WO2012001997A1 - Seal device and fluid machinery provided with same - Google Patents

Seal device and fluid machinery provided with same Download PDF

Info

Publication number
WO2012001997A1
WO2012001997A1 PCT/JP2011/051444 JP2011051444W WO2012001997A1 WO 2012001997 A1 WO2012001997 A1 WO 2012001997A1 JP 2011051444 W JP2011051444 W JP 2011051444W WO 2012001997 A1 WO2012001997 A1 WO 2012001997A1
Authority
WO
WIPO (PCT)
Prior art keywords
outer peripheral
peripheral surface
pressure side
swirl
swirl breaker
Prior art date
Application number
PCT/JP2011/051444
Other languages
French (fr)
Japanese (ja)
Inventor
平井 孝昌
山下 勝也
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Publication of WO2012001997A1 publication Critical patent/WO2012001997A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/16Sealings between pressure and suction sides
    • F04D29/161Sealings between pressure and suction sides especially adapted for elastic fluid pumps
    • F04D29/162Sealings between pressure and suction sides especially adapted for elastic fluid pumps of a centrifugal flow wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/16Sealings between pressure and suction sides
    • F04D29/165Sealings between pressure and suction sides especially adapted for liquid pumps
    • F04D29/167Sealings between pressure and suction sides especially adapted for liquid pumps of a centrifugal flow wheel

