WO2012003037A2 - Convex concave implant - Google Patents

Convex concave implant Download PDF

Info

Publication number
WO2012003037A2
WO2012003037A2 PCT/US2011/033827 US2011033827W WO2012003037A2 WO 2012003037 A2 WO2012003037 A2 WO 2012003037A2 US 2011033827 W US2011033827 W US 2011033827W WO 2012003037 A2 WO2012003037 A2 WO 2012003037A2
Authority
WO
WIPO (PCT)
Prior art keywords
region
orthopedic implant
implant
perimeter
bone
Prior art date
Application number
PCT/US2011/033827
Other languages
French (fr)
Other versions
WO2012003037A3 (en
WO2012003037A9 (en
Inventor
Jeffrey D. Gordon
Kenneth D. Johannaber
Original Assignee
Synvasive Technology, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/829,095 external-priority patent/US8556972B2/en
Priority claimed from US13/085,744 external-priority patent/US20110257753A1/en
Application filed by Synvasive Technology, Inc. filed Critical Synvasive Technology, Inc.
Priority to AU2011271681A priority Critical patent/AU2011271681A1/en
Priority to EP11801296.2A priority patent/EP2588030A4/en
Publication of WO2012003037A2 publication Critical patent/WO2012003037A2/en
Publication of WO2012003037A3 publication Critical patent/WO2012003037A3/en
Publication of WO2012003037A9 publication Critical patent/WO2012003037A9/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30756Cartilage endoprostheses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/32Joints for the hip
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C8/00Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
    • A61C8/0018Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools characterised by the shape
    • A61C8/0037Details of the shape
    • A61C2008/0046Textured surface, e.g. roughness, microstructure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C8/00Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
    • A61C8/0012Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools characterised by the material or composition, e.g. ceramics, surface layer, metal alloy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C8/00Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
    • A61C8/0018Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools characterised by the shape
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/0077Special surfaces of prostheses, e.g. for improving ingrowth
    • A61F2002/0086Special surfaces of prostheses, e.g. for improving ingrowth for preferentially controlling or promoting the growth of specific types of cells or tissues
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30003Material related properties of the prosthesis or of a coating on the prosthesis
    • A61F2002/30004Material related properties of the prosthesis or of a coating on the prosthesis the prosthesis being made from materials having different values of a given property at different locations within the same prosthesis
    • A61F2002/30011Material related properties of the prosthesis or of a coating on the prosthesis the prosthesis being made from materials having different values of a given property at different locations within the same prosthesis differing in porosity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30003Material related properties of the prosthesis or of a coating on the prosthesis
    • A61F2002/3006Properties of materials and coating materials
    • A61F2002/30062(bio)absorbable, biodegradable, bioerodable, (bio)resorbable, resorptive
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/30199Three-dimensional shapes
    • A61F2002/30205Three-dimensional shapes conical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/30199Three-dimensional shapes
    • A61F2002/30205Three-dimensional shapes conical
    • A61F2002/30207Double convex cones, i.e. element having two convex cones, one at each of its opposite ends
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/30199Three-dimensional shapes
    • A61F2002/30205Three-dimensional shapes conical
    • A61F2002/30214Three-dimensional shapes conical having tapered sections of different conicities
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/30199Three-dimensional shapes
    • A61F2002/30205Three-dimensional shapes conical
    • A61F2002/30215Stepped cones, i.e. having discrete diameter changes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/30199Three-dimensional shapes
    • A61F2002/30224Three-dimensional shapes cylindrical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/30199Three-dimensional shapes
    • A61F2002/30224Three-dimensional shapes cylindrical
    • A61F2002/30233Stepped cylinders, i.e. having discrete diameter changes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/30199Three-dimensional shapes
    • A61F2002/30224Three-dimensional shapes cylindrical
    • A61F2002/30235Three-dimensional shapes cylindrical tubular, e.g. sleeves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/30199Three-dimensional shapes
    • A61F2002/30301Three-dimensional shapes saddle-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30621Features concerning the anatomical functioning or articulation of the prosthetic joint
    • A61F2002/30649Ball-and-socket joints
    • A61F2002/3065Details of the ball-shaped head
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30621Features concerning the anatomical functioning or articulation of the prosthetic joint
    • A61F2002/30649Ball-and-socket joints
    • A61F2002/30654Details of the concave socket
    • A61F2002/30655Non-spherical concave inner surface
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30756Cartilage endoprostheses
    • A61F2002/30759Mosaicplasty, i.e. using a plurality of individual cartilage plugs for filling a substantial cartilage defect
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30756Cartilage endoprostheses
    • A61F2002/30766Scaffolds for cartilage ingrowth and regeneration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30878Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves with non-sharp protrusions, for instance contacting the bone for anchoring, e.g. keels, pegs, pins, posts, shanks, stems, struts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2002/3092Special external or bone-contacting surface, e.g. coating for improving bone ingrowth having an open-celled or open-pored structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2002/3093Special external or bone-contacting surface, e.g. coating for improving bone ingrowth for promoting ingrowth of bone tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2002/30934Special articulating surfaces
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2210/00Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2210/0004Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof bioabsorbable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0063Three-dimensional shapes
    • A61F2230/0067Three-dimensional shapes conical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0063Three-dimensional shapes
    • A61F2230/0069Three-dimensional shapes cylindrical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0063Three-dimensional shapes
    • A61F2230/0095Saddle-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0023Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in porosity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00161Carbon; Graphite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00179Ceramics or ceramic-like structures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00179Ceramics or ceramic-like structures
    • A61F2310/00185Ceramics or ceramic-like structures based on metal oxides
    • A61F2310/00239Ceramics or ceramic-like structures based on metal oxides containing zirconia or zirconium oxide ZrO2
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00389The prosthesis being coated or covered with a particular material
    • A61F2310/00574Coating or prosthesis-covering structure made of carbon, e.g. of pyrocarbon
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00389The prosthesis being coated or covered with a particular material
    • A61F2310/00574Coating or prosthesis-covering structure made of carbon, e.g. of pyrocarbon
    • A61F2310/0058Coating made of diamond or of diamond-like carbon DLC
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00389The prosthesis being coated or covered with a particular material
    • A61F2310/00592Coating or prosthesis-covering structure made of ceramics or of ceramic-like compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00389The prosthesis being coated or covered with a particular material
    • A61F2310/00592Coating or prosthesis-covering structure made of ceramics or of ceramic-like compounds
    • A61F2310/00796Coating or prosthesis-covering structure made of a phosphorus-containing compound, e.g. hydroxy(l)apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00389The prosthesis being coated or covered with a particular material
    • A61F2310/00928Coating or prosthesis-covering structure made of glass or of glass-containing compounds, e.g. of bioglass
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00389The prosthesis being coated or covered with a particular material
    • A61F2310/00976Coating or prosthesis-covering structure made of proteins or of polypeptides, e.g. of bone morphogenic proteins BMP or of transforming growth factors TGF

