WO2012002610A1 - Double transgenic sterile oryzias dancena - Google Patents

Double transgenic sterile oryzias dancena Download PDF

Info

Publication number
WO2012002610A1
WO2012002610A1 PCT/KR2010/005682 KR2010005682W WO2012002610A1 WO 2012002610 A1 WO2012002610 A1 WO 2012002610A1 KR 2010005682 W KR2010005682 W KR 2010005682W WO 2012002610 A1 WO2012002610 A1 WO 2012002610A1
Authority
WO
WIPO (PCT)
Prior art keywords
transgenic
fluorescence
dancena
sea
expression
Prior art date
Application number
PCT/KR2010/005682
Other languages
French (fr)
Korean (ko)
Inventor
김동수
남윤권
박철홍
조영선
Original Assignee
부경대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 부경대학교 산학협력단 filed Critical 부경대학교 산학협력단
Publication of WO2012002610A1 publication Critical patent/WO2012002610A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/43504Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates
    • C07K14/43595Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates from coelenteratae, e.g. medusae
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New breeds of animals
    • A01K67/027New breeds of vertebrates
    • A01K67/0275Genetically modified vertebrates, e.g. transgenic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4716Muscle proteins, e.g. myosin, actin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/8509Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/05Animals comprising random inserted nucleic acids (transgenic)
    • A01K2217/052Animals comprising random inserted nucleic acids (transgenic) inducing gain of function
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/20Animal model comprising regulated expression system
    • A01K2217/206Animal model comprising tissue-specific expression system, e.g. tissue specific expression of transgene, of Cre recombinase
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/40Fish
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/02Animal zootechnically ameliorated

Definitions

  • the present invention provides a transgenic allotriploid infertile fish that obtains a novel fluorescent phenotype through gene transfer, interspecific breeding and chromosome-set manipulation by regulation of novel nucleic acid fragments. More specifically, a double transgenic sea scorpion (Originals dansena) capable of simultaneously expressing strong fluorescence in skeletal muscle and ubiquitous fluorescence in all other tissues. Oryzias dancena ) and sterile allotriploids generated from them.
  • a double transgenic sea scorpion Olinals dansena
  • Fish transformation technology is recognized as an important research technique in the developmental genetics and genomics studies of vertebrates, and also by obtaining new traits (fast growth, disease resistance, nutritional metabolic manipulation, etc.) that are economically important to useful fish species. It is also important as a strategy to drastically improve the productivity of the biological industry (Hackett, PB & Alvarez, MC (2000) .The molecular genetics of transgenic fish.In Recent Advances in Marine Biotechnology , Vol. 4 (Fingerman, M. & Nagabhushanam, R., eds), pp.
  • Transgenic ornamental fish have been developed so far with a fluorescent transgenic strain for zebrafish ( Danio rerio ) and freshwater Japanese medaka ( Oryzias latipes ), and in other small fish species.
  • transgenic fish is recognized for its usefulness in terms of creating new added value in many bioindustry sectors.However, intentional or unintentional release of transgenic fish may lead to biodiversity. Simultaneously contains very negative potential risks (Maclean, N. & Laight, RJ (2000) .Transgenic fish: an evaluation of benefits and risks. Fish and Fisheries 1, 146172; Kapuscinski, AR (2005). the environmental biosafety of transgenic fish and shellfish.Revue Scientifique et Technique de l Office International des Epizooties 24, 309322).
  • genetically modified fish for ornamental purposes, firstly, it is necessarily distributed in living form to an unspecified number of end consumers, and secondly, frequent exchanges and small transactions among consumers or enthusiasts occur, even after the first consumption phase. Considering that additional distribution of living genetically modified organisms can easily occur, and third, there is a high likelihood of intentional release of living genetically modified fish (eg, indiscriminate release, etc.) due to consumer preference changes. Although fish are generally used indoors, there is always the possibility of causing ecological hazards from environmental releases. Therefore, for the commercialization of transgenic ornamental fish, biological isolation methods that can block the gene transfer of the reproductive pathways that can be caused by environmental release are of great importance.
  • fluorescent tubular fishes by the conventional transformation technique is mainly zebrafish and Japanese freshwater killari.
  • black halftones and the like exist on the surface of the zebrafish, and albino or golden mutant strains are mainly used to produce highly commercial fluorescent fish.
  • Previously developed fluorescent zebrafish strains include gene regulatory site fragments that can specifically express foreign proteins in skeletal muscle (e.g., myosin light chain 2 polypeptide gene promoter, a-actin gene promoter or muscle creatine kinase gene promoter, etc.).
  • transgenic fish prepared by implanting fluorescent expression vectors regulated by these constitutive gene promoters although capable of inducing a universal fluorescence phenotype in various tissues, have their fluorescence intensity using the muscle specific gene promoter. Since it is much lower than the case, there is a lack of excellent commerciality as a fluorescent tubular fish.
  • the beta-actin promoter induces high gene expression in many tissues and organs, such as internal organs, but relatively low activity in skeletal muscle, it is likely to be limited in generating a good external fluorescence phenotype.
  • Fluorescent fishes were also developed in the case of Japanese freshwater killifish using beta-actin gene promoter fragments or zebrafish muscle specific expression gene promoters previously used for zebrafish transformation (Hamada K, Tamaki K, Sasado T, Watai Y, Kani S, Wakamatsu Y, Ozato K, Kinoshita M, Kohno R, Takagi S, Kimura M (1998)
  • Usefulness of the medaka beta-actin promoter investigated using a mutant GFP reporter gene in transgenic medaka Oryzias latipes Mol.
  • the dissolution of the excellent fluorescence phenotype that is impossible in the conventional single transformation method, ie, strong fluorescence expression in skeletal muscle and excellent coronary value that can simultaneously express fluorescence in all other tissues An attempt was made to provide transgenic tubular fish.
  • the present invention has been made to provide a safer method of using genetically modified fluorescent fish that is reproductively isolated by inducing infertility through cross-breeding and chromosomal manipulation from transgenic fish.
  • An object of the present invention is to use two different types of novel regulatory region fragments, a double transformed homozygous sea starfish ( Oryzias dancena ), which simultaneously acquires strong fluorescence expression in skeletal muscle and universal fluorescence expression in all other tissues. Lineages are generated, and from these chromosome manipulations and cross-breeding programs to provide new dissociated fluorescent transgenic ornamental fish that are reproductively isolated.
  • mlc2-2 myosin light chain polypeptide isoform 2-2
  • a sea larva comprising a beta-actin gene promoter of the Oryzias dancena and a red fluorescent protein (RFP) structural gene, preferably comprising a polyadenylation signal O. dancena ) provides a fluorescence expression vector that expresses universal fluorescence in the entire O. dancena tissue, further comprising a beta-actin 3'-UTR fragment.
  • RFP red fluorescent protein
  • F1 a transgenic sea trout
  • F2 a transgenic sea trout
  • transgenic marine celery that expresses strong fluorescence in muscle
  • transgenic marine celery that expresses universal and always constitutive fluorescence in whole language while expressing relatively weak fluorescence in muscle.
  • transgenic sea larvae and muscles expressing strong fluorescence in the muscle produced by the method while expressing relatively weak fluorescence in the muscle and expressing constitutive and constitutive fluorescence in the whole body
  • Intraspecific crosses of transgenic sea scorpions to obtain hemizygous double transgenic sea scorpions and cross-transgenic male and female crosses to produce homozygous double transgenic sea scorpions Intraspecific crosses of transgenic sea scorpions to obtain hemizygous double transgenic sea scorpions and cross-transgenic male and female crosses to produce homozygous double transgenic sea scorpions; And it provides a double transformed sea celery produced by this, which simultaneously express fluorescence in all tissues with strong fluorescence in muscle.
  • a method for producing an infertile double-transformed marine trellis hybridtriploid comprising the step of interspecific hybridization with the above-mentioned marine trout and Oryzias javanicus , And it is produced by the fluorescence in the whole tissue with the strong fluorescence in the muscle at the same time to provide a fertility double transgenic Oryzias dancena hybrid (lotriploloid) removed fertility.
  • a novel promoter capable of inducing muscle-specific or constitutive foreign gene expression from Oryzias dancena which is capable of normal growth in both freshwater, brackish and seawater environments, is fused with fluorescent protein genes.
  • Transformed vectors were prepared.
  • a double transformation simultaneous expression of fluorescence resistant to muscle and universal fluorescence expression in several tissues
  • two fluorescence expressing traits was generated by a hybridization program between these two homozygous lines.
  • the myosin light chain 2 polypeptide isoform # 2 gene promoter (mlc2-2 promoter), a promoter capable of inducing strong gene expression specifically for skeletal muscle, and relatively low activity in skeletal muscle
  • a new beta-actin gene promoter which can induce universal gene expression across all tissues of the whole fish body, is newly isolated from O. dancena and a red fluorescent protein (RFP) structural gene. Construct a fusion gene with Then sea medaka (O. dancena) mlc2-2 gene and beta-by the 3'-UTR (untranslated region) of the actin gene isolated a fragment connected to the respective ends of the two fusion genes, sea medaka (O. dancena) in muscle
  • Two fluorescent expression vectors can be constructed that can express strong fluorescence or can express universal fluorescence in whole tissues.
  • the transgene unit fragments are separated from the expression vectors, and microinjection is performed in the O. dancena fertilized eggs, respectively, and the transgenic fish selection and breeding programs are used to strengthen the muscles.
  • composition of the present invention allows the use of overlapping transformation, mating and chromosomal manipulation programs to secure new complex traits of fluorescent coronary fish that have not been seen in the prior art, and ecologically through complete reproductive isolation. It provides a safer way to use genetically modified ornamental fish.
  • Myosin light chain polypeptide isoform 2-2 mlc2-, responsible for the formation and motor function of skeletal muscle from the photochlorinated sea larvae ( O. dancena ) for the production of transgenic fish. 2) Isolates the gene and its regulatory region, and the beta-actin gene, which is a constitutively expressed gene involved in the cytoskeletal formation, and its regulatory region. Obtaining the cDNA sequences of the mlc2-2 and beta-actin genes respectively from the sea pod expression gene transcripts database constructed for the present invention, from which genomic DNA genes using PCR (polymerase chain reaction) method Obtain fragment sequencing.
  • Genome walking in five directions is performed based on each gene cDNA or gDNA sequence, and 5-upstream regions are secured for each mlc2-2 and beta-actin genes.
  • the ligation) reaction inserts each of the gene promoter fragments immediately before the RFP gene.
  • the O the O.
  • Intracellular hybridization between two established homozygous strains (mlc2-2RFP and b-actRFP strains) (transgenic transbreeding) establishes novel fluorescence expression in all tissues as well as strong fluorescence expression in muscle Produce transgenic individuals of a double fluorescent phenotype.
  • Cross-breeding between transgenic lines is carried out by exchanging male and female between the homozygous lines, thereby generating cross-transgenic hybrid fish that have obtained the desired phenotype.
  • Selected transgenic fishes express strong red fluorescence in skeletal muscle by the mlc2-2 promoter, and double traits in combination with universal red fluorescence in all tissues including eyes, fins, gills and epidermis by the beta-actin promoter.
  • Heterologous hybrid ploidy is induced for reproductive isolation of the newly formed double transgenic fluorescence marine trout lineage.
  • the recently dismissed pine-fish O. javanicus which can maintain the photo-inflammatory characteristics and the transparent body color of O. dancena even in the hybrid drainage was selected.
  • Homozygous double transgenic O. dancena females and normal O. javanicus males are bred and temperature-stimulated to suppress the release of the second polar body of hybrid fertilized eggs.
  • the temperature stimulation treatment is carried out for 30 to 45 minutes at 0 ° C. after fertilization and induces embryonic development and hatching from the fertilized eggs.
  • hybridoploid formation was confirmed by using DNA content and specific gene fragment sequencing method, and the identified individuals were grown to express double traits and have a reproductive isolation. Check.
  • the heterologous hybrid triploid double fluorescent transgenic fish generated according to the present invention stably well preserves the double transformation characteristics (ie, strong fluorescence of muscle and universal fluorescence expression in all other tissues) of the mother O. dancena . can confirm.
  • transgenic triploids have not been shown to produce viable fertilized eggs at all in long-term induction with normal O. dancena or O. javanicus , so that these hybrid heteroploid transgenic sea larvae are functionally sterile in both male and female. Proved to be obtained.
  • FIG. 2 is a schematic diagram of the podmlc2-2RFP fluorescence expression vector
  • 3 is a graph showing the expression distribution and level of mlc2-2 mRNA in adult tissues of Oryzias dancena ,
  • FIG. 4 is a schematic diagram of the podb-actRFP fluorescence expression vector
  • FIG. 5 is a graph showing the tissue expression distribution and level of beta-actin mRNA in adult Oryzias dancena tissue
  • Figure 6 is a photograph showing the fluorescence expression in the Oryzias dancena embryo (embryo) micro-injected with the transgene mlc2-2-RFP,
  • FIG. 7 is a photograph showing the appearance of the F1 transgenic sea larvae ( Oryzias dancena ) and general sea larvae ( Oryzias dancena ) to which the transgene mlc2-2-RFP is transplanted.
  • Figure 8 is a photograph showing the fluorescence expression in the Oryzias dancena embryo (embryo) micro-injected with the transgene beta-actin-RFP,
  • FIG. 9 is a photograph showing RFP expression in F1 transgenic Oryzias dancena appearance and external tissues transfected with transgene beta-actin-RFP.
  • FIG. 10 is a photograph showing RFP expression in various internal organs of the F1 transgenic sea trout Oryzias dancena transplanted with the transgene beta-actin-RFP,
  • FIG. 11 is a double transformed Oryzias dancena photograph expressing fluorescence in whole tissues with strong fluorescence in muscle.
  • FIG. 13 is a photograph of an infertile transgenic hybrid triploid generated through cross-breeding and induction of ploidy with a double transgenic sea trout ( Oyzias dancena ) and O. javanicus .
  • EST (expressed sequence tag) analysis was performed from cDNA library constructed using total RNA of O. dancena whole body, and mlc2-2 cDNA sequence (SEQ ID NO: 1) was obtained through EST database analysis. Based on the obtained mlc2-2 cDNA gene fragment sequence, genome walking was performed to secure a regulatory region including a promoter of the upstream mlc2-2 gene. Genome walking was performed according to the manufacturer's recommended method using the Universal Genome Walker kit (Clontech Laboratories, USA), wherein two reverse primers specific to the O. dancena mlc2-2 gene (ODMlc2-2 GW1; No. 2 and ODMlc2-2 GW2; SEQ ID NO: 3) were synthesized and used.
  • ODMlc2-2 GW1 Two reverse primers specific to the O. dancena mlc2-2 gene
  • the reaction composition and PCR amplification conditions for genome walking are shown in Table 1 below.
  • Second genome walking was carried out in the same manner based on the results of the first genome walking, in which two reverse primers (ODMlc2-2 GW3; SEQ ID NO: 4 and ODMlc2-2 GW4; SEQ ID NO: 5) were used.
  • Table 1 below shows PCR reaction compositions and amplification conditions for genome walking to the MLC2-2 promoter region.
  • a 5-upstream regulatory region fragment (SEQ ID NO: 6) of the mlc2-2 gene obtained through genome walking, a fusion structure with a red fluorescent protein (RFP; provided by Clontech's pDsRed2 vector) gene was prepared. To this end, the obtained sequence fragments were separated again by PCR. Table 2 shows reaction compositions and amplification conditions for PCR separation of the mlc2-2 promoter. In this case, KpnI at each 5-terminal of the PCR primer (forward; KpnI-ODMlc2-2 1F; SEQ ID NO: 7) and reverse (AgeI-ODMlc2-2 1R; SEQ ID NO: 8) to facilitate the fusion with the RFP gene.
  • a restriction enzyme recognition sequence (AAT GGTACC ) and a restriction enzyme AgeI recognition sequence (AAT ACCGGT ) were artificially inserted, respectively.
  • the PCR product was cloned into the pGEM T-easy vector (Promega) according to the manufacturer's recommended method, and the fragments were recovered by KpnI and AgeI restriction enzyme treatment, and then ligation with the pDsRed2 fragment prepared in advance through the same restriction enzyme treatment. Gene promoter fragments were inserted immediately before the RFP gene, respectively.
  • Table 3 shows the ligation reaction compositions and reaction conditions for the fusion structure of the mlc2-2 promoter with the RFP gene.
  • a polyadenylation signal is sent to the NotI restriction enzyme position immediately after the RFP gene termination codon for easier expression of the RFP gene in O. dancena cells.
  • the 3'-UTR fragment of the corresponding mlc2-2 gene was subjected to PCR isolation using two primers (forward primer NotI-ODMlc2-2 3UFW1; SEQ ID NO: 10 and reverse primer NotI-AatII-ODMlc2-2 3URV1; SEQ ID NO: 11). Secured through.
  • Table 4 shows reaction compositions and amplification conditions for PCR isolation of the mlc2-2 gene 3′-UTR region.
  • the NotI recognition sequence ATA GCGGCCGC
  • the reverse primers were used to recover only the transgenic gene fragment for later micromicroinjection .
  • An AatII restriction enzyme recognition sequence ATA GCGGCCGC GACGTC
  • podmlc2-2RFP was prepared as a fluorescence expression vector capable of inducing strong red fluorescence expression in O. dancena muscle. 2 is a schematic diagram of the podmlc2-2RFP fluorescent expression vector.
  • RNAs (brain, gill, heart, digestive tract, kidney, liver, muscle, spleen, gonad) were extracted from each of the 12 male and female marine species and total RNA was extracted using RNeasy Mini-kit (Qiagen, Germany). Separated.
  • CDNA was synthesized according to the manufacturer's recommended method using Omniscript Reverse Transcription System (Qiagen, Germany) on 2 ⁇ g of total RNA separated by each tissue, and 18S rRNA was prepared together in the reverse transcription reaction as a normalization control.
  • PCR primer pairs capable of amplifying mlc2-2 mRNA fragments were used for investigating the presence of mlc2-2 mRNA expression and expression levels by sea fern tissues, as follows: forward primer qODMlc2-2 1F (SEQ ID NO: 12) and reverse primer qODMlc2-2 1R (SEQ ID NO: 13) was synthesized, and changes in the amount of real-time PCR amplification were tracked using an iCycler real-time PCR optic module manufactured by Bio-Rad (USA). Table 5 shows PCR reaction compositions and thermocycle amplification conditions for real-time quantitative amplification of mlc2-2 mRNA.
  • the expression level of mlc2-2 mRNA in each tissue was corrected based on the level of the 18S rRNA control group of the tissue, and the relative quantification of the tissues was performed by Kubista et al. (Kubista M, Andrade JM, Bengtsson M, Forootan A, JonJ, Lind). K, Sindelka R, SjR, SjB, StrL, StA, Zoric N (2006) The real-time polymerase chain reaction.Mol Aspects Med 27 : 95125).
  • Figure 3 is a graph showing the expression distribution and level of mlc2-2 mRNA in adult tissues of Oryzias dancena . As shown in FIG. 3, most of the marine trout mlc2-2 gene expression was strongly concentrated in the muscle, and the gene expression was not detected or very poor in the rest of the examined tissues. Therefore, in the present invention, when the fluorescence expression by the mlc2-2 promoter is expressed in the transgenic sea larvae, the fluorescence expression can be strongly concentrated in the muscle.
  • the beta-actin promoter was isolated to produce expression vectors capable of inducing universal and always constitutive fluorescence expression in whole sea pods.
  • the entire beta-actin cDNA sequence (SEQ ID NO: 14) was obtained from the sea lychee EST database described in Example 1, and the 5-upstream regulatory region fragment was isolated through genome walking and isolation of genomic gene fragments as in Example 1. Secured.
  • the primers used for isolation and genome walking of genomic beta-actin gene fragments are shown in SEQ ID NOs: 15 to 18.
  • Table 6 shows PCR reaction compositions and amplification conditions for beta-actin genomic gene isolation and genome walking to the promoter region.
  • the beta-actin regulatory region obtained through genome walking is a total of 3.88 kb sequence linked to the 5-upstream region, non-translated exon I and intron I (SEQ ID NO: 19).
  • the forward primer containing the NotI recognition sequence (NotI-ODb-ACT 3UFW1; SEQ ID NO: 22) and the reverse primer containing the NotI / AatII recognition sequence (NotI-AatII Beta-actin 3′-UTR fragment (650 bp; SEQ ID NO: 24) was further linked to the RFP stop codon downstream using -ODb-ACT 3URV1; SEQ ID NO: 23) after PCR separation.
  • podb-actRFP was prepared as a fluorescence expression vector capable of inducing constitutive red fluorescence expression in the whole fish of O. dancena . 4 is a schematic diagram of a podb-actRFP fluorescent expression vector.
  • FIG. 5 is a graph showing the tissue expression distribution and level of beta-actin mRNA in adult Oryzias dancena tissues. As shown here, the sea larvae beta-actin gene shows mRNA expression in all tissues analyzed, demonstrating the universal regulatory characteristics of the beta-actin gene. On the other hand, according to Figure 5, the expression level of beta-actin mRNA is significantly different from tissue to tissue, showing a high expression level in the digestive tract, kidney, spleen and ovary while relatively mild expression in the brain, gills, heart, testis tissue. And the lowest expression in muscle and liver tissues.
  • transgenic sea urchin adults can express fluorescence universally in all tissues, but the difference in expression rate is expected in each tissue, especially in the skeletal muscular system. Expression of the gene protein was difficult to expect.
  • transgene fragments recovered from the podmlc2-2RFP through KpnI / AatII restriction enzyme treatment were microscopically injected into the sea trout fertilized eggs.
  • male and male adult males and females were housed in a 30 L tank at 25 ° C. in a male to female ratio of 2: 1 and observed mating and spawning behavior.
  • spawning was confirmed, the fertilized eggs were recovered immediately, and the fertilized eggs in the first warming season were selected and microscopically injected into the cytoplasm under a microscope.
  • Micromicroscopic injection was performed using a micromanipulator (Narishige, Japan), and the DNA for micromicroscopic injection was adjusted to a concentration of 100 ⁇ g / ml in 10 mM Tris-Cl, 0.1 mM EDTA pH 8.0 buffer solution.
  • the presence and pattern of RFP expression in each stage were examined by fluorescence microscopy in 110 first microembryled embryos.
  • RFP expression by regulation of the mlc2-2 promoter was found to be in good agreement with the characteristics of the mlc2-2 gene regulation as observed in muscle-specific patterns in the late embryo.
  • Figure 6 is a photograph showing the fluorescence expression in the Oryzias dancena embryo (embryo) micro-injected with the transgene mlc2-2-RFP.
  • Figure 7 is a picture of a gene transformed appearance mlc2-2-RFP the F1 transgenic medaka sea transplantation (Oryzias dancena) and normal sea medaka (Oryzias dancena).
  • the strong red fluorescence can be easily observed with the naked eye without fluorescent lighting, and the fluorescence expression is specific to skeletal muscle, so RFP is applied to the head, upper fin, and upper upper head. It can be seen that there is no expression.
  • FIG. 9 is a photograph showing RFP expression in F1 transgenic Oryzias dancena appearance and external tissues transfected with transgene beta-actin-RFP.
  • FIG. 9 These F1 individuals have mild RFP fluorescence intensities throughout the muscle and other tissues show varying intensity of fluorescence per tissue.
  • FIG. 10 is a photograph showing RFP expression in various internal organs of an F1 transgenic Oryzias dancena transplanted with transgene beta-actin-RFP.
  • the present transgenic lines do not express strong fluorescence in muscle as in the muscle concentrated fluorescence expression line of Example 5, but the universal fluorescence expression distribution in all tissues that cannot be obtained in mlc2-2-RFP transformation Express
  • F2 transgenic individuals were generated through sibling crosses between female and male F1 individuals of the lineage selected from them. No significant differences in fertilization rate, hatching rate and initial survival rate were found between the F1 transgenic organisms and the normal control, and about 75% of the transgenic genes were found to be consistent with the Mendelian method. Is showing. In addition, it shows that a stable reproductive line was formed in the transgenic transgenic process such as meiosis without reducing or losing transgene expression. F2 progeny of relatively high fluorescence intensities were selected by visual evaluation of fluorescence on the generated F2 progeny, and crossed with general sea scorpions. Subjects were selected. Table 10 below shows the selection of beta-actin RFP homozygous transform F2 through progeny assay.
  • the transgenic lines were transfected with the transgenic homozygotes F2 obtained in Examples 5 and 6.
  • FIG. 11 is a picture of a double transgenic sea killifish ( Oryzias dancena ) expressing fluorescence in all tissues with strong fluorescence in muscle.
  • FIG. 11 is a picture of a double transgenic sea killifish ( Oryzias dancena ) expressing fluorescence in all tissues with strong fluorescence in muscle.
  • PCR of the mlc2-2-RFP transgene and the beta-actin-RFP transgene to detect the presence of the actual two transgenes in one individual of the selected double transgenic lines. It was.
  • a first forward primer specific for the mlc2-2 promoter (TGODMlc2-2 2F; SEQ ID NO: 27), a second specific to the beta-actin promoter, based on 100 ng of genomic DNA extracted from transgenic fish for PCR detection
  • a multiplex PCR was performed using a forward primer (TGODb-act 1F; SEQ ID NO: 28) and a reverse primer (TGRFP 1R; SEQ ID NO: 29) specific to RFP, a common structural gene of two transgenes. It was. Table 12 below shows the composition of the reactants and the thermal cycling amplification conditions for PCR identification of transformed individuals.
  • Figure 12 shows the results of PCR amplification of the transgenes from the double transgenic sea killi ( Oryzias dancena ).
  • two transgene fragments were detected in all the analyzed individuals, thus showing that the fluorescent phenotype observed in the double transgenic lineage of the present invention was obtained by the operation of the transgene.
  • a hybrid diploid double transformant was generated by cross-breeding with oryzias javanicus and inducing diploids.
  • Two females of double transgenic O. dancena and one female of normal O. javanicus were housed in each of the three tanks and hybrid hybridization and spawning were induced.
  • As a scattering tank for the breeding a 30 L 25 ° C water bath was used, the photoperiod was adjusted to the contrast of 16h: 8h, and the salinity was 15 ppt.
  • fertilized eggs were recovered and the second polar body was suppressed through the temperature stimulation treatment.
  • Temperature stimulation treatment was carried out for 45 minutes at 0 °C after 3 minutes of fertilization, and after the treatment was completed and transferred to a 25 °C constant temperature incubator (15 ppt) to induce hatching. A total of three iterations were performed. The hybridization rate between these two species was 90.5%, which was not significantly different from that of intrabreeding. The hatching rate was 80.5%, which was slightly lower than that of parental breeding. The average incubation rate of the inter-drainage drainage group treated with temperature treatment was 68.8%, which was significantly higher than that of the untreated diploid hybrid group.
  • hybrid diploid double transgenic individuals formed through inhibition of dipolar release are triploid hybrid fish, including two haploid pairs of the maternal (double-transformed O. dancena females) and one paternal (generic O. javanicus male) haploids,
  • the action of the double transgenes derived from the maternal system simultaneously shows strong fluorescence expression in the muscle (mlc2-2 promoter regulation) and fluorescence expression in other tissues (beta-actin promoter regulation), the phenotypic characteristic of which is diploid It was very similar to the phenotype of the maternal line that provided chromosome formation.
  • FIG. 13 is a photograph of an infertile transgenic hybrid triploid generated through cross-breeding and induction of a ploidy between a double transgenic sea larva ( Oyzias dancena ) and O. javanicus .
  • Table 1 shows the results of egg production and fertilization of eggs by 1: 1 breeding (hybrid ploidy ⁇ 6 O. dancena hybrids and 6 hybrid ploidy ⁇ O. javanicus hybridization).
  • Table 15 shows the results of evaluating the fertility of the double transformed hybrid triploid.
  • the double transgenic hybrid ploidy individuals produced by the present invention maintained the desired fluorescence phenotype well, but the fertility production was completely eliminated through fertilization with common killing species as a complete functional infertility. Able to know.
  • the newly formed double transgenic hybrid drainage sea scorpion through the present invention provides a way to distribute and use fluorescent tubular fish in an ecologically safer manner.
  • the novel transgenic hybrid drainage according to the present invention possesses a novel fluorescent phenotype significantly improved compared to conventional fluorescent transgenic fishes, and thus can be used as a fluorescent coronary organism with excellent coronary value, as well as having perfect sterility characteristics.
  • a novel fluorescent phenotype significantly improved compared to conventional fluorescent transgenic fishes, and thus can be used as a fluorescent coronary organism with excellent coronary value, as well as having perfect sterility characteristics.
  • the present invention since it provides a photo-inflammatory transgenic tubular fish capable of normal growth in freshwater, brackish water and seawater conditions, it is possible to provide consumers with a wider choice in the tubular fish market.