Definitions

  • the present invention relates to a sealing device and a fluid machine including the same.
  • a seal portion that seals a radial gap formed between the casing and the rotating body is provided. It has been.
  • an impeller outer peripheral portion in the vicinity of an impeller inlet of each stage that is, an outer peripheral surface of a shroud disk, is composed of a rotating body provided in a plurality of stages in the axial direction and a housing that accommodates the rotating body.
  • a labyrinth seal is provided in a radial gap between the housing and the inner periphery of the housing (see, for example, Patent Document 1 below).
  • the seal excitation force acting on the shaft vibration increases with the high pressure and high performance of the fluid machine, and the shaft system instability problem tends to become remarkable.
  • This excitation force is greatly influenced by a swirling flow (swirl) having a circumferential velocity component flowing along the outer periphery of the rotating body. That is, as a result of the swirling flow flowing into the seal portion, the natural frequency of the shaft system is excited, and the shaft vibration increases.
  • a sealing device in which a plurality of swirl breakers extending radially inward are provided on the high-pressure side of the labyrinth seal with an interval in the circumferential direction (for example, See Patent Document 2 below).
  • the fluid is decelerated to prevent an increase in vibration.
  • guide vanes are attached to a baffle plate attached to a swirl breaker along the flow direction of the swirl flow.
  • the tip of the swirl breaker is arranged with a slight gap from the rotating body. Therefore, the swirl flow can be interrupted in the range where the swirl breaker exists in the radial direction of the rotating body, while the swirling flow flows between the tip of the swirl breaker and the rotating body. As a result of the swirling flow reaching the seal portion, a seal excitation force acting on the shaft vibration is generated, and there is a problem that a sufficient vibration suppressing effect cannot be obtained.
  • the swirling flow is prevented from flowing into the gap between the tip of the swirl breaker and the rotating body by guiding the swirling flow in a desired direction with the guide vanes. It is also possible.
  • the configuration of the sealing device itself is complicated by the additional provision of guide vanes, and there is a disadvantage that production costs and maintenance costs increase.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide a sealing device and a fluid machine that can stably obtain a vibration suppressing effect with a simple configuration.
  • the sealing device seals the radial gap of the rotating body formed between the casing and the outer peripheral surface of the rotating body that is rotatably disposed inside the casing so as to reduce the pressure from the high pressure side.
  • the rotating body is provided with a stepped portion formed such that the outer peripheral surface is reduced in diameter as it goes from the high pressure side to the low pressure side, and the swirl breaker is located on the low pressure side than the stepped portion. It extends toward the outer peripheral surface, and the tip of the swirl breaker reaches at least the same radial position as the outer peripheral surface located on the high-pressure side from the stepped portion.
  • the sealing device having such a feature, the flow in the circumferential direction of the fluid, that is, all of the swirl flow can be guided to the swirl breaker by the outer peripheral surface on the high pressure side of the stepped portion in the rotating body. Therefore, it is possible to suppress the swirling flow from flowing between the swirl breaker and the rotating body. Furthermore, in addition to the swirl breaker and the seal portion, the above-described effect can be obtained only by performing a process for forming a stepped portion on the rotating body, so there is no need to provide a separate member.
  • the tip of the swirl breaker may reach the radially inner side from the outer peripheral surface located on the high pressure side of the stepped portion.
  • the outer peripheral surface on the high pressure side of the stepped portion and the tip of the swirl breaker are separated in the radial direction of the rotating body. Therefore, it becomes difficult for the swirl flow to reach the tip of the swirl breaker, and it is possible to further suppress the swirl flow from flowing into the gap between the swirl breaker and the rotating body.
  • the radial distance between the tip of the swirl breaker and the outer peripheral surface may be set to be substantially the same as the axial distance of the rotating body between the swirl breaker and the stepped portion.
  • the distance between the tip of the swirl breaker and the outer peripheral surface of the rotating body is usually set to be extremely narrow from the viewpoint of preventing the swirling flow from flowing into the gap. Therefore, by setting the distance between the swirl breaker and the stepped portion to be substantially the same as the distance between the tip of the swirl breaker and the outer peripheral surface of the rotating body, the swirl between the swirl breaker and the stepped portion turns. It is possible to prevent the flow from flowing in, and thus more reliably prevent the swirling flow from flowing between the swirl breaker and the rotating body.
  • a plurality of the seal portions are provided in the axial direction of the rotary body, and the swirl breakers are provided on the high pressure side of the seal portions, respectively, and the rotary body includes a plurality of the step portions so as to correspond to the swirl breakers. May be provided.
  • the swirl flow may be generated again on the low pressure side of the swirl breaker due to the rotation of the rotating body.
  • the swirl flow generated on the low pressure side of the swirl breaker arranged on the highest pressure side is effectively achieved by arranging a plurality of seal parts and swirl breakers from the high pressure side to the low pressure side. It is possible to obtain a stable vibration suppressing effect for the entire shaft system.
  • a fluid machine includes a casing and a rotating body rotatably disposed in the casing, and the fluid machine in which a fluid flows in the casing includes any one of the above-described sealing devices. .
  • the swirl flow can be guided to the swirl breaker by the outer peripheral surface on the high pressure side of the stepped portion in the rotating body, so that the swirling flow is prevented from flowing into the gap between the swirl breaker and the rotating body. Can do.
  • the outer peripheral surface of the rotating body may be an outer peripheral surface of an impeller shroud, and the stepped portion may be provided on the outer peripheral surface of the shroud.
  • the outer peripheral surface of the rotating body may be an outer peripheral surface of a balance piston, and the step portion may be provided on the outer peripheral surface of the balance piston.
  • vibration based on the swirling flow in the sealing device between the outer peripheral surface of the balance piston and the casing can be suppressed.
  • the stepped portion is formed on the outer peripheral surface of the rotating body and the swirl flow is guided to the swirl breaker by the outer peripheral surface located on the high pressure side of the stepped portion in the rotating body.
  • the swirling flow can be prevented from flowing between the swirl breaker and the rotating body. Therefore, it is possible to stably obtain the vibration suppressing effect with a simple configuration without providing a separate member or the like.
  • FIG. 2 is a cross-sectional view taken along line AA in FIG. It is an enlarged view of the sealing device in FIG. It is a schematic block diagram of the compressor provided with the sealing device which concerns on 2nd embodiment. It is an enlarged view of the sealing device in FIG. It is a principal part enlarged view of the compressor provided with the sealing device which concerns on 3rd embodiment. It is a figure explaining the example which applied the sealing device to the steam turbine.
  • FIGS. 1 to 3 An example in which the sealing device 1 is applied to a gap S between a shroud 17 of an impeller 14 and a casing 11 in a compressor (fluid machine) 10 is shown.
  • the compressor 10 includes a casing 11 and a rotating body 12 having a rotor shaft 13 and an impeller 14.
  • the casing 11 has a cylindrical shape that forms the appearance of the compressor 10, and a rotor shaft 13 is disposed inside the casing 11 so as to penetrate the center.
  • a rotor shaft 13 is disposed inside the casing 11 so as to penetrate the center.
  • radial bearings (not shown) and thrust bearings (not shown) are arranged on both sides of the casing 11.
  • the rotor shaft 13 is supported by the radial bearing and the thrust bearing, so that the rotating body 12 can rotate around the axis O.
  • the impeller 14 is a so-called closed impeller, and includes a hub 15, a plurality of blades 16, and a shroud 17.
  • the hub 15 is a cylindrical disk member, and is integrally fixed to the rotor shaft 13 so that the rotor shaft 13 penetrates coaxially.
  • the hub 15 has a shape that gradually increases in diameter from one side in the axis O direction (left side in FIG. 1) toward the other side in the axis O direction (right side in FIG. 1).
  • the blade 16 is a curved blade-like part, and extends from the outer peripheral surface 15a of the hub 15 toward the outer side of the axis O radial direction (hereinafter simply referred to as the radial direction), and is arranged along the outer peripheral surface 15a. Yes.
  • a plurality of blades 16 are provided in the circumferential direction of the axis O (hereinafter simply referred to as the circumferential direction).
  • the shroud 17 is a part formed in a cylindrical shape so as to cover the outer peripheral surface 15 a of the hub 15, and is connected to the outer peripheral side in the radial direction of each blade 16.
  • the outer peripheral surface 18 of the shroud 17 has a shape that gradually increases in diameter from one side in the direction of the axis O toward the other side.
  • a space defined between the hub 15, the shroud 17, and the blade 16 serves as a fluid flow path.
  • a portion opening toward the axis O direction on one side of the axis O direction is a gas inflow portion 14a, and a portion opening toward the radial direction on the other side of the axis O direction is a gas outflow portion 14b.
  • the casing 11 is provided with a suction port (not shown) for sucking fluid from the outside.
  • the fluid sucked into the suction port is changed in the direction of the axis O by passing through the suction flow path 11a and is introduced into the gas inflow portion 14a of the impeller 14.
  • the compressed fluid flowing out from the gas outflow portion 14 b is led out radially outward through the diffuser portion 11 b provided in the casing 11.
  • a gap S is formed between the shroud facing surface 11 c and the outer peripheral surface 18 of the shroud 17.
  • the gas outflow portion 14b side has a higher pressure than the gas inflow portion 14a side. Accordingly, in the gap S, fluid flows from the impeller 14 outlet side (gas outflow portion 14b side), which is the high pressure side, toward the impeller 14 inlet side (gas inflow portion 14a side), which is the low pressure side. And the sealing apparatus 1 of this embodiment is used in order to seal the clearance gap S through which the fluid distribute
  • the sealing device 1 is provided on one side of the gap S in the direction of the axis O, that is, on the low pressure side of the gap S, and includes a labyrinth seal (seal part) 2 and a swirl breaker 3. Further, in the sealing device 1, the outer peripheral surface 18 of the shroud 17 in the impeller 14 is a component of the sealing device 1.
  • the labyrinth seal 2 is configured by a plurality of annular fins 2a extending inward in the radial direction from the shroud facing surface 11c in the casing 11 in the axis O direction.
  • the outer peripheral surface 18 of the shroud 17 is larger in diameter than the small-diameter outer peripheral surface 18 a with the small-diameter outer peripheral surface 18 a forming one side in the axis O direction, the step surface 19, and the step surface 19 as a boundary.
  • the large-diameter outer peripheral surface 18b is formed.
  • the annular fin 2a extends so as to face the small-diameter outer peripheral surface 18a, that is, the labyrinth seal 2 is provided to face the small-diameter outer peripheral surface 18a in the radial direction.
  • the labyrinth seal 2 seals the existence area of the small-diameter outer peripheral surface 18a in the gap S, and fluid leaks in the gap S from the other side in the axis O direction to one side, that is, from the high pressure side to the low pressure side. To prevent it from happening.
  • the swirl breaker 3 is a plate-like member that extends radially inward from the shroud facing surface 11c on the other side in the axis O direction of the labyrinth seal 2, that is, on the high pressure side, and is spaced apart in the circumferential direction of the axis O. There are a plurality of open spaces.
  • the swirl breaker 3 extends toward the small-diameter outer peripheral surface 18 a of the outer peripheral surface 18 of the shroud 17 like the annular fin 2 a of the labyrinth seal 2.
  • the tip 3a of the swirl breaker 3 extending radially inward from the shroud facing surface 11c as described above reaches the radially inner side than the large-diameter outer peripheral surface 18b. That is, the tip 3 a of the swirl breaker 3 reaches the radially inner side of the outer peripheral surface 18 on the high pressure side of the step surface 19. More specifically, the tip 3a of the swirl breaker 3 reaches radially inward from the boundary between the large-diameter outer peripheral surface 18b and the step surface 19 (the low-pressure end of the large-diameter outer peripheral surface 18b).
  • the tip 3a of the swirl breaker 3 enters a state radially inward from the large-diameter outer peripheral surface 18b. That is, when the swirl breaker 3 is viewed from the direction of the axis O, the swirl breaker 3 and the step surface 19 overlap each other in the direction of the axis O.
  • the radial distance between the tip 3a of the swirl breaker 3 and the small-diameter outer peripheral surface 18a and the distance in the axis O direction between the swirl breaker 3 and the stepped surface 19 are narrowed to prevent the inflow of the swirl flow C, which will be described later. Is done.
  • the distance between the swirl breaker 3 and the stepped surface 19 in the axis O direction is preferably set to be substantially the same as the distance between the tip 3a of the swirl breaker 3 and the small-diameter outer peripheral surface 18a.
  • the clearance S extends along the large-diameter outer peripheral surface 18b from the high-pressure side toward the low-pressure side.
  • the swirling flow C flowing in this way is guided to the swirl breaker 3 by the large-diameter outer peripheral surface 18b. Therefore, all of the swirl flow C flowing along the large-diameter outer peripheral surface 18b can be blocked by the swirl breaker 3, so that the swirl flow C flows between the swirl breaker 3 and the small-diameter outer peripheral surface 18a. Can be suppressed. Therefore, since it is possible to prevent the swirling flow C from reaching the labyrinth seal 2, the natural frequency of the shaft system is not excited, and the impeller 14 is stably rotated without vibration. It becomes possible.
  • the tip 3a of the swirl breaker 3 since the tip 3a of the swirl breaker 3 reaches the radially inner side with respect to the large-diameter outer peripheral surface 18b, the tip 3a of the swirl breaker 3 and the large-diameter outer peripheral surface 18b are in the radial direction. It is separated. Thereby, since the swirl flow C does not easily reach the tip 3a of the swirl breaker 3, it is possible to further suppress the swirl flow C from flowing between the swirl breaker 3 and the small-diameter outer peripheral surface 18a. .
  • the interval between the tip 3a of the swirl breaker 3 and the small-diameter outer peripheral surface 18a is normally set to be extremely narrow from the viewpoint of preventing the swirling flow C from flowing in. Therefore, when the distance between the swirl breaker 3 and the stepped surface 19 is set substantially the same as the distance between the tip 3a of the swirl breaker 3 and the small-diameter outer peripheral surface 18a, the swirl breaker 3 and the stepped surface 19 It is possible to prevent the swirl flow C from flowing in between, and more reliably to prevent the swirl flow C from flowing between the swirl breaker 3 and the small-diameter outer peripheral surface 18a.
  • the sealing device 1 of the present embodiment includes a small-diameter outer peripheral surface 18a, a large-diameter outer peripheral surface 18b, and a step surface on the outer peripheral surface 18 of the shroud 17 that is relatively easy to change.
  • 19 can be realized only by performing the process of forming 19, and without adding other members other than the labyrinth seal 2 and the swirl breaker 3, the swirl breaker 3 and the small-diameter outer peripheral surface 18 a can be configured with a simple configuration. It is possible to suppress the swirling flow C from flowing in between.
  • the tip 3a of the swirl breaker 3 is configured to reach the radially inner side with respect to the large-diameter outer peripheral surface 18b.
  • the tip 3a of the swirl breaker 3 is at least the same as the large-diameter outer peripheral surface 18b. That is, the radial position of the tip 3a of the swirl breaker 3 may coincide with the low-pressure end of the large-diameter outer peripheral surface 18b.
  • the swirl flow C can be guided to the swirl breaker 3 by the large-diameter outer peripheral surface 18b, the swirl flow C is prevented from flowing between the tip 3a of the swirl breaker 3 and the small-diameter outer peripheral surface 18b. Can do.
  • the sealing device 1 is applied to a gap S between a balance piston 29 and a casing 28 in a so-called back-to-back compressor (fluid machine) 20 is shown.
  • the compressor 20 of the present embodiment includes a rotor shaft 21, a low pressure section 22, a high pressure section 25, a balance piston (rotary body) 29, and a casing 28.
  • the rotor shaft 21 is rotatable about the axis O by supporting both ends of the rotor shaft 21 with a radial bearing (not shown) and a thrust bearing (not shown), for example.
  • the low pressure section 22 includes a low pressure side impeller 23 and a gas flow path 24 dug in the casing 28.
  • the low-pressure side impeller 23 has a gas passage defined by a hub, blades, and a shroud.
  • the gas passage has a rotor shaft 21 side as a gas inlet 23a and a side away from the rotor shaft 21 has a gas outlet 23b.
  • the low pressure side impeller 23 is arranged in a state where the gas inlet 23a is directed to one side of the axis O (left side in FIG. 4).
  • the gas flow path 24 includes a low pressure suction path 24a connecting a gas source (not shown) and a gas inlet 23a of the low pressure side impeller 23, and a low pressure discharge path 24b communicating from the gas outlet 23b of the low pressure side impeller 23 to the outside of the system. Yes.
  • the high pressure section 25 includes a high pressure side impeller 26 and a gas flow path 27 dug in the casing 28.
  • the high-pressure side impeller 26 has a gas passage defined by a hub, blades, and a shroud.
  • the gas passage 26 has a gas inlet 26a on the rotor shaft 21 side and a gas outlet 26b on the side away from the rotor shaft 21. Has been.
  • the high pressure side impeller 26 is arranged with the gas inlet 26a facing the other side of the axis O (the right side in FIG. 4).
  • the low-pressure side impeller 23 of the low-pressure section 22 and the high-pressure side impeller 26 of the high-pressure section 25 are disposed so as to face each other, and the compressor 20 disposed in this way is configured to be back-to-back (Back To Back). Back) type.
  • the gas flow path 27 includes a high-pressure suction path 27a that communicates gas introduced from the low-pressure discharge path 24b via a device such as an external intercooler to the gas inlet 26a of the high-pressure side impeller 26, and the high-pressure side impeller. And a high-pressure discharge passage 27b communicating from the gas outlet 26b to the outside of the system.
  • the balance piston 29 is provided between the low pressure section 22 and the high pressure section 25.
  • the balance piston 29 has a substantially cylindrical shape, and is fixed integrally with the rotor shaft 21 by being fitted on the outer peripheral side of the rotor shaft 21.
  • This balance piston 29 adjusts the load balance in the axis O direction of the rotor shaft 21 by resisting a load toward one side in the axis O direction caused by the pressure difference between the low pressure side impeller 23 and the high pressure side impeller 26.
  • the outer peripheral surface 30 of the balance piston 29 has a small-diameter outer peripheral surface 30a that corresponds to the entire area in the axis O direction except for the vicinity of the other end on the other side of the axis O. Further, a portion of the outer peripheral surface 30 located on the other side (high pressure side) of the small-diameter outer peripheral surface 30a in the axis O direction, that is, a portion near the end on the other side in the axis O direction expands from the small-diameter outer peripheral surface 30a by one step.
  • the outer peripheral surface 30b is a large diameter.
  • the large-diameter outer peripheral surface 30b having a flange shape is provided at one end of the balance piston 29 in the direction of the axis O, and the entire region excluding the large-diameter outer peripheral surface 30b is larger than the large-diameter outer peripheral surface 30b. Is also a small-diameter outer peripheral surface 30a having a reduced diameter by one step.
  • the outer peripheral surface 18 positioned on one side in the axis O direction with respect to the step surface 31 is a small-diameter outer peripheral surface 30a, and the outer peripheral surface 30 positioned on the other side in the axis O direction with respect to the step surface 31 is a large-diameter outer peripheral surface 30b. It has become.
  • the surface of the casing 28 facing the outer peripheral surface 30 of the balance piston 29 is a piston facing surface 28a.
  • a gap S is formed between the outer peripheral surface 30 of the balance piston 29 and the piston facing surface 28 a of the casing 28.
  • the sealing device 1 is used to seal the gap S through which the fluid flows in this way.
  • the sealing device 1 of the second embodiment Similar to the first embodiment, the seal device 1 of the second embodiment includes a labyrinth seal (seal part) 2 and a swirl breaker 3, and the outer peripheral surface 30 of the balance piston 29 is the same as that of the seal device 1. It is a component.
  • the labyrinth seal 2 is configured by a plurality of annular fins 2 a extending inward in the radial direction from the piston facing surface 28 a in the casing 28 in the axis O direction.
  • these annular fins 2a extend so as to oppose the small-diameter outer peripheral surface 30a of the outer peripheral surface 30 of the balance piston 29. That is, the labyrinth seal 2 is in the radial direction with respect to the entire area of the small-diameter outer peripheral surface 18a. It is provided facing.
  • the labyrinth seal 2 seals the gap S and prevents the fluid from leaking from the other side in the axis O direction to the one side, that is, from the high pressure side to the low pressure side. Yes.
  • the swirl breaker 3 extends radially inward from the piston facing surface 28a on the other side in the axis O direction of the labyrinth seal 2, that is, on the high pressure side, and a plurality of swirl breakers 3 are provided at intervals in the circumferential direction of the axis O. Yes.
  • the swirl breaker 3 extends toward the small-diameter outer peripheral surface 18a of the piston facing surface 28a, that is, extends toward the outer peripheral surface 30 on the low pressure side of the step surface 31.
  • tip 3a of the swirl breaker 3 extended toward the radial inside from the piston opposing surface 28a has reached the radial inside rather than the large diameter outer peripheral surface 30b. That is, the tip of the swirl breaker 3 reaches the inside in the O-diameter direction from the boundary between the large-diameter outer peripheral surface 30b and the stepped surface 31 (the low-pressure end of the large-diameter outer peripheral surface 30b).
  • the tip 3a of the swirl breaker 3 enters a state radially inward from the large-diameter outer peripheral surface 30b. That is, when the swirl breaker 3 is viewed from the direction of the axis O as in the first embodiment, the swirl breaker 3 and the stepped surface 31 overlap each other in the direction of the axis O.
  • step difference surface 31 is set substantially the same as the space
  • C is guided to the swirl breaker 3 by the large-diameter outer peripheral surface 30b. Therefore, all of the swirl flow C flowing along the large-diameter outer peripheral surface 30b can be blocked by the swirl breaker 3, so that the swirl flow C flows between the swirl breaker 3 and the small-diameter outer peripheral surface 18a. Can be suppressed.
  • the swirling flow C can be prevented from reaching the labyrinth seal 2, so that the natural frequency of the shaft system is not excited, and the balance piston 29 can be stably kept in a vibration-free state. It can be rotated.
  • the tip 3a of the swirl breaker 3 only needs to reach at least the same radial position as the large-diameter outer peripheral surface 30b. Also in this case, since the swirl flow C can be guided to the swirl breaker 3 by the large-diameter outer peripheral surface 30b, the swirl flow C is prevented from flowing between the tip 3a of the swirl breaker 3 and the small-diameter outer peripheral surface 30a. Can do.
  • the sealing device 40 of the third embodiment is disposed in the gap S between the balance piston 29 and the casing 28 in the compressor 20 as in the second embodiment.
  • the sealing device 1 of the second embodiment has a configuration in which the single labyrinth seal 2 and the swirl breaker 3 are arranged, whereas the sealing device 40 of the present embodiment includes a plurality of (two in this embodiment). ) Labyrinth seal 2 (2A, 2B) and swirl breaker 3 (3A, 3B). Accordingly, the outer peripheral surface 32 of the balance piston 29 is formed in a multistage shape.
  • the outer peripheral surface 32 of the balance piston 29 of the present embodiment includes a first outer peripheral surface 32a and the first outer peripheral surface from the high pressure side (the other side in the axis O direction) toward the low pressure side (the one side in the axis O direction).
  • the second outer peripheral surface 32b having a one-step diameter reduction from 32a and the third outer peripheral surface 32c having a one-step diameter reduction from the second outer peripheral surface 32b are sequentially arranged.
  • region of the 1st outer peripheral surface 32a and the 2nd outer peripheral surface 32b is made into the 1st step surface (step part) 33a, and the 2nd outer peripheral surface 32b and the 3rd outer peripheral surface 32c A surface facing the low pressure side, which is a transition region, is a second step surface (step portion) 33b.
  • the labyrinth seals 2A and 2B are composed of a plurality of annular fins 2a extending radially inward from the piston facing surface 28a of the casing 28, as in the second embodiment.
  • the first labyrinth seal 2A is provided to face the second outer peripheral surface 32b, and the second labyrinth seal 2B is provided to face the third outer peripheral surface 32c.
  • the first swirl breaker 3A is arranged so as to extend toward the second outer peripheral surface 32b on the high pressure side of the first labyrinth seal 2A.
  • the swirl breaker 3B is arranged to extend toward the third outer peripheral surface 32c on the high pressure side of the second labyrinth seal 2B.
  • the tip 3a of the first swirl breaker 3A reaches radially inward from the first outer peripheral surface 32a, and the tip 3a of the second swirl breaker 3B is from the second outer peripheral surface 32b. Has also reached the inside in the radial direction.
  • the swirl flow entering from the high pressure side of the gap S is guided to the swirl breaker 3 by the large-diameter outer peripheral surface 30b. This prevents the swirl flow C from flowing into the first labyrinth seal 2A beyond the first swirl breaker 3A.
  • the fluid is accompanied by the rotation of the balance piston 29, so that the low pressure side of the first swirl breaker 3A, that is, the first labyrinth seal 2A.
  • a swirling flow C may occur between the first outer peripheral surface 32b and the second outer peripheral surface 32b.
  • the second swirl breaker 3B is disposed on the low pressure side of the first labyrinth seal 2A, the swirl flow C is guided to the second swirl breaker 3B by the second outer peripheral surface 32b. can do.
  • the swirl flow generated on the low pressure side of the swirl breaker 3 arranged on the highest pressure side by arranging a plurality of sets of labyrinth seals 2 and swirl breakers 3 from the high pressure side to the low pressure side. Can be effectively suppressed. Therefore, even if the gap S in which the sealing device 40 is provided is formed long in the direction of the axis O, it is possible to effectively suppress the swirling flow C and obtain a stable vibration suppressing effect as the entire shaft system. .
  • a plurality of labyrinth seals 2 and swirl breakers 3 are provided as in the third embodiment, and an outer periphery corresponding to these.
  • the surface 18 may have a plurality of stages.
  • the labyrinth seal 2 may be provided on the rotating body side, that is, on the shroud 17 or the balance piston 29.
  • the sealing device 1 may be applied to a steam turbine.
  • a nozzle is incorporated in a partition plate 56 fixed to a casing 55, and a rotor shaft (rotary body) 51 is generated by a thrust force when steam passing through the nozzle passes through a moving blade. It is set as the structure which rotates.
  • the labyrinth seal 2 is provided between the casing 55 and the rotor shaft 51, and the outer periphery of the rotor shaft 51 is disposed on the high pressure side of the labyrinth seal 2, that is, on the other side of the axis O (left side in FIG. 7).
  • a step surface 51a and a large-diameter outer peripheral surface 51b are formed so that the surface is enlarged by one step.
  • a swirl breaker 3 is provided between the labyrinth seal 2 and the large-diameter outer peripheral surface 51 b so as to extend from the casing 55 toward the rotor shaft 51. The tip 3a of the swirl breaker 3 reaches the radially inner side with respect to the large-diameter outer peripheral surface 51b.
  • a sealing device 40 including a plurality of labyrinth seals 2 and swirl breakers 3 may be applied as in the third embodiment.
  • sealing devices 1 and 40 may be applied not only to the compressor and the steam turbine but also to other fluid machines such as a gas turbine, a water turbine, a refrigerator, and a pump.
  • a vibration suppressing effect can be stably obtained with a simple configuration.
  • Sealing device 2 Labyrinth seal (seal part) 2A Labyrinth seal (seal part) 2B Labyrinth seal (seal part) 2a annular fin 3 swirl breaker 3A swirl breaker 3B swirl breaker 3a tip 10 compressor 11 casing 11c shroud facing surface 12 rotor 13 rotor shaft 14 impeller 17 shroud 18 outer peripheral surface 18a small diameter outer peripheral surface 18b large diameter outer peripheral surface 19 step surface (step Part) 20 Compressor 21 Rotor shaft 28 Casing 28a Piston facing surface 29 Balance piston 30 Outer peripheral surface 30a Small outer peripheral surface 30b Large outer peripheral surface 31 Step surface 32 Outer peripheral surface 32a First outer peripheral surface 32b Second outer peripheral surface 32c Third outer peripheral surface 33a First One step surface 33b Second step surface 40 Sealing device 50 Steam turbine 51 Rotor shaft (rotating body) 51a Step surface (step) 51b Large-diameter outer peripheral surface 55 Casing

