WO2012001954A1 - 発振装置および電子機器 - Google Patents

発振装置および電子機器 Download PDF

Info

Publication number
WO2012001954A1
WO2012001954A1 PCT/JP2011/003686 JP2011003686W WO2012001954A1 WO 2012001954 A1 WO2012001954 A1 WO 2012001954A1 JP 2011003686 W JP2011003686 W JP 2011003686W WO 2012001954 A1 WO2012001954 A1 WO 2012001954A1
Authority
WO
WIPO (PCT)
Prior art keywords
oscillation device
piezoelectric vibrator
piezoelectric
resin member
oscillation
Prior art date
Application number
PCT/JP2011/003686
Other languages
English (en)
French (fr)
Inventor
康晴 大西
黒田 淳
行雄 村田
元喜 菰田
信弘 川嶋
岸波 雄一郎
重夫 佐藤
Original Assignee
Necカシオモバイルコミュニケーションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Necカシオモバイルコミュニケーションズ株式会社 filed Critical Necカシオモバイルコミュニケーションズ株式会社
Priority to JP2012522463A priority Critical patent/JP5682973B2/ja
Priority to CN201180032594.9A priority patent/CN102972046B/zh
Priority to US13/703,095 priority patent/US9185495B2/en
Publication of WO2012001954A1 publication Critical patent/WO2012001954A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/06Systems determining the position data of a target
    • G01S15/08Systems for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/521Constructional features
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • H10N30/204Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using bending displacement, e.g. unimorph, bimorph or multimorph cantilever or membrane benders
    • H10N30/2047Membrane type
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/50Piezoelectric or electrostrictive devices having a stacked or multilayer structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2217/00Details of magnetostrictive, piezoelectric, or electrostrictive transducers covered by H04R15/00 or H04R17/00 but not provided for in any of their subgroups
    • H04R2217/03Parametric transducers where sound is generated or captured by the acoustic demodulation of amplitude modulated ultrasonic waves
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2499/00Aspects covered by H04R or H04S not otherwise provided for in their subgroups
    • H04R2499/10General applications
    • H04R2499/11Transducers incorporated or for use in hand-held devices, e.g. mobile phones, PDA's, camera's

