WO2012003675A1 - Blind detection method - Google Patents

Blind detection method Download PDF

Info

Publication number
WO2012003675A1
WO2012003675A1 PCT/CN2010/077822 CN2010077822W WO2012003675A1 WO 2012003675 A1 WO2012003675 A1 WO 2012003675A1 CN 2010077822 W CN2010077822 W CN 2010077822W WO 2012003675 A1 WO2012003675 A1 WO 2012003675A1
Authority
WO
WIPO (PCT)
Prior art keywords
cce
pdcch
cces
dci format
search space
Prior art date
Application number
PCT/CN2010/077822
Other languages
French (fr)
Chinese (zh)
Inventor
吴松
陈永倩
Original Assignee
新邮通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新邮通信设备有限公司 filed Critical 新邮通信设备有限公司
Publication of WO2012003675A1 publication Critical patent/WO2012003675A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the invention relates to blind detection technology in a mobile communication system, in particular to long-term evolution
  • the LTE system is a broadband mobile communication system.
  • the uplink uses single-carrier frequency division multiple access (SC-FDMA) technology, and the downlink uses orthogonal frequency division (OFDM) multiple access technology.
  • SC-FDMA single-carrier frequency division multiple access
  • OFDM orthogonal frequency division
  • the supported system bandwidth includes 1.4MHz and 3MHz. 5MHz, 10MHz, 15MHz and 20MHz.
  • all the physical resources in the cell are shared and are uniformly scheduled and allocated by the network to the user equipment in the cell (UE). ).
  • uplink and downlink resource scheduling are performed through a physical downlink control channel (PDCCH).
  • the network side first transmits the related information of the resource allocation to the UE through the PDCCH. After detecting the PDCCH sent to itself, the UE detects the data channel, that is, the physical downlink shared channel (PDSCH) according to the control information in the PDCCH. .
  • the network side needs to initiate a scheduling request to the network side, and the network side indicates the uplink physical resource allocated to the UE by using the PDCCH, and then the UE can send the uplink data on the allocated physical resource.
  • the physical downlink control channel PDCCH plays a very important role in uplink and downlink resource scheduling.
  • PDCCH DCI Downlink Control Information
  • 10 types of downlink control information (PDCCH DCI, Downlink Control Information) format are defined for scheduling information and different data transmission modes carried by the PDCCH, including DCI Format 0, 1, 1A, 1B, 1C, 1D, 2, 2A. , 3 and 3A, each format carries different control information.
  • DCI Format 0 is mainly used for For line scheduling
  • DCI Format 1, 1A, 1B, 1C, 1D, 2, and 2A are used for downlink scheduling
  • DCI Format 3 and 3 A are mainly used to carry uplink power control command words.
  • the physical resources carrying the PDCCH are allocated in units of control channel elements (CCEs, Control Channel Element), each CCE includes 9 resource element groups (REG, Resource Element Group), and each REG includes 4 resource elements (RE , Resource Element;), RE is the smallest resource unit in the LTE system, and each RE represents a time-frequency symbol.
  • CCEs Control Channel Element
  • each CCE includes 9 resource element groups (REG, Resource Element Group)
  • each REG includes 4 resource elements (RE , Resource Element;)
  • RE is the smallest resource unit in the LTE system
  • RE represents a time-frequency symbol.
  • the number of REs included in one resource block in one time slot is AC XW.
  • the number of subcarriers included in the entire system bandwidth is XN.
  • the LTE system requires the UE to use the blind detection mode when receiving the PDCCH, that is, the UE needs to detect the PDCCH channel currently sent to itself by means of blind detection, and perform downlink data according to the content indicated by the PDCCH channel.
  • Each PDCCH channel may be carried by one or more consecutive CCEs, and one or more consecutive CCEs carrying the PDCCH constitute a CCE search space.
  • the PDCCH format is generally specified. Each format corresponds to a CCE number that can be used to carry the PDCCH (ie, the CCE search space size).
  • PDCCH formats are defined in the 3GPP LTE standard. 1, 2, 3, and 3, respectively, the number of CCEs is 1, 2, 4, and 8, that is, in the communication process, according to the information bit length of the DCI and the channel quality during transmission, the network side can The appropriate number of CCEs are selected in the range of 1, 2, 4, and 8 to carry the PDCCH DCI, so that the PDCCH can adapt to the channel change, and meet the requirement that the demodulation error block rate does not exceed 1%. All CCE search spaces that may carry the PDCCH constitute a CCE search space candidate set.
  • the common search space is mainly used for the bearer to notify the UE to receive broadcast and seek.
  • the PDCCH channel of the information, and all UEs are common, and the dedicated search space is allocated for each UE, that is, when the UE is scheduled, the PDCCH channel sent to it may only be used by the common search space or the dedicated search space belonging to it.
  • CCE bearer For scheduling flexibility, and reducing the number of UE searches, the PDCCH DCI sent by the network to the UE may be carried by using one CCE search space in the CCE search space candidate set.
  • the UE needs to traverse all possible CCE search space candidate sets.
  • FIG. 2 is a schematic flowchart of a conventional blind detection method. As shown in FIG. 2, the method includes:
  • Step 201 In each downlink subframe, the UE detects the control region OFDM symbol, and performs demapping, demodulation, and descrambling on the PDCCH channel.
  • Step 202 The UE selects one of the unselected CCEs from the preset CCE number candidate set. The number is taken as the current CCE search space size S.
  • Step 203 In the preset CCE search space candidate set, select a CCE search space of size S and not selected as the current CCE search space.
  • a method of sequential selection is implemented when selecting a CCE search space. That is, the multiple CCE search spaces included in the CCE search space candidate set of the UE are generally continuous, and when the UE searches, the first search space (S consecutive CCEs) is blindly detected from the start position. If a CCE search space fails, the next CCE search space is detected in turn.
  • the UE first detects the first CCE search space (composed of the 1st to 4th CCEs), if If it fails, the second CCE search space is selected as the current CCE search space for detection (composed of the 5th to 8th CCEs), and so on.
  • Steps 204 to 208 Select one PDCCH DCI format from the preset PDCCH DCI format set, and use the current CCE search space to perform decoding and CRC check on the selected PDCCH DCI format, if the CRC check succeeds If the blind detection succeeds, the blind detection process ends. Otherwise, an undetected PDCCH DCI format is selected, and the decoding and verification are continued; all possible PDCCH DCI formats are traversed, and if the CRC check is incorrect, the execution is performed. Step 209.
  • the PDCCH DCI format set will include all PDCCH DCI formats that may be employed by the network side.
  • Step 209 Determine whether all CCE search spaces of size S are selected in the CCE search candidate set. If yes, go to step 210, otherwise go to step 203.
  • Step 210 Determine whether there is one unselected number of CCEs in the preset CCE number candidate set. If yes, go to step 202, otherwise exit the blind detection process.
  • the current network may not be given to the UE.
  • the PDCCH is transmitted, or the PDCCH fails to be detected due to network quality or other reasons.
  • the main object of the present invention is to provide a blind detection method, which can effectively reduce the processing complexity and power consumption of the UE.
  • a blind detection method when the last two effective scheduling intervals of the user equipment (UE) are within a preset correlation time T, the method includes the following steps:
  • the UE performs detection, demodulation, and descrambling of a control symbol where a physical downlink control channel (PDCCH) is located;
  • PDCH physical downlink control channel
  • the PDCCH DCI format candidate set adopted by the network side of the current scheduling subframe according to the downlink transmission mode adopted by the previous scheduling subframe adjacent to the current scheduling subframe in the preset correlation time T, and according to The PDCCH DCI format of the PDCCH DCI format candidate set is sorted by a preset ordering principle, and the PDCCH DCI format corresponding to the downlink transmission mode adopted by the previous scheduling subframe is preferentially ranked in front of the queue, where The PDCCH DCI format adopted by the previous scheduling subframe is ranked first in the queue;
  • the UE determines a control channel element (CCE) that may be used when receiving the PDCCH according to a signal-to-noise ratio (SNR) measurement result of a most recent secondary feedback channel quality indicator (CQI) in the latest or the relevant time T
  • CCE control channel element
  • SNR signal-to-noise ratio
  • CQI secondary feedback channel quality indicator
  • the UE selects a CCE of size N in a preset search space candidate set Search space as the current CCE search space;
  • the UE uses the current CCE search space to sequentially detect, decode, and CRC the sorted PDCCH DCI format until the CRC check succeeds; if the CRC check fails Go to step X6, otherwise, exit the blind detection method;
  • the UE determines whether there is a CCE search space that is not selected and the number of CCEs is N in the CCE search space candidate set, and if yes, selects a CCE search space that is not selected and has a CCE number of N as the current CCE search space, perform step X5; otherwise, perform step X7;
  • the UE determines whether there is an unselected number of CCEs in the preset number of CCEs, and if yes, selects an unselected number of CCEs as the number of CCEs of the current CCE search space, and performs steps. X4; Otherwise, the blind detection method ends.
  • the blind detection method proposed by the present invention determines the PDCCH DCI format candidate set for blind detection by using the network configuration to the UE transmission mode and historical scheduling information, and uses the channel SINR/SNR measurement result and the adjacent two times.
  • the channel change during scheduling initially determines the number of CCE resources that carry the PDCCH, which greatly reduces the number of attempts of the UE PDCCH blind detection, and can reduce the calculation amount and processing complexity of the UE, reduce the power consumption of the UE, and improve system performance.
  • FIG. 1 is a schematic diagram of an existing downlink resource element
  • FIG. 2 is a schematic flow chart of a conventional blind detection method
  • 3 is a schematic flowchart of blind detection when the last two effective scheduling intervals of the UE do not exceed the relevant time T according to an embodiment of the present invention
  • FIG. 4 is a schematic flowchart of a UE feeding back a CQI and receiving a PDCCH in an existing system
  • FIG. 5 is a schematic flowchart of blind detection when a UE's last two effective scheduling intervals are greater than a correlation time T or a UE first receives a PDCCH signal according to another embodiment of the present invention. Mode for carrying out the invention
  • the core idea of the present invention is: determining the PDCCH DCI format blind detection candidate set by using the network configuration to the UE transmission mode and historical scheduling information, and initially determining the bearer PDCCH by using the channel SINR/SNR measurement and the channel change in the adjacent two schedulings.
  • the range of the number of CCE resources can greatly reduce the number of UE PDCCH blind detection attempts, reduce the computational complexity and processing complexity of the UE, reduce UE power consumption, and improve system performance.
  • FIG. 3 is a schematic diagram of a blind detection process according to an embodiment of the present invention.
  • the embodiment provides a transmission mode and historical scheduling using a network configuration to a UE when the last two effective scheduling intervals of the UE are within a preset correlation time T.
  • a method for blind detection of information as shown in FIG. 3, the embodiment includes:
  • Step 301 In each downlink receiving subframe, the UE performs detection, demodulation, and descrambling of a control symbol where a physical downlink control channel (PDCCH) is located.
  • Step 302 The UE determines, according to a downlink transmission mode that is used by the previous scheduling subframe that is adjacent to the current scheduling subframe in the preset correlation time T, the PDCCH DCI format candidate set used by the network side of the current scheduling subframe, and The PDCCH DCI format in the PDCCH DCI format candidate set is sorted according to a preset ordering principle, and the PDCCH DCI format corresponding to the downlink transmission mode adopted by the previous scheduling subframe is preferentially ranked in front of the queue.
  • PDCCH physical downlink control channel
  • the PDCCH DCI format adopted by the previous scheduling subframe is ranked first in the queue.
  • the "scheduling subframe" here is different from the previous "downlink receiving subframe” concept: in the LTE system, the network side sends a scheduling command to the scheduled UE in the downlink receiving subframe, for the For the scheduled UE, the downlink receiving subframe is a "scheduling subframe", that is, the "scheduling subframe" is for a certain UE, and only the UE correctly detects the network in a certain downlink receiving subframe.
  • the scheduling command is used, the downlink receiving subframe is the scheduling subframe of the UE.
  • Appropriate values are set by the UE's moving speed and channel change in the application. For example, when the UE motion speed is high, the correlation time T can be set smaller, and when the UE motion speed is low, the correlation time T can be set larger.
  • RNTI Radio Network Temporary Identifiers
  • the RNTI can be classified into a cell RNTI (C-RNTI, Cell RNTI), a semi-persistent scheduling C-RNTI (SPS C-RNTI, Semi-Persistent Scheduling C-RNTI), and a system according to the type of data transmitted and the state of the UE.
  • C-RNTI Cell RNTI
  • SPS C-RNTI Semi-Persistent Scheduling C-RNTI
  • a system according to the type of data transmitted and the state of the UE.
  • SI-RNTI System Information RNTI
  • P-RNTI paging RNTI
  • TC-RNTI Temporary C-RNTI
  • the ID assigned by each UE is different, and for SI-RNTI, P-RNTI and RA-RNTI, it is a cell.
  • the UE is shared within use.
  • the upper layer configures the UE to receive the PDCCH that is scrambled by the C-RNTI cyclic check code (CRC code).
  • CRC code C-RNTI cyclic check code
  • seven transmission modes are defined. In each transmission mode, there is a corresponding PDCCH DCI format, a specific transmission mode, and a PDCCH DCI format that can be adopted in each mode, such as Table 2 shows.
  • the network layer may adopt a semi-persistent scheduling mode for the UE.
  • the upper layer configures the UE to receive the PDCCH that is scrambled by the SPS C-RNTI, and in this case also defines 7 A transmission mode, each mode has a corresponding PDCCH DCI format, as shown in Table 2a.
  • DCI Format UE dedicated search space closed loop space-time complex IB under single transport layer
  • the PDCCH DCI format that may be used is also defined for the LTE specifications to facilitate the UE to perform detection.
  • the DCI format corresponding to the PDCCH that the upper layer configures the UE to receive the scrambling CRC by the SI-RNTI is as shown in Table 2b.
  • the upper layer configures the UE to receive the P-RNTI.
  • the DCI format corresponding to the PDCCH of the CRC is as shown in Table 2b.
  • the high-level configuration UE receives the DCI format corresponding to the PDCCH that is scrambled by the RA-RNTI. 2b is shown.
  • the upper layer configures the UE to receive the PDCCH that is scrambled by the temporary C-RNTI (TC-RNTI), and the corresponding DCI format is as shown in Table 2c.
  • Transmission mode DCI format search space description mode 1 DCI Format public and UE dedicated search antenna port transmission, port O
  • DCI Format 1 UE-specific search empty If there is one antenna port for transmitting PBCH, the single-antenna port is used: port O; otherwise, the transmit diversity table 2c
  • the following method when the candidate set of the PDCCH DCI format is specifically determined, the following method may be implemented:
  • a downlink transmission mode may correspond to multiple PDCCH DCI formats.
  • the PDCCH DCI format candidate set determined in this step may include multiple PDCCH DCI formats.
  • the PDCCH DCI formats in the PDCCH DCI format candidate set are sorted in descending order of the usage probability of each PDCCH DCI format. The PDCCH DCI format with a high probability of use is placed in front of the queue.
  • the PDCCH DCI format corresponding to the downlink transmission mode adopted by the previous scheduling subframe is preferentially ranked in front of the queue, where the PDCCH DCI format adopted by the previous scheduling subframe is Ranked first in the queue.