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Sealing Using Fluids, Sealing Without Contact, And Removal Of Oil (AREA)

Abstract

The disclosed seal device seals a radial gap of a rotation body formed between a casing and the outer circumference surface of the rotation body, which is rotatably arranged within the casing, and is provided with a seal unit, which limits fluids that flow from a high pressure side to a low pressure side, and a swirl breaker on the high pressure side of the seal unit, which extends from the casing to the outer circumference surface of the rotation body and limits fluids that flow in the circumferential direction of the rotation body through the aforementioned gap. The rotation body is provided with a stepped part that is formed in such a manner that the outer circumference surface of the rotation body reduces in diameter from the high pressure side to the low pressure side. The swirl breaker extends towards the outer circumference surface that is located closer to the low pressure side than to the stepped part. The tip of the swirl breaker reaches to a radial position identical to the outer circumference surface that is located closer to the high pressure side than to at least the stepped part.

Description

シール装置及びこれを備えた流体機械SEALING DEVICE AND FLUID MACHINE HAVING THE SAME
 本発明は、シール装置及びこれを備えた流体機械に関するものである。
 本願は、2010年06月28日に日本出願された特願2010-146625に基づいて優先権を主張し、その内容をここに援用する。
The present invention relates to a sealing device and a fluid machine including the same.
This application claims priority based on Japanese Patent Application No. 2010-146625 filed in Japan on June 28, 2010, the contents of which are incorporated herein by reference.
 周知のように、ケーシング及びこのケーシング内に回転可能に配された回転体を備えた流体機械においては、ケーシングと回転体との間に形成される径方向の隙間を封止するシール部が備えられている。一例として、多段遠心圧縮機では、軸線方向に複数段設けられた回転体とこの回転体を収容するハウジングとから概略構成され、各段のインペラ入口付近におけるインペラ外周部、即ちシュラウドディスクの外周面とハウジング内周部との間の径方向の隙間にラビリンスシールが設けられている(例えば、下記特許文献1参照)。 As is well known, in a fluid machine including a casing and a rotating body that is rotatably disposed in the casing, a seal portion that seals a radial gap formed between the casing and the rotating body is provided. It has been. As an example, in a multi-stage centrifugal compressor, an impeller outer peripheral portion in the vicinity of an impeller inlet of each stage, that is, an outer peripheral surface of a shroud disk, is composed of a rotating body provided in a plurality of stages in the axial direction and a housing that accommodates the rotating body. A labyrinth seal is provided in a radial gap between the housing and the inner periphery of the housing (see, for example, Patent Document 1 below).
 上記のような流体機械においては、該流体機械の高圧・高性能化に伴って軸振動に作用するシール励振力が増大して、軸系不安定問題が顕著になる傾向がある。この励振力は、回転体の外周に沿って流通する周方向の速度成分を有する旋回流(スワール)の影響が大きい。即ち、該旋回流がシール部に流入した結果、軸系の固有振動数が励起されることによって、軸振動が増大してしまう。 In the fluid machine as described above, the seal excitation force acting on the shaft vibration increases with the high pressure and high performance of the fluid machine, and the shaft system instability problem tends to become remarkable. This excitation force is greatly influenced by a swirling flow (swirl) having a circumferential velocity component flowing along the outer periphery of the rotating body. That is, as a result of the swirling flow flowing into the seal portion, the natural frequency of the shaft system is excited, and the shaft vibration increases.
 この旋回流による振動を抑制する手段として、ラビリンスシールの高圧側に、径方向内側に向かって延出するスワールブレーカを周方向に間隔を空けて複数設けたシール装置が知られている(例えば、下記特許文献2参照)。スワールブレーカで周方向に流通する流体(旋回流)を遮ることにより、該流体を減速させて振動の増大を阻止する。このシール装置においては、スワールブレーカに取り付けたバッフル板に、旋回流の流通方向に沿って案内羽根が装着されている。この案内羽によって旋回流を案内することで、該旋回流がラビリンスシールに侵入することを回避している。 As a means for suppressing vibration due to this swirling flow, a sealing device is known in which a plurality of swirl breakers extending radially inward are provided on the high-pressure side of the labyrinth seal with an interval in the circumferential direction (for example, See Patent Document 2 below). By blocking the fluid (swirl flow) circulating in the circumferential direction by the swirl breaker, the fluid is decelerated to prevent an increase in vibration. In this sealing device, guide vanes are attached to a baffle plate attached to a swirl breaker along the flow direction of the swirl flow. By guiding the swirling flow with the guide vanes, the swirling flow is prevented from entering the labyrinth seal.
特開2008-303767号公報JP 2008-303767 A 特許第3492101号公報Japanese Patent No. 3492101
 スワールブレーカと回転体との摩擦による回転損失の発生を防止するため、該スワールブレーカの先端は、回転体に対して僅かに間隔をあけて配置されている。したがって、回転体の径方向におけるスワールブレーカの存在範囲においては旋回流を遮断することができる一方、スワールブレーカの先端と回転体との間には旋回流が流入する。この旋回流がシール部に到達する結果、軸振動に作用するシール励振力が発生してしまい、十分な振動抑制効果を得られないという問題があった。 In order to prevent the occurrence of rotation loss due to friction between the swirl breaker and the rotating body, the tip of the swirl breaker is arranged with a slight gap from the rotating body. Therefore, the swirl flow can be interrupted in the range where the swirl breaker exists in the radial direction of the rotating body, while the swirling flow flows between the tip of the swirl breaker and the rotating body. As a result of the swirling flow reaching the seal portion, a seal excitation force acting on the shaft vibration is generated, and there is a problem that a sufficient vibration suppressing effect cannot be obtained.
 なお、上記特許文献2のシール装置のように、案内羽根で旋回流を所望の方向に案内することで、旋回流がスワールブレーカの先端と回転体との間の隙間に流入することを回避することも考えられる。しかし、案内羽根を別途設ける分だけシール装置自体の構成が複雑となり、生産コストやメンテナンスコストが上昇してしまうという欠点がある。 In addition, like the sealing device of the above-mentioned patent document 2, the swirling flow is prevented from flowing into the gap between the tip of the swirl breaker and the rotating body by guiding the swirling flow in a desired direction with the guide vanes. It is also possible. However, the configuration of the sealing device itself is complicated by the additional provision of guide vanes, and there is a disadvantage that production costs and maintenance costs increase.
 本発明は、このような事情を考慮してなされたもので、簡易な構成で振動抑制効果を安定的に得ることができるシール装置及び流体機械を提供することを目的とする。 The present invention has been made in view of such circumstances, and an object thereof is to provide a sealing device and a fluid machine that can stably obtain a vibration suppressing effect with a simple configuration.
 上記目的を達成するために、本発明は以下の手段を採用している。
 本発明に係るシール装置は、ケーシングと該ケーシング内部に回転可能に配された回転体の外周面との間に形成される該回転体の径方向の隙間を封止して、高圧側から低圧側に向かって流通する流体を抑制するシール部と、該シール部の高圧側において、前記ケーシングから前記外周面に向かって延出し、前記隙間を周方向に流通する流体を抑制するスワールブレーカとを備え、前記回転体に、前記外周面が高圧側から低圧側に向かうに従って縮径するようにして形成された段差部が設けられ、前記スワールブレーカは、前記段差部よりも低圧側に位置する前記外周面に向かって延出しており、該スワールブレーカの先端が、少なくとも前記段差部よりも高圧側に位置する前記外周面と同一の前記径方向位置まで達している。
In order to achieve the above object, the present invention employs the following means.
The sealing device according to the present invention seals the radial gap of the rotating body formed between the casing and the outer peripheral surface of the rotating body that is rotatably disposed inside the casing so as to reduce the pressure from the high pressure side. A seal portion that suppresses fluid flowing toward the side, and a swirl breaker that extends from the casing toward the outer peripheral surface and suppresses fluid flowing in the circumferential direction on the high pressure side of the seal portion. The rotating body is provided with a stepped portion formed such that the outer peripheral surface is reduced in diameter as it goes from the high pressure side to the low pressure side, and the swirl breaker is located on the low pressure side than the stepped portion. It extends toward the outer peripheral surface, and the tip of the swirl breaker reaches at least the same radial position as the outer peripheral surface located on the high-pressure side from the stepped portion.
 このような特徴のシール装置によれば、回転体における段差部の高圧側の外周面によって流体の周方向の流れ、即ち、旋回流の全てをスワールブレーカに誘導することができる。したがって、スワールブレーカと回転体との間に旋回流が流入してしまうことを抑制することができる。さらに、スワールブレーカ及びシール部に加えて、回転体に段差部を形成する加工を施すのみで上記作用を得ることができるため、別途部材を設ける必要はない。 According to the sealing device having such a feature, the flow in the circumferential direction of the fluid, that is, all of the swirl flow can be guided to the swirl breaker by the outer peripheral surface on the high pressure side of the stepped portion in the rotating body. Therefore, it is possible to suppress the swirling flow from flowing between the swirl breaker and the rotating body. Furthermore, in addition to the swirl breaker and the seal portion, the above-described effect can be obtained only by performing a process for forming a stepped portion on the rotating body, so there is no need to provide a separate member.
 前記スワールブレーカの先端が、前記段差部の高圧側に位置する前記外周面よりも前記径方向内側に達していてもよい。 The tip of the swirl breaker may reach the radially inner side from the outer peripheral surface located on the high pressure side of the stepped portion.
 この場合、段差部の高圧側の外周面とスワールブレーカの先端とが回転体の径方向に隔てられる。これにより、旋回流がスワールブレーカの先端に到達し難くなり、該スワールブレーカと回転体との隙間に旋回流が流入してしまうことをより一層抑制することができる。 In this case, the outer peripheral surface on the high pressure side of the stepped portion and the tip of the swirl breaker are separated in the radial direction of the rotating body. Thereby, it becomes difficult for the swirl flow to reach the tip of the swirl breaker, and it is possible to further suppress the swirl flow from flowing into the gap between the swirl breaker and the rotating body.
 前記スワールブレーカの先端と前記外周面との前記径方向の間隔が、前記スワールブレーカと前記段差部との間の前記回転体の軸線方向の間隔と略同一に設定されていてもよい。 The radial distance between the tip of the swirl breaker and the outer peripheral surface may be set to be substantially the same as the axial distance of the rotating body between the swirl breaker and the stepped portion.
 この場合、スワールブレーカの先端と回転体の外周面との間隔は、該隙間に旋回流が流入することを防止する観点から、通常、極めて狭小に設定される。したがって、このようなスワールブレーカの先端と回転体の外周面との間隔に対して、スワールブレーカと段差部との間隔を略同一に設定することによって、これらスワールブレーカと段差部との間に旋回流が流入することを抑制することができ、ひいては、スワールブレーカと回転体との間に旋回流が流入してしまうことをより確実に防止することができる。 In this case, the distance between the tip of the swirl breaker and the outer peripheral surface of the rotating body is usually set to be extremely narrow from the viewpoint of preventing the swirling flow from flowing into the gap. Therefore, by setting the distance between the swirl breaker and the stepped portion to be substantially the same as the distance between the tip of the swirl breaker and the outer peripheral surface of the rotating body, the swirl between the swirl breaker and the stepped portion turns. It is possible to prevent the flow from flowing in, and thus more reliably prevent the swirling flow from flowing between the swirl breaker and the rotating body.
 前記シール部が前記回転体の軸線方向に複数設けられるとともに、各シール部の高圧側にそれぞれ前記スワールブレーカが設けられ、これらスワールブレーカに対応するようにして、前記回転体が複数の前記段差部を備えていてもよい。 A plurality of the seal portions are provided in the axial direction of the rotary body, and the swirl breakers are provided on the high pressure side of the seal portions, respectively, and the rotary body includes a plurality of the step portions so as to correspond to the swirl breakers. May be provided.
 ここで、スワールブレーカによって旋回流を抑制したとしても、回転体の回転に流体が連れ回ることで該スワールブレーカの低圧側において再度旋回流が発生することがある。
 これに対し、シール部、スワールブレーカを、高圧側から低圧側に向かって複数組配置した構成とすることにより、最も高圧側に配置されたスワールブレーカの低圧側に発生した旋回流を効果的に抑制し、軸系全体として安定した振動抑制効果を得ることができる。
Here, even if the swirl flow is suppressed by the swirl breaker, the swirl flow may be generated again on the low pressure side of the swirl breaker due to the rotation of the rotating body.
On the other hand, the swirl flow generated on the low pressure side of the swirl breaker arranged on the highest pressure side is effectively achieved by arranging a plurality of seal parts and swirl breakers from the high pressure side to the low pressure side. It is possible to obtain a stable vibration suppressing effect for the entire shaft system.
 本発明に係る流体機械は、ケーシングと該ケーシングの内部に回転可能に配された回転体とを備え、前記ケーシングの内部に流体が流通する流体機械において、上記いずれかのシール装置を備えている。 A fluid machine according to the present invention includes a casing and a rotating body rotatably disposed in the casing, and the fluid machine in which a fluid flows in the casing includes any one of the above-described sealing devices. .
 これにより、回転体における段差部の高圧側の外周面によって旋回流をスワールブレーカに誘導することができるため、当該スワールブレーカと回転体との隙間に旋回流が流入してしまうことを抑制することができる。 As a result, the swirl flow can be guided to the swirl breaker by the outer peripheral surface on the high pressure side of the stepped portion in the rotating body, so that the swirling flow is prevented from flowing into the gap between the swirl breaker and the rotating body. Can do.
 前記回転体の外周面は、インペラのシュラウドの外周面であって、該シュラウドの外周面に前記段差部が設けられていてもよい。 The outer peripheral surface of the rotating body may be an outer peripheral surface of an impeller shroud, and the stepped portion may be provided on the outer peripheral surface of the shroud.
 この場合、インペラ入口付近におけるインペラ外周部、即ち、インペラのシュラウドの外周面とケーシングとの間のシール装置における、旋回流に基づく振動を抑制することができる。また、特に、インペラのシュラウドの外周面は設計変更を容易に施すことができるため、本発明のシール装置を容易に適用することができる。 In this case, it is possible to suppress vibration based on the swirling flow in the outer peripheral portion of the impeller near the impeller inlet, that is, in the sealing device between the outer peripheral surface of the shroud of the impeller and the casing. In particular, since the outer peripheral surface of the shroud of the impeller can be easily changed in design, the sealing device of the present invention can be easily applied.
 前記回転体の外周面は、バランスピストンの外周面であって、該バランスピストンの外周面に前記段差部が設けられていてもよい。 The outer peripheral surface of the rotating body may be an outer peripheral surface of a balance piston, and the step portion may be provided on the outer peripheral surface of the balance piston.
 この場合、バランスピストンの外周面とケーシングとの間のシール装置における、旋回流に基づく振動を抑制することができる。 In this case, vibration based on the swirling flow in the sealing device between the outer peripheral surface of the balance piston and the casing can be suppressed.