Definitions

  • This disclosure relates to orthopedic implants and in particular to orthopedic implants for repair of focal articular cartilage and osteochondral defects.
  • this disclosure presents an implant having a convex surface surrounding a concave articular surface.
  • arthroplasty to resolve activity limiting pain caused by arthritis.
  • Current technology supports various forms of arthroplasty, including hemi-arthroplasty, partial joint arthroplasty and total joint arthroplasty.
  • a remaining challenge in arthroplasty deals with resolving activity limiting pain in patients with smaller focal cartilage lesions. These lesions represent earlier stages of arthritis and if left untreated potentially progress to later stages of arthritis requiring a more invasive procedure such as partial or total joint replacement.
  • the current challenge in treating arthritis lies in developing a more versatile implant for focal, regional or global resurfacing that successfully interacts with mating articular cartilage, surrounding articular cartilage and the underlying bone bed.
  • Diarthrodial joints in the human skeleton provide the nearly frictionless pain free movement supporting locomotion, spatial positioning relative to the environment and active manipulation of the surroundings.
  • skeletal joints have a strong fibrous capsule enclosing bone ends encapsulated by smooth continuous cartilage surfaces to accomplish this function.
  • This biologic configuration represents the majority of skeletal joints in the human body.
  • hyaline cartilage a hydrated soft tissue comprised of collagen, trapped proteoglycans, other
  • This tissue is more commonly known as articular cartilage or native articular cartilage.
  • This ordered tissue provides a resilient, continuous layer of protective tissue on the bone ends. In addition to protecting the bone ends, it also helps develop an
  • the bone side of the subchondral plate is supported by cancellous bone.
  • Cancellous bone is a highly porous structure with a stiffness l/10 h that of the subchondral plate.
  • the cancellous bone acts to distribute loads across the joint in the metaphyseal region of bone ends .
  • Skeletal joints are subject to wear and tear though use, trauma and aging. These factors eventually cause biologic changes to the articular cartilage resulting in arthritis, a group of progressive conditions ultimately resulting in irreversible damage to the articular cartilage in skeletal joints.
  • fibrocartilage a less durable, rougher form of cartilage known as fibrocartilage .
  • This less protective fibrocartilage increases the coefficient of friction in the joint and results in a greater volume of microfracturing in the cancellous bone.
  • the body reacts by thickening the subchondral plate to assist in distributing the load across the bone end.
  • researchers have sighted this stiffening of the subchondral bone as a possible mechanism for the initiation of cartilage damage. This may be why untreated cartilage lesions cause arthritis to progress and affect larger areas of articular cartilage in a joint over time, leading to activity limiting pain and decreased joint function .
  • Osteoarthritis (OA) or Degenerative Joint Disease (DJD) is the most common form of arthritis and presents the patient with debilitating pain during daily activities. It is the leading cause of chronic disability in the United States in the middle-aged population, but affects people of all ages. It is estimated that 21 million people have a form of arthritis in the US, accounting for 25% of visits to primary care physicians and half of all NSAID (Nonsteroidal Anti- Inflammatory Drugs) prescriptions.
  • NSAID Nonsteroidal Anti- Inflammatory Drugs
  • OA commonly affects the joints at the hips, knees, shoulder, elbow and spine, and small joints such as those found in the hands and feet.
  • various methods have been developed to treat and repair damaged or destroyed articular cartilage.
  • arthroscopic debridement, abrasion arthroplasty or abrasion chondralplasty procedures are conducted.
  • the principle behind these procedures is to stimulate bleeding of the subchondral bone bed by abrading it with a burr or shaver to stimulate the fibrocartilage healing response.
  • this procedure has been widely used over the past two decades, with good short term results out to three years, the resulting fibrocartilage developed in the healed area does not always support longer term low friction weight bearing function.
  • microfracture incorporates the concept of fibrocartilage healing by removing the damaged cartilage layer and using a surgical awl to perforate the subchondral bone. This technique creates a replacement surface similar in type and outcome to the one created from the abrasion chondralplasty
  • cartilage obtained from an uninvolved area of the injured joint.
  • the cartilage cells are isolated, cultured and implanted in the defect area under a periosteal flap.
  • Cartilage transplant referred to as Mosaicplasty or Osteoarticular Transfer System (OATS) is a technique utilizing articular tissue grafts in the form of plugs. These plugs consist of articular cartilage, subchondral bone and cancellous bone to assure they heal to the bone and surrounding articular cartilage in the surgically prepared defect region.
  • OATS Osteoarticular Transfer System
  • the first is taken from a matched articular location in a cadaver bone (allograft) .
  • the second type is taken directly from the patient (autograft) in boundary or non-weight bearing locations in the joint being reconstructed.
  • the technique for utilizing articular cartilage grafts is challenging. Success of the technique requires accurate harvesting and positioning of single or multiple plugs to reconstruct the articular surface of the subject joint.
  • the plug must be harvested perpendicular to the articular surface, then positioned perpendicular and flush with the retained articular cartilage surrounding the defect area. If the grafts are placed too far below the level of the surrounding articular surface, no benefit from the procedure will be gained and cartilage damage can progress beyond the perimeter of the original defect. If the grafts are placed proud to the surrounding articular surface, detrimental effects can be seen on the mating articular surface over time in the joint. This is important to consider since arthritis often affects one side of an articular joint first before progressing to the mating surface.
  • chondrocytes (cartilage cells) .
  • This reconstructive technique referred to as scaffold guided regeneration, establishes a generic tissue foundation which is converted over time by the body into hyaline cartilage. Initial results using this reconstructive technique show promise, but are currently used in non-weight bearing applications which limit their use in reconstructive procedures
  • hemi-arthroplasty One type of joint replacement technique using more traditional devices is called hemi-arthroplasty .
  • This reconstructive procedure replaces one bone end of the two or more bone ends comprising a skeletal joint.
  • the procedure leaves the healthy part or parts of the joint unaltered.
  • the challenge is for the artificial implant to articulate with the native cartilage surfaces over time without recreating painful arthritis as the healthy
  • FIG. 1A One such implant in accordance with the prior art is shown in FIG. 1A and is further described in U.S. Patent No. 6,096,084 to Townley.
  • the implant 20 can be used for hemi -arthroplasty or in total arthroplasty.
  • the implant 20 may have a ceramic head 22 and a metal stem 24, which is implanted in the proximal region of the femur.
  • the metal stem 24 in Townley is made of cobalt chrome, which is a cobalt-chromium-molybdenum alloy, a metal alloy often used for reconstructive implants.
  • the stem provides a means for fixing the implant to bone to stabilize the artificial articular surface. Similar devices to this hip implant are used in the shoulder, knee, ankle, hands and feet .
  • a total joint arthroplasty is performed to reconstruct the cartilage on all bone ends making up the skeletal joint. This comprehensive procedure is required to effectively resolve the activity limiting pain caused by the arthritis.
  • a highly polished metal implant is placed onto the distal femur.
  • a modular metal tray is implanted in the proximal tibia and a UHMWPE bearing joined to it to articulate with the highly polished femoral component.
  • a UHMWPE patellar implant is placed to resurface the patella and articulate against the anterior flange of highly polished femoral implant. This completely resurfaces the femoral-tibial and patella- femoral articular surfaces in the total knee replacement.
  • U.S. Patent No. 6,685,987 describes a porous coating comprised of metallic particles applied over a cobalt chromium molybdenum alloy implant.
  • joint replacement bearing surfaces are made of cobalt chromium; however other materials have been used or proposed including titanium and titanium alloys.
  • U.S. Patent Application Publication No. 2005/0107888 to Khandkar et al . describes a metal-ceramic composite for joint replacement materials.
  • U.S. Patent No. 6,398,815 to Pope et al . describes a prosthetic joint with diamond like surfaces .
  • prosthetic joints is currently the preferred option for serious degeneration of joint function involving loss of articular cartilage.
  • Other techniques include U.S. Patent No. 7,029,479 to Tallarida et al . that discloses a method for joint resurface repair which involves mapping and measuring the articular surface, U.S. Pat. No. 5,782,835 to Hart et al . that discloses an apparatus and method for repair of articular cartilage including a bone plug removal tool, and a bone plug emplacement tool, U.S. Pat. No.
  • osteochondral composite scaffold for articular cartilage repair .
  • the cage includes a substrate block 30 having a high bio-mechanical strength and load bearing capacity to support the spinal vertebrae 32 and a porous silicon nitride ceramic portion 34 to promote bone ingrowth and fusion.
  • Other examples of fusing bones together include U.S. Patent Application Publication No.
  • articular cartilage repair previously discussed have disadvantages and drawbacks related to treating early stage arthritis to prevent progression to a more final stage requiring total joint replacement.
  • a non- resorbable implant to support loads imposed by an opposing joint end.
  • an implant that will facilitate surgical repair of focal, regional and global articular cartilage and osteochondral defects on a bone end of a skeletal joint to prevent or delay the global progression of arthritis to the entire joint.
  • a monolithic orthopedic implant includes a porous region having a form of interconnected porosity similar to cancellous bone to promote skeletal fixation by bone ingrowth, a transition region adjacent to and integrally joined to the porous region, the transition region having a form of interconnected porosity similar to subchondral bone, a substantially dense region integrally joined to the transition region and having a perimeter, and a surface on the substantially dense region, the surface having a finish adapted for articulation against native articular
  • an orthopedic implant comprises a porous region having a form of interconnected porosity similar to cancellous bone to promote skeletal fixation by bone ingrowth, and a
  • transition region adjacent to and integrally joined to the porous region, the transition region having a form of porosity similar to subchondral bone, wherein the
  • transition region is adapted to promote regeneration of articular cartilage, and wherein the porous region and the transition region are non-resorbable .
  • a dental implant comprises a porous region having a form of
  • substantially dense region integrally joined to the porous region, the substantially dense region having a top surface and a perimeter, wherein the top surface and the perimeter are adapted to be compatible with oral gum tissue, and wherein the porous region and the substantially dense region are non-resorbable.
  • a method of forming a monolithic orthopedic implant includes forming a porous region having a form of interconnected porosity similar to cancellous bone to promote skeletal fixation by bone ingrowth, forming a transition region adjacent to and integrally joined to the porous region, the transition region having a form of interconnected porosity similar to subchondral bone, forming a substantially dense region integrally joined to the transition region and having a perimeter, and forming a surface on the substantially dense region, the surface having a finish adapted for articulation against native articular cartilage, wherein the porous region has a porosity gradient that increases as a distance from the substantially dense region increases, and wherein the porous region, the transition region and the substantially dense region are non-resorbable .
  • a method for orthopedic surgery includes removing a portion of the articular cartilage at an implant site, forming a socket in bone underlying the articular cartilage to a depth placing the surface of the substantially dense region of the monolithic implant approximately flush to the articular cartilage at the implant site, and implanting a monolithic orthopedic implant into the socket, the
  • monolithic orthopedic implant comprising a porous region having a form of interconnected porosity similar to cancellous bone to promote skeletal fixation by bone ingrowth, a transition region adjacent to and integrally joined to the porous region, the transition region having a form of interconnected porosity similar to subchondral bone, a substantially dense region integrally joined to the transition region, and a surface on the substantially dense region, the surface having a finish adapted for
  • porous region, the transition region, the substantially dense region, and the surface are non-resorbable.
  • an orthopedic implant comprises a three dimensional framework of structural members with interstitial interconnected passages there between, wherein the structural members comprise non-resorbable ceramic, and wherein each structural member is similar in size to a trabecula in bone .
  • a monolithic material comprises a first region having a first
  • the monolithic material has a first variability of strength, and a second region joined to the first region, the second region having a second variability of strength, wherein the monolithic material has a first variability of strength, and a second variability of strength, wherein the monolithic material has a first variability of strength, and a second variability of strength, wherein the monolithic material has a first variability of strength, and a second variability of strength, wherein the monolithic material has a
  • a monolithic orthopedic implant comprises a porous region having a first variability of strength, a transition region integrally joined to the porous region and having a second variability of strength, a substantially dense region integrally joined to the transition region and having a third variability of strength, and a surface on the substantially dense region, the surface having a finish adapted for articulation against native articular
  • the variability of strength of the monolithic orthopedic implant is less than the first, second, and third variability of strengths.
  • a method of providing a monolithic material comprises forming a porous region having a first variability of strength, and forming a substantially dense region joined to the porous region and having a second variability of strength, wherein the variability of strength of the monolithic material is less than the first and second variability of strengths.
  • a method of providing a monolithic material comprises forming a first region having a first variability of strength, and forming a second region joined to the first region, the second region having a second variability of strength, wherein the monolithic material has a variability of strength less than the first variability of strength of the first region and less than the second variability of strength of the second region.
  • an orthopedic implant comprises a first region for attachment to a bone, and a second region coupled to the first region, the second region having a perimeter and comprising a concave articular surface on top of the second region, and a convex surface between the perimeter and the concave articular surface.
  • a method for providing an orthopedic implant comprises forming a first region for attachment to a bone, and forming a second region coupled to the first region, the second region having a perimeter and comprising a concave articular surface on top of the second region, and a convex surface between the perimeter and the concave articular surface .
  • a method for orthopedic surgery comprises implanting an orthopedic implant, wherein the orthopedic implant
  • FIG. 1A shows an implant that can be used for hemi-arthroplasty joint repair in accordance with the prior art
  • FIG. IB shows an implant for fusing spinal vertebrae in accordance with the prior art
  • FIG. 1C shows an implant for repairing bone defects in accordance with the prior art
  • FIG. 2A shows a cross section of a monolithic orthopedic implant in accordance with the present
  • FIG. 2B shows cross section of another monolithic orthopedic implant in accordance with the present
  • FIG. 2C shows a cross section of yet another monolithic orthopedic implant in accordance with the present disclosure
  • FIG. 3 shows a perspective view of a monolithic orthopedic implant with the porous region having the shape of a cylindrical plug in accordance with the present disclosure ;
  • FIGs . 4A-4E show perspective views of a
  • monolithic orthopedic implant with the porous region having the shape of a tapered plug in accordance with the present disclosure.
  • the monolithic orthopedic implants shown in FIGs. 4B-4E show protrusions or dimples on the
  • FIG. 5 shows a perspective view of a monolithic orthopedic implant with the porous region having a hollow interior in accordance with the present disclosure
  • FIG. 6 shows a perspective view of a monolithic orthopedic implant with a porous region and a substantially dense region with a perimeter adapted to promote healing of surrounding articular cartilage in accordance with the present disclosure
  • FIG. 7A shows a perspective view of a monolithic orthopedic implant with a porous region and a substantially dense region having a greater thickness to match the thickness of surrounding articular cartilage in accordance with the present disclosure
  • FIG. 7B shows a perspective view of a monolithic orthopedic implant with the porous region and a
  • FIG. 7C shows a perspective view of a monolithic orthopedic implant with a porous region and a substantially dense region having size that is relatively larger than the top surface of the porous region in accordance with the present disclosure
  • FIG. 8A shows a perspective view of a monolithic orthopedic implant with a porous region and a substantially dense region having a polygonal shape or a pentagonal shape in accordance with the present disclosure
  • FIG. 8B shows a perspective view of a monolithic orthopedic implant with a porous region and a substantially dense region having a polygonal shape or a hexagonal shape in accordance with the present disclosure
  • FIG. 8C shows a perspective view of a monolithic orthopedic implant with a porous region and a substantially dense region having a polygonal shape or a triangular shape in accordance with the present disclosure
  • FIG. 9A shows a perspective view of a monolithic orthopedic implant with a porous region and a substantially dense region having a beveled perimeter in accordance with the present disclosure
  • FIG. 9B shows a perspective view of a monolithic orthopedic implant with a porous region and a relatively smaller sized substantially dense region having a beveled perimeter in accordance with the present disclosure
  • FIG. 9C shows a perspective view of a monolithic orthopedic implant with a porous region and a relatively larger sized substantially dense region having a beveled perimeter in accordance with the present disclosure
  • FIG. 10A shows a perspective view of a monolithic orthopedic implant with a porous region and a substantially dense region having a reverse bevel perimeter in accordance with the present disclosure
  • FIG. 10B shows a perspective view of a monolithic orthopedic implant with a porous region and a relatively smaller sized substantially dense region having a reverse bevel perimeter in accordance with the present disclosure
  • FIG. IOC shows a perspective view of a monolithic orthopedic implant with a porous region and a relatively larger sized substantially dense region having a reverse bevel perimeter in accordance with the present disclosure
  • FIG. 11A shows a perspective view of a monolithic orthopedic implant with a porous region and a substantially dense region with an articular surface having a relative concave spherical shape to match a skeletal joint in accordance with the present disclosure
  • FIG. 11B shows a perspective view of a monolithic orthopedic implant with a porous region and a substantially dense region with an articular surface having a relative concave shape with a radius in one plane to match a skeletal joint in accordance with the present disclosure
  • FIG. llC shows a perspective view of a monolithic orthopedic implant with a porous region and a substantially dense region with an articular surface having a relative concave shape with two differing radii in two planes to match a skeletal joint in accordance with the present disclosure ;
  • FIG. 11D shows a perspective view of a monolithic orthopedic implant with a porous region and a substantially dense region with an articular surface having a concave shape in one plane and a convex shape in another plane to match a skeletal joint in accordance with the present disclosure ;
  • FIG. 12A shows a perspective view of a monolithic orthopedic implant with a porous region and a substantially dense region with an articular surface having a convex spherical shape to match a skeletal joint in accordance with the present disclosure
  • FIG. 12B shows a perspective view of a monolithic orthopedic implant with a porous region and a substantially dense region with an articular surface having a convex shape with a radius in one plane to match a skeletal joint in accordance with the present disclosure
  • FIG. 12C shows a perspective view of a monolithic orthopedic implant with a porous region and a substantially dense region with an articular surface having a convex shape with two differing radii in two planes to match a skeletal joint in accordance with the present disclosure
  • FIG. 13A shows a perspective view of a monolithic orthopedic implant with a porous region with two porous projections and a substantially dense region with an articular surface in accordance with the present
  • FIG. 13B shows a perspective view of a monolithic orthopedic implant with a porous region and a substantially dense region with an articular surface having a shape to provide a patch in accordance with the present disclosure
  • FIG. 13C shows a perspective view of a monolithic orthopedic implant with a porous region on the inside and a substantially dense region having a shell like shape characteristic of a spheroidal skeletal joint in accordance with the present disclosure
  • FIG. 13D shows a perspective view of a monolithic orthopedic implant with a porous region on the outside and a substantially dense region having a concave spheroidal shape which can mate with the substantially dense region of FIG. 13C in accordance with the present disclosure
  • FIG. 14A shows a perspective view of the
  • FIG. 4A monolithic orthopedic implant of FIG. 4A implanted in a femur bone to provide a repair for native articular cartilage on the bone in a skeletal joint in accordance with the present disclosure
  • FIG. 14B shows a perspective view of a plurality of the monolithic orthopedic implants of FIG. 8B implanted in a femur bone adjacent to one another to create a continuous articular surface of a varying contour to provide a repair for native articular cartilage on the bone in a skeletal joint in accordance with the present
  • FIG. 14C shows a perspective view of the
  • FIG. 13A monolithic orthopedic implant of FIG. 13A implanted in a femur bone to provide a repair for native articular cartilage on the bone in a skeletal joint in accordance with the present disclosure
  • FIG. 14D shows a perspective view of the
  • FIG. 13B monolithic orthopedic implant of FIG. 13B implanted in a tibial bone to provide a repair for native articular cartilage on the bone end in a skeletal joint in accordance with the present disclosure
  • FIG. 15A shows a perspective view of an
  • orthopedic implant with a porous region and a transition region in accordance with the present disclosure.
  • FIG. 15B shows a scaffold coupled to the
  • FIG. 15C shows a perspective view of an
  • orthopedic implant with a porous region having a hollow interior and a transition region in accordance with the present disclosure.
  • FIG. 15D shows a perspective view of a dental implant in accordance with the present disclosure.
  • FIG. 16A shows a perspective view of a monolithic non- resorbable porous implant in accordance with the present disclosure
  • FIG. 16B shows a perspective view of a monolithic non-resorbable porous implant having a hollow interior in accordance with the present disclosure
  • FIG. 17 is a flow diagram for fabricating a monolithic orthopedic implant in accordance with the present disclosure
  • FIGs. 18A and 18B are flow diagrams of a method of orthopedic surgery in accordance with the present disclosure ;
  • FIG. 19 is a flow diagram of a method for providing a monolithic material in accordance with the present disclosure.
  • FIG. 20 is a flow diagram of another method for providing a monolithic material in accordance with the present disclosure.
  • FIG. 21A shows a torn labrum and FIG. 21B illustrates a labrum repair in accordance with the prior art ;
  • FIGs. 22A and 22B show a orthopedic implants in accordance with the prior art
  • FIG. 23 shows three acetabular shell implants in accordance with the prior art
  • FIG. 24 shows a pelvis with an orthopedic implant
  • FIGs. 25A - 25D show orthopedic implants in accordance with the present disclosure
  • FIG. 26 illustrates cartilage overgrowth over an implant in accordance with the present disclosure
  • FIG. 27 is a flow diagram of a method of providing an orthopedic implant in accordance with the present disclosure
  • FIG. 28 is a flow diagram of a method of orthopedic surgery in accordance with the present
  • FIGs. 29A - 29B show another orthopedic implant in accordance with the present disclosure.
  • the monolithic orthopedic implant 50 may have a porous region 52, integrally joined to a substantially dense region 54.
  • the porous region 52 has a form of interconnected porosity adapted to be similar to cancellous or trabecular bone.
  • the surface 60 of the substantially dense region 54 preferably has a finish adapted for articulation of the surface 60 against native articular cartilage on an opposing joint.
  • the substantially dense region 54 may have a thickness that is adapted to the thickness of the native articular cartilage at the implantation site of the monolithic orthopedic implant.
  • a transition region 58 may be between a porous region 56, which as shown in FIG. 2A may be a portion of the porous region 52, and the
  • the monolithic orthopedic implant 50 has a porous region 56 adapted for ingrowth of cancellous bone to ensure that the monolithic orthopedic implant is securely implanted, a transition region 58 adapted to have a form of porosity similar to subchondral bone to facilitate fluid transfer similar to fluid transfer through subchondral bone, a substantially dense region 54 for bearing loads imposed by an opposing joint end, and a surface 60 on the substantially dense region 54 with a finish adapted for articulation against native articular cartilage.
  • the thicknesses of the transition region 58 and the substantially dense region 54 may be adapted to be similar to the thicknesses of the subchondral bone and the native articular cartilage, respectively, at the
  • the substantially dense region 54 has relatively little or no porosity compared to the porous region 56 and the transition region 58. The following discusses porosity as it relates to present disclosure.
  • the bulk porosity (Pb) of a material is inversely proportional to the bulk density (Db) of the material, which can be calculated by dividing the total mass (Mtot) by the total volume (Vtot) , where the mass and volume of a solid portion of the material and a porous portion of the material are designated by (Ms, Vs) and (Mp, Vp) ,
  • the porosity that may be most deleterious to a surface having a finish adapted for articulation against native articular cartilage, such as surface 60, is porosity with pores connected to the material surface.
  • a material with substantial porosity is generally not appropriate for surface 60, because there can be material breakage under and at the edges of pores of such a material . It is also more difficult to polish porous materials, because coarser abrasive particles from early stages of grinding and polishing can become trapped in the pores, and then the particles can escape during polishing and finishing, which causes unwanted scratches and surface damage.
  • the monolithic orthopedic implant of the present disclosure solves this contradiction in desired properties by providing the porous region 56 with a form of
  • the substantially dense region 54 may have a bulk porosity of 4% or less, and in another embodiment the bulk porosity of the substantially dense region 54 may be .1% or less.
  • the porous region 56 may have a bulk porosity of 50% or greater.
  • the transition region 58 has an interconnected porosity that is relatively lower than the porous region 56 to provide strength while supporting capillary movement of fluid between the cancellous bone and articular cartilage. The result is an orthopedic implant 50 that provides a scaffold for bone ingrowth and fluid communication between the cancellous bone and cartilage, while providing strength and a surface that can be finished for articulation against native articular cartilage.
  • porous region 56 is referred to as porous region 56, although it should be understood that in the following reference to a porous region may also refer to the porous region 52, which includes the porous region 56 and the transition region 58.
  • the monolithic orthopedic implant 50 is
  • the porous region 56, the transition region 58, and the substantially dense region 54 are not resorbed or converted into a specific tissue type by the body and do not lose any substance over time when implanted in a skeletal joint location. This avoids a disadvantage of many prior art implants, because in some of those implants the biologic timing of this resorption or conversion happens relatively quickly causing cyst
  • the dividing line between the porous region 56 and the transition region 58, shown in FIG. 2A, may be somewhat arbitrary as the porous region 56 may gradually change into the transition region 58.
  • the porous region 56, and also the transition region 58 may have porosity gradients that increase as a distance from the substantially dense region 54 increases.
  • the porous region 56 may be described as having a three dimensional framework with interconnected
  • each structural member may be similar in size to a trabecula in bone.
  • This structure allows fluid to flow through the porous region 56 which provides for cell transfer that encourages and sustains bone ingrowth.
  • the structure of the transition region 58 is adapted to have a form of porosity similar to subchondral bone, which facilitates capillary movement of fluid between the cancellous bone and articular cartilage.
  • the porous region 56 has interconnected pore passageways each with a dimension less than 1000 micrometers to promote bone ingrowth. In another embodiment the porous region 56 has interconnected pore passageways each with a dimension between 200 micrometers and 600 micrometers to promote bone ingrowth.
  • the porous region 56 may be further adapted to promote bone ingrowth for bone fixation.
  • the porous region 56 has a roughness, characterized by a frictional coefficient similar to cancellous bone, which is generally greater than 0.5.
  • the frictional coefficient is a biomechanical characterization of friction between cancellous bone and cortical bone.
  • the porous region 56 helps prevent the formation of a fibrous layer, which can retard bone ingrowth.
  • the roughness may be on the outside of the porous region 56 and also on the inside of the porous region 56.
  • the porous region 56 is preferably a three dimensional framework of interconnected structural members with interstitial interconnected passages there between and the roughness may be on the structural members, which provides a microstructure to promote bone ingrowth and fixation by facilitating cell adhesion.
  • Each structural member may be similar in size to a trabecula in bone.
  • the porous region 56 has a hydrophilic or a charged surface that can influence a cell population to enhance bone ingrowth for bone fixation.
  • the porous region 56 may include a bioactive mineral coating, which may be hydroxyapatite, bioglass, or a form of calcium phosphate, nonlimiting examples of which are tri-calcium phosphate
  • TCP TCP
  • alpha TCP alpha TCP
  • beta TCP alpha TCP
  • the porous region 56 may include a bioengineered coating to promote bone ingrowth for bone fixation.
  • the bioengineered coating may consist of one or more proteins, a peptide, or any combination thereof.
  • An example of a peptide is a synthetic peptide analogue of collagen designed to create biomimetic cell binding habitats.
  • proteins that can be used include the family of bone morphogenetic proteins, known as BMP's.
  • the surface 60 on the substantially dense region 54 may be finished to a surface roughness of 6 micrometers R a or less for articulation with articular cartilage on an opposing joint.
  • the 6 micrometers R a or less surface roughness provides a smooth surface for opposing
  • the surface roughness is less than .025 micrometers Ra.
  • the porous region 56, the transition region 58, and the substantially dense region 54 may have the same material composition.
  • the monolithic orthopedic implant 50 may be entirely made of ceramic. Partially stabilized zirconia is a preferred material for the entire monolithic orthopedic implant 50.
  • the porous region 56, the transition region 58, and the substantially dense region 54 are composed of different material compositions, and in this embodiment the transition region 58 may have a composition that is a mix of the composition of the porous region 56 and the composition of the substantially dense region 54.
  • FIG. 2B shows a cross section of another
  • a monolithic orthopedic implant having an articular finished surface 60 on a substantially dense region 310.
  • This embodiment is similar to the embodiment of FIG. 2A, except that in this embodiment, the transition region 312 is on a portion of the perimeter 311 of the substantially dense region 310 and also between the substantially dense region 310 and a porous region 314. By surrounding a portion of the perimeter 311 of the
  • substantially dense region 310 the transition region 312, which is adapted to be similar to subchondral bone, provides for healing of the native articular cartilage surrounding the monolithic orthopedic implant.
  • FIG. 2C A cross section of another embodiment of the monolithic orthopedic implant is shown in FIG. 2C. This embodiment is similar to FIG. 2B and is for the purpose of illustrating one method of forming the articular surface 320.
  • the substantially dense region 310 or the entire monolithic orthopedic implant 324 may be thermally
  • the thermal processing may include oxidizing, coating or deposition.
  • processing of the articular surface may be performed using a laser.
  • a laser For example, when zirconium is thermally
  • zirconia which is a ceramic, may be formed on the outside of the zirconium to form the articular surface 320 of the monolithic orthopedic implant.
  • the thermal processing may also form a thin layer 322 on the porous region 314 and the transition region 312; however, this thin layer 322 preferably does not close the pores on or in the porous region 314 and the transition region 312, so that the pores remain open.
  • the articular surface 320 may be formed by depositing material. For example, pyrolytic carbon or diamond- like carbon may be deposited on the substantially dense region. Yet another method to form the articular surface 320 is coating the substantially dense region with, for example, ceramic or ceramic like material.
  • references to the monolithic orthopedic implant 50 may also refer to the monolithic orthopedic implants of FIGs. 2B and 2C.
  • references to the porous region 56 also refer to porous region 314, and references to the transition region 58 also refer to the transition region 312.
  • References to the substantially dense region 54 also refer to the substantially dense region 310.
  • the articular surface 60 may also refer to articular surface 320.
  • the porous region 56, the transition region 58, the substantially dense region 54 and the surface 60 may have a Vickers hardness of 500 MPa or greater, a nickel content of less than 4%, and a chrome content of less than 10%.
  • the monolithic orthopedic implant 50 may have a substantially dense region 54, which is formed from materials with a Vickers hardness of 1000 MPa or greater and with a bulk porosity of 4% or less.
  • the monolithic orthopedic implant 50 may have a substantially dense region 54, which is formed from materials with a Vickers hardness of 1200 MPa or greater and with a bulk porosity of .1% or less.
  • the substantially dense region 54 may have a composition of materials chosen from the group consisting of oxides, nitrides, carbides or borides, which are all ceramics or any combination thereof.
  • the substantially dense region 54 may include a coated metal selected from oxidized, nitrided- , carburized- or
  • the substantially dense region 54 may be of a material chosen from the group consisting of partially stabilized zirconia, alumina, silicon nitride or SiAlON or any combination thereof. As discussed above a preferred material for the substantially dense region 54 is partially stabilized zirconia.
  • the transition region 58 and the porous region 56 may be formed from materials from the group consisting of oxides, carbides, nitrides, or borides or any combination thereof.
  • the transition region 58 and the porous region 56 may be a coated metal comprising oxidized- , nitrided- , carburized- or boronized- titanium, zirconium, hafnium, tantalum or molybdenum.
  • the coated metal is configured for bone ingrowth and is porous.
  • the porous region 56 and the transition region 58 may be formed of materials chosen from the group
  • porous region 56 consisting of partially stabilized zirconia, alumina, silica, silicon nitride, SiAlON, tantalum, titanium, or zirconium or any combination thereof.
  • transition region 58 is partially stabilized zirconia.
  • monolithic orthopedic implant is pyrolytic carbon, a biocompatible material with desirable articular surface properties .
  • the monolithic orthopedic implant 50 may be used in many joint locations and can be used for a femoral knee prosthesis, a tibial knee prosthesis, a patellar knee prosthesis, a femoral head hip prosthesis, an acetabular hip prosthesis, a finger or thumb prosthesis, a shoulder prosthesis, a toe prosthesis, a spine prosthesis, a wrist or ankle prosthesis, or an elbow prosthesis, among others.
  • the porous region 56 may have two or more projections, such as shown in FIG. 13A, that are configured to mate with sockets formed in the bone into which the orthopedic implant 50 is implanted.
  • FIG. 3 shows a perspective view of a monolithic orthopedic implant with the porous region 52, which may include the porous region 56 and the transition region 58, having the shape of a cylindrical plug.
  • substantially dense region have approximately the same diameter .
  • FIG. 4A shows a perspective view of a monolithic orthopedic implant 61 with an articular surface 60 on a substantially dense region 54 and a porous region 62, which may include the porous region 56 and the transition region 58, having the shape of a tapered plug.
  • a tapered porous region has been shown to promote bone ingrowth and may be preferable to a cylindrical plug for some implant
  • FIG. 4B shows a variation of the articular surface 60 which has dimples 63 on the substantially dense region 54.
  • Another variation of the articular surface is shown in FIG. 4C which has bumps 67 on the substantially dense region 54.