  • the PDCCH DCI format candidate set the PDCCH DCI format adopted in the last network scheduling is taken as the highest priority. In the first place, if there are other available PDCCH DCI formats in the transmission mode, the PDCCH DCI formats are sequentially arranged after the highest priority PDCCH DCI format.
  • the PDCCH DCI format available in a certain transmission mode is DCI Format#0, DCI Format#l , DCI Format#2, if the DCI format used in the previous scheduling is DCI Format#1, when determining the PDCCH DCI format candidate set, DCI Format#1 is ranked as the highest priority (priority level is 0) in the DCI format candidate.
  • the priority can be determined randomly, after DCI Format#l, for example, DCI Format#0 can be assumed to have priority 1, DCI Format#2 The priority is 2, so that the preliminary DCI format candidate set is (DCI Format#l, DCI Format#0, DCI Format#2).
  • the transmission mode of the same UE may change due to channel environment changes or network side scheduling. Therefore, when determining the PDCCH DCI format blind detection candidate set, other transmissions that the UE may use are needed.
  • the PDCCH DCI format corresponding to the mode is included in the PDCCH DCI format candidate set, and the PDCCH DCI format is ranked after the last DCI format in the determined DCI format candidate set. If the new transmission mode includes multiple DCI formats, the DCI formats are The order may be randomly determined, but may not be ranked in front of the PDCCH DCI format of the determined DCI format blind detection candidate set, unless one or more PDCCH DCI formats are in the determined PDCCH DCI in the PDCCH DCI format included in the new transmission mode.
  • the format candidate set already exists, and these PDCCH DCI formats are processed according to the determined arrangement of the PDCCH DCI format candidate set.
  • the DCI format candidate set determined by the original transmission mode is (DCI Format#l, DCI Format#0, DCI Format#2)
  • the new transmission mode corresponding to the available DCI format after the transmission mode is changed includes DCI Format #1, DCI. Format #3, DCI Format#4
  • the DCI format candidate set after adding a new DCI format is (DCI Format#l, DCI Format#0, DCI Format#2, DCI Format#3, DCI Format#4), where DCI Format#l due to The original DCI blind detection candidate set already exists, so the original priority remains unchanged, and DCI Format#3 and DCI Format#4 are not in the blind detection candidate set, and the DCI format candidate set needs to be added, and the priority is the lowest priority from the candidate set.
  • the priority levels are 3 and 4. If there are multiple possibilities for the change of the transmission mode, the DCI formats corresponding to all possible transmission modes need to be added to the DCI format candidate set.
  • the joining method is the same as described above. For example, if the transmission mode 4 may be changed to the transmission mode 6, or may be changed to the mode 3, the DCI formats corresponding to the transmission mode 6 and the transmission mode 3 need to be added to the DCI format blind detection candidate set.
  • Step 303 The UE determines the number of CCEs that may be used when receiving the PDCCH according to the SNR measurement result of the last time or the latest secondary feedback channel quality indicator (CQI) in the relevant time T, and uses the Np as the Number of CCEs in the current CCE search space
  • the current downlink receiving subframe is currently.
  • the UE receives the downlink common pilot signal, performs SNR/SINR measurement, and maps it to the CQI feedback to the network side, and the network side refers to the CQI measurement result to perform user resource allocation and scheduling.
  • the network side allocates the CCE resources used by the PDCCH, it also refers to the CQI measurement value reported by the UE. Therefore, the UE may store the SINR/SNR corresponding to the measured CQI according to the CQI and the PDCCH receiving relationship of the measurement feedback, and establish a mapping relationship with the CCE resource used when the PDCCH blind detection succeeds according to the timing relationship. PDCCH blind detection provides a reference.
  • FIG. 4 is a schematic flowchart of a UE feeding back a CQI and receiving a PDCCH in an existing system.
  • the UE measures the CQI in the nth subframe and feeds back to the network side base station (eNB), so that the corresponding SNR is SNR n , and the eNB refers to the CQI value, at the nth.
  • the +k (k>0) subframe schedules the UE, and adopts A CCEs to carry the PDCCH.
  • the UE successfully detects the PDCCH blindly in the n+k subframe, and is set in the n+i (i>k) subframe.
  • UE measured again
  • the CQI is measured and reported to the eNB, and the corresponding SNR is SNR n+i .
  • the eNB refers to the CQI reported by the UE in the n+i subframe to schedule the UE.
  • the B CCEs are used to carry the PDCCH.
  • the UE needs to infer that the eNB sends o P according to the measured SNR change.
  • N p is in the CCE l + j>P number set: ⁇ . , ⁇ , ... , N P ⁇ , the element subscript ⁇ , 0 ⁇ p ⁇ P;
  • P is the difference between the number of elements in S and 1 and / is the current most recent time of the UE
  • the number of CCEs used in the successful blind detection is subscripted in the element in the S;
  • the correspondence table between the MM? and the CCE relative offset may be constructed in the manner of Table 3:
  • Th 2P ASNR ⁇ Th 2P+1 P- l
  • the threshold value 73 ⁇ 4 ( 0 ⁇ ⁇ 2 « - 1 ) in Table 3 can be determined according to the simulation, that is, for different channel environments, for a certain PDCCH DCI format, by using a different number of CCE resources for carrying Demodulate the signal to noise ratio. Considering the measurement error and the difference between the actual channel environment and the simulation, the actual threshold value needs to be appropriately offset based on the simulation.
  • the demodulation SNR requirement of the PDCCH DCI format under the condition of additive white Gaussian noise (AWGN) and different CCEs can be directly simulated, so that the M layer and the CCE are established according to the SNR obtained by these simulations.
  • AWGN additive white Gaussian noise
  • the UE obtains the SNR value of the measured SNR value through the signal-to-noise ratio mapping method, such as the exponential effective signal-to-noise ratio mapping method EESM, to obtain the SNR under the corresponding AWGN channel, so that the look-up table is relatively biased. Transfer amount.
  • the specific simulation method is known to those skilled in the art, and details are not described herein again.
  • the method for determining the foregoing is specifically described by using the 3GPP R8 LTE as an example.
  • N. l CCE
  • the specific method may be:
  • the UE queries the preset CCE-PDCCH DCI-SNR correspondence table, and obtains the number of CCEs corresponding to the SNR measurement result when the UE currently reports the CQI, and determines the number of CCEs corresponding to the SNR measurement result as the current receiving.
  • the number of CCEs that may be used in the PDCCH may be used in the PDCCH.
  • the CCE-PDCCH DCI-SNR correspondence table includes various CCE numbers corresponding to obtain a demodulation signal-to-noise ratio SNR requirement of different PDCCH DCI formats in different CCE resource configurations by simulation, so that the CCE can be established.
  • PDCCH DCI-SNR correspondence table includes various CCE numbers corresponding to obtain a demodulation signal-to-noise ratio SNR requirement of different PDCCH DCI formats in different CCE resource configurations by simulation, so that the CCE can be established.
  • Step 304 The UE selects a CCE search space of size N as the current CCE search space in the preset search space candidate set.
  • any CCE search space of size N may be selected from the start position of the search space candidate set, or may be selected from the search.
  • the first CCE exploration space of size N starting from the beginning of the spatial candidate set.
  • Step 305-309 The UE performs detection, decoding, and CRC check on the sorted PDCCH DCI format in sequence according to the current CCE search space, until the CRC check succeeds; If the test fails, step 310 is performed, otherwise, the blind detection method is exited.
  • the method for detecting, decoding, and CRC is performed on the PDCCH DCI format, and the specific method is known to those skilled in the art, and details are not described herein.
  • the PDCCH DCI format with the highest usage probability is preferentially detected, decoded, and CRC-checked.
  • the accuracy of the first attempt detection is effectively improved, thereby reducing the number of PDCCH DCI formats that need to be tried, and effectively reducing the complexity and power consumption of the UE processing.
  • Step 310 The UE determines whether there is a CCE search space that is not selected and the number of CCEs is N in the preset CCE search space candidate set. If yes, step 311 is performed; otherwise, step 312 is performed.
  • Step 312 is required to select the next type. If the number of CCEs whose number of CCEs is N is CCE search space, if there are still CCE search spaces whose number of CCEs is not N, then go to step 311 to trigger CCE search for the number of CCEs is N. Space is tested.
  • Step 311 The UE selects a CCE search space that is not selected and has a CCE number of N as the current CCE search space, and proceeds to step 305.
  • the selection may be implemented in a random selection manner, or may be implemented in a sequential selection manner, and may be determined by a person skilled in the art according to actual needs.
  • Step 312 The UE determines whether there is a preset number of CCEs that are not selected. The number of CCEs, if yes, step 313 is performed; otherwise, the blind detection process is ended. In this step, if it is determined that the number of all CCEs in the CCE number set has been selected, it indicates that the network side does not schedule the UE in the current subframe, or the PDCCH detection fails due to other reasons, so the blind detection will end.
  • the number of unselected CCEs is selected as the space size of the current CCE search space in the subsequent step, that is, the CCE search space includes The number of CCEs is N, and then proceeds to step 304 to detect the CCE search space determined by the number of CCEs.
  • Step 313 Select a number of CCEs that are not selected as the number of CCEs of the current CCE search space, and perform step 304.
  • the method of selecting a number of unselected CCEs as the number of CCEs of the current CCE search space may be:
  • the number of CCEs that are not selected is selected as the number of CCEs of the current CCE search space according to the principle of decreasing the number of CCEs.
  • the number of CCEs that are not selected is selected as the number of CCEs of the current CCE search space according to the principle of increasing the number of CCEs.
  • the number of other CCEs in the CCE number set is selected based on the first selected number of CCEs Np , and is preferentially selected by referring to the measured SNR change trend. Since the network side configures the CCE according to the SNR change trend, selecting the next CCE number by referring to the measured SNR change trend can improve the success rate of selecting the correct number of CCEs, and reducing the number of attempts during detection, thereby reducing the UE. The complexity of side processing.
  • the above method determines the PDCCH DCI format blind detection candidate set by using the transmission mode and the historical scheduling information of the network configuration to the UE in the relevant time T, and initially determines the bearer by using the channel SINR/SNR measurement and the channel change in the adjacent two schedulings.
  • the number of CCE resources of the PDCCH greatly reduces the number of attempts of the UE PDCCH blind detection, which can reduce the calculation amount and processing complexity of the UE, reduce the power consumption of the UE, and improve system performance.
  • the two consecutive effective scheduling times exceed the configured correlation time T, so that when the UE performs the PDCCH blind detection
  • the information about the last successful detection of the PDCCH may not be completely used as a reference for the current detection, or the UE receives the PDCCH for the first time, and no history detection information is available for reference.
  • the last two effective scheduling intervals of the UE When the correlation time T is greater than the correlation time T, or when the UE receives the PDCCH signal for the first time, as shown in FIG. 5, the following steps may be used to implement blind detection of the PDCCH.
  • Step 501 A CCE-PDCCH DCI-SNR correspondence table is established in advance by using a simulation, and is stored in the UE, where the UE determines a PDCCH DCI candidate set according to a downlink transmission mode configured by a high layer or a data type that needs to be received currently;
  • the CCE-PDCCH DCI-SNR correspondence table includes PDCCH DCI formats corresponding to the number of various CCEs and SNR values corresponding to the number of various CCEs.
  • the PDCCH DCI candidate set is determined according to the downlink transmission mode of the high layer configuration: Query Table 2/Table 2a/Table 2b/Table 2c, the PDCCH DCI format corresponding to the downlink transmission mode, and the PDCCH DCI format is used as the PDCCH DCI Selection.
  • Determining the PDCCH DCI candidate set according to the type of data currently required to be received According to the data type currently required to be received, the query table 2/table 2a/table 2b/table 2c may be used.
  • the PDCCH DCI format uses these PDCCH DCI formats as PDCCH DCI candidate sets.
  • the specific method for determining the CCE search space corresponding to the data type is known to those skilled in the art, and details are not described herein again.
  • the UE currently needs to receive broadcast information or paging information carried by the PDSCH, according to Table 2b, it may be determined that the search space of the UE is a common search space, and the DCI format is PDCCH DCI Format 1A or 1C; - RNTI scrambles the PDCCH of the CRC, and the corresponding data transmission mode is mode 4.
  • the corresponding DCI format blind detection candidate set is (DCI Format 1A, DCI Format 2).
  • the method for constructing the CCE-PDCCH DCI-SNR correspondence table is the same as the method in step 303, and details are not described herein again.
  • Step 502 The UE selects one PDCCH DCI format from the determined PDCCH DCI format candidate set as the current PDCCH DCI format according to the SNR measurement result when the CQI is reported last time.
  • Step 503 The UE queries the CCE-PDCCH DCI-SNR correspondence table, and obtains the number of CCEs corresponding to the current PDCCH DCI format under the SNR measurement result, and uses the obtained CCE number as the current CCE search space.
  • the number of CCEs is N.
  • Step 504 The UE selects a CCE search space of size N from the preset CCE search space candidate set as the current CCE search space.
  • Step 505 The UE performs detection, decoding, and CRC check on the current PDCCH DCI format based on the current CCE search space.
  • Step 506 Determine whether the CRC check is correct. If yes, exit the blind detection process; otherwise, go to step 507.
  • the PDCCH DCI detection is successful, so the blind detection process is exited.
  • Step 507 Determine whether all CCE search spaces with N number of CCEs have been If yes, go to step 509, otherwise, go to step 508.
  • step 509 is performed to select a new CCE search space size. try.
  • Step 508 Select a CCE search space with a number of CCEs N and not selected as the current CCE search space from the CCE search space candidate set, and perform step 505 again.
  • Step 509 The UE determines whether there is an unselected number of CCEs in the preset CCE number set. If yes, step 510 is performed; otherwise, step 512 is performed.
  • the preset CCE number set may be a CCE number set corresponding to a common search space or a dedicated search space.
  • Step 510 The UE selects an unselected number of CCEs as the number of CCEs of the current CCE search space, and performs step 504.
  • Step 511 The UE determines whether there is an unselected PDCCH DCI format in the PDCCH DCI format candidate set. If yes, step 512 is performed; otherwise, the blind detection process is exited.
  • Step 512 Select an unselected PDCCH DCI format as the current PDCCH DCI format, and perform step 503.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A blind detection method is provided by the present invention. The method determines a candidate set of physical downlink control channel (PDCCH) downlink control information (DCI) formats adopted by the blind detection by using a transmission mode allocated to a user equipment (UE) by a network and history scheduling information, and initially determines the number of control channel element (CCE) resources carrying PDCCH by using a measurement result of a channel signal-to-noise ratio and a channel change of two consecutive scheduling processes, thus effectively reducing attempt times of the UE PDCCH blind detection. The present invention enables reducing computing amount and processing complexity of the UE, and reduces UE power consumption and improves system performance.

