WO2011163632A2 - Lowering saturated fatty acid content of plant seeds - Google Patents
Lowering saturated fatty acid content of plant seeds Download PDFInfo
- Publication number
- WO2011163632A2 WO2011163632A2 PCT/US2011/041897 US2011041897W WO2011163632A2 WO 2011163632 A2 WO2011163632 A2 WO 2011163632A2 US 2011041897 W US2011041897 W US 2011041897W WO 2011163632 A2 WO2011163632 A2 WO 2011163632A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- seq
- desaturase
- plant
- delta
- gene
- Prior art date
Links
- 150000004671 saturated fatty acids Chemical class 0.000 title claims abstract description 41
- 108010087894 Fatty acid desaturases Proteins 0.000 claims abstract description 142
- 238000000034 method Methods 0.000 claims abstract description 88
- 150000007523 nucleic acids Chemical class 0.000 claims abstract description 85
- 102000039446 nucleic acids Human genes 0.000 claims abstract description 64
- 108020004707 nucleic acids Proteins 0.000 claims abstract description 64
- 239000000463 material Substances 0.000 claims abstract description 37
- 235000003441 saturated fatty acids Nutrition 0.000 claims abstract description 21
- 230000003247 decreasing effect Effects 0.000 claims abstract description 17
- 102100034543 Fatty acid desaturase 3 Human genes 0.000 claims abstract 8
- 241000196324 Embryophyta Species 0.000 claims description 261
- 108090000623 proteins and genes Proteins 0.000 claims description 187
- 210000004027 cell Anatomy 0.000 claims description 98
- 240000000385 Brassica napus var. napus Species 0.000 claims description 68
- 235000004977 Brassica sinapistrum Nutrition 0.000 claims description 59
- 235000014698 Brassica juncea var multisecta Nutrition 0.000 claims description 54
- 235000006008 Brassica napus var napus Nutrition 0.000 claims description 54
- 235000006618 Brassica rapa subsp oleifera Nutrition 0.000 claims description 54
- 230000009261 transgenic effect Effects 0.000 claims description 50
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 43
- 108091028043 Nucleic acid sequence Proteins 0.000 claims description 42
- 241000219194 Arabidopsis Species 0.000 claims description 40
- 240000004808 Saccharomyces cerevisiae Species 0.000 claims description 40
- 230000001105 regulatory effect Effects 0.000 claims description 39
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 claims description 37
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 35
- 229920001184 polypeptide Polymers 0.000 claims description 31
- 150000001413 amino acids Chemical group 0.000 claims description 28
- LWTDZKXXJRRKDG-KXBFYZLASA-N (-)-phaseollin Chemical compound C1OC2=CC(O)=CC=C2[C@H]2[C@@H]1C1=CC=C3OC(C)(C)C=CC3=C1O2 LWTDZKXXJRRKDG-KXBFYZLASA-N 0.000 claims description 22
- 125000003729 nucleotide group Chemical group 0.000 claims description 21
- 239000002773 nucleotide Substances 0.000 claims description 20
- 108091036066 Three prime untranslated region Proteins 0.000 claims description 13
- 240000002791 Brassica napus Species 0.000 claims description 12
- 235000002637 Nicotiana tabacum Nutrition 0.000 claims description 12
- 230000001131 transforming effect Effects 0.000 claims description 12
- 241000208125 Nicotiana Species 0.000 claims description 11
- 101710163504 Phaseolin Proteins 0.000 claims description 11
- LWTDZKXXJRRKDG-UHFFFAOYSA-N phaseollin Natural products C1OC2=CC(O)=CC=C2C2C1C1=CC=C3OC(C)(C)C=CC3=C1O2 LWTDZKXXJRRKDG-UHFFFAOYSA-N 0.000 claims description 11
- 241000589155 Agrobacterium tumefaciens Species 0.000 claims description 9
- 241001515826 Cassava vein mosaic virus Species 0.000 claims description 9
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 claims description 8
- 244000105624 Arachis hypogaea Species 0.000 claims description 7
- 108700011203 Phaseolus vulgaris phaseolin Proteins 0.000 claims description 7
- 244000075850 Avena orientalis Species 0.000 claims description 6
- 235000011293 Brassica napus Nutrition 0.000 claims description 6
- 108091026898 Leader sequence (mRNA) Proteins 0.000 claims description 5
- 240000006394 Sorghum bicolor Species 0.000 claims description 5
- 235000011684 Sorghum saccharatum Nutrition 0.000 claims description 5
- 235000021307 Triticum Nutrition 0.000 claims description 5
- 101710110895 Uncharacterized 7.3 kDa protein in cox-rep intergenic region Proteins 0.000 claims description 5
- 239000011159 matrix material Substances 0.000 claims description 5
- 241000209219 Hordeum Species 0.000 claims description 4
- 101100280636 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) fae-1 gene Proteins 0.000 claims description 4
- 244000061176 Nicotiana tabacum Species 0.000 claims description 4
- 241000209056 Secale Species 0.000 claims description 4
- 238000012258 culturing Methods 0.000 claims description 4
- 235000003911 Arachis Nutrition 0.000 claims description 3
- 235000005781 Avena Nutrition 0.000 claims description 3
- 241000722877 Borago Species 0.000 claims description 3
- WLYGSPLCNKYESI-RSUQVHIMSA-N Carthamin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1[C@@]1(O)C(O)=C(C(=O)\C=C\C=2C=CC(O)=CC=2)C(=O)C(\C=C\2C([C@](O)([C@H]3[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O3)O)C(O)=C(C(=O)\C=C\C=3C=CC(O)=CC=3)C/2=O)=O)=C1O WLYGSPLCNKYESI-RSUQVHIMSA-N 0.000 claims description 3
- 241000208809 Carthamus Species 0.000 claims description 3
- 235000003901 Crambe Nutrition 0.000 claims description 3
- 241000220246 Crambe <angiosperm> Species 0.000 claims description 3
- 241000219992 Cuphea Species 0.000 claims description 3
- 240000001689 Cyanthillium cinereum Species 0.000 claims description 3
- 241000512897 Elaeis Species 0.000 claims description 3
- 235000001942 Elaeis Nutrition 0.000 claims description 3
- 239000004471 Glycine Substances 0.000 claims description 3
- 241000219146 Gossypium Species 0.000 claims description 3
- 235000009438 Gossypium Nutrition 0.000 claims description 3
- 241000208818 Helianthus Species 0.000 claims description 3
- 241001072282 Limnanthes Species 0.000 claims description 3
- 241000208204 Linum Species 0.000 claims description 3
- 241000219925 Oenothera Species 0.000 claims description 3
- 241000795633 Olea <sea slug> Species 0.000 claims description 3
- 241000209094 Oryza Species 0.000 claims description 3
- 241000390166 Physaria Species 0.000 claims description 3
- 241000209504 Poaceae Species 0.000 claims description 3
- 241000862632 Soja Species 0.000 claims description 3
- 241000209140 Triticum Species 0.000 claims description 3
- 241000208241 Tropaeolum Species 0.000 claims description 3
- 101001028324 Acheta domesticus Acyl-CoA Delta-9 desaturase Proteins 0.000 claims description 2
- 101000833492 Homo sapiens Jouberin Proteins 0.000 claims description 2
- 101000651236 Homo sapiens NCK-interacting protein with SH3 domain Proteins 0.000 claims description 2
- 102100024407 Jouberin Human genes 0.000 claims description 2
- 101000639980 Mus musculus Acyl-CoA desaturase 3 Proteins 0.000 claims description 2
- 210000005253 yeast cell Anatomy 0.000 claims description 2
- 235000003846 Ricinus Nutrition 0.000 claims 2
- 241000322381 Ricinus <louse> Species 0.000 claims 2
- 240000006474 Theobroma bicolor Species 0.000 claims 2
- 241000209149 Zea Species 0.000 claims 2
- 241000592344 Spermatophyta Species 0.000 claims 1
- 230000014509 gene expression Effects 0.000 abstract description 69
- 235000014113 dietary fatty acids Nutrition 0.000 abstract description 52
- 229930195729 fatty acid Natural products 0.000 abstract description 52
- 239000000194 fatty acid Substances 0.000 abstract description 52
- 150000004665 fatty acids Chemical class 0.000 abstract description 50
- 125000003275 alpha amino acid group Chemical group 0.000 abstract description 33
- 239000000203 mixture Substances 0.000 abstract description 29
- 230000000694 effects Effects 0.000 abstract description 20
- 230000001965 increasing effect Effects 0.000 abstract description 11
- 230000008901 benefit Effects 0.000 abstract description 2
- 235000021354 omega 7 monounsaturated fatty acids Nutrition 0.000 abstract description 2
- 102100028897 Stearoyl-CoA desaturase Human genes 0.000 description 92
- 108020004705 Codon Proteins 0.000 description 81
- 239000013612 plasmid Substances 0.000 description 71
- 108020004414 DNA Proteins 0.000 description 53
- 102000004169 proteins and genes Human genes 0.000 description 53
- 235000018102 proteins Nutrition 0.000 description 49
- 230000009466 transformation Effects 0.000 description 45
- 239000012634 fragment Substances 0.000 description 40
- 108091026890 Coding region Proteins 0.000 description 38
- 210000001519 tissue Anatomy 0.000 description 37
- 241000589158 Agrobacterium Species 0.000 description 33
- 239000013615 primer Substances 0.000 description 32
- 108010055259 acyl-CoA delta9-desaturase Proteins 0.000 description 31
- 238000004458 analytical method Methods 0.000 description 28
- 238000006243 chemical reaction Methods 0.000 description 28
- 230000002538 fungal effect Effects 0.000 description 28
- 239000013598 vector Substances 0.000 description 27
- 241000736122 Parastagonospora nodorum Species 0.000 description 26
- 235000001014 amino acid Nutrition 0.000 description 26
- IPCSVZSSVZVIGE-UHFFFAOYSA-N palmitic acid group Chemical group C(CCCCCCCCCCCCCCC)(=O)O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 25
- 235000019387 fatty acid methyl ester Nutrition 0.000 description 24
- 239000002609 medium Substances 0.000 description 24
- 108020005345 3' Untranslated Regions Proteins 0.000 description 23
- 208000016444 Benign adult familial myoclonic epilepsy Diseases 0.000 description 23
- 208000016427 familial adult myoclonic epilepsy Diseases 0.000 description 23
- 108091008146 restriction endonucleases Proteins 0.000 description 23
- 239000000047 product Substances 0.000 description 21
- 239000000523 sample Substances 0.000 description 21
- 241000255967 Helicoverpa zea Species 0.000 description 17
- 239000000758 substrate Substances 0.000 description 17
- 239000002253 acid Substances 0.000 description 16
- 238000003556 assay Methods 0.000 description 16
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical class CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 16
- 229920000136 polysorbate Polymers 0.000 description 16
- 239000000243 solution Substances 0.000 description 15
- 238000013518 transcription Methods 0.000 description 15
- 230000035897 transcription Effects 0.000 description 15
- 238000009825 accumulation Methods 0.000 description 14
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 14
- 238000006467 substitution reaction Methods 0.000 description 14
- 238000012546 transfer Methods 0.000 description 14
- 241001344131 Magnaporthe grisea Species 0.000 description 13
- 238000012986 modification Methods 0.000 description 13
- 230000004048 modification Effects 0.000 description 13
- 229920002578 polythiourethane polymer Polymers 0.000 description 13
- ZGNITFSDLCMLGI-UHFFFAOYSA-N flubendiamide Chemical compound CC1=CC(C(F)(C(F)(F)F)C(F)(F)F)=CC=C1NC(=O)C1=CC=CC(I)=C1C(=O)NC(C)(C)CS(C)(=O)=O ZGNITFSDLCMLGI-UHFFFAOYSA-N 0.000 description 12
- 230000012010 growth Effects 0.000 description 12
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid group Chemical group C(CCCCCCC\C=C/CCCCCCCC)(=O)O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 12
- 230000006798 recombination Effects 0.000 description 12
- 238000005215 recombination Methods 0.000 description 12
- 238000013519 translation Methods 0.000 description 12
- 235000021314 Palmitic acid Nutrition 0.000 description 11
- 238000010367 cloning Methods 0.000 description 11
- 230000002950 deficient Effects 0.000 description 11
- 238000013461 design Methods 0.000 description 11
- 239000012528 membrane Substances 0.000 description 11
- 108020004999 messenger RNA Proteins 0.000 description 11
- 108020003589 5' Untranslated Regions Proteins 0.000 description 10
- 241000351920 Aspergillus nidulans Species 0.000 description 10
- 108700010070 Codon Usage Proteins 0.000 description 10
- ISAKRJDGNUQOIC-UHFFFAOYSA-N Uracil Chemical compound O=C1C=CNC(=O)N1 ISAKRJDGNUQOIC-UHFFFAOYSA-N 0.000 description 10
- 240000008042 Zea mays Species 0.000 description 10
- 238000007792 addition Methods 0.000 description 10
- 239000003550 marker Substances 0.000 description 10
- 230000008929 regeneration Effects 0.000 description 10
- 238000011069 regeneration method Methods 0.000 description 10
- 102000004190 Enzymes Human genes 0.000 description 9
- 108090000790 Enzymes Proteins 0.000 description 9
- 238000002105 Southern blotting Methods 0.000 description 9
- 235000021355 Stearic acid Nutrition 0.000 description 9
- 230000006698 induction Effects 0.000 description 9
- 229930027917 kanamycin Natural products 0.000 description 9
- 229960000318 kanamycin Drugs 0.000 description 9
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 9
- 229930182823 kanamycin A Natural products 0.000 description 9
- 230000001404 mediated effect Effects 0.000 description 9
- 230000037353 metabolic pathway Effects 0.000 description 9
- 238000001823 molecular biology technique Methods 0.000 description 9
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 9
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 description 9
- 239000003921 oil Substances 0.000 description 9
- 235000019198 oils Nutrition 0.000 description 9
- SECPZKHBENQXJG-FPLPWBNLSA-N palmitoleic acid Chemical compound CCCCCC\C=C/CCCCCCCC(O)=O SECPZKHBENQXJG-FPLPWBNLSA-N 0.000 description 9
- 210000002706 plastid Anatomy 0.000 description 9
- 108091033319 polynucleotide Proteins 0.000 description 9
- 102000040430 polynucleotide Human genes 0.000 description 9
- 239000002157 polynucleotide Substances 0.000 description 9
- 230000002103 transcriptional effect Effects 0.000 description 9
- 238000001712 DNA sequencing Methods 0.000 description 8
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 8
- 229930006000 Sucrose Natural products 0.000 description 8
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 8
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 8
- 210000004899 c-terminal region Anatomy 0.000 description 8
- 239000013604 expression vector Substances 0.000 description 8
- 239000000499 gel Substances 0.000 description 8
- 239000004009 herbicide Substances 0.000 description 8
- 108010082527 phosphinothricin N-acetyltransferase Proteins 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 239000005720 sucrose Substances 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 241000588724 Escherichia coli Species 0.000 description 7
- 235000010469 Glycine max Nutrition 0.000 description 7
- 244000068988 Glycine max Species 0.000 description 7
- 108091092195 Intron Proteins 0.000 description 7
- 101150113476 OLE1 gene Proteins 0.000 description 7
- 238000010222 PCR analysis Methods 0.000 description 7
- 101100188627 Zea mays OLE16 gene Proteins 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 7
- 238000009826 distribution Methods 0.000 description 7
- 238000001976 enzyme digestion Methods 0.000 description 7
- 230000002068 genetic effect Effects 0.000 description 7
- 230000002363 herbicidal effect Effects 0.000 description 7
- IPCSVZSSVZVIGE-UHFFFAOYSA-M hexadecanoate Chemical compound CCCCCCCCCCCCCCCC([O-])=O IPCSVZSSVZVIGE-UHFFFAOYSA-M 0.000 description 7
- 235000021281 monounsaturated fatty acids Nutrition 0.000 description 7
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 7
- 238000012163 sequencing technique Methods 0.000 description 7
- 239000008117 stearic acid Substances 0.000 description 7
- 244000299507 Gossypium hirsutum Species 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 238000012408 PCR amplification Methods 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 108700019146 Transgenes Proteins 0.000 description 6
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 6
- 239000011543 agarose gel Substances 0.000 description 6
- 210000004900 c-terminal fragment Anatomy 0.000 description 6
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 6
- 239000013613 expression plasmid Substances 0.000 description 6
- 238000000605 extraction Methods 0.000 description 6
- VKOBVWXKNCXXDE-UHFFFAOYSA-N icosanoic acid Chemical compound CCCCCCCCCCCCCCCCCCCC(O)=O VKOBVWXKNCXXDE-UHFFFAOYSA-N 0.000 description 6
- -1 palmitate fatty acids Chemical class 0.000 description 6
- 239000002953 phosphate buffered saline Substances 0.000 description 6
- 230000010076 replication Effects 0.000 description 6
- 229920006395 saturated elastomer Polymers 0.000 description 6
- 241000894007 species Species 0.000 description 6
- 239000007921 spray Substances 0.000 description 6
- 235000015112 vegetable and seed oil Nutrition 0.000 description 6
- 238000001262 western blot Methods 0.000 description 6
- 229920001817 Agar Polymers 0.000 description 5
- 241000219198 Brassica Species 0.000 description 5
- 229920000742 Cotton Polymers 0.000 description 5
- 102000009114 Fatty acid desaturases Human genes 0.000 description 5
- 206010020649 Hyperkeratosis Diseases 0.000 description 5
- 241000283973 Oryctolagus cuniculus Species 0.000 description 5
- 240000007594 Oryza sativa Species 0.000 description 5
- 235000007164 Oryza sativa Nutrition 0.000 description 5
- 235000010627 Phaseolus vulgaris Nutrition 0.000 description 5
- 244000046052 Phaseolus vulgaris Species 0.000 description 5
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 5
- 239000008272 agar Substances 0.000 description 5
- 230000003115 biocidal effect Effects 0.000 description 5
- 230000001488 breeding effect Effects 0.000 description 5
- 235000005822 corn Nutrition 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 230000001939 inductive effect Effects 0.000 description 5
- 229940049964 oleate Drugs 0.000 description 5
- 239000008188 pellet Substances 0.000 description 5
- 230000002829 reductive effect Effects 0.000 description 5
- 239000002689 soil Substances 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- 229940027257 timentin Drugs 0.000 description 5
- 229940035893 uracil Drugs 0.000 description 5
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 4
- 108010085238 Actins Proteins 0.000 description 4
- 102000007469 Actins Human genes 0.000 description 4
- 241000219195 Arabidopsis thaliana Species 0.000 description 4
- 235000010777 Arachis hypogaea Nutrition 0.000 description 4
- 235000011331 Brassica Nutrition 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 102000007605 Cytochromes b5 Human genes 0.000 description 4
- 108010007167 Cytochromes b5 Proteins 0.000 description 4
- 238000002965 ELISA Methods 0.000 description 4
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 4
- 101100202605 Legionella pneumophila subsp. pneumophila (strain Philadelphia 1 / ATCC 33152 / DSM 7513) sdeA gene Proteins 0.000 description 4
- 241001465754 Metazoa Species 0.000 description 4
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 4
- 108700026244 Open Reading Frames Proteins 0.000 description 4
- 235000021319 Palmitoleic acid Nutrition 0.000 description 4
- IAJOBQBIJHVGMQ-UHFFFAOYSA-N Phosphinothricin Natural products CP(O)(=O)CCC(N)C(O)=O IAJOBQBIJHVGMQ-UHFFFAOYSA-N 0.000 description 4
- 108700005078 Synthetic Genes Proteins 0.000 description 4
- 230000003321 amplification Effects 0.000 description 4
- 239000003242 anti bacterial agent Substances 0.000 description 4
- 238000009395 breeding Methods 0.000 description 4
- 239000000872 buffer Substances 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- SECPZKHBENQXJG-UHFFFAOYSA-N cis-palmitoleic acid Natural products CCCCCCC=CCCCCCCCC(O)=O SECPZKHBENQXJG-UHFFFAOYSA-N 0.000 description 4
- 239000002299 complementary DNA Substances 0.000 description 4
- 238000012217 deletion Methods 0.000 description 4
- 230000037430 deletion Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000000284 extract Substances 0.000 description 4
- OYHQOLUKZRVURQ-HZJYTTRNSA-N linoleic acid group Chemical group C(CCCCCCC\C=C/C\C=C/CCCCC)(=O)O OYHQOLUKZRVURQ-HZJYTTRNSA-N 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000003199 nucleic acid amplification method Methods 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 230000002441 reversible effect Effects 0.000 description 4
- 235000009566 rice Nutrition 0.000 description 4
- 235000021003 saturated fats Nutrition 0.000 description 4
- 239000006152 selective media Substances 0.000 description 4
- 239000011780 sodium chloride Substances 0.000 description 4
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 4
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 239000006228 supernatant Substances 0.000 description 4
- 238000011144 upstream manufacturing Methods 0.000 description 4
- JFLSOKIMYBSASW-UHFFFAOYSA-N 1-chloro-2-[chloro(diphenyl)methyl]benzene Chemical compound ClC1=CC=CC=C1C(Cl)(C=1C=CC=CC=1)C1=CC=CC=C1 JFLSOKIMYBSASW-UHFFFAOYSA-N 0.000 description 3
- 239000005631 2,4-Dichlorophenoxyacetic acid Substances 0.000 description 3
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 3
- 235000017060 Arachis glabrata Nutrition 0.000 description 3
- 235000018262 Arachis monticola Nutrition 0.000 description 3
- 235000007319 Avena orientalis Nutrition 0.000 description 3
- 101800001415 Bri23 peptide Proteins 0.000 description 3
- 125000001433 C-terminal amino-acid group Chemical group 0.000 description 3
- 102400000107 C-terminal peptide Human genes 0.000 description 3
- 101800000655 C-terminal peptide Proteins 0.000 description 3
- 241000701489 Cauliflower mosaic virus Species 0.000 description 3
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 3
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 3
- 239000005561 Glufosinate Substances 0.000 description 3
- FAIXYKHYOGVFKA-UHFFFAOYSA-N Kinetin Natural products N=1C=NC=2N=CNC=2C=1N(C)C1=CC=CO1 FAIXYKHYOGVFKA-UHFFFAOYSA-N 0.000 description 3
- 235000007688 Lycopersicon esculentum Nutrition 0.000 description 3
- NWBJYWHLCVSVIJ-UHFFFAOYSA-N N-benzyladenine Chemical compound N=1C=NC=2NC=NC=2C=1NCC1=CC=CC=C1 NWBJYWHLCVSVIJ-UHFFFAOYSA-N 0.000 description 3
- 125000000729 N-terminal amino-acid group Chemical group 0.000 description 3
- 238000009004 PCR Kit Methods 0.000 description 3
- 101100505672 Podospora anserina grisea gene Proteins 0.000 description 3
- 238000011529 RT qPCR Methods 0.000 description 3
- 238000012300 Sequence Analysis Methods 0.000 description 3
- 240000003768 Solanum lycopersicum Species 0.000 description 3
- 244000098338 Triticum aestivum Species 0.000 description 3
- 235000016383 Zea mays subsp huehuetenangensis Nutrition 0.000 description 3
- 238000013019 agitation Methods 0.000 description 3
- 125000000539 amino acid group Chemical group 0.000 description 3
- 229940088710 antibiotic agent Drugs 0.000 description 3
- 230000001580 bacterial effect Effects 0.000 description 3
- 238000002869 basic local alignment search tool Methods 0.000 description 3
- 239000004202 carbamide Substances 0.000 description 3
- FPPNZSSZRUTDAP-UWFZAAFLSA-N carbenicillin Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)C(C(O)=O)C1=CC=CC=C1 FPPNZSSZRUTDAP-UWFZAAFLSA-N 0.000 description 3
- 229960003669 carbenicillin Drugs 0.000 description 3
- 238000005119 centrifugation Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000012512 characterization method Methods 0.000 description 3
- 239000013599 cloning vector Substances 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 238000004520 electroporation Methods 0.000 description 3
- 210000002257 embryonic structure Anatomy 0.000 description 3
- 210000002472 endoplasmic reticulum Anatomy 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 230000004136 fatty acid synthesis Effects 0.000 description 3
- 238000003306 harvesting Methods 0.000 description 3
- 238000009396 hybridization Methods 0.000 description 3
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 230000016784 immunoglobulin production Effects 0.000 description 3
- 238000010348 incorporation Methods 0.000 description 3
- 230000010354 integration Effects 0.000 description 3
- QANMHLXAZMSUEX-UHFFFAOYSA-N kinetin Chemical compound N=1C=NC=2N=CNC=2C=1NCC1=CC=CO1 QANMHLXAZMSUEX-UHFFFAOYSA-N 0.000 description 3
- 229960001669 kinetin Drugs 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 235000009973 maize Nutrition 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 238000012269 metabolic engineering Methods 0.000 description 3
- 235000021313 oleic acid Nutrition 0.000 description 3
- 210000000056 organ Anatomy 0.000 description 3
- 235000020232 peanut Nutrition 0.000 description 3
- 238000013081 phylogenetic analysis Methods 0.000 description 3