  • the dimples 63 and the bumps 67 help facilitate hydrostasis in the mating native articular cartilage functioning against the surface of the monolithic implant.
  • the substantially dense region 54 may also have a combination of dimples 63 and bumps 67.
  • the number of dimples or bumps on the surface 60 may be as few as one. Dimples 63 or bumps 67 may also be on the substantially dense region 54 shown in FIG. 3, and on any of the
  • the dimples 63 and/or bumps 67 serve as examples, and do not limit other protrusion and/or indentation features that can exist on the surface 60 or on the substantially dense region 54 to help facilitate the desired hydrostasis.
  • other protrusion or indentation features may include radial or angled bumps and radial or angled grooves, respectively.
  • dimples or bumps 69 may also be on the perimeter of the substantially dense region 54. Dimples or bumps 69 help facilitate hydrostasis in the native articular cartilage surrounding the
  • the dimples or bumps 69 are only on the perimeter of the substantially dense region 54 with no dimples or bumps on the surface 60.
  • the dimples and bumps 69 serve as examples, and do not limit other protrusion and/or indentation features that can exist on the perimeter of the substantially dense region 54 to help facilitate the desired hydrostasis.
  • other protrusion or indentation features may include radial or angled bumps and radial or angled grooves, respectively.
  • FIG. 5 shows a perspective view of a monolithic orthopedic implant with the porous region 64 having a tapered shape and a hollow interior 65.
  • the porous region 64 also has an open bottom. In surgery a cylinder or other shape of bone can be removed at the implant site and then the monolithic orthopedic implant of FIG. 5 inserted.
  • the monolithic orthopedic implant of FIG. 5 has a hollow interior 65 and open bottom, bone ingrowth can occur from the outside, as well as from the inside of the implant .
  • the porous region 64 is shown as tapered; however, the shape of the porous region in FIG. 5, as well as FIGs . 6, 7A-C, 8A-C, 9A-C, lOA-C, 11A-D, 12A-C, 15A-D and 16A-B may be in the form of a plug or any other shape, including a shape having two or more projections.
  • FIG. 6 shows a perspective view of a monolithic orthopedic implant with a porous region 62, which can have any shape, and a substantially dense region with a
  • perimeter 66 adapted to promote healing of surrounding articular cartilage.
  • the perimeter 66 has a
  • the perimeter roughness may be greater than 6 micrometers R a .
  • the perimeter 66 has a hydrophilic surface or a charged surface that influences a cell population to enhance healing of surrounding native articular cartilage. These surface modifications can attract a cell population and/or influence the organization of cells to enhance healing of the surrounding native articular cartilage.
  • the perimeter 66 may include a bioactive mineral coating, which may be hydroxyapatite, bioglass, or a form of calcium phosphate, nonlimiting examples of which are tri-calcium phosphate
  • TCP TCP
  • alpha TCP alpha TCP
  • beta TCP alpha TCP
  • the perimeter 66 may include a bioengineered coating to promote healing of surrounding articulate cartilage.
  • the bioengineered coating may consist of a blood derived product, such as fibrin glue or fibrin clot, one or more proteins, a peptide, collagen, impregnated autologous chondrocytes, which are cartilage cells, a pharmaceutical agent, or any combination thereof.
  • FIG. 7A shows a perspective view of a monolithic orthopedic implant with a porous region 62 and a
  • substantially dense region 68 having a relatively greater thickness than the substantially dense region 54 of FIG. 4.
  • the thickness of the substantially dense region 68 is preferably adapted to the thickness of articular cartilage surrounding a particular implant site.
  • FIG. 7B shows a perspective view of a monolithic orthopedic implant with a porous region 62 and a
  • substantially dense region 70 having a size that is relatively smaller than the top surface 71 of the porous region 62.
  • This embodiment provides an exposed top surface 71 for promoting the healing of surrounding articular cartilage.
  • the exposed top surface 71 of the porous region 62 may have a roughness as described above for the porous region, which may be on the structural members inside porous region 62.
  • the porous region 62, as described above may include a transition region 58.
  • the top surface 71 has a hydrophilic surface or a charged surface that can influence a cell population to enhance healing of surrounding native articular cartilage. The described surface modifications can attract a cell
  • the top surface 71 may include a bioactive mineral coating, which may be
  • hydroxyapatite bioglass, or a form of calcium phosphate, nonlimiting examples of which are tri-calcium phosphate
  • TCP TCP
  • alpha TCP alpha TCP
  • beta TCP alpha TCP
  • the top surface 71 may include a bioengineered coating to promote healing of surrounding articulate cartilage.
  • the bioengineered coating may consist of a blood derived product, such as fibrin glue or fibrin clot, one or more proteins, a peptide, collagen, impregnated autologous chondrocytes
  • FIG. 7C shows a perspective view of a monolithic orthopedic implant with a porous region 62 and a
  • substantially dense region 72 having a size that is relatively larger than the porous region 62 and that overhangs the porous region 62. This configuration allows the amount of bone removed from the implant site to be minimized to implant the porous region 62 into, while providing a large substantially dense region to resurface a large cartilage defect.
  • FIG. 8A shows a perspective view of a monolithic orthopedic implant with a porous region 62 and a
  • substantially dense region 74 having a polygonal shape which may be any shape.
  • the shape is shown to be a pentagonal shape.
  • FIG. 8B shows a perspective view of a monolithic orthopedic implant with a porous region 62 and a substantially dense region 76 having a hexagonal shape.
  • FIG. 8C shows a perspective view of a monolithic orthopedic implant with a porous region and a substantially dense region 78 having a triangular shape.
  • the polygonal shapes shown in FIGS.8A-C are especially suitable for clusters of adjacent orthopedic implants as shown in FIG. 14B.
  • the substantially dense regions in each of these embodiments overlap the porous regions .
  • the clusters of implanted orthopedic implants as shown in FIG. 14B can create a continuous articular surface of a varying contour.
  • FIG. 9A shows a perspective view of a monolithic orthopedic implant with a porous region 62 and a
  • the beveled perimeter 80 may be adapted to provide healing for surrounding native articular cartilage, as discussed in reference to FIG. 6.
  • FIG. 9B shows a perspective view of a monolithic orthopedic implant with a porous region 62 and a relatively smaller sized substantially dense region with a beveled perimeter 82.
  • the substantially dense region 82 has a dimension less than the top surface 83 of the porous region 62.
  • This embodiment provides the top surface 83 and a beveled perimeter 82 for the surrounding articular cartilage to rest upon.
  • the top surface 83 may be adapted to promote healing of articular cartilage, as discussed with reference to top surface 71 in FIG. 7B.
  • the beveled perimeter 82 may be adapted to provide healing for surrounding native articular cartilage, as discussed above in reference to FIG. 6.
  • FIG. 9C shows a perspective view of a monolithic orthopedic implant with a porous region 62 and a relatively larger sized substantially dense region having a beveled perimeter 84.
  • the substantially dense region with the beveled perimeter overhangs the porous region 62.
  • the beveled perimeter 84 may be adapted to provide healing for surrounding native articular cartilage, as discussed above in reference to FIG. 6.
  • FIG. 10A shows a perspective view of a monolithic orthopedic implant with a porous region 62 and a
  • the reverse bevel 86 may have a perimeter adapted to promote healing of articular cartilage, as discussed for FIG. 6.
  • FIG. 10B shows a perspective view of a monolithic orthopedic implant with a porous region 62 and a relatively smaller sized substantially dense region having a reverse bevel perimeter 88.
  • the substantially dense region has a dimension less than the top surface 89 of the porous region 62.
  • This embodiment provides the top surface 89 for the surrounding articular cartilage to rest upon and the reverse bevel perimeter 88 provides a surface to protect the tidemark region of the surrounding native articular cartilage from experiencing damaging shear stresses.
  • the top surface 89 may be adapted to promote healing of articular cartilage, as discussed with reference to top surface 71 in FIG. 7B .
  • the reverse bevel 88 on the perimeter may be adapted to provide healing for surrounding native articular cartilage, as discussed in reference to FIG. 6.
  • FIG. IOC shows a perspective view of a monolithic orthopedic implant with a porous region 62 and a relatively larger sized substantially dense region having a reverse bevel perimeter 90 that provides a surface to protect the tidemark region of the surrounding native articular cartilage from experiencing damaging shear stresses.
  • the substantially dense region overhangs the porous region 62.
  • the reverse bevel 90 on the perimeter may be adapted to provide healing for surrounding native articular cartilage in the same manner as discussed for FIGs . 10A and 10B.
  • the surface of the substantially dense region may have the following embodiments. Note that the following surface curvatures may be applied to many implant configurations, including those with substantially dense regions smaller or larger than the porous region and those with beveled or reverse beveled perimeters.
  • FIG. 11A shows a perspective view of a monolithic orthopedic implant with a porous region 62 and a substantially dense region 93 with an articular surface 92 having a relative concave spherical shape to match a skeletal joint.
  • FIG. 11A shows a perspective view of a monolithic orthopedic implant with a porous region 62 and a substantially dense region 93 with an articular surface 92 having a relative concave spherical shape to match a skeletal joint.
  • FIG. 11B shows a perspective view of a monolithic orthopedic implant with a porous region 62 and a substantially dense region 95 with an articular surface 94 having a relative concave shape with a radius in one plane to match a skeletal joint.
  • FIG. 11C shows a perspective view of a monolithic orthopedic implant with a porous region 62 and a substantially dense region 97 with an articular surface 96 having a relative concave shape with two differing radii in two orthogonal planes to match a skeletal joint.
  • FIG. 11B shows a perspective view of a monolithic orthopedic implant with a porous region 62 and a substantially dense region 95 with an articular surface 94 having a relative concave shape with a radius in one plane to match a skeletal joint.
  • FIG. 11C shows a perspective view of a monolithic orthopedic implant with a porous region 62 and a substantially dense region 97 with an articular surface 96 having a relative concave shape with two
  • 11D shows a perspective view of a monolithic orthopedic implant with a porous region 62 and a substantially dense region 99 with an articular surface 98 having a concave shape in one plane and a convex shape in another plane to match a skeletal joint.
  • FIG. 12A shows a perspective view of a monolithic orthopedic implant with a porous region 62 and a
  • FIG. 12B shows a perspective view of a monolithic orthopedic implant with a porous region 62 and a
  • FIG. 12C shows a perspective view of a monolithic orthopedic implant with a porous region 62 and a substantially dense region 104 with an articular surface 105 having a convex shape with two differing radii in two orthogonal planes to match a skeletal joint.
  • the monolithic orthopedic implant 50 can be fabricated as shown in FIG. 17 by forming in step 200 a porous region 56 having an interconnected porous form adapted to be similar to cancellous bone to promote skeletal fixation by bone ingrowth of cancellous bone, forming in step 202 a transition region 58 adjacent to and integrally joined to the porous region 56, the transition region 58 adapted to be similar to subchondral bone, forming in step 204 a substantially dense region 54 integrally joined to the transition region 58, and forming in step 206 a surface 60 on the substantially dense region 54, the surface 60 having a finish adapted for articulation against native articular cartilage.
  • the porous region is preferably formed with a porosity gradient that increases as a distance from the substantially dense region 54 increases as shown in step 208.
  • the formed monolithic orthopedic implant is non-resorbable as shown in step 210.
  • the articular surface on the substantially dense region may be formed by thermally processing the
  • Thermal processing may include oxidation, coating or deposition of material .
  • the material deposited on the substantially dense region may include pyrolytic carbon, diamond, or diamond- like carbon.
  • Yet another method for forming the articular surface includes coating a material on the substantially dense region, such as ceramic or ceramic like material.
  • the porosity of the porous region 56 and the transition region 58 may be formed by oxidizing a fugitive material, dissolving a fugitive material, using a lost foam process, using a solid freeform fabrication process, or using a foaming process, which are processes well known in the art .
  • the orthopedic implant 50 may be formed into a desired geometrical form by milling, turning or other machining processes. Preferably these processes are adjusted to account for any shrinkage that may occur during milling, turning or other machining processes. Such shrinkage can be 10% or greater.
  • FIG. 13A shows a perspective view of a monolithic orthopedic implant 119 with a porous region with two porous projections 124 and 126, a transition region 128 and a substantially dense region 122 with a surface 120 for articulation with articular cartilage on an opposing joint.
  • the projections which may number more than two, increase the surface area of the porous region, which further promotes bone ingrowth, to provide a secure attachment of the monolithic orthopedic implant 50.
  • FIG. 13B shows a perspective view of a monolithic orthopedic implant 129 with a porous region 134 and a substantially dense region 132 with an articular surface 130 having a shape having different dimensions in
  • the irregular shape of monolithic orthopedic implant 129 can be adjusted to fit the circumstances required for an implant.
  • the porous region 134 may have a tapered perimeter.
  • FIG. 13C shows a perspective view of a monolithic orthopedic implant 141 in a shell like shape with a porous region 144 and a substantially dense region 142.
  • the shell like shape is characteristic of a spheroidal skeletal joint.
  • the substantially dense region 142 has a shell like shape and the porous region 144 has a shell-like shape with a hollow interior 146 for bone ingrowth.
  • FIG. 13D shows a perspective view of a monolithic orthopedic implant 330 with a porous region 332 on the outside of the implant 330 and a concave substantially dense region 334.
  • the monolithic orthopedic implant 330 can be used alone or be implanted so that the concave substantially dense region 334 mates with the spheroidal substantially dense region 142 of FIG. 13C.
  • FIGs . 14A to 14D show examples of the orthopedic implant in use for a knee prosthesis.
  • FIG. 14A shows a perspective view of the monolithic orthopedic implant 61 of FIG. 4A implanted in a femur bone 150 to provide a repair for native articular cartilage.
  • FIG. 14B shows a
  • orthopedic implants 75 of FIG. 8B implanted in a femur bone 150 adjacent to one another to create a continuous
  • FIG. 14C shows a perspective view of the monolithic orthopedic implant 119 of FIG. 13A implanted in a femur bone.
  • FIG. 14D shows a perspective view of the monolithic orthopedic implant 129 of FIG. 13B implanted in a tibial bone.
  • a portion of articular cartilage at an implant site may be removed, as shown in FIG. 18A step 220.
  • a socket is formed also in step 220 in bone underlying the removed articular cartilage.
  • the socket should be formed to have a depth such that the surface of the substantially dense region of the monolithic implant is approximately flush to the articular cartilage at the implant site.
  • the orthopedic implant 50, and in particular the porous region 56 of the orthopedic implant 50 are implanted into the socket in step 220.
  • the implanted monolithic orthopedic implant includes a porous region having a form of interconnected porosity adapted to be similar to cancellous bone to promote skeletal fixation by bone ingrowth, a transition region having a form of interconnected porosity similar to subchondral bone and interconnected to the porous region, a substantially dense region integrally joined to the transition region, and a surface on the substantially dense region, the surface having a finish adapted for articulation against native articular cartilage as shown in step 222 of FIG. 18A.
  • the porous region has a porosity gradient that increases as a distance from the substantially dense region increases, as shown in step 224 of FIG. 18A, and the porous region, the transition region, the substantially dense region, and the surface are non-resorbable as shown in step 226 of FIG. 18A.
  • the porous region, the transition region, the substantially dense region, and the surface may comprise ceramic.
  • the method for implanting includes implanting a plurality of monolithic orthopedic implants adjacent to one another to create a nearly
  • monolithic orthopedic implant has a polygon shaped perimeter, as shown in step 232 of FIG. 18B, and FIGs . 8A- 8C.
  • removing a portion of the articular cartilage at the implant site includes preparing the implant site by excising the portion of the articular cartilage to form a predetermined geometrical lesion and forming at the implant site a socket in the bone conforming geometrically to a form of the orthopedic implant.
  • the dimensions of the socket preferably allow for a compressive or interference fit between the bone and the orthopedic implant 50.
  • two or more sockets may be formed at the implant site if the orthopedic implant 50 has multiple projections, as shown in FIG. 13A and 14C.
  • the sockets Preferably the sockets have conical dimensions.
  • an orthopedic implant 160 has a porous region 162 and a transition region 164.
  • the porous region 162 is adapted to have a form of porosity similar to cancellous bone to promote bone ingrowth to securely implant the orthopedic implant 160 in a bone.
  • the transition region 164 is adapted to have a form of porosity similar to subchondral bone.
  • the porous region 162 and the transition region 164 are preferably non-resorbable .
  • a scaffold 166 adapted to promote regeneration of the surrounding articular cartilage may be coupled to the transition region 164, and FIG. 15B shows the scaffold 166 coupled to the transition region 164.
  • the scaffold 166 may include collagen, one or more proteins, a resorbable material, copolymer resorbable material, a mineral, hydrogel, living cells, or articular cartilage or any combination thereof.
  • resorbable materials that can be used for the matrix are polylactic acid (PLA) , which is a biodegradable, thermoplastic, aliphatic polyester, polyglycolic acid (PGA) , which is a biodegradable,
  • thermoplastic polymer thermoplastic polymer
  • the transition region 164 may be further adapted to promote regeneration of articular cartilage.
  • the transition region has a roughness, which may be on the outside of the transition region 164 and also on the inside of the transition region 164.
  • the transition region includes a three dimensional framework of interconnected structural members with interstitial interconnected passages there between and the roughness may be on the structural members.
  • transition region 164 has a hydrophilic surface or a charged surface that can influence a cell population to enhance healing of
  • the transition region 164 may include a bioactive mineral coating, which may be hydroxyapatite , bioglass, or a form of calcium phosphate, nonlimiting examples of which are tri-calcium phosphate (TCP) , alpha TCP, or beta TCP, or any combination thereof to promote healing of surrounding articular cartilage.
  • a bioactive mineral coating which may be hydroxyapatite , bioglass, or a form of calcium phosphate, nonlimiting examples of which are tri-calcium phosphate (TCP) , alpha TCP, or beta TCP, or any combination thereof to promote healing of surrounding articular cartilage.
  • the transition region 164 may include a bioengineered coating to promote healing of the articulate cartilage.
  • the bioengineered coating may consist of a blood derived product, such as fibrin glue or fibrin clot, one or more proteins, a peptide, collagen, impregnated autologous chondrocytes (cartilage cells) , or any combination thereof.
  • the porous region 162 also may be further adapted to promote bone ingrowth for bone fixation.
  • the porous region 162 has a roughness
  • the frictional coefficient is a biomechanical characterization of friction between cancellous bone and cortical bone.
  • the frictional coefficient of the porous region 162 helps prevent the formation of a fibrous layer, which can retard bone ingrowth.
  • the roughness may be on the outside of the porous region 162 and also on the inside of the porous region 162.
  • the porous region 162 is preferably a three dimensional framework of interconnected structural members with interstitial interconnected passages there between and the roughness may be on the structural members, which provides a microstructure to promote bone ingrowth and fixation by facilitating cell adhesion.
  • porous region 162 may also have a hydrophilic or a charged surface that can influence a cell population to enhance healing of
  • the described surface modifications can attract a cell population or influence the organization of cells to enhance healing of the surrounding native articular cartilage.
  • the porous region 162 may include a bioactive mineral coating, which may be hydroxyapatite, bioglass, or a form of calcium phosphate, nonlimiting examples of which are tri-calcium phosphate (TCP) , alpha TCP or beta TCP, or any combination thereof to promote bone ingrowth for bone fixation.
  • a bioactive mineral coating which may be hydroxyapatite, bioglass, or a form of calcium phosphate, nonlimiting examples of which are tri-calcium phosphate (TCP) , alpha TCP or beta TCP, or any combination thereof to promote bone ingrowth for bone fixation.
  • the porous region 162 may include a bioengineered coating to promote bone ingrowth for bone fixation.
  • the bioengineered coating may consist of one or more proteins, a peptide, or any combination thereof.
  • the orthopedic implant as discussed with reference to FIGs . 15A and 15B, may have a porous region 170 with a hollow interior 172 and have an open bottom to promote bone ingrowth from the inside, as well as the outside of the implant.
  • FIG. 15D shows a perspective view of a dental implant 174 with a porous region 175 integrally joined to a substantially dense region 176 having a surface 177 and a perimeter 178 adapted to be compatible with gum tissue in ways well known in the art.
  • the porous region 175 promotes bone ingrowth to firmly attach the implant to the bone and the substantially dense region may be used to attach a tooth. Because the surface 177 and the perimeter 178 are compatible with gum tissue the implant is well adapted for a dental implant .
  • FIG. 16A shows a perspective view of a monolithic non-resorbable porous implant 180, which has a porous top surface 181.
  • This embodiment can be used as a bone patch among other possible uses.
  • the implant may be adapted to restore the metaphyseal region in the end of a long bone making up a skeletal joint.
  • FIG. 16B shows a perspective view of a monolithic non-resorbable porous implant 182, which has an open top 184 and a hollow
  • the porous implants 180 and 182 have a three dimensional framework of structural members with
  • each structural member may be similar in size to a trabecula in bone.
  • the interconnected pore passageways may each have a dimension less than 1000 micrometers or each have a dimension between 200 and 600 micrometers.
  • the framework may have a bulk porosity of 50% or greater.
  • the porous implants 180 and 182 of FIG. 16A and FIG. 16B, respectively, may be further adapted to promote bone ingrowth for bone fixation in the same manner as the porous region 162 of FIGs . 15A and 15B, as discussed above.
  • the implants 180 and 182 may have a roughness to promote bone ingrowth for bone fixation and the roughness may be characterized by a frictional coefficient greater than 0.5.
  • each structural member may have a roughness .
  • the framework may have a hydrophilic coating or a charged coating, which as discussed above can attract a cell population and/or influence the organization of cells to enhance healing of the surrounding native
  • the framework may have a bioactive mineral coating, which can be hydroxyapatite, bioglass, or a form of calcium phosphate or any combination thereof.
  • the framework has a bioengineered coating one or more proteins or a peptide or any combination thereof.
  • the implants 180 and 182 may be formed from materials from the group consisting of oxides, carbides, nitrides, or borides or any combination thereof.
  • the implants may be formed of coated metal consisting of oxidized-, nitrided- , carburized- or
  • the framework may also be formed of materials chosen from the group
  • zirconium consisting of partially stabilized zirconia, alumina, silica, silicon nitride, SiAlON, tantalum, titanium, or zirconium or any combination thereof.
  • Brittle materials such as ceramics usually have lower and less reliable strength values compared to ductile materials, such as metals.
  • the reduced reliability of the strength values of brittle material is due primarily to voids or defects present inside the material, which may result from the process of forming the material from raw material powder. It is desirable to improve the
  • brittle materials can be used reliably in devices to surgically treat skeletal joint conditions such as arthritis and cartilage lesions.
  • Flaws in brittle materials are generally
  • the strength value of a brittle material is not one specific value, but a
  • the maximum strength, or the maximum stress that a sample can withstand may vary unpredictably from specimen to
  • the Weibull modulus is a measure of the distribution of the strength values, and is a dimensionless number
  • Weibull modulus reflects a high variation in measured strengths and an indication that the likelihood is
  • monolithic specimens had little variation in strength from specimen to specimen, and therefore the average strength of the monolithic material is a good representation of the potential specimen to specimen performance of the material .
  • the high Weibull modulus also indicates that the monolithic material is more reliable than either the porous ceramic region or the relatively solid region of substantially dense material by themselves .
  • micro crack toughening characteristic known as micro crack toughening.
  • the monolithic material there may be a transition region between and integrally joined to the porous region and the relatively solid region.
  • the transition region which may correspond to transition region 58 of monolithic orthopedic implant 50, may have a porosity that is relatively lower than the porosity of the porous region and varies between the relatively solid region and the porous region.
  • the Weibull modulus for the monolithic material is higher than for the porous region, the transition region, or the relatively solid region by themselves, which again is a surprising result.
  • the brittle materials that may be used to form the monolithic materials include materials chosen from the group consisting of oxides, nitrides, carbides or borides or any combination thereof, which are all ceramics, materials chosen from the group consisting of partially stabilized zirconia, alumina, silica, silicon nitride or SiAlON or any combination thereof, and pyrolytic carbon. These are all brittle materials and a monolithic material formed of any of these materials and having a porous region integrally joined to a relatively solid region, or having a transition region between the porous region and the relatively solid region has a higher Weibull modulus and therefore greater strength reliability from specimen to specimen than either the porous region or the relatively solid region by themselves.
  • the monolithic materials are suitable and can be used to develop reliable devices to surgically treat skeletal joint conditions such as
  • the orthopedic devices made of the monolithic material may include any of the monolithic orthopedic implants described herein and shown throughout the figures, as well as other orthopedic devices. As described herein, a monolithic device that has integrally joined porous, transition and substantially dense regions has advantages for many types of orthopedic implants and devices .
  • FIG. 19 is a flow diagram of a method for providing a monolithic material in accordance with the present disclosure.
  • a porous region is formed having a first variability of strength.
  • a substantially dense region is formed and joined in step 242 to the porous region, the substantially dense region having a second variability of strength, wherein the variability of strength of the monolithic material is less than the first and second variability of strengths.
  • a transition region is formed between the porous region and the substantially dense region and joined to the porous region and the substantially dense region, the transition region having a third variability of strength, wherein the variability of strength of the monolithic material is also less than the third variability of strength.
  • the transition region may be formed on the porous region or the substantially dense region and then the substantially dense region or the porous region formed on the transition region, respectively.
  • a surface may be formed on the substantially dense region, the surface having a finish adapted for articulation against native articular
  • FIG. 20 is another flow diagram of a method for providing a monolithic material in accordance with the present disclosure.
  • a first region is formed having a first variability of strength.
  • a second region is formed and joined to the first region, the second region having a second variability of strength, wherein the monolithic material has a variability of strength less than the first variability of strength of the first region and less than the second variability of strength of the second region.
  • a third region may be formed between and joined to the first region and the second region, the third region having a third variability of strength, wherein the variability of strength of the monolithic material is less than the third variability of strength of the third region.
  • FIGs . 25A to 25D an orthopedic implant 330 is shown in accordance with the present disclosure .
  • FIG. 21A An example of a torn labrum 300 and torn cartilage 302 at location 306 is shown in FIG. 21A. A surgeon may remove the delaminated cartilage, and then suture and sew the torn labrum, as shown in FIG. 21B. Then to facilitate cartilage regeneration in the denuded region a micro- fracture procedure may be performed.
  • An alternative to micro- fracture is to use an implant to restore a continuous articular surface in the joint.
  • the subject articular surface in the acetabulum 322 is concave in shape. Because the goal of this implant to restore a continuous surface, it is important that the implant be able to interface with the surrounding
  • FIGs . 22A and 22B show a convex implant 310 having an overgrowth of cartilage 309 in accordance with the prior art.
  • Such a prior art convex implant is described in "Safety of, and Biological and Functional Response to, a Novel Metallic Implant for the Management of Focal Full -Thickness Cartilage Defects: Preliminary
  • FIG. 23 shows three acetabular shell implants 311, 312, and 313 in accordance with the prior art. These implants can have various articular surfaces including polyethylene as shown in implant 311, metal as shown in implant 312, and ceramic as shown in implant 313.
  • These prior art implants, which can be acetabular shells for the hip and glenoid shells for the shoulder have a surface 314 between the perimeter and the concave articular surface 315. The surface 314 is designed to not have a sharp edge impinging with surrounding tissue in order to avoid irritation, swelling and bleeding.
  • tissue overgrowth is undesirable with these implant designs because overgrowth can adversely reduce desired joint motion.
  • the surface 314 is designed to restrict or prevent tissue overgrowth from occurring.
  • FIGs. 25A to 25D show an implant 330 in
  • the implant 330 has a attachment region 332 for bone attachment.
  • the attachment region 332 may be porous or at least be
  • attachment region 332 may be designed to have a threaded extension for attachment to a bone, or be attached to the bone in any other manner.
  • a second region 331 is connected to attachment region 332, and as shown in FIGs. 25A and 25C, the second region 331 may be larger in width than the attachment region 332; however, it should be understood that the second region 331 may be the same width as the attachment region 332, as shown in FIG. 25D.
  • the implant 330 may be formed of ceramic, metal, plastic, polyethylene, polycarbonate-urethane , ultra-violet curable resin, or any other suitable material.
  • resorbable implant 330 may be formed of collagen, PLA, PGA, bioglass, and agarose gel, or any other suitable material.
  • FIG. 24 shows an example of implanting a pelvis with implant 330 in accordance with the present disclosure.
  • the implant 330 may have a perimeter area 336 as shown in FIGs . 25A - 25D that starts at a perimeter 335 of the implant 330 and extends to the convex surface 340. At a first transition point 338, the perimeter area 336 ends and a convex surface 340 continues towards the
  • a concave articular surface 344 begins at the second transition point 342 and is on the interior surface of the implant 330.
  • the perimeter area 336 and the convex surface 340 each may have a shape to facilitate a biologic reaction to create an overgrowth of cartilage tissue over the perimeter area 336 and the convex surface 340.
  • the perimeter area 336 and the convex surface 340 may be formed to facilitate a crescent shaped overgrowth cartilage tissue, which is relatively thick at the perimeter area 336 and then
  • the convex surface 340 has a shape to promote cartilage tissue overgrowth on the convex surface 340, which thins toward the second transition point 342. The overgrowth of the cartilage tissue does not extend over the concave articular surface 344.
  • the perimeter area 336 and the convex surface 340 may include a coated metal to promote overgrowth of cartilage tissue.
  • the coated metal may be selected from oxidized, nitrided- , carburized- or boronized- titanium, zirconium, hafnium, tantalum or molybdenum or any
  • oxidized zirconium forms a coating of zirconia on the outside of the zirconium.
  • One coating that can be used is a thin diamond like coating, which can be polished to a desired surface roughness, as described above for the substantially dense region 54.
  • FIG. 26 illustrates the shape of cartilage overgrowth over implant 330 in accordance with the present disclosure and illustrates a tissue cross section similar to the menisci found in the knee.
  • the overgrowth tissue 352 acts to seal the perimeter area 336 and the convex surface 340 of the implant 330, which protects the native cartilage 352 to bone 350 interface 354, known as the "tidemark" , from delamination .
  • the thinning of the tissue overgrowth is illustrated by triangle 360 in FIG. 26.
  • the cartilage tissue overgrowth is important in restoring a continuous articular surface which interacts with the native cartilage in a skeletal joint.
  • a bottom surface 334 may be shaped to mimic the top surface contour of region 331 so that the thickness of region 331 is substantially the same across the implant 330.
  • a bottom surface 333 may be relatively flat. It should be understood that the shape of the bottom surface may be configured as needed to provide the implant with a proper fit for the site at which the implant will be used.
  • the width of the second region 331 essentially matches the width of the attachment region 332 at the perimeter 335 where the two regions join.
  • the implant 500 may have a nonsymmetrical shape, and may also have more than one attachment region, such as attachment region 502 and attachment region 504.
  • the attachment regions 502 and 504 may be porous or at least be partially porous to promote bone ingrowth, or the
  • attachment regions 502 and 504 may be designed to have a threaded extension for attachment to a bone, or be attached to the bone in any other manner.
  • a second region 531 is connected to attachment regions 502 and 504, as shown in FIG. 29B.
  • the implant 500 has a convex surface 540, which extends towards the interior of the implant 500 to a transition point 542.
  • a concave articular surface 544 begins at the transition point 542 and is on the interior surface of the implant 500.
  • the convex surface 540 may have a shape to facilitate a biologic reaction to create an overgrowth of cartilage tissue over the convex surface 540.
  • the convex surface 540 may include a coated metal to promote overgrowth of cartilage tissue.
  • the coated metal may be selected from oxidized, nitrided- , carburized- or
  • oxidized zirconium forms a coating of zirconia on the outside of the zirconium.
  • One coating that can be used is a thin diamond like coating, which can be polished to a desired surface roughness, as described above for the substantially dense region 5 .
  • a bottom surface 534 may be shaped as needed to provide the implant with a proper fit for the site at which the implant will be used.
  • FIG. 27 is a flow diagram of a method of
  • a first region 332 is formed for attachment to a bone.
  • a second region 331 is formed and coupled to the first region, wherein the second region has a perimeter 335 and the second region includes a concave articular surface 344 on top of the second region and a convex surface 340 is between the perimeter and the concave articular surface.
  • FIG. 28 is a flow diagram of a method of
  • an orthopedic implant is implanted in a bone.
  • the orthopedic implant includes a first region 332 for attachment to a bone and a second region 331 coupled to the first region, wherein the second region has a perimeter 335 and the second region includes a concave articular surface 344 on top of the second region and a convex surface 340 is between the perimeter and the concave articular surface.
  • An orthopedic implant includes a first region for attachment to a bone and a second region coupled to the first region, the second region having a perimeter and including a concave articular surface on top of the second region and a convex surface between the perimeter and the concave articular surface.
  • An orthopedic implant comprising:
  • the second region comprises a bottom surface shaped to mimic a shape of the concave articular surface.
  • Concept 11 The orthopedic implant of Concept 1 wherein the first region comprises a threaded extension.
  • Concept 12 The orthopedic implant of Concept 1 further comprising a third region for attachment to the bone, the third region coupled to the second region.
  • a method for providing an orthopedic implant comprising :
  • first region for attachment to a bone
  • second region coupled to the first region, the second region having a perimeter and comprising:
  • the second region has a larger width than the first region
  • the second region comprises a bottom surface shaped t mimic a shape of the concave articular surface.
  • Concept 25 The method of Concept 14 further comprising forming a third region for attachment to the bone, the third region coupled to the second region.
  • Concept 26 The method of Concept 25 wherein the third region comprises porosity to promote bone ingrowth.
  • a method of orthopedic surgery comprising: implanting an orthopedic implant;
  • orthopedic implant comprises:
  • first region for attachment to a bone
  • second region coupled to the first region, the second region having a perimeter and comprising:
  • the second region has a larger width than the first region
  • the second region comprises a bottom surface shaped t mimic a shape of the concave articular surface.