Description

一种盲检测方法  Blind detection method
技术领域 Technical field
本发明涉及移动通信系统中的盲检测技术, 特别是涉及长期演进 The invention relates to blind detection technology in a mobile communication system, in particular to long-term evolution
( LTE ) 系统中的盲检测方法。 发明背景 A blind detection method in a (LTE) system. Background of the invention
LTE系统是一种宽带移动通信系统, 上行采用单载波频分多址接入 ( SC-FDMA )技术, 下行采用正交频分(OFDM )多址技术, 支持的系 统带宽包括 1.4MHz、 3MHz、 5MHz、 10MHz、 15MHz和 20MHz。 在 LTE 系统及后续的 LTE+系统中, 为了最大化地利用资源, 提高系统吞 吐率, 小区中的所有物理资源, 都采用共享的方式, 由网络侧统一调度 和分配给小区中的用户设备 ( UE )。  The LTE system is a broadband mobile communication system. The uplink uses single-carrier frequency division multiple access (SC-FDMA) technology, and the downlink uses orthogonal frequency division (OFDM) multiple access technology. The supported system bandwidth includes 1.4MHz and 3MHz. 5MHz, 10MHz, 15MHz and 20MHz. In the LTE system and the subsequent LTE+ system, in order to maximize the use of resources and improve the system throughput, all the physical resources in the cell are shared and are uniformly scheduled and allocated by the network to the user equipment in the cell (UE). ).
在 LTE 系统中, 上、 下行的资源调度均通过物理下行控制信道 ( PDCCH )来进行。 对于下行资源分配, 网络侧首先将资源分配的相关 信息通过 PDCCH传输给 UE, UE检测到发送给自己的 PDCCH后, 根 据 PDCCH 中的控制信息, 再去检测数据信道即物理下行共享信道 ( PDSCH )。 对于上行资源分配, 当 UE需要发送上行数据时, 需要向 网络侧发起调度请求, 网络侧通过 PDCCH来指示分配给该 UE的上行 物理资源, 然后 UE才能在分配的物理资源上发送上行数据。 因此, 在 LTE系统中, 物理下行控制信道 PDCCH在上下行资源调度中, 起着非 常重要的作用。 目前, 针对 PDCCH所承载的调度信息和不同数据传输 模式, 定义了 10 种下行控制信息 (PDCCH DCI, Downlink Control Information )格式, 包括 DCI Format 0、 1、 1A、 1B、 1C、 1D、 2、 2A、 3和 3A,每种格式承载不同的控制信息。 其中 DCI Format 0主要用于上 行调度, DCI Format 1、 1A、 1B、 1C、 1D、 2和 2A用于下行调度, DCI Format 3和 3 A主要用于承载上行的功控命令字。承载 PDCCH的物理资 源以控制信道元素(CCE, Control Channel Element )为基本单位来进行 分配,每个 CCE包括 9个资源元素组( REG, Resource Element Group ), 每个 REG包括 4个资源元素( RE, Resource Element;), RE为 LTE系统 中最小的资源单位, 每个 RE代表一个时频符号。 如图 1所示, 其中, 在时域上一个时隙包括 个 OFDM符号, 一个资源块在频域上包括 Λ ^个子载波, 因此, 一个资源块在一个时隙上包括的 RE 数目为 AC X Ws , 整个系统带宽包括的子载波数目为 X N 。 In the LTE system, uplink and downlink resource scheduling are performed through a physical downlink control channel (PDCCH). For the downlink resource allocation, the network side first transmits the related information of the resource allocation to the UE through the PDCCH. After detecting the PDCCH sent to itself, the UE detects the data channel, that is, the physical downlink shared channel (PDSCH) according to the control information in the PDCCH. . For the uplink resource allocation, when the UE needs to send the uplink data, the network side needs to initiate a scheduling request to the network side, and the network side indicates the uplink physical resource allocated to the UE by using the PDCCH, and then the UE can send the uplink data on the allocated physical resource. Therefore, in the LTE system, the physical downlink control channel PDCCH plays a very important role in uplink and downlink resource scheduling. Currently, 10 types of downlink control information (PDCCH DCI, Downlink Control Information) format are defined for scheduling information and different data transmission modes carried by the PDCCH, including DCI Format 0, 1, 1A, 1B, 1C, 1D, 2, 2A. , 3 and 3A, each format carries different control information. Where DCI Format 0 is mainly used for For line scheduling, DCI Format 1, 1A, 1B, 1C, 1D, 2, and 2A are used for downlink scheduling, and DCI Format 3 and 3 A are mainly used to carry uplink power control command words. The physical resources carrying the PDCCH are allocated in units of control channel elements (CCEs, Control Channel Element), each CCE includes 9 resource element groups (REG, Resource Element Group), and each REG includes 4 resource elements (RE , Resource Element;), RE is the smallest resource unit in the LTE system, and each RE represents a time-frequency symbol. As shown in FIG. 1, where one time slot includes one OFDM symbol in the time domain, and one resource block includes Λ ^ subcarriers in the frequency domain, therefore, the number of REs included in one resource block in one time slot is AC XW. s , the number of subcarriers included in the entire system bandwidth is XN.
为了降低控制信令开销, LTE系统中要求 UE接收 PDCCH时采用 盲检测的方式, 即 UE需要通过盲检测的方式, 检测出当前发送给自己 的 PDCCH信道, 并根据 PDCCH信道指示的内容进行下行数据的接收 或上行数据的发送。 每个 PDCCH信道, 可能由一个或多个连续的 CCE 来承载, 承载 PDCCH的一个或多个连续的 CCE, 构成了 CCE搜索空 间。 为了减少 UE盲检测的次数, 一般会规定几种 PDCCH格式, 每种 格式对应一种可用于承载 PDCCH的 CCE数目(即 CCE搜索空间大小 ), 例如, 3GPP LTE标准中定义了 4种 PDCCH格式 0、 1、 2和 3, 分别对 应的 CCE个数为 1个、 2个、 4个和 8个, 即在通信过程中, 根据 DCI 的信息比特长度, 以及传输时的信道质量情况, 网络侧可以在 1、 2、 4 和 8的范围内选取合适数量的 CCE来承载 PDCCH DCI, 以便 PDCCH 能适应信道的变化, 满足解调误块率不超过 1%的要求。 所有可能承载 PDCCH的 CCE搜索空间组成了 CCE搜索空间候选集。对于每一个 UE, 存在两种承载 PDCCH信道的 CCE搜索空间, 即公共搜索空间和 UE专 用搜索空间, 其中, 公共搜索空间主要用于承载通知 UE接收广播、 寻 呼信息的 PDCCH信道, 并且所有 UE公用, 而专用搜索空间则针对每 一个 UE进行分配, 即当 UE被调度时, 发送给它的 PDCCH信道只可 能由公共搜索空间或属于它的专用搜索空间的 CCE承载。 为了调度灵 活, 同时减少 UE搜索次数, 每次调度时网络侧发送给 UE的 PDCCH DCI, 可能使用 CCE搜索空间候选集中的某一个 CCE搜索空间来承载, UE需要遍历 CCE搜索空间候选集中所有可能的 CCE搜索空间, 直到 完成 PDCCH盲检测, CCE搜索空间候选集的大小,由网络侧配置。 3GPP LTE标准中目前定义的每种 PDCCH格式对应的 CCE个数以及 CCE搜 In order to reduce the control signaling overhead, the LTE system requires the UE to use the blind detection mode when receiving the PDCCH, that is, the UE needs to detect the PDCCH channel currently sent to itself by means of blind detection, and perform downlink data according to the content indicated by the PDCCH channel. The reception or transmission of uplink data. Each PDCCH channel may be carried by one or more consecutive CCEs, and one or more consecutive CCEs carrying the PDCCH constitute a CCE search space. In order to reduce the number of blind detections of the UE, the PDCCH format is generally specified. Each format corresponds to a CCE number that can be used to carry the PDCCH (ie, the CCE search space size). For example, four PDCCH formats are defined in the 3GPP LTE standard. 1, 2, 3, and 3, respectively, the number of CCEs is 1, 2, 4, and 8, that is, in the communication process, according to the information bit length of the DCI and the channel quality during transmission, the network side can The appropriate number of CCEs are selected in the range of 1, 2, 4, and 8 to carry the PDCCH DCI, so that the PDCCH can adapt to the channel change, and meet the requirement that the demodulation error block rate does not exceed 1%. All CCE search spaces that may carry the PDCCH constitute a CCE search space candidate set. For each UE, there are two CCE search spaces that carry the PDCCH channel, that is, a common search space and a UE-specific search space, where the common search space is mainly used for the bearer to notify the UE to receive broadcast and seek. The PDCCH channel of the information, and all UEs are common, and the dedicated search space is allocated for each UE, that is, when the UE is scheduled, the PDCCH channel sent to it may only be used by the common search space or the dedicated search space belonging to it. CCE bearer. For scheduling flexibility, and reducing the number of UE searches, the PDCCH DCI sent by the network to the UE may be carried by using one CCE search space in the CCE search space candidate set. The UE needs to traverse all possible CCE search space candidate sets. The CCE search space, until the PDCCH blind detection is completed, the size of the CCE search space candidate set is configured by the network side. The number of CCEs corresponding to each PDCCH format currently defined in the 3GPP LTE standard and the CCE search
Figure imgf000005_0001
Figure imgf000005_0001
表 1  Table 1
通常 UE进行 PDCCH盲检测时,首先需要假定当前传输 PDCCH采 用的 CCE资源数, 然后假定 PDCCH采用的 DCI格式, 进行译码尝试, 通过 CRC校验判断检测是否正确。 图 2为现有盲检测方法流程示意图, 如图 2所示, 该方法包括:  Generally, when the UE performs PDCCH blind detection, it first needs to assume the number of CCE resources used for the current PDCCH transmission, and then assumes the DCI format adopted by the PDCCH, performs a decoding attempt, and determines whether the detection is correct by using a CRC check. 2 is a schematic flowchart of a conventional blind detection method. As shown in FIG. 2, the method includes:
步骤 201: 在每个下行子帧, UE对控制区 OFDM符号进行检测, 对 PDCCH信道进行解映射、 解调和解扰。  Step 201: In each downlink subframe, the UE detects the control region OFDM symbol, and performs demapping, demodulation, and descrambling on the PDCCH channel.
步骤 202: UE从预设的 CCE个数候选集中任选一种未被选择的 CCE 个数作为当前 CCE搜索空间大小 S。 Step 202: The UE selects one of the unselected CCEs from the preset CCE number candidate set. The number is taken as the current CCE search space size S.
步骤 203: 在预设的 CCE搜索空间候选集中, 选择一个大小为 S且 未被选择的 CCE搜索空间作为当前的 CCE搜索空间。  Step 203: In the preset CCE search space candidate set, select a CCE search space of size S and not selected as the current CCE search space.
具体地, 本步骤中在选择 CCE搜索空间时采用顺序选择的方法实 现。 即: UE的 CCE搜索空间候选集中包括的多个 CCE搜索空间一般 是连续的, UE搜索时, 会从起始位置开始对第一个搜索空间(S个连续 的 CCE )进行盲检测, 若第一个 CCE搜索空间检测失败, 则依次检测 下一个 CCE搜索空间。例如,假设 CCE搜索空间候选集中包括 4个 CCE 搜索空间,每个 CCE搜索空间的大小 N为 4,则 UE先检测第一个 CCE 搜索空间(由第 1到第 4个 CCE组成 ),若检测失败,则选择第二个 CCE 搜索空间作为当前的 CCE搜索空间进行检测 (由第 5到第 8个 CCE组 成), 依次类推。  Specifically, in this step, a method of sequential selection is implemented when selecting a CCE search space. That is, the multiple CCE search spaces included in the CCE search space candidate set of the UE are generally continuous, and when the UE searches, the first search space (S consecutive CCEs) is blindly detected from the start position. If a CCE search space fails, the next CCE search space is detected in turn. For example, if the CCE search space candidate set includes 4 CCE search spaces, and the size N of each CCE search space is 4, the UE first detects the first CCE search space (composed of the 1st to 4th CCEs), if If it fails, the second CCE search space is selected as the current CCE search space for detection (composed of the 5th to 8th CCEs), and so on.
步骤 204~208: 从预设的 PDCCH DCI格式集中任选一种 PDCCH DCI格式, 利用所述当前的 CCE搜索空间, 对所选择的 PDCCH DCI格 式进行译码和 CRC校验, 若 CRC校验成功, 则表示盲检测成功, 结束 盲检测流程, 否则, 任选一个未被检测的 PDCCH DCI格式, 继续进行 译码和校验; 遍历所有可能的 PDCCH DCI格式, 若 CRC校验均错误, 则执行步骤 209。  Steps 204 to 208: Select one PDCCH DCI format from the preset PDCCH DCI format set, and use the current CCE search space to perform decoding and CRC check on the selected PDCCH DCI format, if the CRC check succeeds If the blind detection succeeds, the blind detection process ends. Otherwise, an undetected PDCCH DCI format is selected, and the decoding and verification are continued; all possible PDCCH DCI formats are traversed, and if the CRC check is incorrect, the execution is performed. Step 209.
这里, PDCCH DCI格式集中将包括网络侧可能采用的所有 PDCCH DCI格式。  Here, the PDCCH DCI format set will include all PDCCH DCI formats that may be employed by the network side.
步骤 209: 判断所述 CCE搜索候选集中是否所有大小为 S的 CCE 搜索空间均已被选择, 如果是, 则转入步骤 210, 否则执行步骤 203。  Step 209: Determine whether all CCE search spaces of size S are selected in the CCE search candidate set. If yes, go to step 210, otherwise go to step 203.
步骤 210: 判断所述预设的 CCE个数候选集中是否存在一种未被选 择的 CCE个数, 如果是, 则转入步骤 202, 否则退出所述盲检测流程。  Step 210: Determine whether there is one unselected number of CCEs in the preset CCE number candidate set. If yes, go to step 202, otherwise exit the blind detection process.
本步骤中如果退出盲检测流程, 则说明当前网络可能没有给该 UE 发送 PDCCH, 或者 PDCCH因网络质量或其他原因检测失败。 If the blind detection process is exited in this step, the current network may not be given to the UE. The PDCCH is transmitted, or the PDCCH fails to be detected due to network quality or other reasons.
通过上述流程可以看出, 现有的盲检测方法需要不断地尝试, 尤其 是在极限情况下,需要尝试所有的 CCE数量和 PDCCH DCI格式,因此, 该方法存在处理量大、 复杂度高、 耗时长以及不利于 UE省电等问题。 发明内容  It can be seen from the above process that the existing blind detection method needs to be continuously tried, especially in the limit case, all the CCE numbers and the PDCCH DCI format need to be tried. Therefore, the method has a large processing amount, high complexity, and consumption. The duration and the problems that are not conducive to the power saving of the UE. Summary of the invention
有鉴于此, 本发明的主要目的在于提供一种盲检测方法, 该方法能 有效降低 UE的处理复杂度和功耗。  In view of this, the main object of the present invention is to provide a blind detection method, which can effectively reduce the processing complexity and power consumption of the UE.
为了达到上述目的, 本发明提出的技术方案为:  In order to achieve the above object, the technical solution proposed by the present invention is:
一种盲检测方法, 当用户设备(UE )的最近两次有效调度时间间隔 在预设的相关时间 T内时, 该方法包括以下步骤:  A blind detection method, when the last two effective scheduling intervals of the user equipment (UE) are within a preset correlation time T, the method includes the following steps:
XI ) 在每个下行接收子帧, 所述 UE 进行物理下行控制信道 ( PDCCH )所在控制符号的检测、 解调和解扰;  XI) in each downlink receiving subframe, the UE performs detection, demodulation, and descrambling of a control symbol where a physical downlink control channel (PDCCH) is located;
X2 )所述 UE根据预设的相关时间 T内与当前调度子帧相邻的上一 调度子帧所采用的下行传输模式, 确定当前调度子帧网络侧采用的 PDCCH DCI格式候选集, 并按照预设的排序原则对所述 PDCCH DCI 格式候选集中的 PDCCH DCI格式进行排序, 所述排序原则为所述上一 调度子帧所采用的下行传输模式对应的 PDCCH DCI格式优先排在队列 前面, 其中, 所述上一调度子帧所采用的 PDCCH DCI格式排在队列首 位;  Determining, by the UE, the PDCCH DCI format candidate set adopted by the network side of the current scheduling subframe according to the downlink transmission mode adopted by the previous scheduling subframe adjacent to the current scheduling subframe in the preset correlation time T, and according to The PDCCH DCI format of the PDCCH DCI format candidate set is sorted by a preset ordering principle, and the PDCCH DCI format corresponding to the downlink transmission mode adopted by the previous scheduling subframe is preferentially ranked in front of the queue, where The PDCCH DCI format adopted by the previous scheduling subframe is ranked first in the queue;
X3 )所述 UE根据最近一次或所述相关时间 T内最近二次反馈信道 质量指示(CQI )时的信噪比(SNR )测量结果, 确定当前接收 PDCCH 时可能使用的控制信道元素 (CCE )个数 将所述 作为当前 CCE 搜索空间的 CCE个数 N;  X3) the UE determines a control channel element (CCE) that may be used when receiving the PDCCH according to a signal-to-noise ratio (SNR) measurement result of a most recent secondary feedback channel quality indicator (CQI) in the latest or the relevant time T The number of CCEs used as the current CCE search space is N;
X4 )所述 UE在预设的搜索空间候选集中选择一个大小为 N的 CCE 搜索空间作为当前的 CCE搜索空间; X4) The UE selects a CCE of size N in a preset search space candidate set Search space as the current CCE search space;
X5 )所述 UE利用所述当前的 CCE搜索空间,依次对排序后的所述 PDCCH DCI格式进行检测、 译码和 CRC校验, 直至所述 CRC校验成 功; 如果所述 CRC校验均失败, 则执行步骤 X6, 否则, 退出所述盲检 测方法;  X5) the UE uses the current CCE search space to sequentially detect, decode, and CRC the sorted PDCCH DCI format until the CRC check succeeds; if the CRC check fails Go to step X6, otherwise, exit the blind detection method;
X6 )所述 UE判断所述 CCE搜索空间候选集中是否存在未被选择且 CCE个数为 N的 CCE搜索空间, 如果是, 则选择一个未被选择且 CCE 个数为 N的 CCE搜索空间作为当前的 CCE搜索空间, 执行步骤 X5; 否则, 执行步骤 X7;  X6) The UE determines whether there is a CCE search space that is not selected and the number of CCEs is N in the CCE search space candidate set, and if yes, selects a CCE search space that is not selected and has a CCE number of N as the current CCE search space, perform step X5; otherwise, perform step X7;
