WO2012001710A1 - An improved process for the preparation of lacosamide - Google Patents

An improved process for the preparation of lacosamide Download PDF

Info

Publication number
WO2012001710A1
WO2012001710A1 PCT/IN2011/000437 IN2011000437W WO2012001710A1 WO 2012001710 A1 WO2012001710 A1 WO 2012001710A1 IN 2011000437 W IN2011000437 W IN 2011000437W WO 2012001710 A1 WO2012001710 A1 WO 2012001710A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
compound
lacosamide
formula
serine
Prior art date
Application number
PCT/IN2011/000437
Other languages
French (fr)
Other versions
WO2012001710A8 (en
Inventor
Mehulkumar Maheshbhai Patel
Vishal Diliprao Mohite
Sudhakar Khambampati
Trinadha Rao Chitturi
Rajamannar Thennati
Original Assignee
Sun Pharmaceutical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sun Pharmaceutical Industries Ltd filed Critical Sun Pharmaceutical Industries Ltd
Priority to US13/807,849 priority Critical patent/US20130102811A1/en
Publication of WO2012001710A1 publication Critical patent/WO2012001710A1/en
Publication of WO2012001710A8 publication Critical patent/WO2012001710A8/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C231/00Preparation of carboxylic acid amides
    • C07C231/02Preparation of carboxylic acid amides from carboxylic acids or from esters, anhydrides, or halides thereof by reaction with ammonia or amines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C231/00Preparation of carboxylic acid amides
    • C07C231/12Preparation of carboxylic acid amides by reactions not involving the formation of carboxamide groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C269/00Preparation of derivatives of carbamic acid, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C269/06Preparation of derivatives of carbamic acid, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups by reactions not involving the formation of carbamate groups