Abstract

The present invention relates to transgenic allotriploid sterile fish that acquire a novel fluorescent phenotype, and more particularly, to double transgenic Oryzias dancena which can express not only strong fluorescent expression in the skeletal muscle but also ubiquitous fluorescent expression in all other tissue, and to sterile allotriploid produced from the double transgenic Oryzias dancena. This novel transgenic allopolyploid can be used as a fluorescent ornamental organism with good ornamental quality because it has a novel fluorescent phenotype which is significantly improved over typical fluorescent transgenic fish; there is no risk of ecosystem transition of foreign genes through genesiological means even through intentional or unintentional release to the environment because of the perfectly sterile characteristic of the fish; and various options can be provided to consumers in the ornamental fish markets because said fish can live and grow normally in fresh water, brackish water, and seawater conditions.

Description

더블 형질전환 불임성 형광 바다 송사리Double Transformation Infertile Fluorescent Sea Killerfish
본 발명은 신규 핵산 단편들의 조절에 의한 유전자 이식, 이종간 교배(interspecific breeding) 및 염색체조 조작(chromosome-set manipulation)을 통해 신규 형광 표현형을 획득한 형질전환(transgenic) 잡종3배체(allotriploid) 불임 어류에 관한 것으로, 보다 구체적으로는 골격 근육(skeletal muscle)에서 강한 형광 발현과 함께 여타 모든 조직에서 보편적(ubiquitous) 형광 발현을 동시에 표현할 수 있는 더블 형질전환(double transgenic) 바다 송사리(오리지아스 단세나; Oryzias dancena) 및 이들로부터 생성된 불임성 잡종3배체(sterile allotriploid)에 관련된다.The present invention provides a transgenic allotriploid infertile fish that obtains a novel fluorescent phenotype through gene transfer, interspecific breeding and chromosome-set manipulation by regulation of novel nucleic acid fragments. More specifically, a double transgenic sea scorpion (Originals dansena) capable of simultaneously expressing strong fluorescence in skeletal muscle and ubiquitous fluorescence in all other tissues. Oryzias dancena ) and sterile allotriploids generated from them.
어류 형질전환 기술은 척추동물의 발생 유전학 및 유전체학 연구 등에 있어 중요한 연구기법으로 인정받고 있으며, 또한 유용 어종들에게 경제적으로 중요시 되는 형질(고속성장, 질병저항성, 영양 대사 조작 등)을 새로이 획득시킴으로써 양식생물 산업의 생산성을 대폭 개선하기 위한 전략으로도 중요시되고 있다(Hackett, P. B. & Alvarez, M. C. (2000). The molecular genetics of transgenic fish. In Recent Advances in Marine Biotechnology, Vol. 4 (Fingerman,M. & Nagabhushanam, R., eds), pp. 77145. Enfield, NH: Science Publishers Inc.; Nam YK, Maclean N, Fu C, Pandian TJ, Eguia MRR (2007) Development of transgenic fish: scientific background. In: Kapuscinski AR, Hayes KR, Li S, Dana G (eds.) Environmental risk assessment for genetically modified organisms. Vol 3. CABI Press, Cambridge, pp 6194; Nam YK, Maclean N, Hwang G, Kim DS (2008) Autotransgenic and allotransgenic manipulation of growth traits in fish for aquaculture: a review. J. Fish Biol. 72:126; Nam, Y. K., Noh, J. K., Cho, Y. S., Cho, H. J., Cho, K. N., Kim, C. G. & Kim, D. S. (2001). Dramatically accelerated growth and extraordinary gigantism of transgenic mud loach Misgurnus mizolepis. Transgenic Research 10, 353362). 아울러 소형 어류들을 대상으로 생체 형광 단백질(living fluorescent protein) 유전자 등을 이식함으로써 새로운 관상 어류 제조 방안으로도 사용되고 있다. 형질전환 관상어로는 현재까지 지브라휘시(zebrafish; Danio rerio) 및 담수산 일본 송사리(Japanese medaka; Oryzias latipes)를 대상으로 형광 형질을 획득시킨 형질전환 계통이 개발된 바 있으며, 여타 다른 소형 어류 종들에서도 형광 어류 개발을 위한 실험적 연구들이 시도되고 있다(Gibbs PD, Schmale MC (2000) GFP as a genetic marker scorable throughout the life cycle of transgenic zebrafish. Mar. Biotechnol. 2:107125; Chou CY, Horng LS, Tsai HJ (2001) Uniform GFP-expression in transgenic medaka (Oryzias latipes) at the F0 generation. Transgenic Res. 10:303315; Gong Z, Ju B, Wan H (2001) Green fluorescent protein (GFP) transgenic fish and their applications. Genetica 111:213225; Pan X, Zhan H, Gong Z (2008) Ornamental expression of red fluorescent protein in transgenic founders of white skirt tetra (Gymnocorymbus ternetzi). Mar. Biotechnol. 10:497501)Fish transformation technology is recognized as an important research technique in the developmental genetics and genomics studies of vertebrates, and also by obtaining new traits (fast growth, disease resistance, nutritional metabolic manipulation, etc.) that are economically important to useful fish species. It is also important as a strategy to drastically improve the productivity of the biological industry (Hackett, PB & Alvarez, MC (2000) .The molecular genetics of transgenic fish.In Recent Advances in Marine Biotechnology , Vol. 4 (Fingerman, M. & Nagabhushanam, R., eds), pp. 77145.Enfield, NH: Science Publishers Inc .; Nam YK, Maclean N, Fu C, Pandian TJ, Eguia MRR (2007) Development of transgenic fish: scientific background.In: Kapuscinski AR , Hayes KR, Li S, Dana G (eds.) Environmental risk assessment for genetically modified organisms.Vol 3. CABI Press, Cambridge, pp 6194; Nam YK, Maclean N, Hwang G, Kim DS (2008) Autotransgenic and allotransgenic manipulation of growth traits in fish for aquaculture: a review.J. Fish Biol. 72: 126; Nam, YK, Noh, JK, Cho, YS, Cho, HJ, Cho, KN, Kim, CG & Kim, DS (2001) .Dramatically accelerated growth and extraordinary gigantism of transgenic mud loach Misgurnus mizolepis.Transgenic Research 10, 353362). In addition, by implanting living fluorescent protein genes in small fish, it is also used as a new method for producing tubular fish. Transgenic ornamental fish have been developed so far with a fluorescent transgenic strain for zebrafish ( Danio rerio ) and freshwater Japanese medaka ( Oryzias latipes ), and in other small fish species. Experimental studies have been attempted to develop fluorescent fish (Gibbs PD, Schmale MC (2000) GFP as a genetic marker scorable throughout the life cycle of transgenic zebrafish.Mar. Biotechnol. 2: 107125; Chou CY, Horng LS, Tsai HJ (2001) Uniform GFP-expression in transgenic medaka (Oryzias latipes) at the F0 generation transgenic Res 10:... 303315; Gong Z, Ju B, Wan H (2001) Green fluorescent protein (GFP) transgenic fish and their applications Genetica 111: 213225; Pan X, Zhan H, Gong Z (2008) Ornamental expression of red fluorescent protein in transgenic founders of white skirt tetra (Gymnocorymbus ternetzi) .Mar . Biotechnol. 10: 497501)
그러나 형질전환 어류를 상용화하여 이용하는 것은, 여러 생물 산업 분야에서 새로운 부가가치를 창출한다는 측면에서는 그 유용성이 인정되지만, 형질전환 어류의 의도적 또는 비의도적 환경 방출로 인해 생태계의 유전자를 오염시키는 등 생물 다양성에 매우 부정적인 잠재 위해성을 동시에 내포하고 있다(Maclean, N. & Laight, R. J. (2000). Transgenic fish: an evaluation of benefits and risks. Fish and Fisheries 1, 146172; Kapuscinski, A. R. (2005). Current scientific understanding of the environmental biosafety of transgenic fish and shellfish. Revue Scientifique et Technique de l Office International des Epizooties 24, 309322). 어류의 경우, 육상 유전자 변형 곡물과는 달리, 이동성이 매우 높기 때문에 유전자 변형 어류의 원치 않는 환경 방출이 일어날 경우 그 회수가 현실적으로 불가능하고, 위해 생태계의 범위가 매우 광범위하다는 문제가 있다(Kapuscinski, A. R., Hayes, K. R., Li, S. & Dana, G. (2007). Environmental Risk Assessment of Genetically Modified Organisms, Volume 3: Methodologies for Transgenic Fish. Oxfordshire: CABI Publishing.). 따라서, 형질전환 어류의 안전한 상업적 이용을 위해서는 형질전환 어류를 대상으로 도입 유전자의 환경전파를 방지할 수 있는 생식생물학적 격리가 최소한의 조치로서 반드시 수반되어야만 한다. 특히, 관상 목적의 유전자 변형 어류의 경우, 첫째, 반드시 살아있는 형태로 불특정 다수의 최종 소비자들에게로 유통된다는 점, 둘째, 소비자 또는 애호가들 간에 교환 및 소규모 거래 등이 빈번히 일어남으로써 1차 소비 단계 이후에도 살아있는 유전자 변형 생물의 추가 유통이 쉽게 일어날 수 있다는 점, 그리고 셋째, 소비자들의 기호 변화로 인해 살아있는 유전자 변형 어류의 의도적인 환경 방출(예컨대 무분별한 방생 등) 가능성이 높다는 점을 고려할 때, 비록 형질전환 관상 어류가 일반적으로 실내에서 주로 이용된다 할지라도 환경 방출에 의한 생태학적 위해성 야기 가능성이 항시 존재한다. 따라서, 형질전환 관상 어류의 상용화를 위해서는 환경 방출시 야기될 수 있는 생식학적 경로의 유전자 전이를 차단할 수 있는 생물학적 격리 방법이 매우 중요시된다.However, the commercial use of transgenic fish is recognized for its usefulness in terms of creating new added value in many bioindustry sectors.However, intentional or unintentional release of transgenic fish may lead to biodiversity. Simultaneously contains very negative potential risks (Maclean, N. & Laight, RJ (2000) .Transgenic fish: an evaluation of benefits and risks. Fish and Fisheries 1, 146172; Kapuscinski, AR (2005). the environmental biosafety of transgenic fish and shellfish.Revue Scientifique et Technique de l Office International des Epizooties 24, 309322). In the case of fish, unlike terrestrial genetically modified grains, the mobility is so high that the recovery of unwanted environmental releases of genetically modified fish is not practically possible and the range of risk ecosystems is very wide (Kapuscinski, AR). , Hayes, KR, Li, S. & Dana, G. (2007) .Environmental Risk Assessment of Genetically Modified Organisms, Volume 3: Methodologies for Transgenic Fish.Oxfordshire: CABI Publishing.). Therefore, for the safe commercial use of transgenic fish, reproductive biological sequestration that can prevent the propagation of transgenes in transgenic fish must be accompanied by minimal measures. In particular, for genetically modified fish for ornamental purposes, firstly, it is necessarily distributed in living form to an unspecified number of end consumers, and secondly, frequent exchanges and small transactions among consumers or enthusiasts occur, even after the first consumption phase. Considering that additional distribution of living genetically modified organisms can easily occur, and third, there is a high likelihood of intentional release of living genetically modified fish (eg, indiscriminate release, etc.) due to consumer preference changes. Although fish are generally used indoors, there is always the possibility of causing ecological hazards from environmental releases. Therefore, for the commercialization of transgenic ornamental fish, biological isolation methods that can block the gene transfer of the reproductive pathways that can be caused by environmental release are of great importance.
종래 형질전환 기술에 의해 형광 관상 어류로 개발된 사례로는 지브라휘시와 일본산 담수 송사리가 주를 이룬다. 형광 지브라휘시 개발시, 원래 지브라휘시 체표면에는 검정 반문 등이 존재하기 때문에 상품성이 높은 형광 관상어를 제조하기 위해서는 알비노(albino) 또는 황금색 변이 계통을 주로 이용한다. 종래 개발되어 있는 형광 지브라휘시 계통들은, 외래 단백질을 골격 근육에 특이적으로 발현시킬 수 있는 유전자 조절 부위 단편들(예컨대 myosin light chain 2 polypeptide 유전자 프로모터, a-actin 유전자 프로모터 또는 muscle creatine kinase 유전자 프로모터 등)을 주로 이용하여 제조하였기 때문에 골격 근육계에서는 강한 형광발현을 나타내지만, 지느러미나 눈 등에서는 관상이 가능한 형광 표현형을 유도할 수 없고 오직 근육에만 형광의 표현 부위가 국한되어있다(Xu Y, He J, Tian HL, Chan CH, Liao J, Yan T, Lam TJ, Gong Z (1999) Fast Skeletal Muscle-Specific Expression of a Zebrafish Myosin Light Chain 2 Gene and Characterization of Its Promoter by Direct Injection into Skeletal Muscle. DNA AND CELL BIOLOGY 18: 85-95; Ju B, Xu Y, He J, Liao J, Yan T, Hew CL, Lam TJ, Gong Z (1999) Faithful Expression of Green Fluorescent Protein (GFP) in Transgenic Zebrafish Embryos Under Control of Zebrafish Gene Promoters. DEVELOPMENTAL GENETICS 25:158167; Gong Z, Ju B, Wan H (2001) Green fluorescent protein (GFP) transgenic fish and their applications. Genetica 111:213225). 일부 연구에서는 지브라휘시 세포골격(cytoskeleton)의 형성에 관여하는 베타-액틴(beta-actin) 유전자 프로모터를 비롯하여 여러 조직에서 외래 유전자 발현을 유도할 수 있는 항시구성적(constitutive and ubiquitous) 유전자들의 프로모터 조절부위를 이용, 형광 발현을 유도한 바 있다(Gibbs PD, Schmale MC (2000) GFP as a genetic marker scorable throughout the life cycle of transgenic zebrafish. Mar. Biotechnol. 2:107125; Chou CY, Horng LS, Tsai HJ (2001) Uniform GFP-expression in transgenic medaka (Oryzias latipes) at the F0 generation. Transgenic Res. 10:303315; Burket CT, Montgomery JE, Thummel R, Kassen SC, FaFave MC, Langenau DM, Zon LI, Hyde DR (2008) Generation and characterization of transgenic zebrafish lines using different ubiquitous promoters. Transgenic Res. 17:265279). 그러나, 이들 항시구성적 유전자 프로모터들에 의해 조절되는 형광 발현 벡터들을 이식하여 제조된 형질전환 어류들은, 여러 조직에서 보편적 형광 표현형을 유도할 수는 있지만 그 형광 강도가 상기 근육 특이적인 유전자 프로모터를 이용하는 경우 보다 많이 낮기 때문에 형광 관상 어류로서 우수한 상품성을 갖추기에는 부족함이 있다. 특히 베타-액틴 프로모터의 경우에는 내부 장기 등 많은 조직 및 기관에서 높은 유전자 발현을 유도하지만 골격 근육에서는 상대적으로 낮은 활성을 나타내므로, 우수한 외적 형광 표현형을 생성시키는 데 제한적일 가능성이 높다. 일본산 담수 송사리의 경우도 역시 베타-액틴 유전자 프로모터 단편, 또는 앞서 지브라휘시 형질전환에 사용된 바 있는 지브라휘시 근육 특이 발현 유전자 프로모터들을 이용하여 형광 어류가 개발된 바 있으나(Hamada K, Tamaki K, Sasado T, Watai Y, Kani S, Wakamatsu Y, Ozato K, Kinoshita M, Kohno R, Takagi S, Kimura M (1998) Usefulness of the medaka beta-actin promoter investigated using a mutant GFP reporter gene in transgenic medaka (Oryzias latipes). Mol. Mar. Biol. Biotechnol. 7:173180; Hsiao C-D, Tsai HJ (2003) Transgenic zebrafish with fluorescent germ cell: a useful tool to visualize germ cell proliferation and juvenile hermaphroditism in vivo. Dev. Biol. 262:313323; Zeng Z, Liu, Seebah S, Gong Z (2005) Faithful Expression of Living Color Reporter Genes in Transgenic Medaka Under Two Tissue-Specific Zebrafish Promoters DEVELOPMENTAL DYNAMICS 234:387392), 이들 역시 지브라휘시에서 관찰된 현상과 유사한 결과를 나타낸다. 뿐만 아니라, 종래의 형광 지브라휘시 및 일본 송사리는 모두 담수 어류로서, 해수 환경에서는 정상적인 생장과 원활한 사육이 용이하지 못하다. 즉, 현재까지 형질전환 기술을 이용한 형광 관상 어류의 이용은 담수 환경으로 국한되어 있다.The case of the development of fluorescent tubular fishes by the conventional transformation technique is mainly zebrafish and Japanese freshwater killari. In the development of fluorescent zebrafish, black halftones and the like exist on the surface of the zebrafish, and albino or golden mutant strains are mainly used to produce highly commercial fluorescent fish. Previously developed fluorescent zebrafish strains include gene regulatory site fragments that can specifically express foreign proteins in skeletal muscle (e.g., myosin light chain 2 polypeptide gene promoter, a-actin gene promoter or muscle creatine kinase gene promoter, etc.). ), It is mainly used in skeletal muscle system, but it shows strong fluorescence expression, but in fins and eyes etc., it is not possible to induce coronary fluorescence phenotypes, and only the muscle expresses fluorescence (Xu Y, He J). , Tian HL, Chan CH, Liao J, Yan T, Lam TJ, Gong Z (1999) Fast Skeletal Muscle-Specific Expression of a Zebrafish Myosin Light Chain 2 Gene and Characterization of Its Promoter by Direct Injection into Skeletal Muscle.DNA AND CELL BIOLOGY 18: 85-95; Ju B, Xu Y, He J, Liao J, Yan T, Hew CL, Lam TJ, Gong Z (1999) Faithful Expression of Green Fluorescent Protein (GFP) in Transgenic Ze brafish Embryos Under Control of Zebrafish Gene Promoters DEVELOPMENTAL GENETICS 25: 158167; Gong Z, Ju B, Wan H (2001) Green fluorescent protein (GFP) transgenic fish and their applications Genetica 111:.. 213225). In some studies, promoter regulation of constitutive and ubiquitous genes that can induce foreign gene expression in various tissues, including beta-actin gene promoters involved in the formation of zebrafiche cytoskeleton (Gibbs PD, Schmale MC (2000) GFP as a genetic marker scorable throughout the life cycle of transgenic zebrafish.Mar. Biotechnol. 2: 107125; Chou CY, Horng LS, Tsai HJ) (2001) Uniform GFP-expression in transgenic medaka (Oryzias latipes) at the F0 generation.Transgenic Res. 10: 303315; Burket CT, Montgomery JE, Thummel R, Kassen SC, FaFave MC, Langenau DM, Zon LI, Hyde DR ( 2008) Generation and characterization of transgenic zebrafish lines using different ubiquitous promoters.Transgenic Res. 17: 265279). However, transgenic fish prepared by implanting fluorescent expression vectors regulated by these constitutive gene promoters, although capable of inducing a universal fluorescence phenotype in various tissues, have their fluorescence intensity using the muscle specific gene promoter. Since it is much lower than the case, there is a lack of excellent commerciality as a fluorescent tubular fish. In particular, the beta-actin promoter induces high gene expression in many tissues and organs, such as internal organs, but relatively low activity in skeletal muscle, it is likely to be limited in generating a good external fluorescence phenotype. Fluorescent fishes were also developed in the case of Japanese freshwater killifish using beta-actin gene promoter fragments or zebrafish muscle specific expression gene promoters previously used for zebrafish transformation (Hamada K, Tamaki K, Sasado T, Watai Y, Kani S, Wakamatsu Y, Ozato K, Kinoshita M, Kohno R, Takagi S, Kimura M (1998) Usefulness of the medaka beta-actin promoter investigated using a mutant GFP reporter gene in transgenic medaka (Oryzias latipes Mol. Mar. Biol. Biotechnol. 7: 173180; Hsiao CD, Tsai HJ (2003) Transgenic zebrafish with fluorescent germ cell: a useful tool to visualize germ cell proliferation and juvenile hermaphroditism in vivo. Dev. Biol. 262: 313323 ; Zeng Z, Liu, Seebah S , Gong Z (2005) Faithful Expression of Living Color Reporter Genes in Transgenic Medaka Under Two Tissue-Specific Zebrafish Promoters DEVELOPMENTAL DYNAMICS 234: 387392), and they, too, a phenomenon observed in Zebra Fish It shows a similar result. In addition, the conventional fluorescence zebrafish and Japanese killifish are both freshwater fish, and in the seawater environment, normal growth and smooth breeding are not easy. In other words, the use of fluorescent tubular fishes using transformation techniques is limited to freshwater environments.
이상과 같은 문제점을 고려하여 본 발명에서는, 종래 단독 형질전환 방식으로는 불가능하였던 형광 표현형, 즉, 골격 근육에서의 강한 형광 발현과 함께 여타 모든 조직들에서도 동시에 형광을 표현할 수 있는 우수한 관상 가치의 해산 형질전환 관상 어류를 제공하고자 하였다. 아울러, 형질전환 어류로부터 이종간 교배 및 염색체조 조작을 통해 불임형질을 유도함으로써 생식학적으로 격리된, 보다 안전한 유전자변형 형광 어류 이용 방안을 제공하고자 본 발명에 이르게 되었다.In view of the above problems, in the present invention, the dissolution of the excellent fluorescence phenotype that is impossible in the conventional single transformation method, ie, strong fluorescence expression in skeletal muscle and excellent coronary value that can simultaneously express fluorescence in all other tissues An attempt was made to provide transgenic tubular fish. In addition, the present invention has been made to provide a safer method of using genetically modified fluorescent fish that is reproductively isolated by inducing infertility through cross-breeding and chromosomal manipulation from transgenic fish.