Definitions

  • the present invention relates to an oscillation device provided with a piezoelectric vibrator, and more particularly to an oscillation device in which a piezoelectric vibrator is mounted on a vibration member, and an electronic apparatus having the oscillation device.
  • electrodynamic electroacoustic transducers have been used as electroacoustic transducers in electronic devices such as mobile phones.
  • This electrodynamic electroacoustic transducer is composed of a permanent magnet, a voice coil, and a diaphragm.
  • Patent Documents 1 and 2 describe using a piezoelectric vibrator as an electroacoustic transducer.
  • Patent Document 3 As another example of an oscillation device using a piezoelectric vibrator, in addition to a speaker device, a sound wave sensor that detects a distance to an object using a sound wave oscillated from the piezoelectric vibrator (see Patent Document 3).
  • Patent Documents 4 to 6 Various oscillators and electronic devices are known (Patent Documents 4 to 6).
  • An oscillating device using a piezoelectric vibrator generates a vibration amplitude by an electrostrictive action by inputting an electric signal by using a piezoelectric effect of a piezoelectric layer.
  • the electrodynamic electroacoustic transducer generates vibration by a piston-type forward / backward movement, whereas the oscillation device using the piezoelectric vibrator has a bending-type vibration state and thus has a small amplitude. For this reason, it is superior in reducing the thickness of the electrodynamic electroacoustic transducer described above.
  • the sound pressure level which is one of the physical indicators of the oscillation device, is determined by the volume of air removed by the vibrator. In other words, the sound pressure level of the oscillation device depends on the operating area of the piezoelectric vibrator.
  • the electrode layers formed on the front and back surfaces of the piezoelectric layer in order to prevent the electrode layers formed on the front and back surfaces of the piezoelectric layer from conducting due to migration or the like, the electrode layers can be formed on the entire front and back surfaces of the piezoelectric layer. No electrode layer is formed on the outer periphery of the front surface and the outer periphery of the back surface of the piezoelectric layer.
  • the amplitude and volume exclusion amount are likely to be small compared to an electrodynamic electroacoustic transducer, and the sound pressure level of the output is sufficient when miniaturization is attempted. It was difficult to get to.
  • the present invention has been made in view of the above-described problems, and provides an oscillation device that realizes both an increase in sound pressure level of output and a reduction in size of the device, and an electronic device using the oscillation device. Is.
  • the oscillation device includes a piezoelectric vibrator in which an electrode layer is formed on a front surface and a back surface of a piezoelectric layer, a vibration member in which the piezoelectric vibrator is bonded to at least the surface, and at least an outer surface of the piezoelectric vibrator. And a resin member formed continuously in the entire circumferential direction.
  • the first electronic device of the present invention includes the oscillation device of the present invention and an oscillation drive unit that causes the oscillation device to output audible sound waves.
  • a second electronic device includes an oscillation device according to the present invention, an ultrasonic detection unit that detects an ultrasonic wave oscillated from the oscillation device and reflected by the measurement object, and from the detected ultrasonic wave to the measurement object. And a distance measuring unit for calculating the distance.
  • the resin member seals the outer surface of the piezoelectric vibrator.
  • the short circuit of the electrode layer of the surface of a piezoelectric vibrator and a back surface can be prevented.
  • an electrode layer can be formed in the whole surface area and back surface area of a piezoelectric layer. Therefore, the operating area of the piezoelectric layer can be increased, and both an increase in the output sound pressure level and a reduction in the size of the apparatus can be realized.
  • an electroacoustic transducer 100 that is an oscillation device of the present embodiment includes a piezoelectric vibrator 110 in which electrode layers 112 and 113 are formed on a front surface and a back surface of a piezoelectric ceramic 111 that is a piezoelectric layer,
  • the piezoelectric vibrator 110 includes an elastic diaphragm 120 that is a vibration member bonded to at least the surface, and a resin member 130 that is continuously formed on the outer surface of at least the piezoelectric vibrator 110 in the entire circumferential direction.
  • the elastic diaphragm 120 is formed in a circular planar shape, and as shown in FIGS. An outer peripheral portion is supported by an annular frame 121.
  • the piezoelectric vibrator 110 is also formed in a circular planar shape, and is attached to the central surface of the circular elastic diaphragm 120.
  • the resin member 130 is also in close contact with the surface of at least a portion of the elastic diaphragm 120 that is continuous with the outer surface of the piezoelectric vibrator 110.
  • the resin member 130 is made of an epoxy resin having a softening point higher than the polarization temperature of the piezoelectric layer 111, for example, a softening point of 80 degrees or more.
  • the resin member 130 is more flexible than the piezoelectric vibrator 110 and the elastic diaphragm 120. Note that A being more flexible than B means that the elastic modulus of A is lower than B, for example. The same applies hereinafter.
  • the resin member 130 has a larger internal loss than the piezoelectric vibrator 110 and the elastic diaphragm 120. Further, the resin member 130 has moisture resistance, and has lower conductivity than the piezoelectric ceramic 111 and the electrode layers 112 and 113.
  • Such a resin member 130 is preferably a material having a longitudinal elastic modulus of 500 GPa or less.
  • the electric conductivity of the resin member 130 is about 1/100 of that of the electrode layers 112 and 113.
  • a control unit 140 that is an oscillation drive unit is connected to the electrode layers 112 and 113 of the piezoelectric vibrator 110.
  • An electric field that causes the piezoelectric vibrator 110 to oscillate in an audible region or an ultrasonic region is applied from the control unit 140.
  • the electrode layer 112 on the front surface is directly connected to the control unit 140 by, for example, a lead wire 141, and the electrode layer 113 on the back surface is connected to the control unit 140 by the metal elastic diaphragm 120 and the lead wire 142. It is connected.
  • the piezoelectric ceramic 111 is not particularly limited, although lead zirconate titanate (PZT) is used.
  • the thickness of the piezoelectric ceramic 111 is not particularly limited, but is preferably 10 ⁇ m or more and 500 ⁇ m or less.
  • a thin film having a thickness of less than 10 ⁇ m is used as a ceramic material which is a brittle material, chipping or breakage occurs due to weak mechanical strength during handling, making handling difficult.
  • the piezoelectric ceramic 111 having a thickness exceeding 500 ⁇ m when used, the conversion efficiency for converting electrical energy into mechanical energy is remarkably lowered, and sufficient performance as the electroacoustic transducer 100 cannot be obtained.
  • the conversion efficiency depends on the electric field strength. Since the electric field strength is expressed by the thickness / input voltage with respect to the polarization direction, an increase in thickness inevitably causes a decrease in conversion efficiency.
  • electrode layers 112 and 113 are formed on the front and back surfaces in order to generate an electric field.
  • the electrode layers 112 and 113 are not particularly limited as long as they are electrically conductive materials, but it is preferable to use silver or silver / palladium. Silver is used as a general-purpose electrode layer with low resistance, and has advantages in manufacturing process and cost.
  • the thickness of the electrode layers 112 and 113 is not particularly limited, but the thickness is preferably 1 ⁇ m or more and 50 ⁇ m or less.
  • the thickness is less than 1 ⁇ m, since the film thickness is thin, it cannot be uniformly formed, and conversion efficiency may be reduced.
  • a technique for forming the thin-film electrode layers 112 and 113 there is a method of applying the paste in a paste form.
  • the surface state of the polycrystal such as the piezoelectric ceramic 111 is a satin surface, the wet state at the time of application is poor, and there is a problem that a uniform electrode film cannot be formed without a certain thickness.
  • the film thickness of the electrode layers 112 and 113 exceeds 100 ⁇ m, there is no particular problem in manufacturing, but the electrode layers 112 and 113 serve as a constraining surface with respect to the piezoelectric ceramic 111 and reduce the energy conversion efficiency. There is a problem.
  • the piezoelectric vibrator 110 of the electroacoustic transducer 100 has a principal surface on one side constrained by the elastic diaphragm 120.
  • the elastic diaphragm 120 propagates the vibration generated from the piezoelectric vibrator 110 to the outside.
  • the elastic diaphragm 120 has a function of adjusting the basic resonance frequency of the piezoelectric vibrator 110.
  • the fundamental resonance frequency f of the mechanical electroacoustic transducer 100 depends on the load weight and compliance, as shown by the following equation.
  • the compliance is the mechanical rigidity of the electroacoustic transducer 100
  • this means that the basic resonance frequency can be controlled by controlling the rigidity of the piezoelectric vibrator 110.
  • the fundamental resonance frequency can be shifted to a low frequency range.
  • the fundamental resonance frequency can be shifted to a high range by selecting a material having a high elastic modulus or increasing the thickness of the elastic diaphragm 120.
  • the basic resonance frequency was controlled by the shape and material of the piezoelectric vibrator 110, there were problems in design constraints, cost, and reliability. Since the plate 120 can be easily adjusted to a desired fundamental resonance frequency, the industrial value is great.
  • the outer surface of the piezoelectric vibrator 110 is restrained by the resin member 130. For this reason, the mechanical quality factor Q of the piezoelectric vibrator can be reduced by utilizing the high internal loss of the resin member 130.
