 7.18 - 7.25 (m, 3H) 7.32 (d, J=3.66 Hz, 2H) 7.41 - 7.44 (m, 2H) 7.51 (dd, J=8.69, 1.95 Hz, 2H) 7.59 - 7.71 (m, 2H) 8.09 (d, J=1.90 Hz, 2H)
Step 3. Synthesis ofN-(3-(3,6-dibromo-9H-carbazol-9-yl)propyl)aniline
Figure imgf000148_0001
N-(3-(3,6-dibromo-9H-carbazol-9-yl)propyl)-2-nitro-N-phenylbenzenesulfonamide (0.0378g, 0.0588mmol, lequiv), cesium carbonate (0.0574g, 0.176 mmol, 3equiv) and benzenethiol (0.0194g, 0.176 mmol) were mixed in lmL anhydrous THF. The mixture was stirred at room temperature for 3 hours. THF was removed under vacuum and the residue was purified by silica gel chromatography using Hexanes/EtOAc to afford 0.0164g colorless oil as product, yield 60.9%.
¾ NMR (CDCI3, 400 MHz) 5ppm 2.08 - 2.29 (m, 2H) 3.09 (t, J=6.56 Hz, 2H) 3.55 (br. s., 1H) 4.37 (t, J=6.69 Hz, 2H) 6.53 (dd, J=8.56, 0.95 Hz, 2H) 6.73 (t, J=7.32 Hz, 1H) 7.16 (dd,
J=8.49, 7.37 Hz, 2H) 7.25 (d, J=8.69 Hz, 2H) 7.51 (dd, J=8.69, 1.95 Hz, 2H) 8.12 (d, J=1.85 Hz, 2H)
13C NMR (CDCI3, 400 MHz) δ =148.0, 139.5, 129.6, 129.4, 123.7, 123.6, 118.2, 113.3, 112.4, 110.5, 41.4, 40.9, 28.9
MS (ESI) ,m/z: 456.9 [M+H]+ ([M+H]+ for C21H18Br2N2 requires 457.0)
Example 21. P7C3-S32: l-(3,6-d -(phenylamino)butan-2-ol
Figure imgf000148_0002
Step 1. Synthesis ofN-(but-3-enyl)-2-nitro-N-phenylbenzenesulfonamide
Figure imgf000149_0001
Crushed KOH (0.0484g, 0.862mmol, 1.2equiv) was added to 2-nitro-N- phenylbenzenesulfonamide (0.200g, 0.719mmol) in ImL DMF, and the mixture was stirred for 30 min. 4-Bromo-l-butene (0.2426g, 1.80mmol) in 2mL DMF solution was added dropwise into the mixture and it was stirred at room temperature overnight. The reaction mixture was diluted with 30mL EtOAc and washed with 1M HC1 2 x lOmL and water 3 x lOmL. The organic layer was dried over anhydrous Na2S04 and evaporated to afford the crude product, which was subjected to silica gel chromatography using Hexanes/EtOAc to afford 0.1546g white solid, yield 63.5%.
¾ NMR (CDC13, 400 MHz) 5ppm 2.20 (q, J=6.90 Hz, 2H) 3.83 (t, J=7.15 Hz, 2H) 5.00 (d, J=4.39 Hz, 1H) 5.03 (s, 1H) 5.64 - 5.83 (m, 1H) 7.14 - 7.21 (m, 3H) 7.30 (d, J=1.85 Hz, 2H) 7.42 - 7.46 (m, 2H) 7.52 - 7.58 (m, 1H) 7.60 - 7.66 (m, 1H)
Step 2. Synthesis of 2-nitro-N-(2-(oxir -2-yl)ethyl)-N-phenylbenzenesulfonamide
Figure imgf000149_0002
mCPBA (77%, 0.0550g, 0.246mmol) was added to N-(but-3-enyl)-2-nitro-N- phenylbenzenesulfonamide (0.0653 g, 0.196 mmol) in 1 mL CHCI3 at 0°C. The mixture was stirred at 0°C for 30 min, then gradually warmed up to room temperature and continued to stir for 18hr. After TLC showed the disappearance of starting material, the reaction mixture was diluted with a 1 : 1 mixture of water and saturated NaHCC^ (2 x lOmL) and water (lOmL). The organic layer was dried over anhydrous Na2S04 and evaporated to afford the crude product, which was subjected to silica gel chromatography using Hexanes/EtOAc to afford 0.0662 g colorless oil as product, yield
96.9%.
¾ NMR (CDCI3, 400 MHz) 5ppm 1.66 - 1.79 (m, 2H) 2.46 (dd, J=4.95, 2.66 Hz, 1H) 2.70
- 2.80 (m, 1H) 2.93 - 3.03 (m, 1H) 3.87 - 4.07 (m, 2H) 7.19 - 7.23 (m, 2H) 7.28 - 7.34 (m, 3H) 7.43
- 7.47 (m, 2H) 7.57 - 7.66 (m, 2H).
MS (ESI) m/z: 371.0 (M + Na+) ([M+Na]+ for Ci6H16N205S requires 371.1)
Step 3. Synthesis ofN-(2-(oxiran-2-yl)ethyl)aniline
Figure imgf000150_0001
Prepared from 2-nitro-N-(2-(oxiran-2-yl)ethyl)-N-phenylbenzenesulfonamide using an analogous procedure as used to prepare the compound of Example 20.
¾ NMR (CDCI3, 400 MHz) 5ppm 1.64 - 1.79 (m, 1H) 1.98 - 2.15 (m, 1H) 2.55 (dd, J=4.90, 2.71 Hz, 1H) 2.79 (t, J=4.44 Hz, 1H) 3.00 - 3.10 (m, 1H) 3.31 (t, J=6.64 Hz, 2H) 3.87 (br. s., 1H) 6.62 (d, J=7.71 Hz, 2H) 6.71 (t, J=7.32 Hz, 1H) 7.18 (dd, J=8.49, 7.37 Hz, 2H)
MS (ESI) m/z: 164.1 (M+H+) ([M+l]+ for Ci0H13NO requires 164.1)
Step 4. Synthesis of 1 -(3 ,6-dibrom -9H-carbazol-9-yl)-4-(phenylamino)butan-2-ol
Figure imgf000150_0002
NaH (60% dispersed in mineral oil, 0.0018g, 0.0452mmol) was added to a solution of 3,6- dibromocarbazole (0.0147g, 0.0452mmol) in 0.5 mL anhydrous THF and the mixture was stirred for 15min. N-(2-(oxiran-2-yl)ethyl)aniline (0.0067g, 0.0410mmol) in 1.5mL anhydrous THF solution was added dropwise and the resulting mixture was stirred at 60 °C overnight. THF was removed under vacuum and the residue was dissolved in lOmL EtOAc and washed with water 2 x 5mL. The organic layer was dried over anhydrous Na2S04 and evaporated to afford the crude product, which was subjected to silica gel chromatography using Hexanes/EtOAc to afford 0.0115g colorless oil; yield 57.5%.
¾ NMR (CDCI3, 400 MHz) δ ppm 1.76 - 1.95 (m, 2H) 3.22 - 3.41 (m, 2H) 4.20 - 4.38 (m, 3H) 6.63 (d, J=8.49 Hz, 2H) 6.76 (t, J=7.32 Hz, 1H) 7.18 (t, J=7.95 Hz, 2H) 7.31 (d, J=8.74 Hz, 2H) 7.54 (dd, J=8.69, 1.95 Hz, 2H) 8.12 (d, J=1.95 Hz, 2H)
13C NMR (CDCI3, 400 MHz) δ= 148.1, 139.9, 129.6, 129.5, 123.8, 123.5, 118.7, 113.9, 112.7, 111.1, 70.7, 50.0, 42.2, 34.1.
MS (ESI) m/z: 531.0 [M + HCOO]" 486.9 [M + H]+ ([M+H]+ for C22H2oBr2 20 requires
487.0)
Example 22. P7C3-S38: l-(3,6-dibromo-9H-carbazol-9-yl)-3-(pyridin-2-ylamino)propan-2-ol
Figure imgf000151_0001
Step 1. Synthesis of l-amino-3-(3,6-dibromo-9H-carbazol-9-yl)propan-2-ol
Figure imgf000151_0002
A solution of NH3 (9.4mL of 7M in MeOH, 65.6mmol) was added to 3,6-dibromo-9- (oxiran-2-ylmethyl)-9H-carbazole (0.500 g, 1.31 mmol,). The vial was tightly sealed and the reaction mixture was heated to 100 °C and stirred for 1 hour. Volatile components were removed under vacuum. The residue was suspended in (¾(¾ and the white precipitate was filtered. The filtrate was saved and (¾(¾ was removed under vacuum to afford 0.3413g white solid as crude product, which contained about 50% unidentified side-product. This crude product was used as is in next step without any further purification. Purification by flash chromatography on silica gel provided pure material.
¾ NMR (CDC13, 400 MHz) δ ppm 2.61 (dd, J=12.66, 7.78 Hz, 1H) 2.90 (dd, J=12.52, 4.03 Hz, 1H) 3.96 - 4.06 (m, 1H) 4.32 (d, J=5.81 Hz, 2H) 7.36 (d, J=8.74 Hz, 2H) 7.55 (dd, J=8.69, 1.95 Hz, 2H) 8.13 (d, J=1.90 Hz, 2H)
MS (ESI) m/z: 396.9 (M+H+) ([M+H]+ for C15H14Br2N20 requires 397.0)
Step 2. Synthesis of 5-((3,6-dibromo-9H-carbazol-9-yl)methyl)oxazolidin-2-one
Figure imgf000151_0003
A solution of triphosgene (0.0890g, 0.300mmol, 0.35equiv) in 2mL anhydrous CH2CI2 was added dropwise to a solution of l-amino-3-(3,6-dibromo-9H-carbazol-9-yl)propan-2-ol (0.3413g, 0.857mmol) and Et3N (0.1909g, 1.886mmol) in lmL CH2C12 under N2 atmosphere at 4°C. The reaction mixture was stirred for 15min at 4 °C and then warmed to room temperature and stirred for 1 hour. CH2CI2 was removed under vacuum. Saturated NH4C1 (5 mL) and 10 mL EtOAc was added to the residue and stirred for 20min. Then the aqueous layer was separated and the organic layer was washed with water 2 x lOmL. The combined aqueous layers were extracted with EtOAc, dried over anhydrous Na2S04 and evaporated to afford the crude product, which was subjected to silica gel chromatography using CH2Cl2/EtOAc to afford 0.1173g white solid, yield 20.0% over 2 steps.
¾ NMR (CDC13, 400 MHz) δ ppm 3.37 (dd, J=8.98, 6.34 Hz, 1H) 3.67 (t, J=8.49 Hz, 1H) 4.54 (dd, J=5.22, 1.81 Hz, 2H) 5.02 (br. s., 1H) 5.05 - 5.14 (m, 1H) 7.31 (d, J=8.69 Hz, 2H) 7.58 (dd, J=8.69, 1.85 Hz, 2H) 8.14 (d, J=1.85 Hz, 2H)
MS (ESI) m/z: 466.9 [M + HCOO]" ([M+HCOO]- for CieH^B^Oz requires 466.9.
Step 3. Synthesis of 5-((3,6-dibromo-9H-carbazol-9-yl)methyl)-3-(pyridin-2-yl)oxazolidin-2-one
Figure imgf000152_0001
A mixture of 5-((3,6-dibromo-9H-carbazol-9-yl)methyl)oxazolidin-2-one (0.0195g, 0.0460mmol), 2-iodopyridine (0.0209g, 0.102mmol), Cul (0.0009g, 0. 00460mmol), and K2C03 (0.0058g, 0.0418mmol,) in 0.5mL of DMSO was sealed tightly in a vial and heated at 130°C for 12 hours. The reaction mixture was cooled and diluted with 20mL EtOAc and washed with water 5 x lOmL. The organic layer was dried over anhydrous Na2S04 and evaporated to afford the crude product, which was subjected to silica gel chromatography using CH2Cl2/EtOAc as elute to afford 0.0183 g white solid as product, yield 79.4%.
¾ NMR (CDCI3, 400 MHz) 5ppm 4.04 (dd, J=10.79, 7.08 Hz, 1H) 4.36 (dd, J=10.69, 8.74 Hz, 1H) 4.60 (d, J=5.03 Hz, 2H) 5.02 - 5.16 (m, 1H) 7.02 (t, J=6.08 Hz, 1H) 7.35 (d, J=8.69 Hz, 2H) 7.59 (dd, J=8.66, 1.73 Hz, 2H) 7.68 (t, J=7.88 Hz, 1H) 8.11 (s, 1H) 8.13 (d, J=1.32 Hz, 2H) 8.25 (d, J=4.93 Hz, 1H)
MS (ESI) m/z: 543.9 [M + HCOO]" ([M+HCOO]- for CziHjjBrz sOz requires 544.0)
Step 4. Synthesis of l-(3,6-dibromo-9H-carbazol-9-yl)-3-(pyridin-2-ylamino)propan-2-ol
Figure imgf000152_0002
LiOH-H20 (0.0076g, 0.182mmol, lOequiv) was added to 5-((3,6-dibromo-9H-carbazol-9- yl)methyl)-3-(pyridin-2-yl)oxazolidin-2-one (0.0091g, 0.0182mmol) in a mixture of 208μί THF and 23μΙ^ ¾0 (v/v = 9: 1). The mixture was stirred at room temperature for 7 days. The reaction mixture was purified by silica gel chromatography using CH^CVEtOAc as elute to afford 0.007 l g white solid as product, yield 41.0%.
¾ NMR (CDC13, 400 MHz) 5ppm 2.27 - 2.44 (m, IH) 3.15 - 3.32 (m, IH) 3.44 (dd, J=15.23, 5.03 Hz, IH) 4.26 - 4.41 (m, 3H) 4.52 (t, J=5.00 Hz, IH) 6.46 (d, J=8.00 Hz, IH) 6.66 (t, J=6.20 Hz, IH) 7.37 (d, J=8.74 Hz, 2H) 7.40 - 7.48 (m, IH) 7.56 (dd, J=8.69, 1.90 Hz, 2H) 8.04 (d, J=4.49 Hz, IH) 8.14 (d, J=1.85 Hz, 2H)
13C NMR (CDCI3, 400 MHz) δ = 158.6, 146.7, 139.5, 138.1, 129.2, 123.6, 123.3, 1 13.9, 1 12.3, 1 10.9, 109.6, 70.5, 47.4, 46.8
MS (ESI) m/z: 518.0 [M + HCOO]" ([M+HCOO]- for C2oH17Br2 30 requires 518.0.
Example 23. P7C3-S1: l-(3,6-dibromo-9H-carbazol-9-yl)-3-((3-methoxyphenyl)(methyl)- amino)propan-2-ol
Figure imgf000153_0001
Synthesized using a similar synthetic procedure analogous to Representative Procedure 2.
Example 25. P7C3-S6: 3-amino-l-(3-(3,6-dibromo-9H-carbazol-9-yl)-2- hydroxypropyl)pyridinium
Figure imgf000153_0002
Example 25 was synthesized using a similar synthetic procedure analogous to
Representative Procedure 2.
Example 26. P7C3-S8: l-(3,6-dibromo-9H-carbazol-9-yl)-3-(pyrimidin-2-ylamino)propan-2- ol
Figure imgf000154_0001
To a 4 ml vial was added the corresponding primary amine (34.8 mg, 0.087 mmol), 2- chloropyrimidine (10.3 mg, 0.090 mmol) and dimethylformamide (1.5 ml, 0.058 M). The reaction was heated at 100 °C overnight. The cooled reaction mixture was diluted with EtOAc and washed several times with water and brine. The organic layer was dried over a2S04, filtered and condensed. The crude mixture was subjected to chromatography on silica gel (20% MeOH/ CH2C12).
¾ NMR (CDC13, 400 MHz) δ 8.26 (d, 2H, J = 4.94 Hz), 8.14 (d, 2H, J = 1.88 Hz), 7.56 (dd, 2H, J=6.7, 1.9 Hz), 7.37 (d, 2H, J=8.7 Hz), 6.63 (t, 1H, J = 4.9 Hz), 5,43 (t, 1H, J=5.71 Hz), 4.36 (s, 3H), 3.56 (m, 1H), 3.30-3.38 (m, 1H).
13C NMR (CDCI3, 126 MHz) § 139.4, 29.5(2C), 129.3(2C), 123.7 (2C), 123.4(2C), 118.6(2) (2 C), 113.5(2C), 112.3, 110.7(2 C), 67.6 , 50.9, 33.6.
MS (ESI) m/z: 474.9 [(M+l)+ ; C19H16Br2N40 (M) requires 474)].
The title compound of Example 26 can also be synthesized using a procedure analogous to that described in Representative Procedure 2.
Example 28. P7C3-S19: l-(3,6-dibromo-9H-carbazol-9-yl)-3-methoxypropan-2-ol
Figure imgf000154_0002
Following Representative Procedure 1, Example 28 was prepared from dibromocarbazole and methoxymethyloxirane.
Example 29. P7C3-S21: l-(3,6-dibromo-9H-carbazol-9-yl)-4-phenylbutan-2-ol
753
Figure imgf000155_0001
Following Representative Procedure I, Example 29 was prepared from dibromocarbazole and 2-phenethyloxirane.
Example 30. P7C3-S22: l-(3,6-dibromo-9H-carbazol-9-yl)-3-(lH-indol-l-yl)propan-2-ol
Figure imgf000155_0002
Following Representative Procedure I, Example 30 was prepared from dibromocarbazole and l-(oxiran-2-ylmethyl)- lH-indole.
Example 31. P7C3-S23: 3-(l-(3-(3,6-dibromo-9H-carbazol-9-yl)-2-hydroxypropyl)-lH-l,2,3- triazol-4-yl)propan-l-ol
Figure imgf000155_0003
Example 31 was synthesized using a similar synthetic procedure analogous to
Representative Procedure 2.
Example 32. P7C3-S24: l-(3,6-dibromo-9H-carbazol-9-yl)-3-(3-ethoxyphenylamino)propan
Figure imgf000156_0001
Example 32 was synthesized using a similar synthetic procedure analogous to
Representative Procedure 2.
Example 33. P7C3-S25: l-(3,6-dibromo-9H-carbazol-9-yl)-3-(3,5-dimethyl-lH-pyrazol-l- yl)propan-2-ol
Figure imgf000156_0002
Example 33 was synthesized using a similar synthetic procedure analogous to
Representative Procedure 2.
Example 36. P7C3-S29: l-(3-bromo-9H-carbazol-9-yl)-3-(3-methoxyphenylamino)propan-2- ol
Figure imgf000156_0003
Step 1. 3-bromo-9-(oxiran-2-ylmethyl)-9H-carbazole
Figure imgf000156_0004
The title compound of Example 36, step 1 was prepared using a procedure analogous to that described in representative procedure 1.
¾ NMR (CDC13, 400 MHz) δ = 2.52 (dd, J= 4.6, 2.6 Hz, 1H) 2.80 (t, J= A3 Hz, 1H) 3.33 (td, J= 5.3, 2.2 Hz, 1H) 4.34 (dd, J= 15.9, 4.9 Hz, 1H) 4.64 (dd, J= 15.9, 2.9 Hz, 1H) 7.26 (t, J = 7.3 Hz, 1H) 7.35 (d, J= 8.7 Hz, 1H) 7.58 - 7.42 (m, 3H) 8.02 (d, J= 5.1 Hz, 1H) 8.19 (d, J= 1.7 Hz, 1H).
Step 2. The title compound was prepared from 3-bromo-9-(oxiran-2-ylmethyl)-9H- carbazole using a procedure similar to that described in representative procedure 2.
^ MR CDCls, 400 MHz) 5 = 2.13 (d, J= 3.0 Hz, 1H) 3.21 (dd, J= 13.0, 6.5 Hz, 1H) 3.35 (dd, J= 13.0, 3.2 Hz, 1H) 3.72 (s, 3H) 4.03 (s, br, 1H) 4.50 - 4.36 (m, 3H) 6.15 (t, J= 2.3 Hz, 1H) 6.24 (dd, J= 8.0, 2.2 Hz, 1H) 6.32 (dd, J= 8.2, 2.3 Hz, 1H) 7.08 (t, J= 8.1 Hz, 1H) 7.30 - 7.24 (m, lH) 7.36 (d, J= 8.7 Hz, 1H) 7.51 - 7.44 (m, 2H) 7.53 (dd, J= 8.7, 1.9 Hz, 1H) 8.05 (d, J= 7.9 Hz, 1H) 8.21 (d, J= 1.9 Hz, 1H)
13C NMR (CDCI3, 400 MHz) δ = 161.0, 149.4, 141.2, 139.6, 130.4, 128.8, 126.9, 125.0, 123.3, 122.2, 120.8, 120.1, 112.4, 110.7, 109.4, 106.7, 103.8, 99.7, 69.6, 55.3, 48.0, 47.4.
ESI m/z: 425.0 [(M + H+), C22H21BrN202 (M) requires 421.1].
Example 37. P7C3-S37: N-(5-(3-(3-(3,6-dibromo-9H-carbazol-9-yl)-2- hydroxypropylamino)phenoxy)pentyl)-2-(7-(dimethylamino)-2-oxo-2H-chromen-4- yl)acetamide
Figure imgf000157_0001
The coumarin was attached to Example 62 Compound using a known procedure
(Alexander, et al., ChemBioChem, 2006, 7, 409-416. Example 39. P7C3-S43: N-(2-(3-(3,6-dibromo-9H-carbazol-9-yl)-2-hydroxypropoxy)ethyl)- acetamide
Figure imgf000158_0001
Step 1. 2-(2-(3-(3,6-dibromo-9H-carbazol-9-yl)-2-hydroxypropoxy)ethyl) isoindoline- -dio
Figure imgf000158_0002
Sodium hydride dispersion (31.6 mg, 0.79 mmol) was added to a solution of N-(2- hydroxyethyl)-phthalimide (153.7 mg, 0.80 mmol) in anhydrous THF (1.2 ml, 0.67 M). The suspension is stirred for 15 minutes before the addition of carbazole epoxide 2-A. The reaction was stirred at room temperature for five minutes and then at 60 °C for 1 hour. The cooled reaction was diluted with EtOAc and washed with water. The aqueous layer was extracted and the combined organics were filtered over a celite pad. The Crude product was used without further purification. Yield=44 %
!H NMR (CDC13, 500 MHz) 8.12 (s, 2H), 7.85 (s, 2H), 7.72 (m, 2H), 7.55 (d, 2H, J=8.5 Hz), 7.33 (d, 2H, J=8.7 Hz), 4.64 (d, 1H, J=16.1 Hz), 4.27 (d, 1H), 3.88 (m, 4H), 3.31 (bs, 1H), 2.80 (m, 1H), 2.48 (m, 1H), 2.04 (s, 1H).
MS (ESI), m/z: 614.9 [(M+HCOO)" ; C25H20Br2N2O4 (M) requires 570].
Step 2. l-(2-aminoethoxy)-3-(3,6-dibromo-9H-carbazol-9-yl)propan-2-ol
Figure imgf000158_0003
Hydrazine hydrate (400 ul, 8.22 mmol) was added to a solution of the phthalimide prepared in step 1 above (53 mg, 0.093 mmol) in ethanol (2.0 ml, 0.046 M). The reaction was stirred overnight, condensed and purified in 5-10% MeOH/DCM. ¾ NMR (CDCI3, 500 MHz) 8.11 (s, 2H), 7.53 (dd, 2H, J=8.7, 1.8 Hz), 7.38 (d, 2H, J=8.5 Hz), 4.37 (dm, 5H), 4.05 (t, 1H, J=6.8 Hz), 2.84 (m, 2H), 2.62 (m, 1H)
MS (ESI), m/z: 440.9 [(M+l)+; C17H18Br2N202 (M) requires 440.0].
Step 3. The title compound of Example 39 was prepared as follows. Triethylamine (33.5 ul, 0.26 mmol) and acetic anhydride (17 ul, 0.18 mmol) were added to a solution of amine XIII (71 mg, 0.16 mmol) in THF (3.0 ml, 0.053 M). The reaction was stirred overnight. The reaction mixture was diluted with EtOAc, washed with water, dried over a2S04, filtered and condensed. The crude mixture was subjected to flash chromatography (5% MeOH/CH2Cl2).
¾ NMR (CDCI3, 500 MHz) 8.13 (d, 2H, J=1.7 Hz, 7.55 (dd, 2H, J=8.7, 1.8 Hz), 7.34 (d, 2H, 9.1 Hz), 5.78 (bs, 1H), 4.35 (ddd, 3H, J=6.2, 6.8 Hz), 4.22 (m, 1H), 3.46 (m, 4H), 3.33 (dd, 1H, J=9.7, 5.4 Hz), 2.80 (bs, 1H), 1.98 (s, 3H)
MS (ESI), m/z: 482.9 [(M+l)+; C19H20Br2N2O3 (M) requires 482.0]
Example 40. P7C3-S44: l-(3,6-d (pyridin-3-ylamino)propan-2-ol
Figure imgf000159_0001
Step 1. 5-((3,6-dibromo-9H-carbazol-9-yl)methyl)-3-(pyridin-3-yl)oxazolidin-2-one
Figure imgf000159_0002
A mixture of the corresponding N-H oxazolidinone (0.0390g, 0.0920mmol), 3-iodopyridine (0.0419g, 0.204mmol), Cul (0.0018g, 0. 00920mmol), and K2C03 (0.01 16g, 0.0837mmol) in 0.5mL of DMSO was heated at 130°C for 12 hours in a sealed vial. The reaction mixture was cooled and diluted with 20 mL EtOAc and washed with water 2 x 10 mL and brine 2 x lOmL. The organic layer was dried over anhydrous Na2S04 and evaporated to afford the crude product (0.0383g white solid, yield 83.7%), which was used without further purification.
¾ NMR (CDCI3, 400 MHz) 5=3.82 (dd, J= 9.1, 6.6 Hz, 1H) 4.12 (dd, J= 10.0, 7.9 Hz, 1H) 4.72 - 4.55 (m, 2H) 5.15 (td, J= 1 1.8, 5.4 Hz, 1H) 7.27 (dd, J= 8.3, 4.9 Hz, 1H) 7.34 (d, J = 8.7 Hz, 2H) 7.59 (dd, J= 8.7, 1.9 Hz, 2H) 8.03 (ddd, J = 8.5, 2.6, 1.2 Hz, 1H) 8.14 (d, J
2H) 8.37 (d, J = 4.2 Hz, 1H) 8.44 (s, 1H)
ESI m/z: 543.9 [(M + HCOO ); C21H15Br2N302 (M) requires 499]. Step 2. The title compound of Example 40 was prepared as follows. LiOH-H20 (0.0097 g,
0.231 mmol) was added to 5-((3,6-dibromo-9H-carbazol-9-yl)methyl)-3-(pyridin-3-yl)oxazolidin- 2-one (0.0116g, 0.023 lmmol) in a mixture of 265 μϊ^ THF and 29 μϊ^ ¾0 (v/v = 9: 1). The mixture was stirred at room temperature for 7 days. The reaction mixture purified by silica gel chromatography using CHCl3/MeOH as elute to afford 0.0087 g white solid as product, yield 79.3%.
JH NMR (CDCI3, 600 MHz) 5 = 3.15 (dd, J = 12.6, 6.2 Hz, 1H) 3.30 (d, J = 11.8 Hz, 1H) 4.45 - 4.33 (m, 3H) 6.81 (d, J = 7.4 Hz, 1H) 7.02 (s, br, 1H) 7.32 (d, J= 8.7 Hz, 2H) 7.52 (dd, J = 8.7, 1.8 Hz, 2H) 7.83 (s, br, 2H) 8.11 (d, J = 1.6 Hz, 2H)
13C NMR (CDCI3, 400 MHz) δ = 139.8, 139.5, 136.2, 130.0, 129.5, 124.1, 123.8, 123.5, 119.7, 112.8, 110.9, 69.0, 47.6, 47.3
ESI m/z: 517.9 [(M + HCOO"); C20H17Br2N3O (M) requires 473].
Example 41. P7C3-S45: l-(3,6-dibromo-9H-carbazol-9-yl)-3-(pyridin-4-ylamino)propan-2-ol
Figure imgf000160_0001
Step 1. 5-((3,6-dibromo-9H-carbazol-9-yl)methyl)-3-(pyridin-4-yl)oxazolidin-2-one
Figure imgf000160_0002
A mixture of the corresponding N-H oxazolidinone (0.0195g, 0.0460mmol), 4-iodopyridine (0.0209g, 0.102mmol), Cul (0.0009g, 0. 00460mmol), and K2C03 (0.0058g, 0.0418mmol) in 0.5mL of DMSO was at 130°C for 12 hours in a sealed vial. The reaction mixture was cooled and diluted with 20 mL EtOAc and washed with brine (3 x lOmL). The organic layer was dried over anhydrous Na2S04 and evaporated to afford the crude product, which was further triturated from CH2CI2 suspension by hexane to afford 0.0187g white solid as product, yield 74.6%.
!H NMR (CDCI3, 400 MHz) δ= 3.77 (dd, J= 9.4, 6.8 Hz, 1H) 4.08 (t, J= 9.0 Hz, 1H) 4.64 (d, J= 4.6 Hz, 2H) 5.23 - 5.10 (m, 1H) 7.34 (d, J= 8.7 Hz, 2H) 7.37 (s, br, 2H) 7.61 (dd, J= 8.6, 1.8 Hz, 2H) 8.16 (d, J= 1.8 Hz, 2H) 8.55 (s, br, 2H).
ESI m/z: 544.0 [(M + HCOO ); C21H15Br2N302 (M) requires 499].
Step 2. The title compound of Example 41 was prepared as follows. LiOH-H20 (0.0157 g, 0.373 mmol) was added to 5-((3,6-dibromo-9H-carbazol-9-yl)methyl)-3-(pyridin-4-yl)oxazolidin- 2-one (0.0187g, 0.0373mmol) in a mixture of 428 THF and 48 H20 (v/v = 9: 1). The mixture was stirred at room temperature for 3 days. The reaction mixture was diluted with 30 mL EtOAc and washed with brine 3 x 30 mL. The organic layer was dried over anhydrous Na2S04 and evaporated to afford the crude product, which did not require purification (0.0013 g white solid, 7.3%).
¾ NMR (^-Acetone, 400 MHz) δ = 3.33 (dd, J= 13.1, 6.4 Hz, 1H) 3.49 (dd, J= 13.2, 4.4 Hz, 1H) 4.41 (td, J= 7.6, 4.1 Hz, 1H) 4.51 (dd, J= 15.0, 7.6 Hz, 1H) 4.61 (dd, J= 14.8, 3.4 Hz, 1H) 6.61 (s, 2H) 7.56 (d, J= 8.6 Hz, 2H) 7.62 (d, J= 8.7 Hz, 2H) 8.10 (s, br, 2H) 8.37 (s, 2H)
13C NMR (^-Acetone, 400 MHz) δ= 179.0, 149.6, 140.4, 129.0, 123.8, 123.3, 1 12.1, 11 1.8, 107.8, 68.8, 47.6, 46.4
ESI m/z: 517.9 [(M + HCOO"); C20H17Br2N3O (M) requires 473].
Example 42. P7C3-S46: l-(2,8-dimethyl-3,4-dihydro-lH-pyrido[4,3-b]indol-5(2H)-yl)-3- (phenylamino)propan-2-ol
Figure imgf000161_0001
Example 42 was synthesized using a similar synthetic procedure analogous to
Representative Procedure 2.
Example 43. P7C3-S59: N-(3-(3,6-dibromo-9H-carbazol-9-yl)-2,2-difluoropropyl)-3- methoxyaniline
760
Figure imgf000162_0001
Step 1. N-(3-(3,6-dibromo-9H-carbazol-9-yl)-2-oxopropyl)-N-(3-methoxyphenyl)-4- nitrobenzenesulfonamide
Figure imgf000162_0002
The nosylate of the title compound of Example 62 (prepared according to the procedures described herein) was oxidized with Dess-Martin periodinane using a procedure similar to that described in Example 103. Quantitative yield.
¾ NMR (CDC13, 500 MHz) δ 8.24 (d, 2H, J=8.9 Hz), 8.14 (s, 2H), 7.68 (d, 2H, J=9.1 Hz), 7.53 (d, 2H, J=8.6 Hz), 7.18 (t, IH, J=8.7 Hz), 7.05 (t, 2H, J=8.1 Hz), 6.87 (dd, IH, J=8.3, 2.5 Hz) 5.21, (s, 2H), 4.30 (s, 2H), 2.48 (s, 3H).
MS (ESI), m/z: 683.9 [(M-l)" ; C28H21Br2N306S (M) require 685.0].
Step 2. N-(3-(3,6-dibromo-9H-carbazol-9-yl)-2,2-difluoropropyl)-N-(3- metho amide
Figure imgf000162_0003
The title compound of Example 43, step 2 was prepared from the ketone prepared in step 1 above using a procedure similar to that described in Example 103. Yield was quantitative and crude product was used without additional purification. !H NMR (CDCI3, 500 MHz) δ 8.31 (d, 2H, J=8.9 Hz), 8.11 (s, 2H), 7.77 (d, 2H, J=8.9 Hz), 7.55 (dd, 2H, J=8.7, 1.8 Hz), 7.25 (m, 3H), 6.92 (dd, IH, J=8.3, 2.0 Hz), 6.73 (m, IH) 6.61, (d, IH, J=7.7 Hz), 4.78 (t, 2H, T=14.7 Hz), 4.18 (t, 2H, J=11.2 Hz), 3.78 (s, 3H).
MS (ESI), m/z: 751.9 [(M+HCOO)" ; C28H21Br2F2N305S (M) requires 707.0].
Step 3. The title compound of Example 43 was prepared as follows. The nosyl group on N- (3-(3,6-dibromo-9H-carbazol-9-yl)-2,2-difluoropropyl)-N-(3-methoxyphenyl)-4- nitrobenzenesulfonamide was removed using the procedure described in Representative Procedure 5.
¾ NMR (CDCI3, 400 MHz) δ 8.11 (d, 2H, J=1.6 Hz), 7.49 (dd, 2H, J=8.7, 2.0 Hz), 7.32 (d, 2H, J=8.9 Hz), 7.11 (t, IH, J=8.2 Hz) 6.39 (dd, IH, J=8.2, 2.3 Hz), 4.68 (t, 2H, J=13.2 Hz), 3.89 (t, IH, J=7.0 Hz), 3.74 (s, 3H), 3.47 (m, 2H)
MS (ESI), m/z: 566.9 [(M+HCOO)" ; C22H18Br2F2N20 (M) requires 522.0].
Example 45. P7C3: l-(3,6-dibromo-9H-carbazol-9-yl)-3-(phenylamino)propan-2-ol
Figure imgf000163_0001
This compound can be purchased from ChemBridge Corporation.
Example 46. l-(3,6-dibromo-9H-carbazol-9-yl)-3-(o-tolylamino)propan-2-ol
Figure imgf000163_0002
This compound can be purchased from ChemBridge Corporation.
Example 47. l-(3,6-dibromo-9H-carbazol-9-yl)-3-(m-tolylamino)propan-2-ol
Figure imgf000164_0001
This compound can be purchased from ChemBridge Corporation.
Example 48. l-(3,6-dibromo-9H-carbazol-9-yl)-3-(2-methoxyphenylamino)propan-2-ol
Figure imgf000164_0002
This compound can be purchased from ChemBridge Corporation.
Example 50. l-(4-bromophenylamino)-3-(3,6-dichloro-9H-carbazol-9-yl)propan-2-ol
Figure imgf000164_0003
This compound can be purchased from ChemBridge Corporation.
Example 51. l-(4-bromophenylamino)-3-(3,6-dibromo-9H-carbazol-9-yl)propan-2-ol
Figure imgf000164_0004
This compound can be purchased from ChemBridge Corporation.
Example 52. l-(3,6-dibromo-9H-carbazol-9-yl)-3-(4-ethoxyphenylamino)propan-2-ol
Figure imgf000165_0001
This compound can be purchased from ChemBridge Corporation.
Example 53. l-(4-chlorophenylamino)-3-(3,6-dibromo-9H-carbazol-9-yl)propan-2-ol
Figure imgf000165_0002
This compound can be purchased from ChemBridge Corporation.
Example 54. l-(3,6-dibromo-9H-carbazol-9-yl)-3-(phenethylamino)propan-2-ol
Figure imgf000165_0003
This compound can be purchased from ChemBridge Corporation.
Example 55. l-(3,6-dibromo-9H-carbazol-9-yl)-3-(2-hydroxyethylamino)propan-2-ol
Figure imgf000166_0001
H
This compound can be purchased from ChemBridge Corporation.
Example 56. l-(3,6-dibromo-9H-carbazol-9-yl)-3-(2,4-dimethoxyphenylamino)propan-2-ol
Figure imgf000166_0002
This compound can be purchased from ChemBridge Corporation.
Example 57. l-(3,6-dibromo-9H-carbazol-9-yl)-3-(2,3-dimethylphenylamino)propan-2-ol
Figure imgf000166_0003
This compound can be purchased from ChemDiv, Inc.
Example 58. l-(2-chlorophenylamino)-3-(3,6-dibromo-9H-carbazol-9-yl)propan-2-ol
Figure imgf000166_0004
This compound can be purchased from ChemDiv, Inc. Example 59. l-(tert-butylamino)-3-(3,6-dibromo-9H-carbazol-9-yl)propan-2-ol
Figure imgf000167_0001
This compound can be purchased from ChemDiv, Inc.
Example 60. l-(3,6-dibromo-9H-carbazol-9-yl)-3-(isopropylamino)propan-2-ol
Figure imgf000167_0002
This compound can be purchased from ChemDiv, Inc.
Example 61. l-(3,6-dibromo-9H-carbazol-9-yl)-3-(4-methoxyphenylamino)propan-2-ol
Figure imgf000167_0003
This compound can be purchased from ChemDiv, Inc.
Example 62. l-(3,6-dibromo-9H-carbazol-9-yl)-3-(3-methoxyphenylamino)propan-2-ol
Figure imgf000167_0004
This compound can be purchased from ChemDiv, Inc.
766 Example 63. l-(3,6-dibromo-9H-carbazol-9-yl)-3-(m-tolylamino)propan-2-ol
Figure imgf000168_0001
This compound can be purchased from ChemDiv, Inc.
Example 64. l-(3,6-dibromo-9H-carbazol-9-yl)-3-(3,5-dimethylphenylamino)propan-2-ol
Figure imgf000168_0002
This compound can be purchased from ChemDiv, Inc.
Example 65. l-(3,6-dibromo-9H-carbazol-9-yl)-3-(3,4-dimethylphenylamino)propan-2-ol
Figure imgf000168_0003
This compound can be purchased from ChemDiv, Inc.
Example 66. l-(3,6-dibromo-9H-carbazol-9-yl)-3-(3,4-dimethylphenylamino)propan-2-ol
Figure imgf000168_0004
This compound can be purchased from ChemDiv, Inc.
Example 67. l-(3,6-dibromo-9H-carbazol-9-yl)-3-(2,5-dimethylphenylamino)propan-2-ol
767
Figure imgf000169_0001
This compound can be purchased from ChemDiv, Inc.
Example 68. l-(4-bromophenylamino H-indol-l-yl)propan-2-ol
Figure imgf000169_0002
This compound can be purchased from ChemBridge Corporation.
Example 69. l-(2,3-dimethyl-lH-ind henylamino)propan-2-ol
Figure imgf000169_0003
This compound can be purchased from ChemBridge Corporation.
Example 70. l-(2,3-dimethyl-lH-in enylamino)propan-2-ol
Figure imgf000169_0004
This compound can be purchased from ChemBridge Corporation.
Example 71. l-(2,3-dimethyl-lH-indol-l-yl)-3-(p-tolylamino)propan-2-ol
Figure imgf000170_0001
This compound can be purchased from ChemBridge Corporation.
Example 72. l-(2,3-dimethyl-lH-ind ino)propan-2-ol oxalate
Figure imgf000170_0002
This compound can be purchased from ChemBridge Corporation.
Example 73. l-(lH-indol-l-yl)-3-(4-methoxyphenylamino)propan-2-ol hydrochloride
Figure imgf000170_0003
This compound can be purchased from ChemBridge Corporation.
Example 74. l-(lH-indol-l-yl)-3-(phenylamino)propan-2-ol oxalate
Figure imgf000170_0004
This compound can be purchased from ChemBridge Corporation.
Example 75. l-(3,4-dihydro-lH-carbazol-9(2H)-yl)-3-(m-tolylamino)propan-2-ol
Figure imgf000170_0005
This compound can be purchased from ChemBridge Corporation.
Example 76. l-(9H-carbazol-9-yl)-3-(p pan-2-ol
Figure imgf000171_0001
This compound can be purchased from ChemBridge Corporation.
Example 77. l-(3,6-dichloro-9H-carbazol-9-yl)-3-(phenylamino)propan-2-ol
Figure imgf000171_0002
This compound can be purchased from ChemBridge Corporation.
Example 78. l-(9H-carbazol-9-yl)-3-(p pan-2-ol
Figure imgf000171_0003
This compound can be purchased from ChemBridge Corporation.
Example 79. l-(3,6-dichloro-9H-carbazol-9-yl)-3-(p-tolylamino)propan-2-ol
770
Figure imgf000172_0001
This compound can be purchased from ChemBridge Corporation.
Example 80. l-(3,6-dibromo-9H-carbazol-9-yl)-3-(p-tolylamino)propan-2-ol
Figure imgf000172_0002
This compound can be purchased from ChemBridge Corporation.
Example 81. N-(4-(3-(9H-carbazol-9-yl -2-hydroxypropoxy)phenyl)acetamide
Figure imgf000172_0003
This compound can be purchased from ChemBridge Corporation.
Example 82. l-(9H-carbazol-9-yl)-3-phenoxypropan-2-ol
Figure imgf000173_0001
This compound can be purchased from ChemBridge Corporation. Example 83. l-(9H-carbazol-9-yl)-3-(4- lamino)propan-2-ol
Figure imgf000173_0002
This compound can be purchased from ChemBridge Corporation. Example 84. l-(benzylamino)-3-(9 -carbazol-9-yl)propan-2-ol
Figure imgf000173_0003
This compound can be purchased from ChemBridge Corporation. Example 85. methyl 4-(3-(9H-carb oxy)benzoate
Figure imgf000173_0004
This compound can be purchased from ChemBridge Corporation.
Example 86. l-(9H-carbazol-9-yl)-3-(4-methoxyphenoxy)propan-2-ol
Figure imgf000174_0001
This compound can be purchased from ChemBridge Corporation.
Example 87. P7C3-S20: l-amino-3-(3,6-dibromo-9H-carbazol-9-yl)propan-2-ol
Figure imgf000174_0002
This compound can be purchased from ChemBridge Corporation. Examp -S40: (S)-l-(3,6-dibromo-9H-carbazol-9-yl)-3-phenoxypropan-2-ol
Figure imgf000174_0003
Examp -S41: (R)-l-(3,6-dibromo-9H-carbazol-9-yl)-3-phenoxypropan-2-ol
Figure imgf000174_0004
OH
The title compounds of Examples 88a and 88b were prepared according to the procedure described in Example 3b except using the appropriate commercially available optically active phenoxymethyl oxirane as the epoxide starting material.
Example 89. P7C3-S42: 3,6-dibromo-9-(2-fluoro-3-phenoxypropyl)-9H-carbazole
Figure imgf000175_0001
The title compound of Example 89 was prepared according to the procedure described in Representative Procedure 4 except using the title compound of Example 3b as the starting material. The crude mixture was purified in 100% DCM (+0.2% TEA). Isolated yield=97%.
¾ NMR (CDC13, 400 MHz) δ 8.13(d, 2H, J=1.7 Hz), 7.51 (dd, 2H, J= 8.7, 1.9 Hz), 7.29- 7.35 (m, 4H), 7.01 (t, 1H,J= 7.5 Hz), 6.91 (d, 1H, J= 7.8 Hz), 5.16 (dddd, 1H, J= 4.5, 5.4, 9.7, 46.0 Hz), 4.59-4.79 (m, 2H), 4.03-4.17 (m, 2H).
MS (ESI), m/z: 519.9 [(M+HCOO)" ; C21H16Br2FNO (M) requires 475.0].
Example 90. P7C3-S54: l-(3,6-dibromo-9H-carbazol-9-yl)-3-(3-methoxyphenylamino)-2- methylpropan-2-ol
Figure imgf000175_0002
Figure imgf000175_0003
m-Anisidine (0.18 mL, 1.62 mmol) was added to 2-chloromethyl-2-methyl oxirane (0.154 mL, 1.62 mmol) in acetic acid (2 mL) and the mixture was heated to 75 °C. Upon completion the reaction was neutralized with saturated sodium bicarbonate to pH 7, then extracted 3x with EtOAc, washed with brine and dried with MgS04 filtered, and concentrated in vacuo. The crude residue was purified by chromatography (S1O2, 0-25% EtOAc/Hexane) to afford the desired alcohol (332 mg, 89%).
JH NMR (CDCI3, 400 MHz) δ 7.08 ( t, 1H, J= 8.1 Hz), 6.29 (m, 2H), 6.23 (t, 1H, J= 2.3 Hz), 3.95 (s, NH), 3.77 (s, 3H), 3.60 (dd, 2H, J= 35.1, 11.0 Hz), 3.25 (dd, 2H, J= 44.8, 13.0 Hz), 2.31 (apparent d, OH), 1.36 (s, 3H) ESI m/z 230.1 ([M+H]+).
Figure imgf000176_0001
Chlorohydrin-19 (0.166g, 0.722 mmol) was dissolved in dioxane (1 mL) and added to a solution of KOH (0.168mgs, 3.0 mmol). The reaction was followed by TLC (20% EtOAc/Hexane) until the starting material was consumed and the less polar product was obtained. After aqueous workup, the crude product was used without purification.
¾ NMR (CDC13, 400 MHz) δ 7.07 ( t, 1H, J= 8.1 Hz), 6.27 (dd, 1H, J= 8.2, 0.8 Hz), 6.22 (dd, 1H, J= 8.2, 0.8 Hz), 6.16 (t, 1H, J= 2.3 Hz), 3.83 (s, NH), 3.32 (br s, 2H), 2.82 (d, 1H, J = 4.5 Hz), 2.63 (d, 1H, J= 4.5 Hz).
Reference: Chemistry of Heterocyclic Compounds volume 41, No 4, 2005, pg 426.
Step 3. The title compound of Example 90 was prepared in 83% yield using 3,6- dibromocarbazole, sodium hydride (NaH), and epoxide 20. See, e.g., the procedure described in Example 21, step 4.
¾ NMR (CDCI3, 400 MHz): δ 8.14 (s, 2H), 7.53 (d, 2H, J= 8.9 Hz), 7.42 (d, 2H, J= 8.4 Hz), 7.09 (t, 1H, J= 8.4 Hz), 6.33 (d, 1H, J= 6.3 Hz), 6.27 (d, 1H, J= 6.3 Hz), 6.18 (s, 1H), 4.41 (d, 1H, J= 15.3 Hz), 4.32 (d, 1H, J= 15.3 Hz) 3.74 (s, NH), 3.49 (s, 3H), 3.28 (d, 1H, 12.4 Hz), 3.22 (d, 1H, 12.4 Hz), 2.03 (s, OH), 1.33 (s, 3H) ESI m/z 518.9 ([M+H]+).
13C NMR (CDCI3, 100 MHz) δ 161.0, 149.8, 140.6 (2C), 130.4 (2C), 129.4 (2C), 123.8 (2C), 123.2 (2C), 112.8, 111.8 (2C), 106.9, 103.8, 99.8, 75.0, 55.4, 52.5, 51.5, 25.1
ESI m/z 516.9 ([M+H]+, C23H22Br2N202 requires 516.04
Example 91. l-(2,8-dimethyl-3,4-dihydro-lH-pyrido[4,3-b]indol-5(2H)-yl)-3-(3- methoxyphenylamino)propan-2-ol
Figure imgf000176_0002
Following a literature procedure (Zoidis et al., Bioorg. Med. Chem. 2009, 17, 1534-1541), the title compound of Example 18 (0.015 g, 0.034 mmol) was dissolved in anhydrous THF (0.34 mL) and cooled to 0 °C. A solution of LAH (0.10 mL, 1.0 M in THF) was added dropwise, and the reaction was stirred for 2 h at 0 °C. MeOH was added to quench the remaining LAH and after 45 min, the mixture was partitioned between EtOAc/H20. The organic layer was separated and the aqueous layer was extracted with EtOAc (3x), and the combined organic layers were washed with satd. aq. NaCl, dried over a2S04, filtered, and concentrated. The crude residue was purified by column chromatography (Si02, 0-20% MeOH/Acetone + 1% Et3N), followed by PTLC (10% MeOH/Acetone + 1% Et3N) to afford the desired product (0.6 mg, 5%).
!H NMR (CDC13, 500 MHz) δ = 7.14 (m, 2H), 7.04 (dd, 1H, J = 8.0, 8.0 Hz), 6.98 (d, 1H, J = 8.5 Hz), 6.27 (d, 1H, J = 8.0 Hz), 6.18 (d, 1H, J = 8.0 Hz), 6.12 (s, lH), 4.14 (m, 1H), 4.10 (m, 1H), 4.01 (m, 1H), 3.72 (s, 3H), 3.20 (m, 1H), 3.06 (m, 1H), 2.72 (s, 3H), 2.41 (s, 3H).
ESI m/z 380.2 ([M+H]+, C23H30 3O2 requires 380.2).
Example 92. P7C3-S48: l-(4-azidophenylamino)-3-(3,6-dibromo-9H-carbazol-9-yl)propan-2- ol
Figure imgf000177_0001
4-Azidoaniline (0.038 g, 0.283 mmol) was added to a solution of 3,6-dibromo-9-(oxiran-2- ylmethyl)-9H-carbazole (0.100 g, 0.262 mmol) in THF (0.10 mL). LiBr (0.001 g, 0.013 mmol) was added and the reaction was stirred at room temperature for 3 days. The reaction was purified directly by chromatography (S1O2, 0-25% EtOAc/Hexane) to afford the desired product (31 mg,
23%).
*H NMR (d6-acetone, 500 MHz) δ = 8.36 (d, 2H, J = 2.0 Hz), 7.61 (m, 2H), 7.55 (m, 2H), 6.85 (m, 2H), 6.74 (m, 2H), 5.19 (br s, 1H), 4.61 (dd, 1H, J = 4.0, 15.0 Hz), 4.56 (br s, 1H), 4.50 (dd, 1H, J = 8.0, 15.0 Hz), 4.39 (m, 1H), 3.39 (dd, 1H, J = 4.5, 13.0 Hz), 3.25 (dd, 1H, J = 6.5, 13.0 Hz).
13C NMR (acetone-i/6, 100 MHz) δ = 147.7, 141.1, 129.8 (2C), 128.9, 124.5, 124.0 (2C), 120.7 (2C), 114.9 (2C), 112.8 (2C), 112.6, 111.9, 69.6, 48.5, 48.4.
ESI m/z 513.9 ([M+H]+, C2iH18Br2 50 requires 514.0).
776 Example 93. P7C3-S47: l-(3-azido-6-bromo-9H-carbazol-9-yl)-3-(3- metho
Figure imgf000178_0001
Step 1. 3-azido-6-bromo-9H-carbazole
Figure imgf000178_0002
3,6-Dibromocarbazole (0.500 g, 1.538 mmol), NaN3 (0.120 g, 1.846 mmol), Cul (0.029 g, 0.154 mmol), L-proline (0.053 g, 0.461 mmol) and aOH (0.019 g, 0.461 mmol) were dissolved in 7:3 EtOH/H20 (3.0 mL) and heated to 95 °C under a N2 atmosphere for 24 h. The completed reaction was partitioned between EtOAc/H20 (3 x) and the combined organics were washed with satd. aq. NaCl, dried over a2S04, filtered, and concentrated. The crude residue was purified by chromatography (Si02, 0-15% EtOAc/toluene), followed by HPLC (Phenomenex Si02 Luna 10 μ, 250x21.2 mm column, 50% EtOAc/Hexane, 21 mL/min, retention time = 48 min) to afford the desired product.
¾ NMR (CDC13, 500 MHz) δ 8.14 (s, 1H), 8.08 (br s, 1H), 7.64 (s, 1H), 7.50 (d, 1H, J = 8.5 Hz), 7.38 (d, 1H, J = 9.0 Hz), 7.29 (d, 1H, J = 8.5 Hz), 7.10 (d, 1H, J = 9.0 Hz).
ESI m/z 285.0 ([M-H]~ Ci2H6BrN4 requires 285.0).
Step 2. The title compound of Example 93 was synthesized from 3-azido-6-bromo-9H- carbazole in 46% yield using a procedure analogous to that described in Example 90, step 3.
JH NMPv (CDCI3, 500 MHz) δ 8.14 (d, 1H, J = 1.5 Hz), 7.64 (d, 1H, J = 2.0 Hz), 7.52 (dd, 1H, J = 1.5, 8.5 Hz), 7.40 (d, 1H, J = 9.0 Hz), 7.31 (d, 1H, J = 8.5 Hz), 7.12 (dd, 1H, J = 2.0, 8.5 Hz), 7.07 (dd, 1H, J = 8.0, 8.0 Hz), 6.31 (dd, 1H, J = 2.0, 8.0 Hz), 6.21 (dd, 1H, J = 1.5, 8.0 Hz), 6.13 (dd, 1H, J = 2.0, 2.5 Hz), 4.39-4.35 (m, 3H), 3.71 (s, 3H), 3.31 (dd, 1H, J = 3.5, 13.0 Hz), 3.16 (dd, 1H, J = 7.0, 13.0 Hz), 2.17 (br s, 1H).
ESI m/z 466.0 ([M+H]+, C22H21BrN502 requires 466.1).
777 Example 94. P7C3-S49: l-(3,6-dibromo-9H-carbazol-9-yl)-3-(4-methoxyphenoxy) propan-2- ol
Figure imgf000179_0001
The title compound of Example 93 was synthesized from dibromocarbazole and (p- methoxyphenyl)-glycidyl ether in 47% yield using a procedure analogous to those described in
Example 90, step 3 and Example 93, step 2.
¾ NMR (CDC13, 500 MHz) δ 8.12 (d, 2H, J = 2.0 Hz), 7.50 (dd, 2H, J = 2.0, 8.5 Hz), 7.34 (d, 2H, J = 8.5 Hz), 6.81 (m, 2H), 6.79 (m, 2H), 4.56 (m, 1H), 4.42 (m, 3H), 3.93 (dd, 1H, J = 4.5, 9.5 Hz), 3.81 (dd, 1H, J = 4.5, 9.5 Hz), 3.76 (s, 3H), 2.39 (d, 1H, J = 6.0 Hz).