Definitions

  • the present invention relates to a novel and improved process for the preparation of lacosamide.
  • Lacosamide is a chiraf molecule, which is chemically ( ?)-2-acetamido-N-benzyl-3- methoxypropionamide having the following structure:
  • neuropathic pain such as diabetic neuropathic pain. It was approved by USFDA in Oct 2008 as an adjunctive therapy for partial-onset seizures and is marketed by UCB under the trade name VIMPAT ® .
  • Lacosamide was specifically disclosed in United States Patent No. RE 38,551 (referred to as '551 patent hereinafter).
  • the '551 patent discloses three methods for the preparation of lacosamide as depicted in Schemes 1 , 2 and 3 below, and provides detailed process steps using these three schemes.
  • Scheme 1 involves the formation of benzylamide of D-serine, followed by acetylation and then methylation using methyl iodide-silver oxide to give lacosamide.
  • Scheme 2 of the '551 patent involves N-acetylation of D-serine to yield N-acetyl derivative, followed by benzylamide formation and subsequent methylation to give the final product, lacosamide.
  • Scheme 2 involves protection of the amino group by carbobenzyloxy group, methylation of the N-protected intermediate resulting in a product which is both O- methylated at the -OH and esterified at the -COOH group. Hydrolysis of the ester yields the desired O-methylated product, which is subjected to benzylamide , formation, deprotection and final N-acetylation to give lacosamide.
  • the reaction sequence of Scheme 3 is as depicted below:
  • US2008/0027137 also identifies the problem of racemization and esterification, as mentioned above, in the prior art processes.
  • the ⁇ 37 patent application discloses a process for preparing lacosamide comprising O- methylation of N-Boc-D -serine to obtain 0-methyl-N-Boc-D-serine which is then sequentially subjected to benzylamide formation, deprotection reaction to remove the Boc protecting group and acetylation to yield lacosamide, as depicted in Scheme 4 below:
  • the process described in the ' 137 application attempts to overcome the formation of ester occurring during the O-methylation step in the prior art processes by providing a "one-step" reaction i.e. a process wherein O-methylation is carried out in a single step without formation of the esterified product thereby avoiding an additional de- esterification reaction.
  • the process goes through O-methylated N-Boc-D-serine intermediate which however has partial solubility in water, therefore requiring repeated extractions with dichloromethane for its isolation.
  • the process teaches use of oganolithium compounds as bases for the O-methylation reaction.
  • these oraganolithioum compounds are hazardous and expensive, and their use especially for manufacture on large scale is not desirable.
  • CN101591300 discloses yet another different route for the preparation of lacosamide comprising ⁇ 9-methylation of vV-protected D-serine using methyl iodide and silver oxide, acetylation and then benzylamide formation to prepare lacosamide as a one pot process.
  • the process once again involves methylation of N-protected D-serine using expensive reagents, prior to benzylamide formation. Besides, there are chances of esterification during the . methylation step.
  • the present invention involves a novel and improved process for preparation of lacosamide.
  • the process does not yield the unwanted ester product and is simpler to carry out when compared to the prior art processes.
  • the process according to the present invention besides requiring less reaction times, is cost effective in that it does not use expensive reagents like silver oxide or hazardous reagents like organolithium compounds unike the prior art processes. Also, the process does not require elaborate purifications or use of chromatography, and thus is more suitable for industrial scale manufacture. Furthermore, the product is obtained in good yields with high purity, including high chiral purity.
  • the present invention relates to a process for preparation of (R)- 2-acetamido- V-benzyl-3-methoxypropionamide (lacosamide) which comprises the steps of: a) condensing N-Boc-D-serine with benzylamine to obtain the compound of
  • the reactions from step a) to d) are carried out in a single organic solvent.
  • the present invention relates to a process of preparation of N- Boc-D-serine comprising reacting in water an in situ generated alkali metal salt of D- serine with t-butyloxycarbonic anhydride.
  • the present invention relates to a process which yields lacosamide in high chiral purity of >99.0%, preferably >99.9%.
  • the present invention relates to a process of preparing lacosamide comprising the steps a) to d) above, wherein the process is performed sequentially in a single pot
  • Step a) of the process involves condensing TV-Boc-D-serine with benzylamine to obtain the compound of formula I
  • N-Boc-D-Serine The process is performed in the presence of a base, a coupling agent in an organic solvent, optionally in the presence of catalytic amount of 1-hydroxybenzotriazole.
  • the base that may be used in this reaction may be a tertiary organic base selected from triethylamine, diisopropylamine, pyridine, N-alkylmorphoIines etc.
  • the base is N-methylmorpholine.
  • the coupling agent or the carboxyl group activator may be selected from the group consisting of (benzotriazole- l-yloxy)tris(dimethylamino)phosphonium hexafluorophosphate (BOP), isobutyl chloro formate, JV,N'-dicyclohexylcarbodiimide (DCC) and N-(3- dimethylaminopropyl)-N-ethylcarbodiimide (EDC).