Abstract

An orthopedic implant includes a first region for attachment to a bone and a second region coupled to the first region, the second region having a perimeter and including a concave articular surface on top of the second region and a convex surface between the perimeter and the concave articular surface.

Description

CONVEX CONCAVE IMPLANT
CROSS REFERENCE TO RELATED APPLICATIONS
[ 0001] This application is a continuation in part of U.S. Patent Application Serial No. 12/829,095, filed July 1, 2010, which is a continuation in part of U.S. Patent Application Serial No. 12/417,374, filed April 2, 2009, which are incorporated herein by reference as though set forth in full .
FIELD
[ 0002 ] This disclosure relates to orthopedic implants and in particular to orthopedic implants for repair of focal articular cartilage and osteochondral defects. In particular, this disclosure presents an implant having a convex surface surrounding a concave articular surface.
BACKGROUND
[ 0003 ] As the population of an active society ages, medical advancements are developed to improve the health < individuals. One of the most active and successful medic; treatments is joint reconstruction, also known as
arthroplasty, to resolve activity limiting pain caused by arthritis. Current technology supports various forms of arthroplasty, including hemi-arthroplasty, partial joint arthroplasty and total joint arthroplasty. These
successful procedures reconstruct a new continuous, low friction articular surface for pain free function of the skeletal joint. A remaining challenge in arthroplasty deals with resolving activity limiting pain in patients with smaller focal cartilage lesions. These lesions represent earlier stages of arthritis and if left untreated potentially progress to later stages of arthritis requiring a more invasive procedure such as partial or total joint replacement. The current challenge in treating arthritis lies in developing a more versatile implant for focal, regional or global resurfacing that successfully interacts with mating articular cartilage, surrounding articular cartilage and the underlying bone bed.
[ 0004 ] Diarthrodial joints in the human skeleton provide the nearly frictionless pain free movement supporting locomotion, spatial positioning relative to the environment and active manipulation of the surroundings. These
skeletal joints have a strong fibrous capsule enclosing bone ends encapsulated by smooth continuous cartilage surfaces to accomplish this function. This biologic configuration represents the majority of skeletal joints in the human body.
[0005 ] The encapsulating surface on the ends of moving bones is known as hyaline cartilage, a hydrated soft tissue comprised of collagen, trapped proteoglycans, other
proteins and chondrocytes. This tissue is more commonly known as articular cartilage or native articular cartilage. This ordered tissue provides a resilient, continuous layer of protective tissue on the bone ends. In addition to protecting the bone ends, it also helps develop an
extraordinarily low coefficient of friction during joint movement, by interacting with the synovial fluid.
[0006 ] The resiliency of articular cartilage is
supported by a dense bone layer, called the subchondral plate, which provides foundational strength for the articular cartilage. The bone side of the subchondral plate is supported by cancellous bone. Cancellous bone is a highly porous structure with a stiffness l/10h that of the subchondral plate. The cancellous bone acts to distribute loads across the joint in the metaphyseal region of bone ends .
[0007 ] Skeletal joints are subject to wear and tear though use, trauma and aging. These factors eventually cause biologic changes to the articular cartilage resulting in arthritis, a group of progressive conditions ultimately resulting in irreversible damage to the articular cartilage in skeletal joints.
[ 0008 ] As damage to the affected articular cartilage surfaces progress, the smooth continuous layer of
protective tissue becomes torn and discontinuous. Unlike other tissues, the body is unable to regenerate this well ordered hyaline cartilage and substitutes a less durable, rougher form of cartilage known as fibrocartilage . This less protective fibrocartilage increases the coefficient of friction in the joint and results in a greater volume of microfracturing in the cancellous bone. In reaction to this structural breakdown, the body reacts by thickening the subchondral plate to assist in distributing the load across the bone end. Researchers have sighted this stiffening of the subchondral bone as a possible mechanism for the initiation of cartilage damage. This may be why untreated cartilage lesions cause arthritis to progress and affect larger areas of articular cartilage in a joint over time, leading to activity limiting pain and decreased joint function .
[ 0009 ] Osteoarthritis (OA) or Degenerative Joint Disease (DJD) is the most common form of arthritis and presents the patient with debilitating pain during daily activities. It is the leading cause of chronic disability in the United States in the middle-aged population, but affects people of all ages. It is estimated that 21 million people have a form of arthritis in the US, accounting for 25% of visits to primary care physicians and half of all NSAID (Nonsteroidal Anti- Inflammatory Drugs) prescriptions.
[0010] OA commonly affects the joints at the hips, knees, shoulder, elbow and spine, and small joints such as those found in the hands and feet. As a result, various methods have been developed to treat and repair damaged or destroyed articular cartilage.
[0011] For smaller defects, usually identified early in the onset of arthritis during diagnostic workups,
arthroscopic debridement, abrasion arthroplasty or abrasion chondralplasty procedures are conducted. The principle behind these procedures is to stimulate bleeding of the subchondral bone bed by abrading it with a burr or shaver to stimulate the fibrocartilage healing response. Although this procedure has been widely used over the past two decades, with good short term results out to three years, the resulting fibrocartilage developed in the healed area does not always support longer term low friction weight bearing function.
[0012] Another procedure referred to as "microfracture" incorporates the concept of fibrocartilage healing by removing the damaged cartilage layer and using a surgical awl to perforate the subchondral bone. This technique creates a replacement surface similar in type and outcome to the one created from the abrasion chondralplasty
technique . [0013] Transplantation of previously harvested hyaline cartilage cells, known as cell -based therapy, has been utilized in recent years. This technique uses autologous chondrocytes obtained from a specimen of articular
cartilage obtained from an uninvolved area of the injured joint. The cartilage cells are isolated, cultured and implanted in the defect area under a periosteal flap.
Compared to the previously discussed abrasion techniques, this procedure requires a lengthy post-operative non-weight bearing course and is still viewed somewhat as experimental because of the technical challenges involved in the procedure producing variations in patient outcomes.
[0014] Cartilage transplant, referred to as Mosaicplasty or Osteoarticular Transfer System (OATS) is a technique utilizing articular tissue grafts in the form of plugs. These plugs consist of articular cartilage, subchondral bone and cancellous bone to assure they heal to the bone and surrounding articular cartilage in the surgically prepared defect region.
[0015] Two different types of donor plugs are harvested for this procedure. The first is taken from a matched articular location in a cadaver bone (allograft) . The second type is taken directly from the patient (autograft) in boundary or non-weight bearing locations in the joint being reconstructed.
[0016] In either case, the technique for utilizing articular cartilage grafts is challenging. Success of the technique requires accurate harvesting and positioning of single or multiple plugs to reconstruct the articular surface of the subject joint. The plug must be harvested perpendicular to the articular surface, then positioned perpendicular and flush with the retained articular cartilage surrounding the defect area. If the grafts are placed too far below the level of the surrounding articular surface, no benefit from the procedure will be gained and cartilage damage can progress beyond the perimeter of the original defect. If the grafts are placed proud to the surrounding articular surface, detrimental effects can be seen on the mating articular surface over time in the joint. This is important to consider since arthritis often affects one side of an articular joint first before progressing to the mating surface.
[ 0017 ] The result of positioning these plugs in a mosaic-like fashion establishes a new hyaline cartilage surface. The result is a hyaline-like surface interposed with a fibrocartilage healing response between each graft. In addition to the many challenges discussed surrounding this procedure, a lengthy post-operative non-weight bearing course is required to improve the patient's chance for success in restoring functional articular cartilage in the skeletal joint.
[0018 ] Other clinical challenges exist beyond the technique issues previously discussed. In the case of allograft plugs graft availability, potential disease transmission and tissue quality are all concerns. In the case of autograft plugs, the quantity and articular shape of available tissue create limitations in the defect size to be treated.
[ 0019 ] Advances in tissue engineering are beginning to provide treatments to repair focal cartilage lesions in skeletal joints by implanting collagen based scaffold devices, with and without impregnated autologous
chondrocytes (cartilage cells) . This reconstructive technique, referred to as scaffold guided regeneration, establishes a generic tissue foundation which is converted over time by the body into hyaline cartilage. Initial results using this reconstructive technique show promise, but are currently used in non-weight bearing applications which limit their use in reconstructive procedures
presently favoring more traditional devices made from implantable metals, ultra high molecular weight
polyethylene (UHMWPE) and ceramics.
[0020] One type of joint replacement technique using more traditional devices is called hemi-arthroplasty . This reconstructive procedure replaces one bone end of the two or more bone ends comprising a skeletal joint. The procedure leaves the healthy part or parts of the joint unaltered. The challenge is for the artificial implant to articulate with the native cartilage surfaces over time without recreating painful arthritis as the healthy
cartilage tissue becomes arthritic. Clinical experience in using hemi -arthroplasty implants with metal articular surfaces in younger more active patients has shown
undesirable thinning and damage of the mating native articular cartilage in early term follow-up. For this reason, this class of procedure is most commonly performed in older patients following a hip fracture. During hemiarthroplasty of the hip, the surgeon removes the damaged bone and cartilage from the hip joint, usually the femoral head. The healthy mating surface in the acetabulum or pelvis is left intact. One such implant in accordance with the prior art is shown in FIG. 1A and is further described in U.S. Patent No. 6,096,084 to Townley. The implant 20 can be used for hemi -arthroplasty or in total arthroplasty. The implant 20 may have a ceramic head 22 and a metal stem 24, which is implanted in the proximal region of the femur. The metal stem 24 in Townley is made of cobalt chrome, which is a cobalt-chromium-molybdenum alloy, a metal alloy often used for reconstructive implants. The stem provides a means for fixing the implant to bone to stabilize the artificial articular surface. Similar devices to this hip implant are used in the shoulder, knee, ankle, hands and feet .
[0021] When arthritis progresses to all aspects of an articular joint a total joint arthroplasty is performed to reconstruct the cartilage on all bone ends making up the skeletal joint. This comprehensive procedure is required to effectively resolve the activity limiting pain caused by the arthritis. In a total knee, for example, a highly polished metal implant is placed onto the distal femur. A modular metal tray is implanted in the proximal tibia and a UHMWPE bearing joined to it to articulate with the highly polished femoral component. A UHMWPE patellar implant is placed to resurface the patella and articulate against the anterior flange of highly polished femoral implant. This completely resurfaces the femoral-tibial and patella- femoral articular surfaces in the total knee replacement.
[0022] The risks involved in joint arthroplasty
described previously include mal-position of the
components, skeletal loosening, instability/dislocation, loss of range of motion and recurring activity limiting pain .
[0023] One long term risk is loosening of the
components, because the bond between the bone and the components or the cement may break down or fatigue.
Various approaches in the prior art attempt to address the loosening risk. For example, U.S. Patent No. 6,685,987 describes a porous coating comprised of metallic particles applied over a cobalt chromium molybdenum alloy implant.
[0024] Generally joint replacement bearing surfaces are made of cobalt chromium; however other materials have been used or proposed including titanium and titanium alloys. U.S. Patent Application Publication No. 2005/0107888 to Khandkar et al . describes a metal-ceramic composite for joint replacement materials. U.S. Patent No. 6,398,815 to Pope et al . describes a prosthetic joint with diamond like surfaces .
[0025] As described above, the replacement with
prosthetic joints is currently the preferred option for serious degeneration of joint function involving loss of articular cartilage. Other techniques include U.S. Patent No. 7,029,479 to Tallarida et al . that discloses a method for joint resurface repair which involves mapping and measuring the articular surface, U.S. Pat. No. 5,782,835 to Hart et al . that discloses an apparatus and method for repair of articular cartilage including a bone plug removal tool, and a bone plug emplacement tool, U.S. Pat. No.
6,679,917 to Ek that discloses an implant for installation into a portion of an articular surface including a
protrusion configured to cover an un-excised portion of the articular surface proximate to the implant, U.S. Pat. No. 5,413,608 to Keller that discloses a knee joint
endoprosthesis for replacing the articular surfaces of the tibia comprising a bearing part that is anchored on the bone having an upper bearing surface and a rotatable plateau secured on the bearing surface and forming a part of the articular surface to be replaced, U.S. Pat. No.
5,632,745 to Schwartz that describes a method of surgically implanting into a site a bio-absorbable cartilage repair assembly, U.S. Pat. No. 5,683,466 to Vitale that discloses an articular joint surface replacement system having two opposing components, U.S. Pat. No. 5,702,401 to Shaffer that discloses an intra-articular measuring device
including a hollow handle defining a first passageway and a hollow tube having a second passageway extending from the handle, and U.S. Pat. No. 5,771,310 to Vannah that
describes a method of mapping the three-dimensional topography of the surface of an object by generating digital data points at a plurality of sample points on said surface. Another implant is described in U.S. Publication No. 2003/0074081 to Ayers that describes a method for production of tissue implants and prosthetics. U.S.
Publication No. 2007/0113951 to Huang describes an
osteochondral composite scaffold for articular cartilage repair .
[0026] Another orthopedic procedure involves fusing bones together and is clearly distinct from joint
replacement. One such application is for spinal fusion. For example U.S. Patent Application Publication No.
2005/0049706 and U.S. Patent No. 6,790,233 to Brodke et al . describe radio lucent spinal fusion cages, one of which is shown in FIG. IB. The cage includes a substrate block 30 having a high bio-mechanical strength and load bearing capacity to support the spinal vertebrae 32 and a porous silicon nitride ceramic portion 34 to promote bone ingrowth and fusion. Other examples of fusing bones together include U.S. Patent Application Publication No.
2006/0271201 to Kumar et al . that describes using porous ceramic 36 to repair defects in bone 38, as shown in FIG. 1C, and U.S. Patent No. 6,607,557. Because these devices are intended to fuse bones together, they are inappropriate for repair of damaged joints which by their nature should have free movement .
[0027] The reconstructive prior art methods for
articular cartilage repair previously discussed have disadvantages and drawbacks related to treating early stage arthritis to prevent progression to a more final stage requiring total joint replacement.
[0028] What is needed is a more versatile articular orthopedic implant to function in a collaborative
environment with native tissue. Also needed is a non- resorbable implant to support loads imposed by an opposing joint end. In particular what is needed is an implant that will facilitate surgical repair of focal, regional and global articular cartilage and osteochondral defects on a bone end of a skeletal joint to prevent or delay the global progression of arthritis to the entire joint. The
embodiments of the present disclosure answer these and other needs .
SUMMARY
[0029] In a first embodiment disclosed herein, a monolithic orthopedic implant includes a porous region having a form of interconnected porosity similar to cancellous bone to promote skeletal fixation by bone ingrowth, a transition region adjacent to and integrally joined to the porous region, the transition region having a form of interconnected porosity similar to subchondral bone, a substantially dense region integrally joined to the transition region and having a perimeter, and a surface on the substantially dense region, the surface having a finish adapted for articulation against native articular
cartilage .
[ 0030] In another embodiment disclosed herein, an orthopedic implant comprises a porous region having a form of interconnected porosity similar to cancellous bone to promote skeletal fixation by bone ingrowth, and a
transition region adjacent to and integrally joined to the porous region, the transition region having a form of porosity similar to subchondral bone, wherein the
transition region is adapted to promote regeneration of articular cartilage, and wherein the porous region and the transition region are non-resorbable .
[0031] In another embodiment disclosed herein, a dental implant comprises a porous region having a form of
interconnected porosity similar to cancellous bone to promote skeletal fixation by bone ingrowth, and a
substantially dense region integrally joined to the porous region, the substantially dense region having a top surface and a perimeter, wherein the top surface and the perimeter are adapted to be compatible with oral gum tissue, and wherein the porous region and the substantially dense region are non-resorbable.
[ 0032 ] In another embodiment disclosed herein, a method of forming a monolithic orthopedic implant includes forming a porous region having a form of interconnected porosity similar to cancellous bone to promote skeletal fixation by bone ingrowth, forming a transition region adjacent to and integrally joined to the porous region, the transition region having a form of interconnected porosity similar to subchondral bone, forming a substantially dense region integrally joined to the transition region and having a perimeter, and forming a surface on the substantially dense region, the surface having a finish adapted for articulation against native articular cartilage, wherein the porous region has a porosity gradient that increases as a distance from the substantially dense region increases, and wherein the porous region, the transition region and the substantially dense region are non-resorbable .
[0033] In yet another embodiment disclosed herein, a method for orthopedic surgery includes removing a portion of the articular cartilage at an implant site, forming a socket in bone underlying the articular cartilage to a depth placing the surface of the substantially dense region of the monolithic implant approximately flush to the articular cartilage at the implant site, and implanting a monolithic orthopedic implant into the socket, the
monolithic orthopedic implant comprising a porous region having a form of interconnected porosity similar to cancellous bone to promote skeletal fixation by bone ingrowth, a transition region adjacent to and integrally joined to the porous region, the transition region having a form of interconnected porosity similar to subchondral bone, a substantially dense region integrally joined to the transition region, and a surface on the substantially dense region, the surface having a finish adapted for
articulation against native articular cartilage, wherein the porous region, the transition region, the substantially dense region, and the surface are non-resorbable.
[0034] In yet another embodiment disclosed herein, an orthopedic implant comprises a three dimensional framework of structural members with interstitial interconnected passages there between, wherein the structural members comprise non-resorbable ceramic, and wherein each structural member is similar in size to a trabecula in bone .
[0035] In an embodiment disclosed herein, a monolithic material comprises a first region having a first
variability of strength, and a second region joined to the first region, the second region having a second variability of strength, wherein the monolithic material has a
variability of strength less than the first variability of strength of the first region and less than the second variability of strength of the second region.
[0036] In another embodiment disclosed herein, a monolithic orthopedic implant comprises a porous region having a first variability of strength, a transition region integrally joined to the porous region and having a second variability of strength, a substantially dense region integrally joined to the transition region and having a third variability of strength, and a surface on the substantially dense region, the surface having a finish adapted for articulation against native articular
cartilage, wherein the variability of strength of the monolithic orthopedic implant is less than the first, second, and third variability of strengths.
[0037] In yet another embodiment disclosed herein, a method of providing a monolithic material comprises forming a porous region having a first variability of strength, and forming a substantially dense region joined to the porous region and having a second variability of strength, wherein the variability of strength of the monolithic material is less than the first and second variability of strengths.
[0038] In still another embodiment disclosed herein, a method of providing a monolithic material comprises forming a first region having a first variability of strength, and forming a second region joined to the first region, the second region having a second variability of strength, wherein the monolithic material has a variability of strength less than the first variability of strength of the first region and less than the second variability of strength of the second region.
[0039] In another embodiment disclosed herein, an orthopedic implant comprises a first region for attachment to a bone, and a second region coupled to the first region, the second region having a perimeter and comprising a concave articular surface on top of the second region, and a convex surface between the perimeter and the concave articular surface.
[0040] In yet another embodiment disclosed herein, a method for providing an orthopedic implant comprises forming a first region for attachment to a bone, and forming a second region coupled to the first region, the second region having a perimeter and comprising a concave articular surface on top of the second region, and a convex surface between the perimeter and the concave articular surface .
[0041] In still another embodiment disclosed herein, a method for orthopedic surgery comprises implanting an orthopedic implant, wherein the orthopedic implant
comprises a first region for attachment to a bone, and a second region coupled to the first region, the second region having a perimeter and comprising a concave
articular surface on top of the second region, and a convex surface between the perimeter and the concave articular surface .
[0042] These and other features and advantages will become further apparent from the detailed description and accompanying figures that follow. In the figures and description, numerals indicate the various features, like numerals referring to like features throughout both the drawings and the description.
BRIEF DESCRIPTION OF THE DRAWINGS
[0043 ] FIG. 1A shows an implant that can be used for hemi-arthroplasty joint repair in accordance with the prior art ;
[0044] FIG. IB shows an implant for fusing spinal vertebrae in accordance with the prior art;
[0045] FIG. 1C shows an implant for repairing bone defects in accordance with the prior art;
[0046] FIG. 2A shows a cross section of a monolithic orthopedic implant in accordance with the present
disclosure ;
[0047 ] FIG. 2B shows cross section of another monolithic orthopedic implant in accordance with the present
disclosure ;
[0048] FIG. 2C shows a cross section of yet another monolithic orthopedic implant in accordance with the present disclosure;
[0049] FIG. 3 shows a perspective view of a monolithic orthopedic implant with the porous region having the shape of a cylindrical plug in accordance with the present disclosure ;
[0050] FIGs . 4A-4E show perspective views of a
monolithic orthopedic implant with the porous region having the shape of a tapered plug in accordance with the present disclosure. The monolithic orthopedic implants shown in FIGs. 4B-4E show protrusions or dimples on the
substantially dense region in accordance with the present disclosure;
[0051] FIG. 5 shows a perspective view of a monolithic orthopedic implant with the porous region having a hollow interior in accordance with the present disclosure;
[0052] FIG. 6 shows a perspective view of a monolithic orthopedic implant with a porous region and a substantially dense region with a perimeter adapted to promote healing of surrounding articular cartilage in accordance with the present disclosure;
[0053] FIG. 7A shows a perspective view of a monolithic orthopedic implant with a porous region and a substantially dense region having a greater thickness to match the thickness of surrounding articular cartilage in accordance with the present disclosure;
[0054] FIG. 7B shows a perspective view of a monolithic orthopedic implant with the porous region and a
substantially dense region having size that is relatively smaller than the top surface of the porous region in accordance with the present disclosure; [ 0055 ] FIG. 7C shows a perspective view of a monolithic orthopedic implant with a porous region and a substantially dense region having size that is relatively larger than the top surface of the porous region in accordance with the present disclosure;
[ 0056 ] FIG. 8A shows a perspective view of a monolithic orthopedic implant with a porous region and a substantially dense region having a polygonal shape or a pentagonal shape in accordance with the present disclosure;
