WO2011153837A1 - 惯性微机电传感器及其制造方法 - Google Patents

惯性微机电传感器及其制造方法 Download PDF

Info

Publication number
WO2011153837A1
WO2011153837A1 PCT/CN2011/070630 CN2011070630W WO2011153837A1 WO 2011153837 A1 WO2011153837 A1 WO 2011153837A1 CN 2011070630 W CN2011070630 W CN 2011070630W WO 2011153837 A1 WO2011153837 A1 WO 2011153837A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electrode
mass
inertial
sensor according
Prior art date
Application number
PCT/CN2011/070630
Other languages
English (en)
French (fr)
Inventor
毛剑宏
韩凤芹
唐德明
Original Assignee
上海丽恒光微电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海丽恒光微电子科技有限公司 filed Critical 上海丽恒光微电子科技有限公司
Priority to US13/703,568 priority Critical patent/US20130139594A1/en
Publication of WO2011153837A1 publication Critical patent/WO2011153837A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5719Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using planar vibrating masses driven in a translation vibration along an axis
    • G01C19/5733Structural details or topology
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • B81B3/0064Constitution or structural means for improving or controlling the physical properties of a device
    • B81B3/0067Mechanical properties
    • B81B3/0078Constitution or structural means for improving mechanical properties not provided for in B81B3/007 - B81B3/0075
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/0802Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/125Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by capacitive pick-up
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/18Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration in two or more dimensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0228Inertial sensors
    • B81B2201/0235Accelerometers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0228Inertial sensors
    • B81B2201/0242Gyroscopes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0854Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration using a particular shape of the mass, e.g. annular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/84Types of semiconductor device ; Multistep manufacturing processes therefor controllable by variation of applied mechanical force, e.g. of pressure

Definitions

  • the present invention relates to the field of semiconductor manufacturing technology, and in particular to an inertial microelectromechanical sensor and a method of fabricating the same.
  • MEMS Microelectromechanical System
  • MEMS Microelectromechanical System
  • MEMS Microelectromechanical System
  • MEMS is a micro system that integrates mechanical components, optical systems, drive components, and electronic control systems into one integral unit.
  • MEMS are commonly used in position sensors, rotating devices, or inertial sensors such as accelerometers, gyroscopes, and sound sensors.
  • a conventional inertial microelectromechanical sensor currently includes a body and one or more inertial masses, the inertial mass being a suspended discrete structure relative to the body, the inertial mass being suspended from the cantilever.
  • the inertial mass, the body, and the gas layer between the inertial mass and the body constitute a capacitance.
  • the inertial mass and the body can move relative to each other.
  • the capacitance value of the capacitor changes, so that the continuous measurement of the capacitance value can obtain the The speed or acceleration of the inertial mass and the body moving relative to the left or right or moving up and down.
  • the above-described inertial microelectromechanical sensor that measures the relative motion between the inertial mass and the body by measuring the capacitance value is also called a capacitive inertial MEMS sensor.
  • the conductor base is the main body of the capacitive inertial microcomputer sensor, which forms the suspended inertia on the semiconductor substrate.
  • the capacitive inertial MEMS sensor and the CMOS interface circuit (ROIC) are usually the same.
  • the manufacturing process is formed.
  • a capacitive inertial MEMS sensor and a CMOS interface circuit are formed on the same semiconductor substrate, that is, a capacitive inertial MEMS sensor is embedded in a CMOS interface circuit.
  • CMOS gauge block is formed of a monolithic conductive material that requires good conductivity, stable properties, and density. Large, for example, the most commonly used is a silicon material, but the conductive materials of the above nature are very expensive.
  • the technical problem solved by the present invention is to provide an inertial microelectromechanical sensor which can effectively increase the weight of the inertial mass, improve the accuracy of the inertial microelectromechanical sensor, and reduce the manufacturing cost.
  • the present invention provides an inertial microelectromechanical sensor and a method of manufacturing the same, the inertial electromechanical sensor, a relatively movable body and a mass, the body including a first body having a first surface and vertically connected a second body of the first surface, the first body having a first electrode parallel to the first surface, and the second body having a second electrode perpendicular to the first surface; A mass is suspended within a space formed by the second body and the first body, the mass comprising a third electrode that is parallel and opposite the first surface, a fourth electrode that is perpendicular to the first surface, and a mass layer, the third electrode and the fourth electrode are connected to each other and form a U-shaped groove, and the mass layer is filled in the U-shaped groove.