  • BOP benzotriazole- l-yloxy)tris(dimethylamino)phosphonium hexafluorophosphate
  • DCC JV,N'-dicyclohexylcarbodiimide
  • EDC N-(3- dimethylaminopropyl)-N-ethylcarbodiimide
  • the coupling agent is isobutyl chloroformate.
  • the solvent for the reaction may be a water immiscible aprotic solvent such as toluene, ethyl acetate or dichloromethane, preferably the solvent is dichloromethane.
  • Step b) of the process involves O-methylating the compound of formula I to prepare a compound of formula II
  • the O-methylation reaction is carried out by adding a methylating agent to the biphasic system comprising solution of compound of formula I in a water immiscible organic solvent as mentioned above, and an aqueous solution of an inorganic base; and catalytic amount of a phase transfer catalyst.
  • the methylating agent may be selected from dimethyl sulfate, methyl triflate, and trimethyl phosphate, Preferred methylating agent for the reaction is dimethyl sulfate.
  • the phase transfer catalyst used in the reaction may be a quartemized amine salt, or a phosphonium salt.
  • the quartemized amine salt may be selected from tetraalkylammonium salts such as sulfate, chloride or bromide; benzyltrialkylammonium halides, cetyltrialkylammonium halides; Tweens (polyoxyethylene sorbitan esters) such as Tween®20, Tween®40, Tween®60, Tween®80, Tween®85 etc.
  • tetraalkylammonium salts such as sulfate, chloride or bromide
  • benzyltrialkylammonium halides cetyltrialkylammonium halides
  • Tweens polyoxyethylene sorbitan esters
  • the phosphonium salt is preferably selected from triphenylmethyl triphenylphosphonium chloride, benzyltriphenylphosphonium chloride, butyltriphenylphosphonium bromide, ethyltriphenylphosphonium bromide, ethyltriphenylphosphonium iodide, methyltriphenylphosphonium bromide, methyltriphenylphosphonium iodide, tetraphenylphosphonium bromide.
  • the phase transfer catalyst is a quartemized ammonium salt, for e.g. tetrabutylammonium bromide.
  • the amount of the phase transfer catalyst that may be used is about 0.01 to 0.10 mole equivalent, preferably 0.02 to 0.05 mole equivalent with reference to compound of formula I.
  • the inorganic base is present in the aqueous phase and may be selected from an alkali metal hydroxide, carbonate or bicarbonate.
  • the base is preferably an alkali metal hydroxide, most preferred being sodium hydroxide.
  • Step c) of the process involves hydrolyzing the compound of formula II to the amino compound of formula III.
  • the hydrolysis of the compound leads to deprotection of the amino group.
  • This reaction may be performed in presence of an organic or an inorganic acid.
  • the organic acid may be selected from a carboxylic or a sulfonic acid such as trifluoroacetic acid, trifluoromethanesulfonic acid, methanesulfonic acid, formic acid, >-toluenesulfonic acid etc.
  • the organic acid may be methanesulphonic acid.
  • the inorganic acid may be selected from a mineral acid such as hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid etc.
  • the inorganic acid is hydrochloric acid.
  • Step d) involves acetylation of the free amino compound of formula III to form lacosamide.
  • N-Acetylation may be performed using acetic anhydride in presence of an inorganic base in the water immiscible aprotic solvent as mentioned in step a).
  • the inorganic base that may be used according to the present process may be selected from a carbonate or bicarbonate of an alkali metal.
  • the inorganic base is potassium carbonate.
  • the present invention relates to process of preparing iV-Boc- D-serine, which is used as a starting material in step a) by reacting a solution of alkali metal salt of D-serine with t-butyloxycarbonic anhydride, optionally in presence of a phase transfer catalyst.
  • the reaction is performed in the absence of any organic solvent.
  • The, Phase transfer catalyst that may be used for the reaction may be a quartemized amine salt and a phosphonium salt.
  • the preferred catalyst and the quantity that may be used is as described in the preparation of compound of formula II from compound of formula I, vide supra:
  • the product N-Boc-D- serine is extracted into a water immiscible organic solvent as mentioned in step a), and the product containing extract may be used directly for step a) of the process without requiring to isolate the product.
  • the solvent is a water immiscible aprotic solvent such as toluene, ethyl acetate or dichloromethane, most preferably the solvent is dichloromethane.
  • the process provides optional method for enhancement of chiral purity of lacosamide comprising leaching the product with water.
  • lacosamide is obtained in high chiral purity >99.0%, preferably >99.9%. This chiral purity is achieved without the need of a separate process for resolution of the desired enantiomer.
  • Example 2 (R)-N-Benzyl-2-N-Boc-amino-3-hydroxypropionamide To the above solution of (i?)-N-Boc-serine in dichloromethane was added N- methylmorpholine 264.7g (2.61mole), cooled to -20°C, and added isobutyl chloroformate 357.4 g (2.617 mole) followed by benzylamine 382 g (3.56 mole). The mixture was then stirred at ambient temperature for 1 hour, washed with dilute HC1 (IN) to obtain a solution of (2?)-N-Boc-serine benzamide in dichloromethane.
  • Example 3 (R)-N-Benzyl-2-N-Boc-amino-3-methoxypropionamide
  • Example 7 (R)-2-Amino-N-benz l-3-methoxypropionamide from (R)-N-benzyl-2- N-Boc-amino-3-methoxypropionamide by using methanesulfonic acid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Peptides Or Proteins (AREA)