[ 0057 ] FIG. 8B shows a perspective view of a monolithic orthopedic implant with a porous region and a substantially dense region having a polygonal shape or a hexagonal shape in accordance with the present disclosure;
[ 0058 ] FIG. 8C shows a perspective view of a monolithic orthopedic implant with a porous region and a substantially dense region having a polygonal shape or a triangular shape in accordance with the present disclosure;
[0059 ] FIG. 9A shows a perspective view of a monolithic orthopedic implant with a porous region and a substantially dense region having a beveled perimeter in accordance with the present disclosure;
[0060 ] FIG. 9B shows a perspective view of a monolithic orthopedic implant with a porous region and a relatively smaller sized substantially dense region having a beveled perimeter in accordance with the present disclosure;
[0061] FIG. 9C shows a perspective view of a monolithic orthopedic implant with a porous region and a relatively larger sized substantially dense region having a beveled perimeter in accordance with the present disclosure;
[ 0062 ] FIG. 10A shows a perspective view of a monolithic orthopedic implant with a porous region and a substantially dense region having a reverse bevel perimeter in accordance with the present disclosure;
[ 0063 ] FIG. 10B shows a perspective view of a monolithic orthopedic implant with a porous region and a relatively smaller sized substantially dense region having a reverse bevel perimeter in accordance with the present disclosure;
[0064 ] FIG. IOC shows a perspective view of a monolithic orthopedic implant with a porous region and a relatively larger sized substantially dense region having a reverse bevel perimeter in accordance with the present disclosure;
[ 0065 ] FIG. 11A shows a perspective view of a monolithic orthopedic implant with a porous region and a substantially dense region with an articular surface having a relative concave spherical shape to match a skeletal joint in accordance with the present disclosure;
[ 0066] FIG. 11B shows a perspective view of a monolithic orthopedic implant with a porous region and a substantially dense region with an articular surface having a relative concave shape with a radius in one plane to match a skeletal joint in accordance with the present disclosure;
[ 0067 ] FIG. llC shows a perspective view of a monolithic orthopedic implant with a porous region and a substantially dense region with an articular surface having a relative concave shape with two differing radii in two planes to match a skeletal joint in accordance with the present disclosure ;
[ 0068 ] FIG. 11D shows a perspective view of a monolithic orthopedic implant with a porous region and a substantially dense region with an articular surface having a concave shape in one plane and a convex shape in another plane to match a skeletal joint in accordance with the present disclosure ;
[0069 ] FIG. 12A shows a perspective view of a monolithic orthopedic implant with a porous region and a substantially dense region with an articular surface having a convex spherical shape to match a skeletal joint in accordance with the present disclosure;
[ 0070] FIG. 12B shows a perspective view of a monolithic orthopedic implant with a porous region and a substantially dense region with an articular surface having a convex shape with a radius in one plane to match a skeletal joint in accordance with the present disclosure;
[ 0071] FIG. 12C shows a perspective view of a monolithic orthopedic implant with a porous region and a substantially dense region with an articular surface having a convex shape with two differing radii in two planes to match a skeletal joint in accordance with the present disclosure;
[0072 ] FIG. 13A shows a perspective view of a monolithic orthopedic implant with a porous region with two porous projections and a substantially dense region with an articular surface in accordance with the present
disclosure ; [ 0073 ] FIG. 13B shows a perspective view of a monolithic orthopedic implant with a porous region and a substantially dense region with an articular surface having a shape to provide a patch in accordance with the present disclosure;
[ 0074] FIG. 13C shows a perspective view of a monolithic orthopedic implant with a porous region on the inside and a substantially dense region having a shell like shape characteristic of a spheroidal skeletal joint in accordance with the present disclosure;
[ 0075 ] FIG. 13D shows a perspective view of a monolithic orthopedic implant with a porous region on the outside and a substantially dense region having a concave spheroidal shape which can mate with the substantially dense region of FIG. 13C in accordance with the present disclosure;
[ 0076 ] FIG. 14A shows a perspective view of the
monolithic orthopedic implant of FIG. 4A implanted in a femur bone to provide a repair for native articular cartilage on the bone in a skeletal joint in accordance with the present disclosure;
[ 0077 ] FIG. 14B shows a perspective view of a plurality of the monolithic orthopedic implants of FIG. 8B implanted in a femur bone adjacent to one another to create a continuous articular surface of a varying contour to provide a repair for native articular cartilage on the bone in a skeletal joint in accordance with the present
disclosure;
[ 0078 ] FIG. 14C shows a perspective view of the
monolithic orthopedic implant of FIG. 13A implanted in a femur bone to provide a repair for native articular cartilage on the bone in a skeletal joint in accordance with the present disclosure;
[0079] FIG. 14D shows a perspective view of the
monolithic orthopedic implant of FIG. 13B implanted in a tibial bone to provide a repair for native articular cartilage on the bone end in a skeletal joint in accordance with the present disclosure;
[0080] FIG. 15A shows a perspective view of an
orthopedic implant with a porous region and a transition region in accordance with the present disclosure.
[0081] FIG. 15B shows a scaffold coupled to the
transition region of FIG. 15A in accordance with the present disclosure.
[0082] FIG. 15C shows a perspective view of an
orthopedic implant with a porous region having a hollow interior and a transition region in accordance with the present disclosure.
[0083] FIG. 15D shows a perspective view of a dental implant in accordance with the present disclosure.
[0084] FIG. 16A shows a perspective view of a monolithic non- resorbable porous implant in accordance with the present disclosure;
[0085] FIG. 16B shows a perspective view of a monolithic non-resorbable porous implant having a hollow interior in accordance with the present disclosure; [0086] FIG. 17 is a flow diagram for fabricating a monolithic orthopedic implant in accordance with the present disclosure;
[0087] FIGs. 18A and 18B are flow diagrams of a method of orthopedic surgery in accordance with the present disclosure ;
[0088] FIG. 19 is a flow diagram of a method for providing a monolithic material in accordance with the present disclosure;
[0089] FIG. 20 is a flow diagram of another method for providing a monolithic material in accordance with the present disclosure;
[0090] FIG. 21A shows a torn labrum and FIG. 21B illustrates a labrum repair in accordance with the prior art ;
[0091] FIGs. 22A and 22B show a orthopedic implants in accordance with the prior art;
[0092] FIG. 23 shows three acetabular shell implants in accordance with the prior art;
[0093] FIG. 24 shows a pelvis with an orthopedic implant ;
[0094] FIGs. 25A - 25D show orthopedic implants in accordance with the present disclosure;
[0095] FIG. 26 illustrates cartilage overgrowth over an implant in accordance with the present disclosure; [0096] FIG. 27 is a flow diagram of a method of providing an orthopedic implant in accordance with the present disclosure;
[0097] FIG. 28 is a flow diagram of a method of orthopedic surgery in accordance with the present
disclosure; and
[0098] FIGs. 29A - 29B show another orthopedic implant in accordance with the present disclosure.
DETAILED DESCRIPTION
[0099] In the following description, numerous specific details are set forth to clearly describe various specific embodiments disclosed herein. One skilled in the art, however, will understand that the presently claimed invention may be practiced without all of the specific details discussed below. In other instances, well known features have not been described so as not to obscure the invention .
[00100] Referring now to FIG. 2A, a cross section of a monolithic orthopedic implant 50 is shown which is adapted for articulating with articular cartilage in accordance with the present disclosure. In one embodiment the monolithic orthopedic implant may have a porous region 52, integrally joined to a substantially dense region 54. In order to promote skeletal fixation by bone ingrowth, the porous region 52 has a form of interconnected porosity adapted to be similar to cancellous or trabecular bone. The surface 60 of the substantially dense region 54 preferably has a finish adapted for articulation of the surface 60 against native articular cartilage on an opposing joint. The substantially dense region 54 may have a thickness that is adapted to the thickness of the native articular cartilage at the implantation site of the monolithic orthopedic implant.
[ 00101] In another embodiment a transition region 58 may be between a porous region 56, which as shown in FIG. 2A may be a portion of the porous region 52, and the
substantially dense region 54. The porous region 56 may be adapted to have a form of interconnected porosity similar to cancellous bone. The transition region 58 may be adapted to have a form of interconnected porosity similar to subchondral bone. Thus, the monolithic orthopedic implant 50 has a porous region 56 adapted for ingrowth of cancellous bone to ensure that the monolithic orthopedic implant is securely implanted, a transition region 58 adapted to have a form of porosity similar to subchondral bone to facilitate fluid transfer similar to fluid transfer through subchondral bone, a substantially dense region 54 for bearing loads imposed by an opposing joint end, and a surface 60 on the substantially dense region 54 with a finish adapted for articulation against native articular cartilage. The thicknesses of the transition region 58 and the substantially dense region 54 may be adapted to be similar to the thicknesses of the subchondral bone and the native articular cartilage, respectively, at the
implantation site for the monolithic orthopedic implant. [ 00102 ] The substantially dense region 54 has relatively little or no porosity compared to the porous region 56 and the transition region 58. The following discusses porosity as it relates to present disclosure.
[ 00103 ] The bulk porosity (Pb) of a material is inversely proportional to the bulk density (Db) of the material, which can be calculated by dividing the total mass (Mtot) by the total volume (Vtot) , where the mass and volume of a solid portion of the material and a porous portion of the material are designated by (Ms, Vs) and (Mp, Vp) ,
respectively :
[ 00104] Db = (Mtot) / (Vtot) = (Ms + Mp) / (Vs + Vp) , (1) and because the mass of porous portion of a material can be considered to be zero, equation 1 can be rewritten as:
[ 00105 ] Db = (Mtot) / (Vtot) = (Ms)/(Vs + Vp) . (2)
[ 00106] Thus, the bulk porosity (Pb)of a material is therefore :
[ 00107 ] Pb ~ 1/Db = (Vs + Vp)/Ms. (3)
[00108 ] The porosity that may be most deleterious to a surface having a finish adapted for articulation against native articular cartilage, such as surface 60, is porosity with pores connected to the material surface. A material with substantial porosity is generally not appropriate for surface 60, because there can be material breakage under and at the edges of pores of such a material . It is also more difficult to polish porous materials, because coarser abrasive particles from early stages of grinding and polishing can become trapped in the pores, and then the particles can escape during polishing and finishing, which causes unwanted scratches and surface damage.
[ 00109] On the other hand, open and interconnected pores are preferable for promoting bone ingrowth.
[ 00110] The monolithic orthopedic implant of the present disclosure solves this contradiction in desired properties by providing the porous region 56 with a form of
interconnected porosity of a form similar to cancellous bone, the transition region 58 with a form of
interconnected porosity similar to subchondral bone, and the substantially dense region 54 with relatively little if any porosity, which are all integrally joined to form the monolithic orthopedic implant 50. In one embodiment the substantially dense region 54 may have a bulk porosity of 4% or less, and in another embodiment the bulk porosity of the substantially dense region 54 may be .1% or less. The porous region 56 may have a bulk porosity of 50% or greater. The transition region 58 has an interconnected porosity that is relatively lower than the porous region 56 to provide strength while supporting capillary movement of fluid between the cancellous bone and articular cartilage. The result is an orthopedic implant 50 that provides a scaffold for bone ingrowth and fluid communication between the cancellous bone and cartilage, while providing strength and a surface that can be finished for articulation against native articular cartilage.
[ 00111] In the following the porous region is referred to as porous region 56, although it should be understood that in the following reference to a porous region may also refer to the porous region 52, which includes the porous region 56 and the transition region 58.
[00112] The monolithic orthopedic implant 50 is
preferably non-resorbable . Thus, the porous region 56, the transition region 58, and the substantially dense region 54 are not resorbed or converted into a specific tissue type by the body and do not lose any substance over time when implanted in a skeletal joint location. This avoids a disadvantage of many prior art implants, because in some of those implants the biologic timing of this resorption or conversion happens relatively quickly causing cyst
formation and a loss of structural support for the
articular cartilage, a clearly undesirable phenomenon.
[00113] The dividing line between the porous region 56 and the transition region 58, shown in FIG. 2A, may be somewhat arbitrary as the porous region 56 may gradually change into the transition region 58.
[00114] The porous region 56, and also the transition region 58 may have porosity gradients that increase as a distance from the substantially dense region 54 increases. In general the porous region 56 may be described as having a three dimensional framework with interconnected
structural members with interstitial interconnected passages between the structural members. Each structural member may be similar in size to a trabecula in bone. This structure allows fluid to flow through the porous region 56 which provides for cell transfer that encourages and sustains bone ingrowth. As discussed above, the structure of the transition region 58 is adapted to have a form of porosity similar to subchondral bone, which facilitates capillary movement of fluid between the cancellous bone and articular cartilage.
[ 00115 ] In one embodiment the porous region 56 has interconnected pore passageways each with a dimension less than 1000 micrometers to promote bone ingrowth. In another embodiment the porous region 56 has interconnected pore passageways each with a dimension between 200 micrometers and 600 micrometers to promote bone ingrowth.
[00116] The porous region 56 may be further adapted to promote bone ingrowth for bone fixation. In one embodiment the porous region 56 has a roughness, characterized by a frictional coefficient similar to cancellous bone, which is generally greater than 0.5. The frictional coefficient is a biomechanical characterization of friction between cancellous bone and cortical bone. The frictional
coefficient of the porous region 56 helps prevent the formation of a fibrous layer, which can retard bone ingrowth. The roughness may be on the outside of the porous region 56 and also on the inside of the porous region 56. The porous region 56 is preferably a three dimensional framework of interconnected structural members with interstitial interconnected passages there between and the roughness may be on the structural members, which provides a microstructure to promote bone ingrowth and fixation by facilitating cell adhesion. Each structural member may be similar in size to a trabecula in bone.
[ 00117 ] In another embodiment the porous region 56 has a hydrophilic or a charged surface that can influence a cell population to enhance bone ingrowth for bone fixation.
These surface modifications have been shown to attract a cell population and/or influence the organization of cells to enhance healing of the surrounding native articular cartilage .
[00118] In yet another embodiment the porous region 56 may include a bioactive mineral coating, which may be hydroxyapatite, bioglass, or a form of calcium phosphate, nonlimiting examples of which are tri-calcium phosphate
(TCP) , alpha TCP, or beta TCP, or any combination thereof to promote bone ingrowth for bone fixation.
[00119] In still another embodiment the porous region 56 may include a bioengineered coating to promote bone ingrowth for bone fixation. The bioengineered coating may consist of one or more proteins, a peptide, or any combination thereof. An example of a peptide is a synthetic peptide analogue of collagen designed to create biomimetic cell binding habitats. Examples of proteins that can be used include the family of bone morphogenetic proteins, known as BMP's.
[00120] The surface 60 on the substantially dense region 54 may be finished to a surface roughness of 6 micrometers Ra or less for articulation with articular cartilage on an opposing joint. The 6 micrometers Ra or less surface roughness provides a smooth surface for opposing
articulating cartilage in a joint to ride or bear upon, which avoids the wear and eventual tearing of the
articulating cartilage that would occur if the surface roughness were high, especially if the surface had open pores. In one embodiment, the surface roughness is less than .025 micrometers Ra.
[00121] The porous region 56, the transition region 58, and the substantially dense region 54 may have the same material composition. For example, in one embodiment the monolithic orthopedic implant 50 may be entirely made of ceramic. Partially stabilized zirconia is a preferred material for the entire monolithic orthopedic implant 50. In another embodiment the porous region 56, the transition region 58, and the substantially dense region 54 are composed of different material compositions, and in this embodiment the transition region 58 may have a composition that is a mix of the composition of the porous region 56 and the composition of the substantially dense region 54.
[ 00122 ] FIG. 2B shows a cross section of another
embodiment of a monolithic orthopedic implant having an articular finished surface 60 on a substantially dense region 310. This embodiment is similar to the embodiment of FIG. 2A, except that in this embodiment, the transition region 312 is on a portion of the perimeter 311 of the substantially dense region 310 and also between the substantially dense region 310 and a porous region 314. By surrounding a portion of the perimeter 311 of the
substantially dense region 310, the transition region 312, which is adapted to be similar to subchondral bone, provides for healing of the native articular cartilage surrounding the monolithic orthopedic implant.
[00123 ] A cross section of another embodiment of the monolithic orthopedic implant is shown in FIG. 2C. This embodiment is similar to FIG. 2B and is for the purpose of illustrating one method of forming the articular surface 320. The substantially dense region 310 or the entire monolithic orthopedic implant 324 may be thermally
processed to form the articular surface 320 on top of the substantially dense region 310. The thermal processing may include oxidizing, coating or deposition. Thermal
processing of the articular surface may be performed using a laser. For example, when zirconium is thermally
processed then zirconia, which is a ceramic, may be formed on the outside of the zirconium to form the articular surface 320 of the monolithic orthopedic implant.
[00124] The thermal processing may also form a thin layer 322 on the porous region 314 and the transition region 312; however, this thin layer 322 preferably does not close the pores on or in the porous region 314 and the transition region 312, so that the pores remain open.
[00125] The articular surface 320 may be formed by depositing material. For example, pyrolytic carbon or diamond- like carbon may be deposited on the substantially dense region. Yet another method to form the articular surface 320 is coating the substantially dense region with, for example, ceramic or ceramic like material.
[00126] Throughout the following description, the
embodiments are generally described with reference to the embodiment of FIG. 2A. However, the embodiments of FIGs . 2B and 2C are also applicable to embodiments described below. References to the monolithic orthopedic implant 50 may also refer to the monolithic orthopedic implants of FIGs. 2B and 2C. For example, references to the porous region 56 also refer to porous region 314, and references to the transition region 58 also refer to the transition region 312. References to the substantially dense region 54 also refer to the substantially dense region 310.
Similarly, the articular surface 60 may also refer to articular surface 320. [ 00127 ] The porous region 56, the transition region 58, the substantially dense region 54 and the surface 60 may have a Vickers hardness of 500 MPa or greater, a nickel content of less than 4%, and a chrome content of less than 10%. Alternatively, the monolithic orthopedic implant 50 may have a substantially dense region 54, which is formed from materials with a Vickers hardness of 1000 MPa or greater and with a bulk porosity of 4% or less. In another embodiment the monolithic orthopedic implant 50 may have a substantially dense region 54, which is formed from materials with a Vickers hardness of 1200 MPa or greater and with a bulk porosity of .1% or less.
[ 00128] The substantially dense region 54 may have a composition of materials chosen from the group consisting of oxides, nitrides, carbides or borides, which are all ceramics or any combination thereof. Alternatively, the substantially dense region 54 may include a coated metal selected from oxidized, nitrided- , carburized- or
boronized- titanium, zirconium, hafnium, tantalum or molybdenum or any combination thereof. For example, oxidized zirconium forms a coating of zirconia on the outside of the zirconium. One coating that can be used is a thin diamond like coating, which can be polished to the desired very low surface roughness . In another embodiment the substantially dense region 54 may be of a material chosen from the group consisting of partially stabilized zirconia, alumina, silicon nitride or SiAlON or any combination thereof. As discussed above a preferred material for the substantially dense region 54 is partially stabilized zirconia. [ 00129] The transition region 58 and the porous region 56 may be formed from materials from the group consisting of oxides, carbides, nitrides, or borides or any combination thereof. Alternatively, the transition region 58 and the porous region 56 may be a coated metal comprising oxidized- , nitrided- , carburized- or boronized- titanium, zirconium, hafnium, tantalum or molybdenum. The coated metal is configured for bone ingrowth and is porous. In another embodiment the porous region 56 and the transition region 58 may be formed of materials chosen from the group
consisting of partially stabilized zirconia, alumina, silica, silicon nitride, SiAlON, tantalum, titanium, or zirconium or any combination thereof. As discussed above a preferred material for the porous region 56 and the
transition region 58 is partially stabilized zirconia.
[ 00130] Another material that may be used for the
monolithic orthopedic implant is pyrolytic carbon, a biocompatible material with desirable articular surface properties .
[00131] The monolithic orthopedic implant 50 may be used in many joint locations and can be used for a femoral knee prosthesis, a tibial knee prosthesis, a patellar knee prosthesis, a femoral head hip prosthesis, an acetabular hip prosthesis, a finger or thumb prosthesis, a shoulder prosthesis, a toe prosthesis, a spine prosthesis, a wrist or ankle prosthesis, or an elbow prosthesis, among others.
[00132 ] To further promote bone ingrowth into the porous region 56, the porous region 56 may have two or more projections, such as shown in FIG. 13A, that are configured to mate with sockets formed in the bone into which the orthopedic implant 50 is implanted. [00133] FIG. 3 shows a perspective view of a monolithic orthopedic implant with the porous region 52, which may include the porous region 56 and the transition region 58, having the shape of a cylindrical plug. In this embodiment the porous region, the transition region and the
substantially dense region have approximately the same diameter .
[00134] FIG. 4A shows a perspective view of a monolithic orthopedic implant 61 with an articular surface 60 on a substantially dense region 54 and a porous region 62, which may include the porous region 56 and the transition region 58, having the shape of a tapered plug. A tapered porous region has been shown to promote bone ingrowth and may be preferable to a cylindrical plug for some implant
conditions .
[00135] FIG. 4B shows a variation of the articular surface 60 which has dimples 63 on the substantially dense region 54. Another variation of the articular surface is shown in FIG. 4C which has bumps 67 on the substantially dense region 54. The dimples 63 and the bumps 67 help facilitate hydrostasis in the mating native articular cartilage functioning against the surface of the monolithic implant. The substantially dense region 54 may also have a combination of dimples 63 and bumps 67. The number of dimples or bumps on the surface 60 may be as few as one. Dimples 63 or bumps 67 may also be on the substantially dense region 54 shown in FIG. 3, and on any of the
monolithic implant articular surfaces. The dimples 63 and/or bumps 67 serve as examples, and do not limit other protrusion and/or indentation features that can exist on the surface 60 or on the substantially dense region 54 to help facilitate the desired hydrostasis. For example, other protrusion or indentation features may include radial or angled bumps and radial or angled grooves, respectively.
[00136] In another embodiment shown in FIG. 4D, in addition to the dimples 63 and/or bumps 67 on the surface 60 of the substantially dense region 54, dimples or bumps 69 may also be on the perimeter of the substantially dense region 54. Dimples or bumps 69 help facilitate hydrostasis in the native articular cartilage surrounding the
monolithic implant to aid in healing the articular
cartilage that surrounds the perimeter of the substantially dense region 54.
[ 00137 ] In another embodiment shown in FIG. 4E the dimples or bumps 69 are only on the perimeter of the substantially dense region 54 with no dimples or bumps on the surface 60.
[00138] As discussed above, the dimples and bumps 69 serve as examples, and do not limit other protrusion and/or indentation features that can exist on the perimeter of the substantially dense region 54 to help facilitate the desired hydrostasis. For example, other protrusion or indentation features may include radial or angled bumps and radial or angled grooves, respectively.