X7 )所述 UE判断预设的 CCE个数集中是否存在未被选择的 CCE 个数, 如果是, 则选择一个未被选择的 CCE个数作为当前的 CCE搜索 空间的 CCE个数 N, 执行步骤 X4; 否则, 结束所述盲检测方法。  X7) The UE determines whether there is an unselected number of CCEs in the preset number of CCEs, and if yes, selects an unselected number of CCEs as the number of CCEs of the current CCE search space, and performs steps. X4; Otherwise, the blind detection method ends.
综上所述, 本发明提出的盲检测方法, 利用网络配置给 UE的传输 模式及历史调度信息, 确定用于盲检测的 PDCCH DCI格式候选集, 利 用信道 SINR/SNR测量结果及相邻两次调度时的信道变化来初步确定承 载 PDCCH的 CCE资源个数, 极大地降低了 UE PDCCH盲检测的尝试 次数, 并可以减小 UE的计算量和处理复杂度, 降低 UE功耗, 提升系 统性能。 附图简要说明  In summary, the blind detection method proposed by the present invention determines the PDCCH DCI format candidate set for blind detection by using the network configuration to the UE transmission mode and historical scheduling information, and uses the channel SINR/SNR measurement result and the adjacent two times. The channel change during scheduling initially determines the number of CCE resources that carry the PDCCH, which greatly reduces the number of attempts of the UE PDCCH blind detection, and can reduce the calculation amount and processing complexity of the UE, reduce the power consumption of the UE, and improve system performance. BRIEF DESCRIPTION OF THE DRAWINGS
图 1为现有下行资源元素示意图;  FIG. 1 is a schematic diagram of an existing downlink resource element;
图 2为现有盲检测方法流程示意图;  2 is a schematic flow chart of a conventional blind detection method;
图 3为本发明一实施例中当 UE最近两次有效调度时间间隔不超过 相关时间 T时盲检测的流程示意图;  3 is a schematic flowchart of blind detection when the last two effective scheduling intervals of the UE do not exceed the relevant time T according to an embodiment of the present invention;
图 4为现有系统中 UE反馈 CQI和接收 PDCCH的流程示意图; 图 5为本发明另一实施例中当 UE最近两次有效调度时间间隔大于 相关时间 T或 UE首次接收 PDCCH信号时盲检测的流程示意图。 实施本发明的方式 4 is a schematic flowchart of a UE feeding back a CQI and receiving a PDCCH in an existing system; FIG. 5 is a schematic flowchart of blind detection when a UE's last two effective scheduling intervals are greater than a correlation time T or a UE first receives a PDCCH signal according to another embodiment of the present invention. Mode for carrying out the invention
为使本发明的目的、 技术方案和优点更加清楚, 下面将结合附图及 具体实施例对本发明作进一步地详细描述。  The present invention will be further described in detail below with reference to the drawings and specific embodiments.
本发明的核心思想是: 利用网络配置给 UE的传输模式及历史调度 信息, 确定 PDCCH DCI格式盲检测候选集, 利用信道 SINR/SNR测量 及相邻两次调度时的信道变化来初步确定承载 PDCCH的 CCE资源数目 范围, 如此, 可以极大地降低 UE PDCCH盲检测的尝试次数, 减小 UE 的计算量和处理复杂度, 降低 UE功耗, 提升系统性能。  The core idea of the present invention is: determining the PDCCH DCI format blind detection candidate set by using the network configuration to the UE transmission mode and historical scheduling information, and initially determining the bearer PDCCH by using the channel SINR/SNR measurement and the channel change in the adjacent two schedulings. The range of the number of CCE resources can greatly reduce the number of UE PDCCH blind detection attempts, reduce the computational complexity and processing complexity of the UE, reduce UE power consumption, and improve system performance.
图 3为本发明一实施例的盲检测流程示意图,该实施例给出了当 UE 最近两次有效调度时间间隔在预设的相关时间 T内时, 利用网络配置给 UE的传输模式和历史调度信息进行盲检测的方法, 如图 3所示, 该实 施例包括:  FIG. 3 is a schematic diagram of a blind detection process according to an embodiment of the present invention. The embodiment provides a transmission mode and historical scheduling using a network configuration to a UE when the last two effective scheduling intervals of the UE are within a preset correlation time T. A method for blind detection of information, as shown in FIG. 3, the embodiment includes:
步骤 301: 在每个下行接收子帧, 所述 UE进行物理下行控制信道 ( PDCCH )所在控制符号的检测、 解调和解扰。 步骤 302: 所述 UE根据预设的相关时间 T内与当前调度子帧相邻 的上一调度子帧所采用的下行传输模式, 确定当前调度子帧网络侧采用 的 PDCCH DCI格式候选集,并按照预设的排序原则对所述 PDCCH DCI 格式候选集中的 PDCCH DCI格式进行排序, 所述排序原则为所述上一 调度子帧所采用的下行传输模式对应的 PDCCH DCI格式优先排在队列 前面, 其中, 所述上一调度子帧所采用的 PDCCH DCI格式排在队列首 位。 这里需要说明的是: 此处的 "调度子帧"与前面的 "下行接收子帧" 概念有所区别: 在 LTE系统中, 网络侧在下行接收子帧给被调度 UE发 送调度命令, 对于该被调度 UE而言, 该下行接收子帧为 "调度子帧", 也就是说 "调度子帧" 是针对某个 UE而言的, 只有 UE在某个下行接 收子帧正确检测到网络给它的调度命令时, 则该下行接收子帧才是该 UE的调度子帧。 应用中 UE的移动速度及信道变化来设置合适的取值。 例如, 当 UE运 动速度高时,相关时间 T可以设小一些, UE运动速度低时,相关时间 T 可以设大一些。 Step 301: In each downlink receiving subframe, the UE performs detection, demodulation, and descrambling of a control symbol where a physical downlink control channel (PDCCH) is located. Step 302: The UE determines, according to a downlink transmission mode that is used by the previous scheduling subframe that is adjacent to the current scheduling subframe in the preset correlation time T, the PDCCH DCI format candidate set used by the network side of the current scheduling subframe, and The PDCCH DCI format in the PDCCH DCI format candidate set is sorted according to a preset ordering principle, and the PDCCH DCI format corresponding to the downlink transmission mode adopted by the previous scheduling subframe is preferentially ranked in front of the queue. The PDCCH DCI format adopted by the previous scheduling subframe is ranked first in the queue. It should be noted here that the "scheduling subframe" here is different from the previous "downlink receiving subframe" concept: in the LTE system, the network side sends a scheduling command to the scheduled UE in the downlink receiving subframe, for the For the scheduled UE, the downlink receiving subframe is a "scheduling subframe", that is, the "scheduling subframe" is for a certain UE, and only the UE correctly detects the network in a certain downlink receiving subframe. When the scheduling command is used, the downlink receiving subframe is the scheduling subframe of the UE. Appropriate values are set by the UE's moving speed and channel change in the application. For example, when the UE motion speed is high, the correlation time T can be set smaller, and when the UE motion speed is low, the correlation time T can be set larger.
在 LTE系统中, 为了区分不同的 UE, 方便网络侧对 UE进行调度, 定义了一组无线网络临时标识 ( RNTI , Radio Network Temporary Identifier ), 作为临时 ID, 分配给小区中的 UE使用。 根据发送的数据类 型及 UE所处的状态不同, RNTI可以分为小区 RNTI ( C-RNTI, Cell RNTI )、 半持续调度 C-RNTI ( SPS C-RNTI, Semi-Persistent Scheduling C-RNTI )、 系统信息 RNTI ( SI-RNTI, System Information RNTI )、 寻呼 RNTI ( P-RNTI, Paging RNTI )和临时 C-RNTI ( TC-RNTI, Temporary C-RNTI )„ 网络侧在发送 PDCCH时, 会根据情况选择相应的 RNTI来 加扰 PDCCH信道承载的控制信息的 CRC校验值, 这样 UE在接收 PDCCH时, 通过自己高层指示的 RNTI, 去进行 PDCCH的检测, 以判 断当前的 PDCCH信道是否是发送给自己的。 系统在给小区内的 UE分 配 C-RNTI、 TC-RNTI或 SPS C-RNTI时,每个 UE所分配的 ID都不同, 而对于 SI-RNTI、 P-RNTI和 RA-RNTI, 则为小区内的 UE共享使用。  In the LTE system, in order to distinguish different UEs, it is convenient for the network side to schedule the UE, and a set of Radio Network Temporary Identifiers (RNTIs) are defined as temporary IDs, which are allocated to UEs in the cell for use. The RNTI can be classified into a cell RNTI (C-RNTI, Cell RNTI), a semi-persistent scheduling C-RNTI (SPS C-RNTI, Semi-Persistent Scheduling C-RNTI), and a system according to the type of data transmitted and the state of the UE. Information RNTI (SI-RNTI, System Information RNTI), paging RNTI (P-RNTI, Paging RNTI), and temporary C-RNTI (TC-RNTI, Temporary C-RNTI) „ When the PDCCH is transmitted on the network side, it will be selected according to the situation. The corresponding RNTI is used to scramble the CRC check value of the control information carried by the PDCCH channel, so that when receiving the PDCCH, the UE performs PDCCH detection by using the RNTI indicated by the upper layer to determine whether the current PDCCH channel is sent to itself. When the system allocates C-RNTI, TC-RNTI or SPS C-RNTI to the UE in the cell, the ID assigned by each UE is different, and for SI-RNTI, P-RNTI and RA-RNTI, it is a cell. The UE is shared within use.
这里需要说明的是, 在目前 3GPP LTE标准中, 当 UE处于连接状 态, 高层配置 UE接收由 C-RNTI加扰循环校验码 ( CRC码)的 PDCCH 时, 针对 UE所采用的多天线收发模式, 定义了 7种传输模式, 在每种 传输模式下, 有相对应的 PDCCH DCI格式, 具体的传输模式及每种模 式下可采用的 PDCCH DCI格式如表 2所示。此夕卜, UE处于连接状态时, 网络层可能对 UE采用半持续调度方式, 这种情况下, 高层会配置 UE 接收由 SPS C-RNTI加扰 CRC的 PDCCH, 这种情况下也定义了 7种传 输模式, 每种模式下有相对应的 PDCCH DCI格式, 如表 2a所示。 It should be noted that, in the current 3GPP LTE standard, when the UE is in the connected state, the upper layer configures the UE to receive the PDCCH that is scrambled by the C-RNTI cyclic check code (CRC code). At the time of the multi-antenna transmission and reception mode adopted by the UE, seven transmission modes are defined. In each transmission mode, there is a corresponding PDCCH DCI format, a specific transmission mode, and a PDCCH DCI format that can be adopted in each mode, such as Table 2 shows. In addition, when the UE is in the connected state, the network layer may adopt a semi-persistent scheduling mode for the UE. In this case, the upper layer configures the UE to receive the PDCCH that is scrambled by the SPS C-RNTI, and in this case also defines 7 A transmission mode, each mode has a corresponding PDCCH DCI format, as shown in Table 2a.
Figure imgf000011_0001
DCI Format UE专用搜索空间 多用户 MIMO
Figure imgf000011_0001
DCI Format UE dedicated search space multi-user MIMO
ID  ID
模式 6 DCI Format 公共和 UE专用搜 发送分集 Mode 6 DCI Format Common and UE-specific search Send diversity
1A 索空间  1A cable space
DCI Format UE专用搜索空间 单传输层下的闭环空时复 IB 用  DCI Format UE dedicated search space closed loop space-time complex IB under single transport layer
模式 7 DCI Format 公共和 UE专用搜 单天线口传输或发送分集 Mode 7 DCI Format Common and UE-specific search single antenna port transmission or transmit diversity
1A 索空间  1A cable space
DCI Format 1 UE专用搜索空间 单天线口发送, port 5 表 2  DCI Format 1 UE-specific search space Single antenna port transmission, port 5 Table 2
除上述两种情况外, 在目前 3GPP LTE协议规范中, 针对 UE不同 的接收状态或需要接收的数据类型, 如接收广播数据、 寻呼数据或接收 随机接入时的网络侧的资源分配指示, LTE规范中还针对这几种情况也 定义了可能使用的 PDCCH DCI格式, 以方便 UE进行检测。 在 UE需 要接收广播信息时, 高层配置 UE接收由 SI-RNTI加扰 CRC的 PDCCH 所对应的 DCI格式如表 2b所示; 在 UE需要接收寻呼信息时, 高层配 置 UE接收由 P-RNTI加扰 CRC的 PDCCH所对应的 DCI格式如表 2b 所示; 在 UE接收随机接入时网络侧的资源分配指示时, 高层配置 UE 接收由 RA-RNTI加扰 CRC的 PDCCH所对应的 DCI格式如表 2b所示。 另外, 在某些情况下, 高层会配置 UE接收由临时 C-RNTI ( TC-RNTI ) 加扰 CRC的 PDCCH, 此时对应的 DCI格式如表 2c所示。 传输模式 DCI格式 搜索空间 说明 模式 1 DCI Format 公共和 UE专用搜 单天线口传输, port O In addition to the above two cases, in the current 3GPP LTE protocol specification, for different receiving states of the UE or data types to be received, such as receiving broadcast data, paging data, or resource allocation indication on the network side when receiving random access, The PDCCH DCI format that may be used is also defined for the LTE specifications to facilitate the UE to perform detection. When the UE needs to receive the broadcast information, the DCI format corresponding to the PDCCH that the upper layer configures the UE to receive the scrambling CRC by the SI-RNTI is as shown in Table 2b. When the UE needs to receive the paging information, the upper layer configures the UE to receive the P-RNTI. The DCI format corresponding to the PDCCH of the CRC is as shown in Table 2b. When the UE receives the resource allocation indication of the network side during the random access, the high-level configuration UE receives the DCI format corresponding to the PDCCH that is scrambled by the RA-RNTI. 2b is shown. In addition, in some cases, the upper layer configures the UE to receive the PDCCH that is scrambled by the temporary C-RNTI (TC-RNTI), and the corresponding DCI format is as shown in Table 2c. Transmission mode DCI format search space description mode 1 DCI Format public and UE dedicated search antenna port transmission, port O
1A 索空间  1A cable space
DCI Format UE专用搜索空间 单天线口传输, port O 1  DCI Format UE dedicated search space single antenna port transmission, port O 1
模式 2 DCI Format 公共和 UE专用搜 发送分集  Mode 2 DCI Format Common and UE-specific search Send diversity
1A 索空间  1A cable space
DCI Format UE专用搜索空间 发送分集 1  DCI Format UE dedicated search space Send diversity 1
模式 3 DCI Format 公共和 UE专用搜 发送分集  Mode 3 DCI Format Common and UE-specific search Send diversity
1A 索空间  1A cable space
DCI Format UE专用搜索空间 发送分集 2A  DCI Format UE dedicated search space Send diversity 2A
模式 4 DCI Format 公共和 UE专用搜 发送分集  Mode 4 DCI Format Common and UE-specific search Send diversity
1A 索空间  1A cable space
DCI Format UE专用搜索空间 发送分集 2  DCI Format UE dedicated search space Send diversity 2
模式 5 DCI Format 公共和 UE专用搜 发送分集  Mode 5 DCI Format Common and UE-specific search Send diversity
1A 索空间  1A cable space
模式 6 DCI Format 公共和 UE专用搜 发送分集  Mode 6 DCI Format Common and UE-specific search Send diversity
1A 索空间  1A cable space
模式 7 DCI Format 公共和 UE专用搜 单天线口传输, port 5  Mode 7 DCI Format Common and UE-specific search single antenna port transmission, port 5
1A 索空间  1A cable space
DCI Format UE专用搜索空间 单天线口传输, port 5 1  DCI Format UE dedicated search space Single antenna port transmission, port 5 1
表 2a  Table 2a
Figure imgf000013_0001
Figure imgf000013_0001
表 2b DCI Format 搜索空间 说明 Table 2b DCI Format search space description
DCI Format 公共和 UE专用 如果传输 PBCH的天线口为 1个,则采用 1A 搜索空间 单天线口: port O; 否则为发送分集 DCI Format Common and UE-specific If the number of antenna ports for transmitting PBCH is 1, the 1A search space is used. Single antenna port: port O; otherwise, transmit diversity
DCI Format 1 UE专用搜索空 如果传输 PBCH的天线口为 1个,则采用 间 单天线口: port O; 否则为发送分集 表 2c DCI Format 1 UE-specific search empty If there is one antenna port for transmitting PBCH, the single-antenna port is used: port O; otherwise, the transmit diversity table 2c
本步骤中, 在具体确定 PDCCH DCI格式候选集时可以采用下述方 法实现:  In this step, when the candidate set of the PDCCH DCI format is specifically determined, the following method may be implemented:
所述 UE判断当前采用的下行传输模式与所述上一调度子帧所采用 的下行传输模式是否相同, 如果是, 则确定所述 PDCCH DCI格式候选 集包含所述上一调度子帧采用的下行传输模式所对应的所有 PDCCH DCI格式; 否则, 确定所述 PDCCH DCI格式候选集包含当前采用的下 行传输模式所对应的所有 PDCCH DCI格式以及所述上一调度子帧采用 的下行传输模式所对应的所有 PDCCH DCI格式。  Determining, by the UE, whether the currently used downlink transmission mode is the same as the downlink transmission mode used by the previous scheduling subframe, and if yes, determining that the PDCCH DCI format candidate set includes the downlink used by the previous scheduling subframe All PDCCH DCI formats corresponding to the transmission mode; otherwise, determining that the PDCCH DCI format candidate set includes all PDCCH DCI formats corresponding to the currently adopted downlink transmission mode and corresponding to the downlink transmission mode adopted by the previous scheduling subframe All PDCCH DCI formats.
从表 2中可以看出, 一种下行传输模式可能对应多种 PDCCH DCI 格式, 可见, 在实际应用中, 本步骤中所确定出的 PDCCH DCI格式候 选集可能包含多个 PDCCH DCI格式。 在这种情况下, 为了减少检测时 所尝试的 PDCCH DCI格式个数, 本步骤中将按照每个 PDCCH DCI格 式的使用概率的降序,对所述 PDCCH DCI格式候选集中的 PDCCH DCI 格式进行排序, 将使用概率大的 PDCCH DCI格式置于队列前面。  It can be seen from Table 2 that a downlink transmission mode may correspond to multiple PDCCH DCI formats. It can be seen that, in practical applications, the PDCCH DCI format candidate set determined in this step may include multiple PDCCH DCI formats. In this case, in order to reduce the number of PDCCH DCI formats that are attempted during detection, in this step, the PDCCH DCI formats in the PDCCH DCI format candidate set are sorted in descending order of the usage probability of each PDCCH DCI format. The PDCCH DCI format with a high probability of use is placed in front of the queue.