 本発明のシール装置及び流体機械によれば、回転体の外周面に段差部を形成するとともに該回転体における段差部よりも高圧側に位置する外周面によって旋回流をスワールブレーカに誘導することにより、該スワールブレーカと回転体との間に旋回流が流入してしまうことを抑制することができる。したがって、別途部材等を設けることなく、簡易な構成で振動抑制効果を安定的に得ることが可能となる。 According to the sealing device and the fluid machine of the present invention, the stepped portion is formed on the outer peripheral surface of the rotating body and the swirl flow is guided to the swirl breaker by the outer peripheral surface located on the high pressure side of the stepped portion in the rotating body. The swirling flow can be prevented from flowing between the swirl breaker and the rotating body. Therefore, it is possible to stably obtain the vibration suppressing effect with a simple configuration without providing a separate member or the like.
第一実施形態に係るシール装置を備えた圧縮機の要部断面図である。It is principal part sectional drawing of the compressor provided with the sealing device which concerns on 1st embodiment. 図1におけるA-A線断面図である。FIG. 2 is a cross-sectional view taken along line AA in FIG. 図1におけるシール装置の拡大図である。It is an enlarged view of the sealing device in FIG. 第二実施形態に係るシール装置を備えた圧縮機の概略構成図である。It is a schematic block diagram of the compressor provided with the sealing device which concerns on 2nd embodiment. 図4におけるシール装置の拡大図である。It is an enlarged view of the sealing device in FIG. 第三実施形態に係るシール装置を備えた圧縮機の要部拡大図である。It is a principal part enlarged view of the compressor provided with the sealing device which concerns on 3rd embodiment. 蒸気タービンにシール装置を適用した例を説明する図である。It is a figure explaining the example which applied the sealing device to the steam turbine.
(第一実施形態)
 以下、本発明の第一実施形態について図1から図3を参照して詳細に説明する。本実施形態においては、シール装置1を圧縮機(流体機械)10におけるインペラ14のシュラウド17とケーシング11との間の隙間Sに適用した例を示す。
 図1に示すように、圧縮機10は、ケーシング11と、ロータ軸13及びインペラ14を有する回転体12とを備えている。
(First embodiment)
Hereinafter, a first embodiment of the present invention will be described in detail with reference to FIGS. 1 to 3. In the present embodiment, an example in which the sealing device 1 is applied to a gap S between a shroud 17 of an impeller 14 and a casing 11 in a compressor (fluid machine) 10 is shown.
As shown in FIG. 1, the compressor 10 includes a casing 11 and a rotating body 12 having a rotor shaft 13 and an impeller 14.
 ケーシング11は圧縮機10の外観形状をなす筒型のものであって、該ケーシング11の内部にはその中心を貫くようにしてロータ軸13が配されている。このケーシング11の両側には、それぞれラジアル軸受(図示省略)及びスラスト軸受(図示省略)が配置されている。これらラジアル軸受及びスラスト軸受によってロータ軸13が支持されることで回転体12がその軸線O回りに回転可能となっている。 The casing 11 has a cylindrical shape that forms the appearance of the compressor 10, and a rotor shaft 13 is disposed inside the casing 11 so as to penetrate the center. On both sides of the casing 11, radial bearings (not shown) and thrust bearings (not shown) are arranged. The rotor shaft 13 is supported by the radial bearing and the thrust bearing, so that the rotating body 12 can rotate around the axis O.
 インペラ14は、いわゆるクローズドインペラと称されるものであって、ハブ15と、複数のブレード16と、シュラウド17とを備えている。
 図1及び図2に示すように、ハブ15は筒状に形成された円盤部材であり、上記ロータ軸13が同軸状に貫通するようにして該ロータ軸13に一体に固定されている。このハブ15は、軸線O方向一方側(図1における左側)から該軸線O方向他方側(図1における右側)に向かうに従って漸次拡径する形状をしている。
The impeller 14 is a so-called closed impeller, and includes a hub 15, a plurality of blades 16, and a shroud 17.
As shown in FIGS. 1 and 2, the hub 15 is a cylindrical disk member, and is integrally fixed to the rotor shaft 13 so that the rotor shaft 13 penetrates coaxially. The hub 15 has a shape that gradually increases in diameter from one side in the axis O direction (left side in FIG. 1) toward the other side in the axis O direction (right side in FIG. 1).
 ブレード16は、湾曲した羽根状の部位であり、ハブ15の外周面15aから軸線O径方向(以下単に径方向と称する)外側に向けて延出し、外周面15a面に沿うように配置されている。ブレード16は、軸線O周方向(以下、単に周方向と称する)に複数設けられている。 The blade 16 is a curved blade-like part, and extends from the outer peripheral surface 15a of the hub 15 toward the outer side of the axis O radial direction (hereinafter simply referred to as the radial direction), and is arranged along the outer peripheral surface 15a. Yes. A plurality of blades 16 are provided in the circumferential direction of the axis O (hereinafter simply referred to as the circumferential direction).
 シュラウド17は、ハブ15の外周面15aを覆うように円筒状に形成された部位であって、各ブレード16の径方向外周側に連結されている。このシュラウド17の外周面18は、軸線O方向の一方側から他方側に向かうに従って漸次拡径する形状をしている。 The shroud 17 is a part formed in a cylindrical shape so as to cover the outer peripheral surface 15 a of the hub 15, and is connected to the outer peripheral side in the radial direction of each blade 16. The outer peripheral surface 18 of the shroud 17 has a shape that gradually increases in diameter from one side in the direction of the axis O toward the other side.
 このような構成のインペラ14は、ハブ15とシュラウド17とブレード16との間に画成される空間が流体の流路となっている。軸線O方向一方側において該軸線O方向に向けて開口する部分はガス流入部14aとされ、軸線O方向他方側において径方向に向けて開口する部分はガス流出部14bとなっている。 In the impeller 14 having such a configuration, a space defined between the hub 15, the shroud 17, and the blade 16 serves as a fluid flow path. A portion opening toward the axis O direction on one side of the axis O direction is a gas inflow portion 14a, and a portion opening toward the radial direction on the other side of the axis O direction is a gas outflow portion 14b.
 上記ケーシング11には、流体を外部から吸引するための吸入口(図示省略)が設けられている。該吸入口に吸引された流体は、吸入流路11aを通過することで軸線O方向に向きを変えられてインペラ14のガス流入部14aに導入される。一方、ガス流出部14bから流出する圧縮された流体は、ケーシング11に設けられたディフューザ部11bを介して径方向外側に導出される。 The casing 11 is provided with a suction port (not shown) for sucking fluid from the outside. The fluid sucked into the suction port is changed in the direction of the axis O by passing through the suction flow path 11a and is introduced into the gas inflow portion 14a of the impeller 14. On the other hand, the compressed fluid flowing out from the gas outflow portion 14 b is led out radially outward through the diffuser portion 11 b provided in the casing 11.
 該シュラウド対向面11cとシュラウド17の外周面18との間には、隙間Sが形成されている。 A gap S is formed between the shroud facing surface 11 c and the outer peripheral surface 18 of the shroud 17.
 ここで、インペラ14においては、ガス流入部14aから流入した流体が圧縮されてガス流出部14bから流出することから、ガス流入部14a側に比べてガス流出部14b側が高圧となる。したがって、上記隙間Sにおいては、高圧側とされたインペラ14出口側(ガス流出部14b側)から、低圧側とされたインペラ14入口側(ガス流入部14a側)に向かって流体が流通する。そして、本実施形態のシール装置1は、このように流体が流通する隙間Sをシールするために用いられている。 Here, in the impeller 14, since the fluid flowing in from the gas inflow portion 14a is compressed and flows out from the gas outflow portion 14b, the gas outflow portion 14b side has a higher pressure than the gas inflow portion 14a side. Accordingly, in the gap S, fluid flows from the impeller 14 outlet side (gas outflow portion 14b side), which is the high pressure side, toward the impeller 14 inlet side (gas inflow portion 14a side), which is the low pressure side. And the sealing apparatus 1 of this embodiment is used in order to seal the clearance gap S through which the fluid distribute | circulates in this way.
 以下、図3を参照して、シール装置1について説明する。このシール装置1は、上記隙間Sにおける軸線O方向一方側、即ち、該隙間Sにおける低圧側の領域に設けられており、ラビリンスシール(シール部)2と、スワールブレーカ3とを備えている。さらに、このシール装置1においては、上記インペラ14におけるシュラウド17の外周面18が該シール装置1の構成要素とされている。 Hereinafter, the sealing device 1 will be described with reference to FIG. The sealing device 1 is provided on one side of the gap S in the direction of the axis O, that is, on the low pressure side of the gap S, and includes a labyrinth seal (seal part) 2 and a swirl breaker 3. Further, in the sealing device 1, the outer peripheral surface 18 of the shroud 17 in the impeller 14 is a component of the sealing device 1.
 ラビリンスシール2は、ケーシング11におけるシュラウド対向面11cから径方向内側に向かって延出する環状フィン2aが、軸線O方向に複数連設されることで構成されている。本実施形態において、シュラウド17の外周面18は、軸線O方向の一方側を形成する小径外周面18aと、段差面19と、該段差面19を境に小径外周面18aよりも拡径された大径外周面18bとにより形成されている。環状フィン2aは、小径外周面18aに対向するように延出しており、即ち、ラビリンスシール2は小径外周面18aに径方向に対向して設けられている。これにより、ラビリンスシール2は、隙間Sにおける小径外周面18aの存在領域を封止して、当該隙間S内を軸線O方向他方側から一方側に、即ち、高圧側から低圧側に流体が漏出してしまうことを防止している。 The labyrinth seal 2 is configured by a plurality of annular fins 2a extending inward in the radial direction from the shroud facing surface 11c in the casing 11 in the axis O direction. In the present embodiment, the outer peripheral surface 18 of the shroud 17 is larger in diameter than the small-diameter outer peripheral surface 18 a with the small-diameter outer peripheral surface 18 a forming one side in the axis O direction, the step surface 19, and the step surface 19 as a boundary. The large-diameter outer peripheral surface 18b is formed. The annular fin 2a extends so as to face the small-diameter outer peripheral surface 18a, that is, the labyrinth seal 2 is provided to face the small-diameter outer peripheral surface 18a in the radial direction. Thereby, the labyrinth seal 2 seals the existence area of the small-diameter outer peripheral surface 18a in the gap S, and fluid leaks in the gap S from the other side in the axis O direction to one side, that is, from the high pressure side to the low pressure side. To prevent it from happening.
 スワールブレーカ3は、ラビリンスシール2の軸線O方向他方側、即ち、高圧側において、シュラウド対向面11cから径方向内側に向かって延出する板状の部材であって、軸線O周方向に間隔をあけて複数設けられている。このスワールブレーカ3は、ラビリンスシール2の環状フィン2a同様、シュラウド17の外周面18における小径外周面18aに向かって延出している。 The swirl breaker 3 is a plate-like member that extends radially inward from the shroud facing surface 11c on the other side in the axis O direction of the labyrinth seal 2, that is, on the high pressure side, and is spaced apart in the circumferential direction of the axis O. There are a plurality of open spaces. The swirl breaker 3 extends toward the small-diameter outer peripheral surface 18 a of the outer peripheral surface 18 of the shroud 17 like the annular fin 2 a of the labyrinth seal 2.
 本実施形態においては、上記のようにシュラウド対向面11cから径方向内側に向かって延出するスワールブレーカ3の先端3aは、大径外周面18bよりも径方向内側に達している。即ち、スワールブレーカ3の先端3aは、段差面19の高圧側の外周面18よりも径方向内側に達している。より具体的には、スワールブレーカ3の先端3aが大径外周面18bと段差面19との境界(大径外周面18bの低圧側の端部)よりも径方向内側に達している。 In the present embodiment, the tip 3a of the swirl breaker 3 extending radially inward from the shroud facing surface 11c as described above reaches the radially inner side than the large-diameter outer peripheral surface 18b. That is, the tip 3 a of the swirl breaker 3 reaches the radially inner side of the outer peripheral surface 18 on the high pressure side of the step surface 19. More specifically, the tip 3a of the swirl breaker 3 reaches radially inward from the boundary between the large-diameter outer peripheral surface 18b and the step surface 19 (the low-pressure end of the large-diameter outer peripheral surface 18b).
 したがって、スワールブレーカ3を軸線O方向から見た際には、スワールブレーカ3の先端3aが大径外周面18bよりも径方向内側に向かって入り込んだ状態となっている。即ち、スワールブレーカ3を軸線O方向から見た際に、スワールブレーカ3と段差面19とが軸線O方向に互いに重なることになる。
 スワールブレーカ3の先端3aと小径外周面18aとの径方向の間隔、及び、スワールブレーカ3と段差面19との軸線O方向の間隔は、後述する旋回流Cの流入を防止すべく狭小に形成される。特に、スワールブレーカ3と段差面19との軸線O方向の間隔は、スワールブレーカ3の先端3aと小径外周面18aとの径方向の間隔と略同一に設定されていることが好ましい。
Therefore, when the swirl breaker 3 is viewed from the direction of the axis O, the tip 3a of the swirl breaker 3 enters a state radially inward from the large-diameter outer peripheral surface 18b. That is, when the swirl breaker 3 is viewed from the direction of the axis O, the swirl breaker 3 and the step surface 19 overlap each other in the direction of the axis O.
The radial distance between the tip 3a of the swirl breaker 3 and the small-diameter outer peripheral surface 18a and the distance in the axis O direction between the swirl breaker 3 and the stepped surface 19 are narrowed to prevent the inflow of the swirl flow C, which will be described later. Is done. In particular, the distance between the swirl breaker 3 and the stepped surface 19 in the axis O direction is preferably set to be substantially the same as the distance between the tip 3a of the swirl breaker 3 and the small-diameter outer peripheral surface 18a.
 次に、シール装置1の作用について説明する。ロータ軸13が回転すると、インペラ14におけるシュラウド17の外周面18周囲の流体には、回転体12から回転接線方向にせん断力が作用し、このせん断力の作用によって周方向の速度成分を有する旋回流Cが発生する。この旋回流Cが、隙間Sの軸線O方向両側の圧力差によって、高圧側から低圧側に向かって、即ち、シュラウド17の大径外周面18bに沿って軸線O方向他方側から一方側に向かって流通する。 Next, the operation of the sealing device 1 will be described. When the rotor shaft 13 rotates, a shear force acts on the fluid around the outer peripheral surface 18 of the shroud 17 in the impeller 14 from the rotating body 12 in the rotational tangential direction, and the swirl having a circumferential speed component by the action of the shear force. Stream C is generated. The swirling flow C is directed from the high pressure side toward the low pressure side, that is, along the large-diameter outer peripheral surface 18b of the shroud 17 from the other side in the axis O direction to one side due to the pressure difference between both sides in the axis O direction of the gap S. Circulate.
 ここで、本実施形態においては、スワールブレーカ3が大径外周面18bよりも径方向内側に向かって入り込んでいるため、隙間S内を高圧側から低圧側に向かって大径外周面18bに沿って流通する旋回流Cが、該大径外周面18bによってスワールブレーカ3へと誘導される。したがって、大径外周面18bに沿って流通する旋回流Cの全てをスワールブレーカ3によって遮ることができるため、スワールブレーカ3と小径外周面18aとの間に旋回流Cが流入してしまうことを抑制することができる。したがって、旋回流Cがラビリンスシール2に到達してしまうことを防止することができるため、軸系の固有振動数が励起されることはなく、インペラ14を振動のない状態で安定的に回転させることが可能となる。 Here, in this embodiment, since the swirl breaker 3 enters inward in the radial direction from the large-diameter outer peripheral surface 18b, the clearance S extends along the large-diameter outer peripheral surface 18b from the high-pressure side toward the low-pressure side. The swirling flow C flowing in this way is guided to the swirl breaker 3 by the large-diameter outer peripheral surface 18b. Therefore, all of the swirl flow C flowing along the large-diameter outer peripheral surface 18b can be blocked by the swirl breaker 3, so that the swirl flow C flows between the swirl breaker 3 and the small-diameter outer peripheral surface 18a. Can be suppressed. Therefore, since it is possible to prevent the swirling flow C from reaching the labyrinth seal 2, the natural frequency of the shaft system is not excited, and the impeller 14 is stably rotated without vibration. It becomes possible.