Abstract

The present invention relates to a novel and improved process for the preparation of lacosamide, wherein the process is a sequential one-pot process.

Description

AN IMPROVED PROCESS FOR THE PREPARATION OF LACOSAMIDE RELATED APPLICATION
This application claims the benefit of Indian Patent Application No. 1929/MUM/2010 filed on July 02, 2010 which is hereby incorporated by reference. FIELD OF INVENTION
The present invention relates to a novel and improved process for the preparation of lacosamide.
BACKGROUND OF THE INVENTION
Lacosamide is a chiraf molecule, which is chemically ( ?)-2-acetamido-N-benzyl-3- methoxypropionamide having the following structure:
Figure imgf000002_0001
It is an anticonvulsant drug useful in the treatment of central nervous system disorders such as epilepsy. The drug is also useful in the treatment of pain, particularly neuropathic pain such as diabetic neuropathic pain. It was approved by USFDA in Oct 2008 as an adjunctive therapy for partial-onset seizures and is marketed by UCB under the trade name VIMPAT®.
Lacosamide was specifically disclosed in United States Patent No. RE 38,551 (referred to as '551 patent hereinafter). The '551 patent discloses three methods for the preparation of lacosamide as depicted in Schemes 1 , 2 and 3 below, and provides detailed process steps using these three schemes.
Figure imgf000003_0001
Lacosamide
Scheme 1 Scheme 1 involves the formation of benzylamide of D-serine, followed by acetylation and then methylation using methyl iodide-silver oxide to give lacosamide. Scheme 2 of the '551 patent involves N-acetylation of D-serine to yield N-acetyl derivative, followed by benzylamide formation and subsequent methylation to give the final product, lacosamide.
Figure imgf000003_0002
Scheme 2 Scheme 3 involves protection of the amino group by carbobenzyloxy group, methylation of the N-protected intermediate resulting in a product which is both O- methylated at the -OH and esterified at the -COOH group. Hydrolysis of the ester yields the desired O-methylated product, which is subjected to benzylamide, formation, deprotection and final N-acetylation to give lacosamide. The reaction sequence of Scheme 3 is as depicted below:
Figure imgf000004_0001
Lacosamide
Scheme 3
These processes of the prior art suffer from several disadvantages, particularly the use of expensive reagents like methyl iodide and silver oxide for methylation, besides requiring long reaction times. For example, one of the steps requires as long as 4 days for completion and generates several impurities, which necessitates use of chromatography, for purification. Further, the process involves isolation of intermediates at each step of the synthesis which further leads to increase in turnaround time. All these factors are non-conducive for industrial scale manufacture.
The above mentioned processes are also exemplified in United States Patent No.6048899, which is a continuation-in-part of the '551 patent. As indicated in example 1 of the '899 patent, the process results in partial racemization of the product. Further, methylation of the hydroxy group also results in esterification of the free carboxylic acid group, which is then de-esterified in an additional step to yield the desired methylated product. Furthermore, the process involves additional purification steps to be performed i.e. salt formation with ( 2)-mandelic acid for removal of the enantiomer impurity and purification of final product by preparative chromatography. The process results in low yield of lacosamide and chiral purity of not more than 95%.
US2008/0027137 (referred to as Ί37 hereinafter) also identifies the problem of racemization and esterification, as mentioned above, in the prior art processes. The Ί37 patent application discloses a process for preparing lacosamide comprising O- methylation of N-Boc-D -serine to obtain 0-methyl-N-Boc-D-serine which is then sequentially subjected to benzylamide formation, deprotection reaction to remove the Boc protecting group and acetylation to yield lacosamide, as depicted in Scheme 4 below:
Figure imgf000005_0001
Lacosamide
Scheme 4
The process described in the ' 137 application attempts to overcome the formation of ester occurring during the O-methylation step in the prior art processes by providing a "one-step" reaction i.e. a process wherein O-methylation is carried out in a single step without formation of the esterified product thereby avoiding an additional de- esterification reaction. The process goes through O-methylated N-Boc-D-serine intermediate which however has partial solubility in water, therefore requiring repeated extractions with dichloromethane for its isolation. Furthermore, the process teaches use of oganolithium compounds as bases for the O-methylation reaction. However, these oraganolithioum compounds are hazardous and expensive, and their use especially for manufacture on large scale is not desirable.
The abstract of CN101591300 discloses yet another different route for the preparation of lacosamide comprising <9-methylation of vV-protected D-serine using methyl iodide and silver oxide, acetylation and then benzylamide formation to prepare lacosamide as a one pot process. As mentioned for the '551 patent above, the process once again involves methylation of N-protected D-serine using expensive reagents, prior to benzylamide formation. Besides, there are chances of esterification during the . methylation step. Thus, there is a need for an improved, cost-effective process for preparation of lacosamide with high chiral purity on commercial scale. The present invention involves a novel and improved process for preparation of lacosamide. The process does not yield the unwanted ester product and is simpler to carry out when compared to the prior art processes. The process according to the present invention, besides requiring less reaction times, is cost effective in that it does not use expensive reagents like silver oxide or hazardous reagents like organolithium compounds unike the prior art processes. Also, the process does not require elaborate purifications or use of chromatography, and thus is more suitable for industrial scale manufacture. Furthermore, the product is obtained in good yields with high purity, including high chiral purity.