  • the Q tends to be high in terms of material characteristics.
  • the resin member 130 can mechanically dampen the piezoelectric vibrator 110 and reduce Q. Thereby, the amplitude frequency characteristic becomes flat, and the application range of the electroacoustic transducer 100 is expanded.
  • the elastic diaphragm 120 is not particularly limited as long as it is a material having a high elastic modulus with respect to a ceramic that is a brittle material such as a metal or resin, but a general-purpose material such as phosphor bronze or stainless steel from the viewpoint of workability and cost. Is used.
  • the thickness of the elastic diaphragm 120 is preferably 5 ⁇ m or more and 1000 ⁇ m or less.
  • the thickness is less than 5 ⁇ m, there is a problem that mechanical strength is weak, the function as a restraining member is impaired, and the mechanical vibration characteristics of the piezoelectric vibrator 110 are varied between production lots due to a decrease in processing accuracy.
  • the elastic diaphragm 120 of the present embodiment preferably has a longitudinal elastic modulus, which is an index indicating the rigidity of the material, of 1 GPa or more and 500 GPa or less. As described above, when the rigidity of the elastic diaphragm 120 is excessively low or excessively high, there is a problem that characteristics and reliability are impaired as a mechanical vibrator.
  • a manufacturing method of the electroacoustic transducer 100 of the present embodiment will be described below.
  • the piezoelectric ceramic 111 lead zirconate titanate ceramic is used, and for the electrode layers 112 and 113, a silver / palladium alloy (weight ratio 70%: 30%) is used.
  • the piezoelectric ceramic 111 is manufactured by the green sheet method, fired in the atmosphere at 1100 ° C. for 2 hours, and then the piezoelectric ceramic 111 is subjected to polarization treatment.
  • An epoxy adhesive is used for bonding the piezoelectric vibrator 110 and the elastic diaphragm 120.
  • the boundary surface between the outer surface of the piezoelectric vibrator 110 and the elastic diaphragm 120 is protected by the resin member 130 having low electrical conductivity.
  • the resin member 130 is formed so that the piezoelectric vibrator 110 is bonded to the surface of the elastic diaphragm 120 and then the outer surface thereof is sealed.
  • the resin member 130 can protect the boundary surface between the elastic diaphragm 120 and the piezoelectric layer where stress is concentrated, so that cracks, chips, and mechanical breakdown can be prevented. , Improve reliability.
  • the electrode layers 112 and 113 can be formed on the entire surface of the piezoelectric ceramic 111 and the entire back surface of the piezoelectric ceramic 111 without concern about a short circuit of the electrode layers 112 and 113. Accordingly, since the entire piezoelectric ceramic 111 can be oscillated, both an increase in the output sound pressure level and a reduction in the size of the apparatus can be realized.
  • the mechanical quality factor Qm can be reduced by using the resin member 130 having a large internal loss. That is, mechanical damping can be applied to the boundary surface between the piezoelectric vibrator 110 and the elastic diaphragm 120 where stress is concentrated.
  • ultrasonic waves are oscillated to realize sound reproduction that can protect privacy.
  • the principle of a parametric speaker that demodulates modulated ultrasonic waves into audible sounds is used.
  • the piezoelectric vibrator 110 oscillates an ultrasonic wave having a frequency of 20 kHz or more.
  • AM Amplitude Modulation
  • DSB Double Sideband
  • SSB Single-Sideband Modulation
  • FM Frequency Modulation
  • Non-linearity includes a phenomenon that transitions from laminar flow to turbulent flow when the Reynolds number indicated by the ratio of the inertial action and the viscous action of the flow increases. That is, since the sound wave is slightly disturbed in the fluid, the sound wave propagates in a non-linear manner.
  • the amplitude of the sound wave in the low frequency band is non-linear, the amplitude difference is very small and is usually handled as a phenomenon of linear theory.
  • nonlinearity can be easily observed with ultrasonic waves, and when radiated into the air, harmonics accompanying the nonlinearity are remarkably generated.
  • sound waves are a dense state where molecular groups are mixed in the air, and if it takes time for the air molecules to recover rather than compress, the air that cannot be recovered after compression is continuously propagated air. This is the principle that an audible sound is generated by colliding with a molecule and generating a shock wave.
  • the piezoelectric ceramic 111 is made of a piezoelectric plate having two main surfaces as described above, and an electrode layer 112 and an electrode layer 113 are formed on each of the main surfaces of the piezoelectric ceramic 111.
  • the polarization direction of the piezoelectric ceramic 111 is not particularly limited, but in the electroacoustic transducer of the present embodiment, it is upward in the vertical direction (thickness direction of the piezoelectric vibrator 110).
  • the piezoelectric vibrator 110 configured as described above has such a radius that both main surfaces simultaneously expand or contract when an alternating voltage is applied to the electrode layer 112 and the electrode layer 113 and an alternating electric field is applied. Performs direction expansion and contraction (diameter expansion).
  • the piezoelectric vibrator 110 performs a motion that repeats a first deformation mode in which the main surface expands and a second deformation mode in which the main surface contracts.
  • the elastic diaphragm 120 uses the elastic effect to generate vertical vibration due to inertial action and restoring action, thereby generating sound waves.
  • the resin member 130 is bonded to the outer surface of the elastic diaphragm 120 and the piezoelectric vibrator 110.
  • the resin member 130 plays a role of preventing mechanical breakage at the boundary where stress is concentrated.
  • the piezoelectric vibrator 110 can also be used as an adhesive that joins the elastic diaphragm 120.
  • the piezoelectric vibrator 110 oscillates ultrasonic waves having a frequency of 20 kHz or more. Sound reproduction is performed based on the principle of a so-called parametric speaker that oscillates FM or AM-modulated ultrasonic waves and demodulates the modulated wave to reproduce audible sound using the nonlinear state (dense / dense state) of air. This propagates sound waves using the high directivity that is characteristic of ultrasonic waves, and it is possible to realize a privacy sound source that can only be heard by the user.
  • the electroacoustic transducer 100 of the present embodiment is small and can reproduce a large volume. Further, since ultrasonic waves are used, directivity is narrow, and industrial value is great in terms of protecting user privacy.
  • the electroacoustic transducer 100 has higher rectilinearity of the sound wave than the conventional electroacoustic transducer, and can selectively propagate the sound wave to a position to be transmitted to the user.
  • the electroacoustic transducer 100 according to the present embodiment can be used as a sound source of an electronic device (for example, a mobile phone, a notebook personal computer, a small game device, etc.).
  • the electroacoustic transducer 100 can be prevented from being enlarged and the acoustic characteristics are improved, the electroacoustic transducer 100 can be suitably used for portable electronic devices.
  • the piezoelectric ceramic 111 such as lead zirconate titanate (PZT) is used as the piezoelectric element of the piezoelectric vibrator 110.
  • PZT lead zirconate titanate
  • the piezoelectric element is not particularly limited as long as it has a piezoelectric effect, and a material having high electromechanical conversion efficiency, for example, a material such as barium titanate (BaTiO 3 ) can be used. .
  • the piezoelectric vibrator 110 and the elastic diaphragm 120 are exemplified to be formed in a concentric circular plane shape.
  • the piezoelectric vibrator 210 and the elastic diaphragm 220 that is the vibration member may be formed in a rectangular shape that is rectangular.
  • the resin member 230 is moved from the position of the side portion 212 of the piezoelectric vibrator 110 to the piezoelectric vibrator 210 formed in a rectangular planar shape having the four corner portions 211 and the four side portions 212. It is preferable to form a thick planar shape at the corners 211.
  • one piezoelectric vibrator 110, 210 is mounted on one elastic diaphragm 120, 220.
  • a plurality of piezoelectric vibrators 210 may be mounted in a matrix state or the like on one elastic diaphragm 220.
  • triangular piezoelectric vibrators 410 are alternately arranged in two rows or the like upside down in the figure on a hexagonal vibration member 420. Also good. Further, hexagonal piezoelectric vibrators may be arranged in a honeycomb shape (not shown).
  • the piezoelectric vibrator 110 is exemplified by the one-layer piezoelectric ceramic 111 and the electrode layers 112 and 113 on both surfaces.
  • a piezoelectric vibrator may have a laminated structure in which a plurality of piezoelectric ceramics and a plurality of electrode layers are alternately formed.
  • the resin member 130 consists of epoxy resins.
  • PET Polyethylene-Terephthalate
  • urethane polycarbonate
  • polyethylene polyethylene
  • the outer surface of the piezoelectric vibrator 110 is formed to be flush with the resin member 130 over the entire area.
  • a resin member 130 is only required to prevent the electrode members 112 and 113 from being short-circuited at a minimum.
  • the layer thickness in the vertical direction may be short.
  • a cellular phone or the like that outputs sound with the electroacoustic transducer 100 or the like is assumed as the electric device.
  • an electroacoustic transducer 100 that is an oscillation device
  • an ultrasonic detection unit that detects an ultrasonic wave oscillated from the electroacoustic transducer 100 and reflected by a measurement object
  • a detected ultrasonic wave A sonar (not shown) having a distance measuring unit that calculates the distance from the sound wave to the measurement object can also be implemented.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Acoustics & Sound (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Signal Processing (AREA)
  • Transducers For Ultrasonic Waves (AREA)
  • Piezo-Electric Transducers For Audible Bands (AREA)
  • Circuit For Audible Band Transducer (AREA)