- 238000003757 reverse transcription PCR Methods 0.000 description 3
- 238000012216 screening Methods 0.000 description 3
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(I) nitrate Inorganic materials [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 3
- 238000009331 sowing Methods 0.000 description 3
- 239000013589 supplement Substances 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 238000000844 transformation Methods 0.000 description 3
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 2
- DJCQJZKZUCHHAL-UHFFFAOYSA-N (Z)-9-Pentadecensaeure Natural products CCCCCC=CCCCCCCCC(O)=O DJCQJZKZUCHHAL-UHFFFAOYSA-N 0.000 description 2
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 2
- 238000009010 Bradford assay Methods 0.000 description 2
- 102100031102 C-C motif chemokine 4 Human genes 0.000 description 2
- 101100054773 Caenorhabditis elegans act-2 gene Proteins 0.000 description 2
- RGJOEKWQDUBAIZ-IBOSZNHHSA-N CoASH Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCS)O[C@H]1N1C2=NC=NC(N)=C2N=C1 RGJOEKWQDUBAIZ-IBOSZNHHSA-N 0.000 description 2
- 238000007399 DNA isolation Methods 0.000 description 2
- 240000004585 Dactylis glomerata Species 0.000 description 2
- 241000234643 Festuca arundinacea Species 0.000 description 2
- 241000233866 Fungi Species 0.000 description 2
- 102000053187 Glucuronidase Human genes 0.000 description 2
- 108010060309 Glucuronidase Proteins 0.000 description 2
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 2
- 102000004144 Green Fluorescent Proteins Human genes 0.000 description 2
- HVLSXIKZNLPZJJ-TXZCQADKSA-N HA peptide Chemical compound C([C@@H](C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](C(C)C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](C)C(O)=O)NC(=O)[C@H]1N(CCC1)C(=O)[C@@H](N)CC=1C=CC(O)=CC=1)C1=CC=C(O)C=C1 HVLSXIKZNLPZJJ-TXZCQADKSA-N 0.000 description 2
- 244000020551 Helianthus annuus Species 0.000 description 2
- 241000238631 Hexapoda Species 0.000 description 2
- 101000926206 Homo sapiens Putative glutathione hydrolase 3 proenzyme Proteins 0.000 description 2
- 240000005979 Hordeum vulgare Species 0.000 description 2
- 235000007340 Hordeum vulgare Nutrition 0.000 description 2
- 238000008214 LDL Cholesterol Methods 0.000 description 2
- 240000004658 Medicago sativa Species 0.000 description 2
- 101100361108 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) eas gene Proteins 0.000 description 2
- 238000000636 Northern blotting Methods 0.000 description 2
- 239000004677 Nylon Substances 0.000 description 2
- 239000005642 Oleic acid Substances 0.000 description 2
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 2
- 239000001888 Peptone Substances 0.000 description 2
- 108010080698 Peptones Proteins 0.000 description 2
- 108700001094 Plant Genes Proteins 0.000 description 2
- 102100034060 Putative glutathione hydrolase 3 proenzyme Human genes 0.000 description 2
- 235000019484 Rapeseed oil Nutrition 0.000 description 2
- 235000004443 Ricinus communis Nutrition 0.000 description 2
- 235000002595 Solanum tuberosum Nutrition 0.000 description 2
- 244000061456 Solanum tuberosum Species 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 244000299461 Theobroma cacao Species 0.000 description 2
- 235000009470 Theobroma cacao Nutrition 0.000 description 2
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 2
- UWHZIFQPPBDJPM-FPLPWBNLSA-M Vaccenic acid Natural products CCCCCC\C=C/CCCCCCCCCC([O-])=O UWHZIFQPPBDJPM-FPLPWBNLSA-M 0.000 description 2
- 235000007244 Zea mays Nutrition 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- DZBUGLKDJFMEHC-UHFFFAOYSA-N acridine Chemical compound C1=CC=CC2=CC3=CC=CC=C3N=C21 DZBUGLKDJFMEHC-UHFFFAOYSA-N 0.000 description 2
- 125000002252 acyl group Chemical group 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 239000000427 antigen Substances 0.000 description 2
- 108091007433 antigens Proteins 0.000 description 2
- 102000036639 antigens Human genes 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 229940041514 candida albicans extract Drugs 0.000 description 2
- 235000019519 canola oil Nutrition 0.000 description 2
- 239000000828 canola oil Substances 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 235000012000 cholesterol Nutrition 0.000 description 2
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 2
- UWHZIFQPPBDJPM-FPLPWBNLSA-N cis-vaccenic acid Chemical compound CCCCCC\C=C/CCCCCCCCCC(O)=O UWHZIFQPPBDJPM-FPLPWBNLSA-N 0.000 description 2
- RGJOEKWQDUBAIZ-UHFFFAOYSA-N coenzime A Natural products OC1C(OP(O)(O)=O)C(COP(O)(=O)OP(O)(=O)OCC(C)(C)C(O)C(=O)NCCC(=O)NCCS)OC1N1C2=NC=NC(N)=C2N=C1 RGJOEKWQDUBAIZ-UHFFFAOYSA-N 0.000 description 2
- 239000005516 coenzyme A Substances 0.000 description 2
- 229940093530 coenzyme a Drugs 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 230000001351 cycling effect Effects 0.000 description 2
- 235000018417 cysteine Nutrition 0.000 description 2
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 2
- 210000000805 cytoplasm Anatomy 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- KDTSHFARGAKYJN-UHFFFAOYSA-N dephosphocoenzyme A Natural products OC1C(O)C(COP(O)(=O)OP(O)(=O)OCC(C)(C)C(O)C(=O)NCCC(=O)NCCS)OC1N1C2=NC=NC(N)=C2N=C1 KDTSHFARGAKYJN-UHFFFAOYSA-N 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000001627 detrimental effect Effects 0.000 description 2
- 230000029087 digestion Effects 0.000 description 2
- 239000003623 enhancer Substances 0.000 description 2
- ZMMJGEGLRURXTF-UHFFFAOYSA-N ethidium bromide Chemical compound [Br-].C12=CC(N)=CC=C2C2=CC=C(N)C=C2[N+](CC)=C1C1=CC=CC=C1 ZMMJGEGLRURXTF-UHFFFAOYSA-N 0.000 description 2
- 229960005542 ethidium bromide Drugs 0.000 description 2
- ISNBJLXHBBZKSL-UHFFFAOYSA-N ethyl n-[2-(1,3-benzothiazole-2-carbonylamino)thiophene-3-carbonyl]carbamate Chemical compound C1=CSC(NC(=O)C=2SC3=CC=CC=C3N=2)=C1C(=O)NC(=O)OCC ISNBJLXHBBZKSL-UHFFFAOYSA-N 0.000 description 2
- 241001233957 eudicotyledons Species 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 238000002866 fluorescence resonance energy transfer Methods 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 230000035784 germination Effects 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- 239000005090 green fluorescent protein Substances 0.000 description 2
- 230000003053 immunization Effects 0.000 description 2
- 238000002649 immunization Methods 0.000 description 2
- 238000000126 in silico method Methods 0.000 description 2
- 210000003000 inclusion body Anatomy 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 2
- 238000002372 labelling Methods 0.000 description 2
- 238000012417 linear regression Methods 0.000 description 2
- 108010053156 lipid transfer protein Proteins 0.000 description 2
- 150000002632 lipids Chemical class 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 235000012054 meals Nutrition 0.000 description 2
- 230000003228 microsomal effect Effects 0.000 description 2
- 230000035772 mutation Effects 0.000 description 2
- 229920001778 nylon Polymers 0.000 description 2
- 230000002018 overexpression Effects 0.000 description 2
- 101150113864 pat gene Proteins 0.000 description 2
- 235000019319 peptone Nutrition 0.000 description 2
- WTJKGGKOPKCXLL-RRHRGVEJSA-N phosphatidylcholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCC=CCCCCCCCC WTJKGGKOPKCXLL-RRHRGVEJSA-N 0.000 description 2
- 238000003976 plant breeding Methods 0.000 description 2
- 238000002203 pretreatment Methods 0.000 description 2
- 238000001742 protein purification Methods 0.000 description 2
- 210000001938 protoplast Anatomy 0.000 description 2
- ZCCUUQDIBDJBTK-UHFFFAOYSA-N psoralen Chemical compound C1=C2OC(=O)C=CC2=CC2=C1OC=C2 ZCCUUQDIBDJBTK-UHFFFAOYSA-N 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 235000021080 saturated-trans fats Nutrition 0.000 description 2
- 230000007226 seed germination Effects 0.000 description 2
- 229960000268 spectinomycin Drugs 0.000 description 2
- UNFWWIHTNXNPBV-WXKVUWSESA-N spectinomycin Chemical compound O([C@@H]1[C@@H](NC)[C@@H](O)[C@H]([C@@H]([C@H]1O1)O)NC)[C@]2(O)[C@H]1O[C@H](C)CC2=O UNFWWIHTNXNPBV-WXKVUWSESA-N 0.000 description 2
- SIARJEKBADXQJG-LFZQUHGESA-N stearoyl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)CCCCCCCCCCCCCCCCC)O[C@H]1N1C2=NC=NC(N)=C2N=C1 SIARJEKBADXQJG-LFZQUHGESA-N 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 229960005322 streptomycin Drugs 0.000 description 2
- 230000008685 targeting Effects 0.000 description 2
- 230000002123 temporal effect Effects 0.000 description 2
- UZKQTCBAMSWPJD-UQCOIBPSSA-N trans-Zeatin Natural products OCC(/C)=C\CNC1=NC=NC2=C1N=CN2 UZKQTCBAMSWPJD-UQCOIBPSSA-N 0.000 description 2
- UZKQTCBAMSWPJD-FARCUNLSSA-N trans-zeatin Chemical compound OCC(/C)=C/CNC1=NC=NC2=C1N=CN2 UZKQTCBAMSWPJD-FARCUNLSSA-N 0.000 description 2
- 230000013715 transcription antitermination Effects 0.000 description 2
- 235000021122 unsaturated fatty acids Nutrition 0.000 description 2
- 150000004670 unsaturated fatty acids Chemical class 0.000 description 2
- 238000010200 validation analysis Methods 0.000 description 2
- 239000008158 vegetable oil Substances 0.000 description 2
- 239000010455 vermiculite Substances 0.000 description 2
- 229910052902 vermiculite Inorganic materials 0.000 description 2
- 235000019354 vermiculite Nutrition 0.000 description 2
- 238000012800 visualization Methods 0.000 description 2
- 239000011782 vitamin Substances 0.000 description 2
- 235000013343 vitamin Nutrition 0.000 description 2
- 229940088594 vitamin Drugs 0.000 description 2
- 229930003231 vitamin Natural products 0.000 description 2
- 239000012138 yeast extract Substances 0.000 description 2
- 229940023877 zeatin Drugs 0.000 description 2
- BITHHVVYSMSWAG-KTKRTIGZSA-N (11Z)-icos-11-enoic acid Chemical compound CCCCCCCC\C=C/CCCCCCCCCC(O)=O BITHHVVYSMSWAG-KTKRTIGZSA-N 0.000 description 1
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 1
- 108050003185 3-oxoacyl-[acyl-carrier-protein] synthase 2 Proteins 0.000 description 1
- VXGRJERITKFWPL-UHFFFAOYSA-N 4',5'-Dihydropsoralen Natural products C1=C2OC(=O)C=CC2=CC2=C1OCC2 VXGRJERITKFWPL-UHFFFAOYSA-N 0.000 description 1
- 101710146995 Acyl carrier protein Proteins 0.000 description 1
- 102100022089 Acyl-[acyl-carrier-protein] hydrolase Human genes 0.000 description 1
- 229930024421 Adenine Natural products 0.000 description 1
- GFFGJBXGBJISGV-UHFFFAOYSA-N Adenine Chemical compound NC1=NC=NC2=C1N=CN2 GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 description 1
- 229920000936 Agarose Polymers 0.000 description 1
- 240000007241 Agrostis stolonifera Species 0.000 description 1
- 102000007698 Alcohol dehydrogenase Human genes 0.000 description 1
- 108010021809 Alcohol dehydrogenase Proteins 0.000 description 1
- 108091093088 Amplicon Proteins 0.000 description 1
- 241001149092 Arabidopsis sp. Species 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 108010023063 Bacto-peptone Proteins 0.000 description 1
- DWRXFEITVBNRMK-UHFFFAOYSA-N Beta-D-1-Arabinofuranosylthymine Natural products O=C1NC(=O)C(C)=CN1C1C(O)C(O)C(CO)O1 DWRXFEITVBNRMK-UHFFFAOYSA-N 0.000 description 1
- 108010006654 Bleomycin Proteins 0.000 description 1
- 235000007689 Borago officinalis Nutrition 0.000 description 1
- 240000004355 Borago officinalis Species 0.000 description 1
- DPUOLQHDNGRHBS-UHFFFAOYSA-N Brassidinsaeure Natural products CCCCCCCCC=CCCCCCCCCCCCC(O)=O DPUOLQHDNGRHBS-UHFFFAOYSA-N 0.000 description 1
- QCMYYKRYFNMIEC-UHFFFAOYSA-N COP(O)=O Chemical class COP(O)=O QCMYYKRYFNMIEC-UHFFFAOYSA-N 0.000 description 1
- 101100377790 Caenorhabditis elegans aat-6 gene Proteins 0.000 description 1
- 101100161935 Caenorhabditis elegans act-4 gene Proteins 0.000 description 1
- 101100392078 Caenorhabditis elegans cat-4 gene Proteins 0.000 description 1
- 101100313196 Caenorhabditis elegans cct-5 gene Proteins 0.000 description 1
- 101100439298 Caenorhabditis elegans cgt-2 gene Proteins 0.000 description 1
- 101100371648 Caenorhabditis elegans usp-14 gene Proteins 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 1
- 235000009467 Carica papaya Nutrition 0.000 description 1
- 240000006432 Carica papaya Species 0.000 description 1
- 235000003255 Carthamus tinctorius Nutrition 0.000 description 1
- 244000020518 Carthamus tinctorius Species 0.000 description 1
- 108010004539 Chalcone isomerase Proteins 0.000 description 1
- 102000012286 Chitinases Human genes 0.000 description 1
- 108010022172 Chitinases Proteins 0.000 description 1
- 101710195281 Chlorophyll a-b binding protein Proteins 0.000 description 1
- 101710143415 Chlorophyll a-b binding protein 1, chloroplastic Proteins 0.000 description 1
- 101710181042 Chlorophyll a-b binding protein 1A, chloroplastic Proteins 0.000 description 1
- 101710091905 Chlorophyll a-b binding protein 2, chloroplastic Proteins 0.000 description 1
- 101710095244 Chlorophyll a-b binding protein 3, chloroplastic Proteins 0.000 description 1
- 101710127489 Chlorophyll a-b binding protein of LHCII type 1 Proteins 0.000 description 1
- 101710184917 Chlorophyll a-b binding protein of LHCII type I, chloroplastic Proteins 0.000 description 1
- 101710102593 Chlorophyll a-b binding protein, chloroplastic Proteins 0.000 description 1
- 108091035707 Consensus sequence Proteins 0.000 description 1
- 238000011537 Coomassie blue staining Methods 0.000 description 1
- 108010066133 D-octopine dehydrogenase Proteins 0.000 description 1
- YAHZABJORDUQGO-NQXXGFSBSA-N D-ribulose 1,5-bisphosphate Chemical compound OP(=O)(O)OC[C@@H](O)[C@@H](O)C(=O)COP(O)(O)=O YAHZABJORDUQGO-NQXXGFSBSA-N 0.000 description 1
- 239000003155 DNA primer Substances 0.000 description 1
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 1
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- URXZXNYJPAJJOQ-UHFFFAOYSA-N Erucic acid Natural products CCCCCCC=CCCCCCCCCCCCC(O)=O URXZXNYJPAJJOQ-UHFFFAOYSA-N 0.000 description 1
- 102000005289 Eukaryotic Initiation Factor-4A Human genes 0.000 description 1
- 108010056472 Eukaryotic Initiation Factor-4A Proteins 0.000 description 1
- 108091029865 Exogenous DNA Proteins 0.000 description 1
- 206010015719 Exsanguination Diseases 0.000 description 1
- 101150115493 FAD3 gene Proteins 0.000 description 1
- 241000701484 Figwort mosaic virus Species 0.000 description 1
- 108700039691 Genetic Promoter Regions Proteins 0.000 description 1
- 108700037728 Glycine max beta-conglycinin Proteins 0.000 description 1
- 101710115777 Glycine-rich cell wall structural protein 2 Proteins 0.000 description 1
- 101710168683 Glycine-rich protein 1 Proteins 0.000 description 1
- 239000005562 Glyphosate Substances 0.000 description 1
- 235000009432 Gossypium hirsutum Nutrition 0.000 description 1
- 102000002812 Heat-Shock Proteins Human genes 0.000 description 1
- 108010004889 Heat-Shock Proteins Proteins 0.000 description 1
- 235000003222 Helianthus annuus Nutrition 0.000 description 1
- 101710176246 High mobility group protein Proteins 0.000 description 1
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 1
- 241000134253 Lanka Species 0.000 description 1
- 108090001090 Lectins Proteins 0.000 description 1
- 102000004856 Lectins Human genes 0.000 description 1
- 241000209510 Liliopsida Species 0.000 description 1
- 241000208202 Linaceae Species 0.000 description 1
- 235000004431 Linum usitatissimum Nutrition 0.000 description 1
- 238000003231 Lowry assay Methods 0.000 description 1
- 238000009013 Lowry's assay Methods 0.000 description 1
- 108060001084 Luciferase Proteins 0.000 description 1
- 239000005089 Luciferase Substances 0.000 description 1
- 239000012515 MabSelect SuRe Substances 0.000 description 1
- 235000010624 Medicago sativa Nutrition 0.000 description 1
- 235000017587 Medicago sativa ssp. sativa Nutrition 0.000 description 1
- 101710202365 Napin Proteins 0.000 description 1
- 229930193140 Neomycin Natural products 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 101100240662 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) gtt-1 gene Proteins 0.000 description 1
- 108090000913 Nitrate Reductases Proteins 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 240000007817 Olea europaea Species 0.000 description 1
- 101710089395 Oleosin Proteins 0.000 description 1
- 108020005187 Oligonucleotide Probes Proteins 0.000 description 1
- 101710149663 Osmotin Proteins 0.000 description 1
- 208000012868 Overgrowth Diseases 0.000 description 1
- 101710091688 Patatin Proteins 0.000 description 1
- 229930182555 Penicillin Natural products 0.000 description 1
- 240000007377 Petunia x hybrida Species 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 241000209049 Poa pratensis Species 0.000 description 1
- 229940124158 Protease/peptidase inhibitor Drugs 0.000 description 1
- 244000184734 Pyrus japonica Species 0.000 description 1
- 108020004412 RNA 3' Polyadenylation Signals Proteins 0.000 description 1
- 102000009572 RNA Polymerase II Human genes 0.000 description 1
- 108010009460 RNA Polymerase II Proteins 0.000 description 1
- 238000010802 RNA extraction kit Methods 0.000 description 1
- 230000004570 RNA-binding Effects 0.000 description 1
- 108091028664 Ribonucleotide Proteins 0.000 description 1
- 240000000528 Ricinus communis Species 0.000 description 1
- 241000209051 Saccharum Species 0.000 description 1
- 240000000111 Saccharum officinarum Species 0.000 description 1
- 235000007201 Saccharum officinarum Nutrition 0.000 description 1
- 235000019485 Safflower oil Nutrition 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- WQDUMFSSJAZKTM-UHFFFAOYSA-N Sodium methoxide Chemical compound [Na+].[O-]C WQDUMFSSJAZKTM-UHFFFAOYSA-N 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 235000007230 Sorghum bicolor Nutrition 0.000 description 1
- 244000062793 Sorghum vulgare Species 0.000 description 1
- 235000009337 Spinacia oleracea Nutrition 0.000 description 1
- 244000300264 Spinacia oleracea Species 0.000 description 1
- 108091081024 Start codon Proteins 0.000 description 1
- 101710154134 Stearoyl-[acyl-carrier-protein] 9-desaturase, chloroplastic Proteins 0.000 description 1
- 241000044578 Stenotaphrum secundatum Species 0.000 description 1
- 229930182558 Sterol Natural products 0.000 description 1
- 108010043934 Sucrose synthase Proteins 0.000 description 1
- 235000019486 Sunflower oil Nutrition 0.000 description 1
- FBFWDBGUSMGXPI-UHFFFAOYSA-N TG(17:0/17:0/17:0) Chemical compound CCCCCCCCCCCCCCCCC(=O)OCC(OC(=O)CCCCCCCCCCCCCCCC)COC(=O)CCCCCCCCCCCCCCCC FBFWDBGUSMGXPI-UHFFFAOYSA-N 0.000 description 1
- 239000004098 Tetracycline Substances 0.000 description 1
- RYYWUUFWQRZTIU-UHFFFAOYSA-N Thiophosphoric acid Chemical class OP(O)(S)=O RYYWUUFWQRZTIU-UHFFFAOYSA-N 0.000 description 1
- 241000723873 Tobacco mosaic virus Species 0.000 description 1
- 108091023040 Transcription factor Proteins 0.000 description 1
- 102000040945 Transcription factor Human genes 0.000 description 1
- 239000007984 Tris EDTA buffer Substances 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 229920004890 Triton X-100 Polymers 0.000 description 1
- 239000013504 Triton X-100 Substances 0.000 description 1
- 235000004424 Tropaeolum majus Nutrition 0.000 description 1
- 240000001260 Tropaeolum majus Species 0.000 description 1
- 229940122618 Trypsin inhibitor Drugs 0.000 description 1
- 101710162629 Trypsin inhibitor Proteins 0.000 description 1
- 108090000848 Ubiquitin Proteins 0.000 description 1
- 102000044159 Ubiquitin Human genes 0.000 description 1
- 229920002494 Zein Polymers 0.000 description 1
- 108010055615 Zein Proteins 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229960000643 adenine Drugs 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000000246 agarose gel electrophoresis Methods 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 239000002168 alkylating agent Substances 0.000 description 1
- 235000020661 alpha-linolenic acid Nutrition 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000000692 anti-sense effect Effects 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 150000008331 benzenesulfonamides Chemical class 0.000 description 1
- IQFYYKKMVGJFEH-UHFFFAOYSA-N beta-L-thymidine Natural products O=C1NC(=O)C(C)=CN1C1OC(CO)C(O)C1 IQFYYKKMVGJFEH-UHFFFAOYSA-N 0.000 description 1
- GINJFDRNADDBIN-FXQIFTODSA-N bilanafos Chemical compound OC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H](N)CCP(C)(O)=O GINJFDRNADDBIN-FXQIFTODSA-N 0.000 description 1
- 238000004166 bioassay Methods 0.000 description 1
- 238000010256 biochemical assay Methods 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- OWMVSZAMULFTJU-UHFFFAOYSA-N bis-tris Chemical compound OCCN(CCO)C(CO)(CO)CO OWMVSZAMULFTJU-UHFFFAOYSA-N 0.000 description 1
- 229960001561 bleomycin Drugs 0.000 description 1
- OYVAGSVQBOHSSS-UAPAGMARSA-O bleomycin A2 Chemical compound N([C@H](C(=O)N[C@H](C)[C@@H](O)[C@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)NCCC=1SC=C(N=1)C=1SC=C(N=1)C(=O)NCCC[S+](C)C)[C@@H](O[C@H]1[C@H]([C@@H](O)[C@H](O)[C@H](CO)O1)O[C@@H]1[C@H]([C@@H](OC(N)=O)[C@H](O)[C@@H](CO)O1)O)C=1N=CNC=1)C(=O)C1=NC([C@H](CC(N)=O)NC[C@H](N)C(N)=O)=NC(N)=C1C OYVAGSVQBOHSSS-UAPAGMARSA-O 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 238000010804 cDNA synthesis Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 235000019577 caloric intake Nutrition 0.000 description 1
- 150000004657 carbamic acid derivatives Chemical class 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 235000011089 carbon dioxide Nutrition 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 101150015293 cct8 gene Proteins 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 229960005091 chloramphenicol Drugs 0.000 description 1
- WIIZWVCIJKGZOK-RKDXNWHRSA-N chloramphenicol Chemical compound ClC(Cl)C(=O)N[C@H](CO)[C@H](O)C1=CC=C([N+]([O-])=O)C=C1 WIIZWVCIJKGZOK-RKDXNWHRSA-N 0.000 description 1
- 210000003763 chloroplast Anatomy 0.000 description 1
- 108010041758 cleavase Proteins 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000004883 computer application Methods 0.000 description 1
- 108091036078 conserved sequence Proteins 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000012864 cross contamination Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 108010011222 cyclo(Arg-Pro) Proteins 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000001212 derivatisation Methods 0.000 description 1
- 239000002274 desiccant Substances 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 235000013367 dietary fats Nutrition 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 235000021186 dishes Nutrition 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- NAGJZTKCGNOGPW-UHFFFAOYSA-N dithiophosphoric acid Chemical class OP(O)(S)=S NAGJZTKCGNOGPW-UHFFFAOYSA-N 0.000 description 1
- 230000005059 dormancy Effects 0.000 description 1
- 238000009510 drug design Methods 0.000 description 1
- SQNZJJAZBFDUTD-UHFFFAOYSA-N durene Chemical compound CC1=CC(C)=C(C)C=C1C SQNZJJAZBFDUTD-UHFFFAOYSA-N 0.000 description 1
- 229940108623 eicosenoic acid Drugs 0.000 description 1
- BITHHVVYSMSWAG-UHFFFAOYSA-N eicosenoic acid Natural products CCCCCCCCC=CCCCCCCCCCC(O)=O BITHHVVYSMSWAG-UHFFFAOYSA-N 0.000 description 1
- 239000012877 elongation medium Substances 0.000 description 1
- 230000013020 embryo development Effects 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 238000009585 enzyme analysis Methods 0.000 description 1
- DPUOLQHDNGRHBS-KTKRTIGZSA-N erucic acid Chemical compound CCCCCCCC\C=C/CCCCCCCCCCCC(O)=O DPUOLQHDNGRHBS-KTKRTIGZSA-N 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000011536 extraction buffer Substances 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 235000019197 fats Nutrition 0.000 description 1
- 150000002185 fatty acyl-CoAs Chemical class 0.000 description 1
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 244000000004 fungal plant pathogen Species 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000000769 gas chromatography-flame ionisation detection Methods 0.000 description 1
- 102000034356 gene-regulatory proteins Human genes 0.000 description 1
- 108091006104 gene-regulatory proteins Proteins 0.000 description 1
- IAJOBQBIJHVGMQ-BYPYZUCNSA-N glufosinate-P Chemical compound CP(O)(=O)CC[C@H](N)C(O)=O IAJOBQBIJHVGMQ-BYPYZUCNSA-N 0.000 description 1
- XDDAORKBJWWYJS-UHFFFAOYSA-N glyphosate Chemical compound OC(=O)CNCP(O)(O)=O XDDAORKBJWWYJS-UHFFFAOYSA-N 0.000 description 1
- 229940097068 glyphosate Drugs 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 235000004280 healthy diet Nutrition 0.000 description 1