SUMMARY OF THE INVENTION In one embodiment, the present invention relates to a process for preparation of (R)- 2-acetamido- V-benzyl-3-methoxypropionamide (lacosamide) which comprises the steps of: a) condensing N-Boc-D-serine with benzylamine to obtain the compound of
formula I
Figure imgf000007_0001
I b) methylating the compound of formula I to prepare a compound of formula II
Figure imgf000007_0002
II c) hydrolyzing the compound of formula II to the amino compound of formula III, and
Figure imgf000007_0003
III d) acylating the compound of formula III to obtain (i?)-2-acetamido-N-benzyl-3- methoxypropionamide (lacosamide)
Figure imgf000008_0001
wherein the process is a sequential one-pot process.
In a preferred embodiment the reactions from step a) to d) are carried out in a single organic solvent. In another embodiment, the present invention relates to a process of preparation of N- Boc-D-serine comprising reacting in water an in situ generated alkali metal salt of D- serine with t-butyloxycarbonic anhydride.
In yet another embodiment, the present invention relates to a process which yields lacosamide in high chiral purity of >99.0%, preferably >99.9%. DETAILED DESCRIPTION OF THE INVENTION
In one embodiment, the present invention relates to a process of preparing lacosamide comprising the steps a) to d) above, wherein the process is performed sequentially in a single pot
Step a) of the process involves condensing TV-Boc-D-serine with benzylamine to obtain the compound of formula I
Figure imgf000008_0002
N-Boc-D-Serine The process is performed in the presence of a base, a coupling agent in an organic solvent, optionally in the presence of catalytic amount of 1-hydroxybenzotriazole. The base that may be used in this reaction may be a tertiary organic base selected from triethylamine, diisopropylamine, pyridine, N-alkylmorphoIines etc. In a preferred embodiment, the base is N-methylmorpholine. The coupling agent or the carboxyl group activator may be selected from the group consisting of (benzotriazole- l-yloxy)tris(dimethylamino)phosphonium hexafluorophosphate (BOP), isobutyl chloro formate, JV,N'-dicyclohexylcarbodiimide (DCC) and N-(3- dimethylaminopropyl)-N-ethylcarbodiimide (EDC). In a preferred embodiment, the coupling agent is isobutyl chloroformate.
The solvent for the reaction may be a water immiscible aprotic solvent such as toluene, ethyl acetate or dichloromethane, preferably the solvent is dichloromethane.
Step b) of the process involves O-methylating the compound of formula I to prepare a compound of formula II
Figure imgf000009_0001
1 11
The O-methylation reaction is carried out by adding a methylating agent to the biphasic system comprising solution of compound of formula I in a water immiscible organic solvent as mentioned above, and an aqueous solution of an inorganic base; and catalytic amount of a phase transfer catalyst. The methylating agent may be selected from dimethyl sulfate, methyl triflate, and trimethyl phosphate, Preferred methylating agent for the reaction is dimethyl sulfate. The phase transfer catalyst used in the reaction may be a quartemized amine salt, or a phosphonium salt. The quartemized amine salt may be selected from tetraalkylammonium salts such as sulfate, chloride or bromide; benzyltrialkylammonium halides, cetyltrialkylammonium halides; Tweens (polyoxyethylene sorbitan esters) such as Tween®20, Tween®40, Tween®60, Tween®80, Tween®85 etc. The phosphonium salt is preferably selected from triphenylmethyl triphenylphosphonium chloride, benzyltriphenylphosphonium chloride, butyltriphenylphosphonium bromide, ethyltriphenylphosphonium bromide, ethyltriphenylphosphonium iodide, methyltriphenylphosphonium bromide, methyltriphenylphosphonium iodide, tetraphenylphosphonium bromide. Preferably, the phase transfer catalyst is a quartemized ammonium salt, for e.g. tetrabutylammonium bromide. The amount of the phase transfer catalyst that may be used is about 0.01 to 0.10 mole equivalent, preferably 0.02 to 0.05 mole equivalent with reference to compound of formula I. The inorganic base is present in the aqueous phase and may be selected from an alkali metal hydroxide, carbonate or bicarbonate. The base is preferably an alkali metal hydroxide, most preferred being sodium hydroxide.
Step c) of the process involves hydrolyzing the compound of formula II to the amino compound of formula III.
Figure imgf000010_0001
II III
The hydrolysis of the compound leads to deprotection of the amino group. This reaction may be performed in presence of an organic or an inorganic acid. The organic acid may be selected from a carboxylic or a sulfonic acid such as trifluoroacetic acid, trifluoromethanesulfonic acid, methanesulfonic acid, formic acid, >-toluenesulfonic acid etc. Preferably the organic acid may be methanesulphonic acid. The inorganic acid may be selected from a mineral acid such as hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid etc. Preferably the inorganic acid is hydrochloric acid.