13C NMR (acetone-i/6, 100 MHz) δ 155.2, 153.8, 141.2 (2C), 129.8 (2C), 124.5 (2C), 124.0
(2C), 1 16.4 (2C), 115.5 (2C), 112.9 (2C), 112.5 (2C), 71.1, 69.8, 55.9, 47.4.
ESI m/z 547.9 ([M+C02H]", C23H2oBr2 05 requires 548.0).
Example 95. P7C3-S52: l-(3,6-dichloro-9H-carbazol-9-yl)-3-(phenylsulfonyl)propan-2-ol
Figure imgf000179_0002
Step 1. l-(3,6-dichloro-9H-carbazol-9-yl)-3-(phenylthio)propan-2-ol
Figure imgf000179_0003
The title compound of Example 95, stepl was prepared using a procedure analogous to that described in Example 3a (white solid, 0.0293 g, yield 99.0%).
¾ NMR (CDCI3, 400 MHz) δ = 2.55 (s, 1H) 2.97 (dd, J= 13.8, 7.2 Hz, 1H) 3.09 (dd, J = 13.9, 5.2 Hz, 1H) 4.20 - 4.06 (m, 1H) 4.28 (dd, J= 15.0, 7.0 Hz, 1H) 4.41 (dd, J= 15.0, 4.1 Hz, 1H) 7.46 - 7.14 (m, 9H) 7.93 (d, J= 1.8 Hz, 2H) C NMR (CDCI3, 400 MHz) δ = 139.7, 134.5, 130.3, 129.5, 127.3, 126.8, 125.4, 123.3,
120.4, 1 10.6, 69.3, 48.2, 39.4
ESI m/z: 446.0, 436.0 [(M + HCOO"), ( + CI"); C21H17C12NOS (M) requires 401.0]. Step 2. The title compound of Example 95 was prepared as follows. To a solution of l-(3,6- dichloro-9H-carbazol-9-yl)-3-(phenylthio)propan-2-ol (0.0081 g, 0.0201 mmol) in 0.2 mL CH2C12, a solution of mCPBA (77%, 0.0113 g, 0.0503 mmol) in 0.2 mL CH2C12 was added dropwise. The mixture was sealed and stirred at rt overnight. The crude was diluted with 30 mL EtOAc and washed with saturated aHC03 (3 x 30 mL) and brine 1 x 30 mL. The organic layer was dried over anhydrous Na2S04 and evaporated to afford the crude product, which was subjected to silica gel chromatography using Hexanes/EtOAc to afford white solid as product (0.0080 g, yield 91.3%).
¾ NMR (CDCI3, 400 MHz) δ = 3.17 (dd, J= 14.2, 3.0 Hz, 1H) 3.28 (dd, J= 14.3, 8.3 Hz, 1H) 3.29 (d, J= 2.9 Hz, 1H) 4.39 (d, J= 6.3 Hz, 2H) 4.67 (dtt, J= 8.7, 5.9, 3.0 Hz, 1H) 7.31 (d, J = 8.7 Hz, 2H) 7.40 (dd, J= 8.7, 2.0 Hz, 2H) 7.52 (t, J= 7.9 Hz, 2H) 7.66 (t, J= 7.5 Hz, 1H) 7.80 (d, J = 7.3 Hz, 2H) 7.96 (d, J= 2.0 Hz, 2H).
13C NMR (CDCI3, 400 MHz) δ= 139.6, 138.8, 134.5, 129.8, 128.0, 127.0, 125.7, 123.5,
120.5, 1 10.5, 65.8, 60.0, 48.5
ESI m/z: 477.9 [(M + HCOO"); C21H17C12N03S (M) requires 433.0].
Example 96. P7C3-S53: 3,6-dibromo-9-(2-fluoro-3-(phenylsulfonyl)propyl)-9H-carbazole
Figure imgf000180_0001
Step 1. 3,6-dibromo-9-(2-fluoro-3-(phenylthio)propyl)-9H-carbazole
Figure imgf000180_0002
The title compound of Example 96, stepl was prepared by fluorination of the title compound of Example 31 using a procedure similar to that described in Representative Procedure 4.
JH NMR (CDCI3, 400 MHz) δ = 3.09 (ddd, J= 14.2, 1 1.3, 8.4 Hz, 1H) 3.37 - 3.23 (m, 1H) 4.53 (ddd, J= 20.8, 15.9, 6.7 Hz, 1H) 4.66 (ddd, J= 26.6, 15.9, 2.8 Hz, 1H) 5.04 - 4.81 (m, 1H) 7.36 - 7.27 (m, 5H) 7.42 (dt, J= 3.2, 2.0 Hz, 2H) 7.54 (dd, J= 8.7, 1.9 Hz, 2H) 8.13 (d, J= 1.9 Hz, 2H)
13C NMR (CDC13, 400 MHz) δ= 139.8, 134.3, 129.6, 129.5, 127.6, 123.9, 123.4, 112.9, 110.91 (d, J= 2.1 Hz, 1C) 92.2, 90.4, 46.16 (d, J= 22.8 Hz, 1C) 35.63 (d, J= 23.3 Hz, 1C)
Step 2. The title compound of Example 96 was prepared as follows. To a solution of 3,6- dibromo-9-(2-fluoro-3-(phenylthio)propyl)-9H-carbazole (0.0143 g, 0.0290 mmol) in 0.5 mL CH2CI2, a solution of mCPBA (77%, 0.0162 g, 0.0725 mmol) in 0.5 mL CH2C12 was added dropwise. The mixture was sealed and stirred at rt overnight. The crude was diluted with 30 mL EtOAc and washed with saturated aHC03 3 x 30 mL and brine 1 x 30 mL. The organic layer was dried over anhydrous Na2S04 and evaporated to afford the crude product, which was subjected to silica gel chromatography using Hexanes/EtOAc as elute to afford white solid as product (0.0114 g, yield 74.8%).
!H NMR (CDCI3, 400 MHz) δ= 3.61 - 3.40 (m, 2H) 4.56 (ddd, J= 22 A, 16.0, 6.6 Hz, 1H) 4.72 (dd, J= 26.8, 15.9 Hz, 1H) 5.38 (dd, J = 41.1, 5.9 Hz, 1H) 7.34 (d, J= 8.7 Hz, 2H) 7.63 - 7.53 (m, 4H) 7.68 (t, J= 7.4 Hz, 1H) 7.90 (d, J= 8.0 Hz, 2H) 8.12 (s, J= 2.0 Hz, 2H)
13C NMR (CDCI3, 400 MHz) 5=139.8, 134.7, 129.84, 129.79, 128.2, 124.1, 123.5, 113.3, 110.91, 110.89, 88.1, 86.3, 58.4, 58.1, 47.3, 47.1
ESI m/z: 557.9 [(M + CI"); C21H16Br2FN02S (M) requires 522.9]. Example 97a. P7C3-S50: (S)-l-(3,6-dibromo-9H-carbazol-9-yl)-3-(phenylsulfonyl) propan-2- ol
Figure imgf000181_0001
Example 97b. P7C3-S51: (R)-l-(3,6-dibromo-9H-carbazol-9-yl)-3-(phenylsulfonyl) propan-2- ol
Figure imgf000181_0002
The title compounds of Examples 97a and 97b were prepared from (S)- or (R)-3,6- dibromo-9-(oxiran-2-ylmethyl)-9H-carbazole using a procedure similar to that described in
Example 3d. dibromo-9-(oxiran-2-ylmethyl)-9H-carbazole [(S)-epoxide A]
Figure imgf000182_0001
To a solution of 3,6-dibromocarbazole (0.2194 g, 0.675 mmol) and triphenylphosphine (0.1770 g, 0.675 mmol) in THF (5.4 mL) was added S-(-) -glycidol (44.8 iL, 0.0500 g, 0.675 mmol). The reaction mixture was cooled in an ice bath and diethyl azodicarboxylate (106.3 μί, 0.1175 g, 0.675 mmol) was added. The reaction mixture was allowed to warm to room temperature and stir overnight. THF was removed under vacuum and the residue was dissolved in 30 mL EtOAc and washed with brine (3 x 30 mL). The organic layer was dried over anhydrous Na2S04 and evaporated to afford the crude product, which was subjected to silica gel chromatography using Hexanes/EtOAc to afford white solid as product (0.0514 g, yield 20.0%).
Examp lopropyl-9H-carbazol-9-yl)-3-(phenylamino) propan-2-ol
o-9H-carbazole-9-carboxylate
Figure imgf000182_0002
A solution of 3,6-dibromocarbazole (0.8288 g, 2.55 mmol) in 20 mL THF was added to a suspension of aH (60%, 0.1122 g, 2.81 mmol) in 10 mL THF at -78°C. After stirring for 1 h, a solution of (Boc)20 anhydride (0.6122 g, 2.81 mmol) in 20 mL THF was added dorpwise into the mixture. The reaction was allowed to warm to room temperature and stir overnight. THF was removed under vacuum and the residue was dissolved in 30 mL EtOAc and washed with 1M HCl (2 x 30 mL) and brine (1 x 30 mL). The organic layer was dried over anhydrous a2S04 and evaporated and the crude product was subjected to silica gel chromatography using Hexanes/EtOAc to afford white solid as product (0.9890 g, yield 91.7%).
¾ NMR (CDC13, 400 MHz) δ = 1.75 (s, 9H) 7.58 (dd, J= 8.9, 2.0 Hz, 1H) 8.05 (d, J= 1.8 Hz, 1H) 8.16 (d, J= 8.9 Hz, 1H).
13C NMR (CDCI3, 400 MHz) δ = 150.5, 137.5, 130.5, 126.3, 122.6, 117.9, 116.4, 84.9,
28.5.
opropyl-9H-carbazole-9-carboxylate
Figure imgf000183_0001
Following a literature procedure (Petit et al., ChemMedChem 2009, 4, 261-275.), tert-butyl 3,6-dibromo-9H-carbazole-9-carboxylate (0.0200 g, 0.0470 mmol), cyclopropyl boronic acid (0.0202 g, 0.235 mmol), palladium acetate (10 mol%, 0.0011 g, 0.00470 mmol), potassium phosphate tribasic (0.0350g, 0.165 mmol), tricyclohexylphosphine (0.0026 g, 0.00941 mmol), water (12.2 μΚ) and a stir bar were combined in a sealed vial. The vial was sparged with 2 and charged with 0.22 mL degassed toluene. The mixture was stirred at 100 °C for 65 h. The crude reaction mixture was diluted with 10 mL EtOAc and washed with brine (3 x 10 mL). The organic layer was dried over anhydrous Na2S04 and evaporated to afford the crude product, which was used as is without further purification.
*H NMR (CDCI3, 400 MHz) δ = 0.82 - 0.76 (m, 4H) 1.02 (ddd, J= 8.4, 6.4, 4.4 Hz, 4H) 1.74 (s, 9H) 2.11 - 2.01 (m, 2H) 7.19 (dd, J= 8.6, 1.9 Hz, 2H) 7.65 (d, J= 1.7 Hz, 2H) 8.14 (d, J = 8.5 Hz, 2H) -dicyclopropyl-9H-carbazole
Figure imgf000183_0002
To a solution of the corresponding N-Boc carbazole (0.0163 g, 0.0469 mmol) in 1 mL CH2CI2, TFA (144.8 μί, 1.876 mmol) was added dropwise. The mixture was sealed and stirred at rt for 6 h. CH2CI2 and TFA were removed under vacuum. The residue was diluted with 30 mL EtOAc and washed with saturated NaHCC^ 3 x 30 mL. The organic layer was dried over anhydrous a2S04 and evaporated to afford the crude product, which was subjected to silica gel
chromatography using Hexanes/EtOAc as elute to afford white solid as product (0.0139 g).
!H NMR (CDCI3, 400 MHz) δ = 0.77 (dt, J= 6.4, 4.5 Hz, 4H) 0.99 (ddd, J= 8.4, 6.2, 4.4 Hz, 4H) 2.13 - 2.03 (m, 2H) 7.16 (dd, J= 8.4, 1.7 Hz, 2H) 7.28 (d, J= 8.4 Hz, 2H) 7.76 (d, J= 1.1 Hz, 2H) 7.83 (s, br, 1H). -dicyclopropyl-9-(oxiran-2-ylmethyl)-9H-carbazole
Figure imgf000184_0001
The title compound of Example 98, step 4 was prepared from 3,6-dicyclopropyl-9H- carbazole using a procedure similar to that described in Representative Procedure 1.
¾ NMR (CDCI3, 400 MHz) δ = 0.81 - 0.74 (m, 4H) 1.03 - 0.96 (m, 4H) 2.09 (ddd, J =
14.4, 8.9, 5.6 Hz, 2H) 2.53 (dd, J= 4.8, 2.6 Hz, 1H) 2.77 (t, J= 4.3 Hz, 1H) 3.30 (dt, J= 7.4, 3.9 Hz, 1H) 4.35 (dd, J= 15.8, 4.6 Hz, 1H) 4.54 (dd, J= 15.8, 3.4 Hz, 1H) 7.22 (dd, J= 8.4, 1.7 Hz, 2H) 7.31 (d, J= 8.4 Hz, 2H) 7.78 (d, J= 1.1 Hz, 2H).
Step 5. The title compound of Example 98 was prepared from 3,6-dicyclopropyl-9-(oxiran- 2-ylmethyl)-9H-carbazole using a procedure similar to that described in Representative Procedure 2.
*H NMR (CDCI3, 600 MHz) δ = 0.79 - 0.75 (m, 4H) 0.99 (td, J= 6.2, 4.6 Hz, 4H) 2.08 (ddd, J= 13.6, 8.5, 5.1 Hz, 2H) 3.21 (dd, J= 12.9, 5.6 Hz, 1H) 3.35 (d, J= 13.8 Hz, 1H) 4.39 (s, J = 23.7 Hz, 3H) 6.62 (d, J= 8.4 Hz, 2H) 6.75 (t, J= 7.3 Hz, 1H) 7.17 (t, J= 7.9 Hz, 2H) 7.20 (dd, J = 8.4, 1.1 Hz, 2H) 7.32 (d, J= 8.4 Hz, 2H) 7.78 (s, 2H)
13C NMR (CDCI3, 500 MHz) δ = 148.2, 139.8, 134.9, 129.6, 124.8, 123.2, 118.5, 1 17.5, 1 13.7, 108.8, 69.8, 48.0, 47.6, 15.7, 9.1
ESI m/z: 441.2 [(M + HCOO"); C27H28N20 (M) requires 396.2]. Example 99. P7C3-S63: l-(3,6-diiodo-9H-carbazol-9-yl)-3-(phenylamino)propan-2-ol
Figure imgf000185_0001
Step 1. 3,6-diiodo-9-(oxiran-2-ylmethyl)-9H-carbazole
Figure imgf000185_0002
The title compound of Example 99, step 1 was prepared from 3,6-diiodo carbazole
(Maegawa et al., Tetrahedron Lett. 2006, 47, 6957-6960) using a procedure similar to that described in Representative Procedure 1.
¾ NMR (CDC13, 400 MHz) δ = 2.48 (dd, J= 4.6, 2.6 Hz, 1H) 2.80 (t, J= A3 Hz, 1H) 3.37 - 3.24 (m, 1H) 4.28 (dd, J= 16.0, 5.1 Hz, 1H) 4.64 (dd, J= 15.9, 2.7 Hz, 1H) 7.24 (d, J= 8.6 Hz, 2H) 7.73 (dd, J= 8.6, 1.6 Hz, 2H) 8.33 (d, J= 1.7 Hz, 2H)
13C NMR (CDCI3, 500 MHz) δ = 140.0, 135.0, 129.5, 124.3, 111.3, 82.6, 50.6, 45.2, 44.9
Step 2. The title compound of Example 99 was prepared from 3,6-diiodo-9-(oxiran-2- ylmethyl)-9H-carbazole using a procedure similar to that described in Representative Procedure 1.
'H NMR (CDCI3, 400 MHz) δ = 2.92 (s, br, 1H) 3.19 (dd, J= 12.8, 6.1 Hz, 1H) 3.33 (d, J =
10.9 Hz, 1H) 4.49 - 4.29 (m, 3H) 6.63 (d, J= 8.3 Hz, 2H) 6.78 (t, J= 7.3 Hz, 1H) 7.20 (t, J= 7.7 Hz, 2H) 7.28 (d, J= 2.5 Hz, 2H) 7.72 (d, J= 8.6 Hz, 2H) 8.35 (s, 2H).
13C NMR (CDCI3, 400 MHz) δ = 147.9, 140.1, 135.1, 129.65, 129.63, 124.4, 118.9, 113.7, 111.5, 82.6, 69.6, 48.0, 47.3
ESI m/z: 613.0 [(M + HCOO"); C21H18I2N20 (M) requires 568.0].
Example 100. P7C3-S64: l-(3,6-diethynyl-9H-carbazol-9-yl)-3-(3-methoxyphenylamino) propan-2-ol
Figure imgf000186_0001
Step 1. l-(3,6-bis((triisopropylsilyl)ethynyl)-9H-carbazol-9-yl)-3-(3- methoxyphenylamino)propan-2-ol
Figure imgf000186_0002
The title compound of Example 62 (0.0112 g, 0.0222 mmol),
bis(benzonitrile)dichloropalladium (3 mol%, 0.0003 g, 0.0007 mmol), [(tBu)3PH]BF4 (6.2 mol%, 0.0004 g, 0.0014 mmol), copper(I) iodide (2 mol%, O.OOOlg, 0.0004 mmol), DABCO (0.0060 g, 0.0533 mmol) were combined under an 2 atmosphere. Degassed dioxane (0.1 mL) was added, and the resulting solution was stirred at room temperature for 10 min. Tnmethylsilylacetylene (11.8 iL, 0.0533 mmoL) was added into the mixture via microsyringe. The mixture was then stirred at rt overnight. The crude reaction mixture was diluted with 10 mL EtOAc and washed with brine (3 x 10 mL). The organic layer was dried over anhydrous Na2S04 and evaporated to afford the crude product, which was subjected to silica gel chromatography using Hexanes/EtOAc to afford colorless oil as product (0.0152 g, yield 96.8%).
¾ NMR (CDC13, 400 MHz) δ = 1.22 - 1.13 (m, 42H) 2.24 (s, br, 1H) 3.17 (dd, J= 12.6, 6.7 Hz, 1H) 3.31 (d, J= 12.1 Hz, 1H) 3.71 (s, 3H) 4.48 - 4.31 (m, 3H) 6.12 (t, J= 2.1 Hz, 1H) 6.22 (dd, J= 8.0, 1.8 Hz, 1H) 6.31 (dd, J= 8.1, 2.1 Hz, 1H) 7.07 (t, J= 8.1 Hz, 1H) 7.37 (d, J= 8.5 Hz, 2H) 7.58 (dd, J= 8.5, 1.5 Hz, 2H) 8.22 (d, J= 1.4 Hz, 2H)
13C NMR (CDCI3, 400 MHz) δ = 171.5, 161.0, 149.3, 140.9, 130.6, 130.4, 124.9, 122.7, 115.1, 109.3, 108.2, 106.7, 103.9, 99.7, 88.7, 69.5, 55.3, 47.4, 19.0, 11.6
Step 2. The title compound of Example 100 was prepared as follows. To a solution of 1- (3,6-bis((triisopropylsilyl)ethynyl)-9H-carbazol-9-yl)-3-(3-methoxyphenylamino)propan-2-ol (0.0152 g, 0.0215 mmol) in 200 μΐ. anhydrous THF, a solution of TBAF in THF (1 M, 64.5 μί, 0.0645 mmol) and acetic acid (2.5 μί, 0.0430 mmol) were added. The mixture was sealed and stirred under 2 atmosphere at rt for 27 h until TLC showed the complete disappearance of starting material. The crude was diluted with 10 mL EtOAc and washed with saturated aHC03 (3 x 10) mL. The organic layer was dried over anhydrous Na2S04 and evaporated to afford the crude product, which was subjected to silica gel chromatography using Hexanes/EtOAc to afford white solid as product (0.0061 g, yield 71.9%).
!H NMR (CDCI3, 400 MHz) δ = 2.24 (s, br, 1H) 3.09 (s, 2H) 3.20 (s, br, 1H) 3.32 (s, br, 1H) 3.72 (s, 3H) 4.48 - 4.27 (m, 3H) 6.14 (s, 1H) 6.23 (dd, J= 8.0, 1.4 Hz, 1H) 6.32 (dd, J= 8.2, 1.8 Hz, 1H) 7.08 (t, J= 8.1 Hz, 1H) 7.40 (d, J= 8.5 Hz, 2H) 7.59 (dd, J= 8.5, 1.4 Hz, 2H) 8.21 (d, J= 1.1 Hz, 2H)
13C NMR (CDCI3, 500 MHz) δ = 161.1, 149.3, 141.2, 130.7, 130.4, 125.0, 122.7, 113.6, 109.6, 106.7, 103.8, 99.8, 84.7, 76.0, 69.6, 55.3, 48.0, 47.4
ESI m/z: 439.1 [(M + HCOO"); C26H22N202 (M) requires 394.2].
Example 101. P7C3-S65: 9-(2-hydroxy-3-(3-methoxyphenylamino)propyl)-9H-carbazole-3,6- dicarbonitrile
Figure imgf000187_0001
Following a literature procedure (Weissman et al., J. Org. Chem. 2005, 70, 1508-1510), the title compound of Example 62 (0.0252 g, 0.05 mmol), potassium hexacyanoferrate(II) trihydrate (0.0106 g, 0.025 mmol), sodium bicarbonate (0.0106 g, 0.1 mmol) and palladium acetate (1 mol %, 0.0001 g) were combined under a 2 atmosphere. Anhydrous dimethylacetamide (0.1 mL) was added, and the reaction mixture was stirred at 120 °C overnight. The crude reaction mixture was diluted with 10 mL EtOAc and washed with water (2 x 10 mL) and brine (1 x 30 mL). The organic layer was dried over anhydrous Na2S04 and evaporated to afford the crude product, which was subjected to silica gel chromatography using Hexanes/EtOAc to afford white solid as product (0.0110 g, yield 54.6%).
¾ NMR (i¾-acetone, 400 MHz) δ = 2.81 (s, 1 H) 3.36 - 3.28 (m, 1H) 3.50 - 3.43 (m, 1H) 3.71 (s, 3 H) 4.44 (s, br, 1 H) 4.66 (dd, J= 15.0, 8.5 Hz, 1 H) 4.77 (dd, J= 15.1, 3.4 Hz, 1 H) 5.16 (t, J= 5.8 Hz, 1H) 6.22 (dd, J= 8.1, 2.1 Hz, 1H) 6.27 (t, J = 2.0 Hz, 1H) 6.31 (dd, J= 8.1, 1.2 Hz, 1H) 7.01 (t, J= 8.1 Hz, 1H) 7.84 (dd, J= 8.6, 1.2 Hz, 2H) 7.91 (d, J= 8.6 Hz, 2H) 8.74 (s, 2H) 13C NMR (<¾-acetone, 500 MHz) δ =161.3, 150.4, 143.9, 130.02, 129.95, 126.0, 122.4, 119.8, 112.0, 106.0, 103.3, 102.5, 98.9, 69.0, 54.5, 48.0, 47.7
5 ESI m/z: 441.1 [(M + HCOO"); C24H20N4O2 (M) requires 396.2).
Example 102. P7C3-S55: N-(3-(3,6-dibromo-9H-carbazol-9-yl)-2-fluoropropyl)aniline
Figure imgf000188_0001
Step 1. N-(3-(3,6-dibromo-9H-carbazol-9-yl)-2-fluoropropyl)-4-nitro-N- o phenylbenzenesulfonamide
Figure imgf000188_0002
02
The title compound of Example 102, step 1 was prepared from epoxide 2-A and Ns-aniline using procedures similar to those described in representative procedures 3 and 4. The crude mixture was purified in 40% EtOAc/hexanes(+0.1% TEA). The isolated yield was 60%.
¾ NMR ((CD3)2CO)3, 400 MHz) δ 8.37(m, 2H), 7.90 (m, 2H), 7.68 (m, 1H), 7.53-7.60 (m, 6H), 7.32-7.40 (m, 5H), 5.03 (dm, 1H), 4.71-4.93 (m, 2H), 4.27-4.41 (m, 2H).
MS (ESI), m/z: 703.9 [(M+HCOO)" ; C27H20Br2FN3O4S (M) requires 659.0]
Step 2. The title compound of Example 102 was prepared as follows. Cesium carbonate (11.5 mg, 0.036 mmol), the nosylate prepared in step 1 above (7.9 mg, 0.012 mmol), THF (0.7 ml, 0.017 M) and benezenthiol (3.8 ul, 0.037 mmol) were combined and stirred overnight. The crude reaction mixture was diluted with EtOAc, washed with water and brine. The organic layer was dried over a2S04, filtered and condensed. Chromatographic purification on Si02 (20%
EtOAc/hexanes (0.2% TEA)) provided 74% (4.2 mg). ¾ NMR (CDCI3, 500 MHz) δ = 8.16 (s, 2H), 7.56 (d, 2H, J=8.5 Hz), 7.31 (d, 2H, J=8.5
Hz), 7.21 (t, 2H, J=7.4 Hz), 6.80 (t, 1H, J=7.3 Hz), 6.62 (d, 2H, J=8.5 Hz), 5.1 1 (dddd, 1H, J=5.4, 5.4, 10.4, 47.4 Hz), 4.52-4.68 (m, 2H), 3.94 (t, 1H, J=6.02 Hz), 3.30-3.51, (dm, 2H).
MS (ESI), m/z: 475.0 [(M+l)-; C21H17Br2FN2 (M) requires 474.0].
Example 103. P7C3-S56: 3,6-dibromo-9-(2,2-difluoro-3-phenoxypropyl)-9H-carbazole
Figure imgf000189_0001
-(3,6-dibromo-9H-carbazol-9-yl)-3-phenoxypropan-2-one
Figure imgf000189_0002
Dess-Martin periodinane (58.2 mg, 0.137 mmol) was charged to a solution of the title compound 0 Example 3b (45.0 mg, 0.095 mmol) in dichloromethane (1.0 ml, 0.095 M). After two hours the reaction mixture was diluted with EtOAc and washed with saturated sodium thiosulfate solution, water and brine. The organic layer was dried over a2S04, filtered and condensed. The crude product was used without additional purification. Yield = 74%
¾ NMR (CDCI3, 400 MHz) δ 8.15 (d, 2H, J=1.9 Hz), 7.52 (dd, 2H, J=8.6, 1.9 Hz) 7.35 (m, 2H), 7.08 (t, 1H, J=7.3 Hz), 7.04 (d, 2H, J=8.9 Hz), 6.91 (m, 2H), 5.29 (s, 2H), 4.68 (m, 2H)
MS (ESI), m/z: 469.9 [(M-l)" ; C21H15Br2N02 (M) requires 570.9].
Step 2. The title compound of Example 103 was prepared as follows. Diethylaminosulfur trifluoride (39 ul, 0.30 mmol) was added dropwise to a solution of l-(3,6-dibromo-9H-carbazol-9- yl)-3-phenoxypropan-2-one (33.3 mg, 0.070 mmol) in anhydrous dichloromethane (1.5 ml,
0.047M). The reaction was quenched with saturated sodium bicarbonate solution, and then
extracting three times with dichloromethane. The organic layer is dried over a2S04, filtered and condensed. The crude mixture was purified on Si02 (10% EtOAc/hexanes +0.2% TEA. Isolated yield was 69 %. ¾ NMR (CDCI3, 400 MHz) δ 8.09 (d, 2H, J=1.9 Hz), 7.48 (dd, 2H, J=8.7, 1.8 Hz) 7.30-7.4 (m, 4H), 7.06 (t, 1H, J=7.3 Hz), 6.91 (d, 2H, J=7.9 Hz), 4.79 (t, 2H, J=12.4 Hz), 4.07 (t, 2H, J=l l. lHz).
MS (ESI), m/z: 537.9 [(M+HCOO)" ; C21H15Br2F2NO (M) requires 492.9].
Example 104. P7C3-S60: N-(3-(3,6-dibromo-9H-carbazol-9-yl)-2-fluoropropyl)-4- methoxyaniline
Figure imgf000190_0001
Step 1. N-(3-(3,6-dibromo-9H-carbazol-9-yl)-2-hydroxypropyl)-N-(4-methoxyphenyl)- 4-nitrobenzenesulfonamide
Figure imgf000190_0002
The title compound of Example 104, step 1 was prepared from epoxide 2-A and Ns- anisidine according to Representative Procedure 3. Yield=71%
¾ NMR (CDCI3, 400 MHz) δ 8.29 (d, 2H, J=8.7 Hz), 8.11 (d, 2H, J=1.9 Hz), 7.71 (, 2H, J=8.6 Hz), 7.52 (dd, 2H, J=8.6, 1.9 Hz), 7.23 (d, 2H, J=8.9 Hz), 6.94 (d, 2H, J=8.9 Hz), 6.82 (d, 2H, J=8.9 Hz), 4.44 (dd, 1H, J=14.8, 3.8 Hz), 4.30 (m, 1H), 4.21 (bs, 1H), 3.81 (s, 3H), 3.69 (m, 2H).
MS (ESI), m/z: 732.0 [(M+HCOO"); C28H23Br2N306S (M) requires 687.0]
Step 2. N-(3-(3,6-dibromo-9H-carbazol-9-yl)-2-fluoropropyl)-N-(4-methoxyphenyl)-4- nitrobenzenesulfonamide
Figure imgf000191_0001
The title compound of Example 104, step 2 was prepared from the nosylate prepared in step 1 above according to General Procedure 4. Yield=61.5%
¾ NMR (CDC13, 400 MHz) δ 8.27 (m, 2H), 8.09 (m, 2H), 7.71 (d, 2H, J=7.41 Hz), 7.53 (m, 2H), 7.19 (m, 2H), 6.95 (d, 2H, J=8.8 Hz), 6.82 (d, 2H, J=8.8 Hz), 4.92 (dm, IH, Jd=48.3 Hz), 4.55 (m, 2H), 3.88 (m, 2H), 3.79 (s, 3H).
MS (ESI), m/z: 734.0 (M+HCOO)" ; C28H22Br2FN305S (M) requires 689.0]
Step 3. The title compound of Example 104 was prepared according to Representative Procedure 5. Isolated yield 70%.
¾ NMR (CDCI3, 400 MHz) δ 8.14 (m, 2H0, 7.53 (dt, 2H, J=8.8, 1.6 Hz), 7.30 (d, 2H, 8.6 Hz), 6.78 (d, 2H, J=7.9 Hz), 6.57 (d, 2H, J=7.9 Hz), 5.07 (dddd, IH, J=4.7, 6.1, 9.4, 47.7), 4.58 (m, 2H), 3.75 (s, 3H), 3.32 (m, 2H).
MS (ESI), m/z: 549. 0 [(M+HCOO)"; C22H19Br2FN20 (M) requires 505.0).
Example 105. P7C3-S67: N-(2-bromo-3-(3,6-dibromo-9H-carbazol-9-yl)propyl)-N-(4- metho mide
Figure imgf000191_0002
Step 1. N-(2-bromo-3-(3,6-dibromo-9H-carbazol-9-yl)propyl)-N-(4-methoxyphenyl)-4- nitrobenzenesulfonamide
Figure imgf000192_0001
A solution of the title compound Example 104, Step 1 (20.5 mg, 0.030 mmol) in anhydrous dichloromethane (1.0 ml, 0.03 M) was cooled in an ice bath before the addition of BBr3 (7 ul, 0.074 mmol). After lh the reaction was diluted with EtOAc, washed twice with water, saturated sodium bicarbonate solution and brine. The organic layer was dried over Na2S04, filtered and condensed. The crude mixture was purified in 100% CH2C12 (+0.2% TEA). Isolated yield =56%.
¾ NMR (CDC13, 500 MHz) δ 8.26 (d, 2H, J=8.9 Hz), 8.12 (d, 2H, J=1.7 Hz), 7.60 (d, 2H, J=8.8 Hz) 7.53 (dd, 2H, J=8.7, 1.9 Hz), 7.18 (d, 2H, J=8.7 Hz), 6.89 (d, 2H, J=8.9 Hz) 6.81 (d, 2.H, J=9.0 Hz), 4.86 (dd, 1H, J=15.6, 5.4 Hz), 4.57 (m, 1H), 4.44 (m, 1H), 3.92 (m, 2H), 3.82 (s, 3H). MS (ESI), m/z: 747.9 [(M-l)"; C28H22Br3N305S (M) requires 748.9]
Step 2. The title compound of Example 105 was prepared from the nosylate prepared in step 1 above according to Representative Procedure 5. Isolated yield = 43% in appoximately 90% purity.
¾ NMR (CDCI3, 400 MHz) δ 8.14 (d, 2H, J=1.7 Hz), 7.51 (dd, 2H, J=8.6, 1.9 Hz), 7.28 (d, 2H, J=8.7 Hz), 6.71 (d, 2H, J=8.9 Hz), 6.41 (d, 2H, J=8.8 Hz), 4.84 (m, 1H), 4.63 (m, 3H), 3.82 (m, 1H), 3.73 (s, 3H). MS (ESI), m/z: 564.8 [(M+l)+; C22H19Br3N20 requires 563.9].
The title compounds of Examples 106-109 can be prepared using the methods described herein and/or using conventional synthesis methods.
Example 106. P7C3-S61: Ethyl 2-(4-(3-(3,6-dibromo-9H-carbazol-9-yl)-2- fluorop
Figure imgf000192_0002
Example 107. P7C3-S66: N-(3-(3,6-dibromo-9H-carbazol-9-yl)-2-fluoropropyl)-4-(2-(2- metho
Figure imgf000193_0001
Step 1. N-(3-(3,6-dibromo-9H-carbazol-9-yl)-2-hydroxypropyl)-N-(4-methoxyphenyl)-4- nitrobenzenesulfonamide
Figure imgf000193_0002
The title compound was prepared according to Representative Procedure 3.
Step 2. N-(3-(3,6-dibromo-9H-carbazol-9-yl)-2-hydroxypropyl)-N-(4-hydroxyphenyl)-4- nitrobenzenesulfonamide
Figure imgf000193_0003
2
Boron tribromide (290 ul, 3.06 mmol) was added to solution of the product of Step 1 (598 mg, 0.87 mmol) in anhydrous dichloromethane (17.0 ml) at 0 °C. The reaction mixture was condensed, diluted with ethyl acetate and washed with water, saturated sodium bicarbonate, water and then brine. Pure product was isolated from column chromatography of the crude mixture in 1% MeOH/DCM. Yield=59% !H NMR (CD3)2CO, 500 MHz) δ 8.42 (d, 2H, J = 8.8 Hz), 8.35 (s, 2H), 7.87 (d, 2H, J = 8.8 Hz), 7.56 (dd, 2H, J= 1.7, 8.8 Hz), 7.49 (d, 2H, J = 8.9 Hz) 7.05 (d, 2H, J = 8.7 Hz), 6.81 (d, 2H, J = 8.6 Hz), 4.59 (dd, 1H, J = 2.9, 15.2 Hz), 4.53 (d, lH, J = 5.5 Hz), 4.15 (m, 1H), 3.87 (m, 1H).
Step 3. N-(3-(3,6-dibromo-9H-carbazol-9-yl)-2-fluoropropyl)-N-(4-hydroxyphenyl)-4- nitrobenzenesulfonamide
Figure imgf000194_0001
The product of Step 2 was fluorinated according to Representative Procedure 4. Pure product was obtained after column chromatography in 1% MeOH/DCM (+0.2% TEA). Yield=89%.
¾ NMR (CD3)2CO, 400 MHz) δ 8.48 (d, 2H, J = 9.0 Hz), 8.41 (d, 2H, J = 1.7 Hz), 7.94 (d, 2H, J = 8.6 Hz), 7.66 (dd, 2H, J = 1.9, 8.8 Hz), 7.60 (d, 2H, J = 8.8 Hz), 7.10 (d, 2H, J = 9.0 Hz), 6.89 (d, 2H, J = 8.8 Hz), 5.10 (dm, 1H), 4.74-4.94 (m, 2H), 4.20-4.32 (m, 2H).
Step 4. N-(3-(3,6-dibromo-9H-carbazol-9-yl)-2-fluoropropyl)-N-(4-(2-(2- methoxyethoxy)ethoxy)phenyl)-4-nitrobenzenesulfonamide
Figure imgf000194_0002
A solution of the product of Step 3 (15.9 mg, 0.023 mmol), potassium carbonate (13.6 mg, 0.098 mmol) and l -bromo-2-(2-methoxyethoxy)ethane (8.5 mg, 0.041 mmol) in
dimethylformamide (1.0 ml) was heated at 70 °C overnight. The reaction was diluted with EtOAc and washed with water several times, then brine. Column chromatography in 100% DCM (+0.2% TEA) - 1% MeOH/DCM (+0.2% TEA) gave the pure product. Yield= 43%.
¾ NMR (CDC13, 500 MHz) δ 8.30 (d, 2H, J= 8.9 Hz), 8.14 (d, 2H, J = 1.7 Hz), 7.72 (d, 2H, J= 8.8 Hz), 7.56 (dd, 2H, J = 1.8, 8.6 Hz), 7.23 (d, 2H, J = 8.8 Hz), 6.95 (d, 2H, J = 8.7Hz), 6.85 (d, 2H, J = 8.7 Hz), 4.93 (dm, 1H), 4.46-4.69 (m, 2H), 4.13 (t, 2H, J= 5.2 Hz), 3.85 - 3.91 (m,3H), 3.72 (m, 2H), 3.58 (m, 2H), 3.46-3.50 (m, 1H), 3.39 (s, 3H). MS (ESI), m/z: 824.0 (M+HCOO)"
Step 5. P7C3-S66: N-(3-(3,6-dibromo-9H-carbazol-9-yl)-2-fluoropropyl)-4-(2-(2- m thoxyethoxy)ethoxy)aniline
Figure imgf000195_0001
The nitrosulfonyl group was removed from the product of Step 4 via Representative Procedure 5. Pure product was isolated following preparative TLC. Yield=92%
¾ NMR (CDC13, 400 MHz) δ 8.15 (d, 2H, J= 1.8 Hz), 7.55 (dd, 2H, J= 1.9, 8.7 Hz), 7.30 (d, 2H, J= 8.6 Hz), 6.81 (d, 2H, J= 8.9 Hz), 6.57 (d, 2H, J= 9.2 Hz), 5.08 (dm, 1H, = 47.8 Hz), 4.50-4.69 (m, 2H), 4.08 (m, 2H), 3.84 (m, 2H), 3.66-3.75 (m, 2H), 3.59 (m, 2H), 3.40 (s, 3H), 3.27-3.45 (m, 2H). MS (ESI), m/z: calculated 594.31, found 595 (M+l)+.
Example 108. P7C3-S68: N-(2-(2-(4-(3-(3,6-dibromo-9H-carbazol-9-yl)-2- fluoropropylamino)phenoxy)acetamido)ethyl)-5-(2-oxohexahydro-lH-thieno[3,4-d]imidazol-
4-yl)pentanamide
Figure imgf000195_0002
The title compound of Example 108 (P7C3-S68) was prepared via alkylation of the product of Step 3 in the synthesis of Example 107 Compound (P7C3-S66) with iodoethyl acetate and subsequent amidation and desulfonylation. The product was purified by preparative TLC in 10% MeOH/CH2Cl2 (+0.2% TEA). ¾ NMR (CD3OD, 500 MHz) δ = 8.23 (s, 2H), 7.51 (dd, 4H, J = 31.0, 8.8, Hz), 6.84 (d, 2H, J=8.9 Hz) 6.67 (d, 2H, J=8.6 Hz), 5.04 (dm, 1H, J= 48.9 Hz), 4.69 (d, 1H, J= 5.2 Hz) 4.65 (m, 1H), 3.37-3.42 (m, 3H), 4.17 (m, 1H), 3.42-3.52 (m, 1H), 3.37 (m, 4H) 3.05 (m, 1H), 2.82 (dm, 1H), 2.69 (m, 1H), 2.63 (d, 1H, J= 12.7 Hz), 2.13-2.18 (m, 2H), 1.15-1.69 (m, 6H). 13C NMR (CDCI3, 126 MHz) δ = 176.6, 166.0, 151.7, 144.6, 141.2, 130.3, 124.9, 124.1, 1 17.1, 1 15.5, 1 13.4, 112.4, 106.2, 92.6 (d, V= 176.7 Hz), 69.2, 63.3, 61.6, 56.9, 47.2 (d, 2J= 22.2 Hz), 46.1 (d, 2J = 24.1 Hz), 41.0, 40.2, 39.7, 36.8, 29.7, 29.4, 26.8. MS (ESI), m/z: calculated 816.11, found 817.1 (M+l)+ .
Examp -S57.
Figure imgf000196_0001
Example 110. P7C3-S70: 2-(4-(3-(3,6-dibromo-9H-carbazol-9-yl)-2- fluoropropylamino)phenoxy)-N,N-dimethylacetamide
Figure imgf000196_0002
The title compound was prepared analogously to P7C3-S66. !H NMR (CDC13, 400 MHz) δ = 8.04 (d, 2H, J = 8.6 Hz), 7.45 (dd, 2H, J =1.9, 8.6 Hz), 7.20 (d, 2H, J = 9.7 Hz), 6.75 (d, 2H, J = 8.8 Hz), 6.47 (d, 2H, J= 9.1 Hz), 4.97 (dm, 1H, 47.2 Hz), 4.53 (s, 2H), 4.38-4.60 (m, 2H), 3.11-3.36 (m, 2H), 3.00 (s, 3H), 2.89 (s, 3H). 3C MR (CDC13, 100 MHz)
δ = 184.0, 168.3, 151.4, 142.0, 139.6, 129.5, 123.4, 116.1, 112.9, 110.7( d, 4J = 1.8 Hz ), 90.8 ( d, V= 175.5 Hz), 68.4, 46.4 ( d, 2J= 24.7 Hz ), 45.0 ( d, 2J = 92.3 Hz), 29.8, 32.9. MS (ESI), m/z: calculated 575.02, found 622.0 (M+HCOO)".
Example 111. P7C3-S71: 2-(4-(3-(3,6-dibromo-9H-carbazol-9-yl)-2- fluoropropylamino)phenoxy)-N-(2-hydroxyethyl)acetamide
Figure imgf000196_0003
The title compound was prepared analogously to P7C3-S66 and was purified by chromatography on silica gel (5% MeOH/DCM +0.2%TEA).1H MR (CDC13, 400 MHz) δ = 12.07 (bs, 1H), 8.15 (d, 2H), 7.55 (dd, 2H, J = 2.0, 8.5 Hz), 7.31 (d, 2H, J= 8.8 Hz), 7.06 (bm, 1H), 6.80 (d, 2H, J= 9.1 Hz), 6.57 (d, 2H, 9.2 Hz), 5.09 (dm, 1H, . = 47.2 Hz), 4.51-4.68 (m, 2H), 4.51-4.68 (m, 2H), 4.45 (s, 2H), 3.78 (t, 3H, J= 4.9 Hz), 3.53 (q, 2H, J = 5.4 Hz), 3.22-3.45 (m, 2H), 2.57 (bs, 1H). 13C NMR (CDC13, 100 MHz). δ = 169.9, 150.5, 142.5, 139.7, 129.6, 123.5, 116.2, 110.7 ( d, 4J = 1.2 Hz ), 90.8 ( d, lJ = 176.5 Hz), 68.3, 62.4, 46.3 ( d, 2J = 21.8 Hz ), 45.0 ( d, 2J = 25.7
Hz), 42.2. MS (ESI), m/z: calculated 591.02, found 638.0 (M+HCOO)".
Example 112. P7C3-S72: l-(bis(4-bromophenyl)amino)-3-(phenylamino)propan-2-ol
Figure imgf000197_0001
P7C3-S72 was synthesized from di-(4-bromophenyl)amine, epibromohydrin and aniline following Representative Procedures 1 and 2. *H MR (CDC13, 400 MHz) δ = 7.38 (d, 4H, J = 8.8 Hz), 7.19 (d, 2H, J = 7.4 Hz), 6.95 (d, 4H, J = 8.8 Hz), 6.76 (t, 1H, J = 7.4 Hz), 6.62 (d, 2H, J = 7.9 Hz), 4.17 (bm, 1H), 3.89 (dd, 1H, J= 4.3, 15.2 Hz), 3.72-3.81 (m, 1H), 3.32 (dd, 1H, J = 3.2, 12.8 Hz), 3.08-3.18 (m, 1H). 13C NMR (CDC13, 100 MHz) δ = 148.0, 147.0, 132.6, 129.5, 123.1, 118.4, 114.9, 113.5, 67.9, 56.6, 47.8. MS (ESI), m/z: calculated 473.99, found 521 (M+HCOO)". Example 113. P7C3-S73: (E)-3,6-dibromo-9-(3-phenoxyallyl)-9H-carbazole and (E)-3,6- dibromo-9-(3-phenoxyprop-l-en-l-yl)-9H-carbazole.
Step 1. 3,6-dibromo-9-(2-bromo-3-phenoxypropyl)-9H-carbazole
Figure imgf000197_0002
To an ice-cold solution of P7C3-S39 (95.0 mg, 0.20 mmol, 1 equiv) and triphenylphosphine (78.7 mg, 0.30 mmol, 1.5 equiv) in dichloromethane (0.6 mL) was added tetrabromomethane (73.0 mg, 0.22 mmol, 1.1 equiv). The mixture was stirred at rt for 3 hours. Dichloromethane was and the crude residue was purified by silica gel chromatography using 9% EtO Ac/Hex to afford 7.4 mg white solid as product, yield 6.9%. *H NMR (CDC13, 400 MHz) δ = 4.22 - 4.11 (m, 2H) 4.61 (dt, J = 12.2, 6.2 Hz, 1H) 4.68 (dd, J = 15.2, 6.4 Hz, 1H) 4.98 (dd, J = 15.2, 7.1 Hz, 1H) 6.88 (d, J = 7.8 Hz, 2H) 7.02 (t, J= 7.4 Hz, 1H) 7.37 - 7.26 (m, 4H) 7.49 (dd, J= 8.7, 1.8 Hz, 2H) 8.12 (d, J= 1.8 Hz, 2H)
Step 2. P7C3-S73. (E)-3,6-dibromo-9-(3-phenoxyallyl)-9H-carbazole and (E)-3,6-dibromo- 9-(3 -phenoxyprop- 1 -en- 1 -yl)-9H-carbazole.
Figure imgf000198_0001
To a 4-mL vial were added the product of Step 1, kryptofix 222 (4.8 mg, 0.0130 mmol, 1 equiv), KF (0.5 mg, 0.0090 mmol, 0.7 equiv), K2C03 (0.3 mg, 0.0019 mmol, 0.15 equiv) and acetonitrile (0.15 mL). The vial was tightly sealed and heated to 80°C for 20 min. The crude was purified by silica gel chromatography using 9% EtO Ac/Hex to afford 4.9 mg white solid in one fraction as a mixture of these two olefins in a 45:55 ratio, total yield 83.6%. *H NMR (CDC13, 400 MHz) δ = 4.51 (dd, J= 6.5, 1.4 Hz, 0.45 x 1H) 4.83 (dd, J= 6.2, 1.2 Hz, 0.55 x 1H) 6.21 (dt, J= 8.0, 6.6 Hz, 0.45 x 1H) 6.31 (dt, J= 14.2, 6.1 Hz, 0.55 x 1H) 6.74 (d, J= 7.9 Hz, 1H) 6.94 - 6.85 (m, 1H) 7.05 - 6.98 (m, 2H) 7.38 - 7.15 (m, 4H) 7.49 (d, J= 8.7 Hz, 1H) 7.57 (ddd, J= 8.6, 4.1, 1.9 Hz, 2H) 8.14 (dd, J= 13.0, 1.8 Hz, 2H).
Example 114. P7C3-S75: l-(3,6-bis(trifluoromethyl)-9H-carbazol-9-yl)-3- (phenylamino)propan-2-ol
-(trifluoromethyl)phenyl trifluoromethanesulfonate
Figure imgf000198_0002
To a solution of 4-trifluoromethylphenol (324.2 mg, 2.0 mmol, 1 equiv) in dichloromethane (1.2 mL) was added pyridine (194.1 μί, 2.4 mmol, 1.2 equiv). A solution of triflic anhydride (370.1 μί, 2.2 mmol, 1.1 equiv) in dichloromethane (1.2 mL) was added dropwise at 0 °C. The mixture was stirred at 0 °C for 1 hour, and then rt for 2.5 hours. The reaction was quenched with lmL of water. The organic phase was washed with saturated aHC03, 1M HC1 and brine, then dried with MgS04 and concentrated to give crude product. It was further purified by silica gel chromatography using 5% EtOAc/Hex to afford 449.4 mg colorless oil as product, yield 76.4%.
H NMR (CDC13, 400 MHz) δ = 7.42 (d, J= 8.8 Hz, 2H) 7.75 (d, J= 9.0 Hz, 1H).
Step 2. 3,6-bis(trifluoromethyl)-9H-carbazole
Figure imgf000199_0001
Following methods in Watanabe et al., J. Org. Chem. 2009, 74, 4720-4726, to a vial under argon atmosphere containing the product of Step 1, (29.4 mg, 0.10 mmol, 1 equiv), 4- (trifluoromethyl)aniline (17.7 mg, 0.1 1 mmol, 1.1 equiv), Pd(OAc)2 (2.2 mg, 0.01 mmol, 0.1 equiv), XPhos (7.2 mg, 0.015 mmol, 0.15 equiv) and CS2CO3 (39.1 mg, 0.12 mmol, 1.2 equiv) was added toluene (0.2 mL). The mixture was stirred at 100°C for 1.5 hour. After cooling, the crude mixture was diluted with ethyl acetate and washed with brine. The organic layer was dried with MgS04 and concentrated. The crude product was further purified by silica gel chromatography using 0-5% of EtO Ac/Hex to afford 22.2 mg of the diaryl amine as a colorless oil as, yield 69.2%. To this intermediate was added acetic acid (0.8 mL) and Pd(OAc)2 (2.5 mg). The mixture was heated to 90°C for 12 h under an oxygen balloon. Solid aHC03 was added to quench the reaction. The mixture was diluted with ethyl acetate and washed with aHC03. The organic layer was dried with MgS04 and concentrated to give crude product. It was further purified by silica gel chromatography using 25% EtO Ac/Hex to afford 9.2 mg white solid yield 41.7%. 1H NMR
(CDCI3, 400 MHz) δ = 7.54 (d, J= 8.6 Hz, 2H) 7.72 (dd, J= 8.6, 1.5 Hz, 2H) 8.38 (s, 2H) 8.47 (s, br, 1H). ESI (m/z): 302.0 (M - H+).
Step 3. l-chloro-3-(phenylamino)propan-2-ol
Figure imgf000199_0002
Acetic acid (0.56 mL), aniline (456 μί, 5.0 mmol, 1 equiv) and epichlorohydin (469 μί, 6.0 mmol, 1.2 equiv) were combined and stirred at 75 °C for 3 h in a sealed vial. The reaction was quenched with solid aHC03 (0.8218 g) and the mixture was diluted with ethyl acetate and washed with saturated aHC03. The combined organic extracts were dried with MgS04 and concentrated to give crude product. It was further purified by silica gel chromatography using 30% EtO Ac/Hex to afford 495.5 mg colorless oil as product, yield 53.4%. !H NMR (CDC13, 400 MHz) δ = 2.10 (d, J = 0.9 Hz, 1H) 3.25 (dd, J = 13.3, 7.1 Hz, 1H) 3.39 (dd, J = 13.3, 4.5 Hz, 1H) 3.77 - 3.56 (m, 2H) 4.17 - 4.03 (m, 1H) 6.67 (dd, J = 8.6, 1.0 Hz, 2H) 6.76 (tt, J = 7.4, 1.0 Hz, 1H) 7.20 (dd, J = 8.5, 7.4 Hz, 2H). ESI (m/z): 186.1 (M + H+); 230.1 (M + HCOO").
Step 4. N-(oxiran-2-ylmethyl)aniline
Figure imgf000200_0001
To a solution of the product of Step 3 (185.7 mg, 1.0 mmol, 1 equiv) in 1,4-dioxane (3.3 mL) was added KOH powder (67.3 mg, 1.2 mmol, 1.2 equiv). The mixture was stirred at room temperature for 24 hours. The mixture was diluted with EtOAc and washed with 1M HCl and brine. The organic layer was dried with MgS04 and concentrated to give crude product. It was further purified by silica gel chromatography using 20% EtOAc/Hex to afford 141.8 mg colorless oil as product, yield 95.0%. *H NMR (CDC13, 400 MHz) δ = 2.70 (dd, J = 4.9, 2.3 Hz, 1H) 2.87 - 2.77 (m, 1H) 3.23 - 3.18 (m, 1H) 3.26 (t, J = 4.9 Hz, 1H) 3.59 - 3.48 (m, 1H) 3.87 (s, 1H) 6.64 (d, J = 7.7 Hz, 2H) 6.73 (t, J= 7.3 Hz, 1H) 7.18 (dd, J= 8.3, 7.5 Hz, 2H).
Step 5. P7C3-S75: l-(3,6-bis(trifluoromethyl)-9H-carbazol-9-yl)-3-(phenylamino)propan-2- ol
Figure imgf000200_0002
To a solution of the product of Step 2 (4.6 mg, 0.0152 mmol, 1 equiv) in THF (0.25mL) was added NaH (60% dispersion in mineral oil, 0.7 mg, 0.0167 mmol, 1.1 equiv) and the mixture was stirred at room temperature for 15 min. The product of Step 4 (2.7 mg, 0.0182 mmol, 1.2 equiv) was added and the resulting mixture was stirred at room temperature overnight and then heated at 65 °C for 4 hours. Brine was added and the crude reaction was extracted 3 times with EtOAc. The combined organic extracts were dried with MgS04 and concentrated to give crude product. It was further purified by silica gel chromatography using 30% EtOAc/Hex to afford 4.1 mg white solid as product, yield 59.6%. *H NMR (CDC13, 400 MHz) δ = 2.33 (s, 1H) 3.25 (dd, J = 13.1, 7.1 Hz, 1H) 3.40 (dd, J= 13.1, 4.0 Hz, 1H) 4.43 (ddd, J= 11.3, 6.8, 4.6 Hz, 1H) 4.62 - 4.46 (m, 2H) 6.64 (d, J= 8.3 Hz, 2H) 6.79 (t, J= 7.3 Hz, 1H) 7.23 - 7.12 (m, 2H) 7.60 (d, J= 8.6 Hz, 2H) 7.75 (dd, J= 8.6, 1.4 Hz, 2H) 8.41 (s, 2H). 13C NMR (CDC13, 400 MHz) δ = 147.8, 143.1, 129.7, 123.9 (dd, J = 7.0, 3.5 Hz, 1C), 123.0, 122.7, 122.5, 1 19.0, 118.5 (q, J= 4.2 Hz, 1C), 1 13.8, 1 10.0, 69.7, 48.1, 47.5. ESI (m/z): 497.1 (M + HCOO").
Example 115. P7C3-S77: l-(3,6-Dibromo-9H-carbazol-9-yl)-3-(3-methoxyphenylthio)propan- 2-ol
Figure imgf000201_0001
Prepared analogously to Example 3a. Chromatography (0-50% EtOAc in hexanes) provided 242 mg (88% yield) of an off-white foam. ¾ NMR (CDC13, 500 MHz) δ = 8.01 (d, J =1.5 Hz, 2H), 7.46 (dd, J =1.5, 8.5 Hz, 2H), 7.21 (d, J =9.0 Hz, 2H), 7.14 (dd, J =8.0, 8.0 Hz, 1H), 6.85 (d, J =7.5 Hz, 1H), 6.80 (m, 1H), 6.72 (dd, J =2.0, 8.0 Hz, 1H), 4.32 (dd, J =4.0, 15.0 Hz, 1H), 4.20 (dd, J =7.0, 15.0 Hz, 1H), 4.09 (m, 1H), 3.69 (s, 3H), 3.03 (dd, J =5.0, 14.0 Hz, 1H), 2.91 (dd, J =7.5, 14.0 Hz, 1H), 2.55 (d, J =3.0 Hz, 1H). 13C NMR (CDC13, 125 MHz) δ = 160.1, 139.7, 135.7, 130.3, 129.3 (2C), 123.6, 123.3 (2C), 122.0, 115.4, 112.7, 112.6, 111.0 (2C), 69.2, 55.4, 48.0, 39.0. ESI m/z: 563.6 ([M+HCOO]").
Example 116. P7C3-S78: l-(3,6-Dibromo-9H-carbazol-9-yl)-3-(4-methoxyphenylthio)propan-
2-ol
Figure imgf000201_0002
Prepared analogously to Example 3a. Chromatography (0-50% EtOAc in hexanes) provided 263 mg (96% yield) of an off-white solid. *H NMR (CDC13, 500 MHz) δ = 8.02 (d, J =2.0 Hz, 2H), 7.47 (dd, J =2.0, 8.5 Hz, 2H), 7.28 (d, J =8.5 Hz, 2H), 7.22 (d, J =9.0 Hz, 2H), 6.77 (d, J =9.0 Hz, 2H), 4.31 (dd, J =4.0, 15.0 Hz, 1H), 4.18 (dd, J =7.0, 15.5 Hz, 1H), 4.01 (m, 1H), 3.75 (s, 3H), 2.93 (dd, J =5.0, 14.0 Hz, 1H), 2.79 (dd, J =7.5, 13.5 Hz, 1H), 2.6 (d, J =3.5 Hz, 1H). 13C NMR (CDC13, 125 MHz) δ = 159.7, 139.8 (2C), 133.9 (2C), 129.3 (2C), 124.4, 123.6 (2C), 123.3 (2C), 115.1 (2C), 112.6 (2C), 111.0 (2C), 69.1, 555.5, 48.0, 41.3. ESI m/z: 563.5 ([M+HCOOD.