[ 00139] FIG. 5 shows a perspective view of a monolithic orthopedic implant with the porous region 64 having a tapered shape and a hollow interior 65. The porous region 64 also has an open bottom. In surgery a cylinder or other shape of bone can be removed at the implant site and then the monolithic orthopedic implant of FIG. 5 inserted.
Because the monolithic orthopedic implant of FIG. 5 has a hollow interior 65 and open bottom, bone ingrowth can occur from the outside, as well as from the inside of the implant .
[00140] In FIG. 5 the porous region 64 is shown as tapered; however, the shape of the porous region in FIG. 5, as well as FIGs . 6, 7A-C, 8A-C, 9A-C, lOA-C, 11A-D, 12A-C, 15A-D and 16A-B may be in the form of a plug or any other shape, including a shape having two or more projections.
[00141] FIG. 6 shows a perspective view of a monolithic orthopedic implant with a porous region 62, which can have any shape, and a substantially dense region with a
perimeter 66 adapted to promote healing of surrounding articular cartilage.
[00142] In one embodiment the perimeter 66 has a
roughness, which may be 6 micrometers Ra or less( to promote healing of surrounding articular cartilage. In another embodiment the perimeter roughness may be greater than 6 micrometers Ra.
[00143] In another embodiment the perimeter 66 has a hydrophilic surface or a charged surface that influences a cell population to enhance healing of surrounding native articular cartilage. These surface modifications can attract a cell population and/or influence the organization of cells to enhance healing of the surrounding native articular cartilage.
[00144] In yet another embodiment the perimeter 66 may include a bioactive mineral coating, which may be hydroxyapatite, bioglass, or a form of calcium phosphate, nonlimiting examples of which are tri-calcium phosphate
(TCP) , alpha TCP, or beta TCP, or any combination thereof to promote healing of surrounding articular cartilage.
[ 00145] In still another embodiment the perimeter 66 may include a bioengineered coating to promote healing of surrounding articulate cartilage. The bioengineered coating may consist of a blood derived product, such as fibrin glue or fibrin clot, one or more proteins, a peptide, collagen, impregnated autologous chondrocytes, which are cartilage cells, a pharmaceutical agent, or any combination thereof.
[00146] The adaptation of the perimeter 66 discussed above in reference to FIG. 6 may also be applied to any of the other embodiments of the monolithic implant described herein, including those implants with bevels or reverse bevels on the substantially dense region.
[ 00147 ] FIG. 7A shows a perspective view of a monolithic orthopedic implant with a porous region 62 and a
substantially dense region 68 having a relatively greater thickness than the substantially dense region 54 of FIG. 4. The thickness of the substantially dense region 68 is preferably adapted to the thickness of articular cartilage surrounding a particular implant site.
[ 00148] FIG. 7B shows a perspective view of a monolithic orthopedic implant with a porous region 62 and a
substantially dense region 70 having a size that is relatively smaller than the top surface 71 of the porous region 62. This embodiment provides an exposed top surface 71 for promoting the healing of surrounding articular cartilage. The exposed top surface 71 of the porous region 62 may have a roughness as described above for the porous region, which may be on the structural members inside porous region 62. The porous region 62, as described above may include a transition region 58. In another embodiment the top surface 71 has a hydrophilic surface or a charged surface that can influence a cell population to enhance healing of surrounding native articular cartilage. The described surface modifications can attract a cell
population or influence the organization of cells to enhance healing of the surrounding native articular cartilage .
[00149] In yet another embodiment the top surface 71 may include a bioactive mineral coating, which may be
hydroxyapatite, bioglass, or a form of calcium phosphate, nonlimiting examples of which are tri-calcium phosphate
(TCP) , alpha TCP, or beta TCP, or any combination thereof to promote healing of surrounding articular cartilage.
[00150] In still another embodiment the top surface 71 may include a bioengineered coating to promote healing of surrounding articulate cartilage. The bioengineered coating may consist of a blood derived product, such as fibrin glue or fibrin clot, one or more proteins, a peptide, collagen, impregnated autologous chondrocytes
(cartilage cells), a pharmaceutical agent, or any
combination thereof.
[00151] FIG. 7C shows a perspective view of a monolithic orthopedic implant with a porous region 62 and a
substantially dense region 72 having a size that is relatively larger than the porous region 62 and that overhangs the porous region 62. This configuration allows the amount of bone removed from the implant site to be minimized to implant the porous region 62 into, while providing a large substantially dense region to resurface a large cartilage defect.
[ 00152 ] FIG. 8A shows a perspective view of a monolithic orthopedic implant with a porous region 62 and a
substantially dense region 74 having a polygonal shape, which may be any shape. In FIG. 8A the shape is shown to be a pentagonal shape. FIG. 8B shows a perspective view of a monolithic orthopedic implant with a porous region 62 and a substantially dense region 76 having a hexagonal shape. FIG. 8C shows a perspective view of a monolithic orthopedic implant with a porous region and a substantially dense region 78 having a triangular shape. The polygonal shapes shown in FIGS.8A-C are especially suitable for clusters of adjacent orthopedic implants as shown in FIG. 14B.
Preferably the substantially dense regions in each of these embodiments overlap the porous regions . The clusters of implanted orthopedic implants as shown in FIG. 14B can create a continuous articular surface of a varying contour.
[00153 ] FIG. 9A shows a perspective view of a monolithic orthopedic implant with a porous region 62 and a
substantially dense region having a beveled perimeter 80. The beveled perimeter 80 may be adapted to provide healing for surrounding native articular cartilage, as discussed in reference to FIG. 6.
[ 00154] FIG. 9B shows a perspective view of a monolithic orthopedic implant with a porous region 62 and a relatively smaller sized substantially dense region with a beveled perimeter 82. In this embodiment the substantially dense region 82 has a dimension less than the top surface 83 of the porous region 62. This embodiment provides the top surface 83 and a beveled perimeter 82 for the surrounding articular cartilage to rest upon. The top surface 83 may be adapted to promote healing of articular cartilage, as discussed with reference to top surface 71 in FIG. 7B. The beveled perimeter 82 may be adapted to provide healing for surrounding native articular cartilage, as discussed above in reference to FIG. 6.
[00155] FIG. 9C shows a perspective view of a monolithic orthopedic implant with a porous region 62 and a relatively larger sized substantially dense region having a beveled perimeter 84. In this embodiment the substantially dense region with the beveled perimeter overhangs the porous region 62. The beveled perimeter 84 may be adapted to provide healing for surrounding native articular cartilage, as discussed above in reference to FIG. 6.
[00156] FIG. 10A shows a perspective view of a monolithic orthopedic implant with a porous region 62 and a
substantially dense region having a reverse bevel perimeter 86 which provides a surface to protect the so-called tidemark region of the surrounding native articular cartilage, where the surrounding native articular cartilage joins to the subchondral bone, from experiencing damaging shear stresses. The reverse bevel 86 may have a perimeter adapted to promote healing of articular cartilage, as discussed for FIG. 6.
[00157] FIG. 10B shows a perspective view of a monolithic orthopedic implant with a porous region 62 and a relatively smaller sized substantially dense region having a reverse bevel perimeter 88. In this embodiment the substantially dense region has a dimension less than the top surface 89 of the porous region 62. This embodiment provides the top surface 89 for the surrounding articular cartilage to rest upon and the reverse bevel perimeter 88 provides a surface to protect the tidemark region of the surrounding native articular cartilage from experiencing damaging shear stresses. The top surface 89 may be adapted to promote healing of articular cartilage, as discussed with reference to top surface 71 in FIG. 7B . The reverse bevel 88 on the perimeter may be adapted to provide healing for surrounding native articular cartilage, as discussed in reference to FIG. 6.
[ 00158] FIG. IOC shows a perspective view of a monolithic orthopedic implant with a porous region 62 and a relatively larger sized substantially dense region having a reverse bevel perimeter 90 that provides a surface to protect the tidemark region of the surrounding native articular cartilage from experiencing damaging shear stresses. The substantially dense region overhangs the porous region 62. The reverse bevel 90 on the perimeter may be adapted to provide healing for surrounding native articular cartilage in the same manner as discussed for FIGs . 10A and 10B.
[ 00159] To match the curvature of a joint, the surface of the substantially dense region may have the following embodiments. Note that the following surface curvatures may be applied to many implant configurations, including those with substantially dense regions smaller or larger than the porous region and those with beveled or reverse beveled perimeters. FIG. 11A shows a perspective view of a monolithic orthopedic implant with a porous region 62 and a substantially dense region 93 with an articular surface 92 having a relative concave spherical shape to match a skeletal joint. FIG. 11B shows a perspective view of a monolithic orthopedic implant with a porous region 62 and a substantially dense region 95 with an articular surface 94 having a relative concave shape with a radius in one plane to match a skeletal joint. FIG. 11C shows a perspective view of a monolithic orthopedic implant with a porous region 62 and a substantially dense region 97 with an articular surface 96 having a relative concave shape with two differing radii in two orthogonal planes to match a skeletal joint. FIG. 11D shows a perspective view of a monolithic orthopedic implant with a porous region 62 and a substantially dense region 99 with an articular surface 98 having a concave shape in one plane and a convex shape in another plane to match a skeletal joint.
[00160] FIG. 12A shows a perspective view of a monolithic orthopedic implant with a porous region 62 and a
substantially dense region 100 with an articular surface 101 having a convex spherical shape to match a skeletal joint. FIG. 12B shows a perspective view of a monolithic orthopedic implant with a porous region 62 and a
substantially dense region 102 with an articular surface 103 having a convex shape with a radius in one plane to match a skeletal joint. FIG. 12C shows a perspective view of a monolithic orthopedic implant with a porous region 62 and a substantially dense region 104 with an articular surface 105 having a convex shape with two differing radii in two orthogonal planes to match a skeletal joint.
[00161] The monolithic orthopedic implant 50 can be fabricated as shown in FIG. 17 by forming in step 200 a porous region 56 having an interconnected porous form adapted to be similar to cancellous bone to promote skeletal fixation by bone ingrowth of cancellous bone, forming in step 202 a transition region 58 adjacent to and integrally joined to the porous region 56, the transition region 58 adapted to be similar to subchondral bone, forming in step 204 a substantially dense region 54 integrally joined to the transition region 58, and forming in step 206 a surface 60 on the substantially dense region 54, the surface 60 having a finish adapted for articulation against native articular cartilage. The porous region is preferably formed with a porosity gradient that increases as a distance from the substantially dense region 54 increases as shown in step 208. Also, preferably, the formed monolithic orthopedic implant is non-resorbable as shown in step 210.
[ 00162 ] The articular surface on the substantially dense region may be formed by thermally processing the
substantially dense region or the entire monolithic orthopedic implant as shown in step 212 of FIG. 17.
Thermal processing may include oxidation, coating or deposition of material . The material deposited on the substantially dense region may include pyrolytic carbon, diamond, or diamond- like carbon. Yet another method for forming the articular surface includes coating a material on the substantially dense region, such as ceramic or ceramic like material.
[ 00163 ] The porosity of the porous region 56 and the transition region 58 may be formed by oxidizing a fugitive material, dissolving a fugitive material, using a lost foam process, using a solid freeform fabrication process, or using a foaming process, which are processes well known in the art .
[ 00164] The orthopedic implant 50 may be formed into a desired geometrical form by milling, turning or other machining processes. Preferably these processes are adjusted to account for any shrinkage that may occur during milling, turning or other machining processes. Such shrinkage can be 10% or greater.
[ 00165] FIG. 13A shows a perspective view of a monolithic orthopedic implant 119 with a porous region with two porous projections 124 and 126, a transition region 128 and a substantially dense region 122 with a surface 120 for articulation with articular cartilage on an opposing joint. The projections, which may number more than two, increase the surface area of the porous region, which further promotes bone ingrowth, to provide a secure attachment of the monolithic orthopedic implant 50.
[ 00166 ] FIG. 13B shows a perspective view of a monolithic orthopedic implant 129 with a porous region 134 and a substantially dense region 132 with an articular surface 130 having a shape having different dimensions in
orthogonal planes for a regional implant . The irregular shape of monolithic orthopedic implant 129 can be adjusted to fit the circumstances required for an implant. The porous region 134 may have a tapered perimeter.
[ 00167 ] FIG. 13C shows a perspective view of a monolithic orthopedic implant 141 in a shell like shape with a porous region 144 and a substantially dense region 142. The shell like shape is characteristic of a spheroidal skeletal joint. The substantially dense region 142 has a shell like shape and the porous region 144 has a shell-like shape with a hollow interior 146 for bone ingrowth.
[ 00168] FIG. 13D shows a perspective view of a monolithic orthopedic implant 330 with a porous region 332 on the outside of the implant 330 and a concave substantially dense region 334. The monolithic orthopedic implant 330 can be used alone or be implanted so that the concave substantially dense region 334 mates with the spheroidal substantially dense region 142 of FIG. 13C.
[ 00169] FIGs . 14A to 14D show examples of the orthopedic implant in use for a knee prosthesis. FIG. 14A shows a perspective view of the monolithic orthopedic implant 61 of FIG. 4A implanted in a femur bone 150 to provide a repair for native articular cartilage. FIG. 14B shows a
perspective view of a plurality of the monolithic
orthopedic implants 75 of FIG. 8B implanted in a femur bone 150 adjacent to one another to create a continuous
articular surface of a varying contour to provide a repair for native articular cartilage on the femur bone 150. FIG. 14C shows a perspective view of the monolithic orthopedic implant 119 of FIG. 13A implanted in a femur bone. FIG. 14D shows a perspective view of the monolithic orthopedic implant 129 of FIG. 13B implanted in a tibial bone.
[ 00170 ] In an orthopedic surgery method to implant the monolithic orthopedic implant 50, a portion of articular cartilage at an implant site may be removed, as shown in FIG. 18A step 220. Then a socket is formed also in step 220 in bone underlying the removed articular cartilage. The socket should be formed to have a depth such that the surface of the substantially dense region of the monolithic implant is approximately flush to the articular cartilage at the implant site. Next the orthopedic implant 50, and in particular the porous region 56 of the orthopedic implant 50, are implanted into the socket in step 220. The implanted monolithic orthopedic implant includes a porous region having a form of interconnected porosity adapted to be similar to cancellous bone to promote skeletal fixation by bone ingrowth, a transition region having a form of interconnected porosity similar to subchondral bone and interconnected to the porous region, a substantially dense region integrally joined to the transition region, and a surface on the substantially dense region, the surface having a finish adapted for articulation against native articular cartilage as shown in step 222 of FIG. 18A.
Preferably the porous region has a porosity gradient that increases as a distance from the substantially dense region increases, as shown in step 224 of FIG. 18A, and the porous region, the transition region, the substantially dense region, and the surface are non-resorbable as shown in step 226 of FIG. 18A. As shown in step 228 of FIG. 18A the porous region, the transition region, the substantially dense region, and the surface may comprise ceramic.
[ 00171] In one embodiment the method for implanting includes implanting a plurality of monolithic orthopedic implants adjacent to one another to create a nearly
continuous articular surface, which can have a varying contour to match the curvature of a joint, as shown in FIG. 14B, and as shown in step 232 of FIG. 18B. In this
embodiment, the substantially dense region of each
monolithic orthopedic implant has a polygon shaped perimeter, as shown in step 232 of FIG. 18B, and FIGs . 8A- 8C.
[00172] In one embodiment removing a portion of the articular cartilage at the implant site includes preparing the implant site by excising the portion of the articular cartilage to form a predetermined geometrical lesion and forming at the implant site a socket in the bone conforming geometrically to a form of the orthopedic implant. The dimensions of the socket preferably allow for a compressive or interference fit between the bone and the orthopedic implant 50. Also two or more sockets may be formed at the implant site if the orthopedic implant 50 has multiple projections, as shown in FIG. 13A and 14C. Preferably the sockets have conical dimensions.
[00173] In another embodiment, shown in FIG. 15A, an orthopedic implant 160 has a porous region 162 and a transition region 164. The porous region 162 is adapted to have a form of porosity similar to cancellous bone to promote bone ingrowth to securely implant the orthopedic implant 160 in a bone. The transition region 164 is adapted to have a form of porosity similar to subchondral bone. The porous region 162 and the transition region 164 are preferably non-resorbable .
[00174] A scaffold 166 adapted to promote regeneration of the surrounding articular cartilage may be coupled to the transition region 164, and FIG. 15B shows the scaffold 166 coupled to the transition region 164. The scaffold 166 may include collagen, one or more proteins, a resorbable material, copolymer resorbable material, a mineral, hydrogel, living cells, or articular cartilage or any combination thereof. Examples of resorbable materials that can be used for the matrix are polylactic acid (PLA) , which is a biodegradable, thermoplastic, aliphatic polyester, polyglycolic acid (PGA) , which is a biodegradable,
thermoplastic polymer.
[00175] The transition region 164 may be further adapted to promote regeneration of articular cartilage. In one embodiment the transition region has a roughness, which may be on the outside of the transition region 164 and also on the inside of the transition region 164. Preferably the transition region includes a three dimensional framework of interconnected structural members with interstitial interconnected passages there between and the roughness may be on the structural members.
[00176 ] In another embodiment the transition region 164 has a hydrophilic surface or a charged surface that can influence a cell population to enhance healing of
surrounding native articular cartilage. These surface modifications can attract a cell population and/or
influence the organization of cells to enhance healing of the surrounding native articular cartilage.
[ 00177 ] In yet another embodiment the transition region 164 may include a bioactive mineral coating, which may be hydroxyapatite , bioglass, or a form of calcium phosphate, nonlimiting examples of which are tri-calcium phosphate (TCP) , alpha TCP, or beta TCP, or any combination thereof to promote healing of surrounding articular cartilage.
[ 00178 ] In still another embodiment the transition region 164 may include a bioengineered coating to promote healing of the articulate cartilage. The bioengineered coating may consist of a blood derived product, such as fibrin glue or fibrin clot, one or more proteins, a peptide, collagen, impregnated autologous chondrocytes (cartilage cells) , or any combination thereof.
[ 00179] The porous region 162 also may be further adapted to promote bone ingrowth for bone fixation. In one embodiment the porous region 162 has a roughness,
characterized by a frictional coefficient similar to cancellous bone, which is generally greater than 0.5. The frictional coefficient is a biomechanical characterization of friction between cancellous bone and cortical bone. The frictional coefficient of the porous region 162 helps prevent the formation of a fibrous layer, which can retard bone ingrowth. The roughness may be on the outside of the porous region 162 and also on the inside of the porous region 162. The porous region 162 is preferably a three dimensional framework of interconnected structural members with interstitial interconnected passages there between and the roughness may be on the structural members, which provides a microstructure to promote bone ingrowth and fixation by facilitating cell adhesion.
[00180 ] In another embodiment the porous region 162 may also have a hydrophilic or a charged surface that can influence a cell population to enhance healing of
surrounding native articular cartilage. The described surface modifications can attract a cell population or influence the organization of cells to enhance healing of the surrounding native articular cartilage.
[00181] In yet another embodiment the porous region 162 may include a bioactive mineral coating, which may be hydroxyapatite, bioglass, or a form of calcium phosphate, nonlimiting examples of which are tri-calcium phosphate (TCP) , alpha TCP or beta TCP, or any combination thereof to promote bone ingrowth for bone fixation.
[ 00182 ] In still another embodiment the porous region 162 may include a bioengineered coating to promote bone ingrowth for bone fixation. The bioengineered coating may consist of one or more proteins, a peptide, or any
combination thereof.
[ 00183 ] As shown in FIG. 15C the orthopedic implant, as discussed with reference to FIGs . 15A and 15B, may have a porous region 170 with a hollow interior 172 and have an open bottom to promote bone ingrowth from the inside, as well as the outside of the implant.
[ 00184] FIG. 15D shows a perspective view of a dental implant 174 with a porous region 175 integrally joined to a substantially dense region 176 having a surface 177 and a perimeter 178 adapted to be compatible with gum tissue in ways well known in the art. The porous region 175 promotes bone ingrowth to firmly attach the implant to the bone and the substantially dense region may be used to attach a tooth. Because the surface 177 and the perimeter 178 are compatible with gum tissue the implant is well adapted for a dental implant .
[ 00185] FIG. 16A shows a perspective view of a monolithic non-resorbable porous implant 180, which has a porous top surface 181. This embodiment can be used as a bone patch among other possible uses. In one embodiment the implant may be adapted to restore the metaphyseal region in the end of a long bone making up a skeletal joint. FIG. 16B shows a perspective view of a monolithic non-resorbable porous implant 182, which has an open top 184 and a hollow
interior 185.
[ 00186] The porous implants 180 and 182 have a three dimensional framework of structural members with
interstitial interconnected passages between the structural members . The material of the framework is preferably non- resorbable ceramic, and each structural member may be similar in size to a trabecula in bone.
[ 00187 ] The interconnected pore passageways may each have a dimension less than 1000 micrometers or each have a dimension between 200 and 600 micrometers. The framework may have a bulk porosity of 50% or greater.
[ 00188] The porous implants 180 and 182 of FIG. 16A and FIG. 16B, respectively, may be further adapted to promote bone ingrowth for bone fixation in the same manner as the porous region 162 of FIGs . 15A and 15B, as discussed above. The implants 180 and 182 may have a roughness to promote bone ingrowth for bone fixation and the roughness may be characterized by a frictional coefficient greater than 0.5.
[ 00189 ] To promote bone ingrowth, each structural member may have a roughness . In another embodiment to promote bone ingrowth, the framework may have a hydrophilic coating or a charged coating, which as discussed above can attract a cell population and/or influence the organization of cells to enhance healing of the surrounding native
articular cartilage.
[ 00190 ] In another embodiment, the framework may have a bioactive mineral coating, which can be hydroxyapatite, bioglass, or a form of calcium phosphate or any combination thereof. In another embodiment the framework has a bioengineered coating one or more proteins or a peptide or any combination thereof.
[ 00191] The implants 180 and 182 may be formed from materials from the group consisting of oxides, carbides, nitrides, or borides or any combination thereof.
Alternatively, the implants may be formed of coated metal consisting of oxidized-, nitrided- , carburized- or
boronized- titanium, zirconium, hafnium, tantalum, or molybdenum or any combination thereof. The framework may also be formed of materials chosen from the group
consisting of partially stabilized zirconia, alumina, silica, silicon nitride, SiAlON, tantalum, titanium, or zirconium or any combination thereof.
[ 00192 ] Brittle materials, such as ceramics, usually have lower and less reliable strength values compared to ductile materials, such as metals. The reduced reliability of the strength values of brittle material is due primarily to voids or defects present inside the material, which may result from the process of forming the material from raw material powder. It is desirable to improve the
reliability of strength values of these brittle materials, so that brittle materials can be used reliably in devices to surgically treat skeletal joint conditions such as arthritis and cartilage lesions.
[ 00193 ] Flaws in brittle materials are generally
statistical in nature. As such, the strength value of a brittle material is not one specific value, but a
distribution of strength values. For brittle materials, the maximum strength, or the maximum stress that a sample can withstand, may vary unpredictably from specimen to