본 발명의 목적은 서로 다른 두 종류의 신규 유전자 조절부위 단편들을 이용하여 골격 근육에서의 강한 형광 발현과 여타 모든 조직에서의 보편적 형광 발현 특성을 동시에 획득한 더블 형질전환 동형접합성 바다 송사리(Oryzias dancena) 계통을 생성시키고, 이들로부터 염색체조 조작 및 이종간 교배 프로그램을 통해 생식학적으로 격리된 새로운 해산 형광 형질전환 관상어류를 제공하는 것이다.An object of the present invention is to use two different types of novel regulatory region fragments, a double transformed homozygous sea starfish ( Oryzias dancena ), which simultaneously acquires strong fluorescence expression in skeletal muscle and universal fluorescence expression in all other tissues. Lineages are generated, and from these chromosome manipulations and cross-breeding programs to provide new dissociated fluorescent transgenic ornamental fish that are reproductively isolated.
상기 목적을 달성하기 위하여 본 발명에서는, 바다 송사리(Oryzias dancena)의 마이오신 라이트체인 폴리펩타이드 아이소폼 2-2(myosin light chain polypeptide isoform 2-2; mlc2-2) 유전자 프로모터 및 적색 형광 단백질(red fluorescent protein, RFP) 구조 유전자(structural gene)를 포함하고, 바람직하게는 폴리아데닐화 신호(polyadenylation signal)을 포함하는 바다 송사리(O. dancena) mlc2-2 3'-UTR 단편을 추가로 포함하는, 바다 송사리(O. dancena) 근육에서 강한 형광발현을 표현하는 형광 발현 벡터; 그리고,In order to achieve the above object, in the present invention, the myosin light chain polypeptide isoform 2-2 (mlc2-2) gene promoter and red fluorescent protein (red) of Oryzias dancena fluorescent protein (RFP) structural gene, and further comprising an O. dancena mlc2-2 3'-UTR fragment, preferably comprising a polyadenylation signal, A fluorescence expression vector expressing strong fluorescence in O. dancena muscle; And,
바다 송사리(Oryzias dancena)의 베타-액틴 유전자 프로모터 및 적색 형광 단백질(red fluorescent protein, RFP) 구조 유전자(structural gene)를 포함하고, 바람직하게는 폴리아데닐화 신호(polyadenylation signal)을 포함하는 바다 송사리(O. dancena) 베타-액틴 3'-UTR 단편을 추가로 포함하는, 바다 송사리(O. dancena) 전 조직에서 보편적 형광발현을 표현하는 형광 발현 벡터를 제공한다.A sea larva comprising a beta-actin gene promoter of the Oryzias dancena and a red fluorescent protein (RFP) structural gene, preferably comprising a polyadenylation signal O. dancena ) provides a fluorescence expression vector that expresses universal fluorescence in the entire O. dancena tissue, further comprising a beta-actin 3'-UTR fragment.
또한, 본 발명에서는 상기 각각의 발현 벡터에서 형질전환 유전자 단위를 바다 송사리(Oryzias dancena) 수정란에 미세현미주입하고 부화시켜 형질전환 바다 송사리(F0)를 얻고, 이를 비형질전환 바다 송사리와 교배시켜 단가접합성(hemizygous) 형질전환 바다 송사리(F1)를 얻고, 형질전환 암수간 교배시켜 동형접합성(homozygous) 형질전환 바다 송사리(F2)를 생산하는 방법; 그리고In addition, in the present invention, microtransplanted and incubated the transgenic gene unit in the Oryzias dancena fertilized egg in each of the expression vectors to obtain a transgenic sea trout (F0), which is cross-linked with an untransformed sea trout A method of obtaining a hemizous transformed sea fish (F1) and crossing between transgenic males and females to produce a homozygous transformed sea fish (F2); And
이러한 방법에 의해 생산된, 근육에서 강한 형광을 발현하는 형질전환 바다 송사리, 및 근육에서는 상대적으로 약한 형광을 발현하면서 전 어체에서 보편적이고 항시구성적인 형광을 발현하는 형질전환 바다 송사리를 제공한다.Produced by this method, transgenic marine celery that expresses strong fluorescence in muscle, and transgenic marine celery that expresses universal and always constitutive fluorescence in whole language while expressing relatively weak fluorescence in muscle.
본 발명의 최종 목적을 달성하기 위해서는, 상기 방법에 의해 생산된 근육에서 강한 형광을 발현하는 형질전환 바다 송사리 및 근육에서는 상대적으로 약한 형광을 발현하면서 전 어체에서 보편적이고 항시구성적인 형광을 발현하는 형질전환 바다 송사리를 종내 교배(intraspecific cross)시켜 단가접합성(hemizygous) 더블 형질전환 바다 송사리를 얻고, 더블 형질전환 암수간 교배시켜 동형접합성(homozygous) 더블 형질전환 바다 송사리를 생산하는 방법; 그리고 이에 의해 생산된, 근육에서 강한 형광과 함께 전 조직에서도 형광을 동시에 표현하는 더블 형질전환 바다 송사리를 제공한다.In order to achieve the final object of the present invention, transgenic sea larvae and muscles expressing strong fluorescence in the muscle produced by the method, while expressing relatively weak fluorescence in the muscle and expressing constitutive and constitutive fluorescence in the whole body Intraspecific crosses of transgenic sea scorpions to obtain hemizygous double transgenic sea scorpions and cross-transgenic male and female crosses to produce homozygous double transgenic sea scorpions; And it provides a double transformed sea celery produced by this, which simultaneously express fluorescence in all tissues with strong fluorescence in muscle.
궁극적으로 본 발명에서는, 위와 같이 생산된 바다 송사리를 근연종 송사리(Oryzias javanicus)와 이종간 잡종 교배(interspecific hybridization)시키는 단계를 포함하는 불임성 더블 형질전환 바다 송사리 잡종3배체(allotriploid)를 생산하는 방법, 그리고 이에 의해 생산되어 근육에서 강한 형광과 함께 전 조직에서도 형광을 동시에 표현하며 생식능력이 제거된 불임성 더블 형질전환 바다 송사리(Oryzias dancena) 잡종3배체(allotriploid)를 제공한다.Ultimately, in the present invention, a method for producing an infertile double-transformed marine trellis hybridtriploid comprising the step of interspecific hybridization with the above-mentioned marine trout and Oryzias javanicus , And it is produced by the fluorescence in the whole tissue with the strong fluorescence in the muscle at the same time to provide a fertility double transgenic Oryzias dancena hybrid (lotriploloid) removed fertility.
본 발명에서는 담수, 기수 및 해수 환경 모두에서 정상적인 생장이 가능한 광염성 바다 송사리(Oryzias dancena)로부터 근육 특이적 또는 항시구성적 외래 유전자 발현을 유도할 수 있는 신규 프로모터들을 발굴하여, 형광 단백질 유전자와 융합된 형질전환 벡터들을 제조하였다. 유전자 이식 기법을 통해 각 형질전환 벡터를 바다 송사리에 이식 후 교배 프로그램을 통해 근육에 강한 형광 발현을 나타내는 형질전환 동형접합성(homozygous) 계통과 전 조직에 보편적 형광을 표현할 수 있는 형질전환 동형접합성 계통을 확립하고, 이들 두 동형접합 계통들 간의 교배 프로그램에 의해 두 형광 표현 형질을 함께 획득한 더블 형질전환(근육에 강한 형광과 여러 조직에서 보편적 형광 발현의 동시 표현) 동형접합 계통을 생성시켰다. 또한 이들 더블 형질전환 계통의 생식학적 격리를 위해서 근연종 송사리(오리지아스 자바니쿠스; Oryzias javanicus)와의 이종 교배 및 배수체 유도를 통해 더블 형광형질을 보존한 채 생식능력이 완전히 제거된 신규 형질전환 바다 송사리 잡종3배체를 제조할 수 있었다.In the present invention, a novel promoter capable of inducing muscle-specific or constitutive foreign gene expression from Oryzias dancena , which is capable of normal growth in both freshwater, brackish and seawater environments, is fused with fluorescent protein genes. Transformed vectors were prepared. Transgenic homozygous strains expressing strong fluorescence expression in muscles and transgenic homozygous strains capable of expressing universal fluorescence in all tissues through transplantation program after transplanting each transgenic vector to the sea fern through gene transplantation technique A double transformation (simultaneous expression of fluorescence resistant to muscle and universal fluorescence expression in several tissues) with two fluorescence expressing traits was generated by a hybridization program between these two homozygous lines. In addition, for the reproductive isolation of these double transformed strains, a novel transgenic sea with full reproductive capacity with preservative double fluorescence preserved by heterogeneous cross-breeding and induction of ploidy with a related species, Oryzias javanicus . A celtic hybrid triploid could be prepared.
본 발명의 구성에 관한 개요는 다음과 같다.The outline of the configuration of the present invention is as follows.
첫째, 골격 근육에 특이적으로 강한 유전자 발현을 유도할 수 있는 프로모터인 myosin light chain 2 polypeptide isoform #2 유전자 프로모터(이하 mlc2-2 프로모터)와, 골격 근육에서는 상대적으로 낮은 활성을 나타내지만 전 어체(whole fish body)의 모든 조직에 걸쳐 보편적 유전자 발현을 유도할 수 있는 베타-액틴 유전자 프로모터를 바다 송사리(O. dancena)로부터 새로이 분리하고, 적색 형광 단백질(red fluorescent protein, RFP) 구조 유전자(structural gene)와의 융합 유전자(fusion gene)를 구축한다. 이어서 바다 송사리(O. dancena) mlc2-2 유전자와 베타-액틴 유전자의 3'-UTR(untranslated region) 단편을 분리하여 상기 두 융합 유전자 각각의 말단에 연결시킴으로써, 바다 송사리(O. dancena) 근육에서 강한 형광발현을 표현하거나 또는 전 조직에서 보편적 형광을 표현할 수 있는 형광 발현 벡터 2종을 구축한다.First, the myosin light chain 2 polypeptide isoform # 2 gene promoter (mlc2-2 promoter), a promoter capable of inducing strong gene expression specifically for skeletal muscle, and relatively low activity in skeletal muscle, A new beta-actin gene promoter, which can induce universal gene expression across all tissues of the whole fish body, is newly isolated from O. dancena and a red fluorescent protein (RFP) structural gene. Construct a fusion gene with Then sea medaka (O. dancena) mlc2-2 gene and beta-by the 3'-UTR (untranslated region) of the actin gene isolated a fragment connected to the respective ends of the two fusion genes, sea medaka (O. dancena) in muscle Two fluorescent expression vectors can be constructed that can express strong fluorescence or can express universal fluorescence in whole tissues.
둘째, 상기 발현 벡터들로부터 형질전환 유전자 단위(transgene unit) 절편을 분리하여, 각각 바다 송사리(O. dancena) 수정란에 미세현미주입(microinjection)하고 형질전환 어류 선발 및 교배 프로그램을 통해, 근육에 강한 형광을 표현하는 바다 송사리(O. dancena) 형질전환 동형접합성 계통과, 근육에서는 상대적으로 약한 형광을 발현하지만 전어체에서 보편적이고 항시구성적인 형광을 표현할 수 있는 형질전환 바다 송사리(O. dancena) 동형접합성 계통을 각각 확립한다.Second, the transgene unit fragments are separated from the expression vectors, and microinjection is performed in the O. dancena fertilized eggs, respectively, and the transgenic fish selection and breeding programs are used to strengthen the muscles. sea medaka expressing fluorescence (O. dancena) transformed homozygous system and muscle in the relatively weak expression of the fluorescent light at all times, but common and constitutive transformed to express a fluorescent sea medaka (O. dancena) isomorphic in whole body Establish each of the junctional lines.
셋째, 상기 두 형질전환 동형접합 계통들 간의 종내 교배(intraspecific cross)를 통해 근육에서 강한 형광과 함께 눈, 지느러미, 두부, 아가미 등 전 조직에서도 형광을 동시에 표현하는 더블 형질전환 형광 바다 송사리(O. dancena) 계통을 생산하고, 교배 프로그램 및 자손 검정법(progeny test)을 통해 이들로부터 두 형질전환 유전 좌위(transgene loci) 모두에서 동형접합성인 계통을 확립한다.Third, a double transgenic fluorescence ocean starfish ( O. coli) expressing fluorescence simultaneously in all tissues such as eyes, fins, head, and gills, with strong fluorescence in muscle through intraspecific cross between the two transgenic homozygous lines . dancena ) lines and establish a line that is homozygous for both transgene loci from them through a breeding program and progeny test.
넷째, 상기 더블 형질전환 바다 송사리(O. dancena)의 생식학적 격리를 위해 근연종인 O. javanicus와의 이종간 잡종 교배(interspecific hybridization)를 실시하는데, 이때 이종간 형성된 잡종 수정란의 제2극체 방출 억제를 위해서 온도 자극 처리를 수행한다. 이를 통해서 잡종3배체를 유도하고 더블 형광 표현형의 보전과 생식소 발달이 억제된 불임성을 검증함으로써 본 발명의 최종 산물을 제공한다.Fourth, interspecific hybridization with O. javanicus , a related species, is carried out for the reproductive isolation of the double transgenic sea larvae ( O. dancena ), at which temperature Perform stimulation treatment. This provides a final product of the present invention by inducing hybrid triploids and verifying the integrity of the double fluorescence phenotype and the suppression of gonad development.
도 1은 본 발명의 구성과 흐름을 보여주는 개괄도이다. 여기에서 보듯이, 본 발명의 구성은 형질전환, 교배 및 염색체조 조작 프로그램을 중복 사용함으로써 종래 기술에서 볼 수 없었던 형광 관상 어류의 새로운 복합 형질을 확보하는 동시에, 완전한 생식학적 격리를 통해 생태학적으로 보다 안전한 방식의 유전자변형 관상 어류의 이용 방안을 제공하는 것을 특징으로 한다.1 is a schematic diagram showing the configuration and flow of the present invention. As shown here, the composition of the present invention allows the use of overlapping transformation, mating and chromosomal manipulation programs to secure new complex traits of fluorescent coronary fish that have not been seen in the prior art, and ecologically through complete reproductive isolation. It provides a safer way to use genetically modified ornamental fish.
이하, 본 발명을 더욱 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail.
(1) 형광 형질전환 어류 제조를 위한 발현 벡터 제조 (1) Preparation of Expression Vector for Fluorescent Transgenic Fish Production
형질전환 어류를 제조하기 위해서 광염성 바다 송사리(O. dancena)로부터 골격 근육의 형성 및 운동 기능을 담당하는 마이오신 라이트체인 폴리펩타이드 아이소폼 2-2(myosin light chain polypeptide isoform 2-2; mlc2-2) 유전자와 그 조절부위를, 그리고 세포 골격 형성에 관여하는 항시구성적 발현 유전자인 베타-액틴 유전자와 그 조절부위를 분리한다. 본 발명을 위해 구축된 바다 송사리 발현 유전체(expressed gene transcripts) 데이터베이스로부터 상기 mlc2-2 및 베타-액틴 유전자들의 cDNA 염기서열을 각각 확보하고, 이로부터 PCR(polymerase chain reaction) 방법을 이용하여 genomic DNA 유전자 단편 염기서열을 확보한다. 각 유전자 cDNA 또는 gDNA 염기서열을 바탕으로 5 방향으로의 genome walking을 수행하고, mlc2-2 및 베타-액틴 유전자별로 각각 5-upstream 영역을 확보한다. 이들 두 유전자 프로모터 각각을 이용하여 적색 형광 단백질(red fluorescent protein; RFP; Clontech사 pDsRed2 벡터에서 제공) 유전자와의 융합구조를 제조하기 위해서, 상기 확보된 염기서열 단편들을 미리 준비된 pDsRed2 절편 내로 리게이션(ligation) 반응을 실시함으로써 유전자 프로모터 단편을 RFP 유전자 바로 앞에 각각 삽입한다. 또한 RFP 유전자의 오리지아스 단세나 세포내 발현을 용이하게 하기 위해서, RFP 유전자 종결 코돈 직후 pDsRed2 내 존재하는 NotI 위치로 폴리아데닐화 신호(polyadenylation signal)을 포함하는 바다 송사리(O. dancena) mlc2-2 3'-UTR 단편 또는 베타-액틴 3'-UTR 단편을 추가로 각기 삽입한다. 결과적으로, 바다 송사리(O. dancena) 근육에서 강한 적색 형광 발현을 유도할 수 있는 형광 발현 벡터로서 podmlc2-2RFP와, 바다 송사리(O. dancena) 전 조직에서 보편적 형광을 표현할 수 있는 발현 벡터로서 podb-actRFP를 최종 구축한다.Myosin light chain polypeptide isoform 2-2; mlc2-, responsible for the formation and motor function of skeletal muscle from the photochlorinated sea larvae ( O. dancena ) for the production of transgenic fish. 2) Isolates the gene and its regulatory region, and the beta-actin gene, which is a constitutively expressed gene involved in the cytoskeletal formation, and its regulatory region. Obtaining the cDNA sequences of the mlc2-2 and beta-actin genes respectively from the sea pod expression gene transcripts database constructed for the present invention, from which genomic DNA genes using PCR (polymerase chain reaction) method Obtain fragment sequencing. Genome walking in five directions is performed based on each gene cDNA or gDNA sequence, and 5-upstream regions are secured for each mlc2-2 and beta-actin genes. Using each of these two gene promoters to prepare a fusion structure with a red fluorescent protein (RFP; provided by Clontech's pDsRed2 vector), the obtained sequencing fragments were ligated into pre-prepared pDsRed2 fragments. The ligation) reaction inserts each of the gene promoter fragments immediately before the RFP gene. In addition, the O. dancena mlc2- containing a polyadenylation signal to the NotI position present in pDsRed2 immediately after the RFP gene termination codon, to facilitate the expression of the RFP gene in Origian single cells or cells. 2 3'-UTR fragments or beta-actin 3'-UTR fragments are further inserted respectively. As a result, podmlc2-2RFP as a fluorescent expression vector capable of inducing strong red fluorescence expression in O. dancena muscle and podb as an expression vector capable of expressing universal fluorescence in all O. dancena tissues -finally build actRFP
(2) 형질전환 형광 바다 송사리 제조 및 동형접합성 계통 확립 (2) Transformation Fluorescence Sea Scallop Preparation and Homozygous Line Establishment
형광 형질전환 바다 송사리(O. dancena)를 제조하기 위해, 상기 두 종류의 플라스미드 벡터 각각으로부터 KpnI 및 AatII 제한효소 절단(podmlc2-2RFP의 경우), 또는 SalI 및 AatII 제한효소 절단(podb-actRFP의 경우)을 통하여 프로모터(mlc2-2 또는 베타-액틴 프로모터)-RFP 유전자-3'-UTR(mlc2-2 또는 베타-액틴 3'-UTR)로 연결되는 형질전환 유전자 단위(transgene unit)만을 분리한 후 순수 정제한다. 형질전환 유전자 단편을 오리지아스 단세나 수정난 제1세포기에 미세현미주입하고 미세현미주입된 난으로부터 부화한 자어를 대상으로 형광현미경 검경을 이용하여 RFP 형광을 발현하는 개체들을 선발하여 성체까지 사육한다. 성체 단계까지 형광 발현을 유지하고 있는 F0(founder generation) 개체들을 선발하고, 선발한 형질전환 F0 개체들을 대상으로 일반 바다 송사리와의 교배 및 자손 검정 실험 통해 F1 세대로 형광 발현을 전달할 수 있는 개체들을 다시 선발한다. 형광을 발현하는 형질전환 F1 개체들을 선발하여 성체까지 성장시킨 후 형광 표현형을 분석함으로써, mlc2-2-RFP 형질전환 유전자 이식 그룹으로부터 골격 근육에서 일양하고 강한 적색 형광 발현을 표현하는 표현형적 특징을 확인하는 반면, 베타-액틴-RFP 이식 그룹으로부터는 전 어체에서 보편적인 적색 형광을 발현하는 표현형적 특징을 확인한다. 이들 두 계통을 대상으로 각 형질전환 계통 내에서 암컷 F1과 수컷 F1과의 형매 교배(brother-sister mating)를 실시하여 동형접합성 F2 개체들을 생성시키고, 다시 일반 바다 송사리와의 검정 교배를 통해 F3 자손 100% 모두에게 형광 형질을 전달할 수 있는 최적 동형접합계통을 베타-액틴-RFP 그룹과 mlc2-2-RFP 그룹에서 각각 확립한다.To prepare a fluorescent transgenic sea stalk ( O. dancena ), KpnI and AatII restriction enzyme cleavage (for podmlc2-2RFP) or SalI and AatII restriction enzyme cleavage (podb-actRFP) from each of these two plasmid vectors ) Isolates only the transgene units linked to the promoter (mlc2-2 or beta-actin promoter) -RFP gene-3'-UTR (mlc2-2 or beta-actin 3'-UTR) Purify purely. Transgenic gene fragments were micro-injected into single-celled or fertilized Oocytes and screened for the adult embryos that were hatched from the micro-implanted eggs using fluorescence microscopy. do. Select F0 (founder generation) individuals that maintain fluorescence until adulthood, and select transgenic F0 individuals that can deliver fluorescence expression to F1 generation through crossbreeding with offspring and progeny assays. Select again. Phenotypic characteristics expressing strong red fluorescence expression in the skeletal muscle were identified from the mlc2-2-RFP transgenic gene transplant group by selecting fluorescence expressing transgenic F1 individuals, growing to adult and analyzing the fluorescent phenotype. In contrast, the beta-actin-RFP transplantation group identifies phenotypic features that express red fluorescence that is universal in whole language. These two strains were subjected to brother-sister mating of female F1 and male F1 in each transgenic line to generate homozygous F2 individuals, and again to F3 offspring through assay crosses with common sea ferns. Optimal homozygous systems capable of delivering fluorescent traits to all 100% were established in the beta-actin-RFP group and the mlc2-2-RFP group, respectively.
(3) 더블 형질전환 형광 바다 송사리 제조 및 동형접합성 계통 확립 (3) Manufacture of Double Transformed Fluorescent Sea Lobster and Establishment of Homozygous Line