Example 117. P7C3-S79: 3,6-Dibromo-9-(2-fluoro-3-(3-methoxyphenylthio)propyl)-9H- carbazole
Figure imgf000202_0001
Prepared analogously to Example 96 from P7C3-S77. Chromatography (0-5% EtOAc in hexanes) provided 32 mg (32% yield) of an off-white solid. !H NMR (CDC13, 500 MHz) δ = 8.07 (d, J =1.5 Hz, 2H), 7.50 (dd, J = 1.5, 8.5 Hz, 2H), 7.26 (d, J =8.5 Hz, 2H), 7.21 (t, J =8.0 Hz, IH), 6.96 (d, J =7.5 Hz, IH), 6.92 (br s, IH), 6.77 (dd, J =2.0, 8.5 Hz, IH), 4.90 (dm, J =47.5 Hz, IH), 4.59 (ddd, J =2.5, 16.0, 26.5 Hz, IH), 4.45 (ddd, J =7.0, 16.0, 22.0 Hz, IH), 3.76 (s, 3H), 3.26 (ddd, J =4.5, 15.0, 15.0 Hz, IH), 3.06 (m, IH). 13C NMR (CDC13, 125 MHz) δ = 160.2, 139.8 (2C), 135.5, 130.5, 129.5 (2C), 123.9 (2C), 123.4 (2C), 122.2 (2C), 115.8, 113.0, 112.9, 110.9 (d, J =2.1 Hz, 2C), 104.9, 91.3 (d, J =180 Hz), 55.5, 46.1 (d, J =22.9 Hz), 35.4 (d, J =23.9 Hz). ESI m/z: 565.7 ([M+HCOOD.
Example 118. P7C3-S80: 3,6-Dibromo-9-(2-fluoro-3-(4-methoxyphenylthio)propyl)-9H- carbazole
Figure imgf000202_0002
Prepared analogously to Example 96 from P7C3-S78. Chromatography (0-5% EtOAc in hexanes) provided 23 mg (23% yield) of an off-white solid. *H NMR (CDC13, 500 MHz) δ = 8.08 (d, J =1.5 Hz, 2H), 7.52 (dd, J = 1.5, 8.5 Hz, 2H), 7.39 (d, J =9.0 Hz, 2H), 7.28 (d, J =8.5 Hz, 2H), 6.84 (d, J =9.0 Hz, 2H), 4.83 (dm, J =48.0 Hz, IH), 4.58 (ddd, J =2.5, 15.5, 27.0 Hz, IH), 4.45 (ddd, J =7.0, 16.0, 20.5 Hz, IH), 3.78 (s, 3H), 3.13 (ddd, J =4.5, 14.5, 14.5 Hz, IH), 2.96 (m, IH). 13C NMR (CDC13, 125 MHz) δ = 159.9, 134.2, 129.5, 124.4, 123.9, 123.4, 115.2, 112.9, 110.9 (d, J =2.1 Hz, 2C), 104.9, 91.5 (d, J =179.6 Hz), 55.6, 46.1 (d, J =22.6 Hz), 37.6 (d, J =22.4 Hz). ESI m/z: 565.7 ([M+HCOOf 565.9).
Example 119. P7C3-S81: 3,6-Dibromo-9-(2-fluoro-3-(3-methoxyphenylsulfonyl)propyl)-9H- carbazole
Figure imgf000203_0001
Prepared analogously to Example 96 from P7C3-S77. Chromatography (0-30% EtOAc in hexanes) provided 17.7 mg (84% yield) of an off-white solid. !H NMR (CDC13, 500 MHz) δ = 8.11 (d, J =1.5 Hz, 2H), 7.55 (dd, J = 1.5, 8.5 Hz, 2H), 7.43 (m, 2H), 7.34 (d, J =8.5 Hz, 2H), 7.33 (m, 1H), 7.16-7.14 (m, 1H), 5.34 (dm, J =49.0 Hz, 1H), 4.71 (ddd, J =2.5, 16.0, 26.5 Hz, 1H), 4.56 (ddd, J =7.0, 16.0, 22.5 Hz, 1H), 3.81 (s, 3H), 3.48 (m, 2H). 13C NMR (CDC13, 125 MHz) δ = 160.4, 140.0, 139.7 (2C), 130.9, 129.7 (2C), 124.0 (2C), 123.5 (2C), 121.1 (2C), 120.2, 113.2, 112.6, 110.9 (d, J =2.1 Hz, 2C), 87.1 (d, J =181.3 Hz), 58.1 (d, J =23.4 Hz), 56.0, 47.1 (d, J =22.0 Hz). ESI m/z: 531.7 ([M-H2F]~).
Example 120. P7C3-S82: l-(3,6-Dibromo-9H-carbazol-9-yl)-3-(3- methoxyphenylsulfonyl)propan-2-ol
Figure imgf000203_0002
Prepared analogously to Example 3d from P7C3-S77. Chromatography (0-25% EtOAc in hexanes) provided 30 mg (94% yield) of an off-white solid. *H NMR (CDC13, 500 MHz) δ = 8.06 (d, J =2.0 Hz, 2H), 7.49 (dd, J =2.0, 9.0 Hz, 2H), 7.36 (apparent t, J =8.0 Hz, 1H), 7.31 (m, 1H), 7.22 (d, J =9.0 Hz, 2H), 7.20 (m, 1H), 7.10 (m, 1H), 4.61 (m, 1H), 4.33 (m, 2H), 3.78 (s, 3H), 3.32 (br s, 1H), 3.23 (dd, J =8.0, 14.0 Hz, 1H), 3.12 (dd, J =3.0, 14.5 Hz, 1H). 13C NMR (CDC13, 125 MHz) δ = 160.3, 139.7, 139.6 (2C), 130.8, 129.6 (2C), 123.8, 123.4 (2C), 120.8, 119.9, 113.0 (2C), 112.3 (2C), 110.9 (2C), 65.6, 59.9, 55.9, 48.2. ESI m/z: 595.6 ([M+HCOO]").
Example 121. P7C3-S83: 3,6-Dibromo-9-(2-fluoro-3-(4-methoxyphenylsulfonyl)propyl)-9H- carbazole
Figure imgf000204_0001
Prepared analogously to Example 96 from P7C3-S78. Chromatography (0-30% EtOAc in hexanes) provided 18.9 mg (89% yield) of an off-white solid. !H NMR (CDC13, 500 MHz) δ = 8.10 (d, J =2.0 Hz, 2H), 7.78 (d, J =8.5 Hz, 2H), 7.54 (dd, J = 1.5, 8.5 Hz, 2H), 7.32 (d, J =8.5 Hz, 2H), 6.96 (d, J =9.0 Hz, 2H), 5.32 (dm, J =47.5 Hz, IH), 4.69 (ddd, J =2.5, 16.0, 27.0 Hz, IH), 4.54 (ddd, J =7.0, 16.0, 22.5 Hz, IH), 3.85 (s, 3H), 3.49-3.42 (m, 2H). 13C MR (CDC13, 125 MHz) δ = 164.5, 139.7 (2C), 130.5 (2C), 130.3, 129.7 (2C), 124.0 (2C), 123.5 (2C), 114.9 (2C), 113.2 (2C), 110.9 (d, J =2.25 Hz, 2C), 87.4 (d, J = 181.1 Hz), 58.5 (d, J =23.1 Hz), 56.0, 47.2 (d, J =22.0 Hz). ESI m/z: 531.5 ([M-H2F]_.
Example 122. P7C3-S84: l-(3,6-Dibromo-9H-carbazol-9-yl)-3-(4- metho -ol
Figure imgf000204_0002
Prepared analogously to example 3d from P7C3-S78. Chromatography (0-30% EtOAc in hexanes) provided 27 mg (85% yield) of an off-white solid. *H NMR (CDC13, 500 MHz) δ = 8.09 (d, J =2.0 Hz, 2H), 7.67 (d, J =9.0 Hz, 2H), 7.50 (dd, J =2.0, 9.0 Hz, 2H), 7.25 (d, J =8.0 Hz, 2H), 6.92 (d, J =9.0 Hz, 2H), 4.61 (m, IH), 4.36 (d, J =6.0 Hz, 2H), 3.86 (s, 3H), 3.35 (d, J =2.5 Hz, IH), 3.20 (dd, J =8.5, 14.0 Hz, IH), 3.10 (dd, J =2.5, 14.0 Hz, IH). 13C NMR (i/6-acetone, 125 MHz) δ = 164.7, 141.0 (2C), 132.8, 131.2 (2C), 129.8 (2C), 124.5 (2C), 124.0 (2C), 115.2 (2C), 112.74 (2C), 112.68 (2C), 66.6, 61.0, 56.3, 49.7. ESI m/z: 595.6 ([M+HCOO]").
Example 123. P7C3-S91: 3-(3-(3,6-Dibromo-9H-carbazol-9-yl)-2-hydroxypropylthio)phenol
Figure imgf000205_0001
Prepared analogously to example 3 a. Silica chromatography (0-40% EtOAc in hexanes) followed by HPLC purification (75% MeCN/H20 + 0.1% HC02H, Phenomenex C18 Luna, 10x250 mm, 3 mL/min) provided 9.9mg (21% yield) of an off-white solid. JH NMR (i -acetone, 400 MHz) δ = 8.35 (br s, 2H), 7.56 (m, 4H), 7.13 (apparent t, J =8.0 Hz, 1H), 6.94 (br s, 1H), 6.88 (d, J =7.6 Hz, 1H), 6.69 (dd, J =1.6, 8.0 Hz, 1H), 4.66 (dd, J =3.2, 15.2 Hz, 1H), 4.47 (dd, J =8.4, 14.8 Hz, 1H), 4.26 (m, 1H), 3.22 (d, J =6.4 Hz). 13C NMR (i/6-acetone, 125 MHz) δ = 158.8, 141.1 (2C), 138.2, 130.9, 129.7 (2C), 124.4 (2C), 124.0 (2C), 120.7 (2C), 116.5, 114.2, 112.8 (2C), 112.5, 70.2, 49.2, 38.5. ESI m/z: 549.7 ([M+HCOO]").
Examp ibromo-9H-carbazol-9-yl)-2-hydroxypropylthio)phenol
Figure imgf000205_0002
Prepared analogously to example 3a. Chromatography (0-3% acetone in dichloromethane) followed by HPLC purification (75% MeCN/H20 + 0.1% HC02H, Phenomenex C18 Luna, 10x250 mm, 3 mL/min) provided 11.4 mg (25% yield) of an off-white solid. JH NMR (i -acetone, 500 MHz) δ = 8.64 (br s, 1H), 8.34 (s, 2H), 7.56 (m, 4H), 7.36 (d, J =8.5 Hz, 2H), 6.82 (d, J =8.5 Hz, 2H), 4.62 (dd, J =3.5, 15.0 Hz, 1H), 4.54 (br s, 1H), 4.43 (dd, J =8.5, 15.0 Hz, 1H), 4.16 (m, 1H), 3.09 (d, J =6.5 Hz, 2H). 13C NMR (i/6-acetone, 125 MHz) δ = 158.0, 141.1 (2C), 134.3 (2C), 129.7 (2C), 125.3, 124.4 (2C), 124.0 (2C), 117.1 (2C), 112.9 (2C), 112.5 (2C), 70.3, 49.1, 41.2. ESI m/z: 503.6 ([Μ-ΗΓ, C2iH16Br2N02S requires 503.9).
Example 125. P7C3-S93: 3-(3-(3,6-Dibromo-9H-carbazol-9-yl)-2- hydroxypropylsulfonyl)phenol
Figure imgf000206_0001
Prepared analogously to example 3d from P7C3-S91. Chromatography (0-40% EtOAc in hexanes) followed by HPLC purification (75% MeCN/H20 + 0.1% HC02H, Phenomenex CI 8 Luna, 10x250 mm, 3 mL/min) provided 9.9 mg (46% yield) of an off-white solid. JH NMR (d6- acetone, 500 MHz) δ = 9.28 (br s, 1H), 8.36 (s, 2H), 7.59 (m, 4H), 7.44 (apparent t, J =8.0 Hz, 1H), 7.43 (m, 1H), 7.38 (br s, 1H), 7.16 (d, J =8.0 Hz, 1H), 4.72 (br s, 1H), 4.64 (dd, J =2.5, 14.0 Hz, 1H), 4.76 (m, 1H), 4.54 (dd, J =8.5, 14.0 Hz, 1H), 3.66 (dd, J =5.0, 14.5 Hz, 1H), 3.58 (dd, J =6.5, 14.5 Hz, 1H). 13C NMR (i/6-acetone, 125 MHz) δ = 158.9, 142.5, 141.0 (2C), 131.4, 129.8 (2C), 124.5 (2C), 124.1 (2C), 121.7, 119.8, 115.3, 112.8 (2C), 112.7 (2C), 66.5, 60.7, 49.7. ESI m/z: 535.5 ([Μ-ΗΓ, C2iH16Br2N04S requires 535.9).
Example 126. P7C3-S94: 4-(3-(3,6-Dibromo-9H-carbazol-9-yl)-2- hydroxypropylsulfonyl)phenol
Figure imgf000206_0002
Prepared analogously to example 3d from P7C3-S92. Chromatography (0-40% EtOAc in hexanes) provided 5.5 mg (23% yield) of an off-white solid. ¾ NMR (i¾-acetone, 500 MHz) δ = 8.36 (s, 2H), 7.79 (d, J =9.0 Hz, 2H), 7.60 (m, 4H), 7.01 (d, J =9.0 Hz, 2H), 4.66-4.50 (m, 3H), 3.61 (dd, J =5.0, 14.5 Hz, 1H), 3.52 (dd, J =6.0, 14.5 Hz, 1H). 13C NMR (i/6-acetone, 125 MHz) δ = 163.2, 141.0 (2C), 131.7, 131.4 (2C), 129.8 (2C), 124.5 (2C), 124.0 (2C), 116.7 (2C), 112.8 (2C), 112.7 (2C), 66.6, 61.1, 49.7. ESI m/z: 535.5 ([M-H]~ C2iH16Br2N04S requires 535.9).
Example 127. P7C3-S95: l-(3-Aminophenylthio)-3-(3,6-dibromo-9H-carbazol-9-yl)propan-2- ol
Figure imgf000207_0001
Prepared analogously to example 3a. Chromatography (0-50% EtOAc in hexanes) provided 5.5 mg (23% yield) of an off-white solid. !H NMR (CDC13, 400 MHz) δ = 8.08 (s, 2H), 7.50 (d, J =8.8 Hz, 2H), 7.26 (d, J =8.8 Hz, 2H), 7.01 (apparent t, J =8.0 Hz, IH), 6.66 (d, J =8.0 Hz, IH), 6.49 (m, 2H), 4.39 (dd, J =4.8, 15.2 Hz, IH), 4.27 (dd, J =6.8, 15.6 Hz, IH), 4.13 (m, IH), 3.58 (br s, 2H), 3.01 (dd, J =5.2, 14.0 Hz, IH), 2.88 (dd, J =7.6, 14.0 Hz, IH), 2.53 (br s, IH). 13C NMR (CDC13, 125 MHz) δ = 147.3, 139.8 (2C), 135.2, 130.3 (2C), 129.4 (2C), 123.7, 123.4 (2C), 120.0 (2C), 1 16.1, 114.0, 1 12.7, 11 1.1 (2C), 69.2, 48.1, 39.0. ESI m/z: 504.6 ([M+H]+, C2iH19Br2N2OS requires 505.0).
Example 128. P7C3-S96: l-(4-Aminophenylthio)-3-(3,6-dibromo-9H-carbazol-9-yl)propan-2- ol
Figure imgf000207_0002
Prepared analogously to example 3 a. Chromatography (0-50% EtOAc in hexanes) provided 31 mg (23% yield) of an off-white solid. *H NMR (CDC13, 400 MHz) δ = 8.09 (s, 2H), 7.50 (d, J =8.8, 2H), 7.28 (d, J =8.4 Hz, 2H), 7.18 (d, J =8.4 Hz, 2H), 6.55 (d, J =8.4 Hz, 2H), 4.36 (dd, J =4.0, 15.6 Hz, IH), 4.23 (dd, J =6.8, 15.2 Hz, IH), 4.03 (m, IH), 3.73 (br s, 2H), 2.91 (dd, J =5.2, 14.0 Hz, IH), 2.75 (dd, J =8.0, 13.6 Hz, IH), 2.59 (br s, IH). 13C NMR (CDC13, 125 MHz) δ = 146.9, 139.9 (2C), 134.6 (2C), 129.3 (2C), 123.7, 123.3 (2C), 121.0 (2C), 1 15.9 (2C), 112.6 (2C), 11 1.2 (2C), 69.1, 48.1, 41.9. ESI m/z: 504.7 ([M+H]+, C2iH19Br2N20S requires 505.0).
Example 129. P7C3-S97: l-(3,6-dibromo-9H-carbazol-9-yl)-3-phenoxypropan-2-amine
Step 1. l-(3,6-dibromo-9H-carbazol-9-yl)-3-phenoxypropan-2-one
Figure imgf000208_0001
To a solution of P7C3-S39 (87.2 mg, 0.1835 mmol, 1 equiv) in CHC13 (3 mL) was added Dess-Martin periodinane (DMP, 77.8 mg, 0.1835 mmol, 1 equiv). The mixture was stirred at room temperature. After 1 hour, a second batch of DMP (31.1 mg, 0.0734 mmol, 0.4 mmol) was added to the reaction mixture and further stirred for another 4 hours. Solvent was removed on the vacuum and the crude residue was purified by silica gel chromatography using 28% EtOAc to afford 31.7 mg white solid as product, yield 36.9%. *H NMR (CDC13, 400 MHz) δ = 4.69 (s, 2H) 5.30 (s, 2H) 6.92 (d, J= 8.7 Hz, 2H) 7.04 (d, J= 8.6 Hz, 2H) 7.08 (t, J= 8.7 Hz, 1H) 7.36 (t, J= 8.0 Hz, 2H) 7.53 (d, J= 8.7 Hz, 2H) 8.16 (s, 2H) -l-(3,6-dibromo-9H-carbazol-9-yl)-3-phenoxypropan-2-one O-benzyl oxime
To a solution of the product of Step 1 (17.7 mg, 0.0374 mmol, 1.0 equiv) in THF (400 μΐ,) were added 2,6-lutidine (4.4 μΙ_,, 0.0374 mmol, 1.0 equiv), O-benzylhydroxylamine hydrochloride (14.3 mg, 0.0898 mmol, 2.4 equiv) and 4A molecular sieves (15.8 mg). The mixture was stirred for 12 h until TLC indicated complete consumption of starting material. The reaction mixture was quenched with saturated aHC03 and extracted 3 times with dichloromethane. The combined organic extracts were dried with MgS04 and concentrated to give crude product. It was further purified by silica gel chromatography (5-10% EtO Ac/Hex) to afford 20.2 mg white solid as product, yield 93.4%. 'HNMR (CDC13, 400 MHz) δ = 4.68 (s, 2H) 5.00 (s, 2H) 5.14 (s, 2H) 6.72 (d, J= 8.2 Hz, 2H) 6.94 (t, J= 7.3 Hz, 1H) 7.47 - 7.16 (m, 11H) 8.06 (s, 2H)
Step 3. P7C3-S97: l-(3,6-dibromo-9H-carbazol-9-yl)-3-phenoxypropan-2-amine
Figure imgf000208_0003
To a stirred solution containing the product of Step 2 (5.8 mg, 0.01 mmol, 1 equiv) in anhydrous THF (0.2 mL) at 0°C was added borane-THF complex (1M in THF, 150 μϊ^, 0.15 mmol, 15.0 equiv). The mixture was stirred at rt overnight. The reaction mixture was quenched with methanol and concentrated under vacuum. 10% Pd-C (4.0 mg) and anhydrous methanol were added and the mixture was stirred at rt for 5 hours under a hydrogen balloon. The mixture was filtered through a plug of silica-gel and NaHC03 was further purified by silica gel chromatography (1-5% MeOH/0.2% Et3N/dichloromethane) to afford 4.1 mg white solid as product, yield 58.1%.^ NMR (CD3OD, 500 MHz) δ = 3.61 (td, J = 9.7, 4.0 Hz, 1H) 3.72 (dd, J = 9.6, 4.0 Hz, 1H) 3.89 (dd, J = 9.5, 4.2 Hz, 1H) 4.39 (dd, J = 14.9, 5.9 Hz, 1H) 4.59 (dd, J = 14.9, 8.2 Hz, 1H) 6.88 (d, J = 8.0 Hz, 2H) 6.94 (t, J = 7.4 Hz, 1H) 7.26 (t, J= 8.0 Hz, 2H) 7.46 (dd, J = 8.8, 1.7 Hz, 2H) 7.49 (d, J = 8.7 Hz, 2H) 8.21 (s, 2H). 13C NMR (CD3OD, 500 MHz) δ = 159.8, 141.0, 130.5, 130.2, 124.9, 124.2, 122.2, 115.5, 113.3, 112.2, 69.8, 51.2, 46.9 ESI (m/z): 472.7 (M + H+).
Example 130. P7C3-S98: 7V-Benzyl-2-(3-(3-(3,6-dibromo-9H-carbazol-9-yl)-2- hydroxypropylthio)-phenoxy)acetamide
Figure imgf000209_0001
Prepared analogously to P7C3-S66 from P7C3-S91. Chromatography (0-50% EtOAc in hexanes) provided 6.6 mg (23% yield) of an off-white solid. *H NMR (CDC13, 500 MHz) δ = 8.05 (d, J =1.5 Hz, 2H), 7.47 (dd, J = 1.5, 8.5 Hz, 2H), 7.30-7.23 (m, 5H), 7.18-7.15 (m, 2H), 6.92 (d, J =7.5 Hz, 1H), 6.81 (br s, 1H), 6.72-6.69 (m, 2H), 4.43 (s, 2H), 4.41^1.35 (m, 3H), 4.28 (dd, J =7.0, 15.0 Hz, 1H), 4.12 (m, 1H), 3.04 (dd, J =6.0, 14.0 Hz, 1H), 2.97 (dd, J =7.0, 14.0 Hz, 1H), 2.75 (br s, 1H). 13C NMR (CDC13, 125 MHz) δ = 169.3, 168.1, 157.7, 139.8, 137.7, 136.7, 130.6, 129.4, 129.0, 127.92, 127.90, 123.8, 123.4, 123.2, 115.5, 113.2, 112.7, 111.1, 69.3, 67.5, 48.1, 43.2, 38.7. ESI m/z: 696.6 ([M+HCOO] ~.
Example 131. P7C3-S99: 7V-Benzyl-2-(4-(3-(3,6-dibromo-9H-carbazol-9-yl)-2- hydroxypropylthio)-phenoxy)acetamide
Figure imgf000210_0001
Prepared analogously to P7C3-S66 from P7C3-S92. Chromatography (0-70% EtOAc in hexanes, followed by 0-10% EtOAC in dichloromethane) provided 8.7 mg (22% yield) of an off- white solid. !H NMR (CDC13, 500 MHz) δ = 8.10 (s, 2H), 7.50 (dd, J =1.5, 8.5 Hz, 2H), 7.32-7.26 (m, 8H), 6.79 (m, 3H), 4.51 (d, J =6.0 Hz, 2H), 4.48 (s, 2H), 4.40 (dd, J =4.5, 15.0 Hz, 1H), 4.29 (dd, J =7.0, 15.5 Hz, 1H), 4.07 (m, 1H), 2.99 (dd, J =5.0, 14.0 Hz, 1H), 2.85 (dd, J =7.5, 13.5 Hz, 1H), 2.54 (br s, 1H). 13C NMR (CDC13, 125 MHz) δ = 167.8, 157.0, 139.9, 133.7, 129.4, 129.0, 128.0, 127.9, 123.9, 123.8, 123.5, 115.8, 112.7, 111.1, 69.2, 67.6, 48.1, 43.2, 41.1. ESI m/z: 696.5 ([M+HCOO] ~ C3iH27Br2 205S requires 697.0). -S100
Figure imgf000210_0002
A solution of amine-terminated P7C3 analog (prepared via alkylation of the phenol analogously to P7C3-S66) (5.0 mg, 0.0087 mmol) in 300 μΐ DMF was added to 4,4-difluoro-5,7- dimethyl-4-bora-3a,4a-diaza-s-indacene-3 -propionic acid succinimidyl ester (Bodipy-OSu, 4.0 mg, 0.010 mmol), followed by the addition of diisopropylethyl amine (25 μΐ, 0.14 mmol). The reaction was stirred overnight in the absence of light. The reaction was diluted with EtOAc and washed several times with water and then brine. The organic layer was dried over Na2S04, filtered and condensed. The crude mixture was purified by preparative TLC in the absence of light in 100% EtOAc to give the desired product. Yield = 54 %. MS (ESI), m/z: calculated 848.18, found 848.7 (M+l)+ . Example 133. P7C3-S101: 3-(3-(3,6-Dibromo-9H-carbazol-9-yl)-2- fluoropropylsulfonyl)phenol
Figure imgf000211_0001
Prepared analogously to example 96 from P7C3-S91. Chromatography (0-50% EtOAc in hexanes) followed by HPLC purification (30% EtOAc/hexanes, Phenomenex Silica Luna, 10x250 mm, 3 mL/min) provided 13.9 mg (14% yield) of a pale yellow solid. JH NMR (i -acetone, 500 MHz) δ = 9.41 (br s, 1H), 8.38 (s, 2H), 7.60 (m, 4H), 7.45 (apparent t, J =8.0 Hz, 1H), 7.39 (d, J =8.0 Hz, 1H), 7.35 (br s, 1H), 7.16 (dd, J =2.0, 8.0 Hz, 1H), 5.42 (dm, J =47.0 Hz, 1H), 4.89-4.78 (m, 2H), 3.92 (d, J =5.5 Hz, 1H), 3.87 (m, 1H). 13C NMR (i¾-acetone, 125 MHz) δ = 159.0, 142.2, 140.8, 131.5, 130.1, 124.7, 124.3, 122.0, 119.8, 115.4, 113.2, 112.5 (d, J =1.75 Hz), 88.6 (d, J = 178.8 Hz), 58.5 (d, J =21.8 Hz), 47.1 (d, J =21.1 Hz). ESI m/z: 537.7 ([M-H]~.
Example 134. P7C3-S102: 7V-Benzyl-2-(3-(3-(3,6-dibromo-9H-carbazol-9-yl)-2- hydroxypropylsulfonyl)-phenoxy)acetamide
Figure imgf000211_0002
Prepared analogously to P7C3-S66 from P7C3-S93. Chromatography (0-50% acetone in hexanes) provided 10.1 mg (20% yield) of an off- white solid. *H NMR (i¾-acetone, 500 MHz, 45 °C) δ = 8.32 (s, 2H), 8.00 (br s, 1H), 7.57 (s, 3H), 7.55-7.52 (m, 2H), 7.32-7.30 (m, 1H), 7.29 (m, 2H), 7.22 (m, 1H), 4.65 (s, 2H), 4.63^1.60 (m, 2H), 4.53 (m, 1H), 4.47 (d, J =6.0 Hz, 1H), 3.61 (m, 2H), 3.32 (d, J =5.5 Hz, 1H). 13C NMR (i/6-acetone, 125 MHz) δ = 168.1, 159.0, 142.7, 141.0,
140.2, 131.5, 129.9, 129.2, 128.4, 127.8, 124.5, 124.1, 121.7, 121.0 115.2, 112.8, 112.7, 68.3, 66.5, 60.7, 49.6, 43.1. ESI m/z: 728.5 ([M+HCOO]-. Example 135. P7C3-S103: 4-(3-(3,6-Dibromo-9H-carbazol-9-yl)-2- fluoropropylsulfonyl)phenol
Figure imgf000212_0001
Prepared analogously to example 96 from P7C3-S94. HPLC purification (40%
EtOAc/hexanes, Phenomenex Silica Luna, 21.2x250 mm, 13.5 mL/min) provided 11.4 mg (16% yield) of an off-white solid. !H NMR (i¾-acetone, 500 MHz) δ = 8.39 (s, 2H), 7.76 (d, J =8.5 Hz, 2H), 7.60 (m, 4H), 7.00 (d, J =8.5 Hz, 2H), 5.39 (dm, J =51.5 Hz, 1H), 4.89^1.81 (m, 2H), 3.85 (m, 1H), 3.80 (d, J =5.5 Hz). 13C NMR (i¾-acetone, 125 MHz) δ = 163.5, 140.8 (2 C), 131.5(2C), 131.3, 130.1 (2C), 124.7 (2C), 124.3 (2C), 116.8 (2C), 113.2 (2C), 112.5 (d, J =1.9 Hz, 2C), 88.8 (d, J =178.5 Hz), 58.8 (d, J =21.6 Hz), 47.2 (d, J =21.3 Hz). ESI m/z: 537.6 ([M-H]~.
Example 136. P7C3-S104: 5-(5-(3-(3-(3,6-dibromo-9H-carbazol-9-yl)-2- hydroxypropylamino)phenoxy)pentylcarbamoyl)-2-(6-hydroxy-3-oxo-3H-xanthen-9-yl)benzoic acid
Figure imgf000212_0002
The title compound was synthesized analogously to P7C3-S100. MS (ESI), m/z: calculated 931.1, found 931.6 (M)+.
Example 137. P7C3-S105: l-(8-bromo-3,4-dihydro-lH-pyrido[4,3-b]indol-5(2H)-yl)-3- phenoxypropan-2-ol Step 1. tert-butyl 8-bromo-3,4-dihydro-lH-pyrido[4,3-b]indole-2(5H)-carboxylate
Figure imgf000213_0001
A solution of 8-bromo-2,3,4,5-tetrahydro-lH-pyrido[4,3-b]indole (813 mg, 3.2 mmol), dimethylaminopyridine (53.5 mg, 0.14 mmol) and di-tert butyl dicarbonate (1.46 g, 6.7 mmol) in methylene chloride (10 ml) and methanol (5.0 ml) with triethlamine (0.95 ml, 6.8 mmol) was stirred overnight. The reaction was condensed to a dark red semi-solid before dilution with methylene chloride. The organic layer was washed twice with water and brine, then dried over a2S04, filtered and condensed. The crude reaction product was purified in 50% EtOAc/hexanes to give 931.8 mg of product (82%). ¾ NMR (CDC13, 500 MHz) δ = 7.88 (bs, 1H), 7.58 (s, 1H), 7.22 (dd, 2H, J = 8.3, 28.1 Hz), 4.58 (s, 2H), 3.82 (s, 2H), 2.83 (s, 2H), 1.51 (s, 9H). (ESI (m/z): 350.8 (M+l)+.
Step 2: tert-butyl 8-bromo-5-(2-hydroxy-3-phenoxypropyl)-3,4-dihydro-lH-pyrido[4,3- b]indole-2(5H)-carboxylate
Figure imgf000213_0002
A solution of tert-butyl 8-bromo-3,4-dihydro-lH-pyrido[4,3-b]indole-2(5H)-carboxylate (449.7 mg, 1.28 mmol) and powdered potassium hydroxide (86.9 mg, 1.54 mmol) in acetone (4.0 ml) was stirred for 15 minutes before the addition of 2-(phenoxymethyl)oxirane (254mg, 1.69 mmol). After 1 h the reaction was condensed, diluted with EtOAc and washed twice with water and then brine. The organic layer was then dried over a2S04, filtered and condensed. The crude mixture was purified by silica gel chromatography (1% MeOH/CH2Cl2 +0.1%> Et3N). Yield = 21%. ESI (m/z): 546.6 (M+CHCOO ).
Step 3. P7C3-S105: l-(8-bromo-3,4-dihydro-lH-pyrido[4,3-b]indol-5(2H)-yl)-3- phenoxypropan-2-ol
Figure imgf000214_0001
Trifluoroactetic acid (31 ul, 0.40 mmol) was added to a solution of the product of Step 2 (20.1 mg, 0.04 mmol) in methylene chloride (0.3 ml). After 100 minutes the reaction mixture was condensed and purified by preparative TLC (10% MeOH/CH2Cl2). Yield= 96%. !H NMR (CDC13, 400 MHz) ) δ = 7.43 (s, 1H), 7.27 (s, 1H), 7.17 (dd, 2H, J= 8.5, 26.7 Hz), 6.97 (t, 1H, 4.58 J= 7.0 Hz), 6.86 (d, 2H, J= 6.9 Hz), 4.24 (dm, 5H), 4.06 (m, 1H), 3.88 (m, 2H), 3.34 (m, 2H), 3.16 (m, 1H), 2.96 (m, 1H). ESI (m/z): 400.8 (M+l)+.
Example 138. P7C3-S106: l-(8-bromo-2-cyclopropyl-3,4-dihydro-lH-pyrido[4,3-b]indol- 5(2H)-yl)-3-phenoxypropan-2-ol
Figure imgf000214_0002
Following a literature procedure (Barta, Thomas E. et al. WO 2003/091247 A2), ethoxycyclopropyl-oxy trimethylsilane (30 μΐ, 0.15 mmol) was added to a solution of P7C3-S105 (45.9 mg, 0.114 mmol) in methanol (1.0 ml) and acetic acid (70 μΐ, 1.2 mmol). The reaction was stirred for 10 minutes before the addition of sodium cyanoborohydride (37.0 mg, 0.59 mmol). The sealed vial was heated to reflux for 2.5 hours after which it was condensed, diluted with EtOAc, washed with 1 N NaOH solution, water and brine. The organic layer was then dried over a2S04, filtered and condensed. Purification by preparative TLC (5% MeOH/CH2Cl2) provided the product in 8% yield. ¾ NMR (CDC13, 400 MHz) ) δ 7.54 (s, 1H), 7.30 (t, 1H, J= 7.7 Hz), 7.18 (s, 2H), 7.00 (t, 1H, J= 7.3 Hz), 6.88 (d, 2H, J= 8.4 Hz), 4.29 (m, 2H), 4.15 (m, 1H), 3.92 (m, 4H), 3.00 (m, 4H), 1.98 (bs, 1H), 1.33 (m, 1H), 0.6 (m, 4H). 13C NMR (CDC13, 126 MHz) 8158.1, 135.7, 125.2, 129.8, 127.6, 123.9, 121.7, 120.5, 114.6, 112.7, 110.7, 69.6, 38.8, 50.8, 49.6, 45.7, 45.7, 38.0, 8.7, 6.4. ESI (m/z): calculated 440.11, found 440.9 (M+l)+.
Example 139. P7C3-S107: 8-bromo-5-(2-hydroxy-3-phenoxypropyl)-3,4-dihydro-lH- pyrido[4,3-b]indole-2(5H)-carbonitrile
Figure imgf000215_0001
Following a literature procedure (Kong, Chan Chun et al..; WO2004/52885) cyanogen bromide (5.0 M in CH3CN, 44 μΐ) was added to a solution of P7C3-S105 (88.1 mg, 0.22 mmol) and potassium carbonate (45.4 mg, 0.33 mmol) in methylene chloride (2.1 ml). The reaction was stirred at ambient temperature then at reflux overnight. The cooled reaction mixture was filtered through a small celite plug directly into a separatory funnel. The organic layer was washed with water and brine, dried over a2S04, filtered and condensed. Chromatography on silica gel (1%
MeOH/CH2Cl2) provided the purified product. Yield = 12% !H NMR (CDC13, 400 MHz) ) δ = 7.52 (s, 1H), 7.32 (t, 1H, J = 8.2 Hz), 7.25 (m, 2H), 7.02 (t, 1H, J = 7.3 Hz), 6.90 (d, 2H, J = 7.8 Hz), 4.46 (s, 2H), 4.34 (m, 2H), 4.19 (m, 1H), 4.00 (dd, 1H, J = 4.4, 9.5 Hz), 3.87 (dd, 1H, J = 4.8, 9.7 Hz), 3.55 (m, 2H), 3.01 (m, 2H) 2.49 (bs, 1H). 13C NMR (CDC13, 126 MHz) 8160.0, 125.4, 133.9, 129.9, 124.9, 120.5, 118.2, 113.3, 111.0, 104.8, 69.5, 68.8, 46.7, 46.3, 45.9, 22.1.
ESI (m/z): calculated 425.07, found 471.8(M+CH3COO)~.
Example 140. P7C3-S108: 8-bromo-5-(2-fluoro-3-phenoxypropyl)-2,3,4,5-tetrahydro-lH- pyrido [4,3-b] indole
Step 1. tert-butyl 8-bromo-5-(2-fluoro-3-phenoxypropyl)-3,4-dihydro-lH-pyrido[4,3- b]indole-2(5H)-carboxylate
Figure imgf000215_0002
Following Representative Procedure 4, the title compound was synthesized from the product of Step 2 in the synthesis of P7C3-S105. The crude reaction product used without purification.
Step 2. P7C3-S108: 8-bromo-5-(2-fluoro-3-phenoxypropyl)-2,3,4,5-tetrahydro-lH- pyrido[4,3-b]indole
Figure imgf000216_0001
Trifluoroactetic acid (15 μΐ, 0.20 mmol) was added to a solution of the product of Step 1(20.6 mg, 0.04 mmol) in methylene chloride (0.4 ml). A further 25 μΐ trifluoroactetic acid (0.32 mmol) was added after 3 hours. The reaction was diluted with methylene chloride, washed with twice with water and twice with 10% NaCl solution. The organic layer was dried over a2S04, filtered and condensed. The crude was purified by preparative TLC (7% MeOH/DCM +0.15% TEA) and isolated in quantitative yield.
!H NMR (CD3OD, 500 MHz) ) δ = 7.62 (m, 1H), 7.38 (d, 1H, J = 9.9 Hz), 7.25 (m, 3H), 6.92 (m, 2H), 5.06 (dm, 1H), 4.56 (m, 2H), 4.37 (s, 2H), 4.08-4.24 (m, 2H), 3.57 (m, 2H), 3.27 (m, 1H), 3.18 (m, 2H). 13C NMR (CD3OD, 126 ΜΗζ) δ = 159.7, 137.1, 134.5, 130.7, 126.0, 121.4, 115.6, 114.3, 112.6, 103.2, 91.7 (d, 1J=177.1 Hz), 68.0 (d, 2J =23.5 Hz), 47.9, 45.0 (d, 2J =22.9 Hz), 42.9, 41.9, 20.8, 9.2. MS (ESI), m/z: calculated 402.07, found 402.8 (M+l)+.
Example 141. P7C3-S109: l-(cyclohexylamino)-3-(3,6-dibromo-9H-carbazol-9-yl)propa
Figure imgf000216_0002
Cyclohexylamine (152 μΐ, 1.3 mmol) was added to a heterogeneous solution of 3,6- dibromo-9-(oxiran-2-ylmethyl)-9H-carbazole (102.5 mg, 0.27 mmol) in ethanol (2.6 ml). The reaction mixture was heated to reflux for 1 h and then condensed to yield pure desired product.
Yield= 97%. ¾ NMR (CDC13, 500 MHz) ) δ 8.13 (d, 2H, J= 1.5 Hz), 7.55 (dd, 2H, J= 1.8, 8.6 Hz), 7.36 (d, 2H, J= 8.8 Hz), 4.28 (d, 2H, J= 5.5 Hz), 4.01 (m, 1H), 2.81 (dd, 1H, J= 3.5, 12.0 Hz), 2.50 (m, 1H), 2.29 (m, 1H), 1.77 (d, 2H, J= 11.4 Hz), 1.63 (m, 3H), 0.84 - 1.28 (m, 6H). 13C NMR (CDC13, 500 MHz) δ140.0, 129.3, 123.7, 123.3, 112.4, 111.1, 69.2, 56.8, 50.0, 47.6, 34.1, 33.7, 26.0, 25.1 ESI (m/z): calculated 478.03, found 524.7 (M+CHCOO)". Example 142. P7C3-S110: (9-(2-hydroxy-3-(phenylthio)propyl)-9H-carbazole-3,6- dicarbonitrile
Figure imgf000217_0001
Prepared from P7C3-S7 5.3% yield analogously to Example 101. *H NMR (^-Acetone,
400 MHz) δ = 3.40 - 3.24 (m, 2H) 4.30 (tdd, J = 9.0, 6.1, 2.9 Hz, 1H) 4.66 (dd, J = 15.1, 8.7 Hz, 1H) 4.74 (d, J= 5.1 Hz, 1H) 4.82 (dd, J = 15.1, 3.0 Hz, 1H) 7.22 (t, J = 7.4 Hz, 1H) 7.33 (t, J = 7.6 Hz, 2H) 7.47 (dd, J= 8.3, 1.0 Hz, 2H) 7.92 - 7.77 (m, 4H) 8.73 (s, 2H) 13C NMR (^-Acetone, 500 MHz) δ = 143.8, 136.3, 130.1, 129.4, 129.2, 126.4, 126.0, 122.4, 1 19.8, 1 11.9, 103.2, 69.4, 48.7, 37.9 ESI (m/z): 427.8 (M + HCOO").
Example 143. P7C3-S111: 9-(2-hydroxy-3-phenoxypropyl)-9H-carbazole-3,6-dicarbonitrile
Figure imgf000217_0002
Prepared from P7C3-S39 in 16.5% yield, analogously to Example 101. ¾ NMR (d6- Acetone, 400 MHz) δ = 4.15 (d, J= 5.4 Hz, 2H) 4.56 (dt, J= 9.2, 5.1 Hz, 1H) 4.76 (dd, J= 15.1, 7.6 Hz, 1H) 4.86 (dd, J= 15.1, 3.9 Hz, 1H) 6.98 (dd, J= 16.4, 8.0 Hz, 3H) 7.31 (t, J= 8.0 Hz, 2H) 7.85 (dd, J= 8.6, 1.4 Hz, 2H) 7.96 (d, J= 8.6 Hz, 2H) 8.75 (s, 1H). 13C NMR (^-Acetone, 500 MHz) δ = 158.9, 143.9, 130.1, 129.7, 126.0, 122.5, 121.2, 1 19.7, 114.7, 1 12.0, 103.3, 69.7, 69.0, 46.9. ESI (m/z): 411.9 (M + HCOO").
Example 144a and 144b. P7C3-S113 and P7C3-S114: N-(3-(3,6-dibromo-9H-carbazol-9-yl)-2- fluoropropyl)-3-methoxyaniline (R- and S- enantiomers)
Step l: (2R N-(3-(3,6-dibromo-9H-carbazol-9-yl)-2-fluoropropyl)-3,3,3-trifluoro-2- methoxy-N-(3-methoxyphenyl)-2-phenylpropanamide
Figure imgf000218_0001
To a solution of P7C3-S10 (20.0 mg, 0.0395 mmol, 1.0 equiv) in dichloromethane (790 μΐ,) was added NaH (60% dispersion in mineral oil, 0.9 mg, 0.0395 mmol, 1.0 equiv). The mixture was stirred at room temperature for 15 minutes. (Sj- +^- -methoxy-a-trifluoromethyl-phenylacetyl chloride (14.8 μΐ,, 0.0790 mmol, 2.0 equiv) was added dropwise into the reaction mixture. 4- (dimethylamino)pyridine (DMAP, catalytic) was added to the above mixture after 1 hour. The mixture was stirred at room temperature overnight and then quenched by water. The crude reaction was diluted with ethyl acetate and washed with brine. The organic layer was dried with MgS04 and concentrated to give crude product. It was further purified by silica gel preparative HPLC (20-25% EtO Ac/Hex) to afford 10.1 mg white solid of the faster eluting diastereomer and 6.8 mg white as the slower eluting diasteromer, yield 59.2%. *H NMR (CDC13, 400 MHz) Faster eluting diasteromer: δ = 3.39 (s, 3H) 3.54 (s, 3H) 3.70 - 3.61 (m, 1H) 4.34 (dd, J= 30.0, 14.2 Hz, 1H) 4.61 - 4.44 (m, 2H) 5.24 (d, J= 50.4 Hz, 1H) 6.66 (d, J= 8.1 Hz, 1H) 7.40 - 7.23 (m, 10H) 7.54 (d, J = 8.6 Hz, 2H) 8.12 (s, 2H) Slower diastereomer: δ = 3.25 (s, 3H) 3.50 (s, 3H) 3.61 - 3.53 (m, 1H) 4.27 (dd, J= 32.4, 14.4 Hz, 1H) 4.61 - 4.40 (m, 2H) 5.32 (d, J= 50.3 Hz, 1H) 6.65 (d, J= 7.9 Hz, 1H) 7.42 - 7.20 (m, 10H) 7.56 (d, J= 8.6 Hz, 2H) 8.12 (s, 2H). P7C3-S113 (see below) was derived from the diastereomer that elutes faster on reverse phase HPLC (CI 8 column) and elutes slower by normal phase (silica gel) HPLC.
Step 2. P7C3-S1 13 and P7C3-S114: N-(3-(3,6-dibromo-9H-carbazol-9-yl)-2-fluoropropyl)- 3-methoxyaniline (absolute stereochemistry unassigned).
Figure imgf000218_0002
To dry and nitrogen flushed vials containing the separated products of Step 1 (4.0 mg, 0.00554 mmol, 1 equiv) was added anhydrous and degassed diethyl ether (206 \\L). The suspension was chilled to 0°C. Lithium aluminum hydride solution (1M in THF, 60 μί, 0.06 mmol, 3 equiv) was added to the above chilled suspension. The mixture was stirred in ice bath for 1 hour and further at room temperature for another 1 hour. Water (0.4 μΐ.,), 15% NaOH (0.4 μΚ) and water (1.2 μΐ,) were added successively to the mixture to quench the reaction. The crude was diluted with ethyl acetate and washed with brine. The organic layer was dried with MgS04 and concentrated. It was further purified by silica gel chromatography (30% EtOAC/Hex) to afford 1.5 mg white solid as product, yield 50-55%. P7C3-S113 and -SI 14 displayed identical LC/MS chromtograms and NMR spectra as P7C3-S10. P7C3-S113 was found to have >99% ee by HPLC (Chiralcel OD-H, 1 mL/min, 100% Acetonitrile tsll3 = 5.45 min, tsl l4 = 5.74 min). P7C3-S114 was found to have 79% ee.
It should be appreciated by one skilled in the art, as generally known, that different enantiomers may have different activity. One enantiomer can be more active than another enantiomer. Two enantiomers combined can have another level of activity that is different than either substantially pure enantiomer. Preliminary experiments suggest P7C3-S113 is more active than P7C3-S114 in pro-neurogenic and/or anti-apoptotic activities in an in vivo assay where 12 week old adult male C57/B16 mice were treated with 10 μΜ of either compound. It should be noted that such difference in enantiomer activity may also be observed in other compounds of the presently disclosed embodiments. It should also be noted that such activity may depend on assay mode, compound concentration, compound purity, compound stability, as well as other parameters. It is possible that when tested at a different concentration, a less active enantiomer may show increased activity, and vice versa.
Example 145. P7C3-S115: N-(2-(3,6-dibromo-9H-carbazol-9-yl)ethyl)aniline
Step 1. ethyl 2-(3,6-dibromo-9H-carbazol-9-yl)acetate
Figure imgf000219_0001
To a solution of 3,6-dibromocarbazole (325.0 mg, 1.0 mmol, 1 equiv) in anhydrous N,N- dimethylformamide (5 mL) was added crushed ΚΟΗ (67.3 mg, 1.2 mmol, 1.2 equiv). The mixture was stirred for 30 minutes. Ethyl bromoacetate (277.2 μΕ, 2.5 mmol, 2.5 equiv) was added into the mixture and it was stirred at room temperature overnight. The reaction crude was diluted with ethyl acetate (30 mL) and washed with 1M HQ and water. The organic layer was dried with MgS04 and the concentrated to afford 396.3 mg white solid as product (96.4%).
*H NMR (CDC13, 400 MHz) δ = 1.22 (t, J = 7.1 Hz, 3H) 4.20 (q, J = 1.1 Hz, 2H) 4.94 (s, 2H) 7.21 (d, J= 8.7 Hz, 2H) 7.57 (dd, J= 8.6, 1.1 Hz, 2H) 8.16 (s, 2H). ESI (m/z): 407.6 (M - H+). Step 2. 2-(3,6-dibromo-9H-carbazol-9-yl)acetic acid
Figure imgf000220_0001
To a solution of the product of Step 1 (41.1 mg, 0.1 mmol, 1 equiv) in THF-methanol-water (3 :2: 1, total 1.2 mL) was added LiOH (12.0 mg, 0.5 mmol, 5 equiv). The mixture was stirred at room temperature for 1 hour. The reaction was diluted with 1M HC1 (10 mL) and extracted with ethyl acetate (10 mL). The organic layer was washed with water (10 mL) twice and dried with MgS04 to afford 38.3 mg white solid as product, yield 99%. *H NMR (CDC13, 400 MHz) δ = 5.02 (s, 2H) 7.22 (d, J = 8.8 Hz, 2H) 7.58 (dd, J = 8.7, 1.2 Hz, 2H) 8.16 (d, J = 1.6 Hz, 2H). ESI (m/z): 379.6 (M - H+).
Step 3. 2-(3,6-dibromo-9H-carbazol-9-yl)-N-phenylacetamide
Figure imgf000220_0002
To a solution of the product of Step 3 (9.6 mg, 0.025 mmol, 1 equiv) in anhydrous dichloromethane (1.5 mL) was added N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC, 5.8 mg, 0.03 mmol, 1.2 equiv), 1 -hydroxybenzotriazole hydrate (HOBt, 4.1 mg, 0.03 mmol, 1.2 equiv) and 4-(dimethylamino)pyridine (DMAP, 1 crystal). After the mixture was stirred at rt for 20 min, aniline (3.4 μί, 0.0375 mmol, 1.5 equiv) was added. The resulting mixture was heated at 80 °C overnight. The reaction mixture was diluted with ethyl acetate (20 mL) and washed successively with 1M NaOH, 1M HC1 and water. The organic layer was dried with MgS04 and the concentrated to give a poorly soluble white solid, which was pure enough to be used in the next step. *H NMR (i^-DMSO, 400 MHz) δ = 5.29 (s, 2H) 7.06 (t, J= 7.3 Hz, 1H) 7.31 (t, J= 7.8 Hz, 2H) 7.66 - 7.55 (m, 6H) 8.50 (s, 2H) 10.55 (s, 1H). ESI (m/z): 454.6 (M - H+).
Step 4. P7C3-S1 15 . N-(2-(3,6-dibromo-9H-carbazol-9-yl)ethyl)aniline
Figure imgf000221_0001
To a dry and nitrogen flushed vial with the product of Step 3 (9.2 mg, 0.02 mmol, 1 equiv) was added anhydrous and degassed diethyl ether (750 μΐ,). The suspension was chilled to 0 °C. Lithium aluminum hydride (1M in THF, 60 μΐ,, 0.06 mmol, 3 equiv) was added and the mixture was stirred in ice bath for 1 hour and at rt overnight. Water (3.6 μΚ), 15% NaOH (3.6 μΚ) and water (10.8 μΚ) were added successively to the mixture to quench the reaction. The crude mixture was diluted with ethyl acetate and washed with brine. The organic layer was dried with MgS04 and concentrated to give crude product. It was further purified by silica gel chromatography (60% of dichloromethane/Hex) to afford 2.7 mg white solid as product, yield 28.8%. *H NMR (CDC13, 400 MHz) δ = 3.70 - 3.56 (m, 2H) 4.46 (t, J = 5.5 Hz, 2H) 6.55 (d, J = 7.8 Hz, 2H) 6.76 (t, J = 7.4 Hz, 1H) 7.16 (d, J= 8.8 Hz, 2H) 7.20 (t, J = 7.9 Hz, 2H) 7.50 (dd, J= 8.7, 1.9 Hz, 2H) 8.14 (d, J = 1.7 Hz, 2H). 13C MR (CDC13, 500 MHz) δ = 146.8, 139.5, 129.7, 129.4, 123.7, 123.5, 118.4, 113.1, 112.6, 110.5, 42.7, 42.5. ESI (m/z): 486.7 (M + HCOO"); 476.7 (M + CI").
Example 146. P7C3-S129: 2-(6-Amino-3-imino-3H-xanthen-9-yl)-4-(6-(5-(3-(3-(3,6-dibromo- 9H-carbazol-9-yl)-2-hydroxypropylamino)phenoxy)pentylamino)-6- oxohexylcarbamoyl)benzoic acid AND 2-(6-amino-3-imino-3H-xanthen-9-yl)-5-(6-(5-(3-(3- (3,6-dibromo-9H-carbazol-9-yl)-2-hydroxypropylamino)phenoxy)pentylamino)-6- oxohexylcarbamoyl)benzoic acid
Figure imgf000221_0002
Prepared analogously to P7C3-S100. HPLC purification (45% MeCN/H20 + 0.1% HC02H, Phenomenex C18 Luna, 10x250 mm, 3 mL/min) provided 1.7 mg (50% yield) as a mixture of isomers. ESI m/z: 1043.2 ([M+H]+,
Figure imgf000221_0003
requires 1043.2). Example 147. P7C3-S130:
Prepared analogously to example P7C3-S66 from P7C3-S94. Chromatography (1% MeOH in dichloromethane) then trituration with hexanes provided 1.2 mg (5.3% yield) of an off-white solid. !H NMR (CDC13, 500 MHz) d = 8.12 (s, 2H), 7.71 (d, J = 7.0 Hz, 2H), 7.54 (d, J = 9.0 Hz, 2H), 7.29 (m, 2H), 6.98 (d, J = 7.0 Hz, 2H), 4.62 (br s, 1H), 4.39 (s, 2H), 4.19 (s, 2H), 3.88 (s, 2H), 3.72 (m, 11H), 3.42 (s, 1H), 3.23 (d, J = 5.0 Hz, 1H), 3.16 (s, 1H), 2.49 (t, J = 14.0 Hz, 2H), 1.43 (s, 9H). ESI m/z: 841.6 ([M+HCOO]", Css^B^NOnS requires 842.1).
Example 148. P7C3-S131: l-(8-bromo-2-methyl-3,4-dihydro-lH-pyrido[4,3-6]indol-5(2H)- yl)-3-p
Figure imgf000222_0002
Powdered ΚΟΗ (13.6 mg, 0.24 mmol) was added to a solution of 8-bromo-2-methyl- 2,3,4,5-tetrahydro-lH-pyrido[4,3-£]indole (Boekelheide, V.; Ainsworth, C. J. Am. Chem. Soc. 1950, 72, 2134) (52.5 mg, 0.20 mmol) in DMF (1.0 mL) at ambient temperature and stirred for 30 min until dissolved. 2-(Phenoxymethyl)oxirane was added via syringe and the reaction was stirred at room temperature overnight. Upon completion, the solution was diluted with EtOAc. The mixture was washed with H20 and brine. The organic layer was dried over a2S04, filtered, and concentrated in vacuo. The crude residue was purified by flash column chromatography to afford the product as a white foam (35.3 mg, 43%). *H NMR (CDC13) δ = 7.49 (s, 1H), 7.27 (t, J= 7.9 Hz, 2H), 7.18-7.15 (m, 2H), 6.98 (t, J= 7.8 Hz, 1H), 6.81 (d, J= 8.0 Hz, 2H), 4.23 (dd, J= 14.6, 4.5 Hz, 1H), 4.15-4.08 (m, 1H), 4.03 (dd, J= 14.6, 7.1 Hz, 1H), 3.83-3.75 (m, 2H), 3.53-3.43 (m, 2H), 2.85-2.63 (m, 4H), 2.47 (s, 3H). 13C NMR (CDC13, 126 MHz) δ = 158.0, 135.4, 135.0, 123.6, 121.3, 114.4, 110.7, 107.7, 69.1, 68.9, 52.2, 51.3, 46.0, 45.6, 23.0. ESI mlz: 414.8 ([M + H , C2iH23Br 202 requires 415.0).
Additional compounds of the presently disclosed embodiments can also be synthesized similar schemes and methods as described above.
Pro-neurogenic Efficacy / Neuroprotection Activity of Various Compounds:
Compounds were tested in vivo for dose-responsive neurotrophic efficacy. The results are shown in Table 1.
Table 1. In Vivo Activity
Figure imgf000223_0001
Test Material (xlO 06) BrdU+ cells / mm3 SEM: (standard error of dentate gyrus the mean)
Example 12 21 .7 2.9
Example 13 28.5 2.6
Example 14 17.8 1.9
Example 15 15.1 0.9
Example 16 17.1 0.9
Example 17 20.8 0.3
Example 19 15 0.5
Example 20 23.2 0.48
Example 21 27.6 3.4
Example 22 27.3 1.8