- 208000019622 heart disease Diseases 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000002044 hexane fraction Substances 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 125000000487 histidyl group Chemical group [H]N([H])C(C(=O)O*)C([H])([H])C1=C([H])N([H])C([H])=N1 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 238000003898 horticulture Methods 0.000 description 1
- 230000002163 immunogen Effects 0.000 description 1
- 238000001114 immunoprecipitation Methods 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 239000000411 inducer Substances 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 239000002198 insoluble material Substances 0.000 description 1
- 239000002523 lectin Substances 0.000 description 1
- 229940049918 linoleate Drugs 0.000 description 1
- 235000020778 linoleic acid Nutrition 0.000 description 1
- 229940040452 linolenate Drugs 0.000 description 1
- DTOSIQBPPRVQHS-PDBXOOCHSA-M linolenate Chemical compound CC\C=C/C\C=C/C\C=C/CCCCCCCC([O-])=O DTOSIQBPPRVQHS-PDBXOOCHSA-M 0.000 description 1
- 125000005481 linolenic acid group Chemical group 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 108010083942 mannopine synthase Proteins 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000002032 methanolic fraction Substances 0.000 description 1
- 229960000485 methotrexate Drugs 0.000 description 1
- XPQPWPZFBULGKT-UHFFFAOYSA-N methyl undecanoate Chemical compound CCCCCCCCCCC(=O)OC XPQPWPZFBULGKT-UHFFFAOYSA-N 0.000 description 1
- 230000011987 methylation Effects 0.000 description 1
- 238000007069 methylation reaction Methods 0.000 description 1
- 238000000520 microinjection Methods 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 239000006151 minimal media Substances 0.000 description 1
- 238000000329 molecular dynamics simulation Methods 0.000 description 1
- 239000003147 molecular marker Substances 0.000 description 1
- 239000013642 negative control Substances 0.000 description 1
- 238000011392 neighbor-joining method Methods 0.000 description 1
- 229960004927 neomycin Drugs 0.000 description 1
- 238000007857 nested PCR Methods 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 108010058731 nopaline synthase Proteins 0.000 description 1
- 230000031787 nutrient reservoir activity Effects 0.000 description 1
- 235000014593 oils and fats Nutrition 0.000 description 1
- 125000002811 oleoyl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])/C([H])=C([H])\C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000002751 oligonucleotide probe Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 150000002943 palmitic acids Chemical class 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000008506 pathogenesis Effects 0.000 description 1
- 150000002960 penicillins Chemical class 0.000 description 1
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 150000008298 phosphoramidates Chemical class 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
- 239000004069 plant analysis Substances 0.000 description 1
- 230000008635 plant growth Effects 0.000 description 1
- 239000010773 plant oil Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 230000010152 pollination Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000003752 polymerase chain reaction Methods 0.000 description 1
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 1
- 229920000053 polysorbate 80 Polymers 0.000 description 1
- 235000020777 polyunsaturated fatty acids Nutrition 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 239000002987 primer (paints) Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 235000021251 pulses Nutrition 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 239000011535 reaction buffer Substances 0.000 description 1
- 238000003753 real-time PCR Methods 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 238000003259 recombinant expression Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 230000001850 reproductive effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 239000002336 ribonucleotide Substances 0.000 description 1
- 125000002652 ribonucleotide group Chemical group 0.000 description 1
- 235000005713 safflower oil Nutrition 0.000 description 1
- 239000003813 safflower oil Substances 0.000 description 1
- 229960004889 salicylic acid Drugs 0.000 description 1
- 239000012723 sample buffer Substances 0.000 description 1
- 238000011012 sanitization Methods 0.000 description 1
- 238000007423 screening assay Methods 0.000 description 1
- 230000008117 seed development Effects 0.000 description 1
- 238000009394 selective breeding Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000002864 sequence alignment Methods 0.000 description 1
- 230000014639 sexual reproduction Effects 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 1
- 244000000000 soil microbiome Species 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 230000010473 stable expression Effects 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 230000003335 steric effect Effects 0.000 description 1
- 150000003432 sterols Chemical class 0.000 description 1
- 235000003702 sterols Nutrition 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000013517 stratification Methods 0.000 description 1
- 239000002600 sunflower oil Substances 0.000 description 1
- 230000009469 supplementation Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 101150061263 tct-1 gene Proteins 0.000 description 1
- 229960002180 tetracycline Drugs 0.000 description 1
- 229930101283 tetracycline Natural products 0.000 description 1
- 235000019364 tetracycline Nutrition 0.000 description 1
- 150000003522 tetracyclines Chemical class 0.000 description 1
- 101150090882 tgt-1 gene Proteins 0.000 description 1
- 229940104230 thymidine Drugs 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- 235000021076 total caloric intake Nutrition 0.000 description 1
- 231100000167 toxic agent Toxicity 0.000 description 1
- 239000003440 toxic substance Substances 0.000 description 1
- 230000005030 transcription termination Effects 0.000 description 1
- 238000011426 transformation method Methods 0.000 description 1
- 150000003626 triacylglycerols Chemical class 0.000 description 1
- IEDVJHCEMCRBQM-UHFFFAOYSA-N trimethoprim Chemical compound COC1=C(OC)C(OC)=CC(CC=2C(=NC(N)=NC=2)N)=C1 IEDVJHCEMCRBQM-UHFFFAOYSA-N 0.000 description 1
- 229960001082 trimethoprim Drugs 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- 239000002753 trypsin inhibitor Substances 0.000 description 1
- 235000021081 unsaturated fats Nutrition 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 239000013603 viral vector Substances 0.000 description 1
- 230000003612 virological effect Effects 0.000 description 1
- 230000001018 virulence Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 229940093612 zein Drugs 0.000 description 1
- 239000005019 zein Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0071—Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
- C12N9/0083—Miscellaneous (1.14.99)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8242—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
- C12N15/8243—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
- C12N15/8247—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving modified lipid metabolism, e.g. seed oil composition
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y114/00—Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14)
- C12Y114/19—Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14) with oxidation of a pair of donors resulting in the reduction of molecular oxygen to two molecules of water (1.14.19)
- C12Y114/19001—Stearoyl-CoA 9-desaturase (1.14.19.1), i.e. DELTA9-desaturase
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2830/00—Vector systems having a special element relevant for transcription
- C12N2830/34—Vector systems having a special element relevant for transcription being a transcription initiation element
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2830/00—Vector systems having a special element relevant for transcription
- C12N2830/36—Vector systems having a special element relevant for transcription being a transcription termination element
Definitions
- Some embodiments generally relate to certain delta-9 desaturase enzymes, nucleic acids encoding these enzymes, and methods of expressing the same in a plant cell. Some embodiments relate to utilizing the activity of certain delta-9 desaturase enzymes to decrease the percent composition of saturated fatty acids in plant materials (e.g., seed) and increasing the percent composition of co-7 fatty acids. Also disclosed herein are plants and plant materials produced by methods in particular embodiments.
- Vegetable-derived oils have gradually replaced animal-derived oils and fats as the major source of dietary fat intake.
- saturated fat intake in most industrialized nations has remained at about 15% to 20% of total caloric consumption.
- USDA United States Department of Agriculture
- saturated fats make up less than 10% of daily caloric intake.
- current labeling guidelines issued by the USDA now require total saturated fatty acid levels be less than 1.0 g per 14 g serving to receive the "low-sat" label and less than 0.5 g per 14 g serving to receive the "no-sat” label.
- saturated and trans fats are not. Saturated fat and trans fat raise undesirable LDL cholesterol levels in the blood. Dietary cholesterol also raises LDL cholesterol and may contribute to heart disease even without raising LDL. Therefore, it is advisable to choose foods low in saturated fat, trans fat, and cholesterol as part of a healthful diet.
- oils whether of plant or animal origin, are determined predominately by the number of carbon and hydrogen atoms in the oil molecule, as well as the number and position of double bonds comprised in the fatty acid chain.
- Most oils derived from plants are composed of varying amounts of palmitic (16:0), stearic (18:0), oleic (18: 1), linoleic (18:2) and linolenic (18:3) fatty acids.
- palmitic and stearic acids are designated as "saturated,” because their carbon chains are saturated with hydrogen atoms, and hence have no double bonds; they contain the maximal number of hydrogen atoms possible.
- oleic, linoleic, and linolenic acids are 18-carbon fatty acid chains having one, two, and three double bonds, respectively, therein.
- Oleic acid is typically considered a monounsaturated fatty acid
- linoleic and linolenic are considered to be polyunsaturated fatty acids.
- the U.S.D.A. definition of "no sat" oil products as those having less than 3.5% fatty acid content is calculated as the combined saturated fatty acid content by weight (as compared to the total amount of fatty acids).
- Canola oil has the lowest level of saturated fatty acids of all vegetable oils.
- “Canola” refers to rapeseed (Brassica) which has an erucic acid (C22:l) content of at most 2% by weight, based on the total fatty acid content of a seed (preferably at most 0.5% by weight, and most preferably essentially 0% by weight), and which produces, after crushing, an air-dried meal containing less than 30 ⁇ /g of defatted (oil-free) meal.
- rapeseed are distinguished by their edibility in comparison to more traditional varieties of the species.
- fatty acid synthesis occurs primarily in the plastid.
- the major product of fatty acid synthesis is palmitate (16:0), which appears to be efficiently elongated to stearate (18:0).
- the saturated fatty acids may then be desaturated by an enzyme known as acyl-ACP delta-9 desaturase, to introduce one or more carbon-carbon double bonds.
- acyl-ACP delta-9 desaturase an enzyme known as acyl-ACP delta-9 desaturase
- stearate may be rapidly desaturated by a plastidial delta-9 desaturase enzyme to yield oleate (18:1).
- palmitate may also be desaturated to palmitoleate (16:1) by the plastidial delta-9 desaturase, but this fatty acid appears in only trace quantities (0-0.2%) in most vegetable oils.
- the major products of fatty acid synthesis in the plastid are palmitate, stearate, and oleate.
- oleate is the major fatty acid synthesized, as the saturated fatty acids are present in much lower proportions.
- Newly-synthesized fatty acids are exported from the plastid to the cytoplasm.
- oleate which may be desaturated to linoleate (18:2) and linolenate (18:3) by microsomal desaturases acting on oleoyl or lineoleoyl substrates esterified to phosphatidyl choline (PC).
- PC phosphatidyl choline
- oleate may be further modified by elongation (to 20:1, 22:1, and/or 24: 1), or by the addition of functional groups.
- the plant acyl-ACP delta-9 desaturase enzyme is soluble. It is located in the plastid stroma, and uses newly-synthesized fatty acids esterified to ACP, predominantly stearyl-ACP, as substrates. This is in contrast to the other delta-9 desaturase enzymes, which are located in the endoplasmic reticular membrane (ER, or microsomal), use fatty acids esterified to Co-A as substrates, and desaturate both the saturated fatty acids, palmitate and stearate.
- U.S. Patents 5,723,595 and 6,706,950 relate to a plant desaturase.
- the yeast delta-9 desaturase gene has been isolated from Saccharomyces cerevisiae, cloned, and sequenced. Stukey et al. (1989) J. Biol. Chem. 264: 16537- 44; Stukey et al. (1990) J. Biol. Chem. 265:20144-9. This yeast gene has been introduced into tobacco leaf tissue (Polashcok et al. (1991) FASEB J. 5:A1157; Polashok et al. (1992) Plant Physiol. 100:894-901), and was apparently expressed in this tissue. Further, this yeast gene was expressed in tomato. See Wang et al. (1996) J. Agric. Food Chem.
- a different fungal acyl-CoA delta-9 desaturase from Aspergillus nidulans has been introduced into canola, thereby achieving reduced saturated fatty acid levels in seed oil.
- U.S. Patent Application Publication US 2008/0260933 AI The A. nidulans acyl-CoA delta-9 desaturase provided greater depletion of stearate (61- 90%) than the more abundant palmitate fatty acids (36-49%) in the seed oil.
- novel fungal delta-9 desaturase enzymes comprising at least one nucleotide sequence encoding such a desaturase; and plants, plant materials ⁇ e.g., seed), plant parts, and plant commodity products comprising either of the foregoing.
- fungal delta- 9 desaturase enzymes isolated from Magnaporthe grisea, Leptosphaeria nodorum, and Helicoverpa zea.
- Some examples include native and synthetic delta-9 desaturases that have a substrate preference for palmitic acid or stearic acid.
- Some embodiments comprise an isolated nucleic acid molecule encoding a delta-9 desaturase enzyme comprising an amino acid sequence being at least 80% identical to a sequence selected from the group consisting of SEQ ID NO: 12, SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO:50, SEQ ID NO:51, SEQ ID NO:52, SEQ ID NO:72, and SEQ ID NO:73.
- the nucleic acid molecule comprises a sequence being at least 60% identical to a sequence selected from the group consisting of SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO: l l, SEQ ID NO:15, SEQ ID NO: 16, SEQ ID NO: 17, SEQ ID NO:44, SEQ ID NO:45, SEQ ID NO:48, and SEQ ID NO:49.
- These and further embodiments may include an isolated delta-9 desaturase polypeptide comprising an amino acid sequence being at least 80% identical to a sequence selected from the group consisting of SEQ ID NO:12, SEQ ID NO:13, SEQ ID NO:14, SEQ ID NO:50, SEQ ID NO:51, SEQ ID NO:52, SEQ ID NO:72, and SEQ ID NO:73.
- Particular embodiments take advantage of a delta-9 desaturase enzyme's activity, such that the percent composition of saturated fatty acids may be decreased in a plant, plant material (e.g., seed), and/or plant part comprising the plant cell, and/or a plant commodity product produced from any of the foregoing.
- ⁇ -7 fatty acids may concomitantly be increased in the plant, plant material, plant part, and/or plant commodity product.
- Some embodiments include a method for decreasing the amount of saturated fatty acids in a plant, plant material, plant part, and/or plant commodity product, the method comprising transforming a plant cell with a nucleic acid molecule encoding a delta-9 desaturase polypeptide of the invention, such that the amount of saturated fatty acids in the cell is decreased.
- Some embodiments include a method for creating a genetically engineered plant that comprises decreased amounts of saturated fatty acids in the plant compared to a wild-type plant of the same species. Such a method may comprise transforming a plant material (or plant cell) with a nucleic acid molecule encoding a delta-9 desaturase polypeptide of the invention, and culturing the transformed plant material (or plant cell) to obtain a plant.
- a plant cell and/or plant material from an Arabidopsis sp. may be transformed with a nucleic acid molecule encoding a delta-9 desaturase polypeptide of the invention.
- FIG. 1 includes a schematic phylogenetic analysis of various fungal desaturase protein sequences. The complete protein sequences of the depicted desaturases were aligned using ClustalX and displayed using MEGA.
- FIGs. 2(a-d) include an alignment of fungal delta-9 desaturase gene sequences.
- Capital font represents conserved nucleotides in this alignment.
- Shaded font represents identical nucleotides in this alignment.
- FIGs. 3(a-b) include an alignment of fungal delta-9 desaturase polypeptides.
- FIGs. 4-18 include plasmid maps of exemplary plasmids comprising fungal delta-9 desaturase polypeptide-encoding nucleotide sequences that may be useful in some embodiments.
- FIG. 4 specifically includes plasmid maps of exemplary plasmids comprising LnD9DS-2-encoding (FIG. 4a; pDABl lOHO) and HzD9DS-encoding (FIG. 4b; pDAB110112) nucleotide sequences that further comprise the PvPhas 5' UTR and PvPhas 3' UTR.
- FIG. 19 includes data showing the total saturated fatty acid content (%FAMEs) of exemplary T 2 Arabidopsis seed from plants transformed with certain exemplary fungal delta-9 desaturase gene sequences.
- FIG. 20 includes data showing the palmitic acid (CI 6:0) content (%FAMEs) of exemplary T 2 Arabidopsis seed from plants transformed with certain exemplary fungal delta-9 desaturase gene sequences.
- FIG. 21 includes data showing the stearic acid (C18:0) content (%FAMEs) of exemplary T 2 Arabidopsis seed from plants transformed with certain exemplary fungal delta-9 desaturase gene sequences.
- FIG. 22 includes data showing the palmitoleic acid (CI 6:1) content (%FAMEs) of exemplary T 2 Arabidopsis seed from plants transformed with certain exemplary fungal delta-9 desaturase gene sequences.
- FIG. 23 includes a graphical representation of the accumulation of HzD9DS and LnD9DS-2 mRNA transcripts (relative to AnD9DS transcripts) in developing seeds from canola plants transformed with pDAB7319 (AnD9DS v3 and LnD9DS-2 v2) or pDAB7324 (AnD9DS v3 and HzD9DS v2).
- the qRT-PCR AACt of each gene was determined relative to the actin transcript level, and the amount of transcript for HzD9DS and LnD9DS-2 then normalized to the level of AnD9DS transcript in each sample.
- nucleic acid sequences listed in the accompanying sequence listing are shown using standard letter abbreviations for nucleotide bases, as defined in 37 C.F.R. ⁇ 1.822. Only one strand of each nucleic acid sequence is shown, but the complementary strand is understood to be included by any reference to the displayed strand.
- SEQ ID NO:l shows a forward primer used to PCR amplify a fragment of a
- MgD9DS Magnaporthe grisea acyl-CoA delta-9 desaturase gene
- SEQ ID NO:2 shows a reverse primer used to PCR amplify a fragment of a M grisea acyl-CoA delta-9 desaturase gene (referred to in some places as MgD9DS).
- SEQ ID NO: 3 shows an exemplary fragment of a grisea acyl-CoA delta-9 desaturase gene (referred to in some places as MgD9DS) that was amplified by PCR.
- SEQ ID NO:4 shows an exemplary intronless MgD9DS clone.
- SEQ ID NO: 5 shows an exemplary nucleic acid sequence encoding a first Leptosphaeria nodorum acyl-CoA delta-9 desaturase, referred to in some places as LnD9DS-l .
- SEQ ID Nos:6 and 7 show primer sequences that may be useful in some embodiments..
- SEQ ID NO: 8 shows an exemplary nucleic acid sequence encoding a second exemplary L. nodorum acyl-CoA delta-9 desaturase, referred to in some places as LnD9DS-2.
- SEQ ID NO: 9 shows a coding region from an exemplary native delta-9 desaturase gene from M. grisea (labeled as MgD9DS vl).
- SEQ ID NO: 10 shows a coding region from an exemplary native delta-9 desaturase gene from Helicoverpa zea (labeled as HzD9DS vl).
- SEQ ID NO: 11 shows a coding region from an exemplary native delta-9 desaturase (LnD9DS-2 vl) gene from L. nodorum.
- SEQ ID NO: 12 shows the amino acid sequence of an exemplary native delta-9 desaturase from M. grisea (MgD9DS).
- SEQ ID NO: 13 shows the amino acid sequence of an exemplary native delta-9 desaturase from H. zea (HzD9DS).
- SEQ ID NO: 14 shows the amino acid sequence of an exemplary native delta-9 desaturase from L. nodorum (LnD9DS-2).
- SEQ ID NO: 15 shows the sequence of an exemplary canola-optimized delta-9 desaturase gene from M. grisea (MgD9DS v2).
- SEQ ID NO: 16 shows the sequence of an exemplary canola-optimized delta-9 desaturase gene from H. zea (HzD9DS v2).
- SEQ ID NO: 17 shows the sequence of an exemplary canola-optimized delta-9 desaturase gene from L. nodorum (LnD9DS-2 v2).
- SEQ ID NOs: 18-39 show the sequence of primers and probes that may be useful in some embodiments.
- SEQ ID NOs:40-43 show exemplary alternative Kozak sequences that may be used to increase expression in some embodiments.
- SEQ ID NO:44 shows the sequence of a further exemplary canola-optimized delta-9 desaturase gene from L. nodorum (LnD9DS-2 v3).
- SEQ ID NO:45 shows the sequence of a further exemplary canola-optimized delta-9 desaturase gene from H. zea (HzD9DS v3).
- SEQ ID NO:46 shows the amino acid sequence of a Myc tag.
- SEQ ID NO:47 shows the amino acid sequence of a HA tag.
- SEQ ID NO:48 shows an exemplary nucleic acid sequence encoding an Aspergillus nidulans delta-9 desaturase, referred to in some places as AnD9DS v2.
- SEQ ID NO:49 shows a second exemplary nucleic acid sequence encoding an A. nidulans delta-9 desaturase, referred to in some places as AnD9DS v3.
- SEQ ID NO: 50 shows the amino acid sequence encoded by nucleic acids as exemplified by SEQ ID NOs:48-49 (AnD9DS).
- SEQ ID NO:51 shows the amino acid sequence of another exemplary AnD9DS desaturase.
- SEQ ID NO: 52 shows the amino acid sequence of an exemplary native delta-9 desaturase (ScOLEl) from Saccharomyces cerevisiae.
- SEQ ID NOs:53-66 show plasmids that may be useful in some embodiments.
- SEQ ID NOs: 67-71 include several nucleic acid regulatory control elements that may be useful in some embodiments.
- SEQ ID NO:72 shows the N-terminal 68 residues (1-68) of an exemplary AnD9DS desaturase.
- SEQ ID NO:73 shows the C-terminal 175 residues (281-455) of an exemplary AnD9DS desaturase.
- SEQ ID NO:74 shows a map of plasmid pDABl 10110.
- SEQ ID NO:75 shows a map of plasmid pDABl 10112.
- SEQ ID NO: 76 shows an exemplary nucleic acid sequence encoding an exemplary M. grisea acyl-CoA delta-9 desaturase, referred to in some places as MgD9DS.
- SEQ ID NO: 77 shows an amino acid sequence comprised within the exemplary native delta-9 desaturase from L. nodorum of SEQ ID NO: 14.
- SEQ ID NO:78 shows an amino acid sequence comprised within the exemplary native delta-9 desaturase from H. zea of SEQ ID NO: 13.
- fungal delta-9 desaturase polypeptides having a range of substrate specificities are disclosed.
- Particular embodiments include a palmitate- preferring delta-9 desaturase ⁇ e.g., a native fungal enzyme as disclosed herein, or a functional equivalent thereof; and a synthetic polypeptide designed to have a preference for a palmitic acid substrate).
- nucleic acid molecules encoding a delta-9 desaturase polypeptide comprising a nucleotide sequence being at least 60% identical to a sequence selected from the group consisting of SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO: 10, SEQ ID NO: 11, SEQ ID NO: 15, SEQ ID NO: 16, SEQ ID NO:17, SEQ ID NO:44, SEQ ID NO:45, SEQ ID NO:48, and SEQ ID NO:49.
- the nucleic acid molecule may further comprises a gene regulatory element operably linked to the delta-9 desaturase polypeptide-encoding sequence.
- a gene regulatory element may be a phaseolin promoter, a phaseolin 5' untranslated region, a phaseolin 3' untranslated region, an Agrobacterium tumefaciens ORF1 3' untranslated region, a Cassava vein Mosaic Virus promoter, a Nicotiana tabacum RB7 Matrix Attachment Region, a T-strand border sequence, a LfKCS3 promoter, and FAE 1 promoter.