 また、本実施形態においては、スワールブレーカ3の先端3aが大径外周面18bよりも径方向内側に達していることから、該スワールブレーカ3の先端3aと大径外周面18bとが径方向に隔てられている。これにより、旋回流Cがスワールブレーカ3の先端3aに到達し難くなるため、該スワールブレーカ3と小径外周面18aとの間に旋回流Cが流入してしまうことをより一層抑制することができる。 In the present embodiment, since the tip 3a of the swirl breaker 3 reaches the radially inner side with respect to the large-diameter outer peripheral surface 18b, the tip 3a of the swirl breaker 3 and the large-diameter outer peripheral surface 18b are in the radial direction. It is separated. Thereby, since the swirl flow C does not easily reach the tip 3a of the swirl breaker 3, it is possible to further suppress the swirl flow C from flowing between the swirl breaker 3 and the small-diameter outer peripheral surface 18a. .
 ここで、スワールブレーカ3の先端3aと小径外周面18aとの間隔は、旋回流Cが流入してすることを防止する観点から、通常、極めて狭小に設定される。したがって、スワールブレーカ3の先端3aと小径外周面18aとの間隔に対して、スワールブレーカ3と段差面19との間隔を略同一に設定した場合には、これらスワールブレーカ3と段差面19との間に旋回流Cが流入することを防止することができ、ひいては、スワールブレーカ3と小径外周面18aとの間に旋回流Cが流入してしまうことをより確実に防止することができる。 Here, the interval between the tip 3a of the swirl breaker 3 and the small-diameter outer peripheral surface 18a is normally set to be extremely narrow from the viewpoint of preventing the swirling flow C from flowing in. Therefore, when the distance between the swirl breaker 3 and the stepped surface 19 is set substantially the same as the distance between the tip 3a of the swirl breaker 3 and the small-diameter outer peripheral surface 18a, the swirl breaker 3 and the stepped surface 19 It is possible to prevent the swirl flow C from flowing in between, and more reliably to prevent the swirl flow C from flowing between the swirl breaker 3 and the small-diameter outer peripheral surface 18a.
 また、本実施形態のシール装置1は、ラビリンスシール2及びスワールブレーカ3に加えて、比較的設計変更の容易なシュラウド17の外周面18に、小径外周面18a、大径外周面18b及び段差面19を形成する加工を施すのみで実現することができるため、ラビリンスシール2及びスワールブレーカ3以外の他の部材を別途追加することなく、簡易な構成でもってスワールブレーカ3と小径外周面18aとの間に旋回流Cが流入してしまうことを抑制することができる。 Further, in addition to the labyrinth seal 2 and the swirl breaker 3, the sealing device 1 of the present embodiment includes a small-diameter outer peripheral surface 18a, a large-diameter outer peripheral surface 18b, and a step surface on the outer peripheral surface 18 of the shroud 17 that is relatively easy to change. 19 can be realized only by performing the process of forming 19, and without adding other members other than the labyrinth seal 2 and the swirl breaker 3, the swirl breaker 3 and the small-diameter outer peripheral surface 18 a can be configured with a simple configuration. It is possible to suppress the swirling flow C from flowing in between.
 なお、本実施形態においては、スワールブレーカ3の先端3aが大径外周面18bよりも径方向内側に達している構成としたが、該スワールブレーカ3の先端3aは少なくとも大径外周面18bと同一の径方向位置まで達していればよく、即ち、スワールブレーカ3の先端3aと、大径外周面18bの低圧側の端部との径方向位置が一致していてもよい。
 この場合も、旋回流Cを大径外周面18bによってスワールブレーカ3に誘導することができるため、旋回流Cがスワールブレーカ3の先端3aと小径外周面18bとの間に流れ込むことを抑制することができる。
In the present embodiment, the tip 3a of the swirl breaker 3 is configured to reach the radially inner side with respect to the large-diameter outer peripheral surface 18b. However, the tip 3a of the swirl breaker 3 is at least the same as the large-diameter outer peripheral surface 18b. That is, the radial position of the tip 3a of the swirl breaker 3 may coincide with the low-pressure end of the large-diameter outer peripheral surface 18b.
Also in this case, since the swirl flow C can be guided to the swirl breaker 3 by the large-diameter outer peripheral surface 18b, the swirl flow C is prevented from flowing between the tip 3a of the swirl breaker 3 and the small-diameter outer peripheral surface 18b. Can do.
(第二実施形態)
 次に第二実施形態について図4及び図5を参照して詳細に説明する。本実施形態においては、シール装置1をいわゆるバックツーバック型の圧縮機(流体機械)20におけるバランスピストン29とケーシング28との隙間Sに適用した例を示す。
 図4に示すように、本実施形態の圧縮機20は、ロータ軸21と、低圧セクション22と、高圧セクション25と、バランスピストン(回転体)29と、ケーシング28とを備えている。
(Second embodiment)
Next, a second embodiment will be described in detail with reference to FIGS. In the present embodiment, an example in which the sealing device 1 is applied to a gap S between a balance piston 29 and a casing 28 in a so-called back-to-back compressor (fluid machine) 20 is shown.
As shown in FIG. 4, the compressor 20 of the present embodiment includes a rotor shaft 21, a low pressure section 22, a high pressure section 25, a balance piston (rotary body) 29, and a casing 28.
 ロータ軸21は、ケーシング28に対して、例えばその両端がラジアル軸受(図示略)及びスラスト軸受(図示略)により支持されることで軸線O回りに回転可能とされている。 The rotor shaft 21 is rotatable about the axis O by supporting both ends of the rotor shaft 21 with a radial bearing (not shown) and a thrust bearing (not shown), for example.
 低圧セクション22は、低圧側インペラ23と、ケーシング28に掘設されたガス流路24とから構成されている。
 低圧側インペラ23は、ハブ、ブレード及びシュラウドによって画成されたガス通路を有しており、該ガス通路のロータ軸21側がガス入口23aとされるとともにロータ軸21から離間した側がガス出口23bとされている。この低圧側インペラ23は、ガス入口23aを軸線O一方側(図4における左側)に向けた状態で配置されている。
The low pressure section 22 includes a low pressure side impeller 23 and a gas flow path 24 dug in the casing 28.
The low-pressure side impeller 23 has a gas passage defined by a hub, blades, and a shroud. The gas passage has a rotor shaft 21 side as a gas inlet 23a and a side away from the rotor shaft 21 has a gas outlet 23b. Has been. The low pressure side impeller 23 is arranged in a state where the gas inlet 23a is directed to one side of the axis O (left side in FIG. 4).
 ガス流路24は、図示しないガス源と低圧側インペラ23のガス入口23aとを結ぶ低圧吸入路24aと、低圧側インペラ23のガス出口23bから系外へ連通する低圧吐出路24bとを備えている。 The gas flow path 24 includes a low pressure suction path 24a connecting a gas source (not shown) and a gas inlet 23a of the low pressure side impeller 23, and a low pressure discharge path 24b communicating from the gas outlet 23b of the low pressure side impeller 23 to the outside of the system. Yes.
 高圧セクション25は、高圧側インペラ26と、ケーシング28に掘設されたガス流路27とから構成されている。
 高圧側インペラ26は、ハブ、ブレード及びシュラウドによって画成されたガス通路を有しており、該ガス通路のロータ軸21側がガス入口26aとされるとともにロータ軸21から離間した側がガス出口26bとされている。この高圧側インペラ26は、ガス入口26aを軸線O他方側(図4における右側)に向けた状態で配置されている。したがって、低圧セクション22の低圧側インペラ23と、高圧セクション25の高圧側インペラ26とは、背中合わせに対向して配置されており、このように配置された圧縮機20は、バックツーバック(Back To Back)型と称されている。
The high pressure section 25 includes a high pressure side impeller 26 and a gas flow path 27 dug in the casing 28.
The high-pressure side impeller 26 has a gas passage defined by a hub, blades, and a shroud. The gas passage 26 has a gas inlet 26a on the rotor shaft 21 side and a gas outlet 26b on the side away from the rotor shaft 21. Has been. The high pressure side impeller 26 is arranged with the gas inlet 26a facing the other side of the axis O (the right side in FIG. 4). Therefore, the low-pressure side impeller 23 of the low-pressure section 22 and the high-pressure side impeller 26 of the high-pressure section 25 are disposed so as to face each other, and the compressor 20 disposed in this way is configured to be back-to-back (Back To Back). Back) type.
 ガス流路27は、低圧吐出路24bから系外のインタークーラ等の機器を経由して導入されたガスを、高圧側インペラ26のガス入口26aへ連通する高圧吸入路27aと、該高圧側インペラ26のガス出口26bから系外へ連通する高圧吐出路27bとを備えている。 The gas flow path 27 includes a high-pressure suction path 27a that communicates gas introduced from the low-pressure discharge path 24b via a device such as an external intercooler to the gas inlet 26a of the high-pressure side impeller 26, and the high-pressure side impeller. And a high-pressure discharge passage 27b communicating from the gas outlet 26b to the outside of the system.
 バランスピストン29は、低圧セクション22と高圧セクション25との間に設けられている。このバランスピストン29は、略円筒形状をなしており、ロータ軸21の外周側に外嵌されることで該ロータ軸21に対して一体に固定されている。このバランスピストン29は、低圧側インペラ23と高圧側インペラ26との圧力差によって生じる軸線O方向一方側に向かっての荷重に抗することで、ロータ軸21の軸線O方向の荷重バランスを調整する役割を有している。 The balance piston 29 is provided between the low pressure section 22 and the high pressure section 25. The balance piston 29 has a substantially cylindrical shape, and is fixed integrally with the rotor shaft 21 by being fitted on the outer peripheral side of the rotor shaft 21. This balance piston 29 adjusts the load balance in the axis O direction of the rotor shaft 21 by resisting a load toward one side in the axis O direction caused by the pressure difference between the low pressure side impeller 23 and the high pressure side impeller 26. Have a role.
 このバランスピストン29の外周面30は、その軸線O方向他方側の端部付近を除く軸線O方向全域に当たる部分が小径外周面30aとされている。また、外周面30における小径外周面30aの軸線O方向他方側(高圧側)に位置する部分、即ち、軸線O方向他方側の端部付近の部分が、該小径外周面30aから一段拡径する大径外周面30bとされている。換言すれば、バランスピストン29の軸線O方向一方側の端部にフランジ状をなす大径外周面30bが設けられており、該大径外周面30bを除く部分全域が該大径外周面30bよりも一段縮径した小径外周面30aとされている。 The outer peripheral surface 30 of the balance piston 29 has a small-diameter outer peripheral surface 30a that corresponds to the entire area in the axis O direction except for the vicinity of the other end on the other side of the axis O. Further, a portion of the outer peripheral surface 30 located on the other side (high pressure side) of the small-diameter outer peripheral surface 30a in the axis O direction, that is, a portion near the end on the other side in the axis O direction expands from the small-diameter outer peripheral surface 30a by one step. The outer peripheral surface 30b is a large diameter. In other words, the large-diameter outer peripheral surface 30b having a flange shape is provided at one end of the balance piston 29 in the direction of the axis O, and the entire region excluding the large-diameter outer peripheral surface 30b is larger than the large-diameter outer peripheral surface 30b. Is also a small-diameter outer peripheral surface 30a having a reduced diameter by one step.
 そして、これら小径外周面30aと大径外周面30bとの遷移領域である軸線O方向一方側を向く面は、該軸線Oに直交する平坦状をなす段差面(段差部)31となっている。
 即ち、バランスピストン29においては、その外周面30が軸線O方向他方側(高圧側)から一方側(低圧側)に向かうに従って一段縮径するようにして形成された段差面31が設けられている。該段差面31よりも軸線O方向一方側に位置する外周面18が小径外周面30aとなっており、段差面31よりも軸線O方向他方側に位置する外周面30が大径外周面30bとなっている。
A surface facing one side in the axis O direction, which is a transition region between the small-diameter outer peripheral surface 30a and the large-diameter outer peripheral surface 30b, is a step surface (step portion) 31 that is flat and orthogonal to the axis O. .
That is, the balance piston 29 is provided with a stepped surface 31 formed so that its outer peripheral surface 30 is reduced in diameter by one step from the other side (high pressure side) in the axis O direction toward one side (low pressure side). . The outer peripheral surface 18 positioned on one side in the axis O direction with respect to the step surface 31 is a small-diameter outer peripheral surface 30a, and the outer peripheral surface 30 positioned on the other side in the axis O direction with respect to the step surface 31 is a large-diameter outer peripheral surface 30b. It has become.
 ここで、ケーシング28におけるバランスピストン29の外周面30に対向する面は、ピストン対向面28aとなっている。これらバランスピストン29の外周面30とケーシング28のピストン対向面28aとの間には、隙間Sが形成されている。この隙間Sにおいては、高圧セクション25の高圧側インペラ26側から低圧セクション22の低圧側インペラ23側に向かって流体が流通する。そして、本実施形態において、シール装置1は、このように流体が流通する隙間Sをシールするために用いられている。 Here, the surface of the casing 28 facing the outer peripheral surface 30 of the balance piston 29 is a piston facing surface 28a. A gap S is formed between the outer peripheral surface 30 of the balance piston 29 and the piston facing surface 28 a of the casing 28. In the gap S, the fluid flows from the high pressure side impeller 26 side of the high pressure section 25 toward the low pressure side impeller 23 side of the low pressure section 22. In this embodiment, the sealing device 1 is used to seal the gap S through which the fluid flows in this way.
 以下、図5を参照して、第二実施形態のシール装置1について説明する。第二実施形態のシール装置1は第一実施形態と同様、ラビリンスシール(シール部)2と、スワールブレーカ3とを備えており、さらに、上記バランスピストン29の外周面30が該シール装置1の構成要素となっている。 Hereinafter, the sealing device 1 of the second embodiment will be described with reference to FIG. Similar to the first embodiment, the seal device 1 of the second embodiment includes a labyrinth seal (seal part) 2 and a swirl breaker 3, and the outer peripheral surface 30 of the balance piston 29 is the same as that of the seal device 1. It is a component.
 ラビリンスシール2は、ケーシング28におけるピストン対向面28aから径方向内側に向かって延出する環状フィン2aが、軸線O方向に複数連設されることで構成されている。本実施形態において、これら環状フィン2aは、バランスピストン29の外周面30における小径外周面30aに対向するように延出しており、即ち、ラビリンスシール2は小径外周面18a全域に対して径方向に対向して設けられている。これにより、ラビリンスシール2は、隙間Sを封止して、当該隙間S内を軸線O方向他方側から一方側に、即ち、高圧側から低圧側に流体が漏出してしまうことを防止している。 The labyrinth seal 2 is configured by a plurality of annular fins 2 a extending inward in the radial direction from the piston facing surface 28 a in the casing 28 in the axis O direction. In the present embodiment, these annular fins 2a extend so as to oppose the small-diameter outer peripheral surface 30a of the outer peripheral surface 30 of the balance piston 29. That is, the labyrinth seal 2 is in the radial direction with respect to the entire area of the small-diameter outer peripheral surface 18a. It is provided facing. Thereby, the labyrinth seal 2 seals the gap S and prevents the fluid from leaking from the other side in the axis O direction to the one side, that is, from the high pressure side to the low pressure side. Yes.
 スワールブレーカ3は、ラビリンスシール2の軸線O方向他方側、即ち、高圧側において、ピストン対向面28aから径方向内側に向かって延出しており、軸線O周方向に間隔をあけて複数設けられている。このスワールブレーカ3は、ラビリンスシール2の環状フィン2a同様、ピストン対向面28aにおける小径外周面18aに向かって延出しており、即ち、段差面31の低圧側の外周面30に向かって延出している。 The swirl breaker 3 extends radially inward from the piston facing surface 28a on the other side in the axis O direction of the labyrinth seal 2, that is, on the high pressure side, and a plurality of swirl breakers 3 are provided at intervals in the circumferential direction of the axis O. Yes. Like the annular fin 2a of the labyrinth seal 2, the swirl breaker 3 extends toward the small-diameter outer peripheral surface 18a of the piston facing surface 28a, that is, extends toward the outer peripheral surface 30 on the low pressure side of the step surface 31. Yes.
 そして、本実施形態においては、ピストン対向面28aから径方向内側に向かって延出するスワールブレーカ3の先端3aは、大径外周面30bよりも径方向内側に達している。即ち、スワールブレーカ3の先端が大径外周面30bと段差面31との境界(大径外周面30bの低圧側の端部)よりもO径方向内側に達している。 And in this embodiment, the front-end | tip 3a of the swirl breaker 3 extended toward the radial inside from the piston opposing surface 28a has reached the radial inside rather than the large diameter outer peripheral surface 30b. That is, the tip of the swirl breaker 3 reaches the inside in the O-diameter direction from the boundary between the large-diameter outer peripheral surface 30b and the stepped surface 31 (the low-pressure end of the large-diameter outer peripheral surface 30b).