Abstract

 発振装置は、圧電層(111)の表面と裏面とに電極層(112、113)が形成されている圧電振動子(110)と、圧電振動子(110)が少なくとも表面に接合されている振動部材(120)と、少なくとも圧電振動子(110)の外側面に全周方向に連続に形成されている樹脂部材(130)と、を有する。これにより、圧電層の作動面積を増大させることができ、出力の音圧レベルの増大と装置の小型化とを、ともに実現することができる。

Description

発振装置および電子機器
 本発明は、圧電振動子を備えた発振装置に関し、特に、振動部材に圧電振動子が装着されている発振装置、この発振装置を有する電子機器、に関する。
 近年、携帯電話機やノート型コンピュータなどの携帯型の電子機器の需要が拡大している。このような電子機器では、テレビ電話や動画再生、ハンズフリー電話などの音響機能を商品価値とした薄型の携帯端末の開発が進められている。このような開発の中、音響部品である電気音響変換器(スピーカ装置)に対して、高音質でかつ小型・薄型化への要求が高まっている。
 従来、携帯電話等の電子機器には、電気音響変換器として動電型電気音響変換器が利用されてきた。この動電型電気音響変換器は、永久磁石とボイスコイルと振動膜から構成されている。
 しかし、動電型電気音響変換器は、その動作原理および構造から、薄型化には限界がある。一方、特許文献1、2には、圧電振動子を電気音響変換器として使用することが記載されている。
 また、圧電振動子を用いる発振装置の他の例としては、スピーカ装置のほか、圧電振動子から発振された音波を用いて対象物までの距離などを検出する音波センサ(特許文献3を参照)など、種々の発振装置や電子機器が知られている(特許文献4~6)。
国際公開第2007/026736号パンフレット 国際公開第2007/083497号パンフレット 特開平03-270282号公報 特開昭63-13498号公報 特開2004-312561号公報 特開2007-111847号公報
 圧電振動子を用いる発振装置は、圧電層の圧電効果を利用して、電気信号の入力による電歪作用により、振動振幅を発生させるものである。そして、動電型電気音響変換器がピストン型の進退運動によって振動を発生させるのに対して、圧電振動子を用いる発振装置は屈曲型の振動姿態をとるために振幅が小さくなる。このため、上記した動電型の電気音響変換器に対して薄型化に優位である。
 しかしながら、発振装置の物理指標の一つである音圧レベルは、振動子による空気の体積排除量によって決定される。換言すると、発振装置は圧電振動子の作動面積により音圧レベルが左右される。
 しかし、従来の発振装置では、圧電層の表面と裏面とに形成した電極層がマイグレーションなどにより導通することを防止するため、圧電層の表面全域と裏面全域とに電極層を形成することができず、圧電層の表面外周と裏面外周には電極層を形成していない。
 このため、圧電振動子を用いる発振装置の場合は、動電型電気音響変換器と比較して振幅および体積排除量が小さくなりやすく、小型化を図った場合には出力の音圧レベルを十分に得ることが困難であった。
 本発明は上述のような課題に鑑みてなされたものであり、出力の音圧レベルの増大と装置の小型化とを、ともに実現する発振装置、この発振装置を利用した電子機器、を提供するものである。
 本発明の発振装置は、圧電層の表面と裏面とに電極層が形成されている圧電振動子と、圧電振動子が少なくとも表面に接合されている振動部材と、少なくとも圧電振動子の外側面に全周方向に連続に形成されている樹脂部材と、を有する。
 本発明の第一の電子機器は、本発明の発振装置と、発振装置に可聴域の音波を出力させる発振駆動部と、を有する。
 本発明の第二の電子機器は、本発明の発振装置と、発振装置から発振されて測定対象物で反射した超音波を検知する超音波検知部と、検知された超音波から測定対象物までの距離を算出する測距部と、を有する。
 本発明の発振装置では、圧電振動子の外側面を樹脂部材が密封している。これにより、圧電振動子の表面と裏面との電極層の短絡を防止することができる。このため、圧電層の表面全域と裏面全域とに電極層を形成することができる。従って、圧電層の作動面積を増大させることができ、出力の音圧レベルの増大と装置の小型化とを、ともに実現することができる。
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる
本発明の実施の第一の形態の発振装置である電気音響変換器の構造を示す模式的な縦断正面図である。 電気音響変換器の構造を示す模式的な平面図である。 一の変形例の電気音響変換器の構造を示す平面図である。 他の変形例の電気音響変換器の構造を示す平面図である。 さらに他の変形例の電気音響変換器の構造を示す平面図である。 さらに他の変形例の電気音響変換器の構造を示す模式的な縦断正面図である。
 本発明の実施の第一の形態について図1および図2を参照して以下に説明する。本実施の形態の発振装置である電気音響変換器100は、図示するように、圧電層である圧電セラミック111の表面と裏面とに電極層112,113が形成されている圧電振動子110と、圧電振動子110が少なくとも表面に接合されている振動部材である弾性振動板120と、少なくとも圧電振動子110の外側面に全周方向に連続に形成されている樹脂部材130と、を有する。
 より具体的には、本実施の形態の電気音響変換器100では、図2に示すように、弾性振動板120が円形の平面形状に形成されており、図1および図2に示すように、円環状のフレーム121で外周部が支持されている。
 圧電振動子110も円形の平面形状に形成されており、円形の弾性振動板120の中央表面に貼着されている。樹脂部材130は、少なくとも圧電振動子110の外側面に連続する部分の弾性振動板120の表面にも密着している。
 樹脂部材130は、圧電層111の分極温度より軟化点が高く、例えば、軟化点が80度以上であるエポキシ樹脂からなる。この樹脂部材130は、圧電振動子110および弾性振動板120より柔軟である。
 なお、AがBより柔軟であることとは、例えば、Aの弾性率がBより低いことなどを意味している。以下、本明細書中において同様である。
 さらに、樹脂部材130は、圧電振動子110および弾性振動板120より内部損失が大きい。また、樹脂部材130は、防湿性を有し、圧電セラミック111および電極層112,113より導電性が低い。
 このような樹脂部材130としては、縦弾性係数が500GPa以下である材料が好ましい。樹脂部材130の電気伝導度は、電極層112,113の1/100程度である。
 また、本実施の形態の電気音響変換器100では、圧電振動子110の電極層112,113に発振駆動部である制御部140が接続されている。この制御部140から圧電振動子110を可聴領域や超音波領域で発振させる電界が印加される。
 なお、表面の電極層112は、例えば、リード線141で制御部140に直接に接続されており、裏面の電極層113は、金属製の弾性振動板120とリード線142とで制御部140に接続されている。
 また、圧電セラミック111としては、チタン酸ジルコン酸鉛(PZT)などを使用するが特に限定されない。圧電セラミック111の厚みは、特に限定されないが、10μm以上500μm以下であることが好ましい。
 例えば、脆性材料であるセラミック材料として厚み10μm未満の薄膜を使用する場合、取り扱い時に機械強度の弱さから、欠けや破損などが生じて、取り扱いが困難となる。