  • the first body further includes a semiconductor material layer under the first electrode, and the semiconductor material layer has a MOS device therein.
  • the material of the first electrode is: one of aluminum, titanium, copper, cobalt, nickel, ruthenium, platinum, silver and gold or any combination thereof.
  • the material of the second body is: one of silicon oxide, silicon nitride, silicon carbide, silicon oxynitride and silicon oxycarbonitride or any combination thereof.
  • the material of the second electrode is: one of aluminum, titanium, copper, tungsten and rhenium or any combination thereof.
  • the materials of the third electrode and the fourth electrode are: one of aluminum, titanium, copper, cobalt, nickel, ruthenium, platinum, silver and gold or any combination thereof.
  • the material of the mass layer is: one of tungsten, silicon, germanium, aluminum, oxide and silicon nitride or any combination thereof.
  • the present invention also provides a method of manufacturing an inertial MEMS sensor, comprising the steps of: providing a body, the body comprising a first body and a second body vertically connected to each other, the first body having a first surface, a first electrode having a first electrode parallel to the first surface, and a second electrode having a second surface perpendicular to the first surface;
  • the sacrificial layer is removed.
  • the material of the sacrificial layer is carbon having a purity greater than 50%.
  • the sacrificial layer is formed by a plasma enhanced chemical vapor deposition process at a temperature of 350 ° C to 450 ° C.
  • the method of removing the sacrificial layer is: performing ashing using a plasma of oxygen or nitrogen.
  • the method of depositing a conductive layer covering the sacrificial layer and the insulating layer comprises chemical vapor deposition and physical vapor deposition.
  • the present invention mainly has the following advantages:
  • the present invention allows a inertial microelectromechanical sensor to measure movement or rotation in a horizontal direction and a vertical direction by providing a vertical capacitance and a horizontal capacitance in an inertial microelectromechanical sensor, and the mass includes a third electrode and a fourth electrode, The third electrode and the fourth electrode are connected to each other and form a U-shaped groove, and the U-shaped groove has a mass layer therein, so that the mass can be easily manufactured by filling the U-shaped groove with a lower price. The layer, thereby increasing the weight of the mass, reduces the manufacturing cost of the inertial MEMS sensor.
  • FIG. 1 is a schematic structural view of an embodiment of an inertial microelectromechanical sensor of the present invention
  • FIG. 2 is a flow chart of a method of manufacturing an inertial microelectromechanical sensor of the present invention
  • 3 to 10 are schematic views of a method of manufacturing an inertial microelectromechanical sensor of the present invention.
  • the inertial mass is usually formed as a whole conductive material, which requires good conductivity, stable properties, and high density.
  • the silicon material is more commonly used.
  • the conductive material of the above nature is very expensive, but in order to make the inertia of the inertial mass larger, it is necessary to use more of the conductive material, which results in a very high cost of the inertial MEMS sensor.
  • the present invention allows a inertial microelectromechanical sensor to measure movement or rotation in a horizontal direction and a vertical direction by providing a vertical capacitance and a horizontal capacitance in an inertial microelectromechanical sensor, and the mass includes a third electrode and a fourth electrode, The third electrode and the fourth electrode are connected to each other and form a U-shaped groove, and the U-shaped groove has a mass layer therein, so that the mass can be filled into the U-shaped groove by a lower-priced mass layer. Thereby, the manufacturing cost of the inertial MEMS sensor is reduced while increasing the weight of the mass.
  • FIG. 1 is a block diagram showing an embodiment of an inertial microelectromechanical sensor of the present invention.
  • the inertial electromechanical sensor comprises: a body 10 and a mass 200, the mass 200 and the body 10 are movably connected, which are relatively movable, and when the body 10 moves or rotates, the mass 200 It can be kept still, and vice versa.
  • the connection manner of the main body 10 and the mass block 200 can refer to the connection manner of the mass block and the main body in the capacitive inertial acceleration sensor or the gyroscope.
  • the mass block 200 can be connected to the semiconductor substrate through the cantilever connection. Support ring.
  • the mass 200 is suspended from the body by the support ring and the support of the cantilever.
  • the support ring is located at the periphery of the rotating shaft on the main body 10, so that the support ring, the cantilever and the mass can be rotated together around the main body Rotating so that the body 10 and the mass 200 can move or rotate relative to each other.
  • a cantilever may be connected to the periphery of the mass, the cantilever is overlapped on the body, thereby also suspending the mass 200 above or to the side of the body, and the body 10 and the mass 200 may be opposite mobile.