상기 확립된 두 형질전환 동형접합성 계통(mlc2-2RFP 및 b-actRFP 계통)들간의 종내 교배(형질전환 계통간 교배)를 통하여 근육에 강한 형광발현과 동시에 전 조직에 보편적 형광 발현을 함께 획득한 신규 더블 형광 표현형의 형질전환 개체들을 생산한다. 각 동형접합체 계통들 간에 암수를 상호 교환하는 방식으로 형질전환 계통간 교배를 실시하고, 이를 통해서 요구되는 목적 표현형을 획득한 계통간 잡종 형질전환 어류들을 생성한다. 선발된 형질전환 어류들은 mlc2-2 프로모터에 의해 골격 근육에서 강한 적색 형광을 표현하는 동시에, 베타-액틴 프로모터에 의해 눈, 지느러미, 아가미, 표피를 포함한 모든 조직에서 보편적 적색 형광을 함께 표현하는 더블 형질전환 계통임을 확인한다. 생성된 더블 형질전환 개체들로부터 두 형질전환 유전좌위(loci)에 대해서 모두 동형접합성을 나타내는 개체들을 생성시키기 위해 형매 교배를 실시한다. 검정 교배를 통해 두 형질전환 유전자가 염색체상에 서로 연관(link)되어 있지 않음을 우선적으로 확인한 후 형매 교배를 수행하여, 두 형질전환 유전자의 독립 유전방식에 의해 형성된 동형접합성 더블 형질전환 개체들을 선발하고, 선발된 동형접합체들로부터 후대로 더블 형질전환 특징이 100% 전달되는 결과를 검정한다.Intracellular hybridization between two established homozygous strains (mlc2-2RFP and b-actRFP strains) (transgenic transbreeding) establishes novel fluorescence expression in all tissues as well as strong fluorescence expression in muscle Produce transgenic individuals of a double fluorescent phenotype. Cross-breeding between transgenic lines is carried out by exchanging male and female between the homozygous lines, thereby generating cross-transgenic hybrid fish that have obtained the desired phenotype. Selected transgenic fishes express strong red fluorescence in skeletal muscle by the mlc2-2 promoter, and double traits in combination with universal red fluorescence in all tissues including eyes, fins, gills and epidermis by the beta-actin promoter. Check the switching system. Strain hybridization is performed to generate individuals that are homozygous for both transgenic loci from the resulting double transgenic individuals. First, the test hybridization confirms that the two transgenes are not linked to each other on the chromosome, and then a sibling cross is performed to select homozygous double transgenic individuals formed by independent genetic methods of the two transgenes. And assay for 100% transfer of double transformation characteristics from selected homozygotes later.
(4) 불임 잡종3배체 더블 형질전환 형광 바다 송사리 제조 (4) Infertility Hybrid Triploid Double Transform Fluorescent Sea Lobster Preparation
상기 신규 형성된 더블 형질전환 형광 바다 송사리 계통에 대한 생식학적 격리를 위해서 이종간 잡종 배수체를 유도한다. 본 발명에서 사용한 오리지아스 단세나를 포함한 대부분의 송사리들은 산란력이 매우 높고 연중 산란 특성을 나타내기 때문에 이들을 이용한 형질전환 관상어가 의도적 또는 비의도적으로 환경에 노출될 경우, 생태계 서식하는 동종 또는 근연종들과의 교배를 통해서 생태계 유전자 오염 가능성이 높을 뿐만 아니라 나아가 넓은 범위의 생태계 점유 가능성이 높다. 따라서, 본 발명을 통해 생성된 더블 형질전환 형광 송사리 개체들의 생태학적 안전성을 확보하기 위해, 생식소 발달 및 산란 기능이 억제된 불임의 형질전환체들을 제공하고자 한다. 현재 어류에게 불임성을 유도할 수 있는 방법으로서 3배체 유도에 의한 감수분열 억제가 널리 이용되고 있으나, 일부 어종들에서는 3배체 유도만으로는, 특히 3배체 수컷의 경우에 완벽한 생식소 수준의 불임이 얻어지지 못할 수 있음이 보고된 바 있다(Arai K (2001), Genetic improvement of aquaculture finfish species by chromosome manipulation techniques in Japan. Aquaculture 197, 205228; Lee C-S, Donaldson EM (2001) General discussion on reproductive biotechnology in finfish aquaculture. Aquaculture 197, 303320). 이러한 점을 고려하여 본 발명에서는 단순 3배체가 아닌, 근연종과의 이종간 잡종3배체를 유도함으로써 암수 모두에서 완벽한 불임 형질전환체를 제공하고자 한다.Heterologous hybrid ploidy is induced for reproductive isolation of the newly formed double transgenic fluorescence marine trout lineage. Most of the larvae, including the Occitanus dansena used in the present invention, have very high spawning power and show year-round spawning characteristics, so that when the transgenic ornamental fish using them is intentionally or unintentionally exposed to the environment, allied or inferior to the ecosystem Breeding with species is not only likely to contaminate ecosystem genes, it is also likely to occupy a wide range of ecosystems. Therefore, in order to ensure ecological safety of the double transgenic fluorescent killing individuals produced by the present invention, it is intended to provide infertile transformants in which gonad development and scattering function are suppressed. Currently, mitosis suppression by induction of triploid is widely used as a method of infertility in fish, but in some species, induction of triploid alone, especially in triplode males, does not result in perfect gonad infertility. may have been that the reported (Arai K (2001), Genetic improvement of aquaculture finfish species by chromosome manipulation techniques in Japan Aquaculture 197, 205228;.. Lee CS, Donaldson EM (2001) General discussion on reproductive biotechnology in finfish aquaculture Aquaculture 197 , 303320). In view of this point, the present invention intends to provide a perfect infertile transformant in both male and female by inducing a heterologous hybrid triplet with a related species rather than a simple triplet.
이종간 잡종 배수체 유도를 위한 후보 종으로서, 본 발명에서는 바다 송사리(O. dancena)의 광염성 특징과 투명한 체색을 잡종 배수체에서도 유지할 수 있는 근연 해산 송사리 O. javanicus를 선택하였다. 동형접합성 더블 형질전환 O. dancena 암컷과 일반 O. javanicus 수컷간의 교배를 실시하고, 잡종 수정란의 제2극체 방출을 억제하기 위해 온도자극 처리를 한다. 온도 자극 처리는 수정 3분 후 0 ℃에서 30∼45분간 실시하고, 처리된 수정란으로부터 배 발생(embryonic development)과 부화를 유도한다. 잡종3배체 처리 그룹으로부터 확보된 형질전환 개체들을 대상으로 DNA 함량과 특정 유전자 단편 염기서열 조사 방법을 이용하여 잡종 배수체 형성을 확인하고, 확인된 개체들을 성장시켜 더블 형질의 표현 유무와 생식학적 격리 유무를 확인한다.As a candidate species for inducing cross-hybrid drainage , in the present invention, the recently dismissed pine-fish O. javanicus which can maintain the photo-inflammatory characteristics and the transparent body color of O. dancena even in the hybrid drainage was selected. Homozygous double transgenic O. dancena females and normal O. javanicus males are bred and temperature-stimulated to suppress the release of the second polar body of hybrid fertilized eggs. The temperature stimulation treatment is carried out for 30 to 45 minutes at 0 ° C. after fertilization and induces embryonic development and hatching from the fertilized eggs. In the transformed individuals obtained from the hybrid triploid treatment group, hybridoploid formation was confirmed by using DNA content and specific gene fragment sequencing method, and the identified individuals were grown to express double traits and have a reproductive isolation. Check.
본 발명에 따라 생성된 이종간 잡종3배체 더블 형광형질전환 어류들은 모계 O. dancena의 더블 형질전환 특성(즉, 근육의 강한 형광과 다른 여타 모든 조직에서의 보편적 형광 발현)을 안정적으로 잘 보전하고 있음을 확인할 수 있다. 또한, 형질전환 잡종3배체들은 일반 O. dancena 또는 O. javanicus와의 장기간 교배 유도에서 전혀 생존력 있는 수정란을 생성하지 못하는 것으로 나타남으로써, 이들 이종간 잡종 배수체 형질전환 바다 송사리는 암, 수 모두에서 기능적인 불임성을 획득하였음을 입증하였다.The heterologous hybrid triploid double fluorescent transgenic fish generated according to the present invention stably well preserves the double transformation characteristics (ie, strong fluorescence of muscle and universal fluorescence expression in all other tissues) of the mother O. dancena . can confirm. In addition, transgenic triploids have not been shown to produce viable fertilized eggs at all in long-term induction with normal O. dancena or O. javanicus , so that these hybrid heteroploid transgenic sea larvae are functionally sterile in both male and female. Proved to be obtained.
도 1은 본 발명의 구성과 흐름을 보여주는 개괄도,1 is a schematic view showing the configuration and flow of the present invention,
도 2는 podmlc2-2RFP 형광 발현 벡터 모식도,2 is a schematic diagram of the podmlc2-2RFP fluorescence expression vector,
도 3은 바다 송사리(Oryzias dancena) 성체 조직들에서 mlc2-2 mRNA의 발현 분포 및 수준을 나타낸 그래프,3 is a graph showing the expression distribution and level of mlc2-2 mRNA in adult tissues of Oryzias dancena ,
도 4는 podb-actRFP 형광 발현 벡터 모식도,4 is a schematic diagram of the podb-actRFP fluorescence expression vector,
도 5는 바다 송사리(Oryzias dancena) 성체 조직들에서 베타-액틴 mRNA의 조직 발현 분포 및 수준을 나타낸 그래프,5 is a graph showing the tissue expression distribution and level of beta-actin mRNA in adult Oryzias dancena tissue,
도 6은 형질전환유전자 mlc2-2-RFP가 미세현미주입된 바다 송사리(Oryzias dancena) 배(embryo)에서의 형광 발현을 보여주는 사진,Figure 6 is a photograph showing the fluorescence expression in the Oryzias dancena embryo (embryo) micro-injected with the transgene mlc2-2-RFP,
도 7은 형질전환유전자 mlc2-2-RFP가 이식된 F1 형질전환 바다 송사리(Oryzias dancena) 및 일반 바다 송사리(Oryzias dancena)의 외형 사진,7 is a photograph showing the appearance of the F1 transgenic sea larvae ( Oryzias dancena ) and general sea larvae ( Oryzias dancena ) to which the transgene mlc2-2-RFP is transplanted.
도 8은 형질전환유전자 베타-액틴-RFP가 미세현미주입된 바다 송사리(Oryzias dancena) 배(embryo)에서의 형광발현을 보여주는 사진,Figure 8 is a photograph showing the fluorescence expression in the Oryzias dancena embryo (embryo) micro-injected with the transgene beta-actin-RFP,
도 9는 형질전환유전자 베타-액틴-RFP가 이식된 F1 형질전환 바다 송사리(Oryzias dancena) 외형 및 외부 조직들에서의 RFP 발현을 보여주는 사진,FIG. 9 is a photograph showing RFP expression in F1 transgenic Oryzias dancena appearance and external tissues transfected with transgene beta-actin-RFP.
도 10은 형질전환유전자 베타-액틴-RFP가 이식된 F1 형질전환 바다 송사리(Oryzias dancena)의 다양한 내부 장기들에서의 RFP 발현을 보여주는 사진,10 is a photograph showing RFP expression in various internal organs of the F1 transgenic sea trout Oryzias dancena transplanted with the transgene beta-actin-RFP,
도 11은 근육에서 강한 형광과 함께 전 조직에서 형광을 표현하는 더블 형질전환 바다 송사리(Oryzias dancena) 사진,FIG. 11 is a double transformed Oryzias dancena photograph expressing fluorescence in whole tissues with strong fluorescence in muscle.
도 12는 더블 형질전환 바다 송사리(Oryzias dancena)로부터 형질전환 유전자들의 PCR 증폭을 나타낸 결과,12 shows PCR amplification of the transgenes from the double transgenic sea larvae ( Oryzias dancena ),
도 13은 더블 형질전환 바다 송사리(Oryzias dancena)와 오리지아스 자바니쿠스(O. javanicus)와의 이종간 교배 및 배수체 유도를 통해 생성된 불임성 형질전환 잡종3배체의 사진.FIG. 13 is a photograph of an infertile transgenic hybrid triploid generated through cross-breeding and induction of ploidy with a double transgenic sea trout ( Oyzias dancena ) and O. javanicus .
이하, 실시예를 통하여 본 발명을 보다 자세히 설명한다. 단, 이들 실시예는 본 발명의 구성 및 효과를 보다 구체적으로 예시하기 위한 것으로, 본 발명의 범위가 이들만으로 제한되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples. However, these Examples are intended to more specifically illustrate the configuration and effects of the present invention, the scope of the present invention is not limited to these.
실시예 1: 바다 송사리 mlc2-2 프로모터를 포함하는 형광 발현 벡터 제조Example 1 Preparation of Fluorescence Expression Vector Comprising the Sea Squid mlc2-2 Promoter
바다 송사리(O. dancena) 전 어체 total RNA를 이용하여 구축된 cDNA 라이브러리로부터 EST(expressed sequence tag) 분석을 실시하고, EST 데이터베이스 분석을 통해 mlc2-2 cDNA 염기서열(서열번호 1)을 확보하였다. 확보된 mlc2-2 cDNA 유전자 단편 염기서열을 바탕으로 mlc2-2 유전자 upstream의 프로모터를 포함한 조절영역을 확보하기 위해 genome walking을 실시하였다. Genome walking은 Universal Genome Walker kit(Clontech Laboratories, USA)를 이용하여 제조사의 권고 방법대로 수행하였으며, 이때 바다 송사리(O. dancena) mlc2-2 유전자에 특이적인 역방향 프라이머 2 종(ODMlc2-2 GW1; 서열번호 2 및 ODMlc2-2 GW2; 서열번호 3)을 합성하여 이용하였다. Genome walking을 위한 반응 조성물 및 PCR 증폭 조건은 아래의 표 1과 같다. 1차 genome walking의 결과를 바탕으로 동일한 방식에 의해 2차 genome walking을 실시하였으며, 이때 역방향 프라이머 2 종(ODMlc2-2 GW3; 서열번호 4 및 ODMlc2-2 GW4; 서열번호 5)을 이용하였다. 다음 표 1은 MLC2-2 프로모터 영역으로의 genome walking을 위한 PCR 반응 조성물과 증폭 조건을 나타낸 것이다.EST (expressed sequence tag) analysis was performed from cDNA library constructed using total RNA of O. dancena whole body, and mlc2-2 cDNA sequence (SEQ ID NO: 1) was obtained through EST database analysis. Based on the obtained mlc2-2 cDNA gene fragment sequence, genome walking was performed to secure a regulatory region including a promoter of the upstream mlc2-2 gene. Genome walking was performed according to the manufacturer's recommended method using the Universal Genome Walker kit (Clontech Laboratories, USA), wherein two reverse primers specific to the O. dancena mlc2-2 gene (ODMlc2-2 GW1; No. 2 and ODMlc2-2 GW2; SEQ ID NO: 3) were synthesized and used. The reaction composition and PCR amplification conditions for genome walking are shown in Table 1 below. Second genome walking was carried out in the same manner based on the results of the first genome walking, in which two reverse primers (ODMlc2-2 GW3; SEQ ID NO: 4 and ODMlc2-2 GW4; SEQ ID NO: 5) were used. Table 1 below shows PCR reaction compositions and amplification conditions for genome walking to the MLC2-2 promoter region.
표 1
Figure PCTKR2010005682-appb-T000001
Table 1
Figure PCTKR2010005682-appb-T000001
Genome walking을 통해서 확보한 mlc2-2 유전자의 5-upstream 조절부위 단편(서열번호 6)을 이용하여, 적색 형광 단백질(red fluorescent protein; RFP; Clontech사 pDsRed2 벡터에서 제공) 유전자와의 융합구조를 제조하기 위하여, 상기 확보된 염기서열 단편들을 PCR로 다시 분리하였다. 다음 표 2는 mlc2-2 프로모터의 PCR 분리를 위한 반응 조성물 및 증폭 조건을 나타낸 것이다. 이때 RFP 유전자와의 융합을 용이하게 하기 위해서 정방향(forward; KpnI-ODMlc2-2 1F; 서열번호 7) 및 역방향(reverse; AgeI-ODMlc2-2 1R; 서열번호 8) PCR 프라이머 각 5-말단에 KpnI 제한효소 인식 서열(AAT GGTACC ) 및 제한효소 AgeI 인식 서열(AAT ACCGGT )을 각각 인위적으로 삽입하였다. PCR 산물을 pGEM T-easy vector(Promega)에 제조사의 권고 방법대로 클로닝한 후 다시 KpnI 및 AgeI 제한 효소 처리를 통해 절편을 회수하고, 동일 제한효소 처리를 통해 미리 준비된 pDsRed2 절편과의 리게이션(ligation) 반응을 실시함으로써 유전자 프로모터 단편을 RFP 유전자 바로 앞에 각각 삽입하였다. 표 3은 mlc2-2 프로모터와 RFP 유전자와의 융합 구조를 위한 리게이션 반응 조성물 및 반응 조건을 나타낸 것이다.Using a 5-upstream regulatory region fragment (SEQ ID NO: 6) of the mlc2-2 gene obtained through genome walking, a fusion structure with a red fluorescent protein (RFP; provided by Clontech's pDsRed2 vector) gene was prepared. To this end, the obtained sequence fragments were separated again by PCR. Table 2 shows reaction compositions and amplification conditions for PCR separation of the mlc2-2 promoter. In this case, KpnI at each 5-terminal of the PCR primer (forward; KpnI-ODMlc2-2 1F; SEQ ID NO: 7) and reverse (AgeI-ODMlc2-2 1R; SEQ ID NO: 8) to facilitate the fusion with the RFP gene. A restriction enzyme recognition sequence (AAT GGTACC ) and a restriction enzyme AgeI recognition sequence (AAT ACCGGT ) were artificially inserted, respectively. The PCR product was cloned into the pGEM T-easy vector (Promega) according to the manufacturer's recommended method, and the fragments were recovered by KpnI and AgeI restriction enzyme treatment, and then ligation with the pDsRed2 fragment prepared in advance through the same restriction enzyme treatment. Gene promoter fragments were inserted immediately before the RFP gene, respectively. Table 3 shows the ligation reaction compositions and reaction conditions for the fusion structure of the mlc2-2 promoter with the RFP gene.
표 2
Figure PCTKR2010005682-appb-T000002
TABLE 2
Figure PCTKR2010005682-appb-T000002
표 3
Figure PCTKR2010005682-appb-T000003
TABLE 3
Figure PCTKR2010005682-appb-T000003
리게이션 반응이 완료되면, 반응물 5 ㎕를 이용하여 대장균 XL-blue MRF' strain(Stratagene, USA)에 제조사의 권고 방법대로 형질도입하고, 재조합 균주를 선발하여 플라스미드 DNA를 회수하였다. 염기서열 분석을 통해 정확한 리게이션 반응이 수행된 클론을 검정, 선발하였다.Upon completion of the ligation reaction, 5 μl of the reaction was used to transduce the E. coli XL-blue MRF ′ strain (Stratagene, USA) according to the manufacturer's recommended method, and recombinant strains were selected to recover the plasmid DNA. Clones with accurate ligation reactions were assayed and selected through sequencing.
상기 선발된 플라스미드 벡터를 대상으로, 바다 송사리(O. dancena) 세포 내에서 RFP 유전자의 발현을 보다 용이하게 위해 RFP 유전자 종결 코돈 직후에 존재하는 NotI 제한효소 위치로 폴리아데닐화 신호(polyadenylation signal)를 포함하는 바다 송사리(O. dancena) mlc2-2 유전자 3'-UTR 단편(182 bp; 서열번호 9)을 추가로 삽입하였다. 해당 mlc2-2 유전자의 3'-UTR 단편은 두 개의 프라이머(정방향 프라이머 NotI-ODMlc2-2 3UFW1; 서열번호 10 및 역방향 프라이머 NotI-AatII-ODMlc2-2 3URV1; 서열번호 11)를 사용하여 PCR 분리를 통해 확보하였다. 다음 표 4는 mlc2-2 유전자 3'-UTR 영역의 PCR 분리를 위한 반응 조성물 및 증폭 조건을 나타낸 것이다. 이때 pDsRed2 플라스미드의 NotI 위치로의 삽입을 위해 두 프라이머 5-말단에는 NotI 인식 서열(ATA GCGGCCGC )를 인위적으로 삽입하였고, 또한 추후 미세현미주입을 위해 형질전환 유전자 단위 절편만을 회수할 수 있도록 역방향 프라이머에는 AatII 제한효소 인식 서열(ATAGCGGCCGC GACGTC )를 추가로 삽입하였다. 결과적으로, 바다 송사리(O. dancena) 근육에서 강한 적색 형광 발현을 유도할 수 있는 형광 발현 벡터로서 podmlc2-2RFP를 제조하였다. 도 2는 podmlc2-2RFP 형광 발현 벡터 모식도이다.For the selected plasmid vector, a polyadenylation signal is sent to the NotI restriction enzyme position immediately after the RFP gene termination codon for easier expression of the RFP gene in O. dancena cells. A sea larvae ( O. dancena ) containing the mlc2-2 gene 3'-UTR fragment (182 bp; SEQ ID NO: 9) was further inserted. The 3'-UTR fragment of the corresponding mlc2-2 gene was subjected to PCR isolation using two primers (forward primer NotI-ODMlc2-2 3UFW1; SEQ ID NO: 10 and reverse primer NotI-AatII-ODMlc2-2 3URV1; SEQ ID NO: 11). Secured through. Table 4 below shows reaction compositions and amplification conditions for PCR isolation of the mlc2-2 gene 3′-UTR region. At this time, the NotI recognition sequence (ATA GCGGCCGC ) was artificially inserted at the two primer 5-terminals for insertion of the pDsRed2 plasmid into the NotI position, and the reverse primers were used to recover only the transgenic gene fragment for later micromicroinjection . An AatII restriction enzyme recognition sequence (ATA GCGGCCGC GACGTC ) was further inserted. As a result, podmlc2-2RFP was prepared as a fluorescence expression vector capable of inducing strong red fluorescence expression in O. dancena muscle. 2 is a schematic diagram of the podmlc2-2RFP fluorescent expression vector.
표 4
Figure PCTKR2010005682-appb-T000004
Table 4
Figure PCTKR2010005682-appb-T000004
실시예 2: 바다 송사리 내재 mlc2-2 유전자의 조직 발현 특징 분석Example 2: Tissue Expression Characterization of Sea Maldid endogenous mlc2-2 Gene
본 발명의 바다 송사리(O. dancena) mlc2-2 프로모터의 조직 특이적 활성을 확인하기 위해, 바다 송사리(O. dancena)의 다양한 조직에서 mlc2-2 유전자 mRNA 발현 수준을 실시간 역전사 PCR(real-time reverse transcription-PCR) 방법을 통해 조사하였다. 암수 성체 각 12마리의 바다 송사리들로부터 다양한 장기들(뇌, 아가미, 심장, 소화관, 신장, 간, 근육, 비장, 생식소)을 적출하여 RNeasy Mini-kit(Qiagen, Germany)를 이용하여 total RNA를 분리하였다. 각 조직별 분리된 total RNA 2 ㎍을 대상으로 Omniscript Reverse Transcription System(Qiagen, Germany)을 사용하여 제조사의 권고 방법에 의거하여 cDNA를 합성하였으며, 이때 normalization 대조군으로서 18S rRNA를 역전사 반응물에서 함께 준비하였다. 바다 송사리 조직별 mlc2-2 mRNA 발현 유무 및 발현 수준을 조사하기 위하여, mlc2-2 mRNA 단편을 증폭할 수 있는 PCR 프라이머 쌍으로는 정방향 프라이머 qODMlc2-2 1F(서열번호 12) 및 역방향 프라이머 qODMlc2-2 1R(서열번호 13)을 합성하여 이용하였고, 실시간 PCR 증폭 양의 변화는 Bio-Rad 사(USA)의 iCycler real-time PCR optic module을 이용하여 추적하였다. 다음 표 5는 mlc2-2 mRNA의 실시간 정량 증폭을 위한 PCR 반응 조성물 및 열순환 증폭 조건을 나타낸 것이다. 각 조직별 mlc2-2 mRNA의 발현 수준은 해당 조직의 18S rRNA 대조군의 수준을 기준으로 보정하였으며, 조직간 상대 정량은 Kubista 등의 문헌(Kubista M, Andrade JM, Bengtsson M, Forootan A, JonJ, Lind K, Sindelka R, SjR, SjB, StrL, StA, Zoric N (2006) The real-time polymerase chain reaction. Mol Aspects Med 27:95125)에 기술된 방법에 의거하여 실시하였다.In order to confirm the tissue specific activity of the O. dancena mlc2-2 promoter of the present invention, real-time reverse transcription PCR ( MLC2-2 ) gene mRNA levels were measured in various tissues of the O. dancena ( O. dancena ). Reverse transcription-PCR) method was used to investigate. Various RNAs (brain, gill, heart, digestive tract, kidney, liver, muscle, spleen, gonad) were extracted from each of the 12 male and female marine species and total RNA was extracted using RNeasy Mini-kit (Qiagen, Germany). Separated. CDNA was synthesized according to the manufacturer's recommended method using Omniscript Reverse Transcription System (Qiagen, Germany) on 2 μg of total RNA separated by each tissue, and 18S rRNA was prepared together in the reverse transcription reaction as a normalization control. PCR primer pairs capable of amplifying mlc2-2 mRNA fragments were used for investigating the presence of mlc2-2 mRNA expression and expression levels by sea fern tissues, as follows: forward primer qODMlc2-2 1F (SEQ ID NO: 12) and reverse primer qODMlc2-2 1R (SEQ ID NO: 13) was synthesized, and changes in the amount of real-time PCR amplification were tracked using an iCycler real-time PCR optic module manufactured by Bio-Rad (USA). Table 5 shows PCR reaction compositions and thermocycle amplification conditions for real-time quantitative amplification of mlc2-2 mRNA. The expression level of mlc2-2 mRNA in each tissue was corrected based on the level of the 18S rRNA control group of the tissue, and the relative quantification of the tissues was performed by Kubista et al. (Kubista M, Andrade JM, Bengtsson M, Forootan A, JonJ, Lind). K, Sindelka R, SjR, SjB, StrL, StA, Zoric N (2006) The real-time polymerase chain reaction.Mol Aspects Med 27 : 95125).