- delta-9 desaturase polypeptides comprising an amino acid sequence being at least 80% identical to a sequence selected from the group consisting of SEQ ID NO: 12, SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO:50, SEQ ID NO:52, SEQ ID NO:72, and SEQ ID NO:73, as well as nucleic acid molecules encoding such delta-9 desaturase polypeptides.
- nucleic acid molecules and delta-9 desaturase polypeptides may embodiments of the invention include methods for decreasing the amount of saturated fatty acids in the plant material, cell, tissue, or whole plant. Such methods may comprise transforming a plant material, cell, tissue, or whole plant with at least one of the aforementioned nucleic acid molecules, such that the amount of saturated fatty acids in the plant material, cell, tissue, or whole plant is decreased. Particular embodiments include methods for preferentially decreasing palmitic and/or stearic fatty acids in a plant material, cell, tissue, or whole plant.
- Methods disclosed herein may be performed, for example, on plants, or plant materials derived from plants (e.g., plants of the genus Arabidopsis, or canola).
- a particular embodiment is drawn to methods for creating or regenerating a genetically engineered plant comprising decreased amounts of saturated fatty acids in the plant compared to a wild-type plant of the same species, the method comprising transforming a plant cell or material with at least one of the aforementioned nucleic acid molecules; and culturing the transformed plant material to obtain a plant.
- Plants, plant materials, plant cells, and seeds obtained by any of the aforementioned methods are also disclosed.
- Fatty acid refers to long chain aliphatic acids (alkanoic acids) of varying chain lengths, for example, from about C12 to C22, although both longer and shorter chain-length acids are known.
- the structure of a fatty acid is represented by the notation, x:yA z , where "x" is the total number of carbon (C) atoms in the particular fatty acid, and “y” is the number of double bonds in the carbon chain in the position "z,” as counted from the carboxyl end of the acid.
- Metabolic pathway refers to a series of chemical reactions occurring within a cell, catalyzed by enzymes, to achieve either the formation of a metabolic product, or the initiation of another metabolic pathway.
- a metabolic pathway may involve several or many steps, and may compete with a different metabolic pathway for specific reaction substrates.
- the product of one metabolic pathway may be a substrate for yet another metabolic pathway.
- Metabolic engineering refers to the rational design of strategies to alter one or more metabolic pathways in a cell, such that the step-by-step modification of an initial substance into a product having the exact chemical structure desired is achieved within the overall scheme of the total metabolic pathways operative in the cell.
- Desaturase refers to a polypeptide that can desaturate (i.e., introduce a double bond) in one or more fatty acids to produce a fatty acid or precursor of interest.
- a plant-soluble fatty acid desaturase enzyme may introduce a double bond regiospecifically into a saturated acyl-ACP substrate.
- Acyl- CoA desaturases introduce a double bond regiospecifically into a saturated fatty acyl- CoA substrate. The reaction involves activation of molecular oxygen by a two-electron reduced diiron center coordinated by a four-helix bundle that forms the core of the desaturase architecture.
- acyl-CoA delta-9 desaturases are particularly interest in some embodiments.
- variable desaturase encompasses those desaturases that exhibit specific activity profiles consistent with a role in producing unusual fatty acids.
- a variant desaturase may be isolated from an organism, engineered via a directed evolution program, or engineered as a synthetic desaturase incorporating conserved amino acids from one or more characterized desaturase.
- Progeny plant refers to any plant, or plant material obtained therefrom, that may be obtained by plant breeding methods. Plant breeding methods are well-known in the art, and include natural breeding, artificial breeding, selective breeding involving DNA molecular marker analysis, transgenics, and commercial breeding.
- Plant material refers to any cell or tissue obtained from a plant.
- Nucleic acid molecule A polymeric form of nucleotides, which can include both sense and anti-sense strands of RNA, cDNA, genomic DNA, and synthetic forms and mixed polymers of the above.
- a nucleotide refers to a ribonucleotide, deoxynucleotide, or a modified form of either type of nucleotide.
- a "nucleic acid molecule” as used herein is synonymous with “nucleic acid” and “polynucleotide.” The term includes single- and double-stranded forms of DNA.
- a nucleic acid molecule can include either or both naturally occurring and modified nucleotides linked together by naturally occurring and/or non-naturally occurring nucleotide linkages.
- Nucleic acid molecules can be modified chemically or biochemically, or can contain non-natural or derivatized nucleotide bases, as will be readily appreciated by those of ordinary skill in the art. Such modification include, for example, labels, methylation, substitution of one or more of the naturally occurring nucleotides with an analog, internucleotide modifications, such as uncharged linkages (for example, methyl phosphonates, phosphotriesters, phosphoramidates, carbamates, etc.), charged linkages (for example, phosphorothioates, phosphorodithioates, etc.), pendent moieties (for example, peptides), intercalators (for example, acridine, psoralen, etc.), chelators, alkylators, and modified linkages (for example, alpha anomeric nucleic acids, etc.).
- the term "nucleic acid molecule” also includes any topological conformation, including single-stranded, double-stranded, partially duplexe
- a first nucleic acid sequence is operably linked with a second nucleic acid sequence when the first nucleic acid sequence is in a functional relationship with the second nucleic acid sequence.
- a promoter is operably linked to a coding sequence if the promoter affects the transcription or expression of the coding sequence.
- operably linked nucleic acid sequences are generally contiguous and, where necessary to join two protein-coding regions, in the same reading frame. However, nucleic acids need not be contiguous to be operably linked.
- regulatory element refers to a nucleic acid molecule having gene regulatory activity; i.e., one that has the ability to affect the transcription or translation of an operably-linked transcribable nucleic acid molecule. Regulatory elements such as promoters, leaders, introns, and transcription termination regions are non-coding nucleic acid molecules having gene regulatory activity which play an integral part in the overall expression of genes in living cells. Isolated regulatory elements that function in plants are therefore useful for modifying plant phenotypes through the techniques of molecular engineering. By “regulatory element,” it is intended a series of nucleotides that determines if, when, and at what level a particular gene is expressed. The regulatory DNA sequences specifically interact with regulatory proteins or other proteins.
- gene regulatory activity refers to a nucleic acid molecule capable of affecting transcription or translation of an operably linked nucleic acid molecule.
- An isolated nucleic acid molecule having gene regulatory activity may provide temporal or spatial expression or modulate levels and rates of expression of the operably linked nucleic acid molecule.
- An isolated nucleic acid molecule having gene regulatory activity may comprise a promoter, intron, leader, or 3' transcriptional termination region.
- Promoters refers to a nucleic acid molecule that is involved in recognition and binding of RNA polymerase II or other proteins such as transcription factors (trans-acting protein factors that regulate transcription) to initiate transcription of an operably linked gene. Promoters may themselves contain sub-elements such as cis-elements or enhancer domains that effect the transcription of operably linked genes.
- a "plant promoter” is a native or non-native promoter that is functional in plant cells. A plant promoter can be used as a 5' regulatory element for modulating expression of an operably linked gene or genes. Plant promoters may be defined by their temporal, spatial, or developmental expression pattern.
- the nucleic acid molecules described herein may comprise nucleic acid sequences comprising promoters.
- sequence identity refers to the residues in the two sequences that are the same when aligned for maximum correspondence over a specified comparison window.
- residue positions which are not identical often differ by conservative amino acid substitutions, where amino acid residues are substituted for other amino acid residues with similar chemical properties (e.g., charge, hydrophobicity, or steric effects), and therefore do not change the functional properties of the molecule.
- sequences differ by conservative substitutions when sequences differ by conservative substitutions, the percent sequence identity may be adjusted upwards to correct for the conservative nature of the substitution at the site of the non-identical residue. Sequences that differ by such conservative substitutions are said to have "sequence similarity" or “similarity.” Techniques for making this adjustment are well known to those of ordinary skill in the art. Typically, such techniques involve scoring a conservative substitution as a partial, rather than a full, mismatch, thereby increasing the percentage sequence identity. For example, where an identical amino acid is given a score between 0 and 1, and a non- conservative substitution is given a score of 0, a conservative substitution is given a score between 0 and 1. The scoring of conservative substitutions may be calculated, for example, as implemented in the program PC/GENE (Intelligenetics, Mountain View, CA).
- the term "percentage of sequence identity” may refer to the value determined by comparing two optimally aligned sequences over a comparison window, wherein the portion of the sequence in the comparison window may comprise additions or deletions (i.e., gaps) as compared to the reference sequence (which does not comprise additions or deletions) for optimal alignment of the two sequences. The percentage is calculated by determining the number of positions at which the identical nucleotide or amino acid residue occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the comparison window, and multiplying the result by 100 to yield the percentage of sequence identity.
- Analogous position in an amino acid sequence Nucleic acid and amino acid sequences may be aligned by the methods described in the following paragraphs. When aligned, a position in one sequence is in "an analogous position" with a position in the aligned sequence if the positions are identical within the consensus sequence.
- NCBI National Center for Biotechnology Information
- Blast.cgi Basic Local Alignment Search Tool
- the "Blast 2 sequences" function of the BLAST program (bl2seq) is employed using the default parameters. Specific parameters may be adjusted within the discretion of one of skill in the art, to for example, provide a penalty for a mismatch or reward for a match.
- transformed refers to a cell, tissue, organ, or organism into which has been introduced a foreign nucleic acid molecule, such as a construct.
- the introduced nucleic acid molecule may be integrated into the genomic DNA of the recipient cell, tissue, organ, or organism such that the introduced polynucleotide molecule is inherited by subsequent progeny.
- a "transgenic” or “transformed” cell or organism also includes progeny of the cell or organism and progeny produced from a breeding program employing such a transgenic plant as a parent in, for example, a cross and exhibiting an altered phenotype resulting from the presence of a foreign nucleic acid molecule.
- An embodiment of the invention includes introducing delta-9 desaturases with specific acyl-CoA preferences (for example, for palmitic or stearic acid) in plant seeds.
- the specific acyl-CoA preference of the delta-9 desaturase enables targeting of certain specific saturated fatty acid pools ⁇ e.g., palmitate for conversion to monounsaturated products).
- Acyl-CoA delta-9 desaturases were selected for lowering the saturated fatty acid content in plants as they are not normally produced in plant systems to any appreciable extent.
- Polypeptides according to some embodiments of the present invention comprise an amino acid sequence showing increasing percentage identities when aligned with a sequence selected from the group consisting of SEQ ID NO: 12, SEQ ID NO:13, SEQ ID NO:14, SEQ ID NO:50, SEQ ID NO:52, SEQ ID NO:72, and SEQ ID NO: 73.
- Specific amino acid sequences within these and other embodiments may comprise sequences having, for example, at least about 70%, about 75%, about 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95% 96%, 97%, 98%o, 99%, or 100% identity with the aforementioned sequences.
- the amino acid sequence having the aforementioned sequence identity when aligned with the aforementioned sequences encode a peptide with enzymatic delta-9- 18 :0-ACP desaturase activity, or part of a such a peptide.
- nucleic acids Some embodiments include nucleic acid molecules encoding a polypeptide described above. For example, nucleic acid sequences in some embodiments show increasing percentage identities when aligned with a sequence selected from the group consisting of SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:l l, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO: 17, SEQ ID NO:44, SEQ ID NO:45, SEQ ID NO:48, and SEQ ID NO:49.
- nucleic acid sequences within these and other embodiments may comprise sequences having, for example, at least about 60%, about 65%, about 70%, about 75%, about 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95% 96%, 97%, 98%, 99%, or 100% identity with a sequence selected from the group consisting of SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:l l, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO: 17, SEQ ID NO:44, SEQ ID NO:45, SEQ ID NO:48, and SEQ ID NO:49. It is understood by those of ordinary skill in the art that nucleic acid molecules may be modified without substantially changing the amino acid sequence of an encoded polypeptide, for example, by introducing permissible nucleot
- nucleic acid molecules of the present invention comprise a gene regulatory element (e.g., a promoter).
- Promoters may be selected on the basis of the cell type into which the vector construct will be inserted. Promoters which function in bacteria, yeast, and plants are well-known in the art. The promoters may also be selected on the basis of their regulatory features. Examples of such features include enhancement of transcriptional activity, inducibility, tissue-specificity, and developmental stage-specificity. In plants, promoters that are inducible, of viral or synthetic origin, constitutively active, temporally regulated, and spatially regulated have been described. See, e.g., Poszkowski et al. (1989) EMBO J. 3:2719; Odell et al. (1985) Nature 313:810; and Chau et al. (1989) Science 244:174-81).
- Useful inducible promoters include, for example, promoters induced by salicylic acid or polyacrylic acids induced by application of safeners (substituted benzenesulfonamide herbicides), heat-shock promoters, a mtrate-inducible promoter derived from the spinach nitrate reductase transcribable nucleic acid molecule sequence, hormone-inducible promoters, and light-inducible promoters associated with the small subunit of RuBP carboxylase and LHCP families.
- tissue-specific, developmentally-regulated promoters examples include the ⁇ -conglycinin 7Sct promoter and seed-specific promoters.
- Plant functional promoters useful for preferential expression in seed plastid include those from proteins involved in fatty acid biosynthesis in oilseeds and from plant storage proteins. Examples of such promoters include the 5' regulatory regions from such transcribable nucleic acid molecule sequences as phaseolin, napin, zein, soybean trypsin inhibitor, ACP, stearoyl-ACP desaturase, and oleosin.
- Another exemplary tissue-specific promoter is the lectin promoter, which is specific for seed tissue.
- promoters include the nopaline synthase, mannopine synthase, and octopine synthase promoters, which are carried on tumor-inducing plasmids of Agrobacterium tumefaciens; the cauliflower mosaic virus (CaMV) 19S and 35S promoters; the enhanced CaMV 35S promoter; the Figwort Mosaic Virus 35S promoter; the light-inducible promoter from the small subunit of ribulose-1,5- bisphosphate carboxylase (ssRUBISCO); the EIF-4A promoter from tobacco (Mandel et al. (1995) Plant Mol. Biol.
- CaMV cauliflower mosaic virus
- Figwort Mosaic Virus 35S promoter the light-inducible promoter from the small subunit of ribulose-1,5- bisphosphate carboxylase (ssRUBISCO)
- EIF-4A promoter from tobacco (Mandel et al. (1995) Plant Mol. Biol.
- corn sucrose synthetase corn alcohol dehydrogenase I; corn light harvesting compolex; corn heat shock protein; the chitinase promoter from Arabidopsis; the LTP (Lipid Transfer Protein) promoters; petunia chalcone isomerase; bean glycine rich protein 1 ; potato patatin; the ubiquitin promoter; and the actin promoter.
- Useful promoters are preferably seed-selective, tissue selective, or inducible. Seed-specific regulation is discussed in, for example, EP 0 255 378.
- a heterologous gene(s) it may be preferred to reengineer the gene(s) so that it is more efficiently expressed in the expression host cell (e.g., a plant cell, for example, canola, rice, tobacco, maize, cotton, and soybean). Therefore, an optional additional step in the design of a gene encoding a delta-9 desaturase for plant expression (i.e., in addition to the provision of one or more gene regulatory elements) is reengineering of a heterologous gene protein coding region for optimal expression.
- Particular embodiments include redesigned genes that have been optimized to increase the expression level (i.e. produce more protein) in a transgenic canola plant cell or Arabidopsis plant cell than in a canola plant cell or Arabidopsis plant cell transformed with the naturally-occurring heterologous gene sequence.
- the codon bias is the statistical distribution of codons that the expression host ⁇ e.g., a plant such as canola or Arabidopsis) uses for coding the amino acids of its proteins.
- the codon bias can be calculated as the frequency at which a single codon is used relative to the codons for all amino acids.
- the codon bias may be calculated as the frequency at which a single codon is used to encode a particular amino acid, relative to all the other codons for that amino acid (synonomous codons).
- the primary (“first choice”) codons preferred by the plant should be determined, as well as the second, third, fourth etc. choices of preferred codons when multiple choices exist.
- a new DNA sequence can then be designed which encodes the amino sequence of the delta-9 desaturase gene, wherein the new DNA sequence differs from the native DNA sequence (encoding the desaturase) by the substitution of expression host-preferred (first preferred, second preferred, third preferred, or fourth preferred, etc) codons to specify the amino acid at each position within the amino acid sequence.
- the new sequence is then analyzed for restriction enzyme sites that might have been created by the modifications.
- the identified putative restriction sites are further modified by replacing these codons with a next-preferred codon to remove the restriction site.
- Other sites in the sequence which may affect transcription or translation of heterologous sequence are exon:intron junctions (5' or 3'), poly-A addition signals, and/or RNA polymerase termination signals.
- the sequence may be further analyzed and modified to reduce the frequency of TA or CG doublets. In addition to these doublets, sequence blocks that have more than about six G or C nucleotides that are the same may also adversely affect transcription or translation of the sequence. Therefore, these blocks are advantageously modified by replacing the codons of first or second choice, etc. with the next-preferred codon of choice.
- DNA molecules can be synthesized in the laboratory to correspond in sequence precisely to the designed sequence.
- synthetic DNA molecules may be cloned and otherwise manipulated exactly as if they were derived from natural or native sources.
- Some embodiments are directed to a method of producing a transformed cell that comprises one or more nucleic acid molecule(s) comprising a nucleic acid sequence at least 60% identical to a sequence selected from the group consisting of SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO: 11, SEQ ID NO: 15, SEQ ID NO: 16, SEQ ID NO: 17, SEQ ID NO:44, SEQ ID NO:45, SEQ ID NO:48, and SEQ ID NO:49.
- Such nucleic acid molecules may also comprise, for example, non-coding regulatory elements, such as promoters.
- sequences may also be introduced into the cell along with the non- coding regulatory elements and transcribable nucleic acid molecule sequences. These other sequences may include 3' transcriptional terminators, 3' poly-adenylation signals, other untranslated sequences, transit or targeting sequences, selectable markers, enhancers, and operators.
- a method of transformation generally comprises the steps of selecting a suitable host cell, transforming the host cell with a recombinant vector, and obtaining the transformed host cell.
- Technology for introduction of DNA into cells is well- known to those of skill in the art. These methods can generally be classified into five categories: (1) chemical methods (Graham and Van der Eb (1973) Virology 54(2):536-9; Zatloukal et al. (1992) Ann. N.Y. Acad. Sci. 660:136-53); (2) physical methods such as microinjection (Capechi (1980) Cell 22(2):479-88), electroporation (Wong and Neumann (1982) Biochim. Biophys. Res. Commun. 107(2):584-7; Fromm et al.
- nucleic acids may be directly introduced into pollen by directly injecting a plant's reproductive organs. Zhou et al. (1983) Methods in Enzymology 101 :433; Hess (1987) Intern. Rev. Cytol. 107:367; Luo et al. (1988) Plant Mol. Biol. Reporter 6:165; Pena et al. (1987) Nature 325:274.
- transformation methods include, for example, protoplast transformation as illustrated in U.S. Patent 5,508,184. Nucleic acid molecules may also be injected into immature embryos. Neuhaus et al. (1987) Theor. Appl. Genet. 75:30.
- plant plastids may be transformed utilizing a microprojectile-mediated delivery of the desired nucleic acid molecule in certain plant species, such as for example, Arabidopsis, tobacco, potato, and Brassica species.
- Agrobacterium-mediated transformation is achieved through the use of a genetically engineered soil bacterium belonging to the genus Agrobacterium.
- Several Agrobacterium species mediate the transfer of a specific DNA known as "T-DNA,” which can be genetically engineered to carry any desired piece of DNA into many plant species.
- T-DNA a specific DNA known as "T-DNA”
- the major events marking the process of T-DNA mediated pathogensis are: induction of virulence genes, and processing and transfer of T-DNA. This process is the subject of many reviews. See, e.g., Ream (1989) Ann. Rev. Phytopathol. 27:583- 618; Howard and Citovsky (1990) Bioassays 12:103-8; Kado (1991) Crit. Rev. Plant Sci.
- the DNA introduced into the cell may contain a gene that functions in a regenerable plant tissue to produce a compound that confers upon the plant tissue resistance to an otherwise toxic compound.
- Genes of interest for use as a selectable, screenable, or scorable marker include, but are not limited to, ⁇ -glucuronidase (GUS), green fluorescent protein (GFP), luciferase, and antibiotic or herbicide tolerance genes. Examples of antibiotic resistance genes include genes conferring resistance to the penicillins, kanamycin (and neomycin, G418, bleomycin); methotrexate (and trimethoprim); chloramphenicol; and tetracycline.
- glyphosate resistance may be conferred by a herbicide resistance gene.
- Other selection devices can also be implemented, including for example and without limitation, tolerance to phosphinothricin, bialaphos, and positive selection mechanisms (Joersbro et al. (1998) Mol. Breed. 4:111-7), and are considered within the scope of embodiments of the present invention.
- the transformed cells identified by selection or screening and cultured in an appropriate medium that supports regeneration, may then be allowed to mature into plants.
- Transformable cells and tissues includes but is not limited to those cells or tissues that are capable of further propagation to give rise to a plant.
- Those of skill in the art recognize that a number of plant cells or tissues are transformable in which after insertion of exogenous DNA and appropriate culture conditions the plant cells or tissues can form into a differentiated plant.
- Tissue suitable for these purposes can include but is not limited to immature embryos, scutellar tissue, suspension cell cultures, immature inflorescence, shoot meristem, nodal explants, callus tissue, hypocotyl tissue, cotyledons, roots, and leaves.
- the resulting transgenic rooted shoots are thereafter planted in an appropriate plant growth medium such as soil.
- Cells that survive the exposure to a selective agent, or cells that have been scored positive in a screening assay may be cultured in media that supports regeneration of plants.
- the shoots may then be transferred to an appropriate root-inducing medium containing the selective agent and an antibiotic to prevent bacterial growth. Many of the shoots will develop roots. These are then transplanted to soil or other media to allow the continued development of roots.
- the method as outlined above, will generally vary depending on the particular plant strain employed, and particulars of the methodology are therefore within the discretion of one of skill in the art.
- the regenerated transgenic plants may be self-pollinated to provide homozygous transgenic plants.
- pollen obtained from the regenerated transgenic plants may be crossed with non-transgenic plants, preferably inbred lines of agronomically important species.
- pollen from non-transgenic plants may be used to pollinate the regenerated transgenic plants.
- the transgenic plant may pass along the transformed nucleic acid sequence to its progeny.
- the transgenic plant is preferably homozygous for the transformed nucleic acid sequence and transmits that sequence to all of its offspring upon, and as a result of, sexual reproduction.
- Progeny may be grown from seeds produced by the transgenic plant. These additional plants may then be self-pollinated to generate a true breeding line of plants.
- the progeny from these plants may be evaluated, among other things, for gene expression.
- the gene expression may be detected by several common methods such as western blotting, northern blotting, immunoprecipitation, and ELISA (Enzyme-Linked Immunosorbent Assay).
- the transformed plants may also be analyzed for the presence of the introduced DNA and the expression level and/or fatty acid profile conferred by the nucleic acid molecules and amino acid molecules of the present invention.
- methods for plant analysis include, but are not limited to, Southern blots or northern blots, PCR-based approaches, biochemical assays, phenotypic screening methods, field evaluations, and immunodiagnostic assays.
- Methods for specifically transforming dicots are well-known to those skilled in the art. Transformation and plant regeneration using these methods have been described for a number of crops including, but not limited to, members of the genus Arabidopsis, cotton (Gossypium hirsutum), soybean ⁇ Glycine max), peanut (Arachis hypogaea), and members of the genus Brassica. Methods for transforming dicots, primarily by use of Agrobacterium tumefaciens, and obtaining transgenic plants have been published for cotton (U.S. Patent 5,004,863; U.S. Patent 5,159,135; U.S. Patent 5,518,908); soybean (U.S. Patent 5,569,834; U.S.
- Patent 5,416,011 McCabe et al. (1988) Biotechnology 6:923; Christou et al. (1988) Plant Physiol. 87:671-4); Brassica (U.S. Patent 5,463,174); peanut (Cheng et al. (1996) Plant Cell Rep. 15:653-7; McKently et al. (1995) Plant Cell Rep. 14:699-703); papaya; and pea (Grant et al. (1995) Plant Cell Rep. 15:254-8).
- Preferred plants for modification according to the present invention include, for example and without limitation, oilseed plants, Arabidopsis thaliana, borage (Borago spp.), canola ⁇ Brassica spp.), castor (Ricinus communis), cocoa bean (Theobroma cacao), corn (Zea mays), cotton (Gossypium spp), Crambe spp., Cuphea spp., flax (Linum spp.), Lesquerella and Limnanthes spp., Linola, nasturtium (Tropaeolum spp.), Oenothera spp., olive (Olea spp.), palm (Elaeis spp.), peanut (Arachis spp.), rapeseed, safflower (Carthamus spp.), soybean (Glycine and Soja spp.), sunflower (Heliant
- a transgenic seed may comprise a delta-9 desaturase polypeptide comprising an amino acid sequence being at least 80% identical to a sequence selected from the group consisting of SEQ ID NO: 12, SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO:50, SEQ ID NO:51, SEQ ID NO:52, SEQ ID NO:72, and SEQ ID NO: 73.