 したがって、スワールブレーカ3を軸線O方向から見た際には、スワールブレーカ3の先端3aが大径外周面30bよりも径方向内側に向かって入り込んだ状態となる。即ち、第一実施形態と同様スワールブレーカ3を軸線O方向から見た際に、スワールブレーカ3と段差面31とが軸線O方向に互いに重なることになる。
 なお、スワールブレーカ3と段差面31との軸線O方向の間隔は、スワールブレーカ3の先端3aと小径外周面30aとの径方向の間隔と略同一に設定されていることが好ましい。
Therefore, when the swirl breaker 3 is viewed from the direction of the axis O, the tip 3a of the swirl breaker 3 enters a state radially inward from the large-diameter outer peripheral surface 30b. That is, when the swirl breaker 3 is viewed from the direction of the axis O as in the first embodiment, the swirl breaker 3 and the stepped surface 31 overlap each other in the direction of the axis O.
In addition, it is preferable that the space | interval of the axis line O direction of the swirl breaker 3 and the level | step difference surface 31 is set substantially the same as the space | interval of the radial direction of the front-end | tip 3a of the swirl breaker 3, and the small diameter outer peripheral surface 30a.
 このような第二実施形態のシール装置1においても、第一実施形態と同様、スワールブレーカ3が大径外周面30bよりも径方向内側に向かって入り込んでいるため、隙間Sに入り込んだ旋回流Cが、該大径外周面30bによってスワールブレーカ3へと誘導される。
 したがって、大径外周面30bに沿って流通する旋回流Cの全てをスワールブレーカ3によって遮ることができるため、スワールブレーカ3と小径外周面18aとの間に旋回流Cが流入してしまうことを抑制することができる。これによって、旋回流Cがラビリンスシール2に到達してしまうことを防止することができるため、軸系の固有振動数が励起されることはなく、バランスピストン29を振動のない状態で安定的に回転させることが可能となる。
Also in the sealing device 1 of the second embodiment, the swirl flow entering the gap S because the swirl breaker 3 enters radially inward from the large-diameter outer peripheral surface 30b as in the first embodiment. C is guided to the swirl breaker 3 by the large-diameter outer peripheral surface 30b.
Therefore, all of the swirl flow C flowing along the large-diameter outer peripheral surface 30b can be blocked by the swirl breaker 3, so that the swirl flow C flows between the swirl breaker 3 and the small-diameter outer peripheral surface 18a. Can be suppressed. As a result, the swirling flow C can be prevented from reaching the labyrinth seal 2, so that the natural frequency of the shaft system is not excited, and the balance piston 29 can be stably kept in a vibration-free state. It can be rotated.
 なお、本実施形態においても、スワールブレーカ3の先端3aは少なくとも大径外周面30bと同一の径方向位置まで達していればよい。この場合も、旋回流Cを大径外周面30bによってスワールブレーカ3に誘導することができるため、旋回流Cがスワールブレーカ3の先端3aと小径外周面30aとの間に流れ込むことを抑制することができる。 In the present embodiment, the tip 3a of the swirl breaker 3 only needs to reach at least the same radial position as the large-diameter outer peripheral surface 30b. Also in this case, since the swirl flow C can be guided to the swirl breaker 3 by the large-diameter outer peripheral surface 30b, the swirl flow C is prevented from flowing between the tip 3a of the swirl breaker 3 and the small-diameter outer peripheral surface 30a. Can do.
(第三実施形態)
 次に第三実施形態について図6を参照して詳細に説明する。第三実施形態のシール装置40は、第二実施形態と同様、圧縮機20におけるバランスピストン29とケーシング28との隙間Sに配置されている。そして、第二実施形態のシール装置1がそれぞれ単一のラビリンスシール2及びスワールブレーカ3を配置した構成であるのに対して、本実施形態のシール装置40は、複数(本実施形態では2つ)のラビリンスシール2(2A,2B)及びスワールブレーカ3(3A,3B)を備えている。そして、これに伴って、バランスピストン29の外周面32は多段状に形成されている。
(Third embodiment)
Next, a third embodiment will be described in detail with reference to FIG. The sealing device 40 of the third embodiment is disposed in the gap S between the balance piston 29 and the casing 28 in the compressor 20 as in the second embodiment. The sealing device 1 of the second embodiment has a configuration in which the single labyrinth seal 2 and the swirl breaker 3 are arranged, whereas the sealing device 40 of the present embodiment includes a plurality of (two in this embodiment). ) Labyrinth seal 2 (2A, 2B) and swirl breaker 3 (3A, 3B). Accordingly, the outer peripheral surface 32 of the balance piston 29 is formed in a multistage shape.
 即ち、本実施形態のバランスピストン29の外周面32は、高圧側(軸線O方向他方側)から低圧側(軸線O方向一方側)に向かって、第一外周面32aと、該第一外周面32aよりも一段縮径した第二外周面32bと、該第二外周面32bよりもさらに一段縮径した第三外周面32cとが順に配置された構成とされている。そして、第一外周面32aと第二外周面32bとの遷移領域である低圧側を向く面が第一段差面(段差部)33aとされ、第二外周面32bと第三外周面32cとの遷移領域である低圧側を向く面が第二段差面(段差部)33bとされている。 That is, the outer peripheral surface 32 of the balance piston 29 of the present embodiment includes a first outer peripheral surface 32a and the first outer peripheral surface from the high pressure side (the other side in the axis O direction) toward the low pressure side (the one side in the axis O direction). The second outer peripheral surface 32b having a one-step diameter reduction from 32a and the third outer peripheral surface 32c having a one-step diameter reduction from the second outer peripheral surface 32b are sequentially arranged. And the surface which faces the low voltage | pressure side which is a transition area | region of the 1st outer peripheral surface 32a and the 2nd outer peripheral surface 32b is made into the 1st step surface (step part) 33a, and the 2nd outer peripheral surface 32b and the 3rd outer peripheral surface 32c A surface facing the low pressure side, which is a transition region, is a second step surface (step portion) 33b.
 ラビリンスシール2A,2Bは第二実施形態と同様、ケーシング28のピストン対向面28aから径方向内側に延出する複数の環状フィン2aから構成されている。第一のラビリンスシール2Aは第二外周面32bに対向するように設けられ、第二のラビリンスシール2Bは第三外周面32cに対向するように設けられている。 The labyrinth seals 2A and 2B are composed of a plurality of annular fins 2a extending radially inward from the piston facing surface 28a of the casing 28, as in the second embodiment. The first labyrinth seal 2A is provided to face the second outer peripheral surface 32b, and the second labyrinth seal 2B is provided to face the third outer peripheral surface 32c.
 また、2つのスワールブレーカ3A,3Bのうち、第一のスワールブレーカ3Aは、第一のラビリンスシール2Aの高圧側において第二外周面32bに向かって延出するように配置されており、第二のスワールブレーカ3Bは、第二のラビリンスシール2Bの高圧側において第三外周面32cに向かって延出するように配置されている。 Of the two swirl breakers 3A and 3B, the first swirl breaker 3A is arranged so as to extend toward the second outer peripheral surface 32b on the high pressure side of the first labyrinth seal 2A. The swirl breaker 3B is arranged to extend toward the third outer peripheral surface 32c on the high pressure side of the second labyrinth seal 2B.
 そして、本実施形態においても、第一のスワールブレーカ3Aの先端3aは、第一外周面32aよりも径方向内側に達しており、第二のスワールブレーカ3Bの先端3aは第二外周面32bよりも径方向内側に達している。 Also in the present embodiment, the tip 3a of the first swirl breaker 3A reaches radially inward from the first outer peripheral surface 32a, and the tip 3a of the second swirl breaker 3B is from the second outer peripheral surface 32b. Has also reached the inside in the radial direction.
 このような構成の第三実施形態のシール装置40によれば、隙間Sの高圧側から入り込んだ旋回流は、該大径外周面30bによってスワールブレーカ3へと誘導される。これにより、第一のスワールブレーカ3Aを越えて第一のラビリンスシール2Aに旋回流Cが流入することが防止される。 According to the sealing device 40 of the third embodiment having such a configuration, the swirl flow entering from the high pressure side of the gap S is guided to the swirl breaker 3 by the large-diameter outer peripheral surface 30b. This prevents the swirl flow C from flowing into the first labyrinth seal 2A beyond the first swirl breaker 3A.
 ここで、第一のスワールブレーカ3Aによって旋回流Cを抑制したとしても、バランスピストン29の回転に流体が連れ回ることで該第一のスワールブレーカ3Aの低圧側、即ち、第一のラビリンスシール2Aと第二外周面32bとの間に旋回流Cが発生することがある。
 この点、本実施形態においては、第一のラビリンスシール2Aの低圧側に第二のスワールブレーカ3Bが配置されているため、第二外周面32bによって旋回流Cが第二のスワールブレーカ3Bに誘導することができる。
Here, even if the swirl flow C is suppressed by the first swirl breaker 3A, the fluid is accompanied by the rotation of the balance piston 29, so that the low pressure side of the first swirl breaker 3A, that is, the first labyrinth seal 2A. And a swirling flow C may occur between the first outer peripheral surface 32b and the second outer peripheral surface 32b.
In this regard, in the present embodiment, since the second swirl breaker 3B is disposed on the low pressure side of the first labyrinth seal 2A, the swirl flow C is guided to the second swirl breaker 3B by the second outer peripheral surface 32b. can do.
 このようにして、ラビリンスシール2、スワールブレーカ3を、高圧側から低圧側に向かって複数組配置した構成とすることにより、最も高圧側に配置されたスワールブレーカ3の低圧側に発生した旋回流を効果的に抑制することができる。したがって、シール装置40を設ける隙間Sが軸線O方向にわたって長く形成されている場合であっても、旋回流Cを効果的に抑制して、軸系全体として安定した振動抑制効果を得ることができる。 Thus, the swirl flow generated on the low pressure side of the swirl breaker 3 arranged on the highest pressure side by arranging a plurality of sets of labyrinth seals 2 and swirl breakers 3 from the high pressure side to the low pressure side. Can be effectively suppressed. Therefore, even if the gap S in which the sealing device 40 is provided is formed long in the direction of the axis O, it is possible to effectively suppress the swirling flow C and obtain a stable vibration suppressing effect as the entire shaft system. .
 以上、本発明の実施形態について詳細に説明したが、本発明の技術的思想を逸脱しない限り、これらに限定されることはなく、多少の設計変更等も可能である。 As described above, the embodiments of the present invention have been described in detail. However, the present invention is not limited to these without departing from the technical idea of the present invention, and some design changes and the like are possible.
 例えば、実施形態においては、シール部としてラビリンスシール2を採用した例について説明したが、このラビリンスシール2に代えてハニカム構造を備えたダンパーシールを採用してもよい。 For example, in the embodiment, the example in which the labyrinth seal 2 is employed as the seal portion has been described, but a damper seal having a honeycomb structure may be employed instead of the labyrinth seal 2.
 また、第一実施形態におけるシュラウド17とケーシング11との隙間Sに設けたシール装置1においても、第三実施形態と同様、複数のラビリンスシール2及びスワールブレーカ3を設け、これらに対応して外周面18を複数段構成にしてもよい。 Moreover, also in the sealing device 1 provided in the gap S between the shroud 17 and the casing 11 in the first embodiment, a plurality of labyrinth seals 2 and swirl breakers 3 are provided as in the third embodiment, and an outer periphery corresponding to these. The surface 18 may have a plurality of stages.
 さらに、ラビリンスシール2をケーシング11,28に設けるのに代えて、回転体側、即ち、シュラウド17やバランスピストン29に設けてもよい。 Furthermore, instead of providing the labyrinth seal 2 on the casings 11 and 28, the labyrinth seal 2 may be provided on the rotating body side, that is, on the shroud 17 or the balance piston 29.
 また、実施形態においては、シール装置1を圧縮機10,20に適用した例について説明したが、例えば図7に示すように、蒸気タービンに適用してもよい。
 この図7の蒸気タービン50は、ケーシング55に固定されている仕切板56にノズルが組み込まれており、ノズルを通過した蒸気が動翼を通過する際のスラスト力によりロータ軸(回転体)51を回転させる構成とされている。
Further, in the embodiment, the example in which the sealing device 1 is applied to the compressors 10 and 20 has been described. However, for example, as illustrated in FIG. 7, the sealing device 1 may be applied to a steam turbine.
In the steam turbine 50 of FIG. 7, a nozzle is incorporated in a partition plate 56 fixed to a casing 55, and a rotor shaft (rotary body) 51 is generated by a thrust force when steam passing through the nozzle passes through a moving blade. It is set as the structure which rotates.
 さらに、ケーシング55とロータ軸51との間にはラビリンスシール2が設けられており、このラビリンスシール2の高圧側、即ち、軸線O他方側(図7の左側)には、ロータ軸51の外周面が一段拡径するようにして設けられた段差面51a及び大径外周面51bが形成されている。そして、ラビリンスシール2と大径外周面51bとの間には、ケーシング55からロータ軸51に向かって延出するようにスワールブレーカ3が設けられている。このスワールブレーカ3の先端3aは大径外周面51bよりも径方向内側に達している。 Further, the labyrinth seal 2 is provided between the casing 55 and the rotor shaft 51, and the outer periphery of the rotor shaft 51 is disposed on the high pressure side of the labyrinth seal 2, that is, on the other side of the axis O (left side in FIG. 7). A step surface 51a and a large-diameter outer peripheral surface 51b are formed so that the surface is enlarged by one step. A swirl breaker 3 is provided between the labyrinth seal 2 and the large-diameter outer peripheral surface 51 b so as to extend from the casing 55 toward the rotor shaft 51. The tip 3a of the swirl breaker 3 reaches the radially inner side with respect to the large-diameter outer peripheral surface 51b.
 これにより、高圧側から低圧側に向かって流通する旋回流Cを、大径外周面51bによってスワールブレーカ3に誘導することができるため、実施形態と同様、該旋回流Cがラビリンスシール2に流れ込むことを抑制することができる。なお、この蒸気タービン50においても、シール装置1に代えて第三実施形態のようにラビリンスシール2及びスワールブレーカ3をそれぞれ複数備えたシール装置40を適用してもよい。 Accordingly, the swirl flow C flowing from the high pressure side toward the low pressure side can be guided to the swirl breaker 3 by the large-diameter outer peripheral surface 51b, and thus the swirl flow C flows into the labyrinth seal 2 as in the embodiment. This can be suppressed. Also in this steam turbine 50, instead of the sealing device 1, a sealing device 40 including a plurality of labyrinth seals 2 and swirl breakers 3 may be applied as in the third embodiment.
 さらに、シール装置1,40は、圧縮機、蒸気タービンに適用するのみならず、例えば、ガスタービン、水車、冷凍機、ポンプ等の他の流体機械に適用してもよい。 Furthermore, the sealing devices 1 and 40 may be applied not only to the compressor and the steam turbine but also to other fluid machines such as a gas turbine, a water turbine, a refrigerator, and a pump.
 本発明のシール装置及び流体機械によれば、簡易な構成で振動抑制効果を安定的に得ることができる。 According to the sealing device and the fluid machine of the present invention, a vibration suppressing effect can be stably obtained with a simple configuration.
1 シール装置
2 ラビリンスシール(シール部)
2A ラビリンスシール(シール部)
2B ラビリンスシール(シール部)
2a 環状フィン
3 スワールブレーカ
3A スワールブレーカ
3B スワールブレーカ
3a 先端
10 圧縮機
11 ケーシング
11c シュラウド対向面
12 回転体
13 ロータ軸
14 インペラ
17 シュラウド
18 外周面
18a 小径外周面
18b 大径外周面
19 段差面(段差部)
20 圧縮機
21 ロータ軸
28 ケーシング
28a ピストン対向面
29 バランスピストン
30 外周面
30a 小径外周面
30b 大径外周面
31 段差面
32 外周面
32a 第一外周面
32b 第二外周面
32c 第三外周面
33a 第一段差面
33b 第二段差面
40 シール装置
50 蒸気タービン
51 ロータ軸(回転体)
51a 段差面(段差部)
51b 大径外周面
55 ケーシング
1 Sealing device 2 Labyrinth seal (seal part)
2A Labyrinth seal (seal part)
2B Labyrinth seal (seal part)
2a annular fin 3 swirl breaker 3A swirl breaker 3B swirl breaker 3a tip 10 compressor 11 casing 11c shroud facing surface 12 rotor 13 rotor shaft 14 impeller 17 shroud 18 outer peripheral surface 18a small diameter outer peripheral surface 18b large diameter outer peripheral surface 19 step surface (step Part)
20 Compressor 21 Rotor shaft 28 Casing 28a Piston facing surface 29 Balance piston 30 Outer peripheral surface 30a Small outer peripheral surface 30b Large outer peripheral surface 31 Step surface 32 Outer peripheral surface 32a First outer peripheral surface 32b Second outer peripheral surface 32c Third outer peripheral surface 33a First One step surface 33b Second step surface 40 Sealing device 50 Steam turbine 51 Rotor shaft (rotating body)
51a Step surface (step)
51b Large-diameter outer peripheral surface 55 Casing