  • the main body 10 includes a first body 100 and a second body 300 that are perpendicularly connected to each other.
  • the first body is a body in a horizontal direction
  • the second body is a body in a vertical direction.
  • the first body 100 has a first surface 100a
  • the first body 100 has a first electrode 110 parallel to the first surface 100a
  • the second body 300 has a first surface 100a perpendicular to the first surface 100a.
  • Two electrodes 310 Two electrodes 310.
  • the second body 300 and the first body 100 form an L-shaped structure (1 second body 300) or a U-shaped structure (2 second bodies 300).
  • the mass 200 includes a third electrode 211 that is parallel and opposite to the first surface 100a and a fourth electrode 231 that is perpendicular to the first surface 100a.
  • the third electrode 211 and the fourth electrode 231 are connected to each other and form a U-shaped groove.
  • the U-shaped groove has a quality layer 233 therein. Since only a conductive material is used on the periphery of the mass, such a structure can Increasing the weight of the mass reduces the conductive material used to make the electrode.
  • the third electrode 211 is opposite to the first electrode 110, such that the gas between the third electrode 211 and the first electrode 110 and the third electrode 211 and the first electrode 110 form a horizontal capacitance. 611.
  • the fourth electrode 231 is opposite to the second electrode 310, such that the gas between the fourth electrode 231 and the second electrode 310 and the fourth electrode 231 and the second electrode 310 form a vertical capacitance. 621.
  • the second body 300 is one or more, and the material of the second body 300 is: one of silicon oxide, silicon nitride, silicon carbide, silicon oxynitride, and silicon oxycarbonitride. Or a combination thereof.
  • the first body 100 is a semiconductor substrate
  • the second body 300 is located on the semiconductor substrate, and the insulation on the semiconductor substrate can be preserved by depositing an insulating material on the semiconductor substrate and then etching.
  • the substance, such that the second body 300 and the first body 100 form an L-shaped structure (1 second body 300) or a U-shaped structure (2 second bodies 300).
  • the material of the first electrode 110 may be: one of aluminum, titanium, copper, cobalt, nickel, ruthenium, platinum, silver, and gold, or any combination thereof.
  • the material of the second electrode 310 is: one of aluminum, titanium, copper, tungsten, and tantalum Or any combination thereof.
  • the materials of the third electrode 211 and the fourth electrode 231 are: one of aluminum, titanium, copper, cobalt, nickel, ruthenium, platinum, silver, and gold, or any combination thereof.
  • the material of the mass layer 233 may be: one of tungsten, silicon, germanium, aluminum, oxide, and silicon nitride, or any combination thereof.
  • the first body 100 may further include a semiconductor material layer 105 under the second electrode 110.
  • the semiconductor material layer may be a single crystal, polycrystalline or amorphous silicon or silicon germanium (SiGe). It may be silicon-on-insulator (SOI), and may also include other materials such as indium antimonide, lead telluride, indium arsenide, indium phosphide, gallium arsenide or gallium antimonide.
  • the semiconductor material layer 105 has a MOS device therein.
  • the mass 200 may further include a metal layer 235, such as a layer of aluminum material, the metal layer 235 covering the mass layer 233 and the fourth electrode 231.
  • a metal layer 235 such as a layer of aluminum material, the metal layer 235 covering the mass layer 233 and the fourth electrode 231.
  • the fourth electrode 231 is disposed on the sidewall of the inertial mass
  • the second body 310 is disposed in the second body 300, and the inertia acts to make the mass 200 stationary when the body 10 moves;
  • the distance between the fourth electrode 231 and the second electrode 310 will change, so that the capacitance value of the vertical capacitor 621 changes, so that the capacitance value of the vertical capacitor 621 can be measured.
  • the parameter of the movement of the body 10 for example, in the acceleration sensor, the acceleration of the body 10 moving in the direction parallel to the first surface 100a of the first body 100 can be obtained.
  • the third electrode 211 is disposed on the sidewall of the inertial mass
  • the first electrode 110 is disposed in the first body 100, and thus, when the body 10 moves, if it is in a direction perpendicular to the first surface 100a of the first body 100
  • the mass 200 is stationary, the distance between the third electrode 211 and the first electrode 110 will change, so that the capacitance value of the horizontal capacitor 611 changes, so that the movement of the body 10 can be obtained by measuring the capacitance value of the horizontal capacitor 611.