표 5
Figure PCTKR2010005682-appb-T000005
Table 5
Figure PCTKR2010005682-appb-T000005
도 3은 바다 송사리(Oryzias dancena) 성체 조직들에서 mlc2-2 mRNA의 발현 분포 및 수준을 나타낸 그래프이다. 도 3에서 보듯이, 바다 송사리 mlc2-2 유전자 발현의 대부분은 근육에 강하게 집중되어 있으며 여타 나머지 조사한 조직들에서는 유전자 발현이 검출되지 않거나 매우 미비한 것으로 나타났다. 따라서, 본 발명에서 mlc2-2 프로모터에 의한 형광 발현을 형질전환 바다 송사리 성체에서 표현할 경우, 그 형광 발현이 근육에 강하게 집중될 수 있음을 잘 보여준다.Figure 3 is a graph showing the expression distribution and level of mlc2-2 mRNA in adult tissues of Oryzias dancena . As shown in FIG. 3, most of the marine trout mlc2-2 gene expression was strongly concentrated in the muscle, and the gene expression was not detected or very poor in the rest of the examined tissues. Therefore, in the present invention, when the fluorescence expression by the mlc2-2 promoter is expressed in the transgenic sea larvae, the fluorescence expression can be strongly concentrated in the muscle.
실시예 3: 바다 송사리 베타-액틴 프로모터를 포함하는 형광 발현 벡터 제조Example 3: Preparation of Fluorescence Expression Vector Comprising Sea Species Beta-Actin Promoter
바다 송사리 전 조직에서 보편적이고 항시구성적인 형광 발현을 유도할 수 있는 발현 벡터를 제조하기 위하여 베타-액틴 프로모터를 분리하였다. 상기 실시예 1에서 기술한 바다 송사리 EST 데이터베이스로부터 베타-액틴 cDNA 전체 염기서열(서열번호 14)을 확보하였고, 실시예 1에서와 같이 genomic 유전자 단편의 분리 및 genome walking을 통해서 5-upstream 조절부위 단편을 확보하였다. 이때 genomic 베타-액틴 유전자 단편의 분리 및 genome walking에 사용한 프라이머들은 서열번호 15 내지 18로 나타내었다. 다음 표 6은 베타-액틴 genomic 유전자 분리 및 프로모터 영역으로의 genome walking을 위한 PCR 반응 조성물과 증폭 조건을 나타낸 것이다.The beta-actin promoter was isolated to produce expression vectors capable of inducing universal and always constitutive fluorescence expression in whole sea pods. The entire beta-actin cDNA sequence (SEQ ID NO: 14) was obtained from the sea lychee EST database described in Example 1, and the 5-upstream regulatory region fragment was isolated through genome walking and isolation of genomic gene fragments as in Example 1. Secured. The primers used for isolation and genome walking of genomic beta-actin gene fragments are shown in SEQ ID NOs: 15 to 18. Table 6 shows PCR reaction compositions and amplification conditions for beta-actin genomic gene isolation and genome walking to the promoter region.
표 6
Figure PCTKR2010005682-appb-T000006
Table 6
Figure PCTKR2010005682-appb-T000006
Genome walking을 통해서 확보된 베타-액틴 조절부위는 5-upstream 영역, 비-번역 엑손 I(non-translated exon I) 및 인트론 I(intron I)이 연결되어 있는 총 3.88 kb의 서열이다(서열번호 19). 실시예 1에서와 유사하게 인위적으로 삽입된 제한효소 SalI 인식 서열(AT GTCGAC )을 포함한 정방향 프라이머(ODb-ACTp 2F; 서열번호 20)와 AgeI 인식 서열(AT ACCGGT )을 포함한 역방향 프라이머(ODb-ACTp 2R; 서열번호 21)를 이용하여 PCR 분리 후, pDsRed2 벡터의 RFP 유전자 upstream으로 클로닝하였다. 또한 RFP 유전자 발현을 용이하게 하기 위해, 실시예 1에서와 마찬가지로 NotI 인식 서열을 포함한 정방향 프라이머(NotI-ODb-ACT 3UFW1; 서열번호 22)와, NotI/AatII 인식 서열을 포함한 역방향 프라이머(NotI-AatII-ODb-ACT 3URV1; 서열번호 23)를 이용하여 베타-액틴 3'-UTR 단편(650 bp; 서열번호 24)을 PCR 분리 후 RFP 종결 코돈 downstream에 추가로 연결하였다. 결과적으로, 바다 송사리(O. dancena) 전 어체에서 항시구성적 적색 형광 발현을 유도할 수 있는 형광 발현 벡터로서 podb-actRFP를 제조하였다. 도 4는 podb-actRFP 형광 발현 벡터 모식도이다.The beta-actin regulatory region obtained through genome walking is a total of 3.88 kb sequence linked to the 5-upstream region, non-translated exon I and intron I (SEQ ID NO: 19). ). Embodiment similar to that in the first to artificially insert a restriction enzyme SalI recognition sequences (AT GTCGAC) a forward primer, including (ODb-ACTp 2F; SEQ ID NO: 20) and AgeI recognition sequences (AT ACCGGT) reverse primer (ODb-ACTp including PCR was isolated using 2R; SEQ ID NO: 21) and cloned into the RFP gene upstream of the pDsRed2 vector. In addition, in order to facilitate the expression of the RFP gene, as in Example 1, the forward primer containing the NotI recognition sequence (NotI-ODb-ACT 3UFW1; SEQ ID NO: 22) and the reverse primer containing the NotI / AatII recognition sequence (NotI-AatII Beta-actin 3′-UTR fragment (650 bp; SEQ ID NO: 24) was further linked to the RFP stop codon downstream using -ODb-ACT 3URV1; SEQ ID NO: 23) after PCR separation. As a result, podb-actRFP was prepared as a fluorescence expression vector capable of inducing constitutive red fluorescence expression in the whole fish of O. dancena . 4 is a schematic diagram of a podb-actRFP fluorescent expression vector.
실시예 4: 바다 송사리 내재 베타-액틴 유전자의 조직 발현 특징 분석Example 4: Tissue Expression Characterization of Sea Trout Endogenous Beta-Actin Gene
바다 송사리 베타-액틴 유전자 발현 조절이 모든 조직에서 보편적으로 일어나는지를 확인하기 위하여, 상기 실시예 2에서 준비된 성체 조직별 cDNA를 대상으로 실시간 역전사 PCR 분석을 실시하였다. 사용한 반응물의 조성과 조건은 실시예 2에서와 동일하며, 단 베타-액틴 mRNA 단편을 증폭하기 위한 프라이머 쌍으로 정방향 프라이머 qODb-ACT 1F(서열번호 25) 및 역방향 프라이머 qODb-ACT 1R(서열번호 26)을 이용하였다. 조직 발현의 보정과 조직간 상대 정량도 역시 실시예 2에서와 동일하게 수행하였다.In order to confirm whether the sea-fish beta-actin gene expression regulation is universal in all tissues, real-time reverse transcription PCR analysis was performed on adult tissue-specific cDNA prepared in Example 2 above. The composition and conditions of the reactants used were the same as in Example 2, except that the forward primer qODb-ACT 1F (SEQ ID NO: 25) and the reverse primer qODb-ACT 1R (SEQ ID NO: 26) as primer pairs for amplifying beta-actin mRNA fragments. ) Was used. Correction of tissue expression and relative quantification between tissues were also performed in the same manner as in Example 2.
도 5는 바다 송사리(Oryzias dancena) 성체 조직들에서 베타-액틴 mRNA의 조직 발현 분포 및 수준을 나타낸 그래프이다. 여기에서 보듯이, 바다 송사리 베타-액틴 유전자는 분석한 모든 조직에서 mRNA의 발현을 나타내어, 베타-액틴 유전자의 보편적 조절 특징을 잘 보여주고 있다. 한편, 도 5에 의하면 베타-액틴 mRNA의 발현 수준은 조직별로 서로 크게 다르게 나타났는데, 소화관, 신장, 비장 및 난소 등에서 높은 발현 수준을 나타낸 반면 뇌, 아가미, 심장, 정소 조직에서는 상대적으로 온화한 발현을, 그리고 근육 및 간 조직에서 가장 낮은 발현을 나타내었다. 따라서, 바다 송사리 베타-액틴 조절부위를 이용한 외래 형광 유전자 발현 유도시, 형질전환 바다 송사리 성체는 모든 조직에서 보편적으로 형광을 표현할 수 있지만, 조직마다 발현율의 차이가 예상되고, 특히 골격 근육계에서는 강한 외래 유전자 단백질의 표현을 기대하기 어려운 것으로 나타났다.5 is a graph showing the tissue expression distribution and level of beta-actin mRNA in adult Oryzias dancena tissues. As shown here, the sea larvae beta-actin gene shows mRNA expression in all tissues analyzed, demonstrating the universal regulatory characteristics of the beta-actin gene. On the other hand, according to Figure 5, the expression level of beta-actin mRNA is significantly different from tissue to tissue, showing a high expression level in the digestive tract, kidney, spleen and ovary while relatively mild expression in the brain, gills, heart, testis tissue. And the lowest expression in muscle and liver tissues. Therefore, when inducing foreign fluorescence gene expression using sea urchin beta-actin regulatory region, transgenic sea urchin adults can express fluorescence universally in all tissues, but the difference in expression rate is expected in each tissue, especially in the skeletal muscular system. Expression of the gene protein was difficult to expect.
실시예 5: mlc2-2 프로모터 조절에 의한 형광 바다 송사리 계통 확립Example 5: Establishment of Fluorescent Sea Killer Line System by Regulating mlc2-2 Promoter
근육에 집중된 강한 형광 단백질의 발현을 유도할 수 있는 형질전환 바다 송사리를 제조하기 위하여, 상기 podmlc2-2RFP로부터 KpnI/AatII 제한효소 처리를 통해 회수한 형질전환 유전자 절편을 바다 송사리 수정란에 미세현미주입하였다. 이를 위하여, 바다 송사리 암컷 및 수컷 성체를 30 L 크기의 25 ℃ 수조에 암:수=2:1 비율로 수용하고 교배 및 산란 행동을 관찰하였다. 산란이 확인되면 즉시 수정란을 회수하여 제1난할기에 있는 수정란을 선택, 현미경 하에서 세포질 내로 미세현미주입하였다. 미세현미주입은 미세현미조작기(micromanipulator; Narishige, Japan)를 이용하였으며, 미세현미주입을 위한 DNA는 10 mM Tris-Cl, 0.1 mM EDTA pH 8.0 완충용액에 100 ㎍/㎖ 농도로 조정하여 사용하였다. 1차 미세현미주입된 배(embryo) 110 개를 대상으로 형광 현미경 검경을 통해 발생 단계별 RFP 발현 유무와 양상을 관찰하였다. 그 결과, mlc2-2 프로모터의 조절에 의한 RFP 발현은 후기 배에서 근육특이적인 양상으로 관찰됨에 따라 mlc2-2 유전자 조절의 특징과 잘 일치하는 것으로 나타났다. 도 6은 형질전환유전자 mlc2-2-RFP가 미세현미주입된 바다 송사리(Oryzias dancena) 배(embryo)에서의 형광 발현을 보여주는 사진이다.In order to prepare a transgenic sea trout capable of inducing the expression of a strong fluorescent protein concentrated in muscle, the transgene fragments recovered from the podmlc2-2RFP through KpnI / AatII restriction enzyme treatment were microscopically injected into the sea trout fertilized eggs. . To this end, male and male adult males and females were housed in a 30 L tank at 25 ° C. in a male to female ratio of 2: 1 and observed mating and spawning behavior. When spawning was confirmed, the fertilized eggs were recovered immediately, and the fertilized eggs in the first warming season were selected and microscopically injected into the cytoplasm under a microscope. Micromicroscopic injection was performed using a micromanipulator (Narishige, Japan), and the DNA for micromicroscopic injection was adjusted to a concentration of 100 ㎍ / ㎖ in 10 mM Tris-Cl, 0.1 mM EDTA pH 8.0 buffer solution. The presence and pattern of RFP expression in each stage were examined by fluorescence microscopy in 110 first microembryled embryos. As a result, RFP expression by regulation of the mlc2-2 promoter was found to be in good agreement with the characteristics of the mlc2-2 gene regulation as observed in muscle-specific patterns in the late embryo. Figure 6 is a photograph showing the fluorescence expression in the Oryzias dancena embryo (embryo) micro-injected with the transgene mlc2-2-RFP.
1차 분석 결과를 바탕으로 형질전환 어류를 생산하기 위하여, 다시 총 981 개의 수정란에 미세현미주입을 실시하였다. 이중 342 개체(34.9 %)가 부화하였으며, 부화된 개체들 중 267 마리가 최종 성숙단계에 도달하였다. 성체 267 마리 중 35 마리(13.2%)에서 적색 형광 발현이 관찰되었고, RFP 형광 발현은 모두 골격 근육에 국한 관찰되어 mlc2-2 프로모터의 조절에 의한 근육 집중형 발현 특징을 잘 보여주었다. 생성된 F0 개체들은 모두 모자이크 형태의 발현을 나타내었지만, 일반 바다 송사리와의 교배를 통해 생성된 F1 형질전환 개체들은 F0 부모와는 달리 전 골격 근육에서 매우 강한 형광 발현을 나타내었다. 아래 표 7은 mlc2-2-RFP 형질전환 F0에서 F1 자손으로의 형광발현 전달을 나타낸다.In order to produce transgenic fish based on the first analysis result, micro-micron injection was carried out to 981 fertilized eggs again. Of these, 342 individuals (34.9%) hatched and 267 of the hatched individuals reached the final maturation stage. Red fluorescence expression was observed in 35 (13.2%) of 267 adults, and RFP fluorescence expression was all localized to skeletal muscle, demonstrating well-characterized muscle expression by regulation of the mlc2-2 promoter. The generated F0 individuals showed mosaic-like expression, but the F1 transformed individuals generated through crosses with general sea celtices showed very strong fluorescence expression in all skeletal muscles, unlike the F0 parents. Table 7 below shows fluorescence transfer from mlc2-2-RFP transformed F0 to F1 progeny.
표 7
Figure PCTKR2010005682-appb-T000007
TABLE 7
Figure PCTKR2010005682-appb-T000007
도 7은 형질전환유전자 mlc2-2-RFP가 이식된 F1 형질전환 바다 송사리(Oryzias dancena) 및 일반 바다 송사리(Oryzias dancena)의 외형 사진이다. 여기에서 보듯이, 이들 형질전환 바다 송사리의 경우 형광 조명 없이 육안으로도 강한 적색 형광을 손쉽게 관찰할 수 있으며, 그 형광 발현 양상은 골격 근육 특이적으로 나타남으로써 눈, 지느러미, 상악 위쪽의 두부에서는 RFP 발현이 없는 것을 알 수 있다.Figure 7 is a picture of a gene transformed appearance mlc2-2-RFP the F1 transgenic medaka sea transplantation (Oryzias dancena) and normal sea medaka (Oryzias dancena). As shown here, the strong red fluorescence can be easily observed with the naked eye without fluorescent lighting, and the fluorescence expression is specific to skeletal muscle, so RFP is applied to the head, upper fin, and upper upper head. It can be seen that there is no expression.
F1 단가접합성(hemizygous) 형질전환 개체들로부터 동형접합성(homozygous) 형질전환 계통을 확립하기 위하여, F1 암컷 및 수컷 간 1:1 비율로 형매 교배를 실시하였다. 형매 교배를 통해서 확보된 F2 형질전환 표현형 보유 개체들 중 상대적으로 강한 형광 강도를 보이는 개체를 무작위로 6 미 선발하여 일반 바다 송사리와의 검정 교배를 실시하였다. 생산된 F3 자손의 형광 발현 유무 조사를 통해 100% 형광 발현을 후대에 전달할 수 있는 4마리의 형질전환 개체들을 확보함으로써, 염색체에 삽입된 형질전환 유전자 좌위가 동형접합화된 계통을 확립하였다. 다음 표 8은 자손검정을 통한 mlc2-2 동형접합성 형질전환 F2의 선발을 나타낸 것이다.In order to establish a homozygous transformation lineage from F1 hemizygous transgenic individuals, sibling crosses were conducted at a 1: 1 ratio between F1 females and males. Among the F2 transformed phenotype-bearing individuals obtained through sibling breeding, six randomly selected individuals showing relatively strong fluorescence intensity were randomly selected and subjected to assay crosses with general sea scorpions. By investigating the presence or absence of fluorescence expression of the produced F3 progeny, four transgenic individuals capable of delivering 100% fluorescence expression later were established, thereby establishing a line homozygous for the transgenic locus inserted into the chromosome. Table 8 below shows the selection of mlc2-2 homozygous transform F2 through progeny assay.
표 8
Figure PCTKR2010005682-appb-T000008
Table 8
Figure PCTKR2010005682-appb-T000008
실시예 6: 베타-액틴 프로모터 조절에 의한 형광 바다 송사리 계통 확립Example 6: Establishment of Fluorescent Sea Glory Lines by Modulation of Beta-Actin Promoter
전 어체 조직에서 형광을 발현하는 오리지아스 동형접합계통을 제조하기 위해, 위에서 개발한 형질전환 발현벡터 podb-actRFP의 SalI/AatII 절편을 미세현미주입하였다. 예비 평가용 실험으로써 O. dancena 세포에서 본 발명의 베타-액틴 프로모터가 보편적인 RFP 발현을 유도할 수 있는지의 여부를 1차 조사하기 위하여, 형질전환 유전자를 수정란에 미세현미주입한 후 발생 배(embryo)에서 형광발현을 조사하였다. 미세현미주입된 배(embryo)들은 초기 체절기부터 강한 형광 발현을 나타내기 시작하였으며, RFP 발현 배체별로 그 발현 양상은 다양하고, 세포 유형별 특이적인, 또는 발생 단계 특이적인 양상 없이 대부분의 모든 세포에서 보편적인 발현 특징을 나타내었다. 도 8은 형질전환유전자 베타-액틴-RFP가 미세현미주입된 바다 송사리(Oryzias dancena) 배(embryo)에서의 형광발현을 보여주는 사진이다.In order to prepare the original Oris homozygous system for fluorescence expression in whole tissues, SalI / AatII fragments of the transformed expression vector podb-actRFP developed above were microscopically injected. To examine whether the beta-actin promoter of the present invention can induce universal RFP expression in O. dancena cells as a preliminary evaluation experiment, the embryos developed after micro-micro injection of the transgene into fertilized eggs ( Fluorescence was examined in embryos. Micro-injected embryos began to show strong fluorescence expression from the early stages, and the expression patterns of RFP-expressing embryos varied, and in most all cells without cell-specific or developmental-specific patterns. Universal expression characteristics. Figure 8 is a photograph showing the fluorescence expression in the Oryzias dancena embryo (embryo) micro-injected with the transgene beta-actin-RFP.
본 결과를 바탕으로 본격적인 형질전환 어류를 제조하기 위해서 총 1189 개의 수정란에 다시 미세현미주입을 실시하여, 이 중 386 마리(32.5 %)가 부화하였고, 최종 개체가 성숙이 가능한 성체까지 도달하였다. 성체를 대상으로 외부 형광 표현형을 조사한 결과, 분석한 271 개체들 중 28 개체(10.3 %)들에서 RFP 발현이 검출되었고, 이중 9 미는 형광 조명의 도움 없이도 육안으로 RFP를 쉽게 검출할 수 있을 만큼 충분한 적색 형광을 나타내었다. F0 세대의 개체들은 대부분 모자이크 형태의 형광분포를 나타내었지만, 그 적색 형광의 발현 양상은 특정 세포 또는 조직 유형에 국한된 특이 양상 없이 아가미, 지느러미, 근육 등 다양한 조직 유형에 걸쳐 형광 발현을 나타내었다. 이들 형광 표현 F0 개체들 중 무작위로 선발된 개체들을 일반 바다 송사리와 교배를 통해 F1 후대로의 형질전환 발현 전달이 가능한 계통을 선발하였다. 최종 선발된 총 9 미의 F0 개체들을 대상으로 대조군과의 교배를 수행한 결과, 5 미의 F0 개체들이 F1으로 형광발현을 성공적으로 전달하였으며, 전달 빈도는 개체별로 다양하게 나타났다. 다음 표 9는 베타-액틴 RFP 형질전환 F0에서 F1 자손으로의 형광발현 전달을 나타낸다.On the basis of this result, in order to manufacture a full-scale transgenic fish, a total of 1189 fertilized eggs were re-injected with micro-microns, and 386 (32.5%) of them hatched and reached the adulthood where the final individuals could mature. As a result of investigating the external fluorescence phenotype in adults, RFP expression was detected in 28 (10.3%) of the 271 individuals analyzed, 9 of which were sufficient to detect RFP easily with the naked eye without the need for fluorescent illumination. Red fluorescence was shown. Most of the F0 generation showed mosaic-shaped fluorescence distribution, but the expression of the red fluorescence showed fluorescence expression over various tissue types such as gills, fins, and muscles without specific features limited to specific cell or tissue types. Randomly selected of these fluorescence expressing F0 individuals were selected to be capable of delivering transgenic expression to the posterior F1 by mating with a general sea fern. As a result of crossing the control group with a total of 9 F0 individuals finally selected, 5 F0 individuals successfully delivered fluorescence to F1, and the frequency of delivery varied by individual. Table 9 below shows fluorescence delivery from beta-actin RFP transgenic F0 to F1 progeny.
표 9
Figure PCTKR2010005682-appb-T000009
Table 9
Figure PCTKR2010005682-appb-T000009
형광 표현이 모자이크 형태로 관찰되는 F0 세대와는 달리, 모든 세포가 단가접합체(hemizygote) 형태로 형질전환 유전자를 포함하는 F1 개체들의 경우, 전 세포 및 조직에서 RFP 형광을 성공적으로 발현하는 것으로 나타나, 본 발명의 효과를 잘 보여주고 있다. 도 9는 형질전환유전자 베타-액틴-RFP가 이식된 F1 형질전환 바다 송사리(Oryzias dancena) 외형 및 외부 조직들에서의 RFP 발현을 보여주는 사진이다. 이들 F1 개체들은 근육 전반에 걸쳐 온화한 RFP 형광 강도를 가지며, 여타 다른 조직에서는 조직별로 다양한 강도의 형광을 표현하고 있다. 외부 표현형에 있어 본 형질전환 개체들은 눈, 비늘, 두부, 지느러미에도 모두 RFP 형광을 발현하며, 뿐만 아니라 내부 장기에 있어서도 신장, 소화관, 비장 등 여러 장기에서 다양한 형광 세기를 나타내는 등 베타-액틴 유전자 발현의 특징을 잘 따르는 것으로 나타났다. 도 10은 형질전환유전자 베타-액틴-RFP가 이식된 F1 형질전환 바다 송사리(Oryzias dancena)의 다양한 내부 장기들에서의 RFP 발현을 보여주는 사진이다. 따라서, 본 형질전환 계통들은 상기 실시예 5의 근육 집중형 형광 발현 계통에서와 같이 근육에 강한 형광을 표현하지는 않지만, mlc2-2-RFP 형질전환에서는 확보할 수 없는 모든 조직에서의 보편적 형광 발현 분포를 표현한다.In contrast to the F0 generation, where fluorescence expression is observed in mosaic form, all cells show successful expression of RFP fluorescence in all cells and tissues of F1 individuals that contain the transgene in the form of a hemizygote. The effect of the present invention is well illustrated. FIG. 9 is a photograph showing RFP expression in F1 transgenic Oryzias dancena appearance and external tissues transfected with transgene beta-actin-RFP. FIG. These F1 individuals have mild RFP fluorescence intensities throughout the muscle and other tissues show varying intensity of fluorescence per tissue. In the external phenotype, these transgenic individuals express RFP fluorescence in the eyes, scales, head, and fins as well as beta-actin gene expression such as varying fluorescence intensity in various organs such as kidney, gut, spleen, etc. It appeared to follow the characteristics of the well. FIG. 10 is a photograph showing RFP expression in various internal organs of an F1 transgenic Oryzias dancena transplanted with transgene beta-actin-RFP. Thus, the present transgenic lines do not express strong fluorescence in muscle as in the muscle concentrated fluorescence expression line of Example 5, but the universal fluorescence expression distribution in all tissues that cannot be obtained in mlc2-2-RFP transformation Express