Claims (7)

  1.  ケーシングと該ケーシング内部に回転可能に配された回転体の外周面との間に形成される該回転体の径方向の隙間を封止して、高圧側から低圧側に向かって流通する流体を抑制するシール部と、
     該シール部の高圧側において、前記ケーシングから前記外周面に向かって延出し、前記隙間を前記回転体の周方向に流通する流体を抑制するスワールブレーカとを備え、
     前記回転体に、前記外周面が高圧側から低圧側に向かうに従って縮径するようにして形成された段差部が設けられ、
     前記スワールブレーカは、前記段差部よりも低圧側に位置する前記外周面に向かって延出しており、
     該スワールブレーカの先端が、少なくとも前記段差部よりも高圧側に位置する前記外周面と同一の前記径方向位置まで達しているシール装置。
    Sealing the gap in the radial direction of the rotating body formed between the casing and the outer peripheral surface of the rotating body that is rotatably arranged inside the casing, the fluid flowing from the high pressure side toward the low pressure side A seal part to suppress,
    A swirl breaker that extends from the casing toward the outer peripheral surface on the high pressure side of the seal portion and suppresses fluid flowing through the gap in the circumferential direction of the rotating body;
    The rotating body is provided with a stepped portion formed so that the outer peripheral surface is reduced in diameter as it goes from the high pressure side to the low pressure side,
    The swirl breaker extends toward the outer peripheral surface located on the lower pressure side than the stepped portion,
    A sealing device in which a tip of the swirl breaker reaches at least the same radial position as the outer peripheral surface located on the high pressure side of the stepped portion.
  2.  前記スワールブレーカの先端が、前記段差部の高圧側に位置する前記外周面よりも前記径方向内側に達している請求項1に記載のシール装置。 The sealing device according to claim 1, wherein a tip of the swirl breaker reaches the radially inner side with respect to the outer peripheral surface located on the high pressure side of the stepped portion.
  3.  前記スワールブレーカの先端と前記外周面との前記径方向の間隔が、前記スワールブレーカと前記段差部との間の前記回転体の軸線方向の間隔と略同一に設定されている請求項1に記載のシール装置。 2. The radial distance between the tip of the swirl breaker and the outer peripheral surface is set to be substantially the same as the axial distance of the rotating body between the swirl breaker and the stepped portion. Sealing device.
  4.  前記シール部が前記回転体の軸線方向に複数設けられるとともに、各前記シール部の高圧側にそれぞれ前記スワールブレーカが設けられ、
     これらスワールブレーカに対応するようにして、前記回転体に複数の前記段差部が設けられている請求項1に記載のシール装置。
    A plurality of the seal portions are provided in the axial direction of the rotating body, and the swirl breaker is provided on the high pressure side of each seal portion,
    The sealing device according to claim 1, wherein the rotating body is provided with a plurality of the stepped portions so as to correspond to the swirl breakers.
  5.  ケーシングと該ケーシングの内部に回転可能に配された回転体とを備え、前記ケーシングの内部に流体が流通する流体機械において、
     請求項1から4のいずれか一項に記載のシール装置を備える流体機械。
    In a fluid machine comprising a casing and a rotating body rotatably arranged in the casing, wherein a fluid flows in the casing,
    A fluid machine comprising the sealing device according to any one of claims 1 to 4.
  6.  前記回転体の外周面は、インペラのシュラウドの外周面であって、
     該シュラウドの外周面に前記段差部が設けられている請求項5に記載の流体機械。
    The outer peripheral surface of the rotating body is an outer peripheral surface of an impeller shroud,
    The fluid machine according to claim 5, wherein the step portion is provided on an outer peripheral surface of the shroud.
  7.  前記回転体の外周面は、バランスピストンの外周面であって、
     該バランスピストンの外周面に前記段差部が設けられている請求項5に記載の流体機械。
    The outer peripheral surface of the rotating body is an outer peripheral surface of a balance piston,
    The fluid machine according to claim 5, wherein the step portion is provided on an outer peripheral surface of the balance piston.
PCT/JP2011/051444 2010-06-28 2011-01-26 Seal device and fluid machinery provided with same WO2012001997A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010146625A JP2012007594A (en) 2010-06-28 2010-06-28 Seal device, and fluid machine provided with the same
JP2010-146625 2010-06-28