  • the parameters such as the acceleration of the body 10 moving in a direction perpendicular to the first surface 100a of the first body 100, can be obtained, for example, in an acceleration sensor.
  • the mass 200 adopts a two-layer structure of an inner layer and an outer layer
  • the inner layer uses a lower-cost mass layer
  • the outer layer utilizes a material for fabricating an electrode, thereby being able to increase by increasing the volume of the mass.
  • the weight thereof is low because the cost of the mass layer is relatively low, so that the weight is increased by using the material of the mass layer, so that the cost is not increased. Therefore, the present invention reduces the weight while improving the weight of the mass.
  • 2 is a flow chart of a method of manufacturing an inertial microelectromechanical sensor of the present invention
  • FIGS. 3 to 10 are schematic views of a method of manufacturing an inertial microelectromechanical sensor of the present invention. Next, a method of manufacturing the inertial microelectromechanical sensor shown in Fig. 1 will be described with reference to Figs. 2 to 10 .
  • S10 providing a main body, the main body including a first body and a second body perpendicularly connected to each other, the first body having a first surface, the first body having a first electrode parallel to the first surface, a second electrode having a second surface perpendicular to the first surface;
  • a main body 10 is provided.
  • the main body 10 includes a first main body 100 and a second main body 300.
  • the first body 100 may be a semiconductor substrate, which may be a single crystal, polycrystalline or amorphous silicon or silicon germanium (SiGe), or silicon-on-insulator (SOI), and may also include other Materials such as indium antimonide, lead telluride, indium arsenide, indium phosphide, gallium arsenide or gallium antimonide.
  • the material of the first electrode 110 may be: one of aluminum, titanium, copper, cobalt, nickel, ruthenium, platinum, silver, and gold, or any combination thereof. Further, under the first electrode 110 in the first body 100, a semiconductor material layer 105, such as a silicon layer, may be included, and the semiconductor material layer 105 may have a MOS device that has been fabricated.
  • a second body 300 is disposed on a portion of the first body 100, and the second body 300 may be an insulating medium such as silicon oxide, silicon nitride, silicon carbide, silicon oxynitride, and silicon oxycarbonitride. Or any combination thereof. Having a perpendicular to the first body 100 in the second body 300 The second electrode 310 of the first surface 100a.
  • the material of the second electrode 310 is: one of aluminum, titanium, copper, tungsten and tantalum or any combination thereof.
  • step S20 is performed.
  • a sacrificial layer 102 is formed on the first body 100.
  • the sacrificial layer 102 covers the first surface 100a of the first body 100.
  • chemical vapor deposition may be used.
  • the method of (CVD) forms the sacrificial layer 102.
  • the material of the sacrificial layer 102 may be: carbon, germanium or polyamide. Further, the material of the sacrificial layer is carbon having a purity of more than 50%.
  • the specific sacrificial layer 102 may be amorphous carbon, using a plasma enhanced chemical vapor deposition (PECVD) process at a temperature of 350 ° C to 450 ° C, a gas pressure of 1 torr ⁇ 20 torr, and an RF power of 800 W. ⁇ 1500W, the reaction gas includes: C3H6 and HE, and the reaction gas flow rate is 1000 sccm ⁇ 3000 sccm, wherein C3H6: HE 2: 1-5: 1.
  • PECVD plasma enhanced chemical vapor deposition
  • an insulating layer 104 is formed on the sacrificial layer 102.
  • the insulating layer 104 includes at least two portions that are not connected to each other, the first portion 104a and the second portion 104b.
  • an insulating layer 104 may be formed on the sacrificial layer 102 by a CVD method.
  • the material of the insulating layer 104 may be: silicon oxide, silicon nitride, silicon carbide, silicon oxynitride or silicon oxycarbonitride, and combinations thereof.
  • the insulating layer 104 has a thickness of 1 ⁇ m to 15 ⁇ m.
  • a conductive layer 230 is formed by deposition.
  • the material of the conductive layer 230 is: aluminum, titanium, copper, cobalt, nickel, ruthenium, platinum, silver, gold or a combination thereof.
  • the conductive layer 230 has a thickness of 50 ⁇ ⁇ 500 ⁇ ⁇ .
  • a quality layer 233 is formed on the conductive layer 230 on the sacrificial layer 102, and then ground by a chemical mechanical polishing (CMP) method such that the top of the mass layer 233 and the The conductive layer 230 on top of the insulating layer 104 is flush.
  • CMP chemical mechanical polishing
  • step S60 is performed.