Example 23 21 .5 2.2
Example 25 16.8 1.3
Example 26 15.6 1
Example 28 21 0.6
Example 29 17.6 2.3
Example 30 13.4 1.2
Example 31 14.7 1
Example 32 16 0.4
Example 33 14 0.2
Example 36 19 2.54
Example 39 23.4 1.1
Example 40 14.4 1.5
Example 41 16 1.1
Example 43 21 .3 2.6
Example 45 (P7C3) 30 1.42
Example 88a 16.2 1
Example 88b 30.6 3.66
Example 89 23.4 0.26
Example 90 33.3 3.3
Example 91 18.3 2.9
Example 92 29 1.6
Example 93 20.1 2.5
Figure imgf000225_0001
Test Material (xlO 06) BrdU+ cells / mm3 SEM: (standard error of dentate gyrus the mean)
Example 120
P7C3-S82 23.6 0.74
Example 121
P7C3-S83 24.9 0.8
Example 122
P7C3-S84 25.6 1.4
Example 123
P7C3-S91 16.3 1.1
Example 124
P7C3-S92 16.8 2
Example 126
P7C3-S94 16.9 1.4
Example 127
P7C3-S95 17.2 0.9
Example 128
P7C3-S96 17.4 0.9
Example 129
P7C3-S97 15.1 1.6
Example 130
P7C3-S98 13.8 1.8
Example 131
P7C3-S99 15.2 0.9
Example 132
P7C3-S100 24 0.6
Example 133
P7C3-S101 19.8 1.4
Example 134
P7C3-S102 17.7 1.6
Example 135
P7C3-S103 13.9 0.8
Example 137
P7C3-S105 21.6 1.4
Example 138
P7C3-S106 21.7 0.8
Example 139
P7C3-S107 14.6 0.5
Example 140
P7C3-S108 15.2 0.4
Example 141
P7C4-S109 18.8 1.7
Example 142
P7C3-S1 10 21 1.2
Example 143
24.5 2.2 P7C3-S1 1 1
Example 144a
P7C3-S1 13 31.5 2
Example 144b
P7C3-S1 14 15.2 1.3 Test Material (xlO 06) BrdU+ cells / mm3 SEM: (standard error of
dentate gyrus the mean)
Example 145
P7C3-S1 15 13.2 2.1
Example 148
P7C3-S131 17.9 1.5
Compounds were evaluated for pro-neurogenic efficacy / neuroprotection in our standard in vivo assay at 10 μΜ concentration in four 12 week old adult male C57/B16 mice.
The (+) (dextrorotatory) enantiomer of l-(3,6-Dibromo-9H-carbazol-9-yl)-3-(3- methoxyphenylamino)-propan-2-ol as described herein exhibited higher activity.
The (-) (levorotatory) enantiomer of l-(3,6-Dibromo-9H-carbazol-9-yl)-3-(3- methoxyphenylamino)-propan-2-ol as described herein exhibited lower activity.
Identification of pro-neurogenic or neuroprotective compounds:
In an effort to identify compounds that might stimulate the birth of new neurons, or protect newborn neurons from cell death, a library of 1,000 compounds was screened using an in vivo assay. In the initial screen, compounds were randomly pooled into groups of ten and administered intracerebroventricularly at a constant rate over seven days into the left lateral ventricle of living mice via Alzet osmotic mini-pumps. Compounds were administered at a concentration of 10μΜ for each molecule, making a total solute concentration of ΙΟΟμΜ. After seven days of infusion at a constant rate of 0.5μΕ/1κππ-, a total of 84μΕ of volume will have left the pump (0.00084μΜο1ε8) and entered the cerebrospinal fluid. The average volume of a brain from a 12 week old male, C57/B6 mouse in our study is 500mm3. The maximal amount of drug was estimated that could potentially be present in the brain, taking the extreme and unlikely scenario of 100% absorbance of the drug into brain tissue and 0% clearance throughout the seven day infusion period. Under these conditions, at the end of one week of infusion each compound would be present at l ^Molar concentration. Since the actual amount of chemical compound in the brain is likely to be only a fraction of this predicted level, it is reasonable to estimate that compounds were administered at mid to low-nanomolar concentrations.
During compound infusion, animals were intraperitoneally (IP) injected daily with the thymidine analog, bromodeoxyuridine (BrdU), as a means of scoring the birth and survival of proliferating neural precursor cells in the hippocampus. Because both social interaction and voluntary exercise are known to stimulate hippocampal neurogenesis, mice were housed individually without access to running wheels throughout the screening period. Following the week-long period of compound administration, animals were perfused and sacrificed. Dissected brain tissue was fixed, embedded, sectioned, stained with antibodies to BrdU, and evaluated by light microcopy as a means of quantifying neurogenesis and survival of newborn neural precursor cells localized to the subgranular layer of the dentate gyrus on the brain hemisphere contralateral to the side of mini-pump cannulation. Every fifth section throughout the entire rostral -caudal extent of the hippocampus was analyzed, and the total number of BrdU+ cells was normalized against the measured volume of the dentate gyrus. Because both increased proliferation and survival of newborn neurons are important screening parameters, the screen was conducted over seven days in order to cast a wide net to detect molecules that might augment either process. The choice of parameters for the screen was based on pulse-chase experiments with a single injection of BrdU, under identical conditions to those used in our screen, which revealed that 40% of newborn cells in the dentate gyrus die within the first five days of their birth (Figure 1). Intracranial infusions of either fibroblast growth factor 2 (FGF-2) or artificial cerebral spinal fluid (aCSF) vehicle via the same, week-long protocol were employed as positive and negative controls. There was no difference in the number of BrdU-labeled cells in the dentate gyrus between mice subjected to surgical pump implantation and infusion with vehicle, and mice having had no surgery (Figure 2). This confirmed the validity of the in vivo approach to assess the ability of intracerebroventricularly infused compounds to enhance hippocampal neurogenesis in the contralateral hemisphere.
Considered to be important is that stimulation of neurogenesis triggered by any compound be localized to the exact region of the brain known to produce new neurons at an enhanced level in response to healthy activities such as wheel running, access to an enriched environment, or access to social interaction. For this reason attention was focused solely on compound pools that stimulated BrdU incorporation only in the subgranular zone of the dentate gyrus. Prominent nonspecific incorporation of BrdU in ectopic regions, such as CA3, CA1, cortex, or striatum, was presumed to reflect pathological inflammation, as proliferating cells incorporate BrdU in DNA synthesis, or to indicate other forms of toxicity, as cells also incorporate BrdU during DNA repair. Any compound pools yielding ectopic BrdU incorporation were eliminated from the screen. For an example, see Figure 3.
Each of the 100 pools was tested on two independent mice. As shown in Figure 4, ten of the 100 test pools were observed to enhance dentate gyrus-specific neurogenesis to an extent roughly equivalent to FGF-2. Each pool that scored positive in the initial two test animals was subsequently re-evaluated in two additional mice, and all ten pools were found to exert their pro- neurogenic effect with statistical significance (Figure 5). In order to identify single, pro- neurogenic compounds, positive pools were broken down into their ten component molecules, each of which was infused individually at two concentrations (10μΜ and ΙΟΟμΜ) in two mice per concentration. Figure 6A shows the results of break-down assays on pool #7, wherein it was discovered that neurogenesis was selectively stimulated by one of the constituent chemicals of the pool (compound #3), chemicals in the pool demonstrating no effect. This molecule was designated as Example 45 Compound or P7C3. In breaking down the ten positive pools, eight pools yielded a single pro-neurogenic compound (Figure 6B). To ensure that the pro-proliferative or
neuroprotective effect on neural stem cells was not an artifact of storage conditions in the
UTSWMC chemical compound library, re-supplied compounds were verified to by 99% pure by mass spectrometry, evaluated in 4 mice each at 10 μΜ concentration, and shown to retain either pro-proliferative or neuroprotective properties in neural stem cells (Figure 6C).
Pharmacokinetic analysis of Example 45 Compound in plasma and whole brain tissue was undertaken after single IV, IP and oral gavage administrations. Example 45 Compound was noted to be orally bioavailable, readily able to cross the blood-brain barrier, and endowed with a plasma terminal half life of 6.7 hours after IP delivery. These favorable pharmacological properties facilitated a dose response experiment wherein daily oral administration of Example 45 Compound to adult mice was monitored for both brain levels of the chemical and pro-neurogenic efficacy (Figure 7). Maximal, pro-neurogenic efficacy was observed at oral doses of 5mg/kg and above, and graded reductions in efficacy were observed at doses of 2.5 and lmg/kg. Liquid
chromatography-mass spectrometry analysis of the brain levels of Example 45 Compound in the dose ranges of 1, 2.5 and 5mg/kg revealed corresponding compound concentrations of 213 nM (lOlng/g brain tissue) , 1.13 μΜ (534ng/g brain tissue) and 1.35 μΜ (640ng/g brain tissue) five hours after dosing.
Enantiomer Selective Activity of Example 45 Compound Derivatives:
In order to further study Example 45 Compound, an in vivo structure activity relationship (SAR) study was conducted using 37 chemical derivatives of the compound for pro-neurogenic activity via direct administration into the brain of adult mice via Alzet minipumps. Compounds were administered for one week at lOuM into 4 mice per compound, along with daily IP injections of BrdU. Following compound administration, animals were perfused, sacrificed and subjected to sectioning, staining and light microscopy in order to monitor hippocampal neurogenesis localized to the subgranular layer of the dentate gyrus. Roughly 10% of the variant compounds retained pro- neurogenic activity indistinguishable from the parent compound. An approximately equal number of compounds yielded slightly diminished activity, yet the majority of variants were of significantly diminished activity (Figure 8). For example, a variant of Example 45 Compound having a methoxy substitution on the aniline ring (Example 62 Compound) was re-tested for pro-neurogenic activity via direct administration into the brain of adult mice via Alzet minipumps. The compound was administered for one week at ΙΟμΜ into 4 mice which were injected daily with BrdU.
Following compound administration, animals were perfused, sacrificed and subjected to sectioning, staining and light microscopy in order to monitor hippocampal neurogenesis localized to the subgranular layer of the dentate gyrus. The methoxy derivative exhibited activity comparable to Example 45 Compound. Subsequently, the (+) and (-) enantiomers of Example 62 Compound were prepared (Figure 9A). The two enantiomers were evaluated in the in vivo neurogenesis assay. The (+)-enantiomer of Example 62 Compound retained potent pro-neurogenic activity, and the (-) enantiomer displayed diminished activity (Figure 9B). Other derivatives have also been resynthesized and retested, as described above.
Example 45 Compound Enhances the Survival of Newborn Neurons:
The nature of the cells produced in the subgranular zone of the dentate gyrus was investigated when Example 45 Compound was administered as follows. Animals were exposed to oral administration of Example 45 Compound for 30 days. Brain tissue was then prepared for immunohistochemical staining with an antibody to doublecortin (DCX), a microtubule-associated protein that serves as a marker of neurogenesis in the dentate gyrus by virtue of transient expression in newly formed neurons, but not glial cells, between the timing of their birth and final maturation (Brown et al., 2003). As shown in Figure 10A, the relative abundance of doublecortin-positive neurons increased dramatically as a function of exposure to prolonged administration of Example 45 Compound. Although this observation does not rule out the possibility that the compound might also enhance the formation of glial cells, it clearly shows that Example 45 Compound enhanced the formation of cells destined to become neurons.
Example 45 Compound-mediated neurogenesis was next investigated to see whether it was attributable to increased cell proliferation or protection of newborn cells from cell death during the time between their birth and eventual incorporation into the granular layer of the dentate gyrus. This was accomplished by comparing the ability of Example 45 Compound to enhance either short- or long-term increases in the incorporation of BrdU in the dentate gyrus (Figure 10B). Animals exposed to orally-delivered Example 45 Compound or vehicle for 30 days were administered a single pulse of BrdU via IP injection. Short-term effects on neuron birth were monitored by sacrificing animals one hour post-BrdU injection, followed by fixation of the tissue, sectioning and immunohistochemical detection of BrdU incorporation into cells localized in the subgranular layer of the dentate gyrus. Example 45 Compound administration did not lead to an elevation in the level of BrdU-positive cells relative to vehicle in this short-term assay. At one day after BrdU administration both groups still showed no statistically significant differences in number of BrdU+ cells in the dentate gyrus. By contrast, at the 5 day time point, by which time 40% of newborn cells in our assay normally die (Figure 1), animals that received Example 45 Compound showed a statistically significant, 25% increase in BrdU+ cells compared to the vehicle-only control group. This difference between groups progressed with time such that mice that received a daily oral dose of Example 45 Compound for 30 days starting 24 hours after the pulse treatment of BrdU exhibited a 5-fold increase in the abundance of BrdU-positive cells in the dentate gyrus relative to vehicle- only controls. Notably, in this longer-term trial, BrdU-positive cells were observed not only along the subgranular layer of the dentate gyrus where new neurons are known to be born, but also within the granular layer itself. It is hypothesized that these cells represent mature neurons that have migrated into the granular layer, completed the differentiation process, and incorporated themselves into the dentate gyrus as properly wired neurons. Observations supportive of this interpretation will be presented in a subsequent section of this document. In summary, these experiments give evidence that Example 45 Compound enhances the formation of neurons in the mature
hippocampus, and that its mode of action would appear to take place at some point subsequent to their birth.
It should be appreciated by one of ordinary skill in the art that the above described cell proliferation tests can also be used to test other compounds of presently disclosed embodiments.
Example 45 Compound Normalizes Apoptosis and Ameliorates Morphological and
Electrophysiological Deficits in the Dentate Gyrus of NPAS3-Deficient Mice:
Mice lacking both copies of the gene encoding neuronal PAS domain protein 3 (NPAS3) suffer a profound impairment in adult neurogenesis (Pieper et al., Proc. Natl. Acad. Sci. USA 2005, 102, 14052-14057). By evaluating BrdU incorporation in a short-term assay of neurogenesis by sacrificing animals 1 hours after BrdU pulse, it was observed that NPAS3 -deficient animals have no detectable deficit in the birth of neurons in the subgranular layer of the dentate gyrus (Figure 11). This is in contrast to our earlier observations of profoundly diminished BrdU labeling in the dentate gyrus of NPAS3 -deficient animals when BrdU is administered for a longer period of time (12 days) (Pieper et al., Proc. Natl. Acad. Sci. USA 2005, 102, 14052-14057). Knowing that the NPAS3 transcription factor is required for proper expression of the fibroblast growth factor receptor 1 (FGFR1) in the hippocampus (Pieper et al., Proc. Natl. Acad. Sci. USA 2005, 102, 14052-14057), it is possible that impediments in growth factor signaling might impair the trophic environment critical for the survival of newborn neurons in the dentate gyrus. As an initial test of this hypothesis, brain tissue prepared from NPAS3 -deficient animals was compared with that of wild type littermates for the presence of cleaved caspase 3 (CCSP3)-positive cells in the subgranular layer of the dentate gyrus. A statistically significant, 2-fold increase in CCSP3 -positive (apoptotic) cells was observed in the dentate gyrus of NPAS3 -deficient animals (Figure 11). This enhanced rate of programmed cell death is likely to account, at least in part, for the nearly complete elimination of adult neurogenesis in mice lacking the NPAS3 transcription factor (Pieper et al., Proc. Natl. Acad. Sci. USA 2005, 102, 14052-14057).
In addition to this quantitative deficit in adult neurogenesis, abnormalities have been observed in both the morphology and electrophysiology of granular neurons of the dentate gyrus of NPAS3 -deficient animals. Relative to wild type animals, Golgi-Cox staining revealed severe attenuation in dendritic branching and spine density of dentate gyrus granular neurons of NPAS3- deficient animals (Figure 12A and 12B). By contrast, no genotype-dependent differences in these measures were observed in pyramidal cells of the CA1 region of the hippocampus. Equivalently specific deficits were observed by electrophysiologic recordings of NPAS3 -deficient animals compared with wild type littermates (Figure 13A and 13B). Whole field recordings of excitatory postsynaptic potentials (fEPSP) revealed significant deficits in NPAS3 -deficient animals, relative to wild type littermates. In the dentate gyrus, stimulating and recording electrodes were positioned in the outer molecular layer, which is innervated by axons of the perforant pathway originating from the entorhinal cortex. In the CA1 region of the hippocampus, stimulation and recording electrodes were positioned in the stratum radiatum, which is innervated by the Schaffer collateral axons of CA3 pyramidal cells. Stimulus intensity was increased in 5 μΑ increments, the slope of the decreasing part of field potentials was measured, and fEPSP was quantified relative to the amplitude of the fiber volley, which represents firing of action potentials in pre-synaptic axons. This analysis revealed aberrant hyper-excitability of synaptic transmission in npas3~A mice both in the outer molecular layer of the dentate gyrus and in the CA1 region (Figure 13A and 13B).
Armed with these genotype- and region-specific deficits in both neuron morphology and electrophysiological activity, whether prolonged administration of Example 45 Compound might favorably repair either deficit in NPAS3 -deficient animals was tested. Before embarking on this effort, it was first confirmed that Example 45 Compound was capable of enhancing hippocampal neurogenesis in NPAS3 -deficient mice, by demonstrating that Example 45 Compound enhances both BrdU incorporation as well as expression of doublecortin in newborn neurons in the dentate gyrus of npas3~A mice (Figure 14). Knowing that formation of the dentate gyrus initiates in the late pre-natal mouse embryo around embryonic day 14 (Stanfield and Cowan, 1988, The development of the hippocampal region. In Cerebral Cortex, E.G. Jones and A. Peters, eds. (New York: Plenum Press), pp. 91-131), animals were exposed to Example 45 Compound for as extended a period of time as possible in order to give the compound the best possible chance for exhibiting favorable effects. Following oral gavage of pregnant female mice, 14 day embryos were recovered, dissected and processed by acetonitrile:water extraction so that Example 45 Compound levels could be measured in the embryonic brain. Daily administration of 20mg/kg of Example 45 Compound to pregnant females yielded appreciable levels of the compound in the brain tissue of developing embryos. It was similarly observed that oral administration of the compound to lactating females led to delivery of Example 45 Compound to the brain tissue of weanling pups. In both cases, LC/MS-based quantitation of Example 45 Compound revealed levels of compound accumulation at or above the 1.35μΜ limit required to support adult neurogenesis (Figure 7). Finally, it was observed that daily IP administration of Example 45 Compound to weaned pups at 20 mg/kg was sufficient to yield brain levels of Example 45 Compound at or above the level required to enhance adult neurogenesis.
Female mice heterozygous at the NPAS3 locus were mated to heterozygous males. Two weeks post-mating, females were given a daily oral gavage of either 20mg/kg of Example 45 Compound or vehicle-only formula. Dosing was continued throughout the last trimester of pregnancy, as well as the two week post-natal period of lactation. Following weaning, pups were given a daily IP dose of either 20 mg/kg Example 45 Compound or vehicle control. At about 7 weeks of age, mice were switched to oral gavage delivery of the same dose of Example 45
Compound. When mice were 3 months of age they were sacrificed and brain tissue was dissected and subjected to either Golgi-Cox staining or electrophysiological recording. As shown in Figure 15, prolonged exposure to Example 45 Compound robustly repaired morphological deficits in the dendritic branching of granular neurons of the dentate gyrus in NPAS3 -deficient mice. Moreover, as shown in Figure 13A, the electrophysiological deficit in the dentate gyrus of NPAS3 -deficient mice was also corrected following prolonged exposure of mice to Example 45 Compound. The corresponding electrophysiological deficit in CA1 region of the hippocampus, however, was not affected (Figure 13B), underscoring the specificity of Example 45 Compound to improving functioning of the dentate gyrus in this animal model.
It is also notable that, relative to vehicle-only controls, administration of Example 45 Compound did not affect any aspect of the health of mothers, embryos, weanlings or young adult mice. Gross histology of brain tissue was normal in both compound- and vehicle-treated animals, and there was no evidence of neuronal cell loss or degenerative changes (cytoplasmic eosinophilia, vacuolization or nuclear pyknosis). The only morphological change, other than normalization of dendritic arborization of granular neurons of the dentate gyrus, was a compound-dependent increase in the thickness of the granular layer of the dentate gyrus itself (Figure 16). The thickness of the granular layer of the dentate gyrus is roughly 40% less in NPAS3 -deficient animals than wild type littermates. Prolonged administration of Example 45 Compound through late embryonic development, early post-natal development, and two months post-weaning significantly corrected this deficit without affecting the thickness of other hippocampal layers in NPAS3 -deficient mice (Figure 16).
Recognizing that the reduced thickness of the granular layer of the dentate gyrus in NPAS3- deficient animals could be attributed to elevated levels of apoptosis of newborn hippocampal neural precursor cells, the effect of Example 45 Compound treatment on apoptosis in the hippocampus of NPAS3 -deficient animals was examined through immunohistochemical staining of cleaved caspase 3 (CCSP3). As shown in Figure 17, 12 days of treatment with orally delivered Example 45 Compound (20 mg/kg) to adult NPAS3 -deficient animals significantly reduced CCSP3 staining in the dentate gyrus, whereas vehicle-treatment had not effect. It is thereby proposed that Example 45 Compound facilitated repair of the granular layer of the dentate gyrus in NPAS3 -deficient mice by ameliorating a genotype-specific exacerbation of programmed cell death.
It should be appreciated by one of ordinary skill in the art that the above described apoptosis tests can also be used to test other compounds of presently disclosed embodiments.
Example 45 Compound Protects Mitochondrial Integrity:
Extensive evidence pioneered by the laboratory of Xiaodong Wang has shown that an intrinsic pathway leading to programmed cell death emanates from mitochondria (Liu et al., Cell 1996, 86, 147-157; Yang et al., Science 1997, 275, 1129-1132). With the help of the Wang lab, assays were established to test whether Example 45 Compound might protect mitochondria from calcium-induced dissolution (Distelmaier et al., Cytometry A 2008, 73, 129-138).
Tetramethylrhodamine methyl ester (TMRM) is a cell-permeant, cationic red-orange fluorescent dye that is readily sequestered by active mitochondria. When loaded with TMRM dye, vehicle- only treated cells released the dye within 15 minutes of exposure to the calcium ionophore A23187. By contrast, dye release was prevented in cells exposed to as little as lOng of Example 45
Compound (Figure 18A). As with in vivo neurogenesis assay, as well as the in vitro protection from AP(25-35)-mediated toxicity of cultured cortical neurons, preservation of mitochondrial membrane potential in this assay was observed only with the (+) enantiomer of Example 62 Compound (Figure 18B).
It should be appreciated by one of ordinary skill in the art that the above described mitochondrial integrity tests can also be used to test other compounds of presently disclosed embodiments. Comparison of Example 45 Compound and Dimebon:
A chemical compound sharing structural similarity to Example 45 Compound is 2,3,4,5- Tetrahydro-2,8-dimethyl-5-(2-(6-methyl-3-pyridyl)ethyl)-lH-pyrido(4,3-b)indole (Figure 19A). An anti-histamine, trade named Dimebon, was anecdotally noticed over the decades to ameliorate symptoms of dementia (O'Brien, Lancet Neurol. 2008, 7, 768-769; Burns and Jacoby, Lancet 2008, 372, 179-180). More recently, an American biotechnology company designated Medivation initiated clinical trials to formally test whether Dimebon might improve the symptoms of patients suffering from Alzheimer's disease. The results of FDA-sponsored, phase 2 clinical trials in Alzheimer's disease were recently published, reporting favorable response rates (Doody et al., Lancet 2008, 372, 207-215). Example 45 Compound and Dimebon were compared in three functional assays. The in vivo test for effects on hippocampal neurogenesis revealed activity for both compounds, with Example 45 Compound exhibiting between 10- and 30-fold higher level of potency and a ceiling of efficacy roughly 40% higher than the anti-histamine drug (Figure 19B). Dimebon has been implicated in protecting mitochondria (Bachurin et al., Ann. NY Acad. Sci. 2001, 939, 425-435; Bachurin et al., Ann. NY Acad. Sci. 2003, 993, 334-344, discussion 345- 349). Therefore Dimebon was compared with Example 45 Compound in the calcium-induced mitochondrial dissolution assay. Both compounds were observed to be active, and it was again observed that the relative potency of Example 45 Compound was superior to Dimebon (Figure 19C). Protection of mitochondrial membrane permeability was lost for Example 45 Compound between the 10 and InM doses, whereas that of Dimebon was lost between 10 and ΙμΜ.
Example 45 Compound and Dimebon were tested for binding to the HI histamine receptor. While Dimebon displayed high affinity for this receptor (IC50 < 100 nM), both enantiomers of Example 45 Compound display low HI affinity (IC50 > 10 μΜ).
It should be appreciated by one of ordinary skill in the art that the above described binding activity tests can also be used to test other compounds of presently disclosed embodiments.
Effect of Example 45 Compound on Aged Rats
Next, aged Fisher rats were used as a means of performing behavioral tests capable of assessing the potential benefits of Example 45 Compound on hippocampus-dependent learning. It is well established that normal rodent aging is associated with attenuation of hippocampal neurogenesis (Kuhn et al., J. Neurosci. 1996, 16, 2027-2033; Driscoll et al., Neuroscience 2006, 139, 1173-1185). Reduced neurogenesis in aged rats is likely related to increased neuronal apoptosis in the aged rat brain (Martin et al., J. Biol. Chem. 2002, 277, 34239-34246; Kim et al., Exp. Gerontol. 2010, 45, 357-365). These changes have been hypothesized to contribute to cognitive decline as a function of terminal aging.
It was first evaluated whether Example 45 Compound would enhance hippocampal neurogenesis in aged rats as it does in adult mice. Rats were injected with a daily, IP dose of either 10 mg/kg of Example 45 Compound or vehicle, coinjected with a daily dose of BrdU, and then sacrificed after 7 days for immunohistochemistry. As shown in Figure 20A, compound-treated animals revealed a 500% increase in BrdU labeling in the dentate gyrus relative to vehicle-treated controls. Immunohistochemical staining with antibodies to doublecortin likewise revealed a robust, compound-specific enrichment in this marker of newborn neurons. Having observed proneurogenic efficacy of Example 45 Compound in this short term assay, it was then tested whether prolonged administration of Example 45 Compound might ameliorate age-related decline in cognition by subjecting 18-month-old rats to daily administration of either i 0 mg/kg of Example 45 Compound or vehicle only for 2 months. Animals of both groups were further subjected to weekly IP administration of BrdU (50 mg/kg) for later immunohistochemical measurements of hippocampal neurogenesis. As a control, both Example 45 Compound- and vehicle-treated groups were confirmed to display equal ability to physically participate in the task, and learn the task, as shown by decreased latency times to find the hidden platform over the 5 day training period, both before and after 2 months of treatment (Figure 20B). Moreover, neither swim speed (Figure 20C) nor locomotor activity (Figure 20D) varied with age or treatment paradigm.
After 2 months of compound or vehicle administration, cognitive ability was assessed blind to treatment group by removing the goal platform. Animals of the Example 45 Compound-treated group retained a statistically significant improvement in ability to navigate to the region of the missing platform, as evidenced by performance in the probe test. As shown in Figure 21 A, when the platform was removed from the maze, rats treated with Example 45 Compound crossed the precise location previously containing the platform significantly more often than vehicle-treated rats. Furthermore, Example 45 Compound-treated rats spent a higher percentage of time in the general goal area, defined as the quadrant previously containing the platform, than vehicle-treated rats (35.5% ^2.2% for Example 45 Compound treated, 28.1% ± 2.6% for vehicle treated, Student's t Test, p < 0.02).
After behavioral testing, animals were sacrificed for immunohistochemical detection of BrdU and CCSP3. As shown in Figure 21B, the dentate gyrus of rats exposed to Example 45 Compound showed a 3 -fold higher level of BrdU-positive neurons than that of the vehicle group. Moreover, Example 45 Compound-treated animals showed a statistically significant reduction in the number of CCSP3 -positive cells relative to vehicle controls (Figure 21C). Unexpectedly, administration of Example 45 Compound helped rats maintain stable body weight with aging, in contrast to vehicle -treated rats, whose weight declined steadily with age (Figure 21D). Example 45 Compound-mediated effects on body weight were independent of food intake (Figure 20E), and treatment of aged rats with Example 45 Compound had no effect on postfasting blood glucose levels (Figure 20E). Next it was tested whether Example 45 Compound-mediated preservation of body weight in aged rats operates via central or peripheral modes of action.
It should be appreciated by one of ordinary skill in the art that the above described in vivo tests in rats or other animal models can also be used to test other compounds of presently disclosed embodiments.
Example 45 Compound Augments Hypothalamic Neurogenesis
Positioned immediately below the thalamus and forming the floor and lower lateral walls of the third ventricle, the hypothalamus consists of multiple groups of cells that regulate the autonomic nervous system and also control motivational behaviors via extensive neuronal connections to the pituitary gland, thalamus, midbrain and cerebral cortex. These functions include water balance, biological rhythms, feeding and drinking drive, sexual activity, pituitary gland function and temperature regulation. Neural stem cells in the adult brain reside in the wall of the third ventricle and proliferate in response to various stimuli, and formation of new neurons in the hypothalamus has also been observed in the hypothalamic parenchyma. Administration of trophic factors such as brain-derived neurotrophic factor and ciliary neurotrophic factor enhances neurogenesis in the rodent hypothalamus. Furthermore, newborn neurons in the adult
hypothalamus integrate into existing hypothalamic neural circuits and express neuronal markers such as POMC (phosphorylated signal transducer of activator of transcription), neuropeptide Y, ocytocin and vasopressin. During hypothalamic development, POMC-expressing progenitor cells differentiate into two populations of cells with antagonistic roles, expressing either POMC or neuropeptide Y, that exert opposite effects in regulating energy balance. It is thus proposed that differential regulation of postnatally-generated neurons in the hypothalamus might form the basis of developing new treatments to regulate food intake behavior. This hypothesis is supported by observations that acute ablation of new hypothalamic neurons leads to severe anorexia and weight loss.
It was evaluated whether P7C3 might augment hypothalamic neurogenesis by administering either vehicle or P7C3 (10 mg/kg twice daily, i.p.) to nine week old male C57BL/6 mice, starting two days before implantation of 7 day Alzet osmotic minipumps (model 1007d) loaded with BrdU (lmg/kg). Pumps were connected to a cannula that delivered BrdU at a constant rate into the left lateral ventricle for the seven day period, during which time animals continued to receive either vehicle or P7C3. Pumps were surgically removed at the conclusion of their 7 day operating period, and mice were allowed to survive for 4 more weeks, during which time they continued to receive either vehicle or P7C3. At the end of the 4 week period, mice were deeply anesthetized with intraperitoneal (i.p.) injection of mouse anesthetic cocktail and transcardially perfused with 4% paraformaldehyde (PFA) in phosphate buffered saline (pH 7.4). Brains were then dissected and post-fixed overnight at 4 degrees Celsius in 4% PFA, and cryoprotected in 30 % sucrose in PBS. Fixed brains were embedded in O.C.T and cut at 20 micrometer thickness with a cryostat. Every third section was immunohistochemically stained for BrdU (Accurate, rat anti-Brdu ,1 :400) per our standard procedures. Anti-rat Dylight 596 was used to visualize BrdU incorporation. As can be seen from Figure 27, treatment with P7C3 markedly enhances hypothalamic neurogenesis in the rodent brain, with a significantly increased amount of BrdU positive staining.
It should be appreciated by one of ordinary skill in the art that the above described hypothalamic neurogenesis tests can also be used to test other compounds of presently disclosed embodiments.
Because P7C3 (and its derivatives and analogs) can enhance hypothalamic neurogenesis, compounds of the presently disclosed embodiments can be useful for regulating hypothalamic functions such as water balance, biological rhythms, feeding and drinking drive, sexual activity, pituitary gland function and temperature regulation. For example, given P7C3 's role in maintaining stable body weight in aging rats, compounds of the presently disclosed embodiments can provide therapeutic benefits to patients experiencing physiological weight loss for various reasons, such as normal aging, radiation treatment, chemotherapy, anorexia, cachexia, diabetes, stress, substance abuse, dementia, stroke, cancer, infection, as well as other diseases and/or conditions.
Example 45 Compound Protects Mitochondria
Since P7C3 ameliorates the death of newborn neurons in the dentate gyrus in living mice, it is possible that its function might relate to mitochondrial integrity. Assays were established to test whether P7C3 might protect cultured U20S cells from calcium-induced mitochondrial dissolution (Distelmaier et al., Cytometry A 2008, 73, 129-138). Tetramethylrhodamine methylester (TMRM) dye is sequestered by active mitochondria, and, when loaded with TMRM, vehicle-treated cells released the dye within 15 rain of exposure to the calcium ionophor A23187. By contrast, dye release was fully prevented in cells exposed to as little as ΙΟηΜ of P7C3 (Figure 22 A).
Compounds known to be less active in vivo were also less active in this assay (not shown).
Preservation of mitochondrial membrane potential in this assay was observed for the R-enantiomer of P7C3-OMe, Example lb, (Figure 22B), but not the S-enantiomer, Example la, (Figure 22C). Finally, protection of mitochondrial membrane permeability was observed at an enhanced level for a compound variant P7C3A20 (Example 6a), which also exhibited a high level of proneurogenic activity (Figure 22D). Derivatives that have less proneurogenic activity than P7C3 such as Example 33 (Figure 22E) and Example 21 (Figure 22F), displayed less protective effect in preserving mitochondrial integrity at the tested doses in cultured primary cortical neurons.