Publications (1)

Publication Number Publication Date
WO2012001997A1 true WO2012001997A1 (en) 2012-01-05

Family

ID=45401735

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/051444 WO2012001997A1 (en) 2010-06-28 2011-01-26 Seal device and fluid machinery provided with same

Country Status (2)

Country Link
JP (1) JP2012007594A (en)
WO (1) WO2012001997A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016082979A1 (en) * 2014-11-27 2016-06-02 Robert Bosch Gmbh Compressor with a sealing duct
EP2982832A4 (en) * 2013-04-03 2016-12-21 Mitsubishi Heavy Ind Ltd Rotating machine
CN110242364A (en) * 2018-03-09 2019-09-17 三菱重工业株式会社 Rotating machinery

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6049385B2 (en) * 2012-10-04 2016-12-21 株式会社日立製作所 Centrifugal compressor
JP6204757B2 (en) * 2013-09-02 2017-09-27 三菱日立パワーシステムズ株式会社 Fluid machinery
JP2016089768A (en) 2014-11-07 2016-05-23 三菱日立パワーシステムズ株式会社 Seal device and turbo machine
JP2019056344A (en) * 2017-09-22 2019-04-11 株式会社荏原製作所 Centrifugal pump

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006022681A (en) * 2004-07-07 2006-01-26 Hitachi Industries Co Ltd Turbo type fluid machine and stepped sealing device used thereof
US20060237914A1 (en) * 2003-06-20 2006-10-26 Elliott Company Swirl-reversal abradable labyrinth seal
WO2008149773A1 (en) * 2007-06-06 2008-12-11 Mitsubishi Heavy Industries, Ltd. Seal device for rotary fluid machine and rotary fluid machine
JP2009052434A (en) * 2007-08-24 2009-03-12 Hitachi Plant Technologies Ltd Centrifugal compressor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060237914A1 (en) * 2003-06-20 2006-10-26 Elliott Company Swirl-reversal abradable labyrinth seal
JP2006022681A (en) * 2004-07-07 2006-01-26 Hitachi Industries Co Ltd Turbo type fluid machine and stepped sealing device used thereof
WO2008149773A1 (en) * 2007-06-06 2008-12-11 Mitsubishi Heavy Industries, Ltd. Seal device for rotary fluid machine and rotary fluid machine
JP2009052434A (en) * 2007-08-24 2009-03-12 Hitachi Plant Technologies Ltd Centrifugal compressor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2982832A4 (en) * 2013-04-03 2016-12-21 Mitsubishi Heavy Ind Ltd Rotating machine
US10247025B2 (en) 2013-04-03 2019-04-02 Mitsubishi Heavy Industries, Ltd. Rotating machine
WO2016082979A1 (en) * 2014-11-27 2016-06-02 Robert Bosch Gmbh Compressor with a sealing duct
CN110242364A (en) * 2018-03-09 2019-09-17 三菱重工业株式会社 Rotating machinery

Also Published As

Publication number Publication date
JP2012007594A (en) 2012-01-12

Similar Documents

Publication Publication Date Title
WO2012001995A1 (en) Sealing device and fluid machine comprising same
US6129507A (en) Method and device for reducing axial thrust in rotary machines and a centrifugal pump using same
WO2012001997A1 (en) Seal device and fluid machinery provided with same
RU2616428C2 (en) Labyrinth seal of spiral and mixed spiral cylindrical configuration with high damping capacity
JP4982476B2 (en) Radial flow type fluid machine
JP5314256B2 (en) SEALING DEVICE FOR ROTARY FLUID MACHINE AND ROTARY FLUID MACHINE
KR101743376B1 (en) Centrifugal compressor
EP2154380B1 (en) Seal device for rotary fluid machine and rotary fluid machine
EP3012461A1 (en) Centrifugal compressor
WO2013128539A1 (en) Rotary machine
WO2016051835A1 (en) Centrifugal compressor
WO2014122819A1 (en) Centrifugal compressor
JP2018053952A (en) Seal mechanism and rotary machine
WO2016043090A1 (en) Rotary machine
WO2018155546A1 (en) Centrifugal compressor
JP2014084803A (en) Centrifugal fluid machine
JP6071644B2 (en) Multistage centrifugal fluid machine
JP5067928B2 (en) Axial flow turbomachine
JP2018135815A (en) Centrifugal rotary machine
JP2020165415A (en) Rotary machine
JP2015048771A (en) Fluid machinery
JP2018066355A (en) Impeller and rotating machine
JP2017075621A (en) Circular seal structure and fluid machine mounted with the same
JP6700893B2 (en) Impeller, rotating machine
JP2017180115A (en) Impeller and rotary machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11800467

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11800467

Country of ref document: EP

Kind code of ref document: A1