- the transgenic seed may comprise a nucleic acid sequence being at least 60% identical to a sequence selected from the group consisting of SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO: 10, SEQ ID NO:l 1, SEQ ID NO: 15, SEQ ID NO: 16, SEQ ID NO:17, SEQ ID NO:44, SEQ ID NO:45, SEQ ID NO:48, and SEQ ID NO:49.
- a transgenic seed may exhibit decreased levels of saturated fatty acids (for example, palmitic fatty acids and/or stearic fatty acids).
- the seeds may be harvested from a fertile transgenic plant, and may be used to grow progeny generations of transformed plants, including hybrid plant lines comprising at least one nucleic acid sequence as set forth above, and optionally at least one additional gene or nucleic acid construct of interest.
- MgD9DS The Magnaporthe grisea acyl-CoA delta-9 desaturase gene (MgD9DS) was isolated from genomic DNA using primers based on a published NCBI/Broad Institute sequence originally annotated as a "hypothetical protein," and having 55.4% identity at the nucleotide level to the S. cerevisiae acyl-CoA delta-9 desaturase (i.e., OLE1). Forward and reverse primers, each 41 base pairs in length, were designed.
- the forward primer, MgA9F SEQ ID NO:l
- the reverse primer, Mg9AR SEQ ID NO:2
- the MgD9DS gene was PCR amplified using the Takara EZ TaqTM PCR kit (Takara Bio Inc., Otsu, Shiga, Japan) following the manufacturer's protocol.
- the amplification conditions were 94 °C for 1 minute, followed by 30 cycles of 94 °C for 30 sec, 60 °C for 60 seconds, and an extension at 72 °C for 90 seconds.
- a final extension step was performed at 72 °C for 10 minutes.
- the expected 1,425 base pair PCR product was excised from an agarose gel and purified using Montage spin columns per manufacturer's recommendations (Millipore, Billerica, MA).
- the purified fragment was cloned into the pCR ® 2.1 TOPO ® cloning vector (Invitrogen, Carlsbad, CA).
- the TOPO reaction was transformed into chemically competent Top 10 E. coli cells per supplier conditions. Bacterial colonies containing the putative clone were isolated. Mini-plasmid preps were preformed with a Macherey-Nagel Nucleospin DNA isolation kit (Machery-Nagel, Neumann-Neander-Strasse, Diiren, Germany), and DNA was digested with EcoRI and Xhol restriction enzymes. Positive clones containing the expected 1,425 bp MgD9DS gene fragment were identified. The nucleotide sequence was obtained via sequencing reactions. The sequence of the PCR amplified fragment is listed as SEQ ID NO:3.
- This yeast expression vector contains an Aspergillus nidulans delta-9 desaturase (AnD9DS) gene flanked by the S. cerevisiae delta-9 desaturase promoter and delta-9 desaturase 3'UTR/terminator.
- the Aspergillus nidulans delta-9 desaturase gene was excised on an EcoRI/XhoI fragment, which was replaced with either the MgD9DS gene-containing fragment or the intronless MgD9DS gene-containing fragment.
- Two clones containing the MgD9DS gene were advanced for S. cerevisiae transformation.
- a delta-9 desaturase deficient S. cerevisiae strain (OFY093), which is maintained on Yeast Peptone Dextrose (YPD) media with Tween ® 80, was transformed using the Alkali-Cation Yeast Transformation Kit (Qbiogene, Montreal, Canada).
- Complemented strains were identified by growth on media that did not contain Tween ® 80 (monounsaturated fatty acid supplement) or uracil (Dropout Base with Agar with SC-URA). Complemented strains were single colony purified on selective media three times. Complemented strains were further verified by PCR amplification of the delta-9 desaturase gene, and sequencing of the PCR product.
- strains containing the MgD9DS clone were reverted to fatty acid and uracil dependence by passing the strain at least three times on YPD + Tween 80 ® media, then patching strains to DOBA SC-URA minus Tween ® 80 media.
- intron-containing MgD9DS coding sequence was unsuccessful, indicating that the intron was not spliced by the yeast machinery.
- the substrate specificity of the yeast strain containing the intronless MgD9DS coding sequence was further characterized by FAME analysis.
- Two Leptosphaeria nodorum EST sequences (1,246 and 429 base pairs, respectively) were identified from a collection of L. nodorum ESTs by using a BlastN search as sharing high levels of sequence identity (54.0% and 54.2% respectively) with the S. cerevisiae acyl-CoA delta-9 desaturase (OLE1). When aligned, these sequences were 64.6% identical to one another, suggesting the presence of two distinct Leptosphaeria nodorum acyl-CoA delta-9 desaturases.
- An LnD9DS-l gene (SEQ ID NO:5) was isolated by screening a L. nodorum cDNA library with the 1,246 bp gene probe.
- LnD9DS-2 The sequence of this gene was obtained, and the coding sequence was isolated.
- the entire sequence of an LnD9DS-2 gene was isolated by first BLAST searching the published Broad Institute Leptosphaeria nodorum genome sequence with the 429 bp EST sequence. This search identified Supercontig Ln 1.4 as containing a gene with 100% homology to the 429 bp fragment, which gene was annotated as encoding a "hypothetical protein.”
- the LnD9DS-2 gene was cloned from a Leptosphaeria nodorum cDNA library using PCR primers based on the Lnl .4 supercontig sequence.
- the primer sequences used were Lnd9FAD2F (SEQ ID N0:6) and Lnd9FAD2R (SEQ ID NO: 7).
- the forward primer was designed with a 5' BamHI site, and the reverse primer contained stop codons in three reading frames and a terminal Ncol site.
- PCR amplification was performed using a Takara EZ TaqTM PCR kit following the recommended amplification conditions of 94 °C for 1 minute, followed by 30 cycles of 94 °C for 30 seconds, 60 °C for 60 seconds, and extension at 72 °C for 90 seconds. A final extension step was performed at 72 °C for 10 minutes.
- the expected 1,370 base pair product was excised from an agarose gel, and purified using Montage spin columns per the manufacturer's recommendations. The purified fragment was cloned into the pCR ® 2.1 TOPO ® cloning vector.
- the ligation reaction was transformed into chemically competent Top 10 E. coli cells according to the manufacturer's recommended protocol. Colonies containing a putative clone were isolated. Mini plasmid preps were preformed with Macherey-Nagel Nucleospin columns, and DNA was digested with BamHI and Ncol restriction enzymes. Putative LnD9DS-2 clones were identified and sequenced.
- LnD9DS-2 Upon sequencing, a clone of LnD9DS-2 (SEQ ID NO:8) was confirmed by comparison with the "hypothetical protein" sequence. A conservative change in the sequence of LnD9DS-2 was identified. The codon TGC (cysteine) was changed to AGC (serine) by substitution of an adenine for a thymidine at base position 271, which codon is translated to amino acid 89 of the published sequence. This is a conservative change, and the cysteine is not found to be a highly conserved amino acid among multiple filamentous fungi, so no correction was attempted.
- LnD9DS-l and LnD9DS-2 genes of SEQ ID NOs:5 and 8, respectively, were cloned into a yeast expression vector. Clones containing either of the LnD9DS-l and LnD9DS-2 coding sequences were confirmed by restriction enzyme analysis and DNA sequencing.
- a delta-9 desaturase deficient S. cerevisiae strain (OFY093), which is maintained on YPD media with Tween ® 80, was transformed using the Alkali-Cation Yeast Transformation Kit from Qbiogene.
- Complemented strains were identified by growth on media that did not contain Tween ® 80 (monounsaturated fatty acid supplement) or uracil (DOB A sc-ura). The complemented strains were single colony purified on selective media three times. Complemented strains were further verified by PCR amplification of the delta-9 desaturase gene and sequencing of the PCR product.
- strains containing a LnD9DS-2 clone were reverted to fatty acid and uracil dependence by passing each strain at least three times on YPD + Tween ® 80 media, then patching strains to DOBA SC-URA minus Tween ® 80 media.
- the substrate specificities of the yeast strains containing either the LnD9DS-l or LnD9DS-2 coding sequence were further characterized by FAME analysis.
- HzD9DS Helicoverpa zea acyl-CoA delta-9 desaturase
- a clone containing the HzD9DS gene was selected for transformation into the delta-9 desaturase deficient S. cerevisiae strain, OFY093.
- the OFY093 strain which is maintained on YPD media with Tween ® 80, was transformed using the Alkali-Cation Yeast Transformation Kit from Qbiogene.
- Complemented strains were identified by growth on media that did not contain Tween ® 80 (fatty acid supplement) and uracil (DOBA SC-URA). Putative complemented strains were single colony purified on selective media three times.
- Complemented strains were further verified by: i) extraction of plasmid DNA, using the Qbiogene Yeast plasmid purification kit, followed by PCR amplification using HzD9DS gene-specific primers; ii) sequencing of the HzD9DS gene-specific PCR product; and iii) reversion of the strain to fatty acid and URA-3 dependence by passing the strain at least three times on YPD + Tween ® 80 media, then patching strains to DOBA SC-URA minus Tween ® 80 media.
- the substrate specificity of one verified complemented HzD9DS yeast strain was further characterized by FAME analysis. Analvsis of LnD9DS-L LnD9DS-2, MgD9DS, and HzD9DS expressed in OLE 1 -deficient yeast strain
- D9DS acyl-CoA delta-9 desaturase
- Acyl-CoA delta-9 desaturases catalyze the formation of a cis double bond between carbon atoms 9 and 10 of saturated 14-, 16-, and 18-carbon fatty acyl thioesters of Coenzyme A, resulting in production of myristoleic (14:1), palmitoleic (16:1), or oleic acid (18:1), respectively. Effects related to organism-specific biology are eliminated by expressing the different fungal acyl-CoA delta-9 desaturase genes in the same biological context.
- the substrate specificities of the MgD9DS, LnD9DS-l and LnD9DS-2 CoA desaturases expressed in the complemented OYF093 strains were characterized and compared to OFY093 complemented with the AnD9DS (sdeA) described in WO/1999/050430.
- AnD9DS sdeA
- novel desaturases were further compared to the native S. cerevisiae stearoyl-CoA delta-9 desaturase (olel) transferred into the same recombinant expression environment.
- a yeast expression vector containing the nucleotide sequence from S. cerevisiae described in WO/2000/011012 was constructed.
- the yeast expression construct containing the native S. cerevisiae stearoyl-CoA delta-9 desaturase was transformed into the S. cerevisiae OFY093 strain and expressed using the protocol described above.
- Another non-fungal acyl-CoA delta-9 desaturase from the insect species, Helicoverpa zea (HzD9DS) was also evaluated in these experiments.
- Complemented S. cerevisiae strains containing one of the MgD9DS, LnD9DS- 2 and HzD9DS genes were grown in Drop Out Broth SC-URA.
- a control strain, pDAB467EV-l (pDAB467B/N transformed into OFY093 by previously described Yeast Transformation methodology), was grown in DOB SC-URA + Tween ® 80, and the parent delta-9 desaturase-deficient S. cerevisiae strain, OFY093, was grown in DOB scAA + Tween ® 80.
- Cultures were inoculated with a loop of cells from a fresh streak plate of the same media containing 1.5% agar. Strains were grown at 30 °C for 24 hours. Cultures were spun at 6,000 rpm for 10 minutes. Pellets were washed in water, spun again at 6,000 rpm for 10 minutes, and then frozen at -20 °C until FAME analysis was performed. Three sets of expression cultures were analyzed.
- Freeze-dried yeast pellets were saponified in methanol containing 10% (w/v) NaOH. Nonsaponifiable lipid contaminants (sterols) were removed with hexane.
- the methanol fraction was acidified by addition of H 2 S0 4 , and the protonated fatty acids were extracted with hexane.
- the isolated hexane fraction was dried down, and fatty acids were methylated with 0.5 N MeOHCl at 80 °C for 30 minutes.
- the resulting FAMEs were extracted with hexane containing undecanoate methyl ester as an internal standard.
- the FAME extracts were analyzed with a FIP6890 Gas Chromatograph- Flame Ionization Detector (Santa Clara, CA) equipped with a capillary column BPX 70 (15m x 0.25mm x 0.25 ⁇ ) from SGE (Austin,TX). FAMEs were separated in a temperature gradient using helium as the carrier gas. Each FAME species was identified by retention time, and quantified by the injection of a FAME rapeseed oil reference mix from Matreya, LLC (Pleasant Gap, PA), as the calibration standard.
- Table 2 shows the fatty acid composition (as %FAMEs) of olel -deficient OFY093 yeast cells expressing various exemplary acyl Co-A delta-9 desaturases. All strains grew well and were fully-complemented by the introduced desaturases without any requirement for exogenous MUFAs (monounsaturated fatty acids).
- Table 2 Fatty acid composition (as % Total FAMEs) of olel -deficient yeast strain OFY093 expressing acyl Co-A delta-9 desaturases. (Standard Deviation is in parentheses).
- LnD9DS-2 produces relatively high amounts of CI 6:1, as does HzD9DS and olel, whereas AnD9DS and MgD9DS produce relatively high amounts of C 18: 1.
- the differential level of conversion based upon chain length can be further shown by calculating the proportion of MUFA relative to the total fatty acids for each fatty acid chain length; CI 4, CI 6, or CI 8. These data show the relatively high conversion to C16:l for LnD9DS-2 and HzD9DS, and to C18:l for AnD9DS and MgD9DS. Table 3. The bottom four rows represent control samples complemented with added tergitol, unsaturated fatty acids, or Tween ® . Samples with different letters are significantly different, as determined via the Tukey-Kramer Test performed in the JMP statistical software suite (SAS Institute Inc., Cary, NC). Table 3: Proportion of MUFA of total fatty acids for each chain length (Cxx: l/(Cxx:0 + Cxx:l).
- CI 6 MUFA includes cis-vaccenic acid (CI 8:1 Al l), as it is derived from elongation of palmitoleic acid (CI 6:1 ⁇ 9).
- LnD9DS-2 is distinct from the 18:0-preferring delta-9 desaturases.
- characterization of other fungal delta-9 desaturases closely associated with either the 18:0-preferring delta-9 desaturases, or with LnD9DS-2 may identify desaturases with a range of 18:0 or 16:0 activities.
- Our hypothesis predicts that a fungal delta-9 desaturase that is more closely associated with LnD9DS-2 will have increased 16:0 activity.
- FIG. 1 illustrates this phylogenetic analysis of the fungal desaturase sequences. These sequences were recovered by BlastN searches of the NCBI sequence database using the AnD9DS (sdeA) amino acid sequence. LnD9DS-l and MgD9DS share higher levels of sequence identity with one another, as compared to LnD9DS-2.
- LnD9DS-l shows the divergence of LnD9DS-2 from LnD9DS-l and MgD9DS.
- FIG. 2 The nucleotide sequences of LnD9DS-l and MgD9DS share a higher number of base pairs in common.
- Table 4 and FIG. 3 further illustrate the phylogenetic relationship of newly- identified proteins, LnD9DS-l, LnD9DS-2, and MgD9DS, as well as AnD9DS and the yeast desaturase, ScOLEl.
- the LnD9DS-l, MgD9DS, and AnD9DS (sdeA) amino acids sequences share a greater percentage of identity with one another as compared to LnD9DS-2.
- the conservation of amino acid identity allows us to predict that the substrate specificity for 18:0 acyl-CoA is dependent upon the conserved sequence shared between LnD9DS-l, MgD9DS, and AnD9DS (sdeA).
- the acyl- CoA substrate specificity of LnD9DS-2 is preferential for 16:0 as a result of its divergent amino acid sequence.
- Table 4 Amino acid identity of various fungal desaturase sequences aligned using ClustalW.
- Example 2 Design and synthesis of optimized delta-9 desaturase genes from Magnaporthe grisea, Helicoverpa zea, and Leptosphaeria nodorum
- a codon was considered to be rarely used if it is represented at about 10% or less of the time to encode the relevant amino acid in genes of either plant type (indicated by "DNU" in Columns D and H of Table 5).
- DNU Determination of the remaining codon choices for an amino acid
- the new DNA sequences differ from the native DNA sequences encoding the delta-9 desaturase proteins by the substitution of plant-preferred (i.e., first preferred, second preferred, third preferred, or fourth preferred) codons to specify an appropriate amino acid at each position within the protein amino acid sequence.
- Design of the plant-optimized DNA sequences were initiated by reverse- translation of the protein sequences of SEQ ID NO:12, SEQ ID NO:13 and SEQ ID NO: 14, using a canola codon bias table constructed from Table 5 Columns D and H.
- the initial sequences were then modified by compensating codon changes (while retaining overall weighted average codon representation) to remove restriction enzyme recognition sites, remove highly stable intrastrand secondary structures, and remove other sequences that might be detrimental to cloning manipulations or expression of the engineered gene in plants.
- the DNA sequences were then re-analyzed for restriction enzyme recognition sites that might have been created by the modifications.
- the identified sites were then further modified by replacing the relevant codons with first, second, third, or fourth choice preferred codons.
- modified sequences were further analyzed and further modified to reduce the frequency of TA and CG doublets, and to increase the frequency of TG and CT doublets.
- sequence blocks that have more than about six consecutive residues of [G+C] or [A+T] were modified by replacing the codons of first or second choice, etc. with other preferred codons of choice.
- Rarely used codons were not included to a substantial extent in the gene design, and were used only when necessary to accommodate a different design criterion than codon composition per se (e.g., addition or deletion of restriction enzyme recognition sites).
- Exemplary synthetic canola-optimized desaturase DNA sequences designed by this process are listed in SEQ ID NO: 15, SEQ ID NO: 16, and SEQ ID NO.T7.
- the resulting DNA sequences as represented by SEQ ID NOs:15-17, have a higher degree of codon diversity and a desirable base composition. Furthermore, these sequences contain strategically placed restriction enzyme recognition sites, and lack sequences that might interfere with transcription of the gene, or translation of the product mRNA.
- Tables 6-8 present a comparison of the codon compositions of the coding regions for the delta-9 desaturase proteins as found in the native gene, and in the plant-optimized versions, and compare both to the codon composition recommendations for a plant-optimized sequence as calculated from Table 5 Columns D and H.
- Table 6 Codon compositions of coding regions for a MgD9DS protein.
- the native M. grisa desaturase coding region is compared to a Plant-Optimized version.
- Table 7 Codon compositions of coding regions for a HzD9DS protein.
- the native H. zea desaturase coding region is compared to a Plant-Optimized version.
- GAT 9 36.0 13 52.0 57.5 CCG 2 12.5 2 12.5 18.4
- GGG 2 10.0 3 15.0 15.2 TRP (W) TGG 14 100 14 100 100.0
- GGT 4 20.0 4 20.0 32.1 TYR (Y) TAC 12 80.0 9 60.0 59.4
- Table 8 Codon compositions of coding regions for a LnD9DS-2 protein.
- the native L. nodorum desaturase coding region is compared to a Plant-Optimized version.
- HIS (H) CAC 12 66.7 9 50.0 49.6 TAT 6 35.3 7 41.2 40.6
- Syntheses of DNA fragments comprising SEQ ID NO:15, SEQ ID NO:16, and SEQ ID NO: 17 were performed by commercial suppliers (PicoScript, Houston, TX and Blue Heron Biotechnology, Bothell, WA). These canola-optimized sequences were labeled as version 2 (v2). The synthetic DNA fragments were then cloned into expression vectors, and transformed into Agrobacterium and canola as described in the Examples below.
- plasmids were constructed using standard molecular biology techniques. Polynucleotide fragments containing plant transcription units (comprised of a promoter linked to a gene of interest, terminated by a 3 'UTR), or "PTUs,” were constructed and combined with additional plant transcription units within the T-strand region of a binary vector.
- pDAB7318 (FIG. 6; SEQ ID NO:58) was constructed using standard molecular biology techniques.
- This plasmid contains two desaturase PTU sequences.
- the first desaturase PTU contains the Phaseolus vulgaris phaseolin promoter (PvPhas promoter v2 (SEQ ID NO:67); Genbank: J01263), Phaseolus vulgaris 5' untranslated region (PvPhas 5' UTR (SEQ ID NO:68); Genbank: JO 1263), AnD9DS v3 gene (SEQ ID NO:49), Phaseolus vulgaris 3' untranslated region (PvPhas 3' UTR vl (SEQ ID NO:69); Genbank: J01263) and Phaseolus vulgaris matrix attachment region (PvPhas 3' MAR v2 (SEQ ID NO:70); Genbank: JO 1263).
- PvPhas promoter v2 SEQ ID NO:67
- Genbank: J01263 Phaseolus vulgaris 5'
- the second desaturase PTU contains the PvPhas promoter v2, PvPhas 5' UTR, LnD9DS-2 v2 (SEQ ID NO: 17), and Agrobacterium tumefaciens ORF23 3' untranslated region (AtuORF23 3' UTR (SEQ ID NO:71); Huang et al. (1990) J. Bacteriol. 172:1814-22).
- the elements in the desaturase PTUs are connected by additional short intervening sequences.
- the two desaturase PTU sequences are flanked by Invitrogen's Gateway ® Recombination sites, which are used to facilitate the transfer of these PTU expression cassettes into the Agrobacterium transformation plasmid. Additionally, the plasmid contains an origin of replication, and a kanamycin selectable marker.
- pDAB7319 (FIG. 7; SEQ ID NO:60) was constructed via Gateway ® recombination between pDAB7318 and pDAB7309 (FIG. 5; SEQ ID NO:53).
- This plasmid contains the two desaturase PTU sequences set forth in the preceding "Description of pDAB7318.” These PTUs were orientated in a head- to-tail orientation within the T-strand DNA border regions of the plant transformation binary vector, pDAB7309.
- This binary vector contains the phosphinothricin acetyl transferase PTU, which consists of the Cassava vein Mosaic Virus Promoter (CsVMV promoter v2; Verdaguer et al. (1996) Plant Mol. Biol. 31 :1129-39); phosphinothricin acetyl transferase (PAT v5; Wohlleben et al. (1988) Gene 70:25-37); and Agrobacterium tumefaciens ORFl 3' untranslated region (AtuORFl 3'UTR v4; Huang et al.
- pDAB7320 (FIG. 8; SEQ ID NO:55) was constructed using standard molecular biology techniques.
- This plasmid contains one desaturase PTU sequence.
- the desaturase PTU contains the PvPhas promoter v2, PvPhas 5' UTR, LnD9DS-2 v2 (SEQ ID NO: 17), and the AtuORF23 3' UTR.
- the elements in the desaturase PTUs are connected by additional short mtervening sequences.
- the desaturase PTU sequence also is flanked by Invitrogen's Gateway ® Recombination sites to facilitate its transfer into an Agrobacterium transformation plasmid. Additionally, the plasmid contains an origin of replication and kanamycin selectable marker.
- pDAB7321 (FIG. 9; SEQ ID NO:61) was constructed via Gateway ® recombination between pDAB7320 and pDAB7309. This plasmid contains the desaturase PTU sequence set forth in the preceding "Description of pDAB7319.” This PTU was orientated in a head-to-tail orientation within the T- strand DNA border regions of the plant transformation binary vector, pDAB7309.
- This binary vector contains the phosphinothricin acetyl transferase PTU: CsVMV promoter v2; PAT v5; and AtuORFl 3'UTR v4, in addition to other regulatory elements such as Overdrive and T-strand border sequences (T-DNA Border A and T-DNA Border B). Plasmids containing the PTU described above were isolated and confirmed via restriction enzyme digestion and DNA sequencing.
- pDAB7323 (FIG. 10; SEQ ID NO:56) was constructed using standard molecular biology techniques. This plasmid contains two desaturase PTU sequences. The first desaturase PTU contains the PvPhas promoter v2, PvPhas 5' UTR, AnD9DS v3 (SEQ ID NO:47), PvPhas 3' UTR, and PvPhas 3' MAR v2. The second desaturase PTU contains the PvPhas promoter v2, PvPhas 5' UTR, HzD9DS v2 (SEQ ID NO: 16), and AtuORF23 3' UTR.
- the elements in the desaturase PTUs are connected by additional short intervening sequences.
- the two desaturase PTU sequences are flanked by Invitrogen's Gateway ® Recombination sites to facilitate their transfer into an Agrobacterium transformation plasmid. Additionally, the plasmid contains an origin of replication and kanamycin selectable marker.
- pDAB7324 (FIG. 11; SEQ ID NO:62) was constructed via Gateway ® recombination between pDAB7323 and pDAB7309. This plasmid contains the two desaturase PTU sequences set forth in the preceding "Description of pDAB7323.” These PTUs were orientated in a head-to-tail orientation within the T-strand DNA border regions of the plant transformation binary vector, pDAB7309.
- This binary vector contains the phosphinothricin acetyl transferase PTU: CsVMV promoter v2; PAT v5; and AtuORFl 3'UTR v4, in addition to other regulatory elements such as Overdrive and T-stand border sequences (T-DNA Border A and T-DNA Border B).
- Plasmids containing the PTUs described above were isolated and confirmed via restriction enzyme digestion and DNA sequencing. Description of pDAB7325: pDAB7325 (FIG. 12; SEQ ID NO:57) was constructed using standard molecular biology techniques. This plasmid contains one desaturase PTU sequence.