  • the conductive layer 230 and the portion of the quality layer 233 at the top of the insulating layer 104 may be removed by CMP.
  • the remaining portion of the conductive layer 230 includes the portion on the sidewall of the insulating layer 104, that is, the fourth electrode 231, and the portion on the sacrificial layer 102, that is, the third electrode 211.
  • step S70 is performed.
  • the insulating layer 104 is removed.
  • the insulating layer 104 may be removed by etching or cleaning.
  • the sacrificial layer 102 is removed.
  • the sacrificial layer may be removed by a cleaning or ashing method, for example, the ashing method may be using oxygen or nitrogen.
  • the compact activated carbon formed by the process, the removal material is oxygen, and the heating is 350 ° C ⁇ 450 ° C. At this temperature, the compact activated carbon does not undergo intense combustion, but can be oxidized into carbon dioxide gas, and passed through The holes are drained and the sacrificial layer can be completely removed without the rest of the device being affected.
  • the fourth electrode 231, the third electrode 211, and the mass layer 233 constitute an inertial mass.
  • the fourth electrode, the second electrode, and the gas therebetween constitute a capacitor, that is, a vertical capacitance.
  • the third electrode, the first electrode, and the gas therebetween constitute a capacitor, that is, a horizontal capacitance.
  • the second electrode is disposed in the main body, so that when the main body moves or rotates in the horizontal direction and the mass remains stationary, the capacitance value of the vertical capacitance formed by the second electrode and the fourth electrode changes, thereby performing Measurement, you can get the motion of the subject, such as acceleration, distance of movement, angle of rotation or speed of rotation, and so on.
  • the capacitance value of the horizontal capacitance formed by the first electrode and the third electrode changes, thereby measuring the motion of the main body.
  • the acceleration, the distance moved, the angle of rotation or the speed of rotation, etc. can be used to form a sensor of various functions.
  • the mass in the present invention adopts a two-layer structure, the outer layer is an inner layer of the electrode as a mass layer, and the outer layer is made of a material such as silicon, in order to ensure a good capacitance, and the inner layer of the quality layer is only
  • the weight is increased, so that a material such as silicon oxide which is relatively inexpensive can be used. Since the mass of the mass layer is inexpensive, the mass of the mass that can be made is large, and even if the volume of the mass is increased, the outer layer is thin. Silicon does not require much, so this can increase the mass and weight without increasing the cost, and vice versa.
  • the second body may be masked with a mask layer before step S20, thereby removing the mask layer after step S80.
  • a metal layer such as an aluminum material layer, a copper material layer or the like may be formed on the mass layer 233 and the fourth electrode 231 after the step S60.
  • the inertial mass may be further movably connected to the main body 10 for different application environments.
  • a horizontal elastic member may be disposed in the acceleration sensor to connect the inertial mass to the main body in a horizontal direction, and additionally The elastic member perpendicular to the horizontal direction connects the inertial mass to the main body 10 in a direction perpendicular to the horizontal direction.
  • a rotating shaft and a cantilever that can rotate around the rotating shaft can be disposed in the main body, and the inertial mass and the main body are connected by a cantilever, The inertial mass can be rotated around the axis of rotation.
  • those skilled in the art can obtain according to relevant experience, and no details are provided herein.
  • the present invention can also be used to manufacture a sensor having a plurality of masses.