이들로부터 선발된 계통의 암, 수 F1 개체들 간의 형매 교배를 통해서 F2 형질전환 개체들을 생성하였다. F1 형질전환 개체들 간의 교배를 통해 수정율, 부화율 및 초기 생존율에 있어서는 일반 대조군간의 교배와 유의적인 차이를 관찰할 수 없었으며, 형질전환 유전자의 발현 빈도 분석시 약 75%로 나타나 멘델 유전 방식과 일치함을 보여주고 있다. 또한, 감수 분열 등 형질전환 후대 전달과정에서 형질전환 유전자 발현의 감소 또는 소실 등 없이 안정적인 생식 계통이 형성되었음을 잘 보여주고 있다. 생성된 F2 자손들을 대상으로 형광의 육안 평가를 통해 상대적으로 높은 형광 강도를 나타내는 F2들을 선발하여 일반 바다 송사리들과 교배시켰으며, 부화 자어를 형광현미경으로 검경하여 100% 형질전환 발현의 전달이 가능한 개체들을 선발하였다. 다음 표 10은 자손검정을 통한 베타-액틴 RFP 동형접합성 형질전환 F2의 선발을 나타낸 것이다.F2 transgenic individuals were generated through sibling crosses between female and male F1 individuals of the lineage selected from them. No significant differences in fertilization rate, hatching rate and initial survival rate were found between the F1 transgenic organisms and the normal control, and about 75% of the transgenic genes were found to be consistent with the Mendelian method. Is showing. In addition, it shows that a stable reproductive line was formed in the transgenic transgenic process such as meiosis without reducing or losing transgene expression. F2 progeny of relatively high fluorescence intensities were selected by visual evaluation of fluorescence on the generated F2 progeny, and crossed with general sea scorpions. Subjects were selected. Table 10 below shows the selection of beta-actin RFP homozygous transform F2 through progeny assay.
표 10
Figure PCTKR2010005682-appb-T000010
Table 10
Figure PCTKR2010005682-appb-T000010
실시예 7: 더블 형질전환 형광 바다 송사리(Example 7: Double Transform Fluorescence Sea Species O. dancenaO dancena ) 계통 확립System establishment
상기 실시예 5 및 6에서 확보한 형질전환 동형접합체 F2들을 대상으로 형질전환 계통간 교배를 실시하였다. 교배는 암:수=1:1 방식으로 수행하였으며, 산란 및 교배를 통해 얻어진 수정란의 수정율, 부화율 및 초기 생존율을 조사하였다. 그 결과 수정율 및 부화율 모두 일반 대조군간의 교배와 큰 차이가 없었으며, 따라서 생존력에 전혀 장애가 없이 두 형질전환 표현형을 동시에 획득한 더블 형질전환 개체들이 형성될 수 있는 것으로 판단되었다.The transgenic lines were transfected with the transgenic homozygotes F2 obtained in Examples 5 and 6. The mating was carried out in a cancer: number = 1: 1 manner, and fertilization rate, hatching rate and initial survival rate of fertilized eggs obtained through laying and mating were investigated. As a result, both fertilization rate and hatching rate were not significantly different from those of the general control group. Therefore, it was judged that double transgenic individuals which simultaneously acquired two transgenic phenotypes could be formed without any obstacle to viability.
형질전환 성체를 대상으로 형광 발현의 양상을 분석한 결과 더블 형질전환 개체들은 양친의 형광 형질을 모두 온전하게 표현함으로써, 베타-액틴 프로모터 조절에 의해 모든 조직에서 형광 발현을 나타냄은 물론, mlc2-2 프로모터 조절에 의해 골격 근육계에서 강한 형광 발현을 나타내었다. 따라서, 베타-액틴 프로모터 단독 조절에 의한 형질전환 형광 발현이 골격근육에서 낮게 나타나는 단점을 해결하는 동시에, mlc2-2 프로모터 단독 조절에 의해서는 얻을 수 없었던 지느러미, 눈 및 두부에서의 항시구성적 형광 발현을 함께 획득함으로써, 종래에는 얻을 수 없었던 신규 형광 표현형이 확보되었음을 잘 보여주고 있다. 도 11은 근육에서 강한 형광과 함께 전 조직에서 형광을 표현하는 더블 형질전환 바다 송사리(Oryzias dancena) 사진이다.As a result of analyzing the fluorescence expression of the transgenic adult, double transgenic individuals expressed all of the parent's fluorescent traits intact, thereby indicating fluorescence expression in all tissues by beta-actin promoter regulation, as well as mlc2-2. Promoter regulation showed strong fluorescence expression in skeletal muscular system. Thus, while addressing the shortcomings of transgenic fluorescence expression by beta-actin promoter alone regulation in skeletal muscle, constitutive fluorescence expression in dorsal, eye and head, which was not obtainable by regulation of the mlc2-2 promoter alone. By acquiring together, it is well shown that a novel fluorescence phenotype that could not be obtained in the past was secured. FIG. 11 is a picture of a double transgenic sea killifish ( Oryzias dancena ) expressing fluorescence in all tissues with strong fluorescence in muscle. FIG.
두 동형접합성 형질전환 양친의 교배를 통해 형성된 더블 형질전환 개체들은 각 형질전환 유전좌위에 대해 단가접합성(hemizygous) 상태를 나타내며, 검정교배 시 두 형질이 독립적으로 전달된다는 점으로 미루어볼 때 본 발명에서 선발한 계통들의 경우 두 형질전환 유전좌위는 물리적으로 서로 연관되어 있지 않은 것으로 나타났다. 이에 따라, 더블 형질전환 개체들의 두 형질전환 유전좌위를 모두 동형접합 상태로 전환시키기 위해서 더블 형질전환 개체들간 형매 교배를 다시 수행하였고, 이로부터 형성된 전체 자손 들 중 더블 형질전환(강한 근육 발현 및 여타 조직에서의 항시구성적 발현)을 표현하는 개체들의 출현 빈도는 약 52%로서 멘델 유전 9:7(3:3:1) 방식의 유전 빈도와 유의적인 차이를 나타내지 않았다. 이들 더블 형질전환 표현형을 나타내는 개체들 중 총 25미를 대상으로 일반 바다 송사리와의 교배를 실시하였고, 이중 3개체(3/25=12%)들이 안정적으로 다음 세대로 더블 형질전환을 전달하는 동형접합체인 것으로 나타나, 역시 멘델의 독립 유전(1:2:2:4) 방식을 잘 따르는 것을 보여주었다. 표 11은 자손검정을 통한 더블형질전환 동형접합성 형질전환 계통 선발을 나타낸 것이다.Double transgenic individuals formed through the mating of two homozygous transgenic parents exhibit a hemizygous state for each transgenic locus, and in the present invention, the two traits are independently transferred when assayed. In the selected strains, the two transgenic loci were not physically related. Accordingly, in order to convert both transgenic loci of the double transformed individuals into homozygous state, sibling crosses were performed again between the double transformed individuals, and double transformation (strong muscle expression and other The incidence of constitutive expression in tissues was about 52%, which was not significantly different from that of the Mendelian 9: 7 (3: 3: 1) mode. A total of 25 of these double-transformed phenotypes were bred with common sea scorpions, and three of them (3/25 = 12%) were homozygous for stably delivering double transformation to the next generation. It appears to be a conjugate, showing that it also follows Mendel's independent inheritance (1: 2: 2: 4) mode. Table 11 shows the selection of double transgenic homozygous transgenic lines through progeny assay.
표 11
Figure PCTKR2010005682-appb-T000011
Table 11
Figure PCTKR2010005682-appb-T000011
선발된 더블 형질전환 계통들의 개체들을 대상으로, 실제 두 형질전환 유전자가 한 개체 내 함께 존재하는지를 확인하기 위해서 mlc2-2-RFP 형질전환 유전자 및 베타-액틴-RFP 형질전환 유전자의 단편을 PCR로 검출하였다. PCR 검출을 위해 형질전환 어류로부터 추출한 100 ng의 genomic DNA를 주형으로 하여, mlc2-2 프로모터에 특이적인 제1 정방향 프라이머(TGODMlc2-2 2F; 서열번호 27), 베타-액틴 프로모터에 특이적인 제2 정방향 프라이머(TGODb-act 1F; 서열번호 28), 그리고 두 형질전환 유전자의 공통 구조유전자인 RFP에 특이적인 역방향 프라이머(TGRFP 1R; 서열번호 29)를 동시에 이용하여 다중방식 PCR(multiplex PCR)을 실시하였다. 다음 표 12는 더불 형질전환 개체의 PCR 동정을 위한 반응물의 조성 및 열 순환(thermal cycling) 증폭 조건을 나타낸 것이다.PCR of the mlc2-2-RFP transgene and the beta-actin-RFP transgene to detect the presence of the actual two transgenes in one individual of the selected double transgenic lines. It was. A first forward primer specific for the mlc2-2 promoter (TGODMlc2-2 2F; SEQ ID NO: 27), a second specific to the beta-actin promoter, based on 100 ng of genomic DNA extracted from transgenic fish for PCR detection A multiplex PCR was performed using a forward primer (TGODb-act 1F; SEQ ID NO: 28) and a reverse primer (TGRFP 1R; SEQ ID NO: 29) specific to RFP, a common structural gene of two transgenes. It was. Table 12 below shows the composition of the reactants and the thermal cycling amplification conditions for PCR identification of transformed individuals.
표 12
Figure PCTKR2010005682-appb-T000012
Table 12
Figure PCTKR2010005682-appb-T000012
도 12는 더블 형질전환 바다 송사리(Oryzias dancena)로부터 형질전환 유전자들의 PCR 증폭을 나타낸 결과이다. 여기에서 보면, 분석한 모든 개체에서 두 형질전환 유전자 단편이 검출되었으며, 따라서 본 발명의 더블 형질전환 계통에서 관찰되는 형광 표현형이 도입된 형질전환 유전자의 작동에 의해 획득된 것임을 잘 보여주고 있다.Figure 12 shows the results of PCR amplification of the transgenes from the double transgenic sea killi ( Oryzias dancena ). Here, two transgene fragments were detected in all the analyzed individuals, thus showing that the fluorescent phenotype observed in the double transgenic lineage of the present invention was obtained by the operation of the transgene.
실시예 8: 이종간 잡종 배수체 유도를 통한 형질전환 불임 잡종 배수체 형광어류 제조Example 8 Preparation of Transgenic Infertility Hybrid Drain Fluorescent Fishes by Induction of Cross-Team Hybrid Drainage
상기 실시예 7에서 선발된 더블 형질전환 동형접합체들의 생식학적 격리를 위해서, Oryzias javanicus와의 이종간 교배 및 배수체 유도를 통해 잡종배수체 더블 형질전환체를 생성하였다. 더블 형질전환 O. dancena 암컷 2미와 일반 O. javanicus 수컷 1미를 3개 수조 각각에 수용하고 잡종 교배 및 산란을 유도하였다. 교배를 위한 산란 수조로는 30 L 용량의 25 ℃ 항온 수조를 이용하였고, 광주기는 명암 16h:8h으로 조정하였으며, 염분도는 15 ppt 기수 조건을 이용하였다. 산란 직후 수정란을 회수하여 온도자극 처리를 통해 제2극체 방출을 억제하였다. 온도 자극 처리는 수정 3 분 후 0 ℃에서 45 분간 수행하였고, 처리가 끝난 뒤 다시 25 ℃ 항온 부화조(15 ppt)로 옮겨 부화를 유도하였다. 총 3회 반복처리 실시하였다. 이들 두 종간 잡종 교배시 수정률은 90.5%로 나타나 종내 교배시와 큰 차이를 나타내지 않았고, 부화율은 평균 80.5%로서 양친의 종내 교배에 비해 다소 낮은 값을 나타내었다. 온도 처리를 받은 이종간 배수체 처리군의 경우 평균 부화율은 68.8%로서 무처리 이배체 잡종군에 비해 유의적으로 나타나, 부화율 감소는 온도 처리에 기인한 것으로 판단되었다. 잡종 배수체 발생 배(embryo) 또는 부화 자어를 형광 현미경으로 관찰한 결과 모든 관찰 시료에서 100% RFP 형광을 나타냄으로써, 사용한 암컷 더블 형질전환 O. dancena로부터 전달된 형질전환 유전자가 이종간 세포핵융합(karyogamy) 상태에서도 안정적으로 작동할 수 있음을 잘 보여주었다. 다음 표 13은 Oryzias dancena(F)×O. javanicus(M) 교배에 의한 이종간 잡종 및 잡종3배체 제조를 나타낸 것이다.For reproductive isolation of the double transformed homozygotes selected in Example 7, a hybrid diploid double transformant was generated by cross-breeding with oryzias javanicus and inducing diploids. Two females of double transgenic O. dancena and one female of normal O. javanicus were housed in each of the three tanks and hybrid hybridization and spawning were induced. As a scattering tank for the breeding, a 30 L 25 ° C water bath was used, the photoperiod was adjusted to the contrast of 16h: 8h, and the salinity was 15 ppt. Immediately after spawning, fertilized eggs were recovered and the second polar body was suppressed through the temperature stimulation treatment. Temperature stimulation treatment was carried out for 45 minutes at 0 ℃ after 3 minutes of fertilization, and after the treatment was completed and transferred to a 25 ℃ constant temperature incubator (15 ppt) to induce hatching. A total of three iterations were performed. The hybridization rate between these two species was 90.5%, which was not significantly different from that of intrabreeding. The hatching rate was 80.5%, which was slightly lower than that of parental breeding. The average incubation rate of the inter-drainage drainage group treated with temperature treatment was 68.8%, which was significantly higher than that of the untreated diploid hybrid group. The fluorescence microscopy of hybrid embryogenic embryos or embryonic embryos showed 100% RFP fluorescence in all observed samples, so that the transgenes transferred from the female double transgenic O. dancena used were heterozygous for karyogamy. It showed that it can work reliably in the state. Table 13 below shows the production of heterologous hybrids and hybrid triplets by Oryzias dancena (F) × O. Javanicus (M) crosses.
표 13
Figure PCTKR2010005682-appb-T000013
Table 13
Figure PCTKR2010005682-appb-T000013
온도 처리에 의한 제2극체 방출 억제를 통한 3배체 배수성을 확인하기 위해, 잡종3배체 형질전환 개체들을 대상으로 flow cytometry를 이용한 DNA 함량을 조사하였다. 그 결과, 이배체 O. dancena 암컷×O. javanicus 수컷 잡종의 세포 당 평균 DNA 함량은 1.7 pg/cell로 나타난 반면, 잡종3배체는 2.6 pg/cell로 나타나 1.5배 증가된 예상값과 매우 유사하였다. 다음 표 14는 Oryzias dancena(F)×O. javanicus(M) 잡종 및 잡종3배체의 세포 당 DNA 함량을 나타낸 것이다.In order to confirm the triploid ploidy by suppressing the release of the second polar body by the temperature treatment, the DNA content was examined by flow cytometry in the hybrid triploid transformed individuals. As a result, the average DNA content per cell of the diploid O. dancena female × O. javanicus male hybrid was 1.7 pg / cell, whereas the hybrid triploid was 2.6 pg / cell, which is very similar to the 1.5-fold increase expected. Table 14 shows DNA contents per cell of Oryzias dancena (F) × O. Javanicus (M) hybrids and hybrid triploids.
표 14
Figure PCTKR2010005682-appb-T000014
Table 14
Figure PCTKR2010005682-appb-T000014
따라서, 제2극체 방출 억제를 통해 형성된 잡종 배수체 더블 형질전환 개체들은 모계(더블 형질전환 O. dancena 암컷)의 반수체 2조와 부계(일반 O. javanicus 수컷) 반수체 1조를 포함한 3배체 잡종 어류로서, 모계에서 유래한 더블 형질전환 유전자들의 작용에 의해 근육에서 강한 형광 발현(mlc2-2 프로모터 조절) 및 여타 조직들에서의 형광발현(베타-액틴 프로모터 조절)을 동시에 나타내며, 그 표현형적 특징은 2배체 염색체조를 제공한 모계의 표현형과 매우 유사하였다. 도 13은 더블 형질전환 바다 송사리(Oryzias dancena)와 오리지아스 자바니쿠스(O. javanicus)와의 이종간 교배 및 배수체 유도를 통해 생성된 불임성 형질전환 잡종3배체의 사진이다.Thus, hybrid diploid double transgenic individuals formed through inhibition of dipolar release are triploid hybrid fish, including two haploid pairs of the maternal (double-transformed O. dancena females) and one paternal (generic O. javanicus male) haploids, The action of the double transgenes derived from the maternal system simultaneously shows strong fluorescence expression in the muscle (mlc2-2 promoter regulation) and fluorescence expression in other tissues (beta-actin promoter regulation), the phenotypic characteristic of which is diploid It was very similar to the phenotype of the maternal line that provided chromosome formation. FIG. 13 is a photograph of an infertile transgenic hybrid triploid generated through cross-breeding and induction of a ploidy between a double transgenic sea larva ( Oyzias dancena ) and O. javanicus .
이들 잡종 배수체 더블 형질전환 어류의 생식소 발달 유무를 관찰하기 위해서 5개월간 성장시킨 성체 암, 수를 대상으로 생식소 조직의 해부학적 외견 검사를 실시하였다. 그 결과, 모든 개체에서 일반 O. dancenaO. javanicus 성체들은 성숙된 배우자를 포함한 잘 발달된 난소와 정소 조직을 보유하는 반면, 잡종 배수체들은 생식소 발달이 완전히 억제되어 극히 작은 미발달 생식소가 관찰되거나 또는 육안으로 생식소를 쉽게 구분하기 어려울 정도 발달이 억제되어 있었다.In order to observe the gonad development of these hybrid ploid double transgenic fishes, we performed an anatomical external examination of the gonad tissues of adult females and males grown for 5 months. As a result, normal O. dancena and O. javanicus adults in all individuals have well-developed ovary and testis tissue, including mature spouses, while hybrid ploids have completely suppressed gonad development, resulting in the observation of extremely small embryonic gonads, or Development was inhibited to the extent that the gonads could not be easily distinguished with the naked eye.
이와 같이 미발달 억제형 생식소를 갖는 잡종 배수체 개체들이 일반 O. dancenaO. javanicus와의 교배를 통해 생존력 있는 수정란을 형성할 수 있는지의 유무를 조사하였다. 1개월간의 1:1 교배(잡종배수체×O. dancena 교배군 6개 및 잡종 배수체×O. javanicus 교배군 6개)를 통해 산란 및 수정란 생성 유무를 조사한 결과를 다음 표 15에 나타낸다. 표 15는 더블 형질전환 잡종3배체의 생식능력을 평가한 결과이다.In this way, we investigated whether hybrid ploidy individuals with an undeveloped gonad could form viable fertilized eggs by crossing with common O. dancena and O. javanicus . Table 1 shows the results of egg production and fertilization of eggs by 1: 1 breeding (hybrid ploidy × 6 O. dancena hybrids and 6 hybrid ploidy × O. javanicus hybridization). Table 15 shows the results of evaluating the fertility of the double transformed hybrid triploid.
표 15
Figure PCTKR2010005682-appb-T000015
Table 15
Figure PCTKR2010005682-appb-T000015
여기에서 보면 O. dancena간 또는 O. javanicus 간 교배에서는 1개월간 매우 활발한 교배 및 산란을 통해 수정란을 생산한 반면, 잡종 배수체와의 교배에서는 모든 교배군에서 전혀 생존력 있는 수정란을 생산하지 못한 것으로 나타났다. 몇몇 교배군에서 잡종배수체와 함께 수용된 일반 O. dancena 또는 O. javanicus 암컷들이 일부 산란을 보였지만, 산란된 모든 알들은 100% 미수정란이었다.Here, in O. dancena or O. javanicus mating, fertilized eggs were produced through very active mating and spawning for one month, while mating with hybrid drainage did not produce viable fertilized eggs at all. Some O. dancena or O. javanicus females housed with hybrids in some hybrids showed some spawning, but all eggs laid were 100% unfertilized.
이상의 결과에서 보듯이, 본 발명에 의해 생성된 더블 형질전환 잡종 배수체 개체들은 목적 형광 표현형을 잘 유지하지만, 생식학적으로는 완전한 기능적 불임으로서 일반 송사리 종들과의 교배를 통한 수정란 생산 능력이 온전히 제거되었음을 알 수 있다. 따라서, 본 발명을 통해 신규 형성된 더블 형질전환 잡종 배수체 바다 송사리는 생태학적으로 보다 안전한 방식의 형광 관상 어류의 유통 및 이용 방안을 제공한다.As can be seen from the above results, the double transgenic hybrid ploidy individuals produced by the present invention maintained the desired fluorescence phenotype well, but the fertility production was completely eliminated through fertilization with common killing species as a complete functional infertility. Able to know. Thus, the newly formed double transgenic hybrid drainage sea scorpion through the present invention provides a way to distribute and use fluorescent tubular fish in an ecologically safer manner.
본 발명에 따른 신규 형질전환 잡종 배수체는, 종래의 형광 형질전환 어류들에 비해 대폭 개선된 신규 형광 표현형을 보유함으로써 관상 가치가 뛰어난 형광 관상 생물로 이용될 수 있을 뿐만 아니라, 완벽한 불임의 특징을 보유함으로써 의도적 또는 비의도적 환경 방출 시에도 생식학적 경로를 통한 외래 유전자의 생태계 전이 위해성이 없으므로 안전한 유전자변형 형광 관상 어류의 이용이 가능하다. 또한, 본 발명에 따르면 담수, 기수 및 해수 조건에서 정상적인 생장이 가능한 광염성 형질전환 관상 어류를 제공하므로, 관상 어류 시장에 있어 소비자들에게 보다 넓은 선택의 폭을 제공할 수 있다.The novel transgenic hybrid drainage according to the present invention possesses a novel fluorescent phenotype significantly improved compared to conventional fluorescent transgenic fishes, and thus can be used as a fluorescent coronary organism with excellent coronary value, as well as having perfect sterility characteristics. As a result, there is no risk of ecological transfer of foreign genes through the reproductive pathway even in intentional or unintentional release of the environment, thus enabling the use of safe genetically modified fluorescent tubular fish. In addition, according to the present invention, since it provides a photo-inflammatory transgenic tubular fish capable of normal growth in freshwater, brackish water and seawater conditions, it is possible to provide consumers with a wider choice in the tubular fish market.