- This desaturase PTU contains the PvPhas promoter v2, PvPhas 5' UTR, HzD9DS v2 (SEQ ID NO: 16), and AtuORF23 3' UTR.
- the elements in the desaturase PTU are connected by additional short intervening sequences, and the desaturase PTU sequence is flanked by Invitrogen's Gateway ® Recombination sites to facilitate its transfer into an Agrobacterium transformation plasmid. Additionally, the plasmid contains an origin of replication and kanamycin selectable marker.
- pDAB7326 (FIG. 13; SEQ ID NO:63) was constructed via Gateway ® recombination between pDAB7325 and pDAB7309. This plasmid contains the desaturase PTU sequence set forth in the preceding "Description of pDAB7325.” The PTU was orientated in a head-to-tail orientation within the T- strand DNA border regions of the plant transformation binary vector, pDAB7309.
- This binary vector contains the phosphinothricin acetyl transferase PTU: CsVMV promoter v2; PAT v5; and AtuORFl 3 'UTR v4, in addition to other regulatory elements such as Overdrive and T-stand border sequences (T-DNA Border A and T-DNA Border B). Plasmids containing the PTU described above were isolated and confirmed via restriction en2yme digestion and DNA sequencing.
- pDAB7327 (FIG. 14; SEQ ID NO:58) was constructed using standard molecular biology techniques.
- This plasmid contains one desaturase PTU sequence.
- the desaturase PTU contains the PvPhas promoter v2, PvPhas 5' UTR, AnD9DS v3 gene (SEQ ID NO:49), and AtuORF23 3' UTR.
- the elements in the desaturase PTU are connected by additional short intervening sequences.
- the desaturase PTU sequence also is flanked by Invitrogen's Gateway ® Recombination sites to facilitate its transfer into an Agrobacterium transformation plasmid. Additionally, the plasmid contains an origin of replication and kanamycin selectable marker.
- pDAB7328 (FIG. 15; SEQ ID NO:64) was constructed via Gateway ® recombination between pDAB7327 and pDAB7309. This plasmid contains the desaturase PTU sequence set forth in the preceding "Description of pDAB7327.” This PTU was orientated in a head-to-tail orientation within the T- strand DNA border regions of the plant transformation binary vector, pDAB7309.
- This binary vector contains the phosphinothricin acetyl transferase PTU: CsVMV promoter v2; PAT v5; and AtuORFl 3'UTR v4, in addition to other regulatory elements such as Overdrive and T-stand border sequences (T-DNA Border A and T-DNA Border B). Plasmids containing the PTU described above were isolated and confirmed via restriction enzyme digestion and DNA sequencing.
- pDAB7329 (FIG. 16; SEQ ID NO:59) was constructed using standard molecular biology techniques.
- This plasmid contains one desaturase PTU sequence, which contains the PvPhas promoter v2, PvPhas 5' UTR, MgD9DS v2 (SEQ ID NO:15), and AtuORF23 3' UTR.
- the elements in this desaturase PTU are connected by additional short intervening sequences.
- the desaturase PTU sequence is flanked by Invitrogen's Gateway ® Recombination sites to facilitate its transfer into an Agrobacterium transformation plasmid. Additionally, the plasmid contains an origin of replication and kanamycin selectable marker.
- pDAB7330 (FIG. 17; SEQ ID NO:65) was constructed via Gateway ® recombination between pDAB7329 and pDAB7309. This plasmid contains the desaturase PTU sequence set forth in the preceding "Description of pDAB7325.” This PTU was orientated in a head-to-tail orientation within the T- strand DNA border regions of the plant transformation binary vector, pDAB7309.
- This binary vector contains the phosphinothricin acetyl transferase PTU: CsVMV promoter v2; PAT v5; and AtuORFl 3'UTR v4, in addition to other regulatory elements such as Overdrive and T-stand border sequences (T-DNA Border A and T-DNA Border B). Plasmids containing the PTU described above were isolated and confirmed via restriction enzyme digestion and DNA sequencing.
- pDAB7331 In addition to the foregoing, a control plasmid that did not contain a desaturase PTU was constructed (SEQ ID NO:66). FIG. 18. This construct only contained the phosphinothricin acetyl transferase PTU, in addition to the other regulatory elements described in pDAB7309.
- Electro-competent Agrobacterium tumefaciens cells (Table 9) were prepared using a protocol from Weigel and Glazebrook (2002) "How to Transform Arabidopsis " Ch. 5, in Arabidopsis, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. 50 of competent Agrobacterium cells were thawed on ice, and were transformed using 300 to 400 ng of binary vector plasmid DNA.
- the cell mix was electroporated in the presence of the DNA, using pre-chilled electroporation cuvettes (0.2 cm), and a Bio-Rad Gene Pulser ® electroporator (Hercules, CA) under the following conditions: Voltage: 2.5 kV, Pulse length: 5 msec, capacitance output 25 ⁇ , resistance 200 ⁇ .
- YEP broth Yeast Extract (10 g/L), Peptone (10 g/L), and NaCl (5 g/L) was added to each cuvette, and the cell- YEP suspension was transferred to a 15 mL culture tube.
- the cells were incubated at 28 °C with gentle agitation for 4 hours, after which the culture was plated on YEP + agar with the appropriate selection according to Table 9.
- the plates were incubated for 2-4 days at 28 °C, and colonies were selected and streaked onto fresh YEP + agar plates with antibiotic selection and incubated at 28 °C for 1-3 days. Colonies were verified as Agrobacterium using the Ketolactose test, and Ketolactose positive colonies were further isolated using two passages of single colony isolation. A final patch plate was made of colonies after single colony isolation was completed.
- Agrobacterium Colony Validation Restriction digestion analysis was used to verify the presence of the intact plasmid by using vector specific restriction digest enzymes. Macherey-Nagel NucleoBond ® Plasmid DNA kits were used according to the manufacturer's recommended protocol to purify the plasmid DNA from selected transformed Agrobacterium colonies. Plasmid DNA from the binary vector used in the Agrobacterium transformation was included as a control. Four separate digest reactions were run using 0.75-1 ⁇ g of DNA. The reaction was allowed to run for 1-2 hrs, and was then analyzed by agarose gel electrophoresis and ethidium bromide staining.
- Colonies were selected for which the digests for all enzymes were identical to the plasmid control and matched the expected band sizes.
- A. tumefaciens strain LBA404 (Invitrogen Carlsbad, California) was used for Arabidopsis transformation, and tumefaciens strain Z707S (Hepburn et al. (1985) J. Gen. Microbiol. 131 :2961-9) was used for canola transformation.
- Example 5 Agrobacterium-mediated Transformation of Arabidopsis thaliana
- Arabidopsis Transformation Arabidopsis was transformed using a floral dip method based on the method of Clough and Bent (1998) Plant J. 16:735-743. A selected Agrobacterium colony was used to inoculate one or more 30 mL pre-cultures of YEP broth containing appropriate antibiotics for selection. The culture(s) were incubated overnight at 28 °C with constant agitation at 220 rpm. Each pre-culture was used to inoculate two 500 mL cultures of YEP broth containing antibiotics for selection, and the cultures were incubated overnight at 28 °C with constant agitation. The cells were then plated at approx. 8700 g for 10 minutes at room temperature, and the resulting supernatant was discarded.
- the cell pellet was gently resuspended in 500 mL infiltration media containing: l/2x Murashige and Skoog salts/Gamborg's B5 vitamins, 10% (w/v) sucrose, 0.044 ⁇ benzylamino purine (10 ⁇ / ⁇ of 1 mg/mL stock in DMSO), and 300 ⁇ ⁇ Silwet ® L-77. Plants approximately 1 month old were dipped into the media for 15 seconds, with care taken to submerge the newest inflorescence. The plants were then laid down on their sides, and covered (transparent or opaque) for 24 hours, then washed with water, and placed upright. The plants were grown at 22 °C, with a 16-hour light/8-hour dark photoperiod. Approximately 4 weeks after dipping, seeds were harvested from the plants.
- Arabidopsis thaliana Growth Conditions Freshly harvested seed was dried for 7 days at room temperature in the presence of a desiccant. After drying, seed was suspended in a 0.1% Agarose (Sigma Chemical Co., St. Louis, MO) solution. The suspended seed was stored at 4 °C for 2 days to complete dormancy requirements and ensure synchronous seed germination (stratification). Sunshine Mix LP5 (Sun Gro Horticulture Inc., Bellevue, WA) was covered with fine vermiculite and sub-irrigated with Hoaglan's solution until wet. The soil mix was drained for 24 hours.
- Stratified seed was sown onto the vermiculite and covered with humidity domes (KORD Products, Bramalea, Ontario, Canada) for 7 days. Seeds were germinated, and plants were grown in a Conviron controller (models CMP4030 and CMP3244, Controlled Environments Limited, Winnipeg, Manitoba, Canada) under long day conditions (16- hours light/8-hours dark) at a light intensity of 120-150 ⁇ / ⁇ under constant temperature (22 °C) and humidity (40-50%). Plants were initially watered with Hoaglan's solution, and subsequently with deionized water to keep the soil moist but not wet. Plants nearing seed harvest (1-2 weeks before harvest) were dried out.
- T ⁇ seed was sown on 10.5" x 21" germination trays (T.O. Plastics Inc., Clearwater, MN) as described above and grown under the conditions outlined. The domes were removed 5-6 days post-sowing. 5 days post-sowing, and again 10 days post-sowing, seedlings were sprayed with a 0.20% solution of glufosinate herbicide (Liberty) in a spray volume of 10 mL/tray (703 L/ha) using a DeVilbiss compressed air spray tip to deliver an effective rate of 280 g/ha glufosinate per application.
- glufosinate herbicide Liberty
- Asrobacterium Preparation Agrobacterium strains containing either pDAB7319, pDAB7321, pDAB7324, pDAB7326, pDAB7328, pDAB7330 or pDAB7331 were used to streak YEP (Bacto Peptone (20.0 g/L) and Yeast Extract (10.0 g/L)) plates containing streptomycin (100 mg/mL) and spectinomycin (50 mg/mL), and incubated for 2 days at 28 °C.
- YEP Bacillus subtilis
- a loop of the 2-day streak plate was inoculated into 150 mL modified YEP liquid with streptomycin (100 mg/mL) and spectinomycin (50 mg/mL) into sterile 500 mL baffled flask(s) and shaken at 200 rpm at 28 °C.
- the cultures were resuspended in M-medium (LS salts; 3% glucose; modified B5 vitamins; 1 ⁇ kinetin; 1 ⁇ 2,4-D; pH 5.8), and diluted to the appropriate density (50 Klett Units), prior to transformation of canola hypocotyls.
- M-medium LS salts; 3% glucose; modified B5 vitamins; 1 ⁇ kinetin; 1 ⁇ 2,4-D; pH 5.8
- Seed germination Canola seeds (variety Nexera 710) were surface-sterilized in 10% Clorox for 10 minutes, and rinsed in steel strainers three times with sterile distilled water. Seeds were planted for germination on 1 ⁇ 2 MS Canola medium (1/2 MS, 2% sucrose, 0.8% Agar) contained in Phytatrays (25 seeds per Phytatray). The trays were placed in an environmental growth chamber (Percival Scientific, Inc., Perry, IA) with a growth regime set at 25 °C and a photoperiod of 16-hours light/8-hours dark, and germinated for 5 days.
- hypocotyl segments were aseptically excised, discarding the root and shoot sections (drying of hypocotyls was prevented by placing them into 10 mL of sterile milHQ water during the excision process).
- Hypocotyl segments were placed horizontally on sterile filter paper on callus induction medium, MSK1D1 (MS; 1 mg/L Kinetin; 1 mg/L 2,4-D; 3% sucrose; 0.7% Phytagar) for 3 days pre-treatment in an environmental growth chamber with a growth regime set at 22-23 °C and a photoperiod of 16-hours light/8-hours dark.
- the Agrobacterium solution was pipetted into a waste beaker, autoclaved, and discarded (the Agrobacterium solution was completely removed to prevent Agrobacterium overgrowth).
- the treated hypocotyls were transferred with forceps back to the original plates containing MSK1D1 with filter paper, with care taken to ensure that the segments did not dry.
- the hypocotyl segments, along with control segments, were returned to the an environmental growth chamber under reduced light intensity (by covering the plates with aluminum foil), and the treated hypocotyls were co-cultivated with Agrobacterium for 3 days.
- callus induction on selection medium After 3 days of co-cultivation, the hypocotyl segments were transferred individually with forceps onto callus induction medium, MSK1D1H1 (MS; 1 mg/L Kinetin; 1 mg/L 2,4-D; 0.5 g/L MES; 5 mg/L AgN0 3 ; 300 mg/L Timentin; 200 mg/L Carbenicillin; 1 mg/L Herbiace; 3% sucrose; 0.7% Phytagar).
- MSK1D1H1 MS; 1 mg/L Kinetin; 1 mg/L 2,4-D; 0.5 g/L MES; 5 mg/L AgN0 3 ; 300 mg/L Timentin; 200 mg/L Carbenicillin; 1 mg/L Herbiace; 3% sucrose; 0.7% Phytagar.
- the hypocotyl segments were anchored on the medium, but were not embedded in the medium.
- MSB3Z1H1 MS; 3 mg/L BAP; 1 mg/L Zeatin; 0.5 g/L MES; 5 mg/L AgN0 3 ; 300 mg/L Timentin; 200 mg/L Carbenicillin; 1 mg/L Herbiace; 3% sucrose; 0.7%) Phytagar).
- MSB3Z1H3 MS; 3 mg/L BAP; 1 mg/L Zeatin; 0.5 gm/L MES; 5 mg/L AgN0 3 ; 300 mg/L Timentin; 200 mg/L Carbenicillin; 3 mg/L Herbiace ® ; 3% sucrose; 0.7%> Phytagar).
- Root induction After 14 days, the shoots were transferred to MSMEST medium (MS; 0.5 g/L MES; 300 mg/L Timentin; 2% sucrose; 0.7% TC Agar) for root induction. The shoots that did not root in the first transfer on MSMEST medium were transferred for a second or third cycle on MSMEST medium until rooted plants were obtained. The shoots that did not elongate / root in the first transfer on MSMEST medium were transferred for a second or third cycle on MSMEST medium until rooted plants were obtained. Plants that rooted on MSMESH5 or MSMEST and were PCR- positive were sent for transplanting into soil. After hardening, the To canola plants were further analyzed for events which contained the transgene PTU cassettes. Plants were then transferred to a greenhouse, grown to maturity, and the seed was harvested for additional analysis.
- MSMEST medium MS; 0.5 g/L MES; 300 mg/L Timentin; 2% sucrose; 0.7% TC Agar
- Example 8 DNA analysis of Ti Arabidopsis leaf tissue and To canola leaf tissue
- T 0 canola plants and Ti Arabidopsis plants were analyzed to identify plants which contained the PTU expression cassettes.
- Invader ® assays were performed to initially screen samples of putatively transformed plants, and identify events which contained a single copy of the pat PTU. Events that were identified as single copy events were kept and further analyzed for the presence of the desaturase PTU(s) via PCR. Events that were PCR positive for the desaturase expression cassette PTU(s) were further analyzed via Southern blot analysis. Southern blot analysis was completed to confirm that the plants contained the gene expression cassette PTUs from the binary vector used to transform the plants. Single copy events containing all of the PTUs were selected for advancement.
- gDNA Total genomic DNA
- Qiagen's DNeasy ® 96 Plant Kit Qiagen, Valencia, CA. This gDNA was then diluted to 10 ⁇ Arabidopsis) for use in PCR and Invader ® assays for copy number.
- Invader ® Analysis Copy number analysis of the selectable marker, pat, was completed using the Invader ® assay (Third Wave Technologies, Madison, WI). Genomic DNA was denatured at 95 °C for 10 minutes, chilled on ice, and mixed with a master mix of reagents containing oligonucleotide probes, dye molecules capable of fluorescence resonance energy transfer (FRET), and cleavase enzyme, according to the manufacturer's recommended protocol. The reactions contained probes for the internal reference genes.
- FRET fluorescence resonance energy transfer
- the l-deoxyxylulose-5-phosphate reductoisomerase (DXR1) gene was used as an internal reference gene for Arabidopsis Invader ® assay reactions, and high mobility group protein gene (HMGa) was used as an internal reference gene for canola Invader ® assay reactions.
- the plates contained 1 copy, 2 copy, and 4 copy standards, as well as wild-type control samples and blank wells containing no sample.
- the whole reaction was overlayed with mineral oil before incubation in a thermocycler at 63 °C for 1.5 hrs.
- the resulting reaction was read on a fluorometric plate reader (SynergyTM 2, BioTek Instruments, Winooski, VT).
- Readings were collected for both FAM ( ⁇ 485-528 run) and RED ( ⁇ 560-620 nm) channels. From these, the fold-over-zero (i.e., background) for each channel was determined for each sample by dividing the sample raw signal by the no template raw signal. From this data, a standard curve was constructed, and the best fit was determined by linear regression analysis. Using the parameters identified from this fit, the apparent pat copy number was then determined for each sample.
- PCR analysis was completed using primers which amplified each plant transcription unit. These primers were located in the promoter (Phaseolin) and the 3' UTR (Phaseolin or ORF23). These same primer sets were used for PCR analysis of both canola and Arabidopsis.
- primers MAS414 SEQ ID NO: 18
- MAS415 SEQ ID NO: 19
- This PTU consisted of the Phaseolin promoter, a functional equivalent of an acyl-CoA delta-9 desaturase gene from Aspergillus nidulans (AnD9DS v3; SEQ ID NO:49), and the Phaseolin 3'UTR terminator.
- primers MAS415 and MAS413 SEQ ID NO: 20
- This PTU consists of the Phaseolin promoter, a functional equivalent of an acyl-CoA delta-9 desaturase gene from Leptosphaeria nodorum (LnD9DS-2 v2; SEQ ID NO: 17), and the ORF23 3'UTR.
- the MAS415 and MAS413 primer pairs were also used to amplify the second PTU of events generated by transformation with pDAB7324 (Phaseolin promoter, Helicoverpa zea acyl-CoA delta-9 desaturase gene v2 (HzD9DS v2; SEQ ID NO: 16), and ORF23 3'UTR).
- pDAB7324 Phaseolin promoter, Helicoverpa zea acyl-CoA delta-9 desaturase gene v2 (HzD9DS v2; SEQ ID NO: 16), and ORF23 3'UTR.
- MAS415 and MAS413 primer pairs were used to amplify the PTUs in constructs pDAB7321 and pDAB7326.
- the PCR reactions were carried out in 25 ⁇ L volumes using 20 ng genomic DNA, 5 units Ex Taq (Takara), lx reaction buffer, 0.2 ⁇ of each dNTP, and 0.8 ⁇ of each primer.
- the amplification reactions were performed in a DNA Engine Tetrad ® 2 thermal cycler (BioRad, Hercules, CA). The following cycling conditions were used for primers MAS413 and MAS415: 3 minutes at 94 °C; followed by 35 cycles of 30 sec at 94 °C, 30 sec at 63 °C, and 3 min at 72 °C; and a final extension of 10 minutes at 72 °C.
- the cycling conditions used for primers MAS414 and MAS415 were the same with the sole difference that the annealing temperature was reduced from 63 °C to 60 °C.
- the reaction products were run on a 1% agarose gel, stained with ethidium bromide, and visualized on a Gel-DocTM.
- Southern Blot Analysis was used to establish the integration pattern of the canola events. These experiments generated data which demonstrated the integration and integrity of the desaturase transgene within the canola genome. Selected events were characterized as a full-length, simple integration event containing a single copy of the desaturase transgene from the binary vector used for plant transformation.
- the gels were depurinated with 0.25N HC1 for approximately 20 minutes, and then exposed to a denaturing solution for approximately 30 minutes, followed by a neutralizing solution for at least 30 minutes.
- Southern transfer was performed overnight onto nylon membranes (Millipore, Billerica, MA) using a wicking system with lOx SSC. After transfer, the membranes were washed with a 2x SSC solution, and the DNA was bound to the membrane by UV crosslinking. This process produced Southern blot membranes ready for hybridization. Probes were generated and PCR fragments were amplified from plasmid DNA and purified via gel extraction using the QIAquick ® Gel Extraction kit (Qiagen).
- the primers used to create the LnD9DS probe were arw008 (SEQ ID NO:21) and arw009 (SEQ ID NO:22).
- the primers used to create the HzD9 probe were arwOlO (SEQ ID NO:23) and arwOl 1 (SEQ ID NO:24).
- PCR conditions for all three reactions consisted of 35 cycles with an annealing temperature of 63 °C and an extension time of 1 minute.
- the PCR fragments were labeled with 32 P using the Prime-It ® RmT Random Primer Labeling kit (Stratagene, La Jolla, CA).
- the hybridization step was conducted at approximately 65 °C overnight in the hybridization oven.
- the nylon membrane blots were rinsed, and the blot was exposed on a phosphor image screen overnight, and scanned on a StormTM 860 Scanner (Molecular Dynamics, Sunnyvale, CA).
- Example 9 Fatty acid composition of seeds from transgenic Arabidopsis containing an acyl-CoA delta-9 desaturase
- Arabidopsis plants were transformed with Agrobacterium vectors containing genes for LnD9DS-2 v2 (pDAB7321; SEQ ID NO:61), HzD9DS v2 (pDAB7326; SEQ ID NO:63) or MgD9DS v2 (pDAB7330; SEQ ID NO:65). Plants were also transformed with a vector containing a AnD9DS gene (pDAB7328; SEQ ID NO:64). An empty vector containing only the selectable marker pat gene (pDAB7331; SEQ ID NO:66) was used as a negative control.
- Transformations were also performed using two desaturases in combination, to combine a stearoyl-preferring desaturase (AnD9DS) with a palmitoyl-preferring desaturase, either LnD9DS-2 (pDAB7319; SEQ ID NO:60), or HzD9DS (pDAB7324; SEQ ID NO:62).
- the desaturase genes were driven by the seed-specific PvPhas promoter (U.S. Patent 5,504,200).
- Bulk T 2 seed was harvested from herbicide-resistant Tj plants that were confirmed to contain the pat gene by Invader ® assay analysis and the desaturase PTU by PCR analysis.
- the resulting FAMEs were analyzed by GC-FID using a capillary column BPX 70 from SGE (15 m x 0.25 mm x 0.25 ⁇ ). Each FAME was identified by retention time, and quantified by the injection of a rapeseed oil reference mix from Matreya, LLC (Pleasant Gap, PA), as a calibration standard.
- Table 11 and FIG. 20 show the mean palmitic acid content for each set of events.
- Table 12 and FIG. 21 show the mean stearic acid content of T 2 seed for each set of events.
- Table 14 Fatty acid profile of T 2 transgenic Arabidopsis with lowest total saturated fatty acid content. Standard deviations are in parentheses.
- LnD9DS-2 v2 (0.31) (0.41) (0.27) (0.23) (0.04) (0.03) (0.06) (0.02)
- acyl-CoA delta-9 desaturases are membrane-bound proteins, routine over-expression in Escherichia coli is difficult. However, antibodies were successfully generated by over-expression of a C-terminal fragment of each delta-9 desaturase protein that does not include any of the transmembrane domains of the protein.
- PCR primers were designed to amplify an equivalent C-terminal fragment for each desaturase.
- the 3' primer was designed to encode a protein fragment with a C-terminal 6x His tag. Ndel and BamHI restriction sites were incorporated into the 5' and 3' primers, respectively, to facilitate cloning.
- the primer sequences are given below in Table 15.
- the expected amplification products were 659 bp for LnD9DS-2, 683 bp for MgD9DS, and 335 bp for HzD9DS.
- PCR reactions were carried out using the Takara Ex TaqTM PCR kit (Clontech, Mountain View, CA) using supplier conditions. The total PCR reaction volume was 50 ⁇ _,.
- Each reaction contained 200 ng of plasmid DNA and 50 pmol of each primer.
- the DNA was denatured at 94 °C for 1 min, followed by 30 cycles of 94 °C for 30 sec, 60 °C for 1 minute, and 72 °C for 30 sec. A final extension was carried out at 72 °C for 10 minutes.
- Each PCR product was run across two wells on a sterile 0.75% agarose gel, and DNA was gel purified using Montage spin columns and eluted in 15 ⁇ ]_, TE buffer.
- Table 15 Sequences of the oligonucleotide primers used in the PCR amplifications of C- terminal fragments from LnD9DS-2, MgD9DS, and HzD9DS.
- TOPO ® pCR ® 2.1 vectors (Invitrogen, Carlsbad, CA), and transformed into Top 10 E. coli cells following the manufacturer's protocol (Invitrogen). Transformations were selected, and plasmid DNA was purified using NucleoSpin ® columns (Macherey-Nagel GmbH & Co, Duren, Germany). Three microliters (3 ⁇ ) of DNA was digested with Ndel and BamHI in a total volume of 20 ⁇ , for 90 minutes at 37 °C, and run on a 0.8% agarose gel. In each case, a gene-specific fragment (plus a 3.9 kb TOPO ® vector band) was visible.
- Each of the MgD9DS clones contained a silent point mutation at base pair 45, indicating either a single nucleotide polymorphism between the published sequence and the PCR template, or a silent PCR error. Since the mutation was silent, no correction was necessary, and one clone was chosen for subcloning.