It was also examined whether Example 45 Compound preserves mitochondrial membrane potential in cultured primary cortical neurons (Figure 23). Cortical neurons cultures from rats on embryonic day 14 were loaded with tetramethylrhodamine methyl ester (TMRM) dye after 6 days of maturation. The top panels (no calcium ionophore) show that the dye alone did not affect the health of neurons. The remaining panels are from cells that were exposed to the calcium ionophore A23187 at time zero. With vehicle-alone, cortical neuron mitochondrial membrane potential was rapidly lost after exposure to the ionophore. Escalating doses of Example 45 Compound preserved mitochondrial membrane potential following exposure to the calcium ionophore A23187 in a dose dependent manner, with full protection achieved at 1 mM. The less active compound (Example 33) was less effective in preserving mitochondrial membrane potential at any dose tested. Results shown are representative of 10 fields analyzed in each of 2 experimental runs for all conditions.
It should be appreciated by one of ordinary skill in the art that the above described mitochondrial tests can also be used to test other compounds of presently disclosed embodiments.
Example 45 Compound Normalizes Elevated Levels of Hippocampal Apoptosis in npas3 " Mice
Recognizing that reduced thickness of the npas3 ~!~ dentate gyrus granular layer could be attributed to increased apoptosis of proliferating neural precursor cells, the effect of Example 45 Compound (P7C3) treatment on apoptosis in the hippocampus oi npas3 "mice was examined through immunohistochemical staining of CCSP3. As shown in Figure 17, after 12 days of orally delivered Example 45 Compound (20 mg/kg) to adult npas3-/- mice, a statistically significant reduction in CCSP3 staining was observed in the dentate gyrus. It is thereby proposed that Example 45 Compound facilitates repair of the granular layer of the dentate gyrus in npas3 ~'~ mice by overcoming a genotype-specific enhancement in apoptosis.
It should be appreciated by one of ordinary skill in the art that the above described mice model and other animal model can also be used to test other compounds of presently disclosed embodiments.
Example 45 Compound (P7C3) Provides Therapeutic Benefit in Animal Model of
Amyotrophic Lateral Sclerosis (ALS) ALS, also known as Lou Gehrig's disease, is an adult-onset (typically between ages 40-70), rapidly progressive and fatal disease caused by selective degeneration of upper (cortical layer V within the primary motor cortex) and lower (spinal cord) motor neurons, the nerve cells in the central nervous system that control voluntary muscle movement. An estimated 5000 people in the United States are diagnosed with ALS every year. This disorder causes muscle weakness and atrophy throughout the body, and patients with ALS ultimately lose their ability to initiate and control all voluntary movement. The earliest parts of the body affected in ALS reflect those motor neurons that are damaged first. About 75% of patients experience onset of symptoms in their arms or legs manifested as difficulty with manual dexterity or ambulation, while about 25% experience 'bulbar onset' of ALS - difficulty speaking clearly or swallowing. A small proportion of patients have respiratory onset of ALS in the form of weakness of the intercostal muscles that support breathing. Regardless of the region of onset, muscle weakness and atrophy invariably spread to other parts of the body as the disease progresses. Most patients develop a constellation of symptoms that includes difficulty moving, dysphagia (difficulty swallowing), dysarthria (difficulty speaking or forming words) and classical manifestations of loss of upper motor neurons (muscular spasticity, hyperreflexia and overactive gag reflex) and lower motor neurons (muscular weakness, muscle atrophy, muscle cramps and fasciculations). Sensory nerves and the autonomic nervous system are usually spared, though may be involved in some patients. About 20% of ALS patients also develop frontotemporal lobar dementia (FTLD), while 30-50% of patients develop subtle cognitive changes that can be observed with detailed neuropsychological testing. Around 15-45% of patients with ALS also experience what is called "pseudobulbar affect" - a form of emotional lability in which patients manifest intermittent bouts of uncontrollable laughter, crying or smiling. This symptom domain is thought to be related to degeneration of bulbar upper motor neurons, resulting in exaggerated motor expressions of emotion. Although disease progression varies between individuals, most patients are eventually unable to stand or walk, get in or out of bed on their own, or use their hands and arms. Difficulty chewing and swallowing further leads to progressive weight loss and increased risk of choking and aspiration pneumonia. Towards the end stages of disease, as the diaphragm and intercostal muscles weaken, most patients require ventilator support. Individuals with ALS most commonly die of respiratory failure or pneumonia within 2-5 years of diagnosis.
Ninety- five percent of ALS cases occur sporadically (SALS), with no identifiable cause or family history of the disease. The remaining 5% of cases are inherited, known as Familial ALS (FALS). Because FALS and SALS are clinically and neuropathologically similar, the pathogenesis of these forms of ALS may converge on a common pathogenic pathway. Approximately 20% of FALS and 3% of SALS cases are associated with autosomal dominant mutations in the SODl gene on chromosome 21, and about 150 different mutations dispersed throughout this gene have been identified in FALS. SODl encodes cytosolic Cu/Zn superoxide dismutase, an antioxidant enzyme that protects cells by converting superoxide (a toxic free radical generated through normal metabolic activity of mitochondria) to hydrogen peroxide. Unchecked, free radicals accumulate and damage both mitochondrial and nuclear DNA, as well as proteins within cells. In ALS linked to mutations in SODl, cytotoxicity of motor neurons appears to result from a gain of toxic SODl function, rather than from loss of dismutase activity. Although the exact molecular mechanisms underlying toxicity are unclear, mutation-induced conformational changes in SOD 1 are known to lead to misfolding and subsequent cytotoxic aggregation of mutant SODl in cell bodies and axons. Aggregate accumulation of mutant SOD 1 is thought to disrupt cellular functions and precipitate neuron death by damaging mitochondria, proteasomes, protein folding chaperones, or other proteins.
Transgenic animal models of mutant SODl are currently used for research into the pathogenic mechanisms thought to broadly underlie ALS, such as G93A SODl mutant mice. Mice hemizygous for the G93A-SOD1 transgene express 18 +/- 2.6 copies of a form ofSODl found in some patients with FALS (a substitution of glycine to alanine at codon 93). This was the first mutant form oiSODl to be expressed in mice, and is the most widely used and well-characterized mouse model of ALS. Superoxide dismutase activity in these mice is left intact such that the pathogenic effect of the mutant transgene appears to be gain of function, as is thought to occur in human patients. In these mice, death of motor neurons in the ventral horn of the spinal cord and loss of myelinated axons in ventral motor roots leads to paralysis and muscle atrophy. Upper cortical motor neurons in these mice also die as the disease progresses, and protein aggregates of mutant SODl are found only in diseased tissues, with greater amounts being detected during motor neuron degeneration. Around 100 days of age, G93A-SOD1 mice become paralyzed in one or more limbs with paralysis due to loss of motor neurons from the spinal cord. This paralysis rapidly spreads throughout the body, culminating in 50% death when mice are 128.9 +/- 9.1 days old.
P7C3 was intraperitoneally administered to female G93A-SOD1 transgenic mice using a treatment paradigm of 10 mg/kg P7C3 i.p. twice a day, compared to vehicle, starting at 40 days of age. This treatment scheme was selected based on standard protocols for initial proof of concept screens in these mice. To control for transgene copy number, mice are sibling matched between treatment groups, as per standard protocol. After initiation of P7C3 or vehicle treatment, date of onset of illness is determined by peak weight, and initial progression of disease is defined as the day at which mice fall to 10% below their maximum weight. Mice are also assessed daily by a standard determination of neurological severity score, with a score of 2 or worse for two consecutive days serving as an additional marker of illness progression. This score is determined blind to treatment group with the scoring system described in the legend for the figure. As shown in Figure 24A, P7C3 treatment slows disease progression in G93A-SOD1 mice in terms of delaying the time point at which mice drop to 10% below their maximum weight. Treatment with P7C3 also significantly delays the age at which G93A-SOD1 mice attain a neurological severity score of 2, another marker of disease progression, as shown in Figure 24B. Furthermore, P7C3 treatment significantly improved performance in the accelerating rotarod task as the disease progressed in these mice, as shown in Figure 24C, indicating a slowing of progression of motor impairment in the disease process. This protective effective of P7C3 on motor performance in G93A-SOD1 mice is also observed in the ink footprint analysis of walking gait, as shown in Figure 24D.
It should be appreciated by one of ordinary skill in the art that the above described ALS model and other animal model can also be used to test other compounds of presently disclosed embodiments.
Example 6a Compound (P7C3A20) Provides Therapeutic Benefit in Animal Model of Parkinson's Disease
Parkinson's disease (PD) is a progressive neurodegenerative disease characterized by the death of dopaminergic neurons in the substantia nigra, which project to the striatum to control normal movement. Though it is one of the most common nervous system disorders of the elderly, the cause of PD remains uncertain. Symptoms early in the disease are movement-related, including shaking, rigidity, slowness of movement, and difficulty with walking gait. More advanced stages of the disease are typically associated with cognitive and behavioral problems, including dementia. The early motor symptoms are partially managed by administration of drugs that enhance dopaminergic signaling. However, as the disease progresses and the dopaminergic neurons in the substantia nigra continue to die, patients reach a point at which these drugs become ineffective at treating the symptoms and additionally produce the complication of dyskinesia. Effectively preventing the death of dopaminergic neurons in the substantia nigra would therefore be an ideal treatment approach for patients with PD.
MPTP (l-methyl-4-phenyl-l, 2,3, 6-tetrahydropyri dine) is a potent neurotoxin that selectively kills dopaminergic neurons in the substantia nigra of both mice and monkeys, causing a clinical picture resembling PD. The MPTP toxicity model can therefore be used to study the death of dopaminergic neurons with the goal of developing new treatments for PD based on
neuroprotective strategies found to be effective in these neurons. To determine if P7C3A20 might be neuroprotective in the substantia nigra, the well-characterized and popular MPTP administration regimen was employed, as developed by Tatton and Kish (1997), Neuroscience 77: 1037-1048, and Jakson-Lewis et al. (2007), Nature Protocols 2: 141-151. Here, 12 week old wild type male C57BL/6 mice were treated for 3 days with P7C3A20 (10 mg/kg i.p. twice daily) or vehicle, and on the fourth day a five day regimen of 30 mg/kg/day i.p. free base MPTP was initiated. During this five day period of MPTP administration the mice continued to receive P7C3A20 or vehicle. Mice continued to receive the same dose of P7C3A20 or vehicle every day for 21 more days, at which point they were sacrificed by transcardial perfusion with 4% paraformaldehyde. Brains were post- fixed in 4% paraformaldehyde at 4 degrees Celsius overnight and then cryoprotected with 30% sucrose in phosphate-buffered saline. Fixed brains were cut at 30 microns with a sliding microtone, and every 4th section (spaced 120 microns apart) was stained with antibodies directed against tyrosine hydroxylase (TH) (Abeam, rabbit anti-TH, 1 :2500). TH-positive cells were counted in the substantia nigra area. As shown in Figures 25A and 25B, treatment with P7C3A20 significantly attenuates MPTP-mediated killing of substantia nigra dopaminergic neurons. These observations suggest that P7C3A20 and related compounds may form the basis of new neuroprotective strategies for preventing or slowing the progression of Parkinson's disease.
It should be appreciated by one of ordinary skill in the art that the above described PD model and other animal model can also be used to test other compounds of presently disclosed embodiments.
Example 45 Compound Provides Therapeutic Benefit in Animal Model of Huntington's Disease
Huntington's disease (HD) is an autosomal dominant neurodegenerative disease
characterized by the insidious and progressive development of mood disturbances, behavioral changes, involuntary choreiform movements (ceaseless and complex writhing movements of the limbs) and cognitive impairment. HD has a prevalence of about 1 in 10,000 people in the U.S., and is caused by a polyglutamine expansion of greater than 36 repeats in the N terminus of the protein huntingtin (Htt). There are currently no treatments that delay the appearance or progression of this disease. HD is pathologically characterized by a dramatic loss of neurons in the striatum and cerebral cortex, and therapeutic strategies to protect these neurons from dying might provide new treatment options for patients. The physical symptoms of HD typically have their onset between 35-44 years of age, though onset has been reported to occur at times ranging from infancy to old age. The exact way in which HD affects an individual varies and can differ even between members of the same family, but symptoms progress predictably in most cases. The earliest symptoms include a general lack of coordination and unsteady gait, and as the disease advances uncoordinated and jerky body movements become more apparent. More advanced stages are typically accompanied by an observable decline in mental abilities, associated with behavioral and psychiatric problems, such as anxiety, severe depression, blunted affect, egocentrism, aggression, and compulsive behaviors such as alcoholism, gambling or hypersexuality. Over time, physical abilities are gradually impeded until coordinated movement becomes very difficult, and mental abilities generally decline into dementia. Complications such as pneumonia, heart disease, eating difficulties leading to weight loss and malnutrition, and physical injury from falls reduce life expectancy to around twenty years after onset of symptoms. There is no cure for HD, and full-time care is required in later stages of disease.
Htt is a large cytoplasmic protein that interacts with over 100 other proteins, and appears to have multiple biological functions. The behavior of mutated Htt (mHtt) protein is not completely understood, but it is known to be toxic to neurons. Damage mainly occurs in the striatum, but in later stages other areas of the brain are also attacked, such as the cerebral cortex. As neuronal cell death progresses, symptoms associated with the functions of the affected brain areas appear. For example, planning and modulating movement are the main functions of the striatum, and difficulties with these tasks are frequent initial symptoms of HD. Disease initiation and progression are thought to involve in large part a conformational change in the mHtt protein due to the polyglutamine expansion, altered protein-protein interactions, abnormal protein aggregation in both the nucleus and cytoplasm and proteolysis, which in turn may lead to transcriptional dysregulation, excitotoxicity, mitochondrial dysfunction, and neuronal apoptosis. In addition to a role for a gain of new toxic properties of mHtt in HD pathology, there is increasing evidence that loss of wild-type Htt function also contributes to pathogenesis. For example, an essential role of Htt in mitotic spindle formation and mammalian neurogenesis has recently been identified.
One animal model of HD that can be employed for screening potential therapeutic agents is R6/2 transgenic mice. These mice express a mutant exon 1 of the human huntingtin gene, engineered to include an approximately 145-155 CAG repeat expansion. R6/2 mice phenocopy much of the neuropathology (striatal and cortical neuron cell death) and behavioral manifestations of clinical HD. They display progressive motor and cognitive impairments, ubiquitinated nuclear and cytoplasmic inclusions of mutant Htt, weight loss, decreased striatal and brain size, altered levels of neurotransmitters and their receptors, and premature death. They exhibit motor deficits as early as 5-6 weeks of age, display overt behavioral abnormalities at 8-9 weeks, and typically die between 1 1 and 13 weeks of age. R6/2 mice also display significantly lower levels of adult hippocampal neurogenesis relative to wild-type littermates, even before onset of symptoms. In one hypothesis, P7C3 (and its derivates) may enhance the formation of neurons in the mature hippocampus by preventing death rather than promoting proliferation of these cells. As such, P7C3 is "proneurogenic" by virtue of its neuroprotective activity. It is also possible that P7C3 (and its derivates) prevents cell death and promotes cell proliferation. It was evaluated whether P7C3 might provide therapeutic benefit in R6/2 mice. P7C3 (10 mg/kg i.p. twice daily starting at 6 weeks of age) or vehicle were administered to 40 female R6/2 mice. As shown in Figure 26A, 50% of vehicle-treated R6/2 mice die at approximately 15 weeks of age, and treatment with P7C3 delays animal death by about three weeks. At 14 weeks of age, R6/2 mice treated with P7C3 showed improved general condition score and appearance as shown in Figure 26B, as compared to vehicle-treated littermates. General condition score was determined by a 3 point scoring system that was conducted blind to genotype and treatment group (score of 0 = fur looks groomed, normal posture (no hunch), clear eyes, alert; score of 1 = fur beginning to stick up, slight hunch; score of 2 = piloerection (fur sticking up), unkempt fur, hunch in back or neck area, crusty eyes). Death was monitored twice daily, and defined as either when animals were found dead, or when they were unable to right themselves after being placed on their backs with movement subsequently initiated by gentle prodding for 30 seconds. By general appearance of coat condition, grooming and spontaneous activity in the home cage, R6/2 mice treated with P7C3 also appear qualitatively better than VEH-treated R6/2 mutant mice (not shown).
It should be appreciated by one of ordinary skill in the art that the above described HD model and other animal model can also be used to test other compounds of presently disclosed embodiments.
OTHER EMBODIMENTS
This application claims the benefit of U.S. Provisional Application No. 61/143,755, which is incorporated herein by reference in its entirety. The disclosure of U.S. Provisional Application
No. 61/143,755 includes, but is not limited to:
methods for promoting postnatal mammalian neurotrophism in a patient determined to be in need thereof, comprising administering to the patient an effective amount of a neurotrophic carbazole compound of formula 1 :
Figure imgf000246_0001
wherein:
Ri - Rs are each independently selected hydrogen, heteroatom, heteroatom functional group, and optionally-substituted, optionally heteroatom lower (C1-C6) alkyl;
R9 is hydrogen or optionally-substituted, optionally heteroatom lower (C1-C6) alkyl; and Rio and Rn are each independently selected hydrogen, optionally-substituted, optionally heteroatom C1-C6 alkyl, optionally-substituted, optionally heteroatom C2-C6 alkenyl, optionally-substituted, optionally heteroatom C2-C6 alkynyl, and optionally-substituted, optionally heteroatom C6-C14 aryl, including tautomers, stereoisomers and pharmaceutically- acceptable salts thereof.
Unless otherwise noted, all structures depicted herein encompass interconvertable tautomers as if each were separately depicted.
The presently disclosed embodiments encompass all alternative combinations of particular embodiments:
-wherein Ri - R8 are each independently selected hydrogen and halide;
- wherein Ri, R2, R4, R5, R7 and Rs are hydrogen, and R3 and R6 are halide, such as CI, Br, I and F;
- wherein R9 is hydrogen;
- wherein Ri0 is hydrogen and Rn is optionally-substituted, optionally heteroatom C6-C14 aryl;
- wherein Rio and Rn are joined to form a 5-7 membered, optionally substituted heterocyclic ring;
- wherein Rio and Rn are joined to form an optionally substituted pyrrolidine or a piperidine;
- wherein Rio is hydrogen and Rn is substituted phenyl, such as halide-or C1-C6 alkoxy- phenyl, including para-, meta-, or ortho positions; - wherein R10 is hydrogen and Rn is napthyl;
- wherein the compound has a formula of Table 1 (herein) or Table 2 (herein);
- wherein the compound has formula 2:
Figure imgf000247_0001
-wherein (a) at least one of Ri - Rs is heteroatom, optionally-substituted, or optionally heteroatom lower (C1-C6) alkyl, and at least one of R1-R4 or at least one of R5-R8 is different; or (b) R9 is optionally-substituted, optionally heteroatom lower (C1-C6) alkyl;
-further comprising the step of detecting a resultant neurotrophism, particularly
neurogenesis; and/or
- further comprising the antecedent step of determining that the patient has aberrant neurotrophism, particularly aberrant neurogenesis, particularly aberrant hippocampal and/or hypothalamic neurogenesis, or a disease or disorder associated therewith, particularly by detecting and/or diagnosing the same.
The presently disclosed embodiments also provide novel pharmaceutical, particularly novel neurogenic, compositions in unit dosage comprising a disclosed neurotrophic carbazole not previously known or suggested to provide pharmacological, particularly neurogenic, activity, or a pharmaceutically-acceptable salt thereof, and a pharmaceutically acceptable excipient.
The presently disclosed embodiments also provide disclosed novel neurotrophic carbazoles and pharmaceutically-acceptable salts thereof.
U.S. Provisional Application No. 61/143,755 further discloses:
The term "heteroatom" as used herein generally means any atom other than carbon, hydrogen or oxygen. Preferred heteroatoms include oxygen (O), phosphorus (P), sulfur (S), nitrogen (N), silicon (S), arsenic (As), selenium (Se), and halogens, and preferred heteroatom functional groups are haloformyl, hydroxyl, aldehyde, amine, azo, carboxyl, cyanyl, thocyanyl, carbonyl, halo, hydroperoxyl, imine, aldimine, isocyanide, iscyante, nitrate, nitrile, nitrite, nitro, nitroso, phosphate, phosphono, sulfide, sulfonyl, sulfo, and sulfhydryl. The term "alkyl," by itself or as part of another substituent, means, unless otherwise stated, a straight or branched chain, or cyclic hydrocarbon radical, or combination thereof, which is fully saturated, having the number of carbon atoms designated (i.e. C1-C8 means one to eight carbons). Examples of alkyl groups include methyl, ethyl, n-propyl, isopropyl, n-butyl, t-butyl, isobutyl, sec- butyl, cyclohexyl, (cyclohexyl)methyl, cyclopropylmethyl, homologs and isomers of, for example, n-pentyl, n-hexyl, n-heptyl, n-octyl and the like.
The term "alkenyl", by itself or as part of another substituent, means a straight or branched chain, or cyclic hydrocarbon radical, or combination thereof, which may be mono- or
polyunsaturated, having the number of carbon atoms designated (i.e. C2-C8 means two to eight carbons) and one or more double bonds. Examples of alkenyl groups include vinyl, 2-propenyl, crotyl, 2-isopentenyl, 2-(butadienyl), 2,4-pentadienyl, 3-(l,4-pentadienyl) and higher homologs and isomers thereof.
The term "alkynyl", by itself or as part of another substituent, means a straight or branched chain hydrocarbon radical, or combination thereof, which may be mono- or polyunsaturated, having the number of carbon atoms designated (i.e. C2-C8 means two to eight carbons) and one or more triple bonds. Examples of alkynyl groups include ethynyl, 1- and 3-propynyl, 3-butynyl and higher homologs and isomers thereof.
The term "alkylene" by itself or as part of another substituent means a divalent radical derived from alkyl, as exemplified by -CH2-CH2-CH2-CH2-. Typically, an alkyl (or alkylene) group will have from 1 to 24 carbon atoms, with those groups having 10 or fewer carbon atoms being preferred in the presently disclosed embodiments. A "lower alkyl" or "lower alkylene" is a shorter chain alkyl or alkylene group, generally having eight or fewer carbon atoms.
The terms "alkoxy," "alkylamino" and "alkylthio" (or thioalkoxy) are used in their conventional sense, and refer to those alkyl groups attached to the remainder of the molecule via an oxygen atom, an amino group, or a sulfur atom, respectively.
The term "heteroalkyl," by itself or in combination with another term, means, unless otherwise stated, a stable straight or branched chain, or cyclic hydrocarbon radical, or combinations thereof, consisting of the stated number of carbon atoms and from one to three heteroatoms selected from the group consisting of O, N, Si and S, wherein the nitrogen and sulfur atoms may optionally be oxidized and the nitrogen heteroatom may optionally be quaternized. The heteroatom(s) O, N and S may be placed at any interior position of the heteroalkyl group. The heteroatom Si may be placed at any position of the heteroalkyl group, including the position at which the alkyl group is attached to the remainder of the molecule. Examples include -CH2-CH2-O-CH3, -CH2-CH2-NH- CH3, -CH2-CH2-N(CH3)-CH3, -CH2-S-CH2-CH3, -CH2-CH2,-S(0)-CH3, -CH2-CH2-S(0)2-CH3, - CH=CH-0-CH3, -Si(CH3)3, -CH2-CH=N-OCH3, and -CH=CH-N(CH3)-CH3. Up to two heteroatoms may be consecutive, such as, for example, -CH2-NH-OCH3 and -CH2-0-Si(CH3)3.
Similarly, the term "heteroalkylene," by itself or as part of another substituent means a divalent radical derived from heteroalkyl, as exemplified by -CH2-CH2-S-CH2-CH2- and -CH2-S- CH2-CH2-NH-CH2-. For heteroalkylene groups, heteroatoms can also occupy either or both of the chain termini (e.g., alkyleneoxy, alkylenedioxy, alkyleneamino, alkylenediamino, and the like). Still further, for alkylene and heteroalkylene linking groups, no orientation of the linking group is implied.
The terms "cycloalkyl" and "heterocycloalkyl", by themselves or in combination with other terms, represent, unless otherwise stated, cyclic versions of "alkyl" and "heteroalkyl", respectively. Accordingly, a cycloalkyl group has the number of carbon atoms designated (i.e., C3-C8 means three to eight carbons) and may also have one or two double bonds. A heterocycloalkyl group consists of the number of carbon atoms designated and from one to three heteroatoms selected from the group consisting of O, N, Si and S, and wherein the nitrogen and sulfur atoms may optionally be oxidized and the nitrogen heteroatom may optionally be quaternized. Additionally, for heterocycloalkyl, a heteroatom can occupy the position at which the heterocycle is attached to the remainder of the molecule. Examples of cycloalkyl include cyclopentyl, cyclohexyl, 1- cyclohexenyl, 3-cyclohexenyl, cycloheptyl, and the like. Examples of heterocycloalkyl include 1- (1,2,5,6-tetrahydropyrid- yl), 1-piperidinyl, 2-piperidinyl, 3-piperidinyl, 4-morpholinyl, 3- morpholinyl, tetrahydrofuran-2-yl, tetrahydrofuran-3-yl, tetrahydrothien-2-yl, tetrahydrothien-3-yl, 1 -piperazinyl, 2-piperazinyl, and the like.
The terms "halo" and "halogen," by themselves or as part of another substituent, mean, unless otherwise stated, a fluorine, chlorine, bromine, or iodine atom. Additionally, terms such as "haloalkyl," are meant to include alkyl substituted with halogen atoms, which can be the same or different, in a number ranging from one to (2m'+l), where m' is the total number of carbon atoms in the alkyl group. For example, the term "halo(Cl-C4)alkyl" is mean to include trifluoromethyl, 2,2,2-trifluoroethyl, 4-chlorobutyl, 3-bromopropyl, and the like. Thus, the term "haloalkyl" includes monohaloalkyl (alkyl substituted with one halogen atom) and polyhaloalkyl (alkyl substituted with halogen atoms in a number ranging from two to (2m'+l) halogen atoms, where m' is the total number of carbon atoms in the alkyl group). The term "perhaloalkyl" means, unless otherwise stated, alkyl substituted with (2m'+l) halogen atoms, where m' is the total number of carbon atoms in the alkyl group. For example the term "perhalo(Cl-C4)alkyl" is meant to include trifluoromethyl, pentachloroethyl, l,l,l-trifluoro-2-bromo-2-chloroethyl and the like. The term "acyl" refers to those groups derived from an organic acid by removal of the hydroxy portion of the acid. Accordingly, acyl is meant to include, for example, acetyl, propionyl, butyryl, decanoyl, pivaloyl, benzoyl and the like.
The term "aryl" means, unless otherwise stated, a polyunsaturated, typically aromatic, hydrocarbon substituent which can be a single ring or multiple rings (up to three rings) which are fused together or linked covalently. Non-limiting examples of aryl groups include phenyl, 1- naphthyl, 2-naphthyl, 4-biphenyl and 1,2,3,4-tetrahydronaphthalene.
The term heteroaryl," refers to aryl groups (or rings) that contain from zero to four heteroatoms selected from N, O, and S, wherein the nitrogen and sulfur atoms are optionally oxidized and the nitrogen heteroatom are optionally quaternized. A heteroaryl group can be attached to the remainder of the molecule through a heteroatom. Non-limiting examples of heteroaryl groups include 1-pyrrolyl, 2-pyrrolyl, 3-pyrrolyl, 3-pyrazolyl, 2-imidazolyl, 4- imidazolyl, pyrazinyl, 2-oxazolyl, 4-oxazolyl, 2-phenyl-4-oxazolyl, 5-oxazolyl, 3-isoxazolyl, 4- isoxazolyl, 5-isoxazolyl, 2-thiazolyl, 4-thiazolyl, 5-thiazolyl, 2-furyl, 3-furyl, 2-thienyl, 3-thienyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, 2-pyrimidyl, 4-pyrimidyl, 5-benzothiazolyl, purinyl, 2- benzimidazolyl, 5-indolyl, 1-isoquinolyl, 5-isoquinolyl, 2-quinoxalinyl, 5-quinoxalinyl, 3-quinolyl and 6-quinolyl.
For brevity, the term "aryl" when used in combination with other terms (e.g., aryloxy, arylthioxy, arylalkyl) includes both aryl and heteroaryl rings as defined above. Thus, the term "arylalkyl" is meant to include those radicals in which an aryl group is attached to an alkyl group (e.g., benzyl, phenethyl, pyridylmethyl and the like) including those alkyl groups in which a carbon atom (e.g., a methylene group) has been replaced by, for example, an oxygen atom (e.g., phenoxymethyl, 2-pyridyloxymethyl, 3-(l-naphthyloxy)propyl, and the like).
Each of the above terms (e.g., "alkyl," "heteroalkyl," "aryl" and "heteroaryl") is meant to include both substituted and unsubstituted forms of the indicated radical. Preferred substituents for each type of radical are provided below.
Substituents for the alkyl and heteroalkyl radicals (as well as those groups referred to as alkylene, alkenyl, heteroalkylene, heteroalkenyl, alkynyl, cycloalkyl, heterocycloalkyl, cycloalkenyl and heterocycloalkenyl) can be a variety of groups selected from: -OR', =0, =NR', =N-OR', -NR'R", -SR, halogen, -SiRR"R"', -OC(0)R', -C(0)R, -C02R, -CONRR", - OC(0)NRR", -NR"C(0)R, -NR-C(0)NR"R", -NR-S02NR", -NR"C02R', -NH-C(NH2)=NH, - NR'C(NH2)=NH, -NH-C(NH2)=NR', -S(0)R, -S02R, -S02NR'R", -NR"S02R, -CN and -N02, in a number ranging from zero to three, with those groups having zero, one or two substituents being particularly preferred. R', R" and R" each independently refer to hydrogen, unsubstituted (Cl- C8)alkyl and heteroalkyl, unsubstituted aryl, aryl substituted with one to three halogens, unsubstituted alkyl, alkoxy or thioalkoxy groups, or aryl-(Cl-C4)alkyl groups. When R' and R" are attached to the same nitrogen atom, they can be combined with the nitrogen atom to form a 5-, 6- or 7-membered ring. For example, -NR'R" is meant to include 1-pyrrolidinyl and 4-morpholinyl. Typically, an alkyl or heteroalkyl group will have from zero to three substituents, with those groups having two or fewer substituents being preferred in the presently disclosed embodiments. More preferably, an alkyl or heteroalkyl radical will be unsubstituted or monosubstituted. Most preferably, an alkyl or heteroalkyl radical will be unsubstituted. From the above discussion of substituents, one of skill in the art will understand that the term "alkyl" is meant to include groups such as trihaloalkyl (e.g., -CF3 and -CH2CF3).
Preferred substituents for the alkyl and heteroalkyl radicals are selected from: -OR', =0, - NR'R", -SR', halogen, -SiR'R"R"', -OC(0)R, -C(0)R, -C02R, -CONR'R", -OC(0)NR'R", - NR"C(0)R, -NR"C02R, -NR'-S02NR"R"', -S(0)R, -S02R', -S02NR'R", -NR"S02R, -CN and - N02, where R' and R" are as defined above. Further preferred substituents are selected from: -OR', =0, -NR'R", halogen, -OC(0)R', -C02R', -CONR'R", -OC(0)NR'R", -NR"C(0)R, -NR"C02R, - NR'-S02NR"R"', -S02R, -S02NR'R", -NR"S02R, -CN and -N02.
Similarly, substituents for the aryl and heteroaryl groups are varied and selected from: halogen, -OR, -OC(0)R', -NR'R", -SR', -R', -CN, -N02, -C02R, -CONR'R", -C(0)R', - OC(0)NR'R", -NR"C(0)R, -NR"C02R', -NR'-C(0)NR"R", -NR'-S02NR"R"', -NH-C(NH2)=NH, -NR'C(NH2)=NH, -NH-C(NH2)=NR, -S(0)R', -S02R, -S02NR'R", -NR"S02R, -N3, -CH(Ph)2, perfluoro(Cl-C4)alko- xy and perfluoro(Cl-C4)alkyl, in a number ranging from zero to the total number of open valences on the aromatic ring system; and where R', R" and R'" are independently selected from hydrogen, (Cl-C8)alkyl and heteroalkyl, unsubstituted aryl and heteroaryl,
(unsubstituted aryl)-(Cl-C4)alkyl and (unsubstituted aryl)oxy-(Cl-C4)alkyl. When the aryl group is 1,2,3,4-tetrahydronaphthalene, it may be substituted with a substituted or unsubstituted (C3- C7)spirocycloalkyl group. The (C3-C7)spirocycloalkyl group may be substituted in the same manner as defined herein for "cycloalkyl". Typically, an aryl or heteroaryl group will have from zero to three substituents, with those groups having two or fewer substituents being preferred in the presently disclosed embodiments. In one embodiment, an aryl or heteroaryl group will be unsubstituted or monosubstituted. In another embodiment, an aryl or heteroaryl group will be unsubstituted.
Preferred substituents for aryl and heteroaryl groups are selected from: halogen, -OR', - OC(0)R, -NR'R", -SR', -R', -CN, -N02, -C02R, -CONR'R", -C(0)R',-OC(0)NR'R", -NR"C(0)R', -S(0)R', -S02R', -S02NR'R", -NR"S02R, -N3, -CH(Ph)2, perfluoro(Cl-C4)alkoxy and perfluoro(Cl-C4)alkyl, where R' and R" are as defined above. Further preferred substituents are selected from: halogen, -OR, -OC(0)R, -NRR", -R', -CN, -N02, -C02R, -CONRR", -NR"C(0)R', -S02R', -S02NRR", -NR"S02R, perfluoro(Cl-C4)alkoxy and perfluoro(Cl-C4)alkyl.
The substituent -C02H, as used herein, includes bioisosteric replacements therefor; see, e.g., The Practice of Medicinal Chemistry; Wermuth, C. G., Ed.; Academic Press: New York, 1996; p. 203.
Two of the substituents on adjacent atoms of the aryl or heteroaryl ring may optionally be replaced with a substituent of the formula -T-C(0)-(CH2)q-U-, wherein T and U are independently -NH-, -0-, -CH2- or a single bond, and q is an integer of from 0 to 2. Alternatively, two of the substituents on adjacent atoms of the aryl or heteroaryl ring may optionally be replaced with a substituent of the formula -A-(CH2)r-B-, wherein A and B are independently -CH2-, -0-, -NH-, -S-, -S(O)-, -S(0)2-, -S(0)2NR'- or a single bond, and r is an integer of from 1 to 3. One of the single bonds of the new ring so formed may optionally be replaced with a double bond. Alternatively, two of the substituents on adjacent atoms of the aryl or heteroaryl ring may optionally be replaced with a substituent of the formula -(CH2)s-X-(CH2)t- -, where s and t are independently integers of from 0 to 3, and X is -0-, -NR'-, -S-, -S(O)-, -S(0)2-, or -S(0)2NR-. The substituent R' in -NR- and - S(0)2NR'- is selected from hydrogen or unsubstituted (C 1 -C6)alkyl.