一般来说, 在两次相邻的调度中, 同一个 UE的传输模式变化的可 能性较小, 采用的 PDCCH DCI格式变化的可能性也较小。 因此, 本步 骤中, 所述排序原则为所述上一调度子帧所采用的下行传输模式对应的 PDCCH DCI格式优先排在队列前面, 其中, 所述上一调度子帧所采用 的 PDCCH DCI格式排在队列首位。 具体而言, 在 PDCCH DCI格式候 选集中, 将上一次网络调度时采用的 PDCCH DCI格式作为最高优先级 排在第一, 若该传输模式下还有其他可用的 PDCCH DCI格式, 则将这 些 PDCCH DCI格式依次排列在最高优先级的 PDCCH DCI格式之后。 例如: 不失一般性, 设优先级从高到低定义为 0, 1 , 2, ...... , 某个传 输模式下可用的 PDCCH DCI格式编号为 DCI Format#0, DCI Format#l , DCI Format#2, 若上一次调度采用的 DCI格式为 DCI Format#l , 则确定 PDCCH DCI格式候选集时, 将 DCI Format#l作为最高优先级(优先级 级别为 0 )排在 DCI格式候选集的最前面, 而对 DCI Format#0和 DCI Format#2, 可以随机确定其优先级, 排列在 DCI Format#l之后, 例如可 以假定 DCI Format#0的优先级为 1 , DCI Format#2的优先级为 2, 从而 得到初步的 DCI格式候选集为 (DCI Format#l , DCI Format#0, DCI Format#2 )。 另外, 在下行数据发送时, 由于信道环境变化, 或网络侧调 度的原因, 同一个 UE的传输模式可能发生变化, 因此在确定 PDCCH DCI格式盲检测候选集时, 需要把 UE可能使用的其他传输模式所对应 的 PDCCH DCI格式纳入 PDCCH DCI格式候选集, 这些 PDCCH DCI 格式排在已确定的 DCI格式候选集中最后一个 DCI格式之后,若新传输 模式下包含多个 DCI格式,则这些 DCI格式间的顺序可以随机确定,但 不能排在已确定的 DCI格式盲检测候选集中的 PDCCH DCI格式的前 面, 除非新传输模式下包含的 PDCCH DCI格式中,一个或多个 PDCCH DCI 格式在已确定的 PDCCH DCI 格式候选集中已经存在, 则这些 PDCCH DCI格式按 PDCCH DCI格式候选集中已确定的排列方式处理。 例如: 假设原传输模式确定的 DCI格式候选集为 (DCI Format#l , DCI Format#0, DCI Format#2 ), 而传输模式改变后新传输模式对应可用的 DCI格式包括 DCI Format #1 , DCI Format#3, DCI Format#4, 则加入新 的 DCI格式后 DCI格式候选集为 ( DCI Format#l , DCI Format#0, DCI Format#2, DCI Format#3, DCI Format#4 ), 其中 DCI Format#l由于在 原 DCI盲检测候选集中已经存在, 因此保留原来的优先级不变, 而 DCI Format#3和 DCI Format#4在盲检测候选集中没有, 需要加入 DCI格式 候选集, 其优先级从候选集中最低优先级的 DCI Format#2之后开始排 列, 取优先级别分别为 3和 4。 若传输模式的改变存在多种可能, 则需 要把所有可能的传输模式对应的 DCI格式均加入到 DCI格式候选集中, 加入方法同上描述。 例如传输模式 4可能改变为传输模式 6, 也可能改 变为模式 3, 则需要将传输模式 6和传输模式 3对应可用的 DCI格式均 加入 DCI格式盲检测候选集。 Generally, in two adjacent scheduling, the transmission mode of the same UE is less likely to change, and the possibility of adopting the PDCCH DCI format change is also small. Therefore, in this step, the PDCCH DCI format corresponding to the downlink transmission mode adopted by the previous scheduling subframe is preferentially ranked in front of the queue, where the PDCCH DCI format adopted by the previous scheduling subframe is Ranked first in the queue. Specifically, in the PDCCH DCI format candidate set, the PDCCH DCI format adopted in the last network scheduling is taken as the highest priority. In the first place, if there are other available PDCCH DCI formats in the transmission mode, the PDCCH DCI formats are sequentially arranged after the highest priority PDCCH DCI format. For example: Without loss of generality, let the priority be defined as 0, 1, 2, ... from high to low. The PDCCH DCI format available in a certain transmission mode is DCI Format#0, DCI Format#l , DCI Format#2, if the DCI format used in the previous scheduling is DCI Format#1, when determining the PDCCH DCI format candidate set, DCI Format#1 is ranked as the highest priority (priority level is 0) in the DCI format candidate. At the forefront of the set, for DCI Format#0 and DCI Format#2, the priority can be determined randomly, after DCI Format#l, for example, DCI Format#0 can be assumed to have priority 1, DCI Format#2 The priority is 2, so that the preliminary DCI format candidate set is (DCI Format#l, DCI Format#0, DCI Format#2). In addition, during downlink data transmission, the transmission mode of the same UE may change due to channel environment changes or network side scheduling. Therefore, when determining the PDCCH DCI format blind detection candidate set, other transmissions that the UE may use are needed. The PDCCH DCI format corresponding to the mode is included in the PDCCH DCI format candidate set, and the PDCCH DCI format is ranked after the last DCI format in the determined DCI format candidate set. If the new transmission mode includes multiple DCI formats, the DCI formats are The order may be randomly determined, but may not be ranked in front of the PDCCH DCI format of the determined DCI format blind detection candidate set, unless one or more PDCCH DCI formats are in the determined PDCCH DCI in the PDCCH DCI format included in the new transmission mode. The format candidate set already exists, and these PDCCH DCI formats are processed according to the determined arrangement of the PDCCH DCI format candidate set. For example: Assume that the DCI format candidate set determined by the original transmission mode is (DCI Format#l, DCI Format#0, DCI Format#2), and the new transmission mode corresponding to the available DCI format after the transmission mode is changed includes DCI Format #1, DCI. Format #3, DCI Format#4, the DCI format candidate set after adding a new DCI format is (DCI Format#l, DCI Format#0, DCI Format#2, DCI Format#3, DCI Format#4), where DCI Format#l due to The original DCI blind detection candidate set already exists, so the original priority remains unchanged, and DCI Format#3 and DCI Format#4 are not in the blind detection candidate set, and the DCI format candidate set needs to be added, and the priority is the lowest priority from the candidate set. After the DCI Format #2 of the level is started, the priority levels are 3 and 4. If there are multiple possibilities for the change of the transmission mode, the DCI formats corresponding to all possible transmission modes need to be added to the DCI format candidate set. The joining method is the same as described above. For example, if the transmission mode 4 may be changed to the transmission mode 6, or may be changed to the mode 3, the DCI formats corresponding to the transmission mode 6 and the transmission mode 3 need to be added to the DCI format blind detection candidate set.
步骤 303: 所述 UE根据最近一次或所述相关时间 T内最近二次反 馈信道质量指示 (CQI ) 时的 SNR测量结果, 确定当前接收 PDCCH时 可能使用的 CCE个数 , 将所述 Np作为当前 CCE搜索空间的 CCE个 数 Step 303: The UE determines the number of CCEs that may be used when receiving the PDCCH according to the SNR measurement result of the last time or the latest secondary feedback channel quality indicator (CQI) in the relevant time T, and uses the Np as the Number of CCEs in the current CCE search space
本步骤中, 所述当前即所述下行接收子帧。  In this step, the current downlink receiving subframe is currently.
这里需要说明的是: 在通信过程中, UE会接收下行公共导频信号, 进行 SNR/SINR的测量, 并映射为 CQI反馈给网络侧, 网络侧参考 CQI 测量结果, 进行用户资源分配和调度。 另外, 网络侧在分配 PDCCH所 使用的 CCE资源时, 也会参考 UE上报的 CQI测量值。 因此, UE可以 按照测量反馈的 CQI 和 PDCCH 接收关系, 将测量 CQI 时对应的 SINR/SNR存储下来, 并根据定时关系, 与对应时刻 PDCCH盲检测成 功时所采用的 CCE资源建立映射关系,为后续 PDCCH盲检测提供参考。  It should be noted that in the communication process, the UE receives the downlink common pilot signal, performs SNR/SINR measurement, and maps it to the CQI feedback to the network side, and the network side refers to the CQI measurement result to perform user resource allocation and scheduling. In addition, when the network side allocates the CCE resources used by the PDCCH, it also refers to the CQI measurement value reported by the UE. Therefore, the UE may store the SINR/SNR corresponding to the measured CQI according to the CQI and the PDCCH receiving relationship of the measurement feedback, and establish a mapping relationship with the CCE resource used when the PDCCH blind detection succeeds according to the timing relationship. PDCCH blind detection provides a reference.
图 4为现有系统中 UE反馈 CQI和接收 PDCCH的流程示意图。 如 图 4所示, 设在通信过程中, UE在第 n子帧测量了 CQI并反馈给网络 侧基站( eNB ), 设此时对应的 SNR为 SNRn , eNB参考该 CQI值, 在第 n+k ( k>0 )子帧对 UE进行调度, 采用了 A个 CCE来承载 PDCCH, UE 在第 n+k子帧对 PDCCH盲检测成功, 设在第 n+i ( i>k )子帧, UE又测 量了 CQI并上报给 eNB , 设此时对应的 SNR为 SNRn+i , 在 n+m ( m>i ) 子帧, eNB参考 UE在 n+i子帧上报的 CQI, 对 UE进行调度, 采用 B 个 CCE来承载 PDCCH。 UE需要根据测量的 SNR变化,推断 eNB发送 o P 4 is a schematic flowchart of a UE feeding back a CQI and receiving a PDCCH in an existing system. As shown in FIG. 4, in the communication process, the UE measures the CQI in the nth subframe and feeds back to the network side base station (eNB), so that the corresponding SNR is SNR n , and the eNB refers to the CQI value, at the nth. The +k (k>0) subframe schedules the UE, and adopts A CCEs to carry the PDCCH. The UE successfully detects the PDCCH blindly in the n+k subframe, and is set in the n+i (i>k) subframe. , UE measured again The CQI is measured and reported to the eNB, and the corresponding SNR is SNR n+i . In the n+m (m>i) subframe, the eNB refers to the CQI reported by the UE in the n+i subframe to schedule the UE. The B CCEs are used to carry the PDCCH. The UE needs to infer that the eNB sends o P according to the measured SNR change.
PDCCH时可能采用的 CCE数目,从而对 eNB在 n+m子帧发送的 PDCCH 进行盲检测。 基于上述思想, 具体地, 本步骤中可以根据相关时间 T内 最近二次反馈 CQI时的 SNR测量结果来确定 , 包括:
Figure imgf000017_0001
= SNRn-SNRn+i,计算所述 UE在所述相关时间 T内最近两 次反馈 CQI时的 SNR测量结果的差值^ , 其中, 《和《 + 分别为所 述最近两次反馈 CQI时的子帧号, w<w + ;
The number of CCEs that may be adopted in the PDCCH, thereby blindly detecting the PDCCH transmitted by the eNB in the n+m subframe. Based on the above idea, specifically, in this step, it may be determined according to the SNR measurement result when the CQI is most recently fed back in the relevant time T, including:
Figure imgf000017_0001
= SNR n - SNR n + i , calculating a difference ^ of the SNR measurement results of the last two feedback CQIs of the UE during the correlation time T, where "and " are the last two feedback CQIs respectively The subframe number of the time, w<w + ;
查询预设的 AWR与 CCE 个数相对偏移量对应关系表, 获得所述 ASNR对应的 CCE个数相对偏移量 j; l + j<  Querying a preset correspondence table between AWR and CCE relative offsets, and obtaining a relative offset of the number of CCEs corresponding to the ASNR; l + j<
按照 P 0<l + j<P , 确定所述 Np在所述 CCE个 l + j>P 数集 :{Λ^。,Λ^, ..... ,NP}中的元素下标 ρ , 0<p<P; 其中, P为 S中的元素 个数与 1的差值, /为所述 UE当前最近一次盲检测成功时所采用的 CCE 个数在所述 S中的元素下标; According to P 0<l + j<P , it is determined that the N p is in the CCE l + j>P number set: {Λ^. , Λ^, ..... , N P }, the element subscript ρ , 0<p<P; where P is the difference between the number of elements in S and 1 and / is the current most recent time of the UE The number of CCEs used in the successful blind detection is subscripted in the element in the S;
根据所述 p , 从所述 CCE个数集 {N。,N ..... ,NP}中获得所述 。 上述确定 的方法中, 所述 MM?与 CCE个数相对偏移量对应关系 表可以采用表 3的方式构造: According to the p, the number of sets from the CCE {N. , N ..... , N P } is obtained. In the above determined method, the correspondence table between the MM? and the CCE relative offset may be constructed in the manner of Table 3:
A^ R范围 (dB) 相对偏移量 A^ R range ( dB ) relative offset
ASNR < Th0 -P ASNR < Th 0 -P
Th0 < ASNR < Thx - (P-l ) Th 0 < ASNR < Th x - (Pl )
T < ASNR < Th2 - (P-2) Thp_x < ASNR < Thp 0 T < ASNR < Th 2 - (P-2) Th p _ x < ASNR < Th p 0
Thp < ASNR < Thp+1 1 Th p < ASNR < Th p+1 1
Th2P < ASNR < Th2P+1 P- l Th 2P < ASNR < Th 2P+1 P- l
Th2P+1 < ASNR P Th 2P+1 < ASNR P
表 3  table 3
表 3 中门限值 7¾ ( 0≤ ≤2« - 1 )可根据仿真确定, 即针对不同的信 道环境, 针对某个 PDCCH DCI格式, 通过仿真, 获得采用不同个数的 CCE资源进行承载时的解调信噪比。 考虑到测量误差, 以及实际信道环 境与仿真的差异, 实际的门限值需要在仿真的基础上加上适当的偏差。 在实际仿真时, 可以直接仿真 PDCCH DCI 格式在加性高斯白噪声 ( AWGN )条件下, 不同 CCE个数时的解调信噪比 SNR要求, 从而根 据这些仿真获得的 SNR建立 M層与 CCE个数对应表,在实际通信过程 中, UE将实测的 SNR值, 通过信噪比映射的方法, 如指数有效信噪比 映射方法 EESM, 获得对应的 AWGN信道下的 SNR, 从而查表获得相 对偏移量。 这里, 具体的仿真方法为本领域技术人员所掌握, 在此不再 赘述。  The threshold value 73⁄4 ( 0 ≤ ≤ 2« - 1 ) in Table 3 can be determined according to the simulation, that is, for different channel environments, for a certain PDCCH DCI format, by using a different number of CCE resources for carrying Demodulate the signal to noise ratio. Considering the measurement error and the difference between the actual channel environment and the simulation, the actual threshold value needs to be appropriately offset based on the simulation. In the actual simulation, the demodulation SNR requirement of the PDCCH DCI format under the condition of additive white Gaussian noise (AWGN) and different CCEs can be directly simulated, so that the M layer and the CCE are established according to the SNR obtained by these simulations. In the actual correspondence process, the UE obtains the SNR value of the measured SNR value through the signal-to-noise ratio mapping method, such as the exponential effective signal-to-noise ratio mapping method EESM, to obtain the SNR under the corresponding AWGN channel, so that the look-up table is relatively biased. Transfer amount. Here, the specific simulation method is known to those skilled in the art, and details are not described herein again.
下面以 3GPP R8 LTE 为例对上述确定 的方法具体说明, 承载 PDCCH的 CCE个数为 1、 2、 4、 8, 即 CCE个数集 {Λ^。, Λ^ , ..... , ΝΡ、为 S: { 1 , 2, 4, 8} , 其中 Ρ=3, 可假定所述 MM?与 CCE个数相对偏移量对 应关系表如表 4所示: The method for determining the foregoing is specifically described by using the 3GPP R8 LTE as an example. The number of CCEs carrying the PDCCH is 1, 2, 4, 8, that is, the CCE number set {Λ^. , Λ ^, ....., Ν Ρ , is S: {1, 2, 4 , 8}, where Ρ = 3, the MM can be assumed with relative offset CCE number correspondence table as shown in Table? 4 shows:
Figure imgf000018_0001
- 3 < ASNR < 3 0
Figure imgf000018_0001
- 3 < ASNR < 3 0
3≤ ASNR < 6 1  3≤ ASNR < 6 1
6≤ ASNR < 9 2  6 ≤ ASNR < 9 2
9 < ASNR 3  9 < ASNR 3
表 4  Table 4
假设 n+k子帧采用的 CCE个数为 N。=l ,相应的, /=0, ASNR为 -5άΒ, 查询表 4可知该 对应的相对偏移量 =-l , 则 /+ =0-l=-l , 由于 /+ 小于 0, 取 0, 即本次采用的 CCE个数与上次相同, 为 N。=l个 CCE; 若 R为 5dB,则 j=l , i+j=l ,本次可能采用的 CCE个数为 NF2;若^顺 为 10dB, 则 j=3, i+j=3, 本次可能采用的 CCE个数 Np为 N3=8个 CCE。 Assume that the number of CCEs used in the n+k subframe is N. =l, corresponding, /=0, ASNR is -5άΒ, query table 4 knows that the corresponding relative offset =-l, then /+ =0-l=-l, since /+ is less than 0, take 0, That is, the number of CCEs used this time is the same as the last time, which is N. = l CCE; if R is 5dB, then j = l, i + j = l, the number of CCEs that may be used this time is NF2; if ^ is 10dB, then j = 3, i + j = 3, this the number of times may be used as CCE N p N 3 = 8 th CCE.
在实际应用中, 还可以根据相关时间 T 内最近一次反馈 CQI时的 SNR测量结果来确定 具体方法可以为:  In practical applications, it may also be determined according to the SNR measurement result when the CQI is last feedbacked in the relevant time T. The specific method may be:
UE查询预设的 CCE-PDCCH DCI-SNR对应表, 获得所述 UE当前 最近一次上报 CQI时的 SNR测量结果所对应的 CCE个数, 将该 SNR 测量结果所对应的 CCE个数确定为当前接收 PDCCH时可能使用的 CCE 个数 。  The UE queries the preset CCE-PDCCH DCI-SNR correspondence table, and obtains the number of CCEs corresponding to the SNR measurement result when the UE currently reports the CQI, and determines the number of CCEs corresponding to the SNR measurement result as the current receiving. The number of CCEs that may be used in the PDCCH.
所述 CCE-PDCCH DCI-SNR 对应表包含各种 CCE 个数对应的 以通过仿真的方式,获得不同 PDCCH DCI格式在不同 CCE资源配置下 的解调信噪比 SNR需求, 从而可以建立该 CCE-PDCCH DCI-SNR对应 表。  The CCE-PDCCH DCI-SNR correspondence table includes various CCE numbers corresponding to obtain a demodulation signal-to-noise ratio SNR requirement of different PDCCH DCI formats in different CCE resource configurations by simulation, so that the CCE can be established. PDCCH DCI-SNR correspondence table.