- delta-9 desaturase C-terminal fragment expression plasmids The PCR-amplified delta-9 desaturase fragments were digested with Ndel and BamHI restriction enzymes and ligated into corresponding restriction sites within the pET30b(+) expression vector. The cloning step resulted in the addition of 15 C- teixninal amino acids, constituting a C-terminal 6x His tag to facilitate full-length protein purification. These additional amino acids were not expected to affect protein expression. Positive clones were obtained and confirmed via restriction enzyme digestion and sequencing reactions.
- delta-9 desaturase C-terminal peptide fragments in E. coll.
- the delta-9 desaturase/pET30b(+) expression plasmids were transformed into BL21 (DE3) E. coli cells according to the manufacturer's recommended protocol (Novagen, Madison, WI). Cells were plated on LA plates containing kanamycin (50 ⁇ g/mL) and glucose (1.25 M). The plates were incubated overnight at 37 °C. A full loop of cells was scraped from the plates, and inoculated into 500 mL flasks containing 250 mL LB and kanamycin (50 ⁇ g/mL) with isopropyl-P-D-thiogalactoside (0.75 mM) inducer.
- the cells were disrupted on ice for approximately 10 minutes using a Branson Model 450 Sonifier (Danbury, CT). Inclusion bodies were pelleted by centrifugation at 10,000 x g for 15 minutes, and extracted 2-3 times with PBS containing 0.5% Triton X-100 until the protein concentration of the supernatant reached baseline, as measured by a Bradford protein assay. The recovered inclusion bodies were solubilized in a PBS solution containing 6 M Urea and 5 mM DTT at room temperature with stirring for about 1 hour.
- Solubilized proteins were separated from insoluble materials by centrifugation at 30,000 x g for 15 minutes, and the retained supernatant was applied onto a 5 mL Ni-affinity column (GE Healthcare, HiTrap Chelating, Piscataway, NJ).
- Fractions containing C-terminal delta-9 desaturase peptide were pooled and concentrated using an Amicon ® Ultra 10,000 MWCO filter device (Millipore, Billerica, MA) to less than 5 mL volume.
- the protein sample was then injected onto a Hi LoadTM XK16/60 SuperdexTM 200 size exclusion column (GE Healthcare, Piscataway, NJ), and equilibrated with 6 M Urea in 20 mM Tris-HCI, 150 mM NaCl, and 1 mM DTT.
- the peak fractions (4 mL each) containing pure C-terminal delta-9 desaturase peptide were saved (after validation by SDS-PAGE analysis and other biochemical characterization) and used for antibody production.
- Peptides with the expected sizes of 27 kDa for LnD9DS-2 peptide, 15 kDa for HzD9DS peptide, and 28 kDa for MgD9DS peptide were produced.
- the induction conditions produced sufficient protein for visualization by Coomassie blue staining of SDS-PAGE gels.
- Newark, DE produced rabbit antibodies against each of the three C-terminal delta- 9 desaturase peptides. Following their standard procedures, high titer (validated by using ELISA) antisera for each of the three protein fragments was obtained. Each purified C-terminal delta-9 desaturase peptide was diluted with 20 mM Tris-HCl, 150 mM NaCl, 1 mM DTT buffer, and with a final concentration of 2-3 M urea, to keep the protein in solution. Approximately 10 mg of protein was sent to Strategic BioSolutions for generation of a polyclonal antibody. Two rabbits were chosen for each immunogen, and standard protocols (70 days immunization) were used.
- TiterMax ® Gold A new adjuvant called TiterMax ® Gold was purchased for preparation of the emulsion. ELISA titration during immunization and at the end of protocol was also performed to ensure the success of antibody production. The antisera were delivered in two separate time points; one from the standard 2 month procedure, and the other from exsanguination.
- antibodies are diagnostic tools that were used to measure desaturase protein expression in transgenic plant material.
- the antibodies were used to develop correlations between low saturated fatty acid oil phenotype changes and the level of expression of the delta-9 desaturase proteins.
- Example 11 Levels of acyl-CoA delta-9 desaturase proteins in T 2 Arabidopsis seed
- Delta-9 desaturase polypeptides were detected in mature transgenic seed samples by Western blot.
- Seed was prepared for analysis by cracking dry seeds with stainless steel beads in a KlecoTM Bead Beater (Garcia Machine, Visalia, CA). Extraction buffer was added (50 raM Tris, 10 mM EDTA, 2% SDS), and sample tubes were rocked gently for 30 minutes. Samples were centrifuged for 15 minutes at 3,000 rcf. Then, the supernatant was collected and used for analysis. The amount of total soluble protein in the seed extract was determined by Lowry assay (BioRad, Hercules, CA).
- Samples were normalized to 1.55 mg/mL total soluble protein and prepared in LDS sample buffer (Invitrogen, Carlsbad, CA) with 40 mM DTT, for a normalized load of 20 ⁇ g total soluble protein per lane. Samples were electrophoresed in 4-12% Bis-Tris gels (Invitrogen), and transferred to nitrocellulose membranes. Blots were blocked in blocking buffer, and probed with antibodies against four different delta-9 desaturase polypeptides (AnD9DS, LnD9DS-2, HzD9DS, and MgD9DS) (see Example 10).
- polyclonal antibody was developed in rabbits against a His-tag purified C-terminal peptide fragment of the individual desaturases as described above.
- the purified C-terminal fragments were used as reference antigens for quantitation of the Western blots.
- An anti-rabbit fluorescent labeled secondary antibody (Goat Anti- Rabbit AF 633; Invitrogen) was used for detection. Blots were visualized on a TyphoonTM Trio Plus fluorescence imager (GE Healthcare). Standard curves were generated with quadratic curve fitting, and linear regression was used to quantify expression.
- transgenic canola events were obtained from transformations performed with pDAB7321 (SEQ ID NO:61) and pDAB7326 (SEQ ID NO:63) (containing LnD9DS-2 and HzD9DS genes, respectively, driven by the seed-specific PvPhas promoter). Thirty nine pDAB7321 events containing the LnD9DS-2 gene were identified by PCR analysis of genomic DNA, and were grown in the greenhouse to produce Ti seed. Similarly, 80 pDAB7326 events were identified that contained the HzD9DS gene, and produced Tj seed.
- Canola was also transformed with pDAB7319 (SEQ ID NO:60) or pDAB7324 (SEQ ID NO:62), which contain an AnD9DS gene coupled with the LnD9DS-2 or HzD9DS genes, all driven by the PvPhas promoter. 44 and 76 events were recovered, respectively, that were confirmed to contain both desaturase genes by PCR analysis, and were grown in the greenhouse to produce Ti seed.
- LnD9DS-2 v2 or pDAB-7326 did not show significant reduction in saturated fatty acid levels relative to untransformed canola plants or plants transformed with an empty vector control.
- Western blots of the Tj seed did not show detectable levels of the delta-9 desaturase proteins.
- no detectable protein for LnD9DS-2or HzD9DS was detected in T ⁇ seed from plants transformed with pDAB7319 (AnD9DS v3 and LnD9DS-2 v2) or pDAB7324 (AnD9DS v3 and HzD9DS v2), whereas the AnD9DS protein could be readily detected. In these events, a reduction of saturated fatty acids was observed relative to control plants, but this was attributable to expression of AnD9DS.
- RT-PCR assays were designed against the desaturase targets using the Roche Assay Design Center (Roche Diagnostics, Indianapolis, IN). Primers used in the assay 5 are described in Table 16. Target assays utilized FAM-labeled UPL probes (Roche Diagnostics). These assays were executed in duplex reactions with a Texas-Red- labeled canola actin reference assay synthesized by Integrated DNA Technologies.
- RT-PCR reactions were run on a LightCycler ® 480II real-time PCR thermal cycler (Roche). Data for target UPL assays was collected using a 533 nm emission
- transcript accumulation of HzD9DS or LnD9DS-2 transgenes was significantly lower than the transcript of 1897
- transcriptional regulatory regions to express gene(s) encoding LnD9DS-2, HzD9DS, and MgD9DS proteins can further increase the content of these delta-9 desaturases within canola.
- Identification and use of transcriptional regulatory regions which express earlier in development, and for longer periods of time, can increase the levels of heterologous delta-9 desaturases within canola seed by promoting robust seed-specific transcription of a heterologous gene at earlier stages of seed development.
- transcriptional regulatory regions include, but are not limited to, the LfKCS3 promoter (U.S. Patent 7,253,337) and FAE 1 promoter (U.S. Patent 6,784,342).
- promoters are used singularly, or in combination, to drive the expression of LnD9DS-2, HzD9DS, and MgD9DS expression cassettes, for example, through operable linkage with genes such as those previously described in plasmids, pDAB7319; pDAB7321 ; pDAB7324; pDAB7326; pDAB7328; and pDAB7330.
- Methods to replace transcriptional regulatory regions within a plasmid are well-known within the art.
- a polynucleotide fragment comprising the PvPhas promoter is removed from pDAB7319, pDAB7321, pDAB7324, pDAB7326, pDAB7328, or pDAB7330 (or the preceding plasmids used to build pDAB7319, pDAB7321, pDAB7324, pDAB7326, pDAB7328, or pDAB7330), and replaced with either a LfKCS3 or FAE 1 promoter region.
- the newly-constructed plasmids are used to stably transform canola plants, according to the procedures set forth in the previous examples. Transgenic canola plants are isolated and molecularly characterized. The resulting delta-9 desaturase accumulation is determined, and canola plants which robustly express delta-9 desaturase are identified.
- Table 17 Kozak sequences which are incorporated upstream of a heterologous delta-9 desaturase gene to increase expression.
- Example 14 Design And synthesis of delta-9 desaturase genes from Helicoverpa zea and Leptosphaeria nodorum
- Example 2 To obtain higher levels of expression of heterologous genes in plants, the codon optimization strategy described in Example 2 was modified, and the heterologous gene protein coding regions for HzD9DS and LnD9DS-2 were re-engineered using a new design protocol.
- Codon selection was made using a table which had calculated the codon bias of the prospective host plant, which in this case was canola.
- the primary ("first choice") codons preferred by the plant were determined, and used at about 95% of the time. "Second choice” codons were used sparingly, at a frequency of about 5%.
- a new DNA sequence was designed which encodes the amino sequence of each delta-9 desaturase, wherein the new DNA sequence differed from the native delta-9 desaturase gene by the substitution of plant first preferred and second preferred codons to specify an appropriate amino acid at each position within the amino acid sequence.
- the new sequence was then analyzed for restriction enzyme sites that might have been created by the modifications. The identified restriction enzyme sites were then removed by replacing the codons with first or second choice preferred codons. Other sites in the sequence which could affect transcription or translation of the gene of interest, specifically highly stable stem loop structures, were also removed.
- the selections of preferred codon choices (first and second choices) from the genetic code of canola were determined from a codon bias table compiled from the protein coding sequences for canola.
- Tables 18 and 19 Columns labeled as "Native Gene %" present the distributions (in % of usage for all codons for that amino acid) of synonymous codons for each amino acid, as found in the coding regions of Brassica napus (canola).
- New DNA sequences which encode essentially the amino acid sequence of the M. grisea, H. zea and L. nodorum delta-9 desaturases were designed for optimal expression in canola using the preferred codon distribution of first and second choice codons found in canola genes.
- Table 18 Codon compositions of coding regions for the HzD9DS protein.
- the native H. zea desaturase coding region is compared to a Plant-Optimized version.
- GGC 16 42.1 0 0.0 0.0 ACT 2 8.0 0 0.0 0.0
- HIS (H) CAC 12 66.7 18 100.0 100.0 TAT 6 35.3 0 0.0 0.0
- Syntheses of DNA fragments comprising SEQ ID NO:44 and SEQ ID NO:45 were performed by PicoScript and Blue Heron Biotechnology. The synthetic DNA was then cloned into expression vectors and transformed into canola substantially as described in the foregoing examples.
- Example 15 Modification of N- and C-termini to increase the accumulation of acyl-CoA desaturase polypeptides in plants
- ER endoplasmic reticulum
- N- and C-terminal motifs and modifications have been shown to modulate the accumulation and stability of lipid desaturases in fungi and plants, as well as animals. McCartney et al. (2004) Plant J. 37:156-73; Mziaut et al. (2000) Proc. Natl. Acad. Sci. U.S.A. 97:8883-8.
- a polynucleotide linker that encodes a Myc tag (SEQ ID NO:46) or a HA tag (SEQ ID NO:47) is cloned within the 5' end of a delta-9 desaturase ⁇ e.g., HzD9DS, MgD9DS, AnD9DS, LnD9DS-l, and LnD9DS-2) coding sequence as a contiguous open reading frame.
- the resulting coding sequence is cloned within a plant expression plasmid using the cloning strategy described in Example 3.
- the newly-constructed plasmid is used to stably transform an Arabidopsis and/or canola plant cell, material, or tissue.
- Transgenic plants are regenerated from the transformed plant cell, material, or tissue. Transgenic plants are isolated and molecularly characterized. The resulting delta-9 desaturase accumulation in seeds of transgenic plants is determined, and plants which robustly express the delta-9 desaturase polypeptide are identified.
- AnD9DS in Arabidopsis and canola (Examples 11 and 12) indicates a significantly higher level of expression of this particular desaturase enzyme, relative to HzD9DS and LnD9DS-2.
- all or parts of the N- and C-termini lying outside the core desaturase domain (containing the transmembrane segments and conserved catalytic histidine residues) of AnD9DS may be used to replace equivalent residues in the lower-expressing desaturases and increase expression thereof.
- N-terminal residues 1-68 and C-terminal residues 281-455 of AnD9DS are used to replace all or part of the 68 N-terminal residues (1-68) and 168 C-terminal residues (281-449) of LnD9DS-2 (SEQ ID NO:14) and/or the 76 N-terminal residues (1-76) and 60 C-terminal residues (293-353) of HzD9DS (SEQ ID NO: 13).
- the resulting coding sequence is cloned within a plant expression plasmid using the cloning strategy described in Example 3.
- the newly-constructed plasmid is used to stably transform an Arabidopsis and/or canola plant cell, material, or tissue.
- Transgenic plants are regenerated from the transformed plant cell, material, or tissue.
- Transgenic plants are isolated and molecularly characterized. The resulting delta-9 desaturase accumulation in seeds of transgenic plants is determined, and plants which robustly express the modified HzD9DS or modified LnD9DS-2 polypeptide are identified.
- Example 16 Modifications to enhance mRNA expression of acyl-CoA desaturase within plants
- mRNA can be enhanced by the incorporation of genetic elements that stabilize and increase mRNA accumulation.
- 5' and 3' untranslated regions e.g., Tobacco Osmotin 5' and 3' UTR sequences (Liu et al. (2003) Nat. Biotechnol. 21 :1222-8), and the Tobacco Mosaic Virus ⁇ sequence (Gallie et al. (1987) Nucleic Acids Res. 15:8693-711)
- introns Koziel et al. (1996) Plant Mol. Biol.
- Polynucleotide fragments comprising the 5' untranslated region, 3' untranslated region, and/or intron are added to a plant expression plasmid ⁇ e.g., pDAB7319, pDAB7321, pDAB7324, pDAB7326, pDAB7328, pDAB7330, or the preceding plasmids used to build pDAB7319, pDAB7321, pDAB7324, pDAB7326, pDAB7328, or pDAB7330) via standard cloning methods.
- the newly-constructed plasmid is used to stably transform an Arabidopsis and/or canola plant cell, material, or tissue.
- Transgenic plants are regenerated from the transformed plant cell, material, or tissue. Transgenic plants are isolated and molecularly characterized. The resulting delta-9 desarurase accumulation in seeds of transgenic plants is determined, and plants which robustly express the HzD9DS or LnD9DS-2 polypeptide are identified.
- yeast desarurase genes such as OLE1 are highly-regulated.
- the deletion of sequences that encode transmembrane regions and that are a part of the cytochrome b5 domain reduce the stability of the OLE1 transcript.
- the presence of these sequences within OLE1 act as mRNA stabilizing sequences.
- incorporation of the OLE] sequences that encode the transmembrane region and cytochrome b5 domain into a LnD9DS-2 or HzD9DS coding sequence is utilized to increase stability of the mRNA transcript of the coding sequence, thereby resulting in higher levels of expression and a subsequent increase of LnD9DS-2 or HzD9DS polypeptide.
- a chimeric LnD9DS-2 or HzD9DS coding sequence that includes the OLE1 transmembrane region and cytochrome b5 domain sequences is constructed using methods known in the art.
- the coding sequence produced thereby is incorporated into a plant expression plasmid ⁇ e.g., as described in the foregoing examples), and used to generate transgenic plants via Agrobacterium-mQdiated plant transformation. Transgenic plants are isolated and characterized. The resulting delta-9 desarurase accumulation is determined, and plants which robustly express the delta-9 desarurase are identified.
- ORF 23 3' UTR-terminator (AtuORF23 3' UTR) is typically used to terminate transcription. It was recently shown that other 3' UTR-terminators are more effective in terminating transcriptional read-through in Arabidopsis thaliana. Accordingly, the Phaseolus vulgaris Phaseolin 3'UTR-teminator (SEQ ID NO: 69) is used in combination with the Phaseolus vulgaris Phaseolin promoter to reduce transcriptional read-through of upstream genes, thereby reducing transcriptional interference.
- Phaseolus vulgaris Phaseolin 3'UTR-teminator (PvPhas 3'UTR vl) was incorporated within an LnD9DS-2 v2 expression cassette, and within an HzD9DS v2 expression cassette, which were previously described in plasmid pDAB7321 and pDAB7326. According to methods well-known to those of skill in the art, a polynucleotide fragment comprising the PvPhas 3'UTR vl was placed downstream of a LnD9DS-2 v2 gene to create binary plasmid, pDABl lOl lO (FIG. 4a; SEQ ID NO: 74).
- a polynucleotide fragment comprising the PvPhas 3'UTR vl was also placed downstream of a HzD9DS v2 gene to create binary plasmid pDAB110112 (FIG. 4b; SEQ ID NO:75).
- the resulting binary plasmids were confirmed via restriction enzyme digestion and sequencing.
- the newly-constructed plasmids are each used to stably transform an Arabidopsis and/or canola plant cell, material, or tissue.
- Transgenic plants are regenerated from the transformed plant cell, material, or tissue.
- Transgenic plants are isolated and molecularly characterized.