  • the method can be referred to the foregoing embodiment, and will not be described again. It is also possible to provide a plurality of second bodies and second electrodes in the body.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Pressure Sensors (AREA)
  • Power Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Micromachines (AREA)

Description

惯性微机电传感器及其制造方法 本申请要求于 2010 年 6 月 11 日提交中国专利局、 申请号为 201010200713.4、 发明名称为"惯性微机电传感器及其制造方法"的中国专利申 请的优先权, 其全部内容通过引用结合在本申请中。
技术领域
本发明涉及半导体制造技术领域,特别涉及一种惯性微机电传感器及其制 造方法。
背景技术
MEMS(Microelectromechanical System, 机电系统)技术是指对 米 /纳 米( micro/nanotechnology )材料进行设计、 加工、 制造、 测量和控制的技术。 MEMS 是由机械构件、 光学系统、 驱动部件、 电控系统集成为一个整体单元 的微型系统。 MEMS 通常应用在位置传感器、 旋转装置或者惯性传感器中, 例如加速度传感器、 陀螺仪和声音传感器。
现有的一种传统的惯性微机电传感器通常包括主体和一个或多个惯性质 量块, 所述惯性质量块相对于主体为悬置的分立结构, 惯性质量块可以由悬臂 支撑而成悬置。 而惯性质量块、主体及惯性质量块和主体之间的气体层构成电 容。 所述惯性质量块和主体可以相对移动, 当惯性质量块和主体相对移动, 例 如上下移动或者左右移动, 则所述电容的电容值将发生变化,从而通过连续测 量所述电容值可以获得所述惯性质量块和主体相对左右运动或者上下移动的 速度或加速度。上述通过测量电容值来测量所述惯性质量块和主体之间相对运 动的惯性微机电传感器也叫做电容式惯性微机电传感器。 导体村底作为电容式惯性微机传感器的主体,在半导体村底上形成悬置的惯性 此在传统技术中, 电容式惯性微机电传感器和 CMOS 接口电路(Read-out integrated circuit, ROIC )通常采用相同制造工艺形成。 通常电容式惯性微机 电传感器和 CMOS接口电路在同一半导体村底上形成, 也就是将电容式惯性 微机电传感器嵌入 CMOS 接口 电路中 。 例如在美国专利文献 "US2010116057A1" 中公开了一种惯性传感器。 然而, 随着工艺尺寸的减小, 膜层的厚度也越来越薄, 因此在具有 CMOS 量块是由一个整体的导电材料形成的,所述导电材料要求导电性好、性质稳定、 密度较大, 例如较常用的是错硅材料,但是上述性质的导电材料价格都非常昂 贵。 而且, 对于电容式惯性微机电传感器来说, 惯性质量块的重量越大则惯性 越大, 惯性微机电传感器的精确度越高; 而为了使惯性质量块的惯性更大就需 要使用非常多的所述导电材料, 这样就造成惯性微机电传感器的成本非常高。
发明内容
本发明解决的技术问题是提供一种惯性微机电传感器,可以有效地提高惯 性质量块的重量, 提高惯性微机电传感器的精确度, 并降低制造成本。
为了解决上述问题, 本发明提供了一种惯性微机电传感器及其制造方法, 该惯性 机电传感器, 能够相对移动的主体和质量块, 所述主体包括具有第一 表面的第一主体和垂直并连接所述第一表面的第二主体,所述第一主体内具有 平行于所述第一表面的第一电极,所述第二主体内具有垂直于所述第一表面的 第二电极; 所述质量块悬置在所述第二主体和第一主体形成的空间内, 所述质 量块包括平行且相对于所述第一表面的第三电极、垂直于所述第一表面的第四 电极和质量层, 所述第三电极和第四电极相连并构成 U型凹槽, 所述质量层 填充于所述 U型 槽内,
优选的, 所述第一主体还包括位于所述第一电极下方的半导体材料层, 所 述半导体材料层内具有 MOS器件。
优选的, 所述第一电极的材料为: 铝、 钛、 铜、 钴、 镍、 钽、 铂、 银和金 的其中一种或其任意组合。
优选的, 所述第二主体的材料为: 氧化硅、 氮化硅、 碳化硅、 氮氧化硅和 碳氮氧化硅的其中一种或其任意组合。
优选的, 所述第二电极的材料为: 铝、 钛、 铜、 钨和钽的其中一种或其任 意组合。