Step d) involves acetylation of the free amino compound of formula III to form lacosamide. N-Acetylation may be performed using acetic anhydride in presence of an inorganic base in the water immiscible aprotic solvent as mentioned in step a). The inorganic base that may be used according to the present process may be selected from a carbonate or bicarbonate of an alkali metal. Preferably the inorganic base is potassium carbonate.
Figure imgf000011_0001
Lacosamide
In another embodiment, the present invention relates to process of preparing iV-Boc- D-serine, which is used as a starting material in step a) by reacting a solution of alkali metal salt of D-serine with t-butyloxycarbonic anhydride, optionally in presence of a phase transfer catalyst. Preferably, the reaction is performed in the absence of any organic solvent.
Figure imgf000011_0002
D-Serine TV-Boc-D-Serine The, Phase transfer catalyst that may be used for the reaction may be a quartemized amine salt and a phosphonium salt. The preferred catalyst and the quantity that may be used is as described in the preparation of compound of formula II from compound of formula I, vide supra: Upon completion of the reaction, the product N-Boc-D- serine is extracted into a water immiscible organic solvent as mentioned in step a), and the product containing extract may be used directly for step a) of the process without requiring to isolate the product.
In a preferred embodiment of the present invention, all the reactions from steps a) to step d) are carried out in the same single organic solvent. Preferably the solvent is a water immiscible aprotic solvent such as toluene, ethyl acetate or dichloromethane, most preferably the solvent is dichloromethane.
In yet another embodiment, the process provides optional method for enhancement of chiral purity of lacosamide comprising leaching the product with water.
In yet another embodiment of the present invention, lacosamide is obtained in high chiral purity >99.0%, preferably >99.9%. This chiral purity is achieved without the need of a separate process for resolution of the desired enantiomer.
The examples that follow do not limit the scope of the present invention and are included as illustrations
EXAMPLES Example 1: (R)-N-Boc-D-serine
To a stirred solution of sodium hydroxide 114 g (2.85 mole) in water (375 ml) was added (/?)-serine 250 g (2.37 mole). To the resulting clear solution of sodium salt of (i?)-serine were added t-butyloxycarbonic anhydride (Boc-anhydride), 571 g (2.61 mole) and a catalytic amount tetrabutylammonium bromidel2.0 g (0.036 mole). The mixture was stirred at ambient temperature for 16 hours. The resulting suspension was acidified to pH 3.5-4.0 with dilute HC1 (3N) and the product was extracted into dichloromethane to obtain a solution of (i?)-N-Boc-serine.
Example 2: (R)-N-Benzyl-2-N-Boc-amino-3-hydroxypropionamide To the above solution of (i?)-N-Boc-serine in dichloromethane was added N- methylmorpholine 264.7g (2.61mole), cooled to -20°C, and added isobutyl chloroformate 357.4 g (2.617 mole) followed by benzylamine 382 g (3.56 mole). The mixture was then stirred at ambient temperature for 1 hour, washed with dilute HC1 (IN) to obtain a solution of (2?)-N-Boc-serine benzamide in dichloromethane. Example 3: (R)-N-Benzyl-2-N-Boc-amino-3-methoxypropionamide
To the above solution of (i?)-N-benzyl-2-N-Boc-amino-3-hydroxypropionamide in dichloromethane was added 50% w/w aqueous solution of sodium hydroxide 250 ml (4.75 mole) and tetrabutylammonium bromide 12.0 g (0.036 mole). Cooled to 5° C, added dimethyl sulfate 389.5 g (3.09 mole) and stirred at ambient temperature for 2 hrs. he aqueous layer was separated, and the organic layer was washed with water to obtain a solution of (j?)-N-benzyl-2-N-Boc-amino-3-methoxypropionamide in dichoromethane.
Example 4: (R)-2-Amino-N-benzyl-3-methoxypropionamide
To the above solution of (i?)-N-benzyl-2-N-Boc-amino-3-methoxypropionamide in dichoromethane was added cone, hydrochloric acid and stirred at ambient temperature for 1 hour. Water was then added to the mixture, stirred and separated the product containing aqueous layer. Basified the aqueous layer to pH 10-12 and extracted with dichloromethane to obtain a solution of ( ?)-2-amino-N-benzyl-3- methoxypropionamide in dichloromethane. Example 5: Lacosamide
To the above solution of (/?)-2-Amino-iV-benzyl-3-methoxypropionamide was added potassium carbonate 164.0 g (1.18 mole) and acetic anhydride 237 g (2.32 mole) at 0- 5°C. The reaction mixture was then stirred at ambient temperature for 1 hour and washed with water. The organic layer was concentrated, the residue stripped once with ethyl acetate and then crystallized from ethyl acetate to obtain lacosamide with HPLC purity >99%, chiral purity using chiral HPLC was 99%.
Repeat crystallization from ethyl acetate provides lacosamide with chiral purity > 99.5%. Example 6: Chiral enrichment of Lacosamide
A sample of lacosamide , l .lg, containing 1.3% of (5)-isomer was stirred as a thick suspension in DM water for 1 hour, filtered and dried to obtain lacosamide with chiral purity 99.96%.
Example 7: (R)-2-Amino-N-benz l-3-methoxypropionamide from (R)-N-benzyl-2- N-Boc-amino-3-methoxypropionamide by using methanesulfonic acid
To the solution of (i?)-iV-benzyl-2-N-Boc-amino-3-methoxypropionamide 8.66 g (0.028 mole) in dichloromethane was added of 30%v/v aqueous methanesulfonic acid 14.5 ml and stirred at ambient temperature for 18 hours. Water was added to the mixture, stirred and separated the aqueous layer. Basified the aqueous layer to pH 10- 12 and extracted with dichloromethane to obtain a solution of (i?)-2-amino-N-benzyl- 3-methoxypropionamide in dichloromethane.
The solution of (i?)-2-amino-N-benzyl-3-methoxypropionamide in dichloromethane was converted to lacosamide in the same manner as described in example 5.