Claims (13)

  1. 바다 송사리(Oryzias dancena)의 마이오신 라이트체인 폴리펩타이드 아이소폼 2-2(myosin light chain polypeptide isoform 2-2; mlc2-2) 유전자 프로모터 및 적색 형광 단백질(red fluorescent protein, RFP) 구조 유전자(structural gene)를 포함하는, 바다 송사리(O. dancena) 근육에서 강한 형광발현을 표현하는 형광 발현 벡터.Myosin light chain polypeptide isoform 2-2 (mlc2-2) gene promoter and red fluorescent protein (RFP) structural gene in Oryzias dancena Fluorescence expression vector expressing strong fluorescence in O. dancena muscle.
  2. 제 1 항에 있어서, 폴리아데닐화 신호(polyadenylation signal)을 포함하는 바다 송사리(O. dancena) mlc2-2 3'-UTR 단편을 추가로 포함하는 형광 발현 벡터인 podmlc2-2RFP.The podmlc2-2RFP of claim 1, which is a fluorescent expression vector further comprising an O. dancena mlc2-2 3′-UTR fragment comprising a polyadenylation signal.
  3. 바다 송사리(Oryzias dancena)의 베타-액틴 유전자 프로모터 및 적색 형광 단백질(red fluorescent protein, RFP) 구조 유전자(structural gene)를 포함하는, 바다 송사리(O. dancena) 전 조직에서 보편적 형광발현을 표현하는 형광 발현 벡터.Fluorescence expressing universal fluorescence in whole O. dancena tissue, including the beta-actin gene promoter of the Oryzias dancena and the red fluorescent protein (RFP) structural gene Expression vector.
  4. 제 3 항에 있어서, 폴리아데닐화 신호(polyadenylation signal)을 포함하는 바다 송사리(O. dancena) 베타-액틴 3'-UTR 단편을 추가로 포함하는 형광 발현 벡터인 podb-actRFP.4. The podb-actRFP of claim 3, wherein the podb-actRFP is a fluorescent expression vector further comprising an O. dancena beta-actin 3'-UTR fragment comprising a polyadenylation signal.
  5. 제 1 항의 벡터에서 형질전환 유전자 단위를 바다 송사리(Oryzias dancena) 수정란에 미세현미주입하고 부화시켜 형질전환 바다 송사리(F0)를 얻고, 이를 비형질전환 바다 송사리와 교배시켜 단가접합성(hemizygous) 형질전환 바다 송사리(F1)를 얻고, 형질전환 암수간 교배시켜 동형접합성(homozygous) 형질전환 바다 송사리(F2)를 생산하는 방법.In the vector of claim 1, the transgenic gene unit is micro-injected and incubated in an Oryzias dancena fertilized egg and incubated to obtain a transgenic sea trout (F0), which is then crossed with an untransformed sea trout to form a hemizygous transformation. A method of obtaining a sea trout (F1) and crossing it between transgenic males and females to produce a homozygous transformed sea trout (F2).
  6. 제 5 항의 방법에 의해 생산된, 근육에서 강한 형광발현을 표현하는 형질전환 바다 송사리(Oryzias dancena).A transformed sea trout ( Oryzias dancena ) produced by the method of claim 5 which expresses strong fluorescence in muscle.
  7. 제 3 항의 벡터에서 형질전환 유전자 단위를 바다 송사리(Oryzias dancena) 수정란에 미세현미주입하고 부화시켜 형질전환 바다 송사리(F0)를 얻고, 이를 비형질전환 바다 송사리와 교배시켜 단가접합성(hemizygous) 형질전환 바다 송사리(F1)를 얻고, 형질전환 암수간 교배시켜 동형접합성(homozygous) 형질전환 바다 송사리(F2)를 생산하는 방법.In the vector of claim 3, the transgenic gene unit is injected microscopically into an Oryzias dancena fertilized egg and incubated to obtain a transgenic sea trout (F0), which is cross-bred with an untransformed sea trout to form a hemiygous transformation. A method of obtaining a sea trout (F1) and crossing it between transgenic males and females to produce a homozygous transformed sea trout (F2).
  8. 제 7 항의 방법에 의해 생산된, 근육에서는 상대적으로 약한 형광을 발현하면서 전 어체에서 보편적이고 항시구성적인 형광발현을 표현하는 형질전환 바다 송사리(Oryzias dancena).Produced by the method of claim 7, transgenic sea larvae ( Oryzias dancena ), which expresses relatively weak fluorescence in muscle and expresses universal and constitutive fluorescence in whole language.
  9. 제 6 항의 바다 송사리(Oryzias dancena)와 제 8 항의 바다 송사리를 종내 교배(intraspecific cross)시켜 단가접합성(hemizygous) 더블 형질전환 바다 송사리를 얻고, 더블 형질전환 암수간 교배시켜 동형접합성(homozygous) 더블 형질전환 바다 송사리를 생산하는 방법. Intraspecific crosses of the Oryzias dancena of claim 6 and the marine scorpion of claim 8 to obtain hemizygous double transformed sea larvae, and crossover between double transgenic males and females. How to produce a conversion sea scorpion.
  10. 제 9 항의 방법에 의해 생산된, 근육에서 강한 형광과 함께 전 조직에서도 형광을 동시에 표현하는 더블 형질전환 바다 송사리(Oryzias dancena).A double-transformed sea larva ( Oryzias dancena ) produced by the method of claim 9, which simultaneously expresses fluorescence in all tissues with strong fluorescence in muscle.
  11. 제 10 항의 바다 송사리(Oryzias dancena)를 근연종 송사리(Oryzias javanicus)와 이종간 잡종 교배(interspecific hybridization)시키는 단계를 포함하는 불임성 더블 형질전환 바다 송사리 잡종3배체(allotriploid)를 생산하는 방법.A method of producing an infertile double transgenic marine trellis (allotriploid) comprising the step of interspecific hybridization of an Oryzias dancena of claim 10 with an Oryzias javanicus .
  12. 제 11 항에 있어서, 수정란을 0 ℃에서 30 내지 45 분간 처리하여 제2극체 방출을 억제시키는 단계를 추가로 포함하는 것을 특징으로 하는 방법.The method of claim 11, further comprising the step of treating the fertilized egg at 0 ° C. for 30 to 45 minutes to inhibit release of the second polar body.
  13. 제 11 항 또는 제 12 항의 방법에 의해 생산된, 근육에서 강한 형광과 함께 전 조직에서도 형광을 동시에 표현하며 생식능력이 제거된 불임성 더블 형질전환 바다 송사리(Oryzias dancena) 잡종3배체(allotriploid).An infertile double transgenic Oryzias dancena hybridtriploid , produced by the method of claim 11 or 12, which simultaneously expresses fluorescence in all tissues with strong fluorescence in muscle and has been removed from fertility.
PCT/KR2010/005682 2010-06-28 2010-08-25 Double transgenic sterile oryzias dancena WO2012002610A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0061446 2010-06-28
KR1020100061446A KR101255197B1 (en) 2010-06-28 2010-06-28 Double transgenic sterile fluorescent marine medaka