 また、厚み500μmを超える圧電セラミック111を使用する場合は電気エネルギから機械エネルギに変換する変換効率が著しく低下し、電気音響変換器100として十分な性能が得られない。
 一般的に、電気信号の入力により電歪効果を発生させる圧電セラミック111においては、その変換効率は電界強度に依存する。この電界強度は分極方向に対する厚み/入力電圧で表されることから、厚みの増加は必然的に変換効率の低下を招いてしまう問題がある。
 本実施の形態の圧電振動子110には、電界を発生させるために表面と裏面とに電極層112,113が形成されている。電極層112,113は、電気伝導性を有する材料であれば特に限定されないが、銀や銀/パラジウムを使用することが好ましい。銀は低抵抗な汎用的な電極層として使用されており、製造プロセスやコストなどに利点がある。
 また、銀/パラジウムは耐酸化に優れた低抵抗材料であるため、信頼性の観点から利点がある。また、電極層112,113の厚みについては、特に限定されないが、その厚みが1μm以上50μm以下であるのが好ましい。
 例えば、厚み1μm未満では、膜厚が薄いため、均一に成形できず、変換効率が低下する可能性がある。なお、薄膜状の電極層112,113を形成する技術として、ペースト状にして塗布する方法もある。
 しかし、圧電セラミック111のような多結晶では表面状態が梨地面であるため、塗布時の濡れ状態が悪く、ある程度の厚みがないと均一な電極膜が形成できない問題点がある。
 一方、電極層112,113の膜厚が100μmを超える場合は、製造上に特に問題はないが、電極層112,113が圧電セラミック111に対して拘束面となり、エネルギ変換効率を低下させてしまう問題点がある。
 本実施の形態の電気音響変換器100の圧電振動子110は、その片側の主面が弾性振動板120によって拘束されている。弾性振動板120は、圧電振動子110から発生した振動を外側に伝播させる。
 また、同時に弾性振動板120には、圧電振動子110の基本共振周波数を調整する機能を持つ。機械的な電気音響変換器100の基本共振周波数fは、以下の式で示されるように、負荷重量と、コンプライアンスに依存する。
  [数1]
 f=1/(2πL√(mC))
 なお、"m"は質量、"C"はコンプライアンス、である。
 言い換えれば、コンプライアンスは電気音響変換器100の機械剛性であるため、このことは圧電振動子110の剛性を制御することで基本共振周波数を制御できることを意味する。
 例えば、弾性率の低い材料の選択や、弾性振動板120の厚みを低減することで、基本共振周波数を低域にシフトさせることが可能となる。この一方で、弾性率の高い材料を選択することや、弾性振動板120の厚みを増加させることで基本共振周波数を高域にシフトさせることができる。
 従来は、圧電振動子110の形状や材質により基本共振周波数を制御していたところから設計上の制約やコスト、信頼性に問題があったが、本発明のように、構成部材である弾性振動板120を変更することで所望の基本共振周波数に容易に調整できることから、工業上の価値は大きい。
 さらに、本実施の形態の電気音響変換器100では、圧電振動子110の外側面が樹脂部材130で拘束されている。このため、樹脂部材130の高い内部損失を利用して、圧電振動子の機械品質係数Qを低減することができる。
 既存の電気音響変換器では、圧電振動子の外側面に樹脂部材が存在しないので、材料の特性上でQが高い傾向にあった。本実施の形態の電気音響変換器100では、樹脂部材130により、圧電振動子110に機械的なダンピングをかけることができ、Qを低減することができる。これにより、振幅周波数特性が平坦になり、電気音響変換器100として応用範囲が拡大する。
 なお、弾性振動板120には、金属や樹脂など脆性材料であるセラミックに対して高い弾性率を持つ材料であれば特に限定されないが、加工性やコストの観点からリン青銅やステンレスなどの汎用材料が使用される。
 また、弾性振動板120の厚みについては、5μm以上1000μm以下であることが好ましい。厚みが5μm未満の場合、機械強度が弱く、拘束部材として機能を損なうことや、加工精度の低下により、製造ロット間で圧電振動子110の機械振動特性の誤差が生じてしまう問題点がある。
 また、厚みが1000μmを超える場合は、剛性増による圧電振動子110への拘束が強まり、振動変位量の減衰を生じさせてしまう問題点がある。また、本実施形態の弾性振動板120は、材料の剛性を示す指標である縦弾性係数が、1GPa以上500GPa以下であることが好ましい。上述のように、弾性振動板120の剛性が過度に低い場合や、過度に高い場合は、機械振動子として特性や信頼性を損なう問題点がある。
 ここで、本実施の形態の電気音響変換器100の製造方法を以下に説明する。まず、圧電振動子110は、外径=φ3mm、厚み=200μmの圧電セラミック111を形成し、その両面に、それぞれ厚み8μmの電極層112および電極層113を形成する。
 圧電セラミック111には、ジルコン酸チタン酸鉛系セラミックを用い、電極層112,113には銀/パラジウム合金(重量比70%:30%)を使用する。この圧電セラミック111の製造はグリーンシート法で行い、大気中で1100℃で2時間にわたって焼成し、その後、圧電セラミック111に分極処理を施す。圧電振動子110と弾性振動板120との接着にはエポキシ系接着剤を用いる。
 さらに、高い信頼性を有する圧電振動子110を得るために、圧電振動子110の外側面と弾性振動板120の境界面を電気伝導性が低い樹脂部材130により保護する。この樹脂部材130は、圧電振動子110を弾性振動板120の表面に接着してから、その外側面を封止するように形成される。
 本実施の形態の電気音響変換器100では、樹脂部材130によって、応力が集中する弾性振動板120と圧電層の境界面を保護できることから、割れや欠け、機械的な破壊を防止することができ、信頼性が向上する。
 また、導電性が低い樹脂部材130により保護することで、マイグレーションなどによる圧電セラミック111の表面と裏面との電極層112,113の短絡を防止することができる。
 このため、電極層112,113の短絡を懸念することなく、圧電セラミック111の表面全域と裏面全域とに電極層112,113を形成することができる。従って、圧電セラミック111の全体を発振させることができるので、出力の音圧レベルの増大と装置の小型化とを、ともに実現することができる。
 さらに、内部損失の大きい樹脂部材130を利用することで、機械品質係数Qmを低減することができる。すなわち、応力が集中する圧電振動子110と弾性振動板120との境界面に機械的なダンピングをかけることができる。
 また、本構成では、プライバシー保護が可能な音響再生を実現するために、超音波を発振させる。ここでは、変調した超音波を可聴音に復調するパラメトリックスピーカの原理を利用している。圧電振動子110は周波数20kHz以上の超音波を発振するものである。
 ここでは、AM(Amplitude Modulation)変調やDSB(Double Sideband)変調、SSB(Single-Sideband modulation)変調、FM(Frequency Modulation)変調をかけた超音波を空気中に放射し、超音波が空気中に伝播する際の非線形特性により、可聴音が出現する原理で音響再生を行っている。
 非線形としては、流れの慣性作用と粘性作用の比で示されるレイノルズ数が大きくなると、層流から乱流に推移する現象が挙げられる。すなわち、音波は流体内で微少に、じょう乱しているため、音波は非線形で伝播している。