specimen, even under identical testing conditions. The strength of a brittle material is thus more completely described with a statistical measure of this variability. The Weibull modulus is a measure of the distribution of the strength values, and is a dimensionless number
corresponding to the variability in strength values and generally reflects the distribution of flaws in the material .
[ 00194] For example, consider strength measurements made on many specimens of a brittle material, such as ceramic. If the measurements show little variation from specimen to specimen, the Weibull modulus will be high and the average strength of the material is therefore a good representation of the potential specimen to specimen performance of the material. A material with a high Weibull modulus is consistent and any flaws, due to the material itself and/or the manufacturing process for the material, are distributed uniformly and finely throughout the material. A low
Weibull modulus reflects a high variation in measured strengths and an indication that the likelihood is
increased that flaws in the material tend to congregate and thereby produce some specimens that are quite weak compared to the average strength of a set of specimens of the material. Thus, a material with a low Weibull modulus will more likely produce products with a strength substantially below the average and show greater inconsistency of strength. Such products will exhibit greater variation in strength performance and are therefore be less reliable.
[ 00195] Brittle material specimens of ceramic materials were structurally tested to obtain their Weibull modulus. The first material specimens tested were ceramic specimens that were porous, and which corresponded to the porous regions 52 of monolithic orthopedic implant 50. These porous ceramic specimens had a high variability in strength and a Weibull modulus of 3.6. The second material
specimens tested were ceramic specimens that were
relatively solid or substantially dense, and which
corresponded to the substantially dense region 54 of monolithic orthopedic implant 50. These relatively solid ceramic specimens had a low variability in strength and a Weibull modulus of 8.4.
[00196] Next specimens were tested of a monolithic material having a porous ceramic region integrally joined to a relatively solid or substantially dense ceramic region. The porous ceramic region was formed to be similar to the porous ceramic specimens with a Weibull modulus of 3.6, and the relatively solid ceramic or substantially dense region was formed to be similar to the relatively solid ceramic specimens with a Weibull modulus of 8.4.
These monolithic material specimens were found to have a Weibull modulus of 22.2, which indicates that the
monolithic specimens had little variation in strength from specimen to specimen, and therefore the average strength of the monolithic material is a good representation of the potential specimen to specimen performance of the material . The high Weibull modulus also indicates that the monolithic material is more reliable than either the porous ceramic region or the relatively solid region of substantially dense material by themselves .
[00197] The monolithic material Weibull modulus is surprising, because those not knowing this result would consider that the strength reliability of the monolithic material would fall between that of the porous specimens and the relatively solid or substantially dense specimens, or in any case be not more than the relatively solid specimens . [ 00198] One possible technical explanation of this surprising result is "crack blunting" or "crack
dissipation" wherein a stress concentration (defect) is counteracted by a compressive force, at the grain level. Another possible technical explanation relates to crack deviation, where multiple small cracks collectively distribute stress within the material developing a
characteristic known as micro crack toughening.
[ 00199] In another embodiment of the monolithic material there may be a transition region between and integrally joined to the porous region and the relatively solid region. The transition region, which may correspond to transition region 58 of monolithic orthopedic implant 50, may have a porosity that is relatively lower than the porosity of the porous region and varies between the relatively solid region and the porous region. In this embodiment the Weibull modulus for the monolithic material is higher than for the porous region, the transition region, or the relatively solid region by themselves, which again is a surprising result.
[ 00200 ] The brittle materials that may be used to form the monolithic materials include materials chosen from the group consisting of oxides, nitrides, carbides or borides or any combination thereof, which are all ceramics, materials chosen from the group consisting of partially stabilized zirconia, alumina, silica, silicon nitride or SiAlON or any combination thereof, and pyrolytic carbon. These are all brittle materials and a monolithic material formed of any of these materials and having a porous region integrally joined to a relatively solid region, or having a transition region between the porous region and the relatively solid region has a higher Weibull modulus and therefore greater strength reliability from specimen to specimen than either the porous region or the relatively solid region by themselves.
[00201] Because the monolithic material has improved strength value reliability, the monolithic materials are suitable and can be used to develop reliable devices to surgically treat skeletal joint conditions such as
arthritis and cartilage lesions. The orthopedic devices made of the monolithic material may include any of the monolithic orthopedic implants described herein and shown throughout the figures, as well as other orthopedic devices. As described herein, a monolithic device that has integrally joined porous, transition and substantially dense regions has advantages for many types of orthopedic implants and devices .
[00202] FIG. 19 is a flow diagram of a method for providing a monolithic material in accordance with the present disclosure. In step 240 a porous region is formed having a first variability of strength. A substantially dense region is formed and joined in step 242 to the porous region, the substantially dense region having a second variability of strength, wherein the variability of strength of the monolithic material is less than the first and second variability of strengths.
[00203] In step 244 a transition region is formed between the porous region and the substantially dense region and joined to the porous region and the substantially dense region, the transition region having a third variability of strength, wherein the variability of strength of the monolithic material is also less than the third variability of strength. The transition region may be formed on the porous region or the substantially dense region and then the substantially dense region or the porous region formed on the transition region, respectively.
[ 00204] In step 246 a surface may be formed on the substantially dense region, the surface having a finish adapted for articulation against native articular
cartilage .
[ 00205] FIG. 20 is another flow diagram of a method for providing a monolithic material in accordance with the present disclosure. In step 250, a first region is formed having a first variability of strength. In step 252 a second region is formed and joined to the first region, the second region having a second variability of strength, wherein the monolithic material has a variability of strength less than the first variability of strength of the first region and less than the second variability of strength of the second region. Then in step 254 a third region may be formed between and joined to the first region and the second region, the third region having a third variability of strength, wherein the variability of strength of the monolithic material is less than the third variability of strength of the third region.
[ 00206 ] Referring now to FIGs . 25A to 25D, an orthopedic implant 330 is shown in accordance with the present disclosure .
[ 00207 ] Developmental and conditional changes in a skeletal joint, such as the hip, can lead to traumatic delamination of the articular cartilage from the supporting subchondral bone. This condition results in activity limiting pain and requires surgical intervention to prevent further delamination resulting in irreversible arthritic changes in the joint. To avoid arthritic changes leading to a total joint replacement, surgeons may employ an early intervention technique to repair a damaged joint. An example of a torn labrum 300 and torn cartilage 302 at location 306 is shown in FIG. 21A. A surgeon may remove the delaminated cartilage, and then suture and sew the torn labrum, as shown in FIG. 21B. Then to facilitate cartilage regeneration in the denuded region a micro- fracture procedure may be performed.
[ 00208 ] An alternative to micro- fracture is to use an implant to restore a continuous articular surface in the joint. In a skeletal joint like the hip as shown in FIG. 24, the subject articular surface in the acetabulum 322 is concave in shape. Because the goal of this implant to restore a continuous surface, it is important that the implant be able to interface with the surrounding
cartilage. In the prior art it is known that cartilage will overgrow and seal the perimeter of an implant with a convex top surface over time. This cartilage overgrowth is desirable to restore a "continuous" articular surface in a skeletal joint. FIGs . 22A and 22B show a convex implant 310 having an overgrowth of cartilage 309 in accordance with the prior art. Such a prior art convex implant is described in "Safety of, and Biological and Functional Response to, a Novel Metallic Implant for the Management of Focal Full -Thickness Cartilage Defects: Preliminary
Assessment in an Animal Model Out to 1 Year" Carl A.
Kirker-Head, David C. Van Sickle, Steve W. Ek, John C.
McCool, Journal of Orthopaedic Research, pages 1095-1108, May 2006. [ 00209] Another approach in the prior art is to replace the entire damaged joint. FIG. 23 shows three acetabular shell implants 311, 312, and 313 in accordance with the prior art. These implants can have various articular surfaces including polyethylene as shown in implant 311, metal as shown in implant 312, and ceramic as shown in implant 313. These prior art implants, which can be acetabular shells for the hip and glenoid shells for the shoulder have a surface 314 between the perimeter and the concave articular surface 315. The surface 314 is designed to not have a sharp edge impinging with surrounding tissue in order to avoid irritation, swelling and bleeding.
Further, tissue overgrowth is undesirable with these implant designs because overgrowth can adversely reduce desired joint motion. Thus in these prior art implant the surface 314 is designed to restrict or prevent tissue overgrowth from occurring.
[ 00210 ] FIGs. 25A to 25D show an implant 330 in
accordance with the present disclosure. The implant 330 has a attachment region 332 for bone attachment. The attachment region 332 may be porous or at least be
partially porous to promote bone ingrowth, or the
attachment region 332 may be designed to have a threaded extension for attachment to a bone, or be attached to the bone in any other manner. A second region 331 is connected to attachment region 332, and as shown in FIGs. 25A and 25C, the second region 331 may be larger in width than the attachment region 332; however, it should be understood that the second region 331 may be the same width as the attachment region 332, as shown in FIG. 25D. [ 00211] The implant 330 may be formed of ceramic, metal, plastic, polyethylene, polycarbonate-urethane , ultra-violet curable resin, or any other suitable material. A
resorbable implant 330 may be formed of collagen, PLA, PGA, bioglass, and agarose gel, or any other suitable material.
[ 00212 ] FIG. 24 shows an example of implanting a pelvis with implant 330 in accordance with the present disclosure.
[ 00213 ] In order to promote tissue overgrowth for the implant 330, the implant 330 may have a perimeter area 336 as shown in FIGs . 25A - 25D that starts at a perimeter 335 of the implant 330 and extends to the convex surface 340. At a first transition point 338, the perimeter area 336 ends and a convex surface 340 continues towards the
interior of the implant 330 to a second transition point 342. A concave articular surface 344 begins at the second transition point 342 and is on the interior surface of the implant 330.
[ 00214] The perimeter area 336 and the convex surface 340 each may have a shape to facilitate a biologic reaction to create an overgrowth of cartilage tissue over the perimeter area 336 and the convex surface 340. The perimeter area 336 and the convex surface 340 may be formed to facilitate a crescent shaped overgrowth cartilage tissue, which is relatively thick at the perimeter area 336 and then
progressively thinner over the convex surface 340. In particular, the convex surface 340 has a shape to promote cartilage tissue overgrowth on the convex surface 340, which thins toward the second transition point 342. The overgrowth of the cartilage tissue does not extend over the concave articular surface 344. [ 00215] The perimeter area 336 and the convex surface 340 may include a coated metal to promote overgrowth of cartilage tissue. The coated metal may be selected from oxidized, nitrided- , carburized- or boronized- titanium, zirconium, hafnium, tantalum or molybdenum or any
combination thereof. For example, oxidized zirconium forms a coating of zirconia on the outside of the zirconium. One coating that can be used is a thin diamond like coating, which can be polished to a desired surface roughness, as described above for the substantially dense region 54.
[ 00216] FIG. 26 illustrates the shape of cartilage overgrowth over implant 330 in accordance with the present disclosure and illustrates a tissue cross section similar to the menisci found in the knee. The overgrowth tissue 352 acts to seal the perimeter area 336 and the convex surface 340 of the implant 330, which protects the native cartilage 352 to bone 350 interface 354, known as the "tidemark" , from delamination . The thinning of the tissue overgrowth is illustrated by triangle 360 in FIG. 26. The cartilage tissue overgrowth is important in restoring a continuous articular surface which interacts with the native cartilage in a skeletal joint.
[ 00217 ] In the embodiment of the implant 330 shown in FIGs . 25A, in which the region 331 is larger than the attachment region 332, a bottom surface 334 may be shaped to mimic the top surface contour of region 331 so that the thickness of region 331 is substantially the same across the implant 330. In another embodiment of the implant 330 shown in FIG. 25C, in which the region 331 is also larger than the attachment region 332, a bottom surface 333 may be relatively flat. It should be understood that the shape of the bottom surface may be configured as needed to provide the implant with a proper fit for the site at which the implant will be used.
[ 00218 ] In another embodiment, as shown in FIG. 25D, the width of the second region 331 essentially matches the width of the attachment region 332 at the perimeter 335 where the two regions join.
[ 00219 ] In another embodiment, as shown in FIGs . 29A and 29B, the implant 500 may have a nonsymmetrical shape, and may also have more than one attachment region, such as attachment region 502 and attachment region 504. The attachment regions 502 and 504 may be porous or at least be partially porous to promote bone ingrowth, or the
attachment regions 502 and 504 may be designed to have a threaded extension for attachment to a bone, or be attached to the bone in any other manner.
[ 00220 ] A second region 531 is connected to attachment regions 502 and 504, as shown in FIG. 29B. In order to promote tissue overgrowth for the implant 500, the implant 500 has a convex surface 540, which extends towards the interior of the implant 500 to a transition point 542. A concave articular surface 544 begins at the transition point 542 and is on the interior surface of the implant 500.
[00221] The convex surface 540 may have a shape to facilitate a biologic reaction to create an overgrowth of cartilage tissue over the convex surface 540. The convex surface 540 may include a coated metal to promote overgrowth of cartilage tissue. The coated metal may be selected from oxidized, nitrided- , carburized- or
boronized- titanium, zirconium, hafnium, tantalum or molybdenum or any combination thereof. For example, oxidized zirconium forms a coating of zirconia on the outside of the zirconium. One coating that can be used is a thin diamond like coating, which can be polished to a desired surface roughness, as described above for the substantially dense region 5 .
[ 00222 ] A bottom surface 534 may be shaped as needed to provide the implant with a proper fit for the site at which the implant will be used.
[ 00223 ] FIG. 27 is a flow diagram of a method of
providing an orthopedic implant in accordance with the present disclosure. In step 400 a first region 332 is formed for attachment to a bone. Then in step 402 a second region 331 is formed and coupled to the first region, wherein the second region has a perimeter 335 and the second region includes a concave articular surface 344 on top of the second region and a convex surface 340 is between the perimeter and the concave articular surface.
[ 00224 ] FIG. 28 is a flow diagram of a method of
orthopedic surgery in accordance with the present
disclosure. In step 410 an orthopedic implant is implanted in a bone. As shown in step 412, the orthopedic implant includes a first region 332 for attachment to a bone and a second region 331 coupled to the first region, wherein the second region has a perimeter 335 and the second region includes a concave articular surface 344 on top of the second region and a convex surface 340 is between the perimeter and the concave articular surface.
[ 00225] Having now described the invention in accordance with the requirements of the patent statutes, those skilled in this art will understand how to make changes and modifications to the present invention to meet their specific requirements or conditions. Such changes and modifications may be made without departing from the scope and spirit of the invention as disclosed herein.
[ 00226 ] The foregoing Detailed Description of exemplary and preferred embodiments is presented for purposes of illustration and disclosure in accordance with the
requirements of the law. It is not intended to be
exhaustive nor to limit the invention to the precise form(s) described, but only to enable others skilled in the art to understand how the invention may be suited for a particular use or implementation. The possibility of modifications and variations will be apparent to
practitioners skilled in the art. No limitation is intended by the description of exemplary embodiments which may have included tolerances, feature dimensions, specific operating conditions, engineering specifications, or the like, and which may vary between implementations or with changes to the state of the art, and no limitation should be implied therefrom. Applicant has made this disclosure with respect to the current state of the art, but also contemplates advancements and that adaptations in the future may take into consideration of those advancements, namely in accordance with the then current state of the art. It is intended that the scope of the invention be defined by the Claims as written and equivalents as applicable. Reference to a claim element in the singular is not intended to mean "one and only one" unless
explicitly so stated. Moreover, no element, component, nor method or process step in this disclosure is intended to be dedicated to the public regardless of whether the element, component, or step is explicitly recited in the Claims. No claim element herein is to be construed under the
provisions of 35 U.S.C. Sec. 112, sixth paragraph, unless the element is expressly recited using the phrase "means for. . ." and no method or process step herein is to be construed under those provisions unless the step, or steps, are expressly recited using the phrase "comprising the step (s) of . . .. "
[00227] All elements, parts and steps described herein are preferably included. It is to be understood that any of these elements, parts and steps may be replaced by other elements, parts and steps or deleted all together as will be obvious to those skilled in the art.
[00228] Broadly, this writing has disclosed at least the following. An orthopedic implant includes a first region for attachment to a bone and a second region coupled to the first region, the second region having a perimeter and including a concave articular surface on top of the second region and a convex surface between the perimeter and the concave articular surface. CONCEPTS
[ 00229] This writing has disclosed at least the following concepts .
Concept 1. An orthopedic implant comprising:
a first region for attachment to a bone; and
a second region coupled to the first region, the second region having a perimeter and comprising:
a concave articular surface on top of the second region; and
a convex surface between the perimeter and the concave articular surface.
Concept 2. The orthopedic implant of Concept 1 wherein the first region comprises porosity to promote bone ingrowth.
Concept 3. The orthopedic implant of Concept 1 wherein the convex surface facilitates a biologic reaction to form an overgrowth of cartilage tissue.
Concept . The orthopedic implant of Concept 1 wherein the convex surface has a shape to facilitate a biologic reaction to form an overgrowth of tissue on the convex surface .
Concept 5. The orthopedic implant of Concept 1 further comprising :
a perimeter area between the perimeter and the convex surface ; wherein an overgrowth of cartilage tissue is
relatively thick at the perimeter area and progressively thinner over the convex surface.
Concept 6. The orthopedic implant of Concept 5 wherein the perimeter area has a shape to facilitate a biologic reaction to form an overgrowth of cartilage tissue over the perimeter area.
Concept 7. The orthopedic implant of Concept 1 wherein the orthopedic implant comprises ceramic, metal, plastic, polyethylene, polycarbonate-urethane , or ultra-violet curable resin.
Concept 8. The orthopedic implant of Concept 1 wherein the orthopedic implant comprises collagen, PLA, PGA, bioglass, or agarose gel .
Concept 9. The orthopedic implant of Concept 1 wherein the second region has a larger or the same width as the first region .
Concept 10. The orthopedic implant of Concept 1 wherein: the second region has a larger width than the first region; and
the second region comprises a bottom surface shaped to mimic a shape of the concave articular surface.
Concept 11. The orthopedic implant of Concept 1 wherein the first region comprises a threaded extension. Concept 12. The orthopedic implant of Concept 1 further comprising a third region for attachment to the bone, the third region coupled to the second region.
Concept 13. The orthopedic implant of Concept 12 wherein the third region comprises porosity to promote bone ingrowth .
Concept 14. A method for providing an orthopedic implant comprising :
forming a first region for attachment to a bone; and forming a second region coupled to the first region, the second region having a perimeter and comprising:
a concave articular surface on top of the second region; and
a convex surface between the perimeter and the concave articular surface.
Concept 15. The method of Concept 14 wherein the first region comprises porosity to promote bone ingrowth.
Concept 16. The method of Concept 14 wherein the convex surface facilitates a biologic reaction to form an overgrowth of cartilage tissue.
Concept 17. The method of Concept 14 wherein the convex surface has a shape to facilitate a biologic reaction to form an overgrowth of tissue on the convex surface.
Concept 18. The method of Concept 14 further comprising: a perimeter area between the perimeter and the convex surface ; wherein an overgrowth of cartilage tissue is
relatively thick at the perimeter area and progressively thinner over the convex surface .
Concept 19. The method of Concept 18 wherein the perimeter area has a shape to facilitate a biologic reaction to form an overgrowth of cartilage tissue over the perimeter area.
Concept 20. The method of Concept 14 wherein the orthopedi implant comprises ceramic, metal, plastic, polyethylene, polycarbonate-urethane , or ultra-violet curable resin.
Concept 21. The method of Concept 14 wherein the orthopedi implant comprises collagen, PLA, PGA, bioglass, or agarose gel .
Concept 22. The method of Concept 14 wherein the second region has a larger or the same width as the first region.
Concept 23. The method of Concept 14 wherein:
the second region has a larger width than the first region; and
the second region comprises a bottom surface shaped t mimic a shape of the concave articular surface.
Concept 24. The method of Concept 14 wherein the first region comprises a threaded extension.
Concept 25. The method of Concept 14 further comprising forming a third region for attachment to the bone, the third region coupled to the second region. Concept 26. The method of Concept 25 wherein the third region comprises porosity to promote bone ingrowth.
Concept 27. A method of orthopedic surgery comprising: implanting an orthopedic implant;
wherein the orthopedic implant comprises:
a first region for attachment to a bone; and a second region coupled to the first region, the second region having a perimeter and comprising:
a concave articular surface on top of the second region; and
a convex surface between the perimeter and the concave articular surface.
Concept 28. The method of Concept 27 wherein the first region comprises porosity to promote bone ingrowth.
Concept 29. The method of Concept 27 wherein the convex surface facilitates a biologic reaction to form an overgrowth of cartilage tissue.
Concept 30. The method of Concept 27 wherein the convex surface has a shape to facilitate a biologic reaction to form an overgrowth of tissue on the convex surface.
Concept 31. The method of Concept 27 further comprising: a perimeter area between the perimeter and the convex surface ;
wherein an overgrowth of cartilage tissue is
relatively thick at the perimeter area and progressively thinner over the convex surface . Concept 32. The method of Concept 31 wherein the perimeter area has a shape to facilitate a biologic reaction to form an overgrowth of cartilage tissue over the perimeter area.
Concept 33. The method of Concept 27 wherein the orthopedi implant comprises ceramic, metal, plastic, polyethylene, polycarbonate-urethane, or ultra-violet curable resin.
Concept 34. The method of Concept 27 wherein the orthopedi implant comprises collagen, PLA, PGA, bioglass, or agarose gel .
Concept 35. The method of Concept 27 wherein the second region has a larger or the same width as the first region.
Concept 36. The method of Concept 27 wherein:
the second region has a larger width than the first region; and
the second region comprises a bottom surface shaped t mimic a shape of the concave articular surface.
Concept 37. The method of Concept 27 wherein the first region comprises a threaded extension.
Concept 38. The method of Concept 27 wherein the orthopedi implant further comprises a third region for attachment to the bone, the third region coupled to the second region.
Concept 39. The method of Concept 38 wherein the third region comprises porosity to promote bone ingrowth.