步骤 304: 所述 UE在预设的搜索空间候选集中选择一个大小为 N 的 CCE搜索空间作为当前的 CCE搜索空间。  Step 304: The UE selects a CCE search space of size N as the current CCE search space in the preset search space candidate set.
具体在进行所述选择时, 可以选择从所述搜索空间候选集的起始位 置开始的任意一个大小为 N的 CCE搜索空间, 也可以选择从所述搜索 空间候选集的起始位置开始的第一个大小为 N的 CCE探索空间。 Specifically, when performing the selection, any CCE search space of size N may be selected from the start position of the search space candidate set, or may be selected from the search. The first CCE exploration space of size N starting from the beginning of the spatial candidate set.
步骤 305-309: 所述 UE基于所述当前的 CCE搜索空间, 依次对排 序后的所述 PDCCH DCI格式进行检测、 译码和 CRC校验, 直至所述 CRC校验成功; 如果所述 CRC校验均失败, 则执行步骤 310, 否则, 退出所述盲检测方法。  Step 305-309: The UE performs detection, decoding, and CRC check on the sorted PDCCH DCI format in sequence according to the current CCE search space, until the CRC check succeeds; If the test fails, step 310 is performed, otherwise, the blind detection method is exited.
所述对排序后的所述 PDCCH DCI格式进行检测、译码和 CRC校验, 其具体方法为本领域技术人员所掌握, 在此不再赘述。  The method for detecting, decoding, and CRC is performed on the PDCCH DCI format, and the specific method is known to those skilled in the art, and details are not described herein.
这里, 由于排序后的所述 PDCCH DCI格式中是按照使用概率的降 序排列的, 因此, 本步骤中, 将优先对使用概率最大的 PDCCH DCI格 式进行检测、 译码和 CRC校验, 因此, 可以有效提高首次尝试检测的 准确度,从而可以减少需要尝试的 PDCCH DCI格式数量,有效降低 UE 处理的复杂度和功耗。  Here, since the sorted PDCCH DCI formats are arranged in descending order according to the usage probability, in this step, the PDCCH DCI format with the highest usage probability is preferentially detected, decoded, and CRC-checked. The accuracy of the first attempt detection is effectively improved, thereby reducing the number of PDCCH DCI formats that need to be tried, and effectively reducing the complexity and power consumption of the UE processing.
步骤 310: 所述 UE判断预设的 CCE搜索空间候选集中是否存在未 被选择且 CCE个数为 N的 CCE搜索空间, 如果是, 则执行步骤 311 ; 否则, 执行步骤 312。  Step 310: The UE determines whether there is a CCE search space that is not selected and the number of CCEs is N in the preset CCE search space candidate set. If yes, step 311 is performed; otherwise, step 312 is performed.
当 CCE搜索空间候选集中所有 CCE个数为 N的 CCE搜索空间均被 检测完毕时, DCI盲检测均失败, 则表明当前检测的 CCE个数不正确, 需要执行步骤 312, 以选择下一种未被尝试的 CCE个数为 N的 CCE搜 索空间进行检测; 而当还有未被选择的 CCE个数为 N的 CCE搜索空间 时,则转入步骤 311触发对该 CCE个数为 N的 CCE搜索空间进行检测。  When all the CCE search spaces in the CCE search space candidate set are detected, the DCI blind detection fails. The number of CCEs detected is incorrect. Step 312 is required to select the next type. If the number of CCEs whose number of CCEs is N is CCE search space, if there are still CCE search spaces whose number of CCEs is not N, then go to step 311 to trigger CCE search for the number of CCEs is N. Space is tested.
步骤 311 : 所述 UE选择一个未被选择且 CCE个数为 N的 CCE搜 索空间作为当前的 CCE搜索空间, 转入步骤 305。  Step 311: The UE selects a CCE search space that is not selected and has a CCE number of N as the current CCE search space, and proceeds to step 305.
这里, 在进行所述选择时可采用随机选择的方式实现, 也可采用顺 序选择的方式实现, 具体可由本领域技术人员根据实际需要进行确定。  Here, the selection may be implemented in a random selection manner, or may be implemented in a sequential selection manner, and may be determined by a person skilled in the art according to actual needs.
步骤 312: 所述 UE判断预设的 CCE个数集中是否存在未被选择的 CCE个数, 如果是, 则执行步骤 313; 否则, 结束所述盲检测流程。 本步骤中,如果判断出 CCE个数集中的所有 CCE个数均已被选择, 则说明网络侧在当前子帧没有给 UE调度,或由于其他原因导致 PDCCH 检测失败, 因此将结束盲检测, 而当判断出 CCE个数集中还有未被选择 的 CCE个数, 则在后续步骤中将从中选择一个未被选择的 CCE个数作 为当前的 CCE搜索空间的空间大小,即该 CCE搜索空间包含的 CCE个 数 N, 然后转入步骤 304对由该 CCE个数所确定的 CCE搜索空间进行 检测。 Step 312: The UE determines whether there is a preset number of CCEs that are not selected. The number of CCEs, if yes, step 313 is performed; otherwise, the blind detection process is ended. In this step, if it is determined that the number of all CCEs in the CCE number set has been selected, it indicates that the network side does not schedule the UE in the current subframe, or the PDCCH detection fails due to other reasons, so the blind detection will end. When it is determined that there are still CCEs in the CCE number set, the number of unselected CCEs is selected as the space size of the current CCE search space in the subsequent step, that is, the CCE search space includes The number of CCEs is N, and then proceeds to step 304 to detect the CCE search space determined by the number of CCEs.
步骤 313: 选择一个未被选择的 CCE个数作为当前的 CCE搜索空 间的 CCE个数 N, 执行步骤 304。  Step 313: Select a number of CCEs that are not selected as the number of CCEs of the current CCE search space, and perform step 304.
这里, 选择一个未被选择的 CCE个数作为当前的 CCE搜索空间的 CCE个数 N的方法可以为:  Here, the method of selecting a number of unselected CCEs as the number of CCEs of the current CCE search space may be:
当所述 UE最近二次反馈 CQI时的 SNR测量结果呈增长趋势时,优 先按照 CCE个数递减的原则选择一个未被选择的 CCE个数作为当前的 CCE搜索空间的 CCE个数 N  When the SNR measurement result of the UE's most recent secondary feedback CQI is increasing, the number of CCEs that are not selected is selected as the number of CCEs of the current CCE search space according to the principle of decreasing the number of CCEs.
当所述 UE最近二次反馈 CQI时的 SNR测量结果呈下降趋势时,优 先按照 CCE个数递增的原则选择一个未被选择的 CCE个数作为当前的 CCE搜索空间的 CCE个数 N。  When the SNR measurement result of the UE's recent double feedback CQI is in a downward trend, the number of CCEs that are not selected is selected as the number of CCEs of the current CCE search space according to the principle of increasing the number of CCEs.
上述方法中, CCE个数集中的其他 CCE个数的选取以第一次选定 的 CCE个数 Np为基准,优先参考测量的 SNR变化趋势来选取。 由于网 络侧根据 SNR变化趋势来配置 CCE, 因此, 参考测量的 SNR变化趋势 来选取下一个 CCE个数可提高选择正确的 CCE个数的成功率, 减少检 测时尝试的次数, 从而可以减小 UE侧处理的复杂度。 假设 n+i子帧测 量的 SNR比第 n子帧测量的 SNR低, 则表明需要增加 CCE资源数, pt=p+l , 否则, /7 =ρ-1 , 若 0≤pt≤P , 则在 CCE数目集 S中取 N 为 CCE 数目, 并将 Npi值赋给 N, ? N= Npt , 例如: 若采用 4个 CCE盲检测失 败, 若 SNR趋势为变小 MNR >0 , 则取下一个可能的 CCE资源数为 8个, 若 SNR趋势为变大( Δ^Μ? <0 ), 则更换 CCE资源数为 2个。 In the above method, the number of other CCEs in the CCE number set is selected based on the first selected number of CCEs Np , and is preferentially selected by referring to the measured SNR change trend. Since the network side configures the CCE according to the SNR change trend, selecting the next CCE number by referring to the measured SNR change trend can improve the success rate of selecting the correct number of CCEs, and reducing the number of attempts during detection, thereby reducing the UE. The complexity of side processing. Assuming that the SNR measured by the n+i subframe is lower than the SNR measured by the nth subframe, it indicates that the number of CCE resources needs to be increased, pt=p+l, otherwise, /7=ρ-1, if 0≤pt≤P, then Take N in the CCE number set S as CCE Number, and assign the N pi value to N, ? N= N pt , for example: If 4 CCE blind detection fails, if the SNR trend is smaller, MNR >0, then the number of possible CCE resources is 8, if the SNR trend becomes larger ( Δ^Μ? <0), the number of CCE resources replaced is two.
上述方法通过利用相关时间 T内网络配置给 UE的传输模式及历史 调度信息, 确定 PDCCH DCI格式盲检测候选集, 利用信道 SINR/SNR 测量及相邻两次调度时的信道变化,来初步确定承载 PDCCH的 CCE资 源个数范围, 极大降低了 UE PDCCH盲检测的尝试次数, 可以减小 UE 的计算量和处理复杂度, 降低 UE功耗, 提升系统性能。 在实际通信过 程中, 有可能存在 UE由于长时间处于非连续接收(DRX )状态, 相邻 两次有效的调度时间间隔超过了配置的相关时间 T, 这样, 当 UE进行 本次 PDCCH盲检测时, 上一次成功检测 PDCCH时的相关信息不能完 全作为本次检测的参考,或者 UE是首次接收 PDCCH,没有历史检测信 息可供参考, 上述情况下, 即所述 UE的最近两次有效调度时间间隔大 于所述相关时间 T时, 或所述 UE首次接收 PDCCH信号时, 如图 5所 示可以采用下述步骤实现 PDCCH的盲检测。  The above method determines the PDCCH DCI format blind detection candidate set by using the transmission mode and the historical scheduling information of the network configuration to the UE in the relevant time T, and initially determines the bearer by using the channel SINR/SNR measurement and the channel change in the adjacent two schedulings. The number of CCE resources of the PDCCH greatly reduces the number of attempts of the UE PDCCH blind detection, which can reduce the calculation amount and processing complexity of the UE, reduce the power consumption of the UE, and improve system performance. In the actual communication process, there may be a time when the UE is in the discontinuous reception (DRX) state, and the two consecutive effective scheduling times exceed the configured correlation time T, so that when the UE performs the PDCCH blind detection The information about the last successful detection of the PDCCH may not be completely used as a reference for the current detection, or the UE receives the PDCCH for the first time, and no history detection information is available for reference. In the above case, the last two effective scheduling intervals of the UE When the correlation time T is greater than the correlation time T, or when the UE receives the PDCCH signal for the first time, as shown in FIG. 5, the following steps may be used to implement blind detection of the PDCCH.
步骤 501 : 预先通过仿真建立 CCE-PDCCH DCI-SNR对应表, 并存 储于所述 UE中, 所述 UE根据高层配置的下行传输模式或当前需要接 收的数据类型, 确定 PDCCH DCI侯选集; 所述 CCE-PDCCH DCI-SNR 对应表中包含各种 CCE个数对应的 PDCCH DCI格式以及各种 CCE个 数对应的 SNR值。  Step 501: A CCE-PDCCH DCI-SNR correspondence table is established in advance by using a simulation, and is stored in the UE, where the UE determines a PDCCH DCI candidate set according to a downlink transmission mode configured by a high layer or a data type that needs to be received currently; The CCE-PDCCH DCI-SNR correspondence table includes PDCCH DCI formats corresponding to the number of various CCEs and SNR values corresponding to the number of various CCEs.
这里, 根据高层配置的下行传输模式确定 PDCCH DCI侯选集为: 查询表 2/表 2a/表 2b/表 2c可知, 该下行传输模式所对应的 PDCCH DCI 格式, 将这些 PDCCH DCI格式作为 PDCCH DCI侯选集。  Here, the PDCCH DCI candidate set is determined according to the downlink transmission mode of the high layer configuration: Query Table 2/Table 2a/Table 2b/Table 2c, the PDCCH DCI format corresponding to the downlink transmission mode, and the PDCCH DCI format is used as the PDCCH DCI Selection.
根据当前需要接收的数据类型确定 PDCCH DCI侯选集为: 根据当 前需要接收的数据类型, 查询表 2/表 2a/表 2b/表 2c 可知可能采用的 PDCCH DCI格式, 将这些 PDCCH DCI格式作为 PDCCH DCI侯选集。 这里,确定数据类型对应的 CCE搜索空间的具体方法为本领域技术人员 所掌握, 在此不再赘述。 Determining the PDCCH DCI candidate set according to the type of data currently required to be received: According to the data type currently required to be received, the query table 2/table 2a/table 2b/table 2c may be used. The PDCCH DCI format uses these PDCCH DCI formats as PDCCH DCI candidate sets. Here, the specific method for determining the CCE search space corresponding to the data type is known to those skilled in the art, and details are not described herein again.
例如, 假设 UE当前需要接收由 PDSCH承载的广播信息或寻呼信 息, 根据表 2b, 可确定 UE 的搜索空间为公共搜索空间, DCI格式为 PDCCH DCI Format 1A或 1C; 假设高层配置 UE接收由 C-RNTI加扰 CRC的 PDCCH, 相应的数据传输模式为模式 4, 则根据表 2, 所对应的 DCI格式盲检测候选集为 ( DCI Format 1A, DCI Format 2 )。  For example, assuming that the UE currently needs to receive broadcast information or paging information carried by the PDSCH, according to Table 2b, it may be determined that the search space of the UE is a common search space, and the DCI format is PDCCH DCI Format 1A or 1C; - RNTI scrambles the PDCCH of the CRC, and the corresponding data transmission mode is mode 4. According to Table 2, the corresponding DCI format blind detection candidate set is (DCI Format 1A, DCI Format 2).
本步骤中,构建 CCE-PDCCH DCI-SNR对应表的方法与步骤 303中 的方法相同, 在此不再赘述。  In this step, the method for constructing the CCE-PDCCH DCI-SNR correspondence table is the same as the method in step 303, and details are not described herein again.
步骤 502:所述 UE根据当前最近一次上报 CQI时的 SNR测量结果, 从已确定的 PDCCH DCI格式候选集中选择一个 PDCCH DCI格式作为 当前的 PDCCH DCI格式。  Step 502: The UE selects one PDCCH DCI format from the determined PDCCH DCI format candidate set as the current PDCCH DCI format according to the SNR measurement result when the CQI is reported last time.
步骤 503: 所述 UE查询所述 CCE-PDCCH DCI-SNR对应表, 获得 当前的 PDCCH DCI格式在所述 SNR测量结果下对应的 CCE个数, 将 所获得的 CCE个数作为当前 CCE搜索空间的 CCE个数 N。  Step 503: The UE queries the CCE-PDCCH DCI-SNR correspondence table, and obtains the number of CCEs corresponding to the current PDCCH DCI format under the SNR measurement result, and uses the obtained CCE number as the current CCE search space. The number of CCEs is N.
步骤 504: 所述 UE从预设的 CCE搜索空间候选集中, 选择一个大 小为 N的 CCE搜索空间作为当前的 CCE搜索空间。  Step 504: The UE selects a CCE search space of size N from the preset CCE search space candidate set as the current CCE search space.
步骤 505:所述 UE基于所述当前的 CCE搜索空间,对当前的 PDCCH DCI格式进行检测、 译码和 CRC校验。  Step 505: The UE performs detection, decoding, and CRC check on the current PDCCH DCI format based on the current CCE search space.
步骤 506: 判断所述 CRC校验是否正确, 如果是, 则退出所述盲检 测流程; 否则, 执行步骤 507。  Step 506: Determine whether the CRC check is correct. If yes, exit the blind detection process; otherwise, go to step 507.
这里, 若 CRC校验成功, 则说明 PDCCH DCI检测成功, 因此退出 所述盲检测流程。  Here, if the CRC check is successful, the PDCCH DCI detection is successful, so the blind detection process is exited.
步骤 507: 判断是否所有的 CCE个数为 N的 CCE搜索空间均已被 选择, 如果是, 则执行步骤 509, 否则, 执行步骤 508。 Step 507: Determine whether all CCE search spaces with N number of CCEs have been If yes, go to step 509, otherwise, go to step 508.
当基于所有所述 CCE个数为 N的 CCE搜索空间进行的 CRC校验 均失败, 则说明当前的 N值不是正确的 CCE搜索空间大小, 因此, 执 行步骤 509以选择新的 CCE搜索空间大小进行尝试。  When the CRC check based on all the CCE search spaces with the number of CCEs is N, the current N value is not the correct CCE search space size. Therefore, step 509 is performed to select a new CCE search space size. try.
步骤 508: 从所述 CCE搜索空间候选集中选择一个 CCE个数为 N 的且未被选择的 CCE搜索空间作为当前的 CCE搜索空间, 重新执行步 骤 505。  Step 508: Select a CCE search space with a number of CCEs N and not selected as the current CCE search space from the CCE search space candidate set, and perform step 505 again.
步骤 509: 所述 UE判断预设的 CCE个数集中是否存在未被选择的 CCE个数, 如果是, 则执行步骤 510; 否则, 执行步骤 512。  Step 509: The UE determines whether there is an unselected number of CCEs in the preset CCE number set. If yes, step 510 is performed; otherwise, step 512 is performed.
所述预设的 CCE 个数集可以是公共搜索空间或专用搜索空间所对 应的 CCE个数集。  The preset CCE number set may be a CCE number set corresponding to a common search space or a dedicated search space.
步骤 510: 所述 UE选择一个未被选择的 CCE个数作为当前的 CCE 搜索空间的 CCE个数 N, 执行步骤 504。  Step 510: The UE selects an unselected number of CCEs as the number of CCEs of the current CCE search space, and performs step 504.
步骤 511:所述 UE判断所述 PDCCH DCI格式候选集中是否还有未 选择的 PDCCH DCI格式, 如果有, 则执行步骤 512; 否则, 退出所述 盲检测流程。  Step 511: The UE determines whether there is an unselected PDCCH DCI format in the PDCCH DCI format candidate set. If yes, step 512 is performed; otherwise, the blind detection process is exited.
步骤 512: 选择一个未选择的 PDCCH DCI格式作为当前的 PDCCH DCI格式, 执行步骤 503。  Step 512: Select an unselected PDCCH DCI format as the current PDCCH DCI format, and perform step 503.
综上所述, 以上仅为本发明的较佳实施例而已, 并非用于限定本发 明的保护范围。 凡在本发明的精神和原则之内, 所作的任何修改、 等同 替换、 改进等, 均应包含在本发明的保护范围之内。  In conclusion, the above is only the preferred embodiment of the present invention and is not intended to limit the scope of the present invention. Any modifications, equivalents, improvements, etc. made within the spirit and scope of the present invention are intended to be included within the scope of the present invention.