优选的, 所述第三电极和第四电极的材料为: 铝、 钛、 铜、 钴、 镍、 钽、 铂、 银和金的其中一种或其任意组合。
优选的, 所述质量层的材料为: 钨、 错硅、 锗、 铝、 氧化物和氮化硅的其 中一种或其任意组合。 相应的, 本发明还提供了一种惯性微机电传感器的制造方法, 包括步骤: 提供主体, 所述主体包括相互垂直连接的第一主体和第二主体, 第一主体 具有第一表面, 所述第一主体内具有平行于所述第一表面的第一电极, 所述第 二主体内具有垂直于第一表面的第二电极;
在所述第一主体上形成牺牲层;
在所述牺牲层上形成绝缘层, 所述绝缘层和所述牺牲层围成 U型凹槽; 淀积形成覆盖所述牺牲层和绝缘层的导电层;
在所述牺牲层上的导电层上形成质量层,所述质量层的顶部和所述绝缘层 顶部的导电层齐平;
去除所述绝缘层顶部的导电层和部分质量层,所述质量层的顶部和所述绝 缘层顶部的导电层齐平;
去除所述绝缘层;
去除所述牺牲层。
优选的, 所述牺牲层的材料为纯度大于 50%的碳。
优选的, 所述形成牺牲层是利用等离子体增强化学气相沉积工艺,且温度 为 350°C ~450°C。
优选的, 所述去除牺牲层的方法为: 利用氧气或者氮气的等离子体进行灰 化。
优选的,所述淀积形成覆盖所述牺牲层和绝缘层的导电层的方法包括化学 气相淀积和物理气相淀积。
与现有技术相比, 本发明主要具有以下优点:
本发明通过在惯性微机电传感器中设置垂直电容和水平电容,从而使得惯 性微机电传感器可以测量水平方向和垂直方向上的移动或者旋转,并且所述质 量块包括第三电极和第四电极, 所述第三电极和第四电极相连并构成 U型凹 槽, 所述 U型凹槽内具有质量层, 这样所述质量块可以通过向所述 U型凹槽 内填充价格较低制作容易的质量层,从而在增加质量块的重量的同时, 降低了 惯性微机电传感器的制造成本。 附图说明
通过附图中所示的本发明的优选实施例的更具体说明,本发明的上述及其 它目的、特征和优势将更加清晰。在全部附图中相同的附图标记指示相同的部 分。 并未刻意按实际尺寸等比例缩放绘制附图, 重点在于示出本发明的主旨。
图 1是本发明的惯性微机电传感器一实施例的结构示意图;
图 2是本发明的惯性微机电传感器制造方法的流程图;
图 3至图 10是本发明的惯性微机电传感器制造方法的示意图。
具体实施方式
由背景技术可知,传统技术中为了降低制造难度, 通常惯性质量块是一个 整体的导电材料形成的, 所述导电材料要求导电性好、 性质稳定、 密度较大, 例如较常用的是错硅材料,但是上述性质的导电材料价格都非常昂贵, 然而为 了使惯性质量块的惯性更大就需要使用更多所述导电材料,这样就造成惯性微 机电传感器的成本非常高。
经过发明人的大量研究,得到了一种惯性微机电传感器。 本发明通过在惯 性微机电传感器中设置垂直电容和水平电容,从而使得惯性微机电传感器可以 测量水平方向和垂直方向上的移动或者旋转,并且所述质量块包括第三电极和 第四电极, 所述第三电极和第四电极相连并构成 U型凹槽, 所述 U型凹槽内 具有质量层, 这样所述质量块可以通过向所述 U型凹槽内填充价格较低的质 量层,从而在增加质量块的重量的同时,降低了惯性微机电传感器的制造成本。
为使本发明的上述目的、特征和优点能够更加明显易懂, 下面结合附图对 本发明的具体实现方式做详细的说明。本发明利用示意图进行详细描述,在详 述本发明实施例时, 为便于说明,表示器件结构的剖面图会不依一般比例作局 部放大,而且所述示意图只是实例,其在此不应限制本发明保护的范围。此外, 在实际制作中应包含长度、 宽度及深度的三维空间尺寸。
图 1是本发明的惯性微机电传感器一实施例的结构示意图。 如图 1所示, 惯性 机电传感器包括: 主体 10和质量块 200, 所述质量块 200和所述主体 10活动连接, 其可以相对移动, 当所述主体 10移动或旋转, 所述质量块 200 可以保持静止, 反之亦可。 所述主体 10和质量块 200的连接方式本领域技术 人员可以参考电容式惯性加速传感器或者陀螺仪中的质量块和主体的连接方 式, 例如所述质量块 200可以通过悬臂连接位于半导体村底上的支撑环。通过 支撑环及悬臂的支撑, 使质量块 200 悬置于主体上。 其中, 支撑环位于主体 10 上的旋转轴外围, 从而, 支撑环、 悬臂和质量块可以一起绕主体的旋转轴 旋转, 从而使得主体 10和质量块 200可以相对移动或者旋转。
另外, 也可以所述质量块外围连接有悬臂, 所述悬臂搭接在主体上, 从而 也使得所述质量块 200悬置在所述主体上方或者侧面, 并且使得主体 10和质 量块 200可以相对移动。