Claims

Claims:
1. A process for preparation of (J?)-2-acetamido-N-benzyl-3-methoxypropionumide (Lacosamide) wherein the process is sequential a one-pot process,
Figure imgf000015_0001
Lacosamide comprising, a) condensing N-Boc-D-serine with benzylamine to obtain the compound of formula I,
Figure imgf000015_0002
I b) methylating the compound of formula I to prepare a compound of formula II,
Figure imgf000015_0003
II c) hydrolyzing the compound of formula II to the amino compound of formula III, and
Figure imgf000016_0001
III d) acylating the compound of formula III to obtain (i?)-2-acetamido-jV-benzyl-3- methoxypropionamide (lacosamide).
5 2. The process as claimed in claim 1, wherein all the reactions of step a) to d) are carried out in dicholormethane.
3. The process as claimed in claim 1, wherein the condensation of N-Boc-D-serine with benzylamine in step a) is performed using a coupling agent, optionally in the presence of catalytic 1 -hydroxybenzitriazole G
4. The process as claimed in claim 3, wherein the coupling agent is selected from the group consisting of (benzotriazole-l-yloxy)tris(dimethylamino)phosphonium hexafluorophosphate (BOP), isobutyl chloroformate, N,jV'-dicyclohexylcarbodiimide (DCC) and N-(3-dimethylaminopropyl)-N-ethylcarbodiimide(EDC) .
5. The process as claimed in claim 1 , wherein methylation of compound of formula I5 in step b) is carried out using a methylating agent in a biphasic system in presence of a phase transfer catalyst.
6. The process as claimed in claim 5, wherein the methylating agent is selected from the group consisting of dimethyl sulfate, methyl triflate, and trimethyl phosphate.
7. The process as claimed in claim 6, wherein the methylating agent is dimethyl sulfate.
8. The process as claimed in claim 5, wherein the aqueous phase of the biphasic system contains an inorganic base.
9. The process as claimed in claim 8, wherein the inorganic base is selected from an alkali metal hydroxide, carbonate and bicarbonate.
10. The process as claimed in claim 5, wherein the phase transfer catalyst is selected from a quartemized amine salt or a phosphonium salt.
11. The process as claimed in claim 10, wherein quartemized amine salt is selected from the group consisting of sulfate, chloride or bromide salts of tetraalkylammonium; benzyltrialkylammonium halides; cetyltrialkylamrnonium halides and Tweens (polyoxyethylene sorbitan esters) such as Tween®20, Tween®40, Tween®60, Tween®80 and Tween®85.
12. The process as claimed in claim 10, wherein the phosphonium salt is selected from the group consisting of triphenylmethyl triphenylphosphonium chloride, benzyltriphenylphosphonium chloride, butyltriphenylphosphonium bromide, ethyltriphenylphosphonium bromide, ethyltriphenylphosphonium iodide, methyltriphenylphosphonium bromide, methyltriphenylphosphonium iodide and tetraphenylphosphonium bromide.
13. The process as claimed in claim 10, wherein the phase transfer catalyst is tetrabutylammonium bromide.
14. The process as claimed in claim 5, wherein the phase transfer catalyst is used is about 0.01 to 0.10 mole equivalent with reference to compound of formula I.
15. The process as claimed in claim 14, wherein the phase transfer catalyst 0.02 to 0.05 mole equivalent.
16. The process as claimed in claim 1, wherein the hydrolysis of compound of formula II in step c) is carried out using an organic acid or a mineral acid.
17. The process as claimed in claim 16, wherein the organic acid is selected from a carboxylic or a sulfonic acid consisting of trifluoroacetic acid, trifluoromethanesulfonic acid, methanesulfonic acid, formic acid or -toluenesuifonic acid.
18. The process as claimed in claim 17, wherein the mineral acid is selected from hydrochloric acid, hydrobromic acid, sulfuric acid and phosphoric acid.
19. The process as claimed in claim 1, wherein acylation of compound of formula III in step d) is carried out using acetic anhydride in the presence of an inorganic base.
20. The process as claimed in claim 19, wherein the inorganic base is selected from carbonate or bicarbonates of an alkali metal.
21. The process as claimed in claim 20, wherein the inorganic base is potassium carbonate.
22. The process as claimed in claim 1, wherein N-Boc-D-serine used in step a) is prepared by reacting an aqueous solution of an alkali metal salt of D-serine with t- butyloxycarbonic anhydride in the absence of a solvent, optionally in the presence of a phase transfer catalyst
Figure imgf000019_0001
D-Serine N-Boc-D-Serine
23. The process as claimed in claim 1 , wherein the process further involves optional enhancement of chiral purity of lacosamide by leaching with water.
24. The process as claimed in claim 1, wherein (i?)-2-acetamido-N-benzyl-3- methoxypropionamide (Lacosamide) is obtained in a chiral purity of >99.0%.
25. The process as claimed in claim 1, wherein (i?)-2-acetamido-N-benzyl-3- methoxypropionamide (Lacosamide) is obtained in a chiral purity of >99.9%.
PCT/IN2011/000437 2010-07-02 2011-07-01 An improved process for the preparation of lacosamide WO2012001710A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/807,849 US20130102811A1 (en) 2010-07-02 2011-07-01 Process for the preparation of lacosamide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IN1929MU2010 2010-07-02
IN1929/MUM/2010 2010-07-02

Publications (2)

Publication Number Publication Date
WO2012001710A1 true WO2012001710A1 (en) 2012-01-05
WO2012001710A8 WO2012001710A8 (en) 2013-01-31

Family

ID=44764192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IN2011/000437 WO2012001710A1 (en) 2010-07-02 2011-07-01 An improved process for the preparation of lacosamide

Country Status (2)

Country Link
US (1) US20130102811A1 (en)
WO (1) WO2012001710A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013024383A1 (en) * 2011-08-12 2013-02-21 Alembic Pharmaceuticals Limited An improved process for the preparation of lacosamide
WO2018060781A1 (en) * 2016-09-28 2018-04-05 Unichem Laboratories Ltd An improved process for the preparation of lacosamide