Claims

WHAT IS CLAIMED IS:
1. A method for promoting post-natal mammalian neurogenesis and/or reducing neuronal cell death in a subject in need thereof, the method comprising administering an effective amount of a compound having formula (I) or a pharmaceutically acceptable salt thereof:
Figure imgf000253_0001
(I)
wherein: each of R1, R2, R3, and R4 is independently selected from hydrogen, halo, hydroxyl, sulfhydryl, C1-C6 alkoxy, C1-C6 thioalkoxy, C1-C6 haloalkoxy, C1-C6 thiohaloalkoxy, C1-C6 alkyl, Ci-Ce haloalkyl, C2-C6 alkynyl, cyclopropyl, -N3, cyano, -NH2, -NH(Ci-C6 alkyl), -N(Ci-C6 alkyl)2, -NHC(0)(Ci-C6 alkyl), and nitro;
R and R' are defined according to (1), (2), (3), (4), or (5) below:
(1) R and R' together with C2 and C3, respectively, form a fused phenyl ring having formula (II):
Figure imgf000253_0002
(Π)
wherein each of R5, R6, R7, and R8 is independently selected from hydrogen, halo, hydroxyl, sulfhydryl, C1-C6 alkoxy, C1-C6 thioalkoxy, C1-C6 haloalkoxy, C1-C6 thiohaloalkoxy, C1-C6 alkyl, Ci-Ce haloalkyl, C2-C6 alkynyl, cyclopropyl, -N3, cyano, -NH2, -NH(Ci-C6 alkyl), -N(Ci-C6 alkyl)2, -NHC(0)(Ci-C6 alkyl), and nitro; or (2) each of R and R' is, independently, hydrogen, Ci-Ce alkyl, or Ci-Ce haloalkyl; or
(3) R and R' together with C2 and C3, respectively, form a fused heterocyclic ring containing from 5-6 ring atoms, wherein from 1-2 of the ring atoms is independently selected from N, NH, N(Ci-C6 alkyl), NC(0)(Ci-C6 alkyl), O, and S; and wherein said heterocyclic ring is optionally substituted with from 1-3 independently selected R ; or
(4) R and R' together with C2 and C3, respectively, form a fused C5-C6 cycloalkyl ring that is optionally substituted with from 1-4 independently selected R ; or
(5) R and R' together with C2 and C3, respectively, form a fused heteroaryl ring containing from 5-6 ring atoms, wherein from 1-2 of the ring atoms is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl ring is optionally substituted with from 1-3 independently selected Rb;
L1 is:
(i) C1-C3 straight chain alkylene, which is optionally substituted with from 1-2 independently selected Rc; or
(ii) a bond that directly connects N in the 5-membered ring of formula (I) to A in formula (I);
L2 is:
(i) C1-C3 straight chain alkylene, which is optionally substituted with from 1-2 independently selected Rc; or
(ii) a bond that directly connects A in formula (I) to Z in formula (I);
A is:
(i) CRA1RA2, wherein each of RA1 and RA2 is independently selected from hydrogen, halo, C1-C3 alkyl, OR9, or a double bond formed between A and one of L1 and L2; or
(ii) C=0; or
(iii) C3-C5 cycloalkylene that is (a) optionally substituted with 1 oxo; and (b) optionally further substituted with from 1-4 independently selected R ; or (iv) heterocycloalkylene containing from 3-5 ring atoms, wherein from 1-2 of the ring atoms is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heterocycloalkylene is (a) optionally substituted with 1 oxo; and (b) is optionally further substituted with from 1-4 independently selected R ;
Z is:
(i) -NR10Rn; or
(ii) -C(O)NR10Rn; or
(iii) -OR12; or
(iv) -S(0)nR13, wherein n is 0, 1, or 2; or
(v) heterocycloalkenyl containing from 5-6 ring atoms, wherein from 1-3 of the ring atoms is independently selected from N, NH, N(Ci-C6 alkyl), NC(0)(Ci-C6 alkyl), O, and S; and wherein said heterocycloalkenyl is optionally substituted with from 1-4
independently selected R ; or
(vi) C6-C10 aryl that is optionally substituted with from 1-4 independently selected
Rb; or
(vii) heteroaryl containing from 5-14 ring atoms, wherein from 1-6 of the ring atoms is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl is optionally substituted with from 1-4 independently selected Rb; or
(viii) Cs-Ci4 arylcycloalkyl, wherein:
(1) the aryl portion is optionally substituted with from 1-4 independently selected Rb, and
(2) the cycloalkyl portion is optionally substituted with from 1 -4 independently selected R ;
or
(ix) arylheterocyclyl containing from 8-14 ring atoms, wherein:
(1) the aryl portion from is optionally substituted with from 1-4 independently selected Rb, and
(2) from 1-2 of the ring atoms of the heterocyclyl portion is independently selected from N, NH, N(Ci-C6 alkyl), NC(0)(Ci-C6 alkyl), O, and S; and wherein said heterocyclyl portion is optionally substituted with from 1-3 independently selected R ;
or
(x) heteroarylheterocyclyl containing from 8-14 ring atoms, wherein: (1) from 1-2 of the ring atoms of the heteroaryl portion is independently selected from N, NH, (Ci-C3 alkyl), O, and S; and wherein said heteroaryl portion is optionally substituted with from 1-3 independently selected Rb; and
(2) from 1-2 of the ring atoms of the heterocyclyl portion is independently selected from N, NH, N(Ci-C6 alkyl), NC(0)(Ci-C6 alkyl), O, and S; and wherein said heterocyclyl portion is optionally substituted with from 1-3 independently selected R ;
or
(xi) heteroarylcycloalkyl containing from 8-14 ring atoms, wherein:
(1) from 1-2 of the ring atoms of the heteroaryl portion is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl portion is optionally substituted with from 1-3 independently selected Rb; and
(2) the cycloalkyl portion is optionally substituted with from 1 -4 independently selected R ;
R9 is hydrogen; or C1-C3 alkyl that is optionally substituted with hydroxyl or C1-C3 alkoxy; each of R10 and R11 is independently selected from the substituents delineated collectivelyrough (k) below:
(a) hydrogen;
(b) C6-C10 aryl that is optionally substituted with from 1-4 Rb;
(c) heteroaryl containing from 5-14 ring atoms, wherein from 1-6 of the ring atoms is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl is optionally substituted with from 1 -4 Rb;
(d) C1-C6 alkyl or C1-C6 haloalkyl, each of which is optionally substituted with from
1-3 Rd;
(e) -C(0)(Ci-C6 alkyl), -C(0)(Ci-C6 haloalkyl), or -C(0)0(Ci-C6 alkyl);
(f) C2-C6 alkenyl or C2-C6 alkynyl;
(g) Cs-Ci4 arylcycloalkyl, wherein:
(1) the aryl portion is optionally substituted with from 1-4 independently selected Rb, and
(2) the cycloalkyl portion is optionally substituted with from 1 -4 independently selected R ;
(h) arylheterocyclyl containing from 8-14 ring atoms, wherein: (1) the aryl portion from is optionally substituted with from 1-4
independently selected Rb, and
(2) from 1-2 of the ring atoms of the heterocyclyl portion is independently selected from N, NH, N(Ci-C6 alkyl), NC(0)(Ci-C6 alkyl), O, and S; and wherein said heterocyclyl portion is optionally substituted with from 1-3 independently selected R ;
(i) heteroarylheterocyclyl containing from 8-14 ring atoms, wherein:
(1) from 1-2 of the ring atoms of the heteroaryl portion is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl portion is optionally substituted with from 1-3 independently selected Rb; and
(2) from 1-2 of the ring atoms of the heterocyclyl portion is independently selected from N, NH, N(Ci-C6 alkyl), NC(0)(Ci-C6 alkyl), O, and S; and wherein said heterocyclyl portion is optionally substituted with from 1-3 independently selected R ;
j) heteroarylcycloalkyl containing from 8-14 ring atoms, wherein:
(1) from 1-2 of the ring atoms of the heteroaryl portion is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl portion is optionally substituted with from 1-3 independently selected Rb; and
(2) the cycloalkyl portion is optionally substituted with from 1 -4 independently selected R ;
(k) C3-C8 cycloalkyl or C3-C8 cycloalkenyl, each of which is optionally substituted with from 1-4 independently selected R ; and
(1) C7-C12 aralkyl, wherein the aryl portion is optionally the aryl portion from is optionally substituted with from 1-4 independently selected Rb,
R12 is:
(i) C6-C10 aryl that is optionally substituted with from 1-4 Rb; or
(ii) heteroaryl containing from 5-14 ring atoms, wherein from 1-6 of the ring atoms is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl is optionally substituted with from 1 -4 Rb; or
(iii) C1-C6 alkyl or C1-C6 haloalkyl, each of which is optionally substituted with from 1-3 Rd; or
(iv) Cs-Ci4 arylcycloalkyl, wherein: (1) the aryl portion is optionally substituted with from 1-4 independently selected Rb, and
(2) the cycloalkyl portion is optionally substituted with from 1 -4
independently selected R ;
or
(v) arylheterocyclyl containing from 8-14 ring atoms, wherein:
(1) the aryl portion from is optionally substituted with from 1-4 independently selected Rb, and
(2) from 1-2 of the ring atoms of the heterocyclyl portion is independently selected from N, NH, N(Ci-C6 alkyl), NC(0)(Ci-C6 alkyl), O, and S; and wherein said heterocyclyl portion is optionally substituted with from 1-3 independently selected R ;
or
(vi) heteroarylheterocyclyl containing from 8-14 ring atoms, wherein:
(1) from 1-2 of the ring atoms of the heteroaryl portion is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl portion is optionally substituted with from 1-3 independently selected Rb; and
(2) from 1-2 of the ring atoms of the heterocyclyl portion is independently selected from N, NH, N(Ci-C6 alkyl), NC(0)(Ci-C6 alkyl), O, and S; and wherein said heterocyclyl portion is optionally substituted with from 1-3 independently selected R ;
or
(vii) heteroarylcycloalkyl containing from 8-14 ring atoms, wherein:
(1) from 1-2 of the ring atoms of the heteroaryl portion is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl portion is optionally substituted with from 1-3 independently selected Rb; and
(2) the cycloalkyl portion is optionally substituted with from 1 -4
independently selected R ;
R13 is:
(i) C6-C10 aryl that is optionally substituted with from 1-4 Rb; or
(ii) heteroaryl containing from 5-14 ring atoms, wherein from 1-6 of the ring atoms is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl is optionally substituted with from 1 -4 Rb; or (iii) Cs-Ci4 arylcycloalkyl, wherein:
(1) the aryl portion is optionally substituted with from 1 -4 independently selected Rb, and
(2) the cycloalkyl portion is optionally substituted with from 1 -4
independently selected R ;
or
(iv) arylheterocyclyl containing from 8- 14 ring atoms, wherein:
(1) the aryl portion from is optionally substituted with from 1 -4
independently selected Rb, and
(2) from 1 -2 of the ring atoms of the heterocyclyl portion is independently selected from N, NH, N(Ci-C6 alkyl), NC(0)(Ci-C6 alkyl), O, and S; and wherein said heterocyclyl portion is optionally substituted with from 1-3 independently selected R ;
or
(v) heteroarylheterocyclyl containing from 8- 14 ring atoms, wherein:
(1) from 1 -2 of the ring atoms of the heteroaryl portion is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl portion is optionally substituted with from 1-3 independently selected Rb; and
(2) from 1 -2 of the ring atoms of the heterocyclyl portion is independently selected from N, NH, N(Ci-C6 alkyl), NC(0)(Ci-C6 alkyl), O, and S; and wherein said heterocyclyl portion is optionally substituted with from 1-3 independently selected R ;
or
(vi) heteroarylcycloalkyl containing from 8- 14 ring atoms, wherein:
(1) from 1 -2 of the ring atoms of the heteroaryl portion is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl portion is optionally substituted with from 1-3 independently selected Rb; and
(2) the cycloalkyl portion is optionally substituted with from 1 -4
independently selected R ;
R at each occurrence is, independently selected from halo, hydroxyl, Ci-Ce alkoxy, Ci-Ce thioalkoxy, Ci-Ce haloalkoxy, Ci-Ce thiohaloalkoxy, oxo, thioxo, =NH, =N(Ci-C6 alkyl), Ci-Ce alkyl, Ci-C6 haloalkyl, -NH2, -NH(Ci-C6 alkyl), -N(Ci-C6 alkyl)2, -NHC(0)(Ci-C6 alkyl), and cyano; Rb at each occurrence is independently selected from the substituents delineated in (aa) through (dd) below:
(aa) C1-C6 alkoxy; C1-C6 haloalkoxy; C1-C6 thioalkoxy; C1-C6 thiohaloalkoxy; -O- (CH2)1_3-[0(CH2)1.3]i-3-H; d-d alkyl, d-d haloalkyl, -NH(d-d alkyl), -N(d-d alkyl)2, -NHC(0)(Ci-C6 alkyl), wherein the alkyl portion of each is optionally substituted with from 1-3 independently selected Re;
(bb) halo; hydroxyl; cyano; nitro; -NH2; azido; sulfhydryl; -d alkenyl; d-d alkynyl; -C(0)H; -C(0)(d-d alkyl); -C(0)(d-C6 haloalkyl); -C(0)OH; -C(0)0(d-C6 alkyl); -C(0)NH2; -C(0)NH(d-C6 alkyl); -C(0)N(Ci-C6 alkyl)2; -S02(Ci-C6 alkyl); - S02NH2; -S02NH(d-d alkyl); -S02N(d-d alkyl)2;
(cc) C3-C6 cycloalkyl or heterocyclyl containing from 5-6 ring atoms, wherein from 1-2 of the ring atoms of the heterocyclyl is independently selected from N, NH, N(d-d alkyl), NC(0)(d-d alkyl), O, and S; and wherein each of said phenyl and heterocyclyl is optionally substituted with from 1-3 independently selected R ; and
(dd) phenyl or heteroaryl containing from 5-6 ring atoms, wherein from 1-2 of the ring atoms of the heteroaryl is independently selected from N, NH, N(d-d alkyl), O, and S; wherein each of said phenyl and heteroaryl is optionally substituted with from 1-3 substituents independently selected from halo; hydroxyl; cyano; nitro; -NH2; -NH(d-d alkyl), -N(d-C6 alkyl)2, -NHC(0)(d-C6 alkyl), d-d alkoxy; d-d haloalkoxy; d-C6 thioalkoxy; d-d thiohaloalkoxy; d-d alkyl, and d-d haloalkyl;
Rc at each occurrence is, independently selected from halo, d-d alkoxy, d-d thioalkoxy, d-d haloalkoxy, d-d thiohaloalkoxy, d-d alkyl, d-d haloalkyl, -NH2, -NH(d-d alkyl), -N(d-d alkyl)2, -NHC(0)(d-d alkyl), and cyano;
Rd at each occurrence is, independently selected from hydroxyl, d-d alkoxy, d-d thioalkoxy, d-C6 haloalkoxy, d-d thiohaloalkoxy, d-C6 alkyl, d-d haloalkyl, -NH2, -NH(d- d alkyl), -N(d-d alkyl)2, -NHC(0)(d-C6 alkyl), and cyano; and
Re at each occurrence is, independently selected from hydroxyl, d-d alkoxy; d-d thioalkoxy; d-d haloalkoxy; d-d thiohaloalkoxy; -NH2; -NH(d-d alkyl); -N(d-d alkyl)2; -NHC(0)(d-d alkyl); cyano; -C(0)H; -C(0)(d-d alkyl); -C(0)(d-d haloalkyl); -C(0)OH; -C(0)0(Ci-d alkyl); -C(0)NH2; -C(0)NH(d-d alkyl); -C(0)N(d-d alkyl)2; -S02(d-d alkyl); -SO2NH2; -S02NH(Ci-C6 alkyl); -S02N(Ci-C6 alkyl)2; and L3-(Ci-C6 alkylene)-Cy, where in L3 is a -0-, -NH-, -NCH3-, -C(0)-, -C(0)NH-, -C(0)NCH3-, -NHC(O)-, or -NCH3C(0)-, and Cy is a saturated, partially unsaturated or aromatic carbocyclic or heterocyclic ring system; provided that when R and R' are defined according to definition (3), then:
(i) each of L1 and L2 must be C1-C3 alkylene, which is optionally substituted with from 1-2 independently selected Rc when A is CH2; or
(ii) Z must be other than heteroaryl containing from 5-14, 5-6 or 6 ring atoms, wherein from 1-6 of the ring atoms is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl is optionally substituted with from 1 -4 independently selected Rb, other than substituted pyridyl, other than pyridyl substituted with C1-C3 alkyl or -CH3, or other than 2 or 6- methylpyridyl. or a pharmaceutically acceptable salt thereof.
2. The method of claim 1, wherein said post-natal mammalian neurogenesis includes hippocampal and/or hypothalamic neurogenesis.
3. The method of claim 1 , wherein said neuronal cell death includes hippocampal and/or hypothalamic neuronal cell death.
4. The method of claim 1, wherein R3 is selected from halo, hydroxyl, sulfhydryl, Ci- C6 alkoxy, Ci-C6 thioalkoxy, Ci-C6 haloalkoxy, Ci-C6 thiohaloalkoxy, Ci-C6 alkyl, Ci-C6 haloalkyl, C2-C6 alkynyl, cyclopropyl, -N3, cyano, -NH2, -NH(d-C6 alkyl), -N(Ci-C6 alkyl)2, - NHC(0)(Ci-C6 alkyl), and nitro.
5. The method of claim 1, wherein R3 is halo.
6. The method of claim 1 , wherein R3 is bromo.
7. The method of claim 1, wherein each of R1, R2, and R4 is hydrogen.
8. The method of claim 1, wherein R and R' together with C2 and C3, respectively, form a fused phenyl ring having formula (II):
Figure imgf000262_0001
(II).
9. The method of claim 1 , wherein R6 is selected from halo, hydroxyl, sulfhydryl, Ci- Ce alkoxy, C1-C6 thioalkoxy, C1-C6 haloalkoxy, C1-C6 thiohaloalkoxy, C1-C6 alkyl, C1-C6 haloalkyl, C2-C6 alkynyl, cyclopropyl, -N3, cyano, -NH2, -NH(Ci-C6 alkyl), -N(Ci-C6 alkyl)2, -NHC(0)(Ci-C6 alkyl), and nitro.
10. The method of claim 1 , wherein R6 is halo or C1-C6 alkyl.
1 1. The method of claim 1 , wherein each of R5, R7, and R8 is hydrogen.
12. The method of claim 1 , wherein R and R' together with C2 and C3, respectively, form a fused heteroaryl ring containing from 5-6 ring atoms, wherein from 1-2 of the ring atoms is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl ring is optionally substituted with from 1-3 independently selected Rb.
13. The method of claim 1 , wherein R and R' together with C2 and C3, respectively, form a fused heteroaryl ring containing 6 ring atoms, wherein from 1-2 independently selected ring atoms is N; and wherein said heteroaryl ring is optionally substituted with from 1-2 independently selected Rb.
14. The method of claim 1 , wherein R and R' together with C2 and C3, respectively, form a fused heterocyclic ring containing from 5-6 ring atoms, wherein from 1 -2 of the ring atoms is independently selected from N, NH, N(Ci-C6 alkyl), NC(0)(Ci-C6 alkyl), O, and S; and wherein said heterocyclic ring is optionally substituted with from 1 -3 independently selected R .
15. The method of claim 1 , wherein R and R' together with C2 and C3, respectively, form a fused heterocyclic ring containing 6 ring atoms, wherein from 1 -2 of the ring atoms is independently selected from N, NH, (Ci-C6 alkyl), and NC(0)(Ci-C6 alkyl); and wherein said heterocyclic ring is optionally substituted with from 1 -3 independently selected R .
16. The method of claim 1 , wherein each of R and R' is, independently, hydrogen, Ci- Ce alkyl, or C1-C6 haloalkyl.
17. The method of claim 1 , wherein each of L1 and L2 is, independently, C1-C3 straight chain alkylene, which is optionally substituted with from 1-2 independently selected Rc.
18. The method of claim 1 , wherein A is CR R , wherein each of R and R is, independently, hydrogen, halo, C1-C3 alkyl, OR9, or double bond formed between A and one of L1 and L2.
19. The method of claim 18, wherein the carbon attached to R and R is substituted with four different substituents.
20. The method of claim 19, wherein the carbon attached to R and R is (R) configured.
21. The method of claim 20, wherein the (R) configured formula (I) compound is substantially free of a formula (I) compound that is S configured at the carbon atom attached to RA1 and RA2.
22. The method of claim 19, wherein the carbon attached to R and R is (S) configured.
23. The method of claim 22, wherein the (S) configured formula (I) compound is substantially free of a formula (I) compound that is (R) configured at the carbon atom attached to
RA1 and RA2.
24. The method of claim 19, wherein the formula (I) compound is (+) (dextrorotatory).
25. The method of claim 24, wherein the (+) (dextrorotatory) compound is substantially free of a formula (I) compound that is (-) (levororotatory).
26. The method of claim 19, wherein the formula (I) compound is (-) (levororotatory).
27. The method of claim 24, wherein the (-) (levororotatory) compound is substantially free of a formula (I) compound that is (+) (dextrorotatory).
28. The method of claim 1, wherein Z is -NR10Rn.
29. The method of claim 28, wherein one of R10 and R11 is:
(b) C6-C10 aryl that is optionally substituted with from 1-4 Rb; or
(c) heteroaryl containing from 5-14 ring atoms, wherein from 1-6 of the ring atoms is independently selected from N, NH, (Ci-C3 alkyl), O, and S; and wherein said heteroaryl is optionally substituted with from 1-4 Rb;
and the other of R10 and R11 is hydrogen or C1-C6 alkyl.
30. The method of claim 1, wherein Z is -OR12 or -S(0)nR13.
31. The method of claim 1 , wherein Z is -OR .
32. The method of claim 1, wherein R is C6-C10 aryl that is optionally substituted with from 1-4 Rb.
Figure imgf000264_0001
each of R1, R2, R3, and R4 is independently selected from hydrogen, halo, hydroxyl, sulfhydryl, C1-C6 alkoxy, C1-C6 thioalkoxy, C1-C6 haloalkoxy, C1-C6 thiohaloalkoxy, C1-C6 alkyl, Ci-Ce haloalkyl, C2-C6 alkynyl, cyclopropyl, -N3, cyano, -NH2, -NH(Ci-C6 alkyl), -N(Ci-C6 alkyl)2, -NHC(0)(Ci-C6 alkyl), and nitro;
R and R' are defined according to (1), (2) or (3) below:
(1) R and R' together with C2 and C3, respectively, form a fused phenyl ring having formula (II):
Figure imgf000265_0001
(Π)
wherein each of R5, R6, R7, and R8 is independently selected from hydrogen, halo, hydroxyl, sulfhydryl, C1-C6 alkoxy, C1-C6 thioalkoxy, C1-C6 haloalkoxy, C1-C6 thiohaloalkoxy, d- C6 alkyl, Ci-C6 haloalkyl, C2-C6 alkynyl, cyclopropyl, -N3, cyano, -NH2, -NH(Ci-C6 alkyl), -N(Ci- C6 alkyl)2, -NHC(0)(C C6 alkyl), and nitro; or
(2) R and R' together with C2 and C3, respectively, form a fused heteroaryl ring containing 6 ring atoms, wherein from 1-2 independently selected ring atoms is N; and wherein said heteroaryl ring is optionally substituted with from 1-2 independently selected Rb; or
(3) R and R' together with C2 and C3, respectively, form a fused heterocyclic ring containing from 5-6 ring atoms, wherein from 1-2 of the ring atoms is independently selected from N, NH, N(Ci-C6 alkyl), NC(0)(Ci-C6 alkyl), O, and S; and wherein said heterocyclic ring is optionally substituted with from 1-3 independently selected R ; each of L1 and L2 is, independently, C1-C3 alkylene, which is optionally substituted with from 1-2 independently selected Rc;
A is: (i) CR R , wherein each of R and R is independently selected from hydrogen, halo, C1-C3 alkyl, OR9, wherein R9 is hydrogen or C1-C3 alkyl that is optionally substituted with hydroxyl or C1-C3 alkoxy, or a double bond formed between A and one of L1 and L2; or
(ii) C=0; or
(iii) C3-C5 cycloalkylene that is (a) substituted with 1 oxo; and (b) optionally further substituted with from 1-4 independently selected R ; or
(iv) heterocycloalkylene containing from 3-5 ring atoms, wherein from 1-2 of the ring atoms is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heterocycloalkylene is (a) substituted with 1 oxo; and (b) is optionally further substituted with from 1-4 independently selected R ;
Z is:
(i) -NR10Rn; or
(ii) -C(O)NR10Rn; or
(iii) -OR12; or
(iv) -S(0)nR13, wherein n is 0, 1, or 2; or
(v) heterocycloalkenyl containing from 5-6 ring atoms, wherein from 1-3 of the ring atoms is independently selected from N, NH, N(Ci-C6 alkyl), NC(0)(Ci-C6 alkyl), O, and S; and wherein said heterocycloalkenyl is optionally substituted with from 1-4
independently selected R ; or
(vi) C6-C10 aryl that is optionally substituted with from 1-4 independently selected
Rb; or
(vii) heteroaryl containing from 5-14 ring atoms, wherein from 1-6 of the ring atoms is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl is optionally substituted with from 1-4 independently selected Rb; or
(viii) Cs-Ci4 arylcycloalkyl, wherein:
(1) the aryl portion is optionally substituted with from 1-4 independently selected Rb, and
(2) the cycloalkyl portion is optionally substituted with from 1 -4 independently selected R ;
or
(ix) arylheterocyclyl containing from 8-14 ring atoms, wherein: (1) the aryl portion from is optionally substituted with from 1-4
independently selected Rb, and
(2) from 1-2 of the ring atoms of the heterocyclyl portion is independently selected from N, NH, N(Ci-C6 alkyl), NC(0)(Ci-C6 alkyl), O, and S; and wherein said heterocyclyl portion is optionally substituted with from 1-3 independently selected R ;
or
(x) heteroarylheterocyclyl containing from 8-14 ring atoms, wherein:
(1) from 1-2 of the ring atoms of the heteroaryl portion is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl portion is optionally substituted with from 1-3 independently selected Rb; and
(2) from 1-2 of the ring atoms of the heterocyclyl portion is independently selected from N, NH, N(Ci-C6 alkyl), NC(0)(Ci-C6 alkyl), O, and S; and wherein said heterocyclyl portion is optionally substituted with from 1-3 independently selected R ;
or
(xi) heteroarylcycloalkyl containing from 8-14 ring atoms, wherein:
(1) from 1-2 of the ring atoms of the heteroaryl portion is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl portion is optionally substituted with from 1-3 independently selected Rb; and
(2) the cycloalkyl portion is optionally substituted with from 1 -4 independently selected R ; each of R10 and R11 is independently selected from the substituents delineated collectivelyrough (k) below:
(a) hydrogen;
(b) C6-C10 aryl that is optionally substituted with from 1-4 Rb;
(c) heteroaryl containing from 5-14 ring atoms, wherein from 1-6 of the ring atoms is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl is optionally substituted with from 1 -4 Rb;
(d) C1-C6 alkyl or C1-C6 haloalkyl, each of which is optionally substituted with from
1-3 Rd;
(e) -C(0)(Ci-C6 alkyl), -C(0)(Ci-C6 haloalkyl), or -C(0)0(Ci-C6 alkyl);
(f) C2-C6 alkenyl or C2-C6 alkynyl; (g) Cs-Ci4 arylcycloalkyl, wherein:
(1) the aryl portion is optionally substituted with from 1-4 independently selected Rb, and
(2) the cycloalkyl portion is optionally substituted with from 1 -4 independently selected R ;
(h) arylheterocyclyl containing from 8-14 ring atoms, wherein:
(1) the aryl portion from is optionally substituted with from 1-4 independently selected Rb, and
(2) from 1-2 of the ring atoms of the heterocyclyl portion is independently selected from N, NH, N(Ci-C6 alkyl), NC(0)(Ci-C6 alkyl), O, and S; and wherein said heterocyclyl portion is optionally substituted with from 1-3 independently selected R ;
(i) heteroarylheterocyclyl containing from 8-14 ring atoms, wherein:
(1) from 1-2 of the ring atoms of the heteroaryl portion is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl portion is optionally substituted with from 1-3 independently selected Rb; and
(2) from 1-2 of the ring atoms of the heterocyclyl portion is independently selected from N, NH, N(Ci-C6 alkyl), NC(0)(Ci-C6 alkyl), O, and S; and wherein said heterocyclyl portion is optionally substituted with from 1-3 independently selected R ;
(j) heteroarylcycloalkyl containing from 8-14 ring atoms, wherein:
(1) from 1-2 of the ring atoms of the heteroaryl portion is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl portion is optionally substituted with from 1-3 independently selected Rb; and
(2) the cycloalkyl portion is optionally substituted with from 1 -4 independently selected R ;
(k) C3-C8 cycloalkyl or C3-C8 cycloalkenyl, each of which is optionally substituted with from 1-4 independently selected R ; and
(1) C7-C12 aralkyl, wherein the aryl portion is optionally the aryl portion from is optionally substituted with from 1-4 independently selected Rb,
provided that one of R10 and R11 must be selected from (b), (c), (g), (h), (i), (j), and (i) C6-C10 aryl that is optionally substituted with from 1-4 Rb; or
(ii) heteroaryl containing from 5-14 ring atoms, wherein from 1-6 of the ring atoms is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl is optionally substituted with from 1 -4 Rb; or
(iii) C1-C6 alkyl or C1-C6 haloalkyl, each of which is substituted with from 1-3 Rd; or
(iv) C8-Ci4 arylcycloalkyl, wherein:
(1) the aryl portion is optionally substituted with from 1-4 independently selected Rb, and
(2) the cycloalkyl portion is optionally substituted with from 1 -4 independently selected R ;
or
(v) arylheterocyclyl containing from 8-14 ring atoms, wherein:
(1) the aryl portion from is optionally substituted with from 1-4 independently selected Rb, and
(2) from 1-2 of the ring atoms of the heterocyclyl portion is independently selected from N, NH, N(Ci-C6 alkyl), NC(0)(Ci-C6 alkyl), O, and S; and wherein said heterocyclyl portion is optionally substituted with from 1-3 independently selected R ;
or
(vi) heteroarylheterocyclyl containing from 8-14 ring atoms, wherein:
(1) from 1-2 of the ring atoms of the heteroaryl portion is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl portion is optionally substituted with from 1-3 independently selected Rb; and
(2) from 1-2 of the ring atoms of the heterocyclyl portion is independently selected from N, NH, N(Ci-C6 alkyl), NC(0)(Ci-C6 alkyl), O, and S; and wherein said heterocyclyl portion is optionally substituted with from 1-3 independently selected R ;
or
(vii) heteroarylcycloalkyl containing from 8-14 ring atoms, wherein:
(1) from 1-2 of the ring atoms of the heteroaryl portion is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl portion is optionally substituted with from 1-3 independently selected Rb; and
(2) the cycloalkyl portion is optionally substituted with from 1 -4 independently selected R ; (i) C6-C10 aryl that is optionally substituted with from 1-4 Rb; or
(ii) heteroaryl containing from 5-14 ring atoms, wherein from 1-6 of the ring atoms is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl is optionally substituted with from 1 -4 Rb; or
(iii) Cs-Ci4 arylcycloalkyl, wherein:
(1) the aryl portion is optionally substituted with from 1-4 independently selected Rb, and
(2) the cycloalkyl portion is optionally substituted with from 1 -4 independently selected R ;
or
(iv) arylheterocyclyl containing from 8-14 ring atoms, wherein:
(1) the aryl portion from is optionally substituted with from 1-4 independently selected Rb, and
(2) from 1-2 of the ring atoms of the heterocyclyl portion is independently selected from N, NH, N(Ci-C6 alkyl), NC(0)(Ci-C6 alkyl), O, and S; and wherein said heterocyclyl portion is optionally substituted with from 1-3 independently selected R ;
or
(v) heteroarylheterocyclyl containing from 8-14 ring atoms, wherein:
(1) from 1-2 of the ring atoms of the heteroaryl portion is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl portion is optionally substituted with from 1-3 independently selected Rb; and
(2) from 1-2 of the ring atoms of the heterocyclyl portion is independently selected from N, NH, N(Ci-C6 alkyl), NC(0)(Ci-C6 alkyl), O, and S; and wherein said heterocyclyl portion is optionally substituted with from 1-3 independently selected R ;
or
(vi) heteroarylcycloalkyl containing from 8-14 ring atoms, wherein:
(1) from 1-2 of the ring atoms of the heteroaryl portion is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl portion is optionally substituted with from 1-3 independently selected Rb; and (2) the cycloalkyl portion is optionally substituted with from 1 -4
independently selected R ;
R at each occurrence is, independently selected from halo, hydroxyl, d-d alkoxy, d-d thioalkoxy, d-d haloalkoxy, d-d thiohaloalkoxy, oxo, thioxo, =NH,
Figure imgf000271_0001
alkyl), d-d alkyl, d-d haloalkyl, -NH2, -NH(C C6 alkyl), -N(C C6 alkyl)2, -NHC(0)(C C6 alkyl), and cyano;
Rb at each occurrence is independently selected from the substituents delineated in (aa) through (dd) below:
(aa) C1-C6 alkoxy; d-d haloalkoxy; d-d thioalkoxy; d-d thiohaloalkoxy; -O- (CH2)1_3-[0(CH2)1.3]i-3-H; -d-d alkyl, d-d haloalkyl, -NH(d-d alkyl), -N(d-d alkyl)2, -NHC(0)(Ci-C6 alkyl), wherein the alkyl portion of each is optionally substituted with from 1-3 independently selected Re;
(bb) halo; hydroxyl; cyano; nitro; -NH2; azido; sulfhydryl; d-d alkenyl; d-d alkynyl; -C(0)H; -C(0)(Ci-d alkyl); -C(0)(Ci-C6 haloalkyl); -C(0)OH; -C(0)0(Ci-C6 alkyl); -C(0)NH2; -C(0)NH(Ci-d alkyl); -C(0)N(d-d alkyl)2; -S02(Ci-C6 alkyl);
-S02NH2; -S02NH(d-C6 alkyl); -S02N(d-C6 alkyl)2;
(cc) d-d cycloalkyl or heterocyclyl containing from 5-6 ring atoms, wherein from 1-2 of the ring atoms of the heterocyclyl is independently selected from N, NH, N(d-d alkyl), NC(0)(d-d alkyl), O, and S; and wherein each of said phenyl and heterocyclyl is optionally substituted with from 1-3 independently selected R ; and
(dd) phenyl or heteroaryl containing from 5-6 ring atoms, wherein from 1-2 of the ring atoms of the heteroaryl is independently selected from N, NH, N(d-d alkyl), O, and S; wherein each of said phenyl and heteroaryl is optionally substituted with from 1-3 substituents independently selected from halo; hydroxyl; cyano; nitro; -NH2; -NH(d-d alkyl), -N(d-C6 alkyl)2, -NHC(0)(d-C6 alkyl), d-d alkoxy; d-d haloalkoxy; d-C6 thioalkoxy; d-d thiohaloalkoxy; d-d alkyl, and d-d haloalkyl;
Rc at each occurrence is, independently selected from halo, d-d alkoxy, d-d thioalkoxy, d-d haloalkoxy, d-C6 thiohaloalkoxy, d-C6 alkyl, d-d haloalkyl, -NH2, -NH(d-d alkyl), -N(d-d alkyl)2, -NHC(0)(d-d alkyl), and cyano; Rd at each occurrence is, independently selected from hydroxyl, Ci-Ce alkoxy, Ci-Ce thioalkoxy, Ci-C6 haloalkoxy, Ci-C6 thiohaloalkoxy, Ci-C6 alkyl, Ci-C6 haloalkyl, -NH2, -NH(d- C6 alkyl), -N(Ci-C6 alkyl)2, -NHC(0)(Ci-C6 alkyl), and cyano; and
Re at each occurrence is, independently selected from hydroxyl, C1-C6 alkoxy; C1-C6 thioalkoxy; C C6 haloalkoxy; C C6 thiohaloalkoxy; -NH2; -NH(C C6 alkyl); -N(C C6 alkyl)2; -NHC(0)(Ci-C6 alkyl); cyano; -C(0)H; -C(0)(Ci-C6 alkyl); -C(0)(Ci-C6 haloalkyl); -C(0)OH; -C(0)0(Ci-C6 alkyl); -C(0)NH2; -C(0)NH(Ci-C6 alkyl); -C(0)N(Ci-C6 alkyl)2; -S02(Ci-C6 alkyl); -S02NH2; -S02NH(C C6 alkyl); -S02N(C C6 alkyl)2; and L3-(C C6 alkylene)-biotin, where in L3 is a -0-, -NH-, -NCH3-, -C(O)-, -C(0)NH-, -C(0)NCH3-, -NHC(O)-, or -NCH3C(0)-; or a pharmaceutically acceptable salt thereof; provided that R3 and R6 cannot both be hydrogen when A is CH2, and R and R' are defined according to definition (1);
provided that R3 cannot be hydrogen when A is CH2, and R and R' are defined according to definition (2);
provided that R3 and R6 cannot both be chloro when A is CH2, R and R' are defined according to definition (1), Z is -OR12, and R12 is unsubstituted phenyl;
provided that R3 and R6 cannot both be bromo when A is CH2, R and R' are defined according to definition (1), Z is -OR12, and R12 is phenyl that is substituted with pyridyl or alkyl that is substituted with from 1 -3 Re;
provided that R3 and R6 cannot both be hydrogen when A is CH(CH3), R and R' are defined according to definition (1), Z is NR10Rn, R10 is CH3, and R11 is unsubstituted phenyl; and
provided that when A is CRA1RA2, and one of RA1and RA2 is OH, then the other of RA1and RA2 is C1-C3 alkyl.
34. The compound of claim 33, wherein A is:
(i) CRA1RA2, wherein each of RA1 and RA2 is independently selected from hydrogen, halo, Ci-C3 alkyl, OR9 wherein R9 is hydrogen or Ci-C3 alkyl that is optionally substituted with hydroxyl or Ci-C3 alkoxy, and a double bond formed between A and one of L1 and L2; or
(ii) C=0.
35. The compound of claim 33, wherein A is CR R , wherein each of R and R is, independently, hydrogen, halo, C1-C3 alkyl, OR9, or a double bond formed between A and one of L1 and L2.
36. The compound of claim 33, wherein A is CRA1RA2, wherein each of RA1 and RA2 is, independently, hydrogen, halo, C1-C3 alkyl, or OR9.
37. The compound of claim 33, wherein one of RA1 and RA2 is halo, and the other of RA1 and RA2 is hydrogen, halo, or C1-C3 alkyl.
38. The compound of claim 33, wherein one of RA1 and RA2 is halo, and the other of RA1 and RA2 is hydrogen or halo.
39. The compound of claim 33, wherein one of RA1 and RA2 is fluoro, and the other of RA1 and RA2 is hydro gen or fluoro.
40. The compound of claim 33, wherein one of RA1 and RA2 is OR9; and the other of RA1 and RA2 is C1-C3 alkyl.
41. The compound of claim 33, wherein one of RA1 and RA2 is OH; and the other of RA1 and RA2 is CH3.
42. The compound according to claim 36, wherein the carbon attached to RA1 and RA2 is substituted with four different substituents.
43. The compound of claim 42, wherein the carbon attached to RA1 and RA2 is (R) configured.
44. The compound of claim 43, wherein the (R) configured formula (I) compound is substantially free of a formula (I) compound that is S configured at the carbon atom attached to RA1 and RA2.
45. The compound of claim 42, wherein the carbon attached to RA1 and RA2 is (S) configured.
46. The compound of claim 45, wherein the (S) configured formula (I) compound is substantially free of a formula (I) compound that is (R) configured at the carbon atom attached to RA1 and RA2.
47. The compound of claim 42, wherein the formula (I) compound is (+)
(dextrorotatory).
48. The compound of claim 47, wherein the (+) (dextrorotatory) compound is substantially free of a formula (I) compound that is (-) (levororotatory).
49. The compound of claim 42, wherein the formula (I) compound is (-)
(levororotatory).
50. The compound of claim 49, wherein the (-) (levororotatory) compound is substantially free of a formula (I) compound that is (+) (dextrorotatory).
51. The compound of claim 33, wherein R3 is selected from halo, hydroxyl, sulfhydryl, C1-C6 alkoxy, C1-C6 thioalkoxy, C1-C6 haloalkoxy, C1-C6 thiohaloalkoxy, C1-C6 alkyl, C1-C6 haloalkyl, C2-C6 alkynyl, cyclopropyl, -N3, cyano, -NH2, -NH(Ci-C6 alkyl), -N(Ci-C6 alkyl)2, -NHC(0)(Ci-C6 alkyl), and nitro.
52. The compound of claim 33, wherein R3 is halo.
53. The compound of claim 33, wherein R3 is bromo.
54. The compound of claim 33, wherein R and R' together with C2 and C3, respectively, form a fused phenyl ring having formula (II):
Figure imgf000274_0001
(II).
55. The compound of claim 33, wherein R6 is selected from halo, hydroxyl, sulfhydryl, C1-C6 alkoxy, Ci-Ce thioalkoxy, C1-C6 haloalkoxy, C1-C6 thiohaloalkoxy, C1-C6 alkyl, C1-C6 haloalkyl, C2-C6 alkynyl, cyclopropyl, -N3, cyano, -NH2, -NH(Ci-C6 alkyl), -N(Ci-C6 alkyl)2, -NHC(0)(Ci-C6 alkyl), and nitro.
56. The compound of claim 33, wherein R6 is halo or C1-C6 alkyl.
57. The compound of claim 33, wherein Z is:
(i) -NR10Rn; or
(ii) -C(O)NR10Rn; or
(iii) -OR12; or
(iv) -S(0)nR13, wherein n is 0, 1 , or 2.
58. A com ound having formula (I):
Figure imgf000275_0001
(I)
wherein: each of R1, R2, R3, and R4 is independently selected from hydrogen, halo, hydroxyl, sulfhydryl, C1-C6 alkoxy, C1-C6 thioalkoxy, C1-C6 haloalkoxy, C1-C6 thiohaloalkoxy, C1-C6 alkyl, Ci-Ce haloalkyl, C2-C6 alkynyl, cyclopropyl, -N3, cyano, -NH2, -NH(Ci-C6 alkyl), -N(Ci-C6 alkyl)2, -NHC(0)(Ci-C6 alkyl), and nitro;
R and R' are defined according to (1) or (2) below: (1) R and R' together with C2 and C3, respectively, form a fused phenyl ring having formula (II):
Figure imgf000276_0001
(Π)
wherein each of R5, R6, R7, and R8 is independently selected from hydrogen, halo, hydroxyl, sulfhydryl, C1-C6 alkoxy, C1-C6 thioalkoxy, C1-C6 haloalkoxy, C1-C6 thiohaloalkoxy, d- C6 alkyl, Ci-C6 haloalkyl, C2-C6 alkynyl, cyclopropyl, -N3, cyano, -NH2, -NH(Ci-C6 alkyl), -N(Ci- C6 alkyl)2, -NHC(0)(Ci-C6 alkyl), and nitro; or
(2) R and R' together with C2 and C3, respectively, form a fused R and R' together with C2 and C3, respectively, form a fused heteroaryl ring containing 6 ring atoms, wherein from 1-2 independently selected ring atoms is N; and wherein said heteroaryl ring is optionally substituted with from 1-2 independently selected Rb; each of L1 and L2 is, independently, C1-C3 alkylene, which is optionally substituted with from 1-2 independently selected Rc;
A is CRA1RA2, wherein one of RA1 and RA2 is -OH, and the other of RA1 and RA2 is hydrogen or C1-C3 alkyl;
Z is -OR12 or -S(0)nR13, wherein n is 0, 1, or 2; each of R12 and R13 is:
(i) C6-C10 aryl that is optionally substituted with from 1-4 Rb; or
(ii) heteroaryl containing from 5-14 ring atoms, wherein from 1-6 of the ring atoms is independently selected from N, NH, (Ci-C3 alkyl), O, and S; and wherein said heteroaryl is optionally substituted with from 1 -4 Rb; or (iii) C1-C6 alkyl or Ci-Ce haloalkyl (e.g., Ci-Ce alkyl), each of which is substituted with from 1 -3 Rd; or
(iv) Cs-Ci4 arylcycloalkyl, wherein:
(1) the aryl portion is optionally substituted with from 1 -4 independently selected Rb, and
(2) the cycloalkyl portion is optionally substituted with from 1 -4
independently selected R ;
or
(v) arylheterocyclyl containing from 8-14 ring atoms, wherein:
(1) the aryl portion from is optionally substituted with from 1 -4
independently selected Rb, and
(2) from 1 -2 of the ring atoms of the heterocyclyl portion is independently selected from N, NH, N(Ci-C6 alkyl), NC(0)(Ci-C6 alkyl), O, and S; and wherein said heterocyclyl portion is optionally substituted with from 1-3 independently selected R ;
or
(vi) heteroarylheterocyclyl containing from 8- 14 ring atoms, wherein:
(1) from 1 -2 of the ring atoms of the heteroaryl portion is independently selected from N, NH, (Ci-C3 alkyl), O, and S; and wherein said heteroaryl portion is optionally substituted with from 1-3 independently selected Rb; and
(2) from 1 -2 of the ring atoms of the heterocyclyl portion is independently selected from N, NH, N(Ci-C6 alkyl), NC(0)(Ci-C6 alkyl), O, and S; and wherein said heterocyclyl portion is optionally substituted with from 1-3 independently selected R ;
or
(vii) heteroarylcycloalkyl containing from 8-14 ring atoms, wherein:
(1) from 1 -2 of the ring atoms of the heteroaryl portion is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl portion is optionally substituted with from 1-3 independently selected Rb; and
(2) the cycloalkyl portion is optionally substituted with from 1 -4
independently selected R ;
R at each occurrence is, independently selected from halo, hydroxyl, C1-C6 alkoxy, C1-C6 thioalkoxy, C1-C6 haloalkoxy, C1-C6 thiohaloalkoxy, oxo, thioxo, =NH, =N(Ci-C6 alkyl), C1-C6 alkyl, Ci-C6 haloalkyl, -NH2, -NH(Ci-C6 alkyl), -N(Ci-C6 alkyl)2, -NHC(0)(Ci-C6 alkyl), and cyano;
Rb at each occurrence is independently selected from the substituents delineated in (aa) through (dd) below:
(aa) Ci-C6 alkoxy; Ci-C6 haloalkoxy; Ci-C6 thioalkoxy; Ci-C6 thiohaloalkoxy; -O- (CH2)1_3-[0(CH2)1.3]i-3-H; d-d alkyl, d-d haloalkyl, -NH(d-d alkyl), -N(d-d alkyl)2, -NHC(0)(d-d alkyl), wherein the alkyl portion of each is optionally substituted with from 1-3 independently selected Re;
(bb) halo; hydroxyl; cyano; nitro; -NH2; azido; sulfhydryl; -d alkenyl; d-d alkynyl; -C(0)H; -C(0)(Ci-d alkyl); -C(0)(d-d haloalkyl); C(0)OH; -C(0)0(Ci-C6 alkyl); -C(0)NH2; -C(0)NH(Ci-d alkyl); -C(0)N(Ci-C6 alkyl)2; -S02(Ci-C6 alkyl);
-S02NH2; -S02NH(d-C6 alkyl); -S02N(d-d alkyl)2;
(cc) C3-C6 cycloalkyl or heterocyclyl containing from 5-6 ring atoms, wherein from 1-2 of the ring atoms of the heterocyclyl is independently selected from N, NH, N(d-d alkyl), NC(0)(d-d alkyl), O, and S; and wherein each of said phenyl and heterocyclyl is optionally substituted with from 1-3 independently selected R ; and
(dd) phenyl or heteroaryl containing from 5-6 ring atoms, wherein from 1-2 of the ring atoms of the heteroaryl is independently selected from N, NH, N(d-d alkyl), O, and S; wherein each of said phenyl and heteroaryl is optionally substituted with from 1-3 substituents independently selected from halo; hydroxyl; cyano; nitro; -NH2; -NH(d-d alkyl), -N(d-C6 alkyl)2, -NHC(0)(d-C6 alkyl), d-d alkoxy; d-d haloalkoxy; d-C6 thioalkoxy; d-d thiohaloalkoxy; d-d alkyl, and d-d haloalkyl;
Rc at each occurrence is, independently selected from halo, d-d alkoxy, d-d thioalkoxy, d-d haloalkoxy, d-C6 thiohaloalkoxy, d-C6 alkyl, d-d haloalkyl, -NH2, -NH(d-d alkyl), -N(d-d alkyl)2, -NHC(0)(d-d alkyl), and cyano;