Claims

权利要求书 Claim
1、 一种盲检测方法, 其特征在于, 当用户设备(UE ) 的最近两次 有效调度时间间隔在预设的相关时间 T内时, 该方法包括以下步骤: A blind detection method, characterized in that, when the last two effective scheduling intervals of the user equipment (UE) are within a preset correlation time T, the method comprises the following steps:
XI ) 在每个下行接收子帧, 所述 UE 进行物理下行控制信道 ( PDCCH )所在控制符号的检测、 解调和解扰; XI) in each downlink receiving subframe, the UE performs detection, demodulation, and descrambling of a control symbol where a physical downlink control channel (PDCCH) is located;
X2 )所述 UE根据预设的相关时间 T内与当前调度子帧相邻的上一 调度子帧所采用的下行传输模式, 确定当前调度子帧网络侧采用的 PDCCH DCI格式候选集, 并按照预设的排序原则对所述 PDCCH DCI 格式候选集中的 PDCCH DCI格式进行排序, 所述排序原则为所述上一 调度子帧所采用的下行传输模式对应的 PDCCH DCI格式优先排在队列 前面, 其中, 所述上一调度子帧所采用的 PDCCH DCI格式排在队列首 位;  Determining, by the UE, the PDCCH DCI format candidate set adopted by the network side of the current scheduling subframe according to the downlink transmission mode adopted by the previous scheduling subframe adjacent to the current scheduling subframe in the preset correlation time T, and according to The PDCCH DCI format of the PDCCH DCI format candidate set is sorted by a preset ordering principle, and the PDCCH DCI format corresponding to the downlink transmission mode adopted by the previous scheduling subframe is preferentially ranked in front of the queue, where The PDCCH DCI format adopted by the previous scheduling subframe is ranked first in the queue;
X3 )所述 UE根据最近一次或所述相关时间 T内最近二次反馈信道 质量指示(CQI )时的信噪比(SNR )测量结果, 确定当前接收 PDCCH 时可能使用的控制信道元素 (CCE )个数 将所述 Np作为当前 CCE 搜索空间的 CCE个数 N; X3) the UE determines a control channel element (CCE) that may be used when receiving the PDCCH according to a signal-to-noise ratio (SNR) measurement result of a most recent secondary feedback channel quality indicator (CQI) in the latest or the relevant time T the number N p as the current number of CCE CCE search space N;
X4 )所述 UE在预设的搜索空间候选集中选择一个大小为 N的 CCE 搜索空间作为当前的 CCE搜索空间;  X4) the UE selects a CCE search space of size N as the current CCE search space in the preset search space candidate set;
X5 )所述 UE利用所述当前的 CCE搜索空间,依次对排序后的所述 PDCCH DCI格式进行检测、 译码和 CRC校验, 直至所述 CRC校验成 功; 如果所述 CRC校验均失败, 则执行步骤 X6, 否则, 退出所述盲检 测方法;  X5) the UE uses the current CCE search space to sequentially detect, decode, and CRC the sorted PDCCH DCI format until the CRC check succeeds; if the CRC check fails Go to step X6, otherwise, exit the blind detection method;
X6 )所述 UE判断所述 CCE搜索空间候选集中是否存在未被选择且 CCE个数为 N的 CCE搜索空间, 如果是, 则选择一个未被选择且 CCE 个数为 N的 CCE搜索空间作为当前的 CCE搜索空间, 执行步骤 X5; 否则, 执行步骤 X7; X6) The UE determines whether there is a CCE search space that is not selected and the number of CCEs is N in the CCE search space candidate set, and if yes, selects one unselected and CCE The CCE search space with the number N is used as the current CCE search space, and step X5 is performed; otherwise, step X7 is performed;
X7 )所述 UE判断预设的 CCE个数集中是否存在未被选择的 CCE  X7) The UE determines whether there is an unselected CCE in the preset number of CCEs
^ o P  ^ o P
个数, 如果是, 则选择一个未被选择的 CCE个数作为当前的 CCE搜索 空间的 CCE个数 N, 执行步骤 X4; 否则, 结束所述盲检测方法。 If yes, select an unselected number of CCEs as the number of CCEs in the current CCE search space, and perform step X4; otherwise, end the blind detection method.
2、 根据权利要求 1 所述的方法, 其特征在于, 所述确定当前接收 PDCCH时可能使用的 CCE个数 Np为:
Figure imgf000026_0001
= SNRn -SNRn+i,计算所述 UE在所述相关时间 T内最近两 次反馈 CQI时的 SNR测量结果的差值^ , 其中, 《和《 + 分别为所 述最近两次反馈 CQI时的子帧号, w<w + ;
2. The method of claim 1, wherein the determining the number of CCE N p may be used as the current reception PDCCH:
Figure imgf000026_0001
= SNR n - SNR n + i , calculating a difference ^ of the SNR measurement results of the last two feedback CQIs of the UE during the correlation time T, where "and " are the last two feedback CQIs respectively The subframe number of the time, w<w + ;
查询预设的 AWR与 CCE 个数相对偏移量对应关系表, 获得所述 ASNR对应的 CCE个数相对偏移量 j;  Querying a preset AWR and CCE relative offset correspondence table, and obtaining a relative offset C of the CCE corresponding to the ASNR;
l + j<  l + j<
按照 p 0<l + j<P , 确定所述 Np在所述 CCE个 l + j>P 数集 ^{Λ^,Λ^, ..... ,NP}中的元素下标 ρ , Q<p<P ; 其中, 为^中的元素 个数与 1的差值, /为所述 UE当前最近一次盲检测成功时所采用的 CCE 个数在所述 S中的元素下标; According to p 0<l + j<P , the element subscript ρ of the N p in the CCE l + j>P number set ^{Λ^, Λ^, ....., N P } is determined. , Q<p<P ; where is the difference between the number of elements in ^ and 1 , / is the element index of the number of CCEs used in the current blind detection of the UE in the S;
根据所述 p , 从所述 CCE个数集 {N。,N ..... ,NP}中获得所述 。 According to the p, the number of sets from the CCE {N. , N ..... , N P } is obtained.
3、 根据权利要求 1 所述的方法, 其特征在于, 所述确定当前接收 PDCCH时可能使用的 CCE个数 为: The method according to claim 1, wherein the determining the number of CCEs that may be used when receiving the PDCCH is:
所述 UE查询预设的 CCE-PDCCH DCI-SNR对应表, 获得所述 UE 当前最近一次上报 CQI时的 SNR测量结果所对应的 CCE个数,将该 SNR 测量结果所对应的 CCE个数确定为当前接收 PDCCH时可能使用的 CCE 个数 ; 所述 CCE-PDCCH DCI-SNR对应表包含各种 CCE个数对应的 The UE queries the preset CCE-PDCCH DCI-SNR correspondence table, and obtains the number of CCEs corresponding to the SNR measurement result when the UE last reported the CQI, and determines the number of CCEs corresponding to the SNR measurement result as The number of CCEs that may be used when receiving the PDCCH; the CCE-PDCCH DCI-SNR correspondence table includes the number of CCEs
4、根据权利要求 1所述的方法, 其特征在于, 所述选择一个未被选 择的 CCE个数作为当前的 CCE搜索空间的 CCE个数 N为: The method according to claim 1, wherein the selecting the number of unselected CCEs as the number of CCEs of the current CCE search space is:
当所述 UE最近二次反馈 CQI时的 SNR测量结果呈增长趋势时,优 先按照 CCE个数递减的原则选择一个未被选择的 CCE个数作为当前的 When the SNR measurement result of the UE's most recent secondary feedback CQI is increasing, it is preferred to select an unselected CCE number as the current one according to the principle of decreasing CCE number.
CCE搜索空间的 CCE个数 N Number of CCEs in the CCE search space N
当所述 UE最近二次反馈 CQI时的 SNR测量结果呈下降趋势时,优 先按照 CCE个数递增的原则选择一个未被选择的 CCE个数作为当前的 When the SNR measurement result of the UE's most recent secondary feedback CQI is in a downward trend, the number of unselected CCEs is selected as the current one according to the principle of increasing the number of CCEs.
CCE搜索空间的 CCE个数 N。 The number of CCEs in the CCE search space is N.
5、 根据权利要求 1所述的方法, 其特征在于, 当所述 UE的最近两 次有效调度时间间隔大于所述相关时间 T,或所述 UE首次接收 PDCCH 信号时, 所述方法进一步包括:  The method according to claim 1, wherein when the last two active scheduling time intervals of the UE are greater than the correlation time T, or the UE receives the PDCCH signal for the first time, the method further includes:
Y1 )预先通过仿真建立 CCE-PDCCH DCI-SNR对应表, 并存储于 所述 UE中, 所述 UE根据高层配置的下行传输模式或当前需要接收的 数据类型, 确定 PDCCH DCI侯选集; 所述 CCE-PDCCH DCI-SNR对应 表中包含各种 CCE个数对应的 PDCCH DCI格式以及各种 CCE个数对 应的 SNR值;  The CCE-PDCCH DCI-SNR correspondence table is set up in advance by the UE, and is stored in the UE, and the UE determines the PDCCH DCI candidate set according to the downlink transmission mode configured by the high layer or the data type that needs to be received currently; - PDCCH DCI-SNR correspondence table includes PDCCH DCI format corresponding to the number of various CCEs and SNR value corresponding to the number of various CCEs;
Y2 )所述 UE根据当前最近一次上报 CQI时的 SNR测量结果, 从 已确定的 PDCCH DCI格式候选集中选择一个 PDCCH DCI格式;  Y2) the UE selects one PDCCH DCI format from the determined PDCCH DCI format candidate set according to the SNR measurement result when the CQI is reported last time;
Y3 )所述 UE查询所述 CCE-PDCCH DCI-SNR对应表, 获得当前的 PDCCH DCI格式在所述 SNR测量结果下对应的 CCE个数,将所获得的 CCE个数作为当前 CCE搜索空间的 CCE个数 N  Y3) The UE queries the CCE-PDCCH DCI-SNR correspondence table, and obtains the number of CCEs corresponding to the current PDCCH DCI format under the SNR measurement result, and uses the obtained CCE number as the CCE of the current CCE search space. Number N
Y4 )所述 UE从预设的 CCE搜索空间候选集中,选择一个大小为 N 的 CCE搜索空间作为当前的 CCE搜索空间;  Y4) the UE selects a CCE search space of size N from the preset CCE search space candidate set as the current CCE search space;
Y5 )所述 UE基于所述当前的 CCE搜索空间,对当前的 PDCCH DCI 格式进行检测、 译码和 CRC校验; Y5) the UE is based on the current CCE search space, for the current PDCCH DCI Format for detection, decoding and CRC verification;
Y6 )判断所述 CRC校验是否正确, 如果是, 则退出所述盲检测方 法; 否则, 执行步骤 Y7;  Y6) determining whether the CRC check is correct, and if yes, exiting the blind detection method; otherwise, performing step Y7;
Y7 )判断是否所有的 CCE个数为 N的 CCE搜索空间均已被选择, 如果是, 则执行步骤 Y9, 否则, 执行步骤 Y8;  Y7) judging whether all CCE search spaces with N number of CCEs have been selected, if yes, executing step Y9, otherwise, performing step Y8;
Y8 )从所述 CCE搜索空间候选集中选择一个 CCE个数为 N的且未 被选择的 CCE搜索空间作为当前的 CCE搜索空间, 重新执行步骤 Y5;  Y8) selecting, from the CCE search space candidate set, a CCE search space with a number of CCEs that is not selected as the current CCE search space, and performing step Y5 again;
Y9 )所述 UE判断预设的 CCE个数集中是否存在未被选择的 CCE 个数, 如果是, 则执行步骤 Y10; 否则, 执行步骤 Y11;  Y9) The UE determines whether there is a number of unselected CCEs in the preset number of CCEs, and if yes, performs step Y10; otherwise, performs step Y11;
Y10 )所述 UE选择一个未被选择的 CCE个数作为当前的 CCE搜索 空间的 CCE个数 N, 执行步骤 Y4;  Y10) The UE selects an unselected number of CCEs as the number of CCEs of the current CCE search space, and performs step Y4;
Y11 )所述 UE判断所述 PDCCH DCI格式候选集中是否还有未选择 的 PDCCH DCI格式, 如果是, 则选择一个未选择的 PDCCH DCI格式 作为当前的 PDCCH DCI格式, 执行步骤 Y3; 否则, 退出所述盲检测方 法。  Y11) The UE determines whether there is an unselected PDCCH DCI format in the PDCCH DCI format candidate set, and if yes, selects an unselected PDCCH DCI format as the current PDCCH DCI format, and performs step Y3; otherwise, exits the A blind detection method.
6、 根据权利要求 1所述的方法, 其特征在于, 步骤 X2中所述确定 当前调度子帧网络侧采用的 PDCCH DCI格式候选集为:  The method according to claim 1, wherein the determining, in the step X2, the candidate set of the PDCCH DCI format adopted by the network side of the current scheduling subframe is:
所述 UE判断当前所采用的下行传输模式与所述上一调度子帧所采 用的下行传输模式是否相同, 如果是, 则确定所述 PDCCH DCI格式候 选集包含所述上一调度子帧采用的下行传输模式所对应的所有 PDCCH DCI格式; 否则, 确定所述 PDCCH DCI格式候选集包含当前采用的下 行传输模式所对应的所有 PDCCH DCI格式以及所述上一调度子帧采用 的下行传输模式所对应的所有 PDCCH DCI格式。  Determining, by the UE, whether the currently used downlink transmission mode is the same as the downlink transmission mode used by the previous scheduling subframe, and if yes, determining that the PDCCH DCI format candidate set includes the last scheduling subframe. All PDCCH DCI formats corresponding to the downlink transmission mode; otherwise, determining that the PDCCH DCI format candidate set includes all PDCCH DCI formats corresponding to the currently adopted downlink transmission mode and the downlink transmission mode adopted by the previous scheduling subframe All PDCCH DCI formats.
PCT/CN2010/077822 2010-07-06 2010-10-18 Blind detection method WO2012003675A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010224770.6 2010-07-06
CN2010102247706A CN101883369B (en) 2010-07-06 2010-07-06 Blind detection method