- the resulting delta-9 desaturase accumulation in seeds of the transgenic plants is determined, and plants which robustly express the HzD9DS or LnD9DS-2 polypeptide are identified.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Microbiology (AREA)
- Medicinal Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Nutrition Science (AREA)
- Cell Biology (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Plant Pathology (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Enzymes And Modification Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
Description
Claims
Priority Applications (21)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA2803098A CA2803098C (en) | 2010-06-24 | 2011-06-24 | Lowering saturated fatty acid content of plant seeds |
EP11799019.2A EP2585600B1 (en) | 2010-06-24 | 2011-06-24 | Lowering saturated fatty acid content of plant seeds |
ES11799019.2T ES2568803T3 (en) | 2010-06-24 | 2011-06-24 | Reduction of the content of saturated fatty acids in plant seeds |
EA201291332A EA029904B1 (en) | 2010-06-24 | 2011-06-24 | Lowering saturated fatty acid content of plant seeds |
MX2015008803A MX350491B (en) | 2010-06-24 | 2011-06-24 | Lowering saturated fatty acid content of plant seeds. |
CN201180040626.XA CN103068986B (en) | 2010-06-24 | 2011-06-24 | Reduce the saturated fatty acid content of plant seed |
AU2011270652A AU2011270652B2 (en) | 2010-06-24 | 2011-06-24 | Lowering saturated fatty acid content of plant seeds |
MX2012015301A MX338726B (en) | 2010-06-24 | 2011-06-24 | Lowering saturated fatty acid content of plant seeds. |
DK11799019.2T DK2585600T3 (en) | 2010-06-24 | 2011-06-24 | REDUCING THE CONTENT OF SATURATED FATTY ACID in plant seeds |
KR1020187000901A KR20180008884A (en) | 2010-06-24 | 2011-06-24 | Lowering saturated fatty acid content of plant seeds |
JP2013516837A JP6096114B2 (en) | 2010-06-24 | 2011-06-24 | Reduction of saturated fatty acid content of plant seeds |
KR1020137001766A KR20130098282A (en) | 2010-06-24 | 2011-06-24 | Lowering saturated fatty acid content of plant seeds |
NZ603971A NZ603971A (en) | 2010-06-24 | 2011-06-24 | Lowering saturated fatty acid content of plant seeds |
BR112012033112A BR112012033112A2 (en) | 2010-06-24 | 2011-06-24 | reduction of saturated fatty acid content of plant seeds. |
UAA201300808A UA115302C2 (en) | 2010-06-24 | 2011-06-24 | Lowering saturated fatty acid content of plant seeds |
MX2015008804A MX347113B (en) | 2010-06-24 | 2011-06-24 | Lowering saturated fatty acid content of plant seeds. |
KR1020187000903A KR20180008885A (en) | 2010-06-24 | 2011-06-24 | Lowering saturated fatty acid content of plant seeds |
ZA2012/09083A ZA201209083B (en) | 2010-06-24 | 2012-11-30 | Lowering saturated fatty acid content of plant seeds |
IL223438A IL223438A (en) | 2010-06-24 | 2012-12-04 | Lowering saturated fatty acid content of plant seeds |
IL244003A IL244003A0 (en) | 2010-06-24 | 2016-02-07 | Lowering saturated fatty acid content of plant seeds |
IL244002A IL244002A0 (en) | 2010-06-24 | 2016-02-07 | Lowering saturated fatty acid content of plant seeds |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US35831410P | 2010-06-24 | 2010-06-24 | |
US61/358,314 | 2010-06-24 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2011163632A2 true WO2011163632A2 (en) | 2011-12-29 |
WO2011163632A3 WO2011163632A3 (en) | 2012-05-18 |
Family
ID=45372139
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2011/041897 WO2011163632A2 (en) | 2010-06-24 | 2011-06-24 | Lowering saturated fatty acid content of plant seeds |
Country Status (20)
Country | Link |
---|---|
US (1) | US20110302672A1 (en) |
EP (3) | EP2585600B1 (en) |
JP (5) | JP6096114B2 (en) |
KR (3) | KR20180008884A (en) |
CN (3) | CN105755017A (en) |
AR (1) | AR081303A1 (en) |
AU (1) | AU2011270652B2 (en) |
BR (1) | BR112012033112A2 (en) |
CA (3) | CA2999347C (en) |
CL (5) | CL2012003665A1 (en) |
DK (3) | DK2585600T3 (en) |
EA (1) | EA029904B1 (en) |
ES (3) | ES2620492T3 (en) |
IL (3) | IL223438A (en) |
MX (3) | MX338726B (en) |
NZ (3) | NZ603971A (en) |
TW (4) | TW201634694A (en) |
UA (1) | UA115302C2 (en) |
WO (1) | WO2011163632A2 (en) |
ZA (1) | ZA201209083B (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9617555B2 (en) | 2004-10-08 | 2017-04-11 | Dow Agrosciences Llc | Generation of transgenic canola with low or no saturated fatty acids |
BR102012019436B8 (en) * | 2011-07-26 | 2022-10-11 | Dow Agrosciences Llc | SOYBEAN EVENT DETECTION METHOD PDAB9582.814.19.1 |
BR102012019434B1 (en) | 2011-07-26 | 2021-11-09 | Dow Agrosciences Llc | PEST, INSECT, MOLECULE AND DIAGNOSTIC DNA SEQUENCE CONTROL METHODS FOR THE SOYBEAN EVENT 9582.814.19.1 |
EP3232770A4 (en) * | 2014-12-19 | 2018-06-06 | Dow AgroSciences LLC | Generation of transgenic canola with low or no saturated fatty acids |
CN106755017A (en) * | 2017-01-09 | 2017-05-31 | 程佳祎 | A kind of transgenic method of Nattokinase |
CN109880849B (en) * | 2019-01-03 | 2023-04-11 | 四川大学 | GHOST-shRNA expression vector compound targeting tumor-related macrophages and application thereof |
CN111560394A (en) * | 2019-12-30 | 2020-08-21 | 海南大学 | Method for rapidly identifying transgenic arabidopsis by using seed fluorescence |
KR102566555B1 (en) * | 2020-05-20 | 2023-08-14 | 한국화학연구원 | Nucleotide encoding delta-9-desaturase and use thereof |
US10947552B1 (en) | 2020-09-30 | 2021-03-16 | Alpine Roads, Inc. | Recombinant fusion proteins for producing milk proteins in plants |
WO2022072718A1 (en) | 2020-09-30 | 2022-04-07 | Nobell Foods, Inc. | Recombinant milk proteins and food compositions comprising the same |
US10894812B1 (en) | 2020-09-30 | 2021-01-19 | Alpine Roads, Inc. | Recombinant milk proteins |
KR20230046412A (en) | 2021-09-30 | 2023-04-06 | 세종대학교산학협력단 | Composition and method for increasing the content of saturated fatty acids in seeds |
CN115807014A (en) * | 2022-07-01 | 2023-03-17 | 西南大学 | Application of silkworm fatty acid dehydrogenase Bmdesat5 |
Citations (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0255378A2 (en) | 1986-07-31 | 1988-02-03 | Calgene, Inc. | Seed specific transcriptional regulation |
US5004863A (en) | 1986-12-03 | 1991-04-02 | Agracetus | Genetic engineering of cotton plants and lines |
US5380831A (en) | 1986-04-04 | 1995-01-10 | Mycogen Plant Science, Inc. | Synthetic insecticidal crystal protein gene |
US5384253A (en) | 1990-12-28 | 1995-01-24 | Dekalb Genetics Corporation | Genetic transformation of maize cells by electroporation of cells pretreated with pectin degrading enzymes |
US5416011A (en) | 1988-07-22 | 1995-05-16 | Monsanto Company | Method for soybean transformation and regeneration |
US5463174A (en) | 1986-05-29 | 1995-10-31 | Calgene Inc. | Transformation and foreign gene expression in Brassica species |
US5504200A (en) | 1983-04-15 | 1996-04-02 | Mycogen Plant Science, Inc. | Plant gene expression |
US5508184A (en) | 1986-12-05 | 1996-04-16 | Ciba-Geigy Corporation | Process for transforming plant protoplast |
US5518908A (en) | 1991-09-23 | 1996-05-21 | Monsanto Company | Method of controlling insects |
US5538880A (en) | 1990-01-22 | 1996-07-23 | Dekalb Genetics Corporation | Method for preparing fertile transgenic corn plants |
US5550318A (en) | 1990-04-17 | 1996-08-27 | Dekalb Genetics Corporation | Methods and compositions for the production of stably transformed, fertile monocot plants and cells thereof |
US5591616A (en) | 1992-07-07 | 1997-01-07 | Japan Tobacco, Inc. | Method for transforming monocotyledons |
WO1997013402A1 (en) | 1995-10-13 | 1997-04-17 | Dow Agrosciences Llc | Modified bacillus thuringiensis gene for lepidopteran control in plants |
US5723595A (en) | 1990-03-16 | 1998-03-03 | Calgene, Inc. | Plant desaturases--compositions and uses |
WO1999050430A2 (en) | 1998-03-30 | 1999-10-07 | Dow Agrosciences Llc | Modification of fatty acid composition in plants by expression of an aspergillus nidulans delta-9 coa desaturase |
US5981840A (en) | 1997-01-24 | 1999-11-09 | Pioneer Hi-Bred International, Inc. | Methods for agrobacterium-mediated transformation |
WO2000011012A1 (en) | 1998-08-24 | 2000-03-02 | Rutgers, The State University Of New Jersey | Synthetic fatty acid desaturase gene for expression in plants |
US6160208A (en) | 1990-01-22 | 2000-12-12 | Dekalb Genetics Corp. | Fertile transgenic corn plants |
WO2001025459A1 (en) | 1999-09-30 | 2001-04-12 | Japan Tobacco Inc. | Vectors for transforming plants |
US6384301B1 (en) | 1999-01-14 | 2002-05-07 | Monsanto Technology Llc | Soybean agrobacterium transformation method |
US6399861B1 (en) | 1990-04-17 | 2002-06-04 | Dekalb Genetics Corp. | Methods and compositions for the production of stably transformed, fertile monocot plants and cells thereof |
US6403865B1 (en) | 1990-08-24 | 2002-06-11 | Syngenta Investment Corp. | Method of producing transgenic maize using direct transformation of commercially important genotypes |
US6706950B2 (en) | 2000-07-25 | 2004-03-16 | Calgene Llc | Nucleic acid sequences encoding β-ketoacyl-ACP synthase and uses thereof |
US6784342B1 (en) | 1999-08-04 | 2004-08-31 | The University Of British Columbia | Regulation of embryonic transcription in plants |
US7253337B2 (en) | 2000-05-24 | 2007-08-07 | The University Of British Columbia | Gene regulatory region that promotes early seed-specific transcription |
US20080260933A1 (en) | 2004-10-08 | 2008-10-23 | Dow Agroscience Llc | Certain Plants with "No Saturate" or Reduced Saturate Levels of Fatty Acids in Seeds, and Oil Derived from the Seeds |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DK0561569T3 (en) | 1992-03-13 | 2003-10-06 | Agrigenetics Inc | Modification of vegetable oils using desaturase |
US7045683B2 (en) * | 2001-05-04 | 2006-05-16 | Abbott Laboratories | Δ4-desaturase genes and uses thereof |
JP2005185101A (en) * | 2002-05-30 | 2005-07-14 | National Institute Of Agrobiological Sciences | VEGETABLE FULL-LENGTH cDNA AND UTILIZATION THEREOF |
CA2450000A1 (en) * | 2003-12-18 | 2005-06-18 | Alberta Research Council Inc. | Method of creating plants with reduced level of saturated fatty acid in seed oil |
CA2568689A1 (en) * | 2004-06-04 | 2005-12-15 | Fluxome Sciences A/S | Metabolically engineered cells for the production of polyunsaturated fatty acids |
PL1799027T3 (en) * | 2004-10-08 | 2012-10-31 | Dow Agrosciences Llc | Plants with no saturate or reduced saturate levels of fatty acids in seeds, and oil derived from the seeds |
US20070294782A1 (en) * | 2004-12-21 | 2007-12-20 | Mark Abad | Transgenic plants with enhanced agronomic traits |
US20090070897A1 (en) * | 2006-01-12 | 2009-03-12 | Goldman Barry S | Genes and uses for plant improvement |
AU2006204997B2 (en) * | 2005-01-12 | 2011-09-01 | Monsanto Technology, Llc | Genes and uses for plant improvement |
JP5357011B2 (en) * | 2006-05-11 | 2013-12-04 | エヴォニク インダストリーズ アーゲー | Improved production of sphingoid bases using genetically engineered microbial strains |
US8329994B2 (en) * | 2008-10-14 | 2012-12-11 | Monsanto Technology Llc | Utilization of fatty acid desaturases from Hemiselmis spp |
-
2011
- 2011-06-24 CN CN201610113323.0A patent/CN105755017A/en active Pending
- 2011-06-24 EP EP11799019.2A patent/EP2585600B1/en not_active Not-in-force
- 2011-06-24 WO PCT/US2011/041897 patent/WO2011163632A2/en active Application Filing
- 2011-06-24 KR KR1020187000901A patent/KR20180008884A/en not_active Application Discontinuation
- 2011-06-24 ES ES14191879.7T patent/ES2620492T3/en active Active
- 2011-06-24 JP JP2013516837A patent/JP6096114B2/en not_active Expired - Fee Related
- 2011-06-24 UA UAA201300808A patent/UA115302C2/en unknown
- 2011-06-24 EP EP14191880.5A patent/EP2862931B1/en not_active Not-in-force
- 2011-06-24 EP EP14191879.7A patent/EP2862930B1/en not_active Not-in-force
- 2011-06-24 CN CN201610113429.0A patent/CN105734067A/en active Pending
- 2011-06-24 MX MX2012015301A patent/MX338726B/en active IP Right Grant
- 2011-06-24 ES ES14191880T patent/ES2623454T3/en active Active
- 2011-06-24 CA CA2999347A patent/CA2999347C/en active Active
- 2011-06-24 MX MX2015008803A patent/MX350491B/en unknown
- 2011-06-24 DK DK11799019.2T patent/DK2585600T3/en active
- 2011-06-24 AU AU2011270652A patent/AU2011270652B2/en active Active
- 2011-06-24 BR BR112012033112A patent/BR112012033112A2/en not_active Application Discontinuation
- 2011-06-24 KR KR1020187000903A patent/KR20180008885A/en not_active Application Discontinuation
- 2011-06-24 NZ NZ603971A patent/NZ603971A/en not_active IP Right Cessation
- 2011-06-24 US US13/168,742 patent/US20110302672A1/en not_active Abandoned
- 2011-06-24 DK DK14191879.7T patent/DK2862930T3/en active
- 2011-06-24 NZ NZ700902A patent/NZ700902A/en not_active IP Right Cessation
- 2011-06-24 CA CA2803098A patent/CA2803098C/en active Active
- 2011-06-24 ES ES11799019.2T patent/ES2568803T3/en active Active
- 2011-06-24 DK DK14191880.5T patent/DK2862931T3/en active
- 2011-06-24 MX MX2015008804A patent/MX347113B/en unknown
- 2011-06-24 CN CN201180040626.XA patent/CN103068986B/en not_active Expired - Fee Related
- 2011-06-24 EA EA201291332A patent/EA029904B1/en not_active IP Right Cessation
- 2011-06-24 CA CA2999335A patent/CA2999335C/en active Active
- 2011-06-24 KR KR1020137001766A patent/KR20130098282A/en not_active Application Discontinuation
- 2011-06-24 NZ NZ700897A patent/NZ700897A/en not_active IP Right Cessation
- 2011-06-27 AR ARP110102230A patent/AR081303A1/en unknown
- 2011-06-29 TW TW105119968A patent/TW201634694A/en unknown
- 2011-06-29 TW TW105119975A patent/TW201634696A/en unknown
- 2011-06-29 TW TW105119964A patent/TW201634693A/en unknown
- 2011-06-29 TW TW105119972A patent/TW201634695A/en unknown
-
2012
- 2012-11-30 ZA ZA2012/09083A patent/ZA201209083B/en unknown
- 2012-12-04 IL IL223438A patent/IL223438A/en active IP Right Grant
- 2012-12-21 CL CL2012003665A patent/CL2012003665A1/en unknown
-
2016
- 2016-02-07 IL IL244003A patent/IL244003A0/en unknown
- 2016-02-07 IL IL244002A patent/IL244002A0/en unknown
- 2016-02-18 JP JP2016028728A patent/JP6301381B2/en not_active Expired - Fee Related
- 2016-02-18 JP JP2016028729A patent/JP2016144456A/en active Pending
- 2016-02-18 JP JP2016028726A patent/JP6186462B2/en not_active Expired - Fee Related
- 2016-02-18 JP JP2016028727A patent/JP6186463B2/en not_active Expired - Fee Related
- 2016-04-15 CL CL2016000904A patent/CL2016000904A1/en unknown
- 2016-04-15 CL CL2016000903A patent/CL2016000903A1/en unknown
- 2016-04-15 CL CL2016000905A patent/CL2016000905A1/en unknown
- 2016-04-15 CL CL2016000902A patent/CL2016000902A1/en unknown
Patent Citations (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5504200A (en) | 1983-04-15 | 1996-04-02 | Mycogen Plant Science, Inc. | Plant gene expression |
US5380831A (en) | 1986-04-04 | 1995-01-10 | Mycogen Plant Science, Inc. | Synthetic insecticidal crystal protein gene |
US5463174A (en) | 1986-05-29 | 1995-10-31 | Calgene Inc. | Transformation and foreign gene expression in Brassica species |
EP0255378A2 (en) | 1986-07-31 | 1988-02-03 | Calgene, Inc. | Seed specific transcriptional regulation |
US5004863A (en) | 1986-12-03 | 1991-04-02 | Agracetus | Genetic engineering of cotton plants and lines |
US5159135A (en) | 1986-12-03 | 1992-10-27 | Agracetus | Genetic engineering of cotton plants and lines |
US5004863B1 (en) | 1986-12-03 | 1992-12-08 | Agracetus | |
US5004863B2 (en) | 1986-12-03 | 2000-10-17 | Agracetus | Genetic engineering of cotton plants and lines |
US5159135B1 (en) | 1986-12-03 | 2000-10-24 | Agracetus | Genetic engineering of cotton plants and lines |
US5508184A (en) | 1986-12-05 | 1996-04-16 | Ciba-Geigy Corporation | Process for transforming plant protoplast |
US5416011A (en) | 1988-07-22 | 1995-05-16 | Monsanto Company | Method for soybean transformation and regeneration |
US5569834A (en) | 1988-07-22 | 1996-10-29 | Monsanto Company | Method for soybean transformation and regeneration |
US5824877A (en) | 1988-07-22 | 1998-10-20 | Monsanto Company | Method for soybean transformation and regeneration |
US5538880A (en) | 1990-01-22 | 1996-07-23 | Dekalb Genetics Corporation | Method for preparing fertile transgenic corn plants |
US6160208A (en) | 1990-01-22 | 2000-12-12 | Dekalb Genetics Corp. | Fertile transgenic corn plants |
US5723595A (en) | 1990-03-16 | 1998-03-03 | Calgene, Inc. | Plant desaturases--compositions and uses |
US5550318A (en) | 1990-04-17 | 1996-08-27 | Dekalb Genetics Corporation | Methods and compositions for the production of stably transformed, fertile monocot plants and cells thereof |
US6399861B1 (en) | 1990-04-17 | 2002-06-04 | Dekalb Genetics Corp. | Methods and compositions for the production of stably transformed, fertile monocot plants and cells thereof |
US6403865B1 (en) | 1990-08-24 | 2002-06-11 | Syngenta Investment Corp. | Method of producing transgenic maize using direct transformation of commercially important genotypes |
US5384253A (en) | 1990-12-28 | 1995-01-24 | Dekalb Genetics Corporation | Genetic transformation of maize cells by electroporation of cells pretreated with pectin degrading enzymes |
US5518908A (en) | 1991-09-23 | 1996-05-21 | Monsanto Company | Method of controlling insects |
US5591616A (en) | 1992-07-07 | 1997-01-07 | Japan Tobacco, Inc. | Method for transforming monocotyledons |
WO1997013402A1 (en) | 1995-10-13 | 1997-04-17 | Dow Agrosciences Llc | Modified bacillus thuringiensis gene for lepidopteran control in plants |
US5981840A (en) | 1997-01-24 | 1999-11-09 | Pioneer Hi-Bred International, Inc. | Methods for agrobacterium-mediated transformation |
WO1999050430A2 (en) | 1998-03-30 | 1999-10-07 | Dow Agrosciences Llc | Modification of fatty acid composition in plants by expression of an aspergillus nidulans delta-9 coa desaturase |
WO2000011012A1 (en) | 1998-08-24 | 2000-03-02 | Rutgers, The State University Of New Jersey | Synthetic fatty acid desaturase gene for expression in plants |
US6384301B1 (en) | 1999-01-14 | 2002-05-07 | Monsanto Technology Llc | Soybean agrobacterium transformation method |
US6784342B1 (en) | 1999-08-04 | 2004-08-31 | The University Of British Columbia | Regulation of embryonic transcription in plants |
WO2001025459A1 (en) | 1999-09-30 | 2001-04-12 | Japan Tobacco Inc. | Vectors for transforming plants |
US7253337B2 (en) | 2000-05-24 | 2007-08-07 | The University Of British Columbia | Gene regulatory region that promotes early seed-specific transcription |
US6706950B2 (en) | 2000-07-25 | 2004-03-16 | Calgene Llc | Nucleic acid sequences encoding β-ketoacyl-ACP synthase and uses thereof |
US20080260933A1 (en) | 2004-10-08 | 2008-10-23 | Dow Agroscience Llc | Certain Plants with "No Saturate" or Reduced Saturate Levels of Fatty Acids in Seeds, and Oil Derived from the Seeds |
Non-Patent Citations (76)
Title |
---|
ALTSCHUL ET AL., J. MOL. BIOL., vol. 215, 1990, pages 403 - 10 |
BINNS; HOWITZ: "Bacterical Pathogenesis of Plants and Animals", 1994, SPRINGER VERLAG., pages: 119 - 38 |
CAPECHI, CELL, vol. 22, no. 2, 1980, pages 479 - 88 |
CHAU, SCIENCE, vol. 244, 1989, pages 174 - 81 |
CHENG ET AL., PLANT CELL REP., vol. 15, 1996, pages 653 - 7 |
CHRISTOU ET AL., PLANT PHYSIOL., vol. 87, 1988, pages 671 - 4 |
CLAPP, CLIN. PERINATOL., vol. 20, no. 1, 1993, pages 155 - 68 |
CLOUGH; BENT, PLANT J., vol. 16, 1998, pages 735 - 743 |
CORPET ET AL., NUCLEIC ACIDS RESEARCH, vol. 16, 1988, pages 10881 - 10890 |
CURIEL ET AL., HUM. GEN. THER., vol. 3, no. 2, 1992, pages 147 - 54 |
DELLA-CIOPPA ET AL., BIO/TECHNOLOGY, vol. 5, 1987, pages 579 - 84 |
EGLITIS; ANDERSON, BIOTECHNIQUES, vol. 6, no. 7, 1988, pages 608 - 14 |
FRALEY ET AL., PROC. NATL. ACAD. SCI. USA, vol. 80, 1983, pages 4803 |
FRALEY ET AL., PROC. NATL. ACAD. SCI. USA, vol. 80, 1993, pages 4803 |
FROMM ET AL., PROC. NATL. ACAD. SCI. USA, vol. 82, no. 17, 1985, pages 5824 - 8 |
FYNAN ET AL., PROC. NATL. ACAD. SCI. USA, vol. 90, no. 24, 1993, pages 11478 - 82 |
GALLIE ET AL., NUCLEIC ACIDS RES., vol. 15, 1987, pages 8693 - 711 |
GARDNER ET AL., SCIENCE, vol. 231, 1986, pages 725 - 7 |
GELVIN: "Transgenic Plants", 1993, ACADEMIC PRESS, pages: 49 - 87 |
GRAHAM; VAN DER EB, VIROLOGY, vol. 54, no. 2, 1973, pages 536 - 9 |
GRANT ET AL., PLANT CELL REP., vol. 15, 1995, pages 254 - 8 |
HEPBURN ET AL., J. GEN. MICROBIOL., vol. 131, 1985, pages 2961 - 9 |
HESS, INTERN. REV. CYTOL., vol. 107, 1987, pages 367 |
HIGGINS; SHARP, CABIOS, vol. 5, 1989, pages 151 - 3 |
HIGGINS; SHARP, GENE, vol. 73, 1988, pages 237 - 44 |
HOOYKAAS; BEIJERSBERGEN, ANN. REV. PHYTOPATHOL., vol. 32, 1994, pages 157 - 79 |
HORSCH ET AL., SCIENCE, vol. 227, 1985, pages 1229 - 31 |
HOWARD; CITOVSKY, BIOASSAYS, vol. 12, 1990, pages 103 - 8 |
HUANG ET AL., COMPUTER APPLICATIONS IN THE BIOSCIENCES, vol. 8, 1992, pages 155 - 65 |
HUANG ET AL., J. BACTERIOL., vol. 172, 1990, pages 1814 - 22 |
JOERSBRO ET AL., MOL. BREED., vol. 4, 1998, pages 111 - 7 |
JOHNSTON; TANG, METHODS CELL BIOL., vol. 43, no. A, 1994, pages 353 - 65 |
KADO, CRIT. REV. PLANT SCI., vol. 10, 1991, pages 1 - 32 |
KOZIEL ET AL., PLANT MOL. BIOL., vol. 32, 1996, pages 393 - 405 |
LESSL; LANKA, CELL, vol. 77, 1994, pages 321 - 4 |
LIU ET AL., NAT. BIOTECHNOL., vol. 21, 2003, pages 1222 - 8 |
LU ET AL., J. EXP. MED., vol. 178, no. 6, 1993, pages 2089 - 96 |
LUO ET AL., PLANT MOL. BIOL. REPORTER, vol. 6, 1988, pages 165 |
MANDEL ET AL., PLANT MOL. BIOL., vol. 29, 1995, pages 995 - 1004 |
MCCABE ET AL., BIOTECHNOLOGY, vol. 6, 1988, pages 923 |
MCCARTNEY ET AL., PLANT J., vol. 37, 2004, pages 156 - 73 |
MCKENTLY ET AL., PLANT CELL REP., vol. 14, 1995, pages 699 - 703 |
MZIAUT ET AL., PROC. NATL. ACAD. SCI. U.S.A., vol. 97, 2000, pages 8883 - 8 |
NEEDLEMAN; WUNSCH, J. MOL. BIOL., vol. 48, 1970, pages 443 |
NEUHAUS ET AL., THEOR. APPL. GENET., vol. 75, 1987, pages 30 |
ODELL ET AL., NATURE, vol. 313, 1985, pages 810 |
O'QUIN ET AL., APPL MICROBIOL BIOTECHNOL, vol. 83, 2009, pages 117 - 25 |
PEARSON ET AL., METHODS IN MOLECULAR BIOLOGY, vol. 24, 1994, pages 307 - 31 |
PEARSON; LIPMAN, PROC. NATL. ACAD. SCI. USA, vol. 85, 1988, pages 2444 |
PENA ET AL., NATURE, vol. 325, 1987, pages 274 |
POLASHCOK ET AL., FASEB J., vol. 5, 1991, pages A1157 |
POLASHOK ET AL., PLANT PHYSIOL., vol. 100, 1992, pages 894 - 901 |
POSZKOWSKI ET AL., EMBO J., vol. 3, 1989, pages 2719 |
RAVID; HOCHSTRASSER, NAT. REV. MOL. CELL. BIOL., vol. 9, 2008, pages 679 - 90 |
REAM, ANN. REV. PHYTOPATHOL., vol. 27, 1989, pages 583 - 618 |
ROSENFIELD ET AL., INSECT BIOCHEM. MOL. BIOL., vol. 31, no. 10, 2001, pages 949 - 64 |
See also references of EP2585600A4 |
SMITH; WATERMAN, ADV. APPL. MATH., vol. 2, 1981, pages 482 |
STUKEY ET AL., J. BIOL. CHEM., vol. 264, 1989, pages 16537 - 44 |
STUKEY ET AL., J. BIOL. CHEM., vol. 265, 1990, pages 20144 - 9 |
TAMURA ET AL., MOL. BIOL. AND EVOLUTION, vol. 24, 2007, pages 1596 - 9 |
TATIANA ET AL., FEMS MICROBIOL. LETT., vol. 174, 1990, pages 247 - 50 |
TORO ET AL., PROC. NATL. ACAD. SCI. U.S.A., vol. 85, no. 22, 1988, pages 8558 - 62 |
VEMULA ET AL., J. BIOL. CHEM., vol. 278, no. 46, 2003, pages 45269 - 79 |
VERDAGUER ET AL., PLANT MOL. BIOL., vol. 31, 1996, pages 1129 - 39 |
WAGNER ET AL., PROC. NATL. ACAD. SCI. USA, vol. 89, no. 13, 1992, pages 6099 - 103 |
WANG ET AL., J. AGRIC. FOOD CHEM., vol. 44, 1996, pages 3399 - 402 |
WANG ET AL., PHYTOCHEMISTRY, vol. 58, 2001, pages 227 - 32 |
WEIGEL; GLAZEBROOK: "Arabidopsis", 2002, COLD SPRING HARBOR LABORATORY PRESS, article "How to Transform Arabidopsis" |
WEISSBACH; WEISSBACH: "Methods for Plant Molecular Biology", ACADEMIC PRESS, INC. |
WOHLLEBEN ET AL., GENE, vol. 70, 1988, pages 25 - 37 |
WONG; NEUMANN, BIOCHIM. BIOPHYS. RES. COMMUN., vol. 107, no. 2, 1982, pages 584 - 7 |
ZAMBRYSKI, ANNUAL REV. PLANT PHYSIOL. PLANT MOL. BIOL., vol. 43, 1992, pages 465 - 90 |
ZATLOUKAL ET AL., ANN. N.Y. ACAD. SCI., vol. 660, 1992, pages 136 - 53 |
ZHOU ET AL., METHODS IN ENZYMOLOGY, vol. 101, 1983, pages 433 |
ZUPAN; ZAMBRYSKI, ANNUAL REV. PHYTOPATHOL., vol. 27, 1995, pages 583 - 618 |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2011270652B2 (en) | Lowering saturated fatty acid content of plant seeds | |
US20090205079A1 (en) | ACETYL CoA CARBOXYLASE (ACCase) GENE FROM JATROPHA CURAS | |
CA2969617A1 (en) | Generation of transgenic canola with low or no saturated fatty acids | |
AU2015201335B2 (en) | Lowering saturated fatty acid content of plant seeds | |
US20170145433A1 (en) | Lowering saturated fatty acid content of plant seeds | |
US10370674B2 (en) | Generation of transgenic canola with low or no saturated fatty acids | |
KR20130026487A (en) | Accumulation of omega-7 fatty acids in plant seeds | |
CN114615881A (en) | Non-human organisms producing triglycerides | |
TW201300534A (en) | Lowering saturated fatty acid content of plant seeds |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180040626.X Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11799019 Country of ref document: EP Kind code of ref document: A2 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 223438 Country of ref document: IL |
|
ENP | Entry into the national phase |
Ref document number: 2803098 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2012/015301 Country of ref document: MX |
|
ENP | Entry into the national phase |
Ref document number: 2013516837 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012003665 Country of ref document: CL Ref document number: 201291332 Country of ref document: EA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2011270652 Country of ref document: AU Date of ref document: 20110624 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011799019 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20137001766 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: A201300808 Country of ref document: UA |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112012033112 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112012033112 Country of ref document: BR Kind code of ref document: A2 Effective date: 20121221 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 244002 Country of ref document: IL Ref document number: 244003 Country of ref document: IL |