Rd at each occurrence is, independently selected from hydroxyl, d-d alkoxy, d-d thioalkoxy, d-C6 haloalkoxy, d-d thiohaloalkoxy, d-C6 alkyl, d-d haloalkyl, -NH2, -NH(d- d alkyl), -N(d-d alkyl)2, -NHC(0)(d-C6 alkyl), and cyano; and
Re at each occurrence is, independently selected from hydroxyl, d-d alkoxy; d-d thioalkoxy; d-d haloalkoxy; d-d thiohaloalkoxy; -NH2; -NH(d-d alkyl); -N(d-d alkyl)2; -NHC(0)(Ci-C6 alkyl); cyano; -C(0)H; -C(0)(Ci-C6 alkyl); -C(0)(Ci-C6 haloalkyl); -C(0)OH; -C(0)0(Ci-C6 alkyl); -C(0)NH2; -C(0)NH(Ci-C6 alkyl); -C(0)N(Ci-C6 alkyl)2; -S02(Ci-C6 alkyl); -SO2NH2; -S02NH(Ci-C6 alkyl); -S02N(Ci-C6 alkyl)2; and L3-(Ci-C6 alkylene)-biotin, where in L3 is a -0-, -NH-, -NCH3-, -C(O)-, -C(0)NH-, -C(0)NCH3-, -NHC(O)-, or -NCH3C(0)-; or a pharmaceutically acceptable salt thereof; provided that R3 and R6 cannot both be hydrogen when R and R' are defined according to definition (1);
provided that R3 and R6 cannot both be chloro when R and R' are defined according to definition (1), Z is -OR12, and R12 is phenyl substituted with chloro, formyl, or -NHC(0)CH3; provided that R3 and R6 cannot both be bromo when R and R' are defined according to definition (1), Z is -OR12, and R12 is phenyl substituted with -NHC(0)CH3; and
provided that R3 and R6 cannot both be bromo when R and R' are defined according to definition (1), Z is -SR13, and R13 is phenyl substituted with -OH.
59. The compound of claim 58, wherein one of RA1 and RA2 is -OH, and the other of RA1 and RA2 is hydrogen.
60. The compound of claim 58, wherein the carbon attached to RA1 and RA2 is substituted with four different substituents.
61. The compound of claim 60, wherein the carbon attached to RA1 and RA2 is (R) configured.
62. The compound of claim 61, wherein the (R) configured formula (I) compound is substantially free of a formula (I) compound that is S configured at the carbon atom attached to RA1 and RA2.
63. The compound of claim 60, wherein the carbon attached to RA1 and RA2 is (S) configured.
64. The compound of claim 63, wherein the (S) configured formula (I) compound is substantially free of a formula (I) compound that is (R) configured at the carbon atom attached to
RA1 and RA2.
65. The compound of claim 60, wherein the formula (I) compound is (+)
(dextrorotatory).
66. The compound of claim 65, wherein the (+) (dextrorotatory) compound is substantially free of a formula (I) compound that is (-) (levororotatory).
67. The compound of claim 60, wherein the formula (I) compound is (-)
(levororotatory).
68. The compound of claim 67, wherein the (-) (levororotatory) compound is substantially free of a formula (I) compound that is (+) (dextrorotatory).
69. The compound of claim 58, wherein R3 is selected from halo, hydroxyl, sulfhydryl, C1-C6 alkoxy, C1-C6 thioalkoxy, C1-C6 haloalkoxy, C1-C6 thiohaloalkoxy, C1-C6 alkyl, C1-C6 haloalkyl, C2-C6 alkynyl, cyclopropyl, -N3, cyano, -NH2, -NH(Ci-C6 alkyl), -N(Ci-C6 alkyl)2, -NHC(0)(Ci-C6 alkyl), and nitro.
70. The compound of claim 58, wherein R3 is halo.
71. The compound of claim 58, wherein R3 is bromo.
73. The compound of claim 58, wherein R and R' together with C2 and C3, respectively, form a fused phenyl ring having formula (II):
Figure imgf000280_0001
(II).
74. The compound of claim 58, wherein R6 is selected from halo, hydroxyl, sulfhydryl, C1-C6 alkoxy, Ci-Ce thioalkoxy, C1-C6 haloalkoxy, C1-C6 thiohaloalkoxy, C1-C6 alkyl, C1-C6 haloalkyl, C2-C6 alkynyl, cyclopropyl, -N3, cyano, -NH2, -NH(Ci-C6 alkyl), -N(Ci-C6 alkyl)2, -NHC(0)(Ci-C6 alkyl), and nitro.
75. The compound of claim 58, wherein R6 is halo or C1-C6 alkyl.
76. The compound of claim 58, wherein Z is -OR12.
77. The compound of claim 76, wherein R12 is C6-C10 aryl that is optionally substituted with from 1 -4 Rb.
A com ound having formula (I):
Figure imgf000281_0001
(I)
wherein: each of R1, R2, R3, and R4 is independently selected from hydrogen, halo, hydroxyl, sulfhydryl, C1-C6 alkoxy, C1-C6 thioalkoxy, C1-C6 haloalkoxy, C1-C6 thiohaloalkoxy, C1-C6 alkyl, Ci-Ce haloalkyl, C2-C6 alkynyl, cyclopropyl, -N3, cyano, -NH2, -NH(Ci-C6 alkyl), -N(Ci-C6 alkyl)2, -NHC(0)(Ci-C6 alkyl), and nitro;
R and R' together with C2 and C3, respectively, form a fused heterocyclic ring containing from 5-6 ring atoms, wherein from 1 -2 of the ring atoms is independently selected from N, NH, (Ci-C6 alkyl), NC(0)(Ci-C6 alkyl), O, and S; and wherein said heterocyclic ring is optionally substituted with from 1-3 independently selected R ; each of L1 and L2 is, independently, C1-C3 alkylene, which is optionally substituted with from 1-2 independently selected Rc;
A is:
(i) CRA1RA2, wherein one of RA1 and R^ is independently selected from hydrogen, halo, C1-C3 alkyl, OR9 and a double bond formed between A and one of L1 and L2; and the other of RA1 and RA2 is independently selected from halo, C1-C3 alkyl, OR9 and a double bond formed between A and one of L1 and L2; wherein R9 is hydrogen or C1-C3 alkyl that is optionally substituted with hydroxyl or C1-C3 alkoxy; or
(ii) C=0;
Z is:
(i) -NR10Rn; or
(ii) -C(O)NR10Rn; or
(iii) -OR12; or
(iv) -S(0)nR13, wherein n is 0, 1, or 2; or
(vi) C6-C10 aryl that is optionally substituted with from 1-4 independently selected
Rb; or
(vii) heteroaryl containing from 5-14 ring atoms, wherein from 1-6 of the ring atoms is independently selected from N, NH, (Ci-C3 alkyl), O, and S; and wherein said heteroaryl is optionally substituted with from 1-4 independently selected Rb; or each of R10 and R11 is independently selected from the substituents delineated collectively in (a) through (k) below:
(a) hydrogen;
(b) C6-C10 aryl that is optionally substituted with from 1-4 Rb;
(c) heteroaryl containing from 5-14 ring atoms, wherein from 1-6 of the ring atoms is independently selected from N, NH, (Ci-C3 alkyl), O, and S; and wherein said heteroaryl is optionally substituted with from 1 -4 Rb;
(d) C1-C6 alkyl or C1-C6 haloalkyl, each of which is optionally substituted with from
1-3 Rd;
(e) -C(0)(Ci-C6 alkyl), -C(0)(Ci-C6 haloalkyl), or -C(0)0(Ci-C6 alkyl);
(f) C2-C6 alkenyl or C2-C6 alkynyl; and
(1) C7-C12 aralkyl, wherein the aryl portion is optionally the aryl portion from is optionally substituted with from 1-4 independently selected Rb,
provided that one of R10 and R11 must be selected from (b) and (c);
R12 is:
(i) C6-C10 aryl that is optionally substituted with from 1-4 Rb; or
(ii) heteroaryl containing from 5-14 ring atoms, wherein from 1-6 of the ring atoms is independently selected from N, NH, N(d-d alkyl), O, and S; and wherein said heteroaryl is optionally substituted with from 1 -4 Rb;
R13 is:
(i) C6-C10 aryl that is optionally substituted with from 1-4 Rb; or
(ii) heteroaryl containing from 5-14 ring atoms, wherein from 1-6 of the ring atoms is independently selected from N, NH, (Ci-C3 alkyl), O, and S; and wherein said heteroaryl is optionally substituted with from 1 -4 Rb;
R at each occurrence is, independently selected from halo, hydroxyl, C1-C6 alkoxy, C1-C6 thioalkoxy, C1-C6 haloalkoxy, C1-C6 thiohaloalkoxy, oxo, thioxo, =NH,
Figure imgf000283_0001
alkyl), C1-C6 alkyl, Ci-C6 haloalkyl, -NH2, -NH(Ci-C6 alkyl), -N(Ci-C6 alkyl)2, -NHC(0)(Ci-C6 alkyl), and cyano;
Rb at each occurrence is independently selected from the substituents delineated in (aa) through (dd) below:
(aa) C1-C6 alkoxy; C1-C6 haloalkoxy; C1-C6 thioalkoxy; C1-C6 thiohaloalkoxy; - 0(CH2)1_3[0(CH2)1.3]i-3H; d-d alkyl, d-d haloalkyl, -NH(d-d alkyl), -N(d-d alkyl)2, -NHC(0)(Ci-C6 alkyl), wherein the alkyl portion of each is optionally substituted with from 1-3 independently selected Re;
(bb) halo; hydroxyl; cyano; nitro; -NH2; azido; sulfhydryl; -d alkenyl; d-d alkynyl; -C(0)H; -C(0)(Ci-d alkyl); -C(0)(Ci-C6 haloalkyl); -C(0)OH; -C(0)0(Ci-C6 alkyl); -C(0)NH2; -C(0)NH(d-C6 alkyl); -C(0)N(Ci-C6 alkyl)2; -S02(Ci-C6 alkyl); - S02NH2; -S02NH(d-d alkyl); -S02N(d-d alkyl)2; (cc) C3-C6 cycloalkyl or heterocyclyl containing from 5-6 ring atoms, wherein from 1-2 of the ring atoms of the heterocyclyl is independently selected from N, NH, (Ci-C6 alkyl), NC(0)(Ci-C6 alkyl), O, and S; and wherein each of said phenyl and heterocyclyl is optionally substituted with from 1-3 independently selected R ; and
(dd) phenyl or heteroaryl containing from 5-6 ring atoms, wherein from 1-2 of the ring atoms of the heteroaryl is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; wherein each of said phenyl and heteroaryl is optionally substituted with from 1-3 substituents independently selected from halo; hydroxyl; cyano; nitro; -NH2; -NH(Ci-C6 alkyl), -N(C C6 alkyl)2, -NHC(0)(C C6 alkyl), C C6 alkoxy; C C6 haloalkoxy; C C6 thioalkoxy; C1-C6 thiohaloalkoxy; C1-C6 alkyl, and C1-C6 haloalkyl;
Rc at each occurrence is, independently selected from halo, C1-C6 alkoxy, C1-C6 thioalkoxy, Ci-Ce haloalkoxy, Ci-C6 thiohaloalkoxy, Ci-C6 alkyl, Ci-C6 haloalkyl, -NH2, -NH(Ci-C6 alkyl), -N(Ci-C6 alkyl)2, -NHC(0)(Ci-C6 alkyl), and cyano;
Rd at each occurrence is, independently selected from hydroxyl, C1-C6 alkoxy, C1-C6 thioalkoxy, Ci-C6 haloalkoxy, Ci-C6 thiohaloalkoxy, Ci-C6 alkyl, Ci-C6 haloalkyl, -NH2, -NH(Ci- C6 alkyl), -N(Ci-C6 alkyl)2, -NHC(0)(Ci-C6 alkyl), and cyano; and
Re at each occurrence is, independently selected from hydroxyl, C1-C6 alkoxy; C1-C6 thioalkoxy; d-C6 haloalkoxy; Ci-C6 thiohaloalkoxy; -NH2; -NH(Ci-C6 alkyl); -N(Ci-C6 alkyl)2; -NHC(0)(Ci-C6 alkyl); cyano; -C(0)H; -C(0)(Ci-C6 alkyl); -C(0)(Ci-C6 haloalkyl); -C(0)OH; - C(0)0(C C6 alkyl); -C(0)NH2; -C(0)NH(C C6 alkyl); -C(0)N(C C6 alkyl)2; -S02(C C6 alkyl); -S02NH2; -S02NH(C C6 alkyl); -S02N(C C6 alkyl)2; and L3-(C C6 alkylene)-biotin, where in L3 is a -0-, -NH-, -NCH3-, -C(O)-, -C(0)NH-, -C(0)NCH3-, -NHC(O)-, or -NCH3C(0)-; or a pharmaceutically acceptable salt thereof.
79. The compound of claim 78, wherein R and R' together with C2 and C3, respectively, form a fused heterocyclic ring containing 6 ring atoms, wherein from 1 -2 of the ring atoms is independently selected from N, NH, N(Ci-C6 alkyl), and NC(0)(Ci-C6 alkyl); and wherein said heterocyclic ring is optionally substituted with from 1-3 independently selected R .
80. The compound of claim 78, wherein R3 is selected from halo, hydroxyl, sulfhydryl, C1-C6 alkoxy, Ci-Ce thioalkoxy, Ci-Ce haloalkoxy, Ci-Ce thiohaloalkoxy, Ci-Ce alkyl, Ci-Ce haloalkyl, C2-C6 alkynyl, cyclopropyl, -N3, cyano, -NH2, -NH(Ci-C6 alkyl), -N(Ci-C6 alkyl)2, - NHC(0)(Ci-C6 alkyl), and nitro.
81. The compound of claim 78, wherein R3 is Ci-C6 alkyl.
82. The compound of claim 78, wherein A is CR R , wherein one of R and R is independently selected from hydrogen, halo, C1-C3 alkyl, OR9 and double bond formed between A and one of L1 and L2; and the other of RA1 and R^ is independently selected from halo, C1-C3 alkyl, OR9 and double bond formed between A and one of L1 and L2; wherein R9 is hydrogen or Ci- C3 alkyl that is optionally substituted with hydroxyl or C1-C3 alkoxy.
83. The compound of claim 82, wherein one of RA1 and RA2 is OR9, and the other is hydrogen, wherein R9 is hydrogen.
84. The compound of claim 78, wherein the carbon attached to R and R is substituted with four different substituents.
85. The compound of claim 84, wherein the carbon attached to R and R is (R) configured.
86. The compound of claim 85, wherein the (R) configured formula (I) compound is substantially free of a formula (I) compound that is S configured at the carbon atom attached to R' and RA2.
87. The compound of claim 84, wherein the carbon attached to RA1 and RA2 is (S) configured.
The compound of claim 87, wherein the (S) configured formula (I) compound is free of a formula (I) compound that is (R) configured at the carbon atom attached to
89. The compound of claim 84, wherein the formula (I) compound is (+)
(dextrorotatory).
90. The compound of claim 89, wherein the (+) (dextrorotatory) compound is substantially free of a formula (I) compound that is (-) (levororotatory).
91. The compound of claim 84, wherein the formula (I) compound is (-)
(levororotatory).
92. The compound of claim 91, wherein the (-) (levororotatory) compound is substantially free of a formula (I) compound that is (+) (dextrorotatory).
93. The compound of claim 78, wherein Z is -NR10Rn, wherein one of R10 and R11 is:
(b) C6-C10 aryl that is optionally substituted with from 1-4 Rb; or
(c) heteroaryl containing from 5-14 ring atoms, wherein from 1-6 of the ring atoms is independently selected from N, NH, (Ci-C3 alkyl), O, and S; and wherein said heteroaryl is optionally substituted with from 1-4 Rb;
and the other of R10 and R11 is hydrogen or C1-C6 alkyl.
A com ound having formula (I)
Figure imgf000286_0001
(I)
wherein: each of R1, R2, R3, and R4 is independently selected from hydrogen, halo, hydroxyl, sulfhydryl, C1-C6 alkoxy, C1-C6 thioalkoxy, C1-C6 haloalkoxy, C1-C6 thiohaloalkoxy, C1-C6 alkyl, Ci-Ce haloalkyl, C2-C6 alkynyl, cyclopropyl, -N3, cyano, -NH2, - H(Ci-C6 alkyl), -N(Ci-C6 alkyl)2, -NHC(0)(Ci-C6 alkyl), and nitro; each of R and R' is, independently, hydrogen, C1-C6 alkyl, or C1-C6 haloalkyl; each of L1 and L2 is, independently, C1-C3 alkylene, which is optionally substituted with from 1-2 independently selected Rc;
A is:
(i) CRA1RA2, wherein one of RA1 and R^ is independently selected from hydrogen, fluoro, chloro, C1-C3 alkyl, OR9 and a double bond formed between A and one of L1 and L2; and the other of RA1 and RA2 is independently selected from fluoro, chloro, C1-C3 alkyl, OR9 and a double bond formed between A and one of L1 and L2; wherein R9 is hydrogen or Ci- C3 alkyl that is optionally substituted with hydroxyl or C1-C3 alkoxy; or
(ii) C=0;
Z is:
(i) -NR10Rn; or
(ii) -C(O)NR10Rn; or
(iii) -OR12; or
(iv) -S(0)nR13, wherein n is 0, 1, or 2; or
(vi) C6-C10 aryl that is optionally substituted with from 1-4 independently selected
Rb; or
(vii) heteroaryl containing from 5-14 ring atoms, wherein from 1-6 of the ring atoms is independently selected from N, NH, (Ci-C3 alkyl), O, and S; and wherein said heteroaryl is optionally substituted with from 1-4 independently selected Rb; each of R10 and R11 is independently selected from the substituents delineated collectively in (a) through (k) below:
(a) hydrogen;
(b) C6-C10 aryl that is optionally substituted with from 1-4 Rb;
(c) heteroaryl containing from 5-14 ring atoms, wherein from 1-6 of the ring atoms is independently selected from N, NH, (Ci-C3 alkyl), O, and S; and wherein said heteroaryl is optionally substituted with from 1 -4 Rb; (d) C1-C6 alkyl or Ci-Ce haloalkyl, each of which is optionally substituted with from
1-3 Rd;
(e) -C(0)(Ci-C6 alkyl), -C(0)(Ci-C6 haloalkyl), or -C(0)0(Ci-C6 alkyl);
(f) C2-C6 alkenyl or C2-C6 alkynyl;
and
(1) C7-C12 aralkyl, wherein the aryl portion is optionally the aryl portion from is optionally substituted with from 1-4 independently selected Rb,
provided that one of R10 and R11 must be selected from (b) and (c); each of R12 and R13 is: :
(i) C6-C10 aryl that is optionally substituted with from 1-4 Rb; or
(ii) heteroaryl containing from 5-14 ring atoms, wherein from 1-6 of the ring atoms is independently selected from N, NH, (Ci-C3 alkyl), O, and S; and wherein said heteroaryl is optionally substituted with from 1 -4 Rb;
R at each occurrence is, independently selected from halo, hydroxyl, C1-C6 alkoxy, C1-C6 thioalkoxy, C1-C6 haloalkoxy, C1-C6 thiohaloalkoxy, oxo, thioxo, =NH,
Figure imgf000288_0001
alkyl), C1-C6 alkyl, Ci-C6 haloalkyl, -NH2, -NH(Ci-C6 alkyl), -N(Ci-C6 alkyl)2, -NHC(0)(Ci-C6 alkyl), and cyano;
Rb at each occurrence is independently selected from the substituents delineated in (aa) through (dd) below:
(aa) Ci-C6 alkoxy; Ci-C6 haloalkoxy; Ci-C6 thioalkoxy; Ci-C6 thiohaloalkoxy; - 0(CH2)1_3[0(CH2)1.3]1_3H; C C6 alkyl, C C6 haloalkyl, -NH(C C6 alkyl), -N(C C6 alkyl)2, -NHC(0)(Ci-C6 alkyl), wherein the alkyl portion of each is optionally substituted with from 1-3 independently selected Re;
(bb) halo; hydroxyl; cyano; nitro; -NH2; azido; sulfhydryl; C2-C6 alkenyl; C2-C6 alkynyl; -C(0)H; -C(0)(Ci-C6 alkyl); -C(0)(Ci-C6 haloalkyl); -C(0)OH; -C(0)0(Ci-C6 alkyl); -C(0)NH2; -C(0)NH(Ci-C6 alkyl); C(0)N(Ci-C6 alkyl)2; -S02(Ci-C6 alkyl); - S02NH2; -S02NH(d-C6 alkyl); -S02N(d-C6 alkyl)2;
(cc) C3-C6 cycloalkyl or heterocyclyl containing from 5-6 ring atoms, wherein from 1-2 of the ring atoms of the heterocyclyl is independently selected from N, NH, (Ci-C6 alkyl), NC(0)(Ci-C6 alkyl), O, and S; and wherein each of said phenyl and heterocyclyl is optionally substituted with from 1-3 independently selected R ; and (dd) phenyl or heteroaryl containing from 5-6 ring atoms, wherein from 1-2 of the ring atoms of the heteroaryl is independently selected from N, NH, (Ci-C3 alkyl), O, and S; wherein each of said phenyl and heteroaryl is optionally substituted with from 1-3 substituents independently selected from halo; hydroxyl; cyano; nitro; -NH2; -NH(d-C6 alkyl), -N(Ci-C6 alkyl)2, -NHC(0)(Ci-C6 alkyl), Ci-C6 alkoxy; Ci-C6 haloalkoxy; Ci-C6 thioalkoxy; C1-C6 thiohaloalkoxy; C1-C6 alkyl, and C1-C6 haloalkyl;
Rc at each occurrence is, independently selected from halo, C1-C6 alkoxy, C1-C6 thioalkoxy, Ci-Ce haloalkoxy, C C6 thiohaloalkoxy, C C6 alkyl, C C6 haloalkyl, -NH2, -NH(C C6 alkyl), - N(Ci-C6 alkyl)2, -NHC(0)(Ci-C6 alkyl), and cyano;
Rd at each occurrence is, independently selected from hydroxyl, C1-C6 alkoxy, C1-C6 thioalkoxy, Ci-C6 haloalkoxy, Ci-C6 thiohaloalkoxy, Ci-C6 alkyl, Ci-C6 haloalkyl, -NH2, -NH(Ci- C6 alkyl), -N(Ci-C6 alkyl)2, -NHC(0)(Ci-C6 alkyl), and cyano; and
Re at each occurrence is, independently selected from hydroxyl, C1-C6 alkoxy; C1-C6 thioalkoxy; Ci-C6 haloalkoxy; Ci-C6 thiohaloalkoxy; -NH2; -NH(Ci-C6 alkyl); -N(Ci-C6 alkyl)2; - NHC(0)(Ci-C6 alkyl); cyano; -C(0)H; -C(0)(Ci-C6 alkyl); -C(0)(Ci-C6 haloalkyl); -C(0)OH; - C(0)0(Ci-C6 alkyl); -C(0)NH2; -C(0)NH(Ci-C6 alkyl); -C(0)N(Ci-C6 alkyl)2; -S02(Ci-C6 alkyl); -S02NH2; -S02NH(Ci-C6 alkyl); -S02N(Ci-C6 alkyl)2; and L3-(Ci-C6 alkylene)-biotin, where in L3 is a -0-, -NH-, -NCH3-, -C(O)-, -C(0)NH-, -C(0)NCH3-, -NHC(O)-, or -NCH3C(0)-; or a pharmaceutically acceptable salt thereof.
95. The compound of claim 94, wherein each of R and R' is, independently, C1-C6 alkyl.
96. The compound of claim 94, wherein R3 is selected from halo, hydroxyl, sulfhydryl, C1-C6 alkoxy, C1-C6 thioalkoxy, C1-C6 haloalkoxy, C1-C6 thiohaloalkoxy, C1-C6 alkyl, C1-C6 haloalkyl, C2-C6 alkynyl, cyclopropyl, -N3, cyano, -NH2, -NH(Ci-C6 alkyl), -N(Ci-C6 alkyl)2, - NHC(0)(Ci-C6 alkyl), and nitro.
97. The compound of claim 94, wherein R3 is halo.
98. The compound of claim 94, wherein A is CR R , wherein one of R and R is independently selected from hydrogen, fluoro, chloro, C1-C3 alkyl, OR9 and double bond formed between A and one of L1 and L2; and the other of RA1 and RA2 is independently selected from fluoro, chloro, C1-C3 alkyl, OR9 and double bond formed between A and one of L1 and L2; wherein R9 is hydrogen or C1-C3 alkyl that is optionally substituted with hydroxyl or C1-C3 alkoxy.
99. The compound of claim 94, wherein one of RA1 and RA2 is OR9, and the other is hydrogen, wherein R9 is hydrogen.
100. The compound of claim 94, wherein the carbon attached to RA1 and RA2 is substituted with four different substituents.
101. The compound of claim 100, wherein the carbon attached to R and R is (R) configured.
102. The compound of claim 101, wherein the (R) configured formula (I) compound is
Al substantially free of a formula (I) compound that is S configured at the carbon atom attached to R
A2
and R
103. The compound of claim 100, wherein the carbon attached to R and R is (S) configured.
104. The compound of claim 103, wherein the (S) configured formula (I) compound is substantially free of a formula (I) compound that is (R) configured at the carbon atom attached to
RA1 and RA2.
105. The compound of claim 100, wherein the formula (I) compound is (+)
(dextrorotatory).
106. The compound of claim 105, wherein the (+) (dextrorotatory) compound is substantially free of a formula (I) compound that is (-) (levororotatory).
107. The compound of claim 100, wherein the formula (I) compound is (-)
(levororotatory).
108. The compound of claim 107, wherein the (-) (levororotatory) compound is substantially free of a formula (I) compound that is (+) (dextrorotatory).
109. The compound of claim 94, wherein Z is -NR10Rn, wherein one of R10 and R11 is:
(b) C6-Cio aryl that is optionally substituted with from 1-4 Rb; or
(c) heteroaryl containing from 5-14 ring atoms, wherein from 1-6 of the ring atoms is independently selected from N, NH, N(Ci-C3 alkyl), O, and S; and wherein said heteroaryl is optionally substituted with from 1-4 Rb;
and the other of R10 and R11 is hydrogen or C\-Ce alkyl.
A compound having formula (VI):
Figure imgf000291_0001
wherein:
Ri - R5 are each independently selected from hydrogen, halo, hydroxyl, sulfhydryl, C1-C6 alkoxy, C1-C6 thioalkoxy, C1-C6 haloalkoxy, C1-C6 thiohaloalkoxy, C1-C6 alkyl, C1-C6 haloalkyl, C2-C6 alkynyl, cyclopropyl, -N3, cyano, -NH2, -NH(Ci-C6 alkyl), -N(Ci-C6 alkyl)2, -NHC(0)(Ci-C6 alkyl), and nitro;
X is C6-C10 aryl that is optionally substituted with 1-4 Rb; or heteroaryl containing 5-14 ring atoms, wherein from 1-6 of the ring atoms is independently selected from N, NH, N(Ci-C3 alkyl), O, and S, and wherein said heteroaryl is optionally substituted with 1-4 Rb; each of L1 and L2 is, independently, C1-C3 alkylene, which is optionally substituted with from 1-2 independently selected Rc; A is CR R , wherein one of R and R is independently selected from hydrogen, fluoro, chloro, C1-C3 alkyl, and OR9; and the other of RA1 and RA2 is independently selected from fluoro, chloro, C1-C3 alkyl, and OR9; wherein R9 is hydrogen or C1-C3 alkyl that is optionally substituted with hydroxyl or C1-C3 alkoxy;
Z is -NR10Rn or -OR12; each of R10 and R11 is independently selected from the substituents delineated collectively in (a) through (k) below:
(a) hydrogen;
(b) C6-C10 aryl that is optionally substituted with from 1-4 Rb;
(c) heteroaryl containing from 5-14 ring atoms, wherein from 1-6 of the ring atoms is independently selected from N, NH, (Ci-C3 alkyl), O, and S; and wherein said heteroaryl is optionally substituted with from 1 -4 Rb;
(d) C1-C6 alkyl or C1-C6 haloalkyl, each of which is optionally substituted with from
1-3 Rd;
(e) -C(0)(Ci-C6 alkyl), -C(0)(Ci-C6 haloalkyl), or -C(0)0(Ci-C6 alkyl);
(f) C2-C6 alkenyl or C2-C6 alkynyl;
and
(1) C7-C12 aralkyl, wherein the aryl portion is optionally the aryl portion from is optionally substituted with from 1-4 independently selected Rb,
provided that one of R10 and R11 must be selected from (b) and (c);
R12 is::
(i) C6-C10 aryl that is optionally substituted with from 1-4 Rb; or
(ii) heteroaryl containing from 5-14 ring atoms, wherein from 1-6 of the ring atoms is independently selected from N, NH, (Ci-C3 alkyl), O, and S; and wherein said heteroaryl is optionally substituted with from 1 -4 Rb;
R at each occurrence is, independently selected from halo, hydroxyl, C1-C6 alkoxy, C1-C6 thioalkoxy, C1-C6 haloalkoxy, C1-C6 thiohaloalkoxy, oxo, thioxo, =NH,
Figure imgf000292_0001
alkyl), C1-C6 alkyl, Ci-C6 haloalkyl, -NH2, -NH(Ci-C6 alkyl), -N(Ci-C6 alkyl)2, -NHC(0)(Ci-C6 alkyl), and cyano; Rb at each occurrence is independently selected from the substituents delineated in (aa) through (dd) below:
(aa) C1-C6 alkoxy; d-d haloalkoxy; d-d thioalkoxy; d-d thiohaloalkoxy; - 0(CH2)1_3[0(CH2)1.3]i-3H; d-d alkyl, d-d haloalkyl, -NH(d-d alkyl), -N(d-d alkyl)2, -NHC(0)(Ci-C6 alkyl), wherein the alkyl portion of each is optionally substituted with from 1-3 independently selected Re;
(bb) halo; hydroxyl; cyano; nitro; -NH2; azido; sulfhydryl; -d alkenyl; d-d alkynyl; -C(0)H; -C(0)(Ci-d alkyl); -C(0)(Ci-C6 haloalkyl); -C(0)OH; -C(0)0(Ci-C6 alkyl); -C(0)NH2; -C(0)NH(C d alkyl); C(0)N(d-C6 alkyl)2; -S02(d-C6 alkyl); - S02NH2; -S02NH(d-d alkyl); -S02N(d-C6 alkyl)2;
(cc) C3-C6 cycloalkyl or heterocyclyl containing from 5-6 ring atoms, wherein from 1-2 of the ring atoms of the heterocyclyl is independently selected from N, NH, N(d-d alkyl), NC(0)(d-d alkyl), O, and S; and wherein each of said phenyl and heterocyclyl is optionally substituted with from 1-3 independently selected R ; and
(dd) phenyl or heteroaryl containing from 5-6 ring atoms, wherein from 1-2 of the ring atoms of the heteroaryl is independently selected from N, NH, N(d-d alkyl), O, and S; wherein each of said phenyl and heteroaryl is optionally substituted with from 1-3 substituents independently selected from halo; hydroxyl; cyano; nitro; -NH2; -NH(d-d alkyl), -N(d-C6 alkyl)2, -NHC(0)(d-C6 alkyl), d-d alkoxy; d-d haloalkoxy; d-C6 thioalkoxy; d-d thiohaloalkoxy; d-d alkyl, and d-d haloalkyl;
Rc at each occurrence is, independently selected from halo, d-d alkoxy, d-d thioalkoxy, d-d haloalkoxy, d-d thiohaloalkoxy, d-d alkyl, d-d haloalkyl, -NH2, -NH(d-d alkyl), - N(d-d alkyl)2, -NHC(0)(d-d alkyl), and cyano;
Rd at each occurrence is, independently selected from hydroxyl, d-d alkoxy, d-d thioalkoxy, d-C6 haloalkoxy, d-d thiohaloalkoxy, d-C6 alkyl, d-d haloalkyl, -NH2, -NH(d- d alkyl), -N(d-d alkyl)2, -NHC(0)(d-C6 alkyl), and cyano; and
Re at each occurrence is, independently selected from hydroxyl, d-d alkoxy; d-d thioalkoxy; d-d haloalkoxy; d-d thiohaloalkoxy; -NH2; -NH(d-d alkyl); -N(d-d alkyl)2; - NHC(0)(d-d alkyl); cyano; -C(0)H; -C(0)(d-C6 alkyl); -C(0)(d-C6 haloalkyl); -C(0)OH; - C(0)0(d-d alkyl); -C(0)NH2; -C(0)NH(d-C6 alkyl); -C(0)N(d-C6 alkyl)2; -S02(d-d alkyl); -SO2NH2; -S02NH(Ci-C6 alkyl); -S02N(d-C6 alkyl)2; and L3-(Ci-C6 alkylene)-biotin, where in L3 is a -0-, -NH-, -NCH3-, -C(0)-, -C(0)NH-, -C(0)NCH3-, -NHC(O)-, or -NCH3C(0)-; or a pharmaceutically acceptable salt thereof.
111. The compound of claim 110, wherein R3 is selected from halo, hydroxyl, sulfhydryl, C1-C6 alkoxy, C1-C6 thioalkoxy, C1-C6 haloalkoxy, C1-C6 thiohaloalkoxy, C1-C6 alkyl, C1-C6 haloalkyl, C2-C6 alkynyl, cyclopropyl, -N3, cyano, -NH2, -NH(Ci-C6 alkyl), -N(Ci-C6 alkyl)2, -NHC(0)(C C6 alkyl), and nitro.
112. The compound of claim 110, wherein R3 is halo.
113. The compound of claim 110, wherein R3 is bromo.
114. The compound of claim 110, wherein each of Ri, R2, R4 and R5 is hydrogen.
115. The compound of claim 110, wherein X is C6-C10 aryl that is substituted with one or more halo.
116. The compound of claim 110, wherein X is C6-C10 aryl that is substituted with bromo.
117. The compound of claim 110, wherein X is 4-bromophenyl.
118. The compound of claim 110, wherein X is heteroaryl containing 5-14 ring atoms, wherein from 1-6 of the ring atoms is independently selected from N, NH, N(Ci-C3 alkyl), O, and S, and wherein said heteroaryl is optionally substituted with 1-4 Rb.
119. The compound of claim 110, wherein X is pyridine optionally substituted with 1-4
Rb.
120. The compound of claim 110, wherein A is CRA1RA2, wherein each of RA1 and RA2 is, independently, hydrogen, Ci-C3 alkyl, or OR9.
121. The compound of claim 1 10, wherein one of RA1 and RA2 is OR9; and the other of RA1 and RA2 is hydrogen or C1-C3 alkyl.
122. The compound of claim 1 10, wherein one of RA1 and RA2 is OH; and the other of RA1 and RA2 is hydrogen.
123. The compound of claim 1 10, wherein A is CRA1RA2 and wherein the carbon attached to RA1 and RA2 is substituted with four different substituents.
124. The compound of claim 123, wherein the carbon attached to to R and R is (R) configured.
125. The compound of claim 124, wherein the (R) configured formula (VI) compound is substantially free of a formula (VI) compound that is S configured at the carbon atom attached to to
RA1 and RA2.
126. The compound of claim 123, wherein the carbon attached to to R and R is (S) configured.
127. The compound of claim 126, wherein the (S) configured formula (VI) compound is substantially free of a formula (VI) compound that is (R) configured at the carbon atom attached to to RA1 and RA2.
128. The compound of claim 1 10, wherein the formula (VI) compound is (+)
(dextrorotatory).
129. The compound of claim 128, wherein the (+) (dextrorotatory) compound is substantially free of a formula (I) compound that is (-) (levororotatory).
130. The compound of claim 1 10, wherein the formula (I) compound is (-)
(levororotatory).
131. The compound of claim 130, wherein the (-) (levororotatory) compound is substantially free of a formula (I) compound that is (+) (dextrorotatory).
132. A compound selected from:
(Rj- l-(3,6-Dibromo-9H-carbazol-9-yl)-3-(3-methoxyphenylamino)-propan-2-ol;
('5)- l -(3,6-Dibromo-9H-carbazol-9-yl)-3-(3-methoxyphenylamino)-propan-2-ol;
l-(3,6-dibromo-9H-carbazol-9-yl)-3-(2-iminopyridin-l (2H)-yl)propan-2-ol;
l-(3,6-dibromo-9H-carbazol-9-yl)-3-(phenylthio)propan-2-ol;
N-(3-(3,6-dibromo-9H-carbazol-9-yl)-2-hydroxypropyl)-N-(3-methoxyphenyl)acetamide;
5-((3,6-dibromo-9H-carbazol-9-yl)methyl)-3-(3-methoxyphenyl)-oxazolidin-2-one;
N-(3-(3,6-dibromo-9H-carbazol-9-yl)-2-fluoropropyl)-3-methoxyaniline;
l-(3,6-dibromo-9H-carbazol-9-yl)-3-(3-methoxyphenylamino)-propan-2-one;
N-(3-(3,6-dibromo-9H-carbazol-9-yl)-2-methoxypropyl)-3-methoxyaniline;
l-(3,6-Dimethyl-9H-carbazol-9-yl)-3-(3-methoxyphenylamino)propan-2-ol;
1 -(3 -Bromo-6-methyl-9H-carbazol-9-yl)-3 -(3 -methoxyphenylamino)-propan-2-ol;
l-(3,6-Dichloro-9H-carbazol-9-yl)-3-(3-methoxyphenylamino)propan-2-ol;
1 -(5-bromo-2,3 -dimethyl- 1 H-indol- 1 -yl)-3 -(phenylamino)propan-2-ol;
l-(3,6-Dibromo-9H-pyrido[3,4-b]indol-9-yl)-3-(phenylamino)propan-2-ol;
1 -(3 -Azidophenylamino)-3 -(3 ,6-dibromo-9H-carbazol-9-yl)propan-2-ol;
l,3-Bis(3,6-dibromo-9H-carbazol-9-yl)propan-2-ol;
l-(9H-Carbazol-9-yl)-3-(3,6-dibromo-9H-carbazol-9-yl)propan-2-ol;
3- (3,6-Dibromo-9H-carbazol-9-yl)-2-hydroxy-N-(3-methoxyphenyl)-propanamide;
Ethyl 5-(2-Hydroxy-3 -(3 -methoxyphenylamino)propyl)-8-methyl-3 ,4-dihydro- 1 H- pyrido[4,3-b]indole-2(5H)-carboxylate;
4- (3,6-dibromo-9H-carbazol-9-yl)- l-(phenylamino)butan-2-ol;
N-(3-(3,6-dibromo-9H-carbazol-9-yl)propyl)aniline;
l-(3,6-dibromo-9H-carbazol-9-yl)-4-(phenylamino)butan-2-ol;
l-(3,6-dibromo-9H-carbazol-9-yl)-3-(pyridin-2-ylamino)propan-2-ol;
l-(3,6-dibromo-9H-carbazol-9-yl)-3-((3-methoxyphenyl)(methyl)-amino)propan-2-ol; 3-(3,6-dibromo-9H-carbazol-9-yl)- l-(3-methoxyphenylamino)- l-(methylthio)propan-2-one; 3-amino-l -(3-(3,6-dibromo-9H-carbazol-9-yl)-2-hydroxypropyl)pyridinium;
l-(3,6-dibromo-9H-carbazol-9-yl)-3-(pyrimidin-2-ylamino)propan-2-ol;
N-(3-(3,6-dibromo-9H-carbazol-9-yl)-2-fluoropropyl)-3-methoxy-N-methylaniline;
l-(3,6-dibromo-9H-carbazol-9-yl)-3-methoxypropan-2-ol;
l-(3,6-dibromo-9H-carbazol-9-yl)-4-phenylbutan-2-ol;
l-(3,6-dibromo-9H-carbazol-9-yl)-3-(lH-indol-l -yl)propan-2-ol; 3 -( 1 -(3 -(3 ,6-dibromo-9H-carbazol-9-yl)-2-hydroxypropyl)- 1 H- 1 ,2,3 -triazol-4-yl)propan- 1 - ol;
l-(3,6-dibromo-9H-carbazol-9-yl)-3-(3-ethoxyphenylamino)propan-2-ol;
l-(3,6-dibromo-9H-carbazol-9-yl)-3-(3,5-dimethyl-lH-pyrazol-l-yl)propan-2-ol;
l-(3,6-dibromo-9H-carbazol-9-yl)-3-(phenylsulfinyl)propan-2-ol;
l-(3,6-dibromo-9H-carbazol-9-yl)-3-(phenylsulfonyl)propan-2-ol;
l-(3-bromo-9H-carbazol-9-yl)-3-(3-methoxyphenylamino)propan-2-ol;
N-(5-(3-(3-(3,6-dibromo-9H-carbazol-9-yl)-2-hydroxypropylamino)phenoxy)pentyl)-2-(7- (dimethylamino)-2-oxo-2H-chromen-4-yl)acetamide;
l-(3,6-dibromo-9H-carbazol-9-yl)-3-phenoxypropan-2-ol;
N-(2-(3-(3,6-dibromo-9H-carbazol-9-yl)-2-hydroxypropoxy)ethyl)-acetamide;
l-(3,6-dibromo-9H-carbazol-9-yl)-3-(pyridin-3-ylamino)propan-2-ol;
l-(3,6-dibromo-9H-carbazol-9-yl)-3-(pyridin-4-ylamino)propan-2-ol;
l-(2,8-dimethyl-3,4-dihydro-lH-pyrido[4,3-b]indol-5(2H)-yl)-3-(phenylamino)propan-2-ol;
N-(3-(3,6-dibromo-9H-carbazol-9-yl)-2,2-difluoropropyl)-3-methoxyaniline;
l-(3,6-dibromo-9H-carbazol-9-yl)-3-phenoxypropan-2-ol;
l-(3,6-dibromo-9H-carbazol-9-yl)-3-(phenylamino)propan-2-ol;
l-(3,6-dibromo-9H-carbazol-9-yl)-3-(o-tolylamino)propan-2-ol;
l-(3,6-dibromo-9H-carbazol-9-yl)-3-(m-tolylamino)propan-2-ol;
l-(3,6-dibromo-9H-carbazol-9-yl)-3-(2-methoxyphenylamino)propan-2-ol;
l-(3,6-dibromo-9H-carbazol-9-yl)-3-(naphthalen-l-ylamino)propan-2-ol;
l-(4-bromophenylamino)-3-(3,6-dichloro-9H-carbazol-9-yl)propan-2-ol;
l-(4-bromophenylamino)-3-(3,6-dibromo-9H-carbazol-9-yl)propan-2-ol;
l-(3,6-dibromo-9H-carbazol-9-yl)-3-(4-ethoxyphenylamino)propan-2-ol;
l-(4-chlorophenylamino)-3-(3,6-dibromo-9H-carbazol-9-yl)propan-2-ol;
l-(3,6-dibromo-9H-carbazol-9-yl)-3-(phenethylamino)propan-2-ol;
l-(3,6-dibromo-9H-carbazol-9-yl)-3-(2-hydroxyethylamino)propan-2-ol;
l-(3,6-dibromo-9H-carbazol-9-yl)-3-(2,4-dimethoxyphenylamino)propan-2-ol;
l-(3,6-dibromo-9H-carbazol-9-yl)-3-(2,3-dimethylphenylamino)propan-2-ol;
l-(2-chlorophenylamino)-3-(3,6-dibromo-9H-carbazol-9-yl)propan-2-ol;
l-(tert-butylamino)-3-(3,6-dibromo-9H-carbazol-9-yl)propan-2-ol;
l-(3,6-dibromo-9H-carbazol-9-yl)-3-(isopropylamino)propan-2-ol;
l-(3,6-dibromo-9H-carbazol-9-yl)-3-(4-methoxyphenylamino)propan-2-ol;
l-(3,6-dibromo-9H-carbazol-9-yl)-3-(3-methoxyphenylamino)propan-2-ol; l-(3,6-dibromo-9H-carbazol-9-yl)-3-(m-tolylamino)propan-2-ol;
l-(3,6-dibromo-9H-carbazol-9-yl)-3-(3,5-dimethylphenylamino)propan-2-ol;
l-(3,6-dibromo-9H-carbazol-9-yl)-3-(3,4-dimethylphenylamino)propan-2-ol;
l-(3,6-dibromo-9H-carbazol-9-yl)-3-(3,4-dimethylphenylamino)propan-2-ol;
l-(3,6-dibromo-9H-carbazol-9-yl)-3-(2,5-dimethylphenylamino)propan-2-ol;
1 -(4-bromophenylamino)-3 -(2,3 -dimethyl- 1 H-indol- 1 -yl)propan-2-ol;
1 -(2,3-dimethyl- 1 H-indol- 1 -yl)-3 -(4-methoxyphenylamino)propan-2-ol;
1 -(2, 3-dim ethyl- 1 H-indol- 1 -yl)-3 -(4-ethoxyphenylamino)propan-2-ol;
l-(2,3-dimethyl-lH-indol-l-yl)-3-(p-tolylamino)propan-2-ol;
1 -(2,3-dimethyl- 1 H-indol- 1 -yl)-3 -(phenylamino)propan-2-ol oxalate;
1 -( 1 H-indol- 1 -yl)-3 -(4-methoxyphenylamino)propan-2-ol hydrochloride;
l-(lH-indol-l-yl)-3-(phenylamino)propan-2-ol oxalate;
l-(3,4-dihydro-lH-carbazol-9(2H)-yl)-3-(m-tolylamino)propan-2-ol;
l-(9H-carbazol-9-yl)-3-(phenylamino)propan-2-ol;
l-(3,6-dichloro-9H-carbazol-9-yl)-3-(phenylamino)propan-2-ol;
l-(9H-carbazol-9-yl)-3-(p-tolylamino)propan-2-ol;
l-(3,6-dichloro-9H-carbazol-9-yl)-3-(p-tolylamino)propan-2-ol;
l-(3,6-dibromo-9H-carbazol-9-yl)-3-(p-tolylamino)propan-2-ol;
N-(4-(3-(9H-carbazol-9-yl)-2-hydroxypropoxy)phenyl)acetamide;
l-(9H-carbazol-9-yl)-3-phenoxypropan-2-ol;
l-(9H-carbazol-9-yl)-3-(4-methoxyphenylamino)propan-2-ol;
l-(benzylamino)-3-(9H-carbazol-9-yl)propan-2-ol;
methyl 4-(3-(9H-carbazol-9-yl)-2-hydroxypropoxy)benzoate;
l-(9H-carbazol-9-yl)-3-(4-methoxyphenoxy)propan-2-ol;
l-amino-3-(3,6-dibromo-9H-carbazol-9-yl)propan-2-ol;
(S)-l-(3,6-dibromo-9H-carbazol-9-yl)-3-phenoxypropan-2-ol;
(R)-l-(3,6-dibromo-9H-carbazol-9-yl)-3-phenoxypropan-2-ol;
3,6-dibromo-9-(2-fluoro-3-phenoxypropyl)-9H-carbazole;
l-(3,6-dibromo-9H-carbazol-9-yl)-3-(3-methoxyphenylamino)-2-methylpropan-2-ol;
1 -(2, 8-dimethyl-3 ,4-dihydro- 1 H-pyrido[4,3 -b]indol-5(2H)-yl)-3 -(3 - methoxyphenylamino)propan-2-ol;
l-(4-azidophenylamino)-3-(3,6-dibromo-9H-carbazol-9-yl)propan-2-ol;
1 -(3 -azido-6-bromo-9H-carbazol-9-yl)-3 -(3 -methoxyphenylamino)propan-2-ol; l-(3,6-dibromo-9H-carbazol-9-yl)-3-(4-methoxyphenoxy) propan-2-ol; l-(3,6-dichloro-9H-carbazol-9-yl)-3-(phenylsulfonyl)propan-2-ol;
3,6-dibromo-9-(2-fluoro-3-(phenylsulfonyl)propyl)-9H-carbazole;
(S)-l-(3,6-dibromo-9H-carbazol-9-yl)-3-(phenylsulfonyl) propan-2-ol;
(R)-l-(3,6-dibromo-9H-carbazol-9-yl)-3-(phenylsulfonyl) propan-2-ol;
l-(3,6-dicyclopropyl-9H-carbazol-9-yl)-3-(phenylamino) propan-2-ol;
l-(3,6-diiodo-9H-carbazol-9-yl)-3-(phenylamino)propan-2-ol;
1- (3,6-diethynyl-9H-carbazol-9-yl)-3-(3-methoxyphenylamino) propan-2-ol;
9-(2-hydroxy-3-(3-methoxyphenylamino)propyl)-9H-carbazole-3,6-dicarbonitrile;
N-(3-(3,6-dibromo-9H-carbazol-9-yl)-2-fluoropropyl)aniline;
3,6-dibromo-9-(2,2-difluoro-3-phenoxypropyl)-9H-carbazole;
N-(3-(3,6-dibromo-9H-carbazol-9-yl)-2-fluoropropyl)-4-methoxyaniline;
N-(2-bromo-3-(3,6-dibromo-9H-carbazol-9-yl)propyl)-N-(4-methoxyphenyl)-4- nitrobenzenesulfonamide;
Ethyl 2-(4-(3-(3,6-dibromo-9H-carbazol-9-yl)-2-fluoropropylamino)phenoxy)acetate; and
N-(3-(3,6-dibromo-9H-carbazol-9-yl)-2-fluoropropyl)-4-(2-(2- methoxyethoxy)ethoxy)aniline;
N-(2-(2-(4-(3-(3,6-dibromo-9H-carbazol-9-yl)-2- fluoropropylamino)phenoxy)acetamido)ethyl)-5-(2-oxohexahydro-lH-thieno[3,4-d]imidazol-4- yl)pentanamide;
2- (4-(3-(3,6-dibromo-9H-carbazol-9-yl)-2-fluoropropylamino)phenoxy)-N,N- dimethylacetamide;
2-(4-(3-(3,6-dibromo-9H-carbazol-9-yl)-2-fluoropropylamino)phenoxy)-N-(2- hydroxyethyl)acetamide;
l-(bis(4-bromophenyl)amino)-3-(phenylamino)propan-2-ol;
(E)-3,6-dibromo-9-(3-phenoxyallyl)-9H-carbazole;
(E)-3 ,6-dibromo-9-(3 -phenoxyprop- 1 -en- 1 -yl)-9H-carbazole;
l-(3,6-bis(trifluoromethyl)-9H-carbazol-9-yl)-3-(phenylamino)propan-2-ol;
l-(2,8-Dibromo-10,l l-dihydro-5H-dibenzo[¾ |azepin-5-yl)-3-(3- methoxyphenylamino)propan-2-ol;
l-(3,6-Dibromo-9H-carbazol-9-yl)-3-(3-methoxyphenylthio)propan-2-ol;
l-(3,6-Dibromo-9H-carbazol-9-yl)-3-(4-methoxyphenylthio)propan-2-ol;
3,6-Dibromo-9-(2-fluoro-3-(3-methoxyphenylthio)propyl)-9H-carbazole;
3,6-Dibromo-9-(2-fluoro-3-(4-methoxyphenylthio)propyl)-9H-carbazole;
3,6-Dibromo-9-(2-fluoro-3-(3-methoxyphenylsulfonyl)propyl)-9H-carbazole; l-(3,6-Dibromo-9H-carbazol-9-yl)-3-(3-methoxyphenylsulfonyl)propan-2-ol;
3,6-Dibromo-9-(2-fluoro-3-(4-methoxyphenylsulfonyl)propyl)-9H-carbazole;
l-(3,6-Dibromo-9H-carbazol-9-yl)-3-(4-methoxyphenylsulfonyl)propan-2-ol;
3- (3-(3,6-Dibromo-9H-carbazol-9-yl)-2-hydroxypropylthio)phenol;
4- (3-(3,6-Dibromo-9H-carbazol-9-yl)-2-hydroxypropylthio)phenol;
3- (3-(3,6-Dibromo-9H-carbazol-9-yl)-2-hydroxypropylsulfonyl)phenol;
4- (3-(3,6-Dibromo-9H-carbazol-9-yl)-2-hydroxypropylsulfonyl)phenol;
l-(3-Aminophenylthio)-3-(3,6-dibromo-9H-carbazol-9-yl)propan-2-ol;
l-(4-Aminophenylthio)-3-(3,6-dibromo-9H-carbazol-9-yl)propan-2-ol;
l-(3,6-dibromo-9H-carbazol-9-yl)-3-phenoxypropan-2-amine;
N-Benzyl-2-(3-(3-(3,6-dibromo-9H-carbazol-9-yl)-2-hydroxypropylthio)- phenoxy)acetamide;
N-Benzyl-2-(4-(3-(3,6-dibromo-9H-carbazol-9-yl)-2-hydroxypropylthio)- phenoxy)acetamide;
3- (3-(3,6-Dibromo-9H-carbazol-9-yl)-2-fluoropropylsulfonyl)phenol;N-Benzyl-2-(3-(3- (3,6-dibromo-9H-carbazol-9-yl)-2-hydroxypropylsulfonyl)-phenoxy)acetamide;
4- (3-(3,6-Dibromo-9H-carbazol-9-yl)-2-fluoropropylsulfonyl)phenol;
5- (5-(3-(3-(3,6-dibromo-9H-carbazol-9-yl)-2- hydroxypropylamino)phenoxy)pentylcarbamoyl)-2-(6-hydroxy-3-oxo-3H-xanthen-9-yl)benzoic acid;
l-(8-bromo-3,4-dihydro-lH-pyrido[4,3-b]indol-5(2H)-yl)-3-phenoxypropan-2-ol;
l-(8-bromo-2-cyclopropyl-3,4-dihydro-lH-pyrido[4,3-b]indol-5(2H)-yl)-3-phenoxypropan-
2-ol;
8-bromo-5-(2-hydroxy-3-phenoxypropyl)-3,4-dihydro-lH-pyrido[4,3-b]indole-2(5H)- carbonitrile;
8- bromo-5-(2-fluoro-3-phenoxypropyl)-2,3,4,5-tetrahydro-lH-pyrido[4,3-b]indole;
1- (cyclohexylamino)-3-(3,6-dibromo-9H-carbazol-9-yl)propan-2-ol;
(9-(2-hydroxy-3-(phenylthio)propyl)-9H-carbazole-3,6-dicarbonitrile;
9- (2-hydroxy-3-phenoxypropyl)-9H-carbazole-3,6-dicarbonitrile;
(Rj-N-(3-(3,6-dibromo-9H-carbazol-9-yl)-2-fluoropropyl)-3-methoxyaniline
(5)-N-(3-(3,6-dibromo-9H-carbazol-9-yl)-2-fluoropropyl)-3-methoxyaniline
N-(2-(3,6-dibromo-9H-carbazol-9-yl)ethyl)aniline;
2- (6-Amino-3 -imino-3 H-xanthen-9-yl)-4-(6-(5 -(3 -(3 -(3 ,6-dibromo-9H-carbazol-9-yl)-2- hydroxypropylamino)phenoxy)pentylamino)-6-oxohexylcarbamoyl)benzoic acid AND 2-(6-amino- 3-imino-3H-xanthen-9-yl)-5-(6-(5-(3-(3-(3,6-dibromo-9H-carbazol-9-yl)-2- hydroxypropylamino)phenoxy)pentylamino)-6-oxohexylcarbamoyl)benzoic acid;
l-(8-bromo-2-methyl-3,4-dihydro-lH-pyrido[4,3-/?]indol-5(2H)-yl)-3-phenoxypropan-2-ol;
6-((4-bromophenyl)(2-hydroxy-3-phenoxypropyl)amino)nicotinonitrile;
l-(3-(3,6-dibromo-9H-carbazol-9-yl)-2-hydroxypropyl)pyridin-2(lH)-one; or a pharmaceutically acceptable salt thereof.
133. The compound of claim 132, wherein the compound is selected from
(R)-l-(3,6-Dibromo-9H-carbazol-9-yl)-3-(3-methoxyphenylamino)-propan-2-ol;
(S)- 1 -(3 ,6-Dibromo-9H-carbazol-9-yl)-3 -(3 -methoxyphenylamino)-propan-2-ol;
(S)-l-(3,6-dibromo-9H-carbazol-9-yl)-3-phenoxypropan-2-ol;
(R)-l-(3,6-dibromo-9H-carbazol-9-yl)-3-phenoxypropan-2-ol;
(S)-l-(3,6-dibromo-9H-carbazol-9-yl)-3-(phenylsulfonyl) propan-2-ol; and
(R)-l-(3,6-dibromo-9H-carbazol-9-yl)-3-(phenylsulfonyl) propan-2-ol;
(R)-N-(3-(3,6-dibromo-9H-carbazol-9-yl)-2-fluoropropyl)-3-methoxyaniline;
(S)-N-(3-(3,6-dibromo-9H-carbazol-9-yl)-2-fluoropropyl)-3-methoxyaniline;
or a pharmaceutically acceptable salt thereof.
134. A compound selected from the title compounds of Examples la, lb, 3a, 3b, 3d, 6a, 10, 13, 21, 22, 88b, 90, 92, 96, 97a, 97b, 102, 1 16, 117, 1 18, 1 19, 120, 121, 122, 132, 143, and 144a; or a pharmaceutically acceptable salt thereof.
135. A pharmaceutical composition comprising a compound or salt as claimed in any one of claims 1, 33, 58, 78, 94, 110, 132, 133 and 134 and a pharmaceutically acceptable carrier.
136. A method for the treatment of a disease, disorder, or condition caused by unwanted neuronal cell death or associated with insufficient neurogenesis in a subject in need thereof, the method comprising administering to the subject an effective amount of a compound having formula (I) or (VI), or a pharmaceutically acceptable salt thereof, as defined in any one of claims 1, 33, 58, 78, 94 and 1 10.
137. The method of claim 136, wherein the disease, disorder, or condition is a neuropsychiatric and/or neurodegenerative disease selected from the group consisting of: schizophrenia, major depression, bipolar disorder, normal aging, epilepsy, traumatic brain injury, post-traumatic stress disorder, Parkinson's disease, Alzheimer's disease, Down syndrome, spinocerebellar ataxia, amyotrophic lateral sclerosis, Huntington's disease, stroke, radiation therapy, chronic stress, abuse of a neuro-active drug, retinal degeneration, spinal cord injury, peripheral nerve injury, physiological weight loss associated with various conditions, and cognitive decline associated with normal aging, and chemotherapy.
PCT/US2011/043185 2010-07-07 2011-07-07 Pro-neurogenic compounds WO2012006419A2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CN201180042919.1A CN103415289B (en) 2010-07-07 2011-07-07 Pro-neurogenic compounds
DK11804335.5T DK2590647T3 (en) 2010-07-07 2011-07-07 Pro-neurogenic compounds
BR112013000414A BR112013000414A2 (en) 2010-07-07 2011-07-07 proneurogenic compounds
CA2804161A CA2804161A1 (en) 2010-07-07 2011-07-07 Pro-neurogenic compounds
AU2011274787A AU2011274787B2 (en) 2010-07-07 2011-07-07 Pro-neurogenic compounds
EP11804335.5A EP2590647B1 (en) 2010-07-07 2011-07-07 Pro-neurogenic compounds
JP2013518827A JP6126528B2 (en) 2010-07-07 2011-07-07 Neurogenesis-promoting compound
IL223783A IL223783B (en) 2010-07-07 2012-12-20 Substituted 1-indole compound for use in the treatment of a disease or condition, a pharmaceutical composition comprising the compound and use of the compound for the preparation of a medicament