 しかしながら、低周波数帯域での音波の振幅は非線形でありながら、振幅差が非常に小さく、通常、線形理論の現象として取り扱っている。これに対して、超音波では非線形性が容易に観察でき、空気中に放射した場合、非線形性に伴う高調波が顕著に発生する。
 概略すれば、音波は空気中に分子集団が濃淡に混在する疎密状態であり、空気分子が圧縮よりも復元するのに時間が生じた場合、圧縮後に復元できない空気が、連続的に伝播する空気分子と衝突し、衝撃波が生じて可聴音が発生する原理である。
 続いて、圧電振動子110の動作原理を説明する。圧電セラミック111は、上述のように二個の主面を有する圧電板からなり、圧電セラミック111の主面のそれぞれに、電極層112および電極層113が形成されている。
 圧電セラミック111の分極方向は特に限定されるものではないが、本実施の形態の電気音響変換器では、上下方向(圧電振動子110の厚み方向)で上向きとなっている。このように構成された圧電振動子110は、電極層112および電極層113に交流電圧が印加され、交番的な電界が付与されると、その両主面が同時に拡大または縮小するような、半径方向の伸縮運動(径拡がり運動)を行う。
 換言すれば、圧電振動子110は、主面が拡大するような第一の変形モードと、主面が縮小するような第二の変形モードとを繰り返すような運動を行う。このような運動を繰り返すことで弾性振動板120は弾性効果を利用して、慣性作用と復元作用による上下振動を発生し、音波を発生する。
 上述のように圧電振動子110が作動することで、その外周部と弾性振動板120との接合部分に応力が集中する。しかし、本実施の形態の電気音響変換器100では、弾性振動板120の外側面と圧電振動子110とに樹脂部材130を接合している。この樹脂部材130は、応力が集中する境界面での機械的な破壊を防止する役割を果たす。
 互いに剛性が異なる材料間での境界では、駆動力の伝達の際に応力が集中し、大振幅の際には、破壊などの問題点が生じる。本構成では、弾性力のある樹脂部材130を形成しているため、応力集中を緩和することができる。
 しかも、樹脂部材130は、圧電層111の分極温度より軟化点が高いので、圧電層111を分極するために加熱しても樹脂部材130が溶融する懸念がない。さらに、樹脂部材130はエポキシ樹脂からなるので、圧電振動子110を弾性振動板120に接合する接着剤と兼用することができる。
 また、本発明の構成では、圧電振動子110は周波数20kHz以上の超音波を発振する。FMやAM変調させた超音波を発振させ、空気の非線形状態(疎密状態)を利用して、変調波を復調させ可聴音を再生する、いわゆるパラメトリックスピーカの原理に基づいて音響再生を行う。これは、超音波の特徴である高い指向性を利用して音波を伝播させるものであり、ユーザにしか聴こえないプライバシー音源の実現が可能となる。
 以上のように、本実施の形態の電気音響変換器100は、小型で大音量の再生ができる。また、超音波を利用しているため、指向性が狭く、ユーザのプライバシー保護などの点で、工業的な価値は大きい。
 すなわち、本実施形態の電気音響変換器100は、従来の電気音響変換器に比べ、音波の直進性が高く、ユーザに伝えたい位置へ選択的に音波を伝播できる。以上をまとめると、本実施の形態の電気音響変換器100は、電子機器(例えば、携帯電話機、ノート型パーソナルコンピュータ、小型ゲーム機器など)の音源としても利用可能である。しかも、電気音響変換器100の大型化を防止することができ、音響特性が向上することから、携帯型の電子機器に対しても好適に利用することが可能である。
 なお、本発明は本実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で各種の変形を許容する。例えば、本実施の形態では圧電振動子110の圧電素子としてジルコン酸チタン酸鉛(PZT)などの圧電セラミック111を利用することを例示した。
 しかし、圧電素子については、圧電効果を有する材料であれば、無機材料、有機材料ともに特に限定されず、電気機械変換効率が高い材料、例えば、チタン酸バリウム(BaTiO)などの材料が使用できる。
 また、上記形態では圧電振動子110および弾性振動板120が同心円状の円形の平面形状に形成されていることを例示した。しかし、図3に例示する発振装置である電気音響変換器200のように、圧電振動子210や振動部材である弾性振動板220が矩形である正方形などに形成されていてもよい。
 そして、このような四つの角部211と四つの辺部212とを有する矩形の平面形状に形成されている圧電振動子210に、樹脂部材230は、圧電振動子110の辺部212の位置より角部211の位置で分厚い平面形状に形成されていることが好適である。
 これは、上述のような平面形状の圧電振動子210では発振の応力が角部211に集中するため、その部分を樹脂部材230で強固に弾性振動板220に接合するためである。
 また、上記形態および一の変形例では、一個の弾性振動板120,220に一個の圧電振動子110,210が搭載されていることを例示した。しかし、図4に発振装置として例示する電気音響変換器300のように、一個の弾性振動板220に複数の圧電振動子210が行列状態などに配列されて搭載されていてもよい。
 さらに、図5に発振装置として例示する電気音響変換器400のように、六角形の振動部材420に、三角形の圧電振動子410が交互に図中上下逆様に二列などに配列されていてもよい。また、六角形の圧電振動子がハニカム状に配列されていてもよい(図示せず)。
 また、上記形態では圧電振動子110が、一層の圧電セラミック111と両面の電極層112,113からなることを例示した。しかし、このような圧電振動子が、複数の圧電セラミックと複数の電極層とが交互に形成された積層構造を有してもよい。
 さらに、上記形態では樹脂部材130がエポキシ樹脂からなることを例示した。しかし、このような樹脂部材130としては、PET(Polyethylene Terephthalate)、ウレタン、ポリカーボネート、ポリエチレン、なども利用することができる。
 また、上記形態では圧電振動子110の外側面が面一に形成されており、その全域に樹脂部材130が形成されていることを例示した。しかし、このような樹脂部材130は、最低限、電極部材112,113の短絡を防止できればよいので、例えば、図6に発振装置として例示する電気音響変換器500のように、圧電振動子110の圧電セラミック111の外側面に全周方向に連続に形成されていれば、その上下方向の層厚は短くともよい。
 また、上記形態では、電気機器として電気音響変換器100等で音声を出力する携帯電話機等を想定した。しかし、電子機器として、発振装置である電気音響変換器100等と、この電気音響変換器100等から発振されて測定対象物で反射した超音波を検知する超音波検知部と、検知された超音波から測定対象物までの距離を算出する測距部と、を有するソナー(図示せず)なども実施可能である。
 なお、当然ながら、上述した複数の実施の形態および複数の変形例は、その内容が相反しない範囲で組み合わせることができる。また、上述した実施の形態では、各部の構造などを具体的に説明したが、その構造などは本願発明を満足する範囲で各種に変更することができる。
 この出願は、2010年6月30日に出願された日本出願特願2010-149877を基礎とする優先権を主張し、その開示の総てをここに取り込む。