Claims

WHAT IS CLAIMED IS:
1. An orthopedic implant comprising:
a first region for attachment to a bone; and
a second region coupled to the first region, the second region having a perimeter and comprising:
a concave articular surface on top of the second region; and
a convex surface between the perimeter and the concave articular surface.
2. The orthopedic implant of claim 1 wherein the first region comprises porosity to promote bone ingrowth.
3. The orthopedic implant of claim 1 wherein the convex surface facilitates a biologic reaction to form an overgrowth of cartilage tissue.
4. The orthopedic implant of claim 1 wherein the convex surface has a shape to facilitate a biologic reaction to form an overgrowth of tissue on the convex surface.
5. The orthopedic implant of claim 1 further comprising: a perimeter area between the perimeter and the convex surface ;
wherein an overgrowth of cartilage tissue is
relatively thick at the perimeter area and progressively thinner over the convex surface.
6. The orthopedic implant of claim 5 wherein the perimeter area has a shape to facilitate a biologic reaction to form an overgrowth of cartilage tissue over the perimeter area.
7. The orthopedic implant of claim 1 wherein the orthopedi implant comprises ceramic, metal, plastic, polyethylene, polycarbonate-urethane , or ultra-violet curable resin.
8. The orthopedic implant of claim 1 wherein the orthopedi implant comprises collagen, PLA, PGA, bioglass, or agarose gel .
9. The orthopedic implant of claim 1 wherein the second region has a larger or the same width as the first region.
10. The orthopedic implant of claim 1 wherein:
the second region has a larger width than the first region; and
the second region comprises a bottom surface shaped t mimic a shape of the concave articular surface.
11. The orthopedic implant of claim 1 wherein the first region comprises a threaded extension.
12. The orthopedic implant of claim 1 further comprising a third region for attachment to the bone, the third region coupled to the second region.
13. The orthopedic implant of claim 12 wherein the third region comprises porosity to promote bone ingrowth.
14. A method for providing an orthopedic implant comprising :
forming a first region for attachment to a bone; and forming a second region coupled to the first region, the second region having a perimeter and comprising:
a concave articular surface on top of the second region; and
a convex surface between the perimeter and the concave articular surface.
15. The method of claim 14 wherein the first region comprises porosity to promote bone ingrowth.
16. The method of claim 14 wherein the convex surface facilitates a biologic reaction to form an overgrowth of cartilage tissue.
17. The method of claim 14 wherein the convex surface has a shape to facilitate a biologic reaction to form an
overgrowth of tissue on the convex surface.
18. The method of claim 14 further comprising:
a perimeter area between the perimeter and the convex surface ;
wherein an overgrowth of cartilage tissue is
relatively thick at the perimeter area and progressively thinner over the convex surface .
19. The method of claim 18 wherein the perimeter area has a shape to facilitate a biologic reaction to form an
overgrowth of cartilage tissue over the perimeter area.
20. The method of claim 14 wherein the orthopedic implant comprises ceramic, metal, plastic, polyethylene,
polycarbonate-urethane , or ultra-violet curable resin.
21. The method of claim 14 wherein the orthopedic implant comprises collagen, PLA, PGA, bioglass, or agarose gel.
22. The method of claim 14 wherein the second region has a larger or the same width as the first region.
23. The method of claim 14 wherein:
the second region has a larger width than the first region; and
the second region comprises a bottom surface shaped to mimic a shape of the concave articular surface.
24. The method of claim 14 wherein the first region comprises a threaded extension.
25. The method of claim 14 further comprising forming a third region for attachment to the bone, the third region coupled to the second region.
26. The method of claim 25 wherein the third region comprises porosity to promote bone ingrowth.
27. A method of orthopedic surgery comprising:
implanting an orthopedic implant;
wherein the orthopedic implant comprises:
a first region for attachment to a bone; and a second region coupled to the first region, the second region having a perimeter and comprising:
a concave articular surface on top of the second region; and
a convex surface between the perimeter and the concave articular surface.
28. The method of claim 27 wherein the first region comprises porosity to promote bone ingrowth.
29. The method of claim 27 wherein the convex surface facilitates a biologic reaction to form an overgrowth of cartilage tissue.
30. The method of claim 27 wherein the convex surface has a shape to facilitate a biologic reaction to form an
overgrowth of tissue on the convex surface.
31. The method of claim 27 further comprising:
a perimeter area between the perimeter and the convex surface ;
wherein an overgrowth of cartilage tissue is
relatively thick at the perimeter area and progressively thinner over the convex surface .
32. The method of claim 31 wherein the perimeter area has a shape to facilitate a biologic reaction to form an
overgrowth of cartilage tissue over the perimeter area.
33. The method of claim 27 wherein the orthopedic implant comprises ceramic, metal, plastic, polyethylene,
polycarbonate-urethane , or ultra-violet curable resin.
34. The method of claim 27 wherein the orthopedic implant comprises collagen, PLA, PGA, bioglass, or agarose gel.
35. The method of claim 27 wherein the second region has a larger or the same width as the first region.
36. The method of claim 27 wherein:
the second region has a larger width than the first region; and
the second region comprises a bottom surface shaped to mimic a shape of the concave articular surface.
37. The method of claim 27 wherein the first region comprises a threaded extension.
38. The method of claim 27 wherein the orthopedic implant further comprises a third region for attachment to the bone, the third region coupled to the second region.
39. The method of claim 38 wherein the third region comprises porosity to promote bone ingrowth.
PCT/US2011/033827 2010-07-01 2011-04-25 Convex concave implant WO2012003037A2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2011271681A AU2011271681A1 (en) 2010-07-01 2011-04-25 Convex concave implant
EP11801296.2A EP2588030A4 (en) 2010-07-01 2011-04-25 Convex concave implant

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US12/829,095 2010-07-01
US12/829,095 US8556972B2 (en) 2009-04-02 2010-07-01 Monolithic orthopedic implant with an articular finished surface
US13/085,744 2011-04-13
US13/085,744 US20110257753A1 (en) 2009-04-02 2011-04-13 Implant having a convex surface surrounding a concave articular surface

Publications (3)

Publication Number Publication Date
WO2012003037A2 true WO2012003037A2 (en) 2012-01-05
WO2012003037A3 WO2012003037A3 (en) 2012-03-08
WO2012003037A9 WO2012003037A9 (en) 2012-04-26

Family

ID=47720997

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2011/033827 WO2012003037A2 (en) 2010-07-01 2011-04-25 Convex concave implant

Country Status (3)

Country Link
EP (1) EP2588030A4 (en)
AU (1) AU2011271681A1 (en)
WO (1) WO2012003037A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2571349A (en) * 2018-02-27 2019-08-28 Fitzbionics Ltd An implant for resurfacing bone
CN110368139A (en) * 2019-07-10 2019-10-25 北京爱康宜诚医疗器材有限公司 Prosthetic appliance

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013173700A1 (en) 2012-05-18 2013-11-21 OrthAlign, Inc. Devices and methods for knee arthroplasty
AU2018236205B2 (en) 2017-03-14 2023-10-12 OrthAlign, Inc. Soft tissue measurement and balancing systems and methods

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5534033A (en) * 1995-06-05 1996-07-09 Carbomedics, Inc. Orthopedic prosthetic implants with pyrolytic carbon or ceramic articulating surfaces
CA2420898A1 (en) * 2000-08-28 2002-03-07 Advanced Bio Surfaces, Inc. Method for mammalian joint resurfacing
US20040122519A1 (en) * 2002-12-20 2004-06-24 Wiley Roy C. Prosthetic glenoid
MXPA06000874A (en) * 2003-07-24 2006-04-19 Tecomet Inc Assembled non-random foams.
US8192494B2 (en) * 2005-09-26 2012-06-05 K2M, Inc. Posterior metal-on-metal disc replacement device and method
US20080195221A1 (en) * 2007-01-22 2008-08-14 Zimmer Gmbh Implant and a method for partial replacement of joint surfaces
US8702801B2 (en) * 2008-02-25 2014-04-22 Linares Medical Devices, Llc Artificial wear resistant plug for mounting to existing joint bone
US9808345B2 (en) * 2008-07-24 2017-11-07 Iorthopedics, Inc. Resilient arthroplasty device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of EP2588030A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2571349A (en) * 2018-02-27 2019-08-28 Fitzbionics Ltd An implant for resurfacing bone
WO2019166793A1 (en) * 2018-02-27 2019-09-06 Fitzbionics Limited An implant for resurfacing bone
CN110368139A (en) * 2019-07-10 2019-10-25 北京爱康宜诚医疗器材有限公司 Prosthetic appliance

Also Published As

Publication number Publication date
AU2011271681A1 (en) 2013-02-21
WO2012003037A3 (en) 2012-03-08
WO2012003037A9 (en) 2012-04-26
EP2588030A2 (en) 2013-05-08
EP2588030A4 (en) 2017-03-15

Similar Documents

Publication Publication Date Title
US8556972B2 (en) Monolithic orthopedic implant with an articular finished surface
AU2009343793B2 (en) Monolithic orthopedic implant with an articular finished surface
US20110257753A1 (en) Implant having a convex surface surrounding a concave articular surface
US11833052B2 (en) Tissue integration design for seamless implant fixation
EP2338530B1 (en) Hybrid polymer/metal plug for treating chondral defects
US20210338437A1 (en) Partial hip prosthesis
AU2011212255B2 (en) Prosthesis
US20050010304A1 (en) Device and method for reconstruction of osseous skeletal defects
Salkeld et al. Biological and functional evaluation of a novel pyrolytic carbon implant for the treatment of focal osteochondral defects in the medial femoral condyle: assessment in a canine model
Affatato et al. Short history of biomaterials used in hip arthroplasty and their modern evolution
EP2588030A2 (en) Convex concave implant
Munuera et al. International Meeting on Total Hip Arthroplasty: Hospital La Paz-Madrid, April 6–8, 2000

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11801296

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011801296

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2011271681

Country of ref document: AU

Date of ref document: 20110425

Kind code of ref document: A