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6048899A (en) 1997-03-17 2000-04-11 Research Corporation Tech., Inc. Anticonvulsant enantiomeric amino acid derivatives
USRE38551E1 (en) 1996-03-15 2004-07-06 Research Corporation Technologies, Inc. Anticonvulsant enantiomeric amino acid derivatives
EP1642889A1 (en) * 2004-10-02 2006-04-05 Schwarz Pharma Ag Improved synthesis scheme for lacosamide
EP2067765A2 (en) * 2007-12-04 2009-06-10 Ranbaxy Laboratories Limited Intermediate compounds and their use in preparation of lacosamide
CN101591300A (en) 2009-02-19 2009-12-02 成都伊诺达博医药科技有限公司 The novel method of synthesizing lacosamide
WO2011015617A1 (en) * 2009-08-06 2011-02-10 Medichem, S.A. Solid forms of an n-(phenylmethyl)propanamide derivative and processes of preparation
CN102020589A (en) * 2009-09-19 2011-04-20 浙江九洲药业股份有限公司 Tert-butyl carbamate derivative and preparation method and application thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE38551E1 (en) 1996-03-15 2004-07-06 Research Corporation Technologies, Inc. Anticonvulsant enantiomeric amino acid derivatives
US6048899A (en) 1997-03-17 2000-04-11 Research Corporation Tech., Inc. Anticonvulsant enantiomeric amino acid derivatives
EP1642889A1 (en) * 2004-10-02 2006-04-05 Schwarz Pharma Ag Improved synthesis scheme for lacosamide
US20080027137A1 (en) 2004-10-02 2008-01-31 Schwarz Pharma Ag Synthesis Scheme for Lacosamide
EP2067765A2 (en) * 2007-12-04 2009-06-10 Ranbaxy Laboratories Limited Intermediate compounds and their use in preparation of lacosamide
CN101591300A (en) 2009-02-19 2009-12-02 成都伊诺达博医药科技有限公司 The novel method of synthesizing lacosamide
WO2011015617A1 (en) * 2009-08-06 2011-02-10 Medichem, S.A. Solid forms of an n-(phenylmethyl)propanamide derivative and processes of preparation
CN102020589A (en) * 2009-09-19 2011-04-20 浙江九洲药业股份有限公司 Tert-butyl carbamate derivative and preparation method and application thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013024383A1 (en) * 2011-08-12 2013-02-21 Alembic Pharmaceuticals Limited An improved process for the preparation of lacosamide
WO2018060781A1 (en) * 2016-09-28 2018-04-05 Unichem Laboratories Ltd An improved process for the preparation of lacosamide
US10414720B2 (en) 2016-09-28 2019-09-17 Unichem Laboratories Ltd. Process for the preparation of lacosamide
EP3519382A4 (en) * 2016-09-28 2020-06-24 Unichem Laboratories Ltd An improved process for the preparation of lacosamide

Also Published As

Publication number Publication date
WO2012001710A8 (en) 2013-01-31
US20130102811A1 (en) 2013-04-25

Similar Documents

Publication Publication Date Title
US7884134B2 (en) Synthesis scheme for lacosamide
US20130123537A1 (en) Process for the preparation of lacosamide
WO2014125506A2 (en) A process for the preparation of ivacaftor and its intermediates
CA2190570C (en) Process for producing 3-amino-2-oxo-1-halogenopropane derivatives
KR20120128667A (en) A process for the preparation of lacosamide
US8598386B2 (en) Process for producing lacosamide
EP2970102B1 (en) An improved process for the synthesis of melphalan and the hydrochloride salt
EP3144295B1 (en) Process for the preparation of lacosamide
EP3519382B1 (en) An improved process for the preparation of lacosamide
WO2012001710A1 (en) An improved process for the preparation of lacosamide
US9199916B2 (en) Process for the preparation of (R)-N-benzyl-2-acetamido-3-methoxypropionamide
US20110319649A1 (en) Intermediate for producing lacosamide and a process for its preparation and conversion to lacosamide
US9790170B2 (en) Method for preparing lacosamide
US8569544B2 (en) Process for preparation of benzphetamine and its pharmaceutically acceptable salts
CN106866456B (en) A kind of synthetic method of scheme for lacosamide
CN113061100A (en) Novel preparation method of lacosamide
US20040049074A1 (en) Process for producing 3-amino-2-hydroxypropionic acid derivatives
JP2022072636A (en) Method for producing amide compound
US20180237377A1 (en) Process for the Synthesis of Melphalan and the Hydrochloride Salt
CN112521311A (en) Improved lacosamide intermediate preparation method
CN106957239A (en) A kind of preparation method of improved scheme for lacosamide
JP2018515483A (en) Method for producing amphiphilic imidazolinium compound
JPH1087590A (en) Production of carboxylic acid amide compound
US20170037074A1 (en) Method of esterification of carboxyl groups present on multihydroxyl cyclic polyene molecular structures carrying basic nitrogen groups
JPH09278734A (en) Production of optically active cyanohydrin

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11767076

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13807849

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11767076

Country of ref document: EP

Kind code of ref document: A1