Claims (16)

  1.  圧電層の表面と裏面とに電極層が形成されている圧電振動子と、
     前記圧電振動子が少なくとも表面に接合されている振動部材と、
     少なくとも前記圧電振動子の外側面に全周方向に連続に形成されている樹脂部材と、
    を有する発振装置。
  2.  前記樹脂部材は、少なくとも前記圧電振動子の外側面に連続する部分の前記振動部材の表面にも密着している請求項1に記載の発振装置。
  3.  前記樹脂部材は、前記圧電層の分極温度より軟化点が高い請求項1または2に記載の発振装置。
  4.  前記樹脂部材は、軟化点が80度以上である請求項3に記載の発振装置。
  5.  前記圧電振動子は、複数の角部と複数の辺部とを有する多角形の平面形状に形成されており、
     前記樹脂部材は、前記圧電振動子の前記辺部の位置より前記角部の位置で分厚い平面形状に形成されている請求項1ないし4の何れか一項に記載の発振装置。
  6.  前記圧電振動子は、四つの角部と四つの辺部とを有する矩形の平面形状に形成されている請求項5に記載の発振装置。
  7.  前記樹脂部材は、前記圧電振動子および前記振動部材より柔軟である請求項1ないし6の何れか一項に記載の発振装置。
  8.  前記樹脂部材は、前記圧電振動子および前記振動部材より内部損失が大きい請求項1ないし7の何れか一項に記載の発振装置。
  9.  前記樹脂部材は、防湿性を有する請求項1ないし8の何れか一項に記載の発振装置。
  10.  前記樹脂部材は、前記圧電層および前記電極層より導電性が低い請求項1ないし9の何れか一項に記載の発振装置。
  11.  前記圧電振動子が、複数の前記圧電層である圧電セラミックと複数の前記電極層とが交互に形成された積層構造を有する請求項1ないし10の何れか一項に記載の発振装置。
  12.  前記圧電層が、圧電セラミックからなる請求項1ないし11の何れか一項に記載の発振装置。
  13.  前記圧電振動子が発振する超音波の周波数が20kHzを超える請求項1ないし12の何れか一項に記載の発振装置。
  14.  前記圧電振動子が可聴波の超音波変調波を発振する請求項1ないし13の何れか一項に記載の発振装置。
  15.  請求項1ないし14の何れか一項に記載の発振装置と、
     前記発振装置に可聴域の音波を出力させる発振駆動部と、
    を有する電子機器。
  16.  請求項1ないし14の何れか一項に記載の発振装置と、
     前記発振装置から発振されて測定対象物で反射した前記超音波を検知する超音波検知部と、
     検知された前記超音波から前記測定対象物までの距離を算出する測距部と、
    を有する電子機器。
PCT/JP2011/003686 2010-06-30 2011-06-28 発振装置および電子機器 WO2012001954A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012522463A JP5682973B2 (ja) 2010-06-30 2011-06-28 発振装置および電子機器
CN201180032594.9A CN102972046B (zh) 2010-06-30 2011-06-28 振荡装置和电子设备
US13/703,095 US9185495B2 (en) 2010-06-30 2011-06-28 Oscillation device and electronic apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010149877 2010-06-30
JP2010-149877 2010-06-30

Publications (1)

Publication Number Publication Date
WO2012001954A1 true WO2012001954A1 (ja) 2012-01-05

Family

ID=45401696

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/003686 WO2012001954A1 (ja) 2010-06-30 2011-06-28 発振装置および電子機器

Country Status (4)

Country Link
US (1) US9185495B2 (ja)
JP (1) JP5682973B2 (ja)
CN (1) CN102972046B (ja)
WO (1) WO2012001954A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014049992A (ja) * 2012-08-31 2014-03-17 Kyocera Corp 音響発生器、音響発生装置および電子機器
CN104703104A (zh) * 2015-03-31 2015-06-10 歌尔声学股份有限公司 压电受话器和超声波发生器复合结构
JP2016149737A (ja) * 2015-02-10 2016-08-18 Necトーキン株式会社 圧電スピーカ