Publications (1)

Publication Number Publication Date
WO2012003675A1 true WO2012003675A1 (en) 2012-01-12

Family

ID=43055217

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/077822 WO2012003675A1 (en) 2010-07-06 2010-10-18 Blind detection method

Country Status (2)

Country Link
CN (1) CN101883369B (en)
WO (1) WO2012003675A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109673056A (en) * 2019-03-11 2019-04-23 重庆邮电大学 PDCCH adaptive blind detection method in 5G system based on power measurement
CN110740008A (en) * 2018-07-18 2020-01-31 华为技术有限公司 PDCCH (physical Downlink control channel) sending and blind detection methods and devices
CN112994836A (en) * 2019-12-13 2021-06-18 深圳市中兴微电子技术有限公司 Detection method, device, terminal and storage medium
CN114257339A (en) * 2021-12-17 2022-03-29 Oppo广东移动通信有限公司 PDCCH blind detection method, device, electronic equipment and storage medium
CN114499784A (en) * 2020-10-23 2022-05-13 大唐移动通信设备有限公司 Transmission resource determining method, device and storage medium

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102480776B (en) * 2010-11-24 2015-03-11 中国移动通信集团公司 Method and base station for adjusting uplink authorization and physical downlink control channel of UE (user equipment)
US20120230211A1 (en) * 2011-03-08 2012-09-13 Telefonaktiebolaget Lm Ericsson (Publ) Methods and network nodes for allocating control channel elements for physical downlink control channel
CN102740473B (en) * 2011-04-08 2017-12-01 中兴通讯股份有限公司 A kind of processing method and system of Downlink Control Information
CN102164416B (en) * 2011-05-03 2014-04-16 电信科学技术研究院 Method, system and equipment for transmitting data
CN102186201B (en) * 2011-05-17 2013-07-24 大唐移动通信设备有限公司 User equipment (UE) and method for detecting physical downlink control channel (PDCCH)
CN102857233B (en) * 2011-06-28 2017-03-15 中兴通讯股份有限公司 Interpretation method and device
CN102891728B (en) * 2011-07-20 2016-06-08 华为技术有限公司 A kind of Physical Downlink Control Channel sends and blind checking method, equipment
CN103039104B (en) * 2011-08-05 2015-07-08 华为技术有限公司 Blind detection method and device
CN102932299B (en) * 2011-08-08 2015-12-16 普天信息技术研究院有限公司 A kind of sending method of Physical Downlink Control Channel
CN102932917B (en) * 2011-08-08 2015-06-10 普天信息技术研究院有限公司 Method for acquiring absolute uplink timing advance (TA) in carrier aggregation scene
CN102932907B (en) 2011-08-11 2016-03-09 华为技术有限公司 A kind ofly obtain synchronous processing method and equipment
CN103108384B (en) * 2011-11-09 2016-10-26 华为技术有限公司 Obtain the method for schedule information, the control method obtaining schedule information and device
CN103166737B (en) * 2011-12-16 2016-03-16 鼎桥通信技术有限公司 Group service method for scrambling, de-scrambling method, base station and subscriber equipment
CN102546137B (en) * 2011-12-29 2014-09-17 华为技术有限公司 Method and device for detecting wireless link
CN103313401B (en) * 2012-03-14 2016-03-02 普天信息技术研究院有限公司 A kind of method and device adjusting PDCCH form
CN103326977B (en) * 2012-03-19 2018-03-13 中兴通讯股份有限公司 The configuration of pilot frequency sequence generation parameter, the detection method and device of control signaling
JP5726819B2 (en) * 2012-05-11 2015-06-03 株式会社Nttドコモ Decoding method, radio base station, user terminal, and radio communication system
CN103457688B (en) * 2012-05-29 2018-09-28 中兴通讯股份有限公司 Downlink Control Information blind checking method and device
JP5958536B2 (en) * 2012-05-29 2016-08-02 富士通株式会社 Wireless communication system, mobile station and base station
CN108964846B (en) 2012-09-27 2021-05-28 瑞典爱立信有限公司 TDD PUCCH HARQ resource allocation method and system
CN104937874B (en) * 2012-12-05 2018-05-18 华为技术有限公司 The method and node of transmitting broadcast information in a wireless communication system
CN104427530B (en) * 2013-08-29 2019-05-31 锐迪科(重庆)微电子科技有限公司 A kind of control channel detection method and device
CN104469804B (en) * 2013-09-12 2017-11-14 普天信息技术研究院有限公司 The blind detection method of Physical Downlink Control Channel
CN104885496B (en) * 2013-12-18 2019-08-27 华为技术有限公司 A kind of detection method and user equipment of information
CN104869578A (en) * 2014-02-26 2015-08-26 中国电信股份有限公司 Physical downlink control channel blind detection method, device and user equipment
BR112016030001A2 (en) * 2014-06-20 2018-05-15 Huawei Technologies Co., Ltd. method and device of data transmission.
CN105991218A (en) * 2015-02-02 2016-10-05 中国电信股份有限公司 PDCCH blind detection method and system, and terminal
CN104683069B (en) * 2015-02-13 2018-04-27 大唐联仪科技有限公司 A kind of physical downlink control channel PDCCH blind checking method and system
CN106301728B (en) * 2015-06-08 2019-08-06 深圳市中兴微电子技术有限公司 A kind of enhanced Physical Downlink Control Channel processing method and processing device
CN107534874A (en) * 2015-08-31 2018-01-02 华为技术有限公司 The transmission method and relevant device of a kind of control information
CN106559173A (en) * 2015-09-29 2017-04-05 中国电信股份有限公司 For realizing the methods, devices and systems of the quick blind Detectings of ePDCCH
WO2017133013A1 (en) * 2016-02-05 2017-08-10 华为技术有限公司 Method and device for transmitting control signalling
US10051618B2 (en) * 2016-07-01 2018-08-14 Intel IP Corporation Methods and devices for control channel decoding
CN106549733A (en) * 2016-12-06 2017-03-29 北京锐安科技有限公司 A kind of blind detection method and device for strengthening Physical Downlink Control Channel
CN108631923B (en) * 2017-03-24 2020-11-17 华为技术有限公司 Information transmission method, network equipment and terminal equipment
CN109474384B (en) * 2017-09-08 2021-02-12 华为技术有限公司 Communication method, terminal equipment and network equipment
CN109660315B (en) * 2017-10-10 2021-08-17 北京紫光展锐通信技术有限公司 PDCCH blind detection method and device based on DMRS, storage medium and user equipment
US10660020B2 (en) * 2017-12-20 2020-05-19 Qualcomm Incorporated Search space set combining and dropping
CN110492972B (en) * 2018-05-14 2022-02-08 北京小米松果电子有限公司 Blind detection control method, device, base station, user equipment and storage medium
CN110719645B (en) * 2018-07-13 2021-12-14 维沃移动通信有限公司 Channel detection indication method, terminal and network equipment
CN111211872B (en) * 2020-01-09 2022-03-11 重庆邮电大学 PDCCH blind detection method for SNR mean value feedback and CCEs energy judgment in 5G
CN111680467A (en) * 2020-06-08 2020-09-18 重庆邮电大学 FPGA design method for PDCCH blind detection of 5G terminal simulator
CN111917520B (en) * 2020-09-21 2022-04-01 紫光展锐(重庆)科技有限公司 Paging DCI blind detection method, device and equipment
CN112153074B (en) * 2020-10-10 2021-09-28 翱捷科技股份有限公司 DCI analysis method and device in 5G NR system, electronic device and storage medium
CN113259060B (en) * 2021-07-16 2021-11-09 北京智联安科技有限公司 Method and device for preventing PDCCH false detection and readable storage medium
CN116865912B (en) * 2023-09-04 2023-11-03 芯迈微半导体(上海)有限公司 Method and system for blind detection control and early stopping of physical layer downlink control channel

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101505498A (en) * 2009-03-17 2009-08-12 中兴通讯股份有限公司 Downlink control information sending method, related system and apparatus
CN101594205A (en) * 2009-06-22 2009-12-02 中兴通讯股份有限公司 A kind of descending control signaling sending method of advanced long-term evolution system
US20100113043A1 (en) * 2008-10-31 2010-05-06 Yi Hsuan Blind channel detection techniques

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1247030C (en) * 2001-09-04 2006-03-22 诺基亚公司 Determination of uplink transfer channel parameter value
CN101478808B (en) * 2009-01-21 2014-03-19 中兴通讯股份有限公司 Downlink control information sending and detecting method
CN101541063B (en) * 2009-04-27 2014-02-05 中兴通讯股份有限公司 Transmission method and device of downlink control signaling

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100113043A1 (en) * 2008-10-31 2010-05-06 Yi Hsuan Blind channel detection techniques
CN101505498A (en) * 2009-03-17 2009-08-12 中兴通讯股份有限公司 Downlink control information sending method, related system and apparatus
CN101594205A (en) * 2009-06-22 2009-12-02 中兴通讯股份有限公司 A kind of descending control signaling sending method of advanced long-term evolution system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110740008A (en) * 2018-07-18 2020-01-31 华为技术有限公司 PDCCH (physical Downlink control channel) sending and blind detection methods and devices
US11424854B2 (en) 2018-07-18 2022-08-23 Huawei Technologies Co., Ltd. PDCCH sending method and apparatus, and PDCCH blind detection method and apparatus
CN109673056A (en) * 2019-03-11 2019-04-23 重庆邮电大学 PDCCH adaptive blind detection method in 5G system based on power measurement
CN109673056B (en) * 2019-03-11 2022-04-05 重庆邮电大学 PDCCH (physical Downlink control channel) adaptive blind detection method based on power measurement in 5G (third generation) system
CN112994836A (en) * 2019-12-13 2021-06-18 深圳市中兴微电子技术有限公司 Detection method, device, terminal and storage medium
CN112994836B (en) * 2019-12-13 2023-10-03 深圳市中兴微电子技术有限公司 Detection method, detection device, terminal and storage medium
US12052096B2 (en) 2019-12-13 2024-07-30 Sanechips Technology Co., Ltd Downlink control information detection method and apparatus
CN114499784A (en) * 2020-10-23 2022-05-13 大唐移动通信设备有限公司 Transmission resource determining method, device and storage medium
CN114499784B (en) * 2020-10-23 2024-01-26 大唐移动通信设备有限公司 Transmission resource determining method, device and storage medium
CN114257339A (en) * 2021-12-17 2022-03-29 Oppo广东移动通信有限公司 PDCCH blind detection method, device, electronic equipment and storage medium
CN114257339B (en) * 2021-12-17 2024-05-14 Oppo广东移动通信有限公司 PDCCH blind detection method, PDCCH blind detection device, electronic equipment and storage medium

Also Published As

Publication number Publication date
CN101883369A (en) 2010-11-10
CN101883369B (en) 2012-12-19

Similar Documents

Publication Publication Date Title
WO2012003675A1 (en) Blind detection method
US11190318B2 (en) Uplink channel transmitting method and user device, and uplink channel receiving method and base station
US11582742B2 (en) Method for transmitting and receiving control information of a mobile communication system
US11831578B2 (en) Methods and apparatuses for transmitting signal
US10764759B2 (en) Method for transmitting and receiving wireless signal and device for same
KR101932184B1 (en) Extension of physical downlink control signaling in a communication system
EP2880940B1 (en) Method and apparatus for receiving a control channel
US11310779B2 (en) Method and apparatus for transmitting/receiving control information in wireless communication system
US8218509B2 (en) Dynamic allocation of communication resources in a wireless system
KR101565423B1 (en) Downlink signal receiving method and user equipment, and downlink signal transmitting method and base station
KR20200015284A (en) Method and apparatus for indicating channel occupancy time in wireless communication system
US20150270931A1 (en) Method for decoding control channels with multiple subframes
US20240106611A1 (en) Methods and apparatuses for transmitting signal
KR20200018142A (en) Method and apparatus for channel access in wireless communication system
US9226285B2 (en) Method, device and system for solving channel collision
KR20140097231A (en) Search process for physical downlink control channels in a communication system
US20150358847A1 (en) Terminal device, base station device, integrated circuit, and radio communication method
WO2011032342A1 (en) Transmission method and transmission system for downlink control information
US11330595B2 (en) Method for sending control information, method for receiving control information, and apparatus
CN102355325A (en) PUCCH resource mapping method and apparatus thereof
KR20200035791A (en) Method and apparatus for radio link monitoring in wireless communication system
CN112751649B (en) Physical downlink control channel blind detection method and device
WO2016033962A1 (en) Method and device for channel multiplexing
JP5898913B2 (en) Physical layer signaling transmission method and apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10854334

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC OF 310513

122 Ep: pct application non-entry in european phase

Ref document number: 10854334

Country of ref document: EP

Kind code of ref document: A1