Publications (1)

Publication Number Publication Date
WO2012002610A1 true WO2012002610A1 (en) 2012-01-05

Family

ID=45402298

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/005682 WO2012002610A1 (en) 2010-06-28 2010-08-25 Double transgenic sterile oryzias dancena

Country Status (2)

Country Link
KR (1) KR101255197B1 (en)
WO (1) WO2012002610A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103609528B (en) * 2013-12-04 2015-06-24 唐力 Glowfish color-changing showing method, LED control system for achieving method and fish tank

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000000576A (en) * 1998-06-01 2000-01-15 김철근 Gene expression vector containing regulatory region of misgurnus mizolepis beta-actin gene
KR20050089126A (en) * 2004-03-03 2005-09-07 타이콩 코포레이션 New fluorescent genetic fragments and fish
US7135613B1 (en) * 1999-02-18 2006-11-14 The National University Of Singapore Chimeric gene constructs for generation of fluorescent transgenic ornamental fish
US20090025645A1 (en) * 2006-08-16 2009-01-29 Yorktown Technologies, L.C. Recombinant constructs and transgenic fluorescent ornamental fish therefrom

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000000576A (en) * 1998-06-01 2000-01-15 김철근 Gene expression vector containing regulatory region of misgurnus mizolepis beta-actin gene
US7135613B1 (en) * 1999-02-18 2006-11-14 The National University Of Singapore Chimeric gene constructs for generation of fluorescent transgenic ornamental fish
KR20050089126A (en) * 2004-03-03 2005-09-07 타이콩 코포레이션 New fluorescent genetic fragments and fish
US20090025645A1 (en) * 2006-08-16 2009-01-29 Yorktown Technologies, L.C. Recombinant constructs and transgenic fluorescent ornamental fish therefrom

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MASATO KINOSHITA ET AL.: "Transgenic medaka with brilliant fluorescence in skeletal muscle under normal light.", FISHERIES SCIENCE., vol. 70, no. 4, 2004, pages 645 - 649 *

Also Published As

Publication number Publication date
KR101255197B1 (en) 2013-04-23
KR20120000912A (en) 2012-01-04

Similar Documents

Publication Publication Date Title
Devlin et al. Transmission and phenotypic effects of an antifreeze/GH gene construct in coho salmon (Oncorhynchus kisutch)
Maclean et al. Transgenic tilapia and the tilapia genome
CN113163740B (en) Method for producing sterile and unisexual offspring
Fujimura et al. Tol2-mediated transgenesis in tilapia (Oreochromis niloticus)
US9187764B2 (en) Controllable on-off method for fish reproduction
Cho et al. Functional ability of cytoskeletal β-actin regulator to drive constitutive and ubiquitous expression of a fluorescent reporter throughout the life cycle of transgenic marine medaka Oryzias dancena
BR112021000989A2 (en) a method to generate sterile progeny
Lu et al. Production of all male amelanotic red tilapia by combining MAS-GMT and tyrb mutation
Farlora et al. Expression of GFP in transgenic tilapia under the control of the medaka β-actin promoter: establishment of a model system for germ cell transplantation
Ou et al. Generation of myostatin gene-edited blotched snakehead (Channa maculata) using CRISPR/Cas9 system
US20230413790A1 (en) Genetically edited albino-red germlines of tilapia fish
WO2012002610A1 (en) Double transgenic sterile oryzias dancena
Moav et al. Inheritance of recombinant carp β-actin/GH cDNA gene in transgenic carp
Chan et al. Electroporation-based CRISPR/Cas9 mosaic mutagenesis of β-Tubulin in the cultured oyster
Nam et al. Development of transgenic fish: scientific background
DK202170116A1 (en) Genetically modified salmon which produce sterile offspring
Jian et al. Generation and characterization of a stable red fluorescent transgenic Tanichthys albonubes line
KR101225529B1 (en) Double transgenic sterile fluorescent marine medaka
Liu et al. Progress in aquaculture genetics and breeding in China
Vu et al. A Cyan fluorescent protein gene (cfp)-transgenic marine medaka Oryzias dancena with potential ornamental applications
Booncherd Development of gene editing of dead end gene in striped catfish (Pangasianodon hypophthalmus
Mohapatra et al. Genome Editing in Fish Reproduction
Ohama et al. The paralogous gene of myostatin deficiency does not improve the growth of Red seabream (Pagrus major)
CN117305304A (en) Nucleic acid product of targeted Meikin gene, construction method and application of animal model of meiosis
AU2021245363A1 (en) Modified salmon which produce sterile offspring

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10854156

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10854156

Country of ref document: EP

Kind code of ref document: A1