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US12/832,056 2010-07-07
US12/832,056 US8362277B2 (en) 2009-01-09 2010-07-07 Pro-neurogenic compounds
US13/177,981 2011-07-07
US13/177,981 US9095572B2 (en) 2009-01-09 2011-07-07 Pro-neurogenic compounds

Publications (2)

Publication Number Publication Date
WO2012006419A2 true WO2012006419A2 (en) 2012-01-12
WO2012006419A3 WO2012006419A3 (en) 2013-08-01

Family

ID=45441795

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2011/043185 WO2012006419A2 (en) 2010-07-07 2011-07-07 Pro-neurogenic compounds

Country Status (10)

Country Link
US (4) US9095572B2 (en)
EP (1) EP2590647B1 (en)
JP (1) JP6126528B2 (en)
CN (1) CN103415289B (en)
AU (1) AU2011274787B2 (en)
BR (1) BR112013000414A2 (en)
CA (1) CA2804161A1 (en)
DK (1) DK2590647T3 (en)
IL (1) IL223783B (en)
WO (1) WO2012006419A2 (en)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8362277B2 (en) 2009-01-09 2013-01-29 Board Of Regents Of The University Of Texas System Pro-neurogenic compounds
JP2013193980A (en) * 2012-03-19 2013-09-30 Toray Fine Chemicals Co Ltd Low viscosity epoxy compound, and method for producing the same
US8604074B2 (en) 2009-01-09 2013-12-10 Board Of Regents Of The University Of Texas System Pro-neurogenic compounds
WO2014031125A1 (en) 2012-08-24 2014-02-27 Board Of Regents Of The University Of Texas System Pro-neurogenic compounds
WO2014031986A1 (en) 2012-08-24 2014-02-27 Board Of Regents Of The University Of Texas System Pro-neurogenic compounds
WO2014053409A1 (en) * 2012-10-01 2014-04-10 F. Hoffmann-La Roche Ag Benzimidazol.es as cns active agents
US8735440B2 (en) 2009-01-09 2014-05-27 Board Of Regents Of The University Of Texas System Methods for treating amyotrophic lateral sclerosis using pro-neurogenic compounds
WO2015036412A1 (en) * 2013-09-12 2015-03-19 F. Hoffmann-La Roche Ag Indol-carboxamide derivatives
US9006234B2 (en) 2009-09-23 2015-04-14 Medivation Technologies, Inc. Bridged heterocyclic compounds and methods of use
US9034865B2 (en) 2010-02-18 2015-05-19 Medivation Technologies, Inc. Pyrido [4,3-B] indole and pyrido [3,4-B] indole derivatives and methods of use
US9035056B2 (en) 2011-02-18 2015-05-19 Medivation Technologies, Inc. Pyrido[4,3-b]indole and pyrido[3,4-b]indole derivatives and methods of use
US9034869B2 (en) 2008-03-24 2015-05-19 Medivation Technologies, Inc. Bridged heterocyclic compounds and methods of use
WO2015071178A1 (en) * 2013-11-12 2015-05-21 F. Hoffmann-La Roche Ag Pyrido[4,3-b]pyrazine-2-carboxamides as neurogenic agents for the treatment of neurodegenerative disorders
US9040519B2 (en) 2010-02-18 2015-05-26 Medivation Technologies, Inc. Fused tetracyclic pyrido [4,3-B] indole and pyrido [3,4-B] indole derivatives and methods of use
US9045482B2 (en) 2009-09-23 2015-06-02 Medivation Technologies, Inc. Pyrido[4,3-B]indoles and methods of use
US9085580B2 (en) 2009-09-23 2015-07-21 Medivation Technologies, Inc. Pyrido[3,4-B]indoles and methods of use
US9096591B2 (en) 2007-10-25 2015-08-04 Medivation Technologies, Inc. Tetracyclic compounds
US9095572B2 (en) 2009-01-09 2015-08-04 Board Of Regents Of The University Of Texas System Pro-neurogenic compounds
US9115137B2 (en) 2008-01-25 2015-08-25 Medivation Technologies, Inc. 2,3,4,5-tetrahydro-1H-pyrido[4,3-B]indole compounds and methods of use thereof
US9187471B2 (en) 2010-02-19 2015-11-17 Medivation Technologies, Inc. Pyrido [4,3-b] indole and pyrido [3,4-b] indole derivatives and methods of use
US9193728B2 (en) 2010-02-18 2015-11-24 Medivation Technologies, Inc. Fused tetracyclic pyrido [4,3-B] indole and pyrido [3,4-B] indole derivatives and methods of use
US9199985B2 (en) 2011-02-18 2015-12-01 Medivation Technologies, Inc. Compounds and methods for treatment of hypertension
US9255094B2 (en) 2009-04-29 2016-02-09 Medivation Technologies, Inc. Pyrido[4,3-B]indoles and methods of use
US9260429B2 (en) 2008-03-24 2016-02-16 Medivation Technologies, Inc. Pyrido[3,4-B]indoles and methods of use
US9409910B2 (en) 2008-10-31 2016-08-09 Medivation Technologies, Inc. Azepino[4,5-B]indoles and methods of use
US9434747B2 (en) 2011-02-18 2016-09-06 Medivation Technologies, Inc. Methods of treating diabetes
US9527854B2 (en) 2011-02-18 2016-12-27 Medivation Technologies, Inc. Compounds and methods for treatment of hypertension
US9616048B2 (en) 2009-01-09 2017-04-11 Board Of Regents Of The University Of Texas System Anti-depression compounds
EP3068388A4 (en) * 2013-11-11 2017-04-12 Board of Regents of the University of Texas System Neuroprotective compounds and use thereof
US9645139B2 (en) 2013-11-11 2017-05-09 Board Of Regents Of The University Of Texas System Neuroprotective chemicals and methods for identifying and using same
RU2654484C1 (en) * 2012-05-11 2018-05-21 Ресет Терапьютикс, Инк. Carbazole-containing sulfonamides as modulators of cryptochrome
WO2021123174A1 (en) * 2019-12-19 2021-06-24 Universite De Strasbourg Sigma-1 receptor ligands and therapeutic uses thereof
US11891382B2 (en) 2017-04-26 2024-02-06 Basilea Pharmaceutica International AG Processes for the preparation of furazanobenzimidazoles and crystalline forms thereof

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2009268518B2 (en) * 2008-07-11 2013-11-21 Solventum Intellectual Properties Company Manually-actuated, reduced-pressure systems for treating wounds
SG11201402258UA (en) * 2011-11-15 2014-06-27 Yissum Res Dev Co Tricyclic compounds, compositions comprising them and uses thereof
JP6106746B2 (en) 2012-07-17 2017-04-05 グラクソスミスクライン、インテレクチュアル、プロパティー、(ナンバー2)、リミテッドGlaxosmithkline Intellectual Property (No.2) Limited Indolecarbonitriles as selective androgen receptor modulators
CN104487438B (en) 2012-07-26 2016-10-19 霍夫曼-拉罗奇有限公司 Neurogenetic benzo isoxazole regulator
KR101716062B1 (en) 2012-08-06 2017-03-13 에프. 호프만-라 로슈 아게 Piperazino[1,2-a]indol-1-ones and [1,4]diazepino[1,2-a]indol-1-one
BR112015011094A2 (en) 2012-11-20 2017-07-11 Hoffmann La Roche Substituted 1,6-naphthyridines
WO2014079850A1 (en) 2012-11-23 2014-05-30 F. Hoffmann-La Roche Ag Substituted heterocyclic derivatives
CA2905270C (en) 2013-04-02 2017-09-05 F. Hoffmann-La Roche Ag Piperazino[1,2-a]indol-1-ones and [1,4]diazepino[1,2-a]indol-1-one
CN105163727B (en) 2013-05-03 2018-08-17 豪夫迈·罗氏有限公司 Stimulate neurogenetic isoquinilone derivatives
CN106061964B (en) 2014-01-20 2019-10-25 豪夫迈·罗氏有限公司 Neurogenetic N- phenyl-lactam derivatives and its purposes in the treatment of neuropathic conditions can be stimulated
TWI690521B (en) * 2014-04-07 2020-04-11 美商同步製藥公司 Carbazole-containing amides, carbamates, and ureas as cryptochrome modulators
CN105884767B (en) * 2015-11-24 2018-01-19 西华大学 Pyrido [3,4 b] indole derivatives of 9 substitutions and preparation method thereof and the purposes as SIRT protein inhibitors

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1094063A1 (en) 1999-10-18 2001-04-25 Applied Research Systems ARS Holding N.V. 9-(Piperazinylalkyl)carbazoles as Bax-modulators

Family Cites Families (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE537690A (en) 1954-07-01
US3518250A (en) 1965-12-17 1970-06-30 Ibm Substitution of imino-heterocyclic compounds
US3409628A (en) 1966-05-12 1968-11-05 Hoffmann La Roche 5-(3-pyridylethyl)pyridoindole derivatives
US4495281A (en) 1982-10-21 1985-01-22 Miles Laboratories, Inc. Tricyclic antidepressant drug immunogens, antibodies, labeled conjugates, and related derivatives
JPH04217657A (en) * 1990-10-19 1992-08-07 Toyo Gosei Kogyo Kk 4-(n-arylcarbamoylalkylthio)phenolic compound and heat-sensitive recording material produced by using the same
JP2684252B2 (en) 1991-03-08 1997-12-03 富士写真フイルム株式会社 Silver halide color photographic materials
JPH06503095A (en) 1991-05-29 1994-04-07 ファイザー・インコーポレーテッド Tricyclic polyhydroxy tyrosine kinase inhibitor
US5234923A (en) 1991-12-16 1993-08-10 E. R. Squibb & Sons, Inc. Substitute indole and benzimidazole derivatives
AU5644396A (en) 1995-05-05 1996-11-21 Novo Nordisk A/S Novel heterocyclic chemistry
RU2106864C1 (en) 1995-10-23 1998-03-20 Николай Серафимович Зефиров New approach to treatment of alzheimer's disease
CZ114199A3 (en) 1996-10-04 1999-09-15 Novo Nordisk A/S N-substituted azaheterocyclic compounds
US6468996B1 (en) 1998-10-21 2002-10-22 Novo Nordisk A/S Substituted hetero-polycyclic compounds as PPARα and PPARγ activators
JP2002527507A (en) 1998-10-21 2002-08-27 ノボ ノルディスク アクティーゼルスカブ New compounds, their preparation and use
EP1192178A2 (en) 1999-06-21 2002-04-03 Eli Lilly And Company Rufomycins and derivatives thereof useful as inhibitors of multi-drug resistance associated protein-1 (mrp-1)
MY125942A (en) 1999-09-07 2006-09-29 Upjohn Co Aminoalkoxy carbazoles for the treatment of cns diseases
GB9925880D0 (en) 1999-11-01 1999-12-29 British Tech Group Int B-Carboline derivatives
US6780858B2 (en) 2000-01-13 2004-08-24 Tularik Inc. Antibacterial agents
EP1125925A1 (en) 2000-02-15 2001-08-22 Applied Research Systems ARS Holding N.V. Amine derivatives for the treatment of apoptosis
US6340548B1 (en) 2000-03-16 2002-01-22 Imation Corp. Organophotoreceptors for electrophotography featuring novel charge transport compounds
AU2001252222B2 (en) 2000-03-27 2006-11-02 Merck Serono Sa Pharmaceutically active pyrrolidine derivatives as bax inhibitors
US20020173511A1 (en) 2000-11-08 2002-11-21 Wurtman Richard J. Serotonergic compositions and methods for treatment of mild cognitive impairment
WO2002060867A2 (en) 2001-01-29 2002-08-08 Insight Strategy And Marketing Ltd Carbazole derivatives and their uses as heparanase inhibitors
WO2003007069A2 (en) 2001-07-13 2003-01-23 The University Of Chicago Novel nonlinear optical polymers
JP2005526691A (en) 2001-08-08 2005-09-08 ファルマシア・アンド・アップジョン・カンパニー・エルエルシー Therapeutic agent 1H-pyrido [4,3-b] indole
US6835513B2 (en) 2002-03-28 2004-12-28 Samsung Electronic Co., Ltd. Carbazole based charge transport compounds
US6864025B2 (en) 2002-03-28 2005-03-08 Samsung Electronics Co., Ltd. Sulfonyldiphenylene-based charge transport compositions
CA2483314A1 (en) 2002-04-25 2003-11-06 Pharmacia Corporation Piperidinyl-and piperazinyl-sulfonylmethyl hydroxamic acids and their use as protease inhibitors
US7977049B2 (en) 2002-08-09 2011-07-12 President And Fellows Of Harvard College Methods and compositions for extending the life span and increasing the stress resistance of cells and organisms
JP4926403B2 (en) 2002-12-10 2012-05-09 ヴァイロケム ファーマ インコーポレイテッド Compounds and methods for the treatment or prevention of flavivirus infections
CN100503607C (en) 2003-06-02 2009-06-24 新疆华世丹药物研究有限责任公司 Yageine derivative compounds and their uses
US20050130974A1 (en) 2003-10-17 2005-06-16 Rigel Pharmaceuticals, Inc. Benzothiazole compositions and their use as ubiquitin ligase inhibitors
GB0324551D0 (en) 2003-10-21 2003-11-26 Karobio Ab Novel compounds
WO2005056522A2 (en) * 2003-12-04 2005-06-23 National Health Research Institutes Indole compounds
RU2283108C2 (en) 2003-12-08 2006-09-10 Сергей Олегович Бачурин GEROPROTECTING AGENT BASED ON HYDROGENATED PYRIDO[4,3-b]INDOLES (VARIANTS), PHARMACOLOGICAL AGENT BASED ON THEREOF AND METHOD FOR ITS USING
US20070196395A1 (en) 2003-12-12 2007-08-23 Mackerell Alexander Immunomodulatory compounds that target and inhibit the py'binding site of tyrosene kinase p56 lck sh2 domain
ES2300852T3 (en) * 2004-01-29 2008-06-16 Cellzome Ag TREATMENT OF NEUROGENERATIVE DISEASES THROUGH THE USE OF GPR49.
WO2005085227A1 (en) 2004-03-02 2005-09-15 Smithkline Beecham Corporation Inhibitors of akt activity
US20050244674A1 (en) 2004-04-28 2005-11-03 Jsr Corporation Phosphorescent polymer and production process thereof, organic electroluminescence device, and metal conplex-containing compond and production process thereof
US7445877B2 (en) 2004-06-10 2008-11-04 Samsung Electronics Co., Ltd. Charge transport materials having a central disulfane linkage
CN1738069A (en) 2004-08-17 2006-02-22 国际商业机器公司 Method for manufacturing electronic device having an electrode with enhanced injection properties and said electronic device
US8268575B2 (en) 2004-09-20 2012-09-18 Washington University NAD biosynthesis systems
JP2008515982A (en) 2004-10-13 2008-05-15 メルク エンド カムパニー インコーポレーテッド Ophthalmic composition for treating ocular hypertension
US7834063B2 (en) 2004-10-13 2010-11-16 Glaxosmithkline Llc Benzonitryl and nitrobenzyl derivatives that modulate androgen receptors
WO2006077954A1 (en) * 2005-01-21 2006-07-27 Kyowa Hakko Kogyo Co., Ltd. Remedy for neurological disease
CA2599987A1 (en) 2005-03-03 2006-09-08 Sirtris Pharmaceuticals, Inc. Fused heterocyclic compounds and their use as sirtuin modulators
CA2605166A1 (en) 2005-04-15 2006-10-26 Tgen Methods, heterocyclic compounds and compositions with genotype selective anitcancer activity
WO2007008541A2 (en) 2005-07-08 2007-01-18 Kalypsys, Inc. Cellular cholesterol absorption modifiers
WO2007041697A2 (en) 2005-10-04 2007-04-12 Medivation, Inc. Hydrogenated pyrido-indole compounds for the treatment of huntington ' s disease
US7438916B2 (en) 2005-10-14 2008-10-21 Virginia Tech Intellectual Properties, Inc. Therapeutic target for protozoal diseases
WO2007061798A2 (en) 2005-11-18 2007-05-31 Cornell Research Foundation, Inc. Nicotinoyl riboside compositions and methods of use
AU2006318212C1 (en) 2005-11-23 2012-08-30 The Board Of Regents Of The University Of Texas System Oncogenic ras-specific cytotoxic compound and methods of use thereof
DE102005062741A1 (en) 2005-12-22 2007-06-28 Bayer Schering Pharma Ag Fluorenes and carbazoles as ligands of the EP2 receptor
WO2007079239A2 (en) 2005-12-30 2007-07-12 Acadia Pharmaceuticals Inc. Bicyclic nitrogen compounds as modulators of ghrelin receptor and uses thereof
KR100814109B1 (en) 2006-01-09 2008-03-14 한국생명공학연구원 Rhodanine derivatives, a process for the preparation thereof and pharmaceutical composition containing the same
US20070203236A1 (en) 2006-01-11 2007-08-30 Smith Jeffrey W Novel antagonists of the human fatty acid synthase thioesterase
RU2338537C2 (en) 2006-01-25 2008-11-20 Сергей Олегович Бачурин AGENT FOR TREATMENT OF SCHIZOPHRENIA ON BASIS OF HYDROGENATED PYDIDO (4,3-b) INDOLES (VERSIONS), PHARMACOLOGICAL AGENT ON ITS BASIS AND METHOD OF ITS APPLICATION
CA2641659A1 (en) * 2006-02-07 2007-02-06 Mitsubishi Tanabe Pharma Corporation 4-acylaminopyridine derivative mediated neurogenesis
JP2007223916A (en) * 2006-02-21 2007-09-06 Institute Of Physical & Chemical Research Antibacterial agent
US7807704B2 (en) 2006-03-30 2010-10-05 Chemocentryx, Inc. Bicyclic, nitrogen-containing compounds modulating CXCR4 and/or CCXCKR2
EP2021000A2 (en) * 2006-05-09 2009-02-11 Braincells, Inc. Neurogenesis by modulating angiotensin
US20090306137A1 (en) 2006-05-22 2009-12-10 Wolfgang Curt D Treatment for depressive disorders
WO2008021745A2 (en) 2006-08-16 2008-02-21 Itherx Pharmaceuticals, Inc. Hepatitis c virus entry inhibitors
US7998971B2 (en) * 2006-09-08 2011-08-16 Braincells Inc. Combinations containing a 4-acylaminopyridine derivative
RU2329044C1 (en) 2006-11-16 2008-07-20 Андрей Александрович Иващенко Ligands of 5-ht6 receptors, pharmaceutical formulation, production method and medical product
RU2338745C1 (en) 2007-03-21 2008-11-20 Андрей Александрович Иващенко SUBSTITUTED 2,3,4,5-TETRAHYDRO-1N-PYRIDO[4,3-b]INDOLES, METHOD OF OBTAINING THEM AND USE
RU2339637C1 (en) 2007-04-05 2008-11-27 Андрей Александрович Иващенко Histamine receptor blockers for pharmaceutical compositions of antiallergic and autoimmune effect
RU2334747C1 (en) 2007-04-05 2008-09-27 Андрей Александрович Иващенко SUBSTITUTED 2,3,4,5-TETRAHYDRO-1H-PYRIDO[4,3-b]INDOLES, METHOD OF PRODUCTION AND APPLICATION THEREOF
JP5540701B2 (en) 2007-06-21 2014-07-02 コニカミノルタ株式会社 Organic electroluminescence element material
CN101868446A (en) 2007-09-25 2010-10-20 托波塔吉特英国有限公司 The synthetic method of some hydroxamic acid compound
CN101139347B (en) 2007-10-15 2010-11-24 新疆华世丹药物研究有限责任公司 Banisterine derivative compound and uses thereof
RU2007139634A (en) 2007-10-25 2009-04-27 Сергей Олегович Бачурин (RU) NEW THIAZOLE-, TRIAZOLE- OR OXADIAZOLE-CONTAINING TETRACYCLIC COMPOUNDS
CN101429198B (en) 2007-11-09 2013-10-23 新疆华世丹药物研究有限责任公司 Banisterine derivant and uses thereof
WO2009086303A2 (en) 2007-12-21 2009-07-09 University Of Rochester Method for altering the lifespan of eukaryotic organisms
WO2009082268A2 (en) 2007-12-21 2009-07-02 Alla Chem, Llc LIGANDS OF α-ADRENOCEPTORS AND OF DOPAMINE, HISTAMINE, IMIDAZOLINE AND SEROTONIN RECEPTORS AND THE USE THEREOF
RU2544856C2 (en) 2008-01-25 2015-03-20 Сергей Олегович Бачурин NEW 2,3,4,5-TETRAHYDRO-1-PYRIDO[4,3-b]INDOLE DERIVATIVES AND METHODS FOR USING THEM
US9079999B2 (en) 2008-02-26 2015-07-14 Rigoberto Advincula Methods for preparing polymer coatings by electrochemical grafting of polymer brushes, compositions prepared thereby and compositions for preparing the coatings
TWI443098B (en) * 2008-03-24 2014-07-01 Medivation Technologies Inc Pyrido[3,4-b]indoles and methods of use
US7989127B2 (en) 2008-04-30 2011-08-02 Xerox Corporation Carbazole containing charge transport layer photoconductors
KR20100008720A (en) * 2008-07-16 2010-01-26 호 진 안 Call bell system
AU2009308293B2 (en) 2008-10-22 2015-02-05 Genentech, Inc. Modulation of axon degeneration
JP5588991B2 (en) 2008-10-31 2014-09-10 メディベイション テクノロジーズ, インコーポレイテッド Pyrido [4,3-b] indole with rigid part
WO2010051503A1 (en) 2008-10-31 2010-05-06 Medivation Technologies, Inc. Azepino [4, 5-b] indoles and methods of use
US9962368B2 (en) 2009-01-09 2018-05-08 Board Of Regents Of The University Of Texas System Pro-neurogenic compounds
US9162980B2 (en) 2009-01-09 2015-10-20 Board Of Regents Of The University Of Texas System Anti-depression compounds
AU2010203356B2 (en) 2009-01-09 2015-11-26 Board Of Regents Of The University Of Texas System Pro-neurogenic compounds
US8362277B2 (en) 2009-01-09 2013-01-29 Board Of Regents Of The University Of Texas System Pro-neurogenic compounds
US8741919B2 (en) 2009-04-29 2014-06-03 Medivation Technologies, Inc. Pyrido[4,3-B]indoles and methods of use
RU2009128817A (en) * 2009-07-28 2011-02-10 Общество с ограниченной ответственностью "Инномед" (RU) HYDROGEN PYRIDO [4,3-B] INDOLES DERIVATIVES, PHARMACEUTICAL COMPOSITION, METHODS FOR PRODUCING AND USE
EP2462024B1 (en) 2009-08-06 2014-01-15 Harro Höfliger Verpackungsmaschinen GmbH Filling assembly for metering powder and method for operating such a filling assembly
EP2480079A4 (en) 2009-09-23 2015-04-08 Medivation Technologies Inc Pyrido(3,4-b)indoles and methods of use
EP2403855B1 (en) 2010-03-22 2013-05-01 Council of Scientific & Industrial Research Carbazole linked pyrrolo[2,1-c][1,4]benzodiazepine hybrids as potential anticancer agents and process for the preparation thereof
DK2590647T3 (en) 2010-07-07 2018-02-12 Univ Texas Pro-neurogenic compounds
CA2817093A1 (en) 2010-11-15 2012-05-24 Abbvie Inc. Nampt inhibitors
KR20140084164A (en) 2011-10-15 2014-07-04 제넨테크, 인크. Scd1 antagonists for treating cancer
AU2013305591B2 (en) 2012-08-24 2017-04-13 Board Of Regents Of The University Of Texas System Pro-neurogenic compounds
WO2014031125A1 (en) 2012-08-24 2014-02-27 Board Of Regents Of The University Of Texas System Pro-neurogenic compounds
US9789096B2 (en) 2013-09-04 2017-10-17 Board Of Regents Of The University Of Texas System Methods and compositions for selective and targeted cancer therapy
WO2015070237A1 (en) 2013-11-11 2015-05-14 Board Of Regents Of The University Of Texas System Neuroprotective chemicals and methods for identifying and using same
EP3068388A4 (en) 2013-11-11 2017-04-12 Board of Regents of the University of Texas System Neuroprotective compounds and use thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1094063A1 (en) 1999-10-18 2001-04-25 Applied Research Systems ARS Holding N.V. 9-(Piperazinylalkyl)carbazoles as Bax-modulators

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
"Encyclopedia of Reagents for Organic Synthesis", 1995, JOHN WILEY AND SONS
ASSO, V.; GHILARDI, E.; BERTINI, S.; DIGIACOMO, M.; GRANCHI, C.; MINUTOLO, F.; RAPPOSELLI, S.; BORTOLATO, A.; MORO, S.; MACCHIA, M, CHEMMEDCHEM, vol. 3, 2008, pages 1530 - 1534
L. FIESER; M. FIESER: "Fieser and Fieser's Reagents for Organic Synthesis", 1994, JOHN WILEY AND SONS
NEGRIN ET AL., BIOMATERIALS, vol. 22, no. 6, 2001, pages 563
P.G.M. WUTS; T.W. GREENE: "Protective Groups in Organic Synthesis", 2007, JOHN WILEY AND SONS
PARK ET AL., SCIENCE, vol. 322, 7 November 2008 (2008-11-07), pages 963 - 6
POESEN ET AL., J. NEUROSCI., vol. 28, no. 42, 15 October 2008 (2008-10-15), pages 10451 - 9
R.C. LAROCK: "Comprehensive Organic Transformations", 1999, WILEY-VCH PUBLISHERS
See also references of EP2590647A4
SUN ET AL., CELL MOL NEUROBIOL., 6 November 2008 (2008-11-06)
ZHANG ET AL., J TRANSL MED., vol. 6, no. 1, 5 November 2008 (2008-11-05), pages 67

Cited By (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9096591B2 (en) 2007-10-25 2015-08-04 Medivation Technologies, Inc. Tetracyclic compounds
US9181240B2 (en) 2007-10-25 2015-11-10 Medivation Technologies, Inc. Tetracyclic compounds
US9115137B2 (en) 2008-01-25 2015-08-25 Medivation Technologies, Inc. 2,3,4,5-tetrahydro-1H-pyrido[4,3-B]indole compounds and methods of use thereof
US9469641B2 (en) 2008-03-24 2016-10-18 Medivation Technologies, Inc. Pyrido[3,4-B]indoles and methods of use
US9260429B2 (en) 2008-03-24 2016-02-16 Medivation Technologies, Inc. Pyrido[3,4-B]indoles and methods of use
US9034869B2 (en) 2008-03-24 2015-05-19 Medivation Technologies, Inc. Bridged heterocyclic compounds and methods of use
US9481676B2 (en) 2008-10-31 2016-11-01 Medivation Technologies, Inc. Azepino[4,5-B]indoles and methods of use
US9409910B2 (en) 2008-10-31 2016-08-09 Medivation Technologies, Inc. Azepino[4,5-B]indoles and methods of use
US8748473B2 (en) 2009-01-09 2014-06-10 Board Of The Regents Of The University Of Texas System Methods of treating post-traumatic stress disorder using pro-neurogenic compounds
US8362277B2 (en) 2009-01-09 2013-01-29 Board Of Regents Of The University Of Texas System Pro-neurogenic compounds
US10183011B2 (en) 2009-01-09 2019-01-22 Board Of Regents Of The University Of Texas System Anti-depression compounds
US9884820B2 (en) 2009-01-09 2018-02-06 Board Of Regents Of The University Of Texas System Pro-neurogenic compounds
US8791149B2 (en) 2009-01-09 2014-07-29 Board Of Regents Of The University Of Texas System Methods of treating traumatic brain injury using pro-neurogenic compounds
US9962368B2 (en) 2009-01-09 2018-05-08 Board Of Regents Of The University Of Texas System Pro-neurogenic compounds
US8735440B2 (en) 2009-01-09 2014-05-27 Board Of Regents Of The University Of Texas System Methods for treating amyotrophic lateral sclerosis using pro-neurogenic compounds
US9095571B2 (en) 2009-01-09 2015-08-04 Board Of Regents Of The University Of Texas System Pro-neurogenic compounds
US10172827B2 (en) 2009-01-09 2019-01-08 Board Of Regents Of The University Of Texas System Pro-neurogenic compounds
US8877797B2 (en) 2009-01-09 2014-11-04 Board Of Regents Of The University Of Texas System Methods for treating Parkinson's disease using pro-neurogenic compounds
US9095572B2 (en) 2009-01-09 2015-08-04 Board Of Regents Of The University Of Texas System Pro-neurogenic compounds
US8604074B2 (en) 2009-01-09 2013-12-10 Board Of Regents Of The University Of Texas System Pro-neurogenic compounds
US9616048B2 (en) 2009-01-09 2017-04-11 Board Of Regents Of The University Of Texas System Anti-depression compounds
US9255094B2 (en) 2009-04-29 2016-02-09 Medivation Technologies, Inc. Pyrido[4,3-B]indoles and methods of use
US9085580B2 (en) 2009-09-23 2015-07-21 Medivation Technologies, Inc. Pyrido[3,4-B]indoles and methods of use
US9271971B2 (en) 2009-09-23 2016-03-01 Medivation Technologies, Inc. Pyrido[3,4-B]indoles and methods of use
US9045482B2 (en) 2009-09-23 2015-06-02 Medivation Technologies, Inc. Pyrido[4,3-B]indoles and methods of use
US9580425B2 (en) 2009-09-23 2017-02-28 Medivation Technologies, Inc. Pyrido[3,4-b] indoles and methods of use
US9006234B2 (en) 2009-09-23 2015-04-14 Medivation Technologies, Inc. Bridged heterocyclic compounds and methods of use
US9199996B2 (en) 2009-09-23 2015-12-01 Medivation Technologies, Inc. Pyrido[4,3-B]indoles and methods of use
US9433626B2 (en) 2010-02-18 2016-09-06 Medivation Technologies, Inc. Pyrido[4,3-B]indole and pyrido[3,4-B]indole derivatives and methods of use
US9040519B2 (en) 2010-02-18 2015-05-26 Medivation Technologies, Inc. Fused tetracyclic pyrido [4,3-B] indole and pyrido [3,4-B] indole derivatives and methods of use
US9193728B2 (en) 2010-02-18 2015-11-24 Medivation Technologies, Inc. Fused tetracyclic pyrido [4,3-B] indole and pyrido [3,4-B] indole derivatives and methods of use
US9034865B2 (en) 2010-02-18 2015-05-19 Medivation Technologies, Inc. Pyrido [4,3-B] indole and pyrido [3,4-B] indole derivatives and methods of use
US9187471B2 (en) 2010-02-19 2015-11-17 Medivation Technologies, Inc. Pyrido [4,3-b] indole and pyrido [3,4-b] indole derivatives and methods of use
US9527854B2 (en) 2011-02-18 2016-12-27 Medivation Technologies, Inc. Compounds and methods for treatment of hypertension
US9035056B2 (en) 2011-02-18 2015-05-19 Medivation Technologies, Inc. Pyrido[4,3-b]indole and pyrido[3,4-b]indole derivatives and methods of use
US9550782B2 (en) 2011-02-18 2017-01-24 Medivation Technologies, Inc. Compounds and methods for treating diabetes
US9211287B2 (en) 2011-02-18 2015-12-15 Medivation Technologies, Inc. Pyrido[4,3-b]indole and pyrido[3,4-b]indole derivatives and methods of use
US9199985B2 (en) 2011-02-18 2015-12-01 Medivation Technologies, Inc. Compounds and methods for treatment of hypertension
US9434747B2 (en) 2011-02-18 2016-09-06 Medivation Technologies, Inc. Methods of treating diabetes
JP2013193980A (en) * 2012-03-19 2013-09-30 Toray Fine Chemicals Co Ltd Low viscosity epoxy compound, and method for producing the same
RU2654484C1 (en) * 2012-05-11 2018-05-21 Ресет Терапьютикс, Инк. Carbazole-containing sulfonamides as modulators of cryptochrome
WO2014031986A1 (en) 2012-08-24 2014-02-27 Board Of Regents Of The University Of Texas System Pro-neurogenic compounds
WO2014031125A1 (en) 2012-08-24 2014-02-27 Board Of Regents Of The University Of Texas System Pro-neurogenic compounds
EP2887803A4 (en) * 2012-08-24 2016-08-03 Univ Texas Pro-neurogenic compounds
AU2012388221B2 (en) * 2012-08-24 2017-08-31 Board Of Regents Of The University Of Texas System Pro-neurogenic compounds
JP2015529663A (en) * 2012-08-24 2015-10-08 ボード・オブ・リージエンツ,ザ・ユニバーシテイ・オブ・テキサス・システム Neurogenesis-promoting compound
AU2013305591B2 (en) * 2012-08-24 2017-04-13 Board Of Regents Of The University Of Texas System Pro-neurogenic compounds
CN104754941A (en) * 2012-08-24 2015-07-01 得克萨斯州大学系统董事会 Pro-neurogenic compounds
US9701676B2 (en) 2012-08-24 2017-07-11 Board Of Regents Of The University Of Texas System Pro-neurogenic compounds
CN104754941B (en) * 2012-08-24 2018-02-27 得克萨斯州大学系统董事会 Preceding neurogenic compounds
CN108329253A (en) * 2012-08-24 2018-07-27 得克萨斯州大学系统董事会 Preceding neurogenic compounds
CN104703981A (en) * 2012-10-01 2015-06-10 霍夫曼-拉罗奇有限公司 Benzimidazol.es as CNS active agents
JP2015528486A (en) * 2012-10-01 2015-09-28 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft Benzimidazoles as CNS activators
RU2647585C2 (en) * 2012-10-01 2018-03-16 Ф. Хоффманн-Ля Рош Аг Benzimidazoles as cns active agents
KR101676212B1 (en) 2012-10-01 2016-11-14 에프. 호프만-라 로슈 아게 Benzimidazoles as cns active agents
WO2014053409A1 (en) * 2012-10-01 2014-04-10 F. Hoffmann-La Roche Ag Benzimidazol.es as cns active agents
KR20150047614A (en) * 2012-10-01 2015-05-04 에프. 호프만-라 로슈 아게 Benzimidazoles as cns active agents
US9365550B2 (en) 2012-10-01 2016-06-14 Hoffmann-La Roche Inc. Benzimidazoles as CNS active agents
KR20160042092A (en) * 2013-09-12 2016-04-18 에프. 호프만-라 로슈 아게 Indol-carboxamide derivatives
RU2673489C2 (en) * 2013-09-12 2018-11-27 Ф. Хоффманн-Ля Рош Аг Indole-carboxamide derivatives
WO2015036412A1 (en) * 2013-09-12 2015-03-19 F. Hoffmann-La Roche Ag Indol-carboxamide derivatives
CN105555763A (en) * 2013-09-12 2016-05-04 豪夫迈·罗氏有限公司 Indol-carboxamide derivatives
JP2016531143A (en) * 2013-09-12 2016-10-06 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft Indole-carboxamide derivatives
US9464049B2 (en) 2013-09-12 2016-10-11 Hoffmann-La Roche Inc. Indole-carboxamides
KR101716099B1 (en) 2013-09-12 2017-03-13 에프. 호프만-라 로슈 아게 Indol-carboxamide derivatives
US9902713B2 (en) 2013-11-11 2018-02-27 Board Of Regents Of The University Of Texas System Neuroprotective compounds and use thereof
EP3068388A4 (en) * 2013-11-11 2017-04-12 Board of Regents of the University of Texas System Neuroprotective compounds and use thereof
US9645139B2 (en) 2013-11-11 2017-05-09 Board Of Regents Of The University Of Texas System Neuroprotective chemicals and methods for identifying and using same
JP2016536320A (en) * 2013-11-12 2016-11-24 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft Pyrido [4,3-b] pyrazine-2-carboxamide as a neurogenesis agent for the treatment of neurodegenerative diseases
AU2014350371B2 (en) * 2013-11-12 2018-02-15 F. Hoffmann-La Roche Ag Pyrido[4,3-b]pyrazine-2-carboxamides as neurogenic agents for the treatment of neurodegenerative disorders
KR101861937B1 (en) 2013-11-12 2018-05-28 에프. 호프만-라 로슈 아게 Pyrido[4,3-b]pyrazine-2-carboxamides as neurogenic agents for the treatment of neurodegenerative disorders
EA028940B1 (en) * 2013-11-12 2018-01-31 Ф. Хоффманн-Ля Рош Аг PYRIDO[4,3-b]PYRAZINE-2-CARBOXAMIDES AS NEUROGENIC AGENTS FOR THE TREATMENT OF NEURODEGENERATIVE DISORDERS
US9670206B2 (en) * 2013-11-12 2017-06-06 Hoffmann-La Roche Inc. Pyrido[4,3-B]pyrazine-2-carboxamides as neurogenic agents for the treatment of neurodegenerative disorders
WO2015071178A1 (en) * 2013-11-12 2015-05-21 F. Hoffmann-La Roche Ag Pyrido[4,3-b]pyrazine-2-carboxamides as neurogenic agents for the treatment of neurodegenerative disorders
US11891382B2 (en) 2017-04-26 2024-02-06 Basilea Pharmaceutica International AG Processes for the preparation of furazanobenzimidazoles and crystalline forms thereof
WO2021123174A1 (en) * 2019-12-19 2021-06-24 Universite De Strasbourg Sigma-1 receptor ligands and therapeutic uses thereof

Also Published As

Publication number Publication date
US9884820B2 (en) 2018-02-06
EP2590647A4 (en) 2014-05-21
US20160074361A1 (en) 2016-03-17
US20160362373A1 (en) 2016-12-15
BR112013000414A2 (en) 2016-05-17
CN103415289A (en) 2013-11-27
JP6126528B2 (en) 2017-05-10
IL223783A0 (en) 2013-03-05
AU2011274787B2 (en) 2016-06-16
US9095572B2 (en) 2015-08-04
IL223783B (en) 2018-06-28
EP2590647A2 (en) 2013-05-15
US20180127367A1 (en) 2018-05-10
WO2012006419A3 (en) 2013-08-01
AU2011274787A1 (en) 2013-01-10
JP2013541495A (en) 2013-11-14
DK2590647T3 (en) 2018-02-12
US20120022096A1 (en) 2012-01-26
US9446022B2 (en) 2016-09-20
CN103415289B (en) 2017-04-12
CA2804161A1 (en) 2012-01-12
EP2590647B1 (en) 2017-11-08

Similar Documents

Publication Publication Date Title
US9884820B2 (en) Pro-neurogenic compounds
US20180318255A1 (en) Pro-Neurogenic Compounds
AU2012388221B2 (en) Pro-neurogenic compounds
US9446042B2 (en) Pro-neurogenic compounds
US10183011B2 (en) Anti-depression compounds
WO2010081115A1 (en) Pro-neurogenic compounds

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11804335

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 4047/KOLNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 223783

Country of ref document: IL

ENP Entry into the national phase

Ref document number: 2804161

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2013518827

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2011274787

Country of ref document: AU

Date of ref document: 20110707

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2011804335

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011804335

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013000414

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013000414

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130107