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9749751B2 (en) * 2013-02-27 2017-08-29 Kyocera Corporation Electronic device
CN105022065A (zh) * 2014-04-30 2015-11-04 中兴通讯股份有限公司 终端及其测距的方法
US20160219373A1 (en) * 2015-01-23 2016-07-28 Knowles Electronics, Llc Piezoelectric Speaker Driver
DK3467457T3 (en) * 2018-04-30 2022-10-17 Sonion Nederland Bv Vibrationssensor
CN112004613B (zh) * 2018-06-28 2021-12-28 株式会社村田制作所 振动装置和光学检测装置
US10951992B2 (en) * 2018-12-31 2021-03-16 Lg Display Co., Ltd. Vibration generating device and display apparatus including the same
US10924866B2 (en) * 2019-02-27 2021-02-16 Nokia Technologies Oy Piezoelectric speaker
DE102019120472B4 (de) * 2019-07-30 2021-10-14 Valeo Schalter Und Sensoren Gmbh Baugruppe einer Ultraschallwandlervorrichtung, Ultraschallwandlervorrichtung, Ultraschallsensor und Kontaktierungsverfahren
KR20210112112A (ko) * 2020-03-04 2021-09-14 엘지디스플레이 주식회사 표시장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004266643A (ja) * 2003-03-03 2004-09-24 Sony Corp 圧電発音素子及びその製造方法
JP2005183275A (ja) * 2003-12-22 2005-07-07 Nissin Electric Co Ltd 圧電発光モジュールおよびその応用品
WO2005076660A1 (ja) * 2004-02-10 2005-08-18 Mitsubishi Denki Engineering Kabushiki Kaisha 超指向性スピーカ搭載型移動体
JP2010103977A (ja) * 2008-09-25 2010-05-06 Kyocera Corp 振動体

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6313498A (ja) 1986-07-02 1988-01-20 Nec Corp 無指向性水中超音波トランスジユ−サ
JPH03173652A (ja) * 1989-08-08 1991-07-26 Fuji Electric Co Ltd 圧電素子の貼着方法
JPH03270282A (ja) 1990-03-20 1991-12-02 Matsushita Electric Ind Co Ltd 複合圧電体
US5343443A (en) * 1990-10-15 1994-08-30 Rowe, Deines Instruments, Inc. Broadband acoustic transducer
DE69624282T2 (de) * 1995-04-19 2003-07-03 Seiko Epson Corp., Tokio/Tokyo Tintenstrahlaufzeichnungskopf und Verfahren zu dessen Herstellung
JP2004312561A (ja) 2003-04-09 2004-11-04 Seiko Epson Corp パラメトリックスピーカ用電気音響変換器およびパラメトリックスピーカ
JP4036843B2 (ja) * 2004-03-31 2008-01-23 三洋電機株式会社 発信装置、音波センサ及び自走車
EP1705012B1 (en) * 2005-03-22 2010-11-17 Brother Kogyo Kabushiki Kaisha Piezoelectric actuator, liquid transporting apparatus, and method of producing piezoelectric actuator
JP5245409B2 (ja) 2005-08-31 2013-07-24 日本電気株式会社 圧電アクチュエータ、音響素子、及び電子機器
JP2007111847A (ja) 2005-10-24 2007-05-10 Olympus Corp アクチュエータ
JP5012512B2 (ja) * 2005-12-27 2012-08-29 日本電気株式会社 圧電アクチュエータおよび電子機器
US8148876B2 (en) 2007-01-12 2012-04-03 Nec Corporation Piezoelectric actuator and electronic apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004266643A (ja) * 2003-03-03 2004-09-24 Sony Corp 圧電発音素子及びその製造方法
JP2005183275A (ja) * 2003-12-22 2005-07-07 Nissin Electric Co Ltd 圧電発光モジュールおよびその応用品
WO2005076660A1 (ja) * 2004-02-10 2005-08-18 Mitsubishi Denki Engineering Kabushiki Kaisha 超指向性スピーカ搭載型移動体
JP2010103977A (ja) * 2008-09-25 2010-05-06 Kyocera Corp 振動体

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014049992A (ja) * 2012-08-31 2014-03-17 Kyocera Corp 音響発生器、音響発生装置および電子機器
JP2016149737A (ja) * 2015-02-10 2016-08-18 Necトーキン株式会社 圧電スピーカ
CN104703104A (zh) * 2015-03-31 2015-06-10 歌尔声学股份有限公司 压电受话器和超声波发生器复合结构

Also Published As

Publication number Publication date
JP5682973B2 (ja) 2015-03-11
JPWO2012001954A1 (ja) 2013-08-22
CN102972046B (zh) 2016-08-03
CN102972046A (zh) 2013-03-13
US9185495B2 (en) 2015-11-10
US20130077443A1 (en) 2013-03-28

Similar Documents

Publication Publication Date Title
JP5682973B2 (ja) 発振装置および電子機器
JP5761192B2 (ja) 発振装置および電子機器
JP5741580B2 (ja) 発振装置
JP5954181B2 (ja) 発振装置および電子機器
JP5939160B2 (ja) 発振装置および電子機器
WO2012060041A1 (ja) 発振装置及び携帯装置
JP2012015758A (ja) 発振装置、その製造方法、電子機器
JP2012015755A (ja) 発振装置および電子機器
WO2012011257A1 (ja) 発振装置および電子機器
JP5771952B2 (ja) 発振装置および電子機器
US9095880B2 (en) Oscillator
JP2012015757A (ja) 発振装置および電子機器
JP5617412B2 (ja) 発振装置および電子機器
JP5488266B2 (ja) 発振装置
JP5750865B2 (ja) 発振装置および電子機器
JP5691410B2 (ja) 発振装置
JP2012134599A (ja) 発振装置および電子機器
JP5516181B2 (ja) 発振装置
JP2012015764A (ja) 発振装置
JP2012134597A (ja) 発振装置および電子機器
JP2012015759A (ja) 発振装置および電子機器
JP2012134595A (ja) 発振装置および電子機器
JP2012134598A (ja) 発振装置および電子機器
JP2012134593A (ja) 発振装置および電子機器
JP2012015756A (ja) 電子機器および発振ユニット

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180032594.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11800424

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012522463

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13703095

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11800424

Country of ref document: EP

Kind code of ref document: A1