所述主体 10包括相互垂直连接的第一主体 100和第二主体 300, 在一实 施例中所述第一主体为水平方向的主体, 所述第二主体为垂直方向的主体。 所 述第一主体 100具有第一表面 100a, 所述第一主体 100内具有平行于所述第 一表面 100a的第一电极 110, 所述第二主体 300内具有垂直于第一表面 100a 的第二电极 310。
所述第二主体 300和第一主体 100形成 L型结构 (1个第二主体 300 )或 者 U型结构 ( 2个第二主体 300 )。 所述质量块 200包括平行且相对于所述第 一表面 100a的第三电极 211和垂直于第一表面 100a的第四电极 231。 所述第 三电极 211和第四电极 231相连并构成 U型凹槽, 所述 U型凹槽内具有质量 层 233 , 因为只在质量块的外围使用了导电材料, 因此这样的结构, 即能增加 质量块的重量, 又能减少制作电极所用的导电材料。
所述第三电极 211与所述第一电极 110相对,从而所述第三电极 211与所 述第一电极 110之间的气体及所述第三电极 211和所述第一电极 110构成水平 电容 611。所述第四电极 231与所述第二电极 310相对,从而所述第四电极 231 与所述第二电极 310之间的气体及所述第四电极 231和所述第二电极 310构成 垂直电容 621。
本实施例中, 所述第二主体 300为 1个或者多个, 所述第二主体 300的材 料为: 氧化硅、 氮化硅、 碳化硅、 氮氧化硅和碳氮氧化硅的其中一种或及其组 合。
本实施例中, 所述第一主体 100为半导体基底, 所述第二主体 300位于半 导体基底上, 可以通过在半导体基底上淀积绝缘物质, 然后通过刻蚀, 保留半 导体基底部分区域上的绝缘物质,从而使得第二主体 300和第一主体 100形成 L型结构 ( 1个第二主体 300 )或者 U型结构 ( 2个第二主体 300 )。
本实施例中, 所述第一电极 110的材料可以为: 铝、 钛、铜、 钴、 镍、 钽、 铂、 银和金的其中一种或其任意组合。
本实施例中, 所述第二电极 310的材料为: 铝、 钛、 铜、 钨和钽的其中一 种或其任意组合。
本实施例中, 所述第三电极 211和第四电极 231的材料为: 铝、 钛、 铜、 钴、 镍、 钽、 铂、 银和金的其中一种或其任意组合。
本实施例中, 所述质量层 233的材料可以为: 钨、 错硅、 锗、 铝、 氧化物 和氮化硅的其中一种或其任意组合。
另外,所述第一主体 100还可以包括位于所述第二电极 110下方的半导体 材料层 105 , 例如半导体材料层可以为单晶、 多晶或非晶结构的硅或硅锗 ( SiGe ) , 也可以是绝缘体上硅( SOI ) , 还可以包括其它的材料, 例如锑化铟、 碲化铅、 砷化铟、 磷化铟、 砷化镓或锑化镓。 所述半导体材料层 105 内具有 MOS器件。
具体的, 质量块 200还可以包括金属层 235, 例如铝材料层, 所述金属层 235覆盖所述质量层 233和第四电极 231。
在本发明中由于在惯性质量块的侧壁上设置有第四电极 231 , 第二主体 300中设置有第二电极 310,在主体 10移动时,惯性作用使得质量块 200静止; 如果沿平行于第一主体 100的第一表面 100a方向移动, 则第四电极 231和第 二电极 310之间的距离将发生变化,从而垂直电容 621的电容值发生变化, 这 样通过测量垂直电容 621的电容值可以获得主体 10的移动的参数, 例如在加 速度传感器中可以获得主体 10沿平行于第一主体 100的第一表面 100a方向移 动的加速度。 同样由于在惯性质量块的侧壁上设置有第三电极 211 , 第一主体 100 中设置有第一电极 110, 因此在主体 10移动时, 如果沿垂直于第一主体 100的第一表面 100a方向移动, 质量块 200静止, 则第三电极 211和第一电 极 110之间的距离将发生变化, 从而水平电容 611的电容值发生变化, 这样通 过测量水平电容 611的电容值可以获得主体 10的移动的参数, 例如在加速度 传感器中可以获得主体 10沿垂直于第一主体 100第一表面 100a方向移动的加 速度。
在本发明中由于质量块 200采用了内层和外层的两层结构,内层用成本较 低的质量层, 外层利用制作电极的材料,从而可以通过将质量块的体积增大来 增加其重量, 由于质量层的成本比较低,从而增加重量只要利用增加质量层的 材料, 因此不会造成成本的升高, 所以本发明在提高质量块重量的同时, 降低 了成本。 图 2是本发明的惯性微机电传感器制造方法的流程图; 图 3至图 10是本 发明的惯性微机电传感器制造方法的示意图。 下面结合图 2至图 10对图 1所 示的惯性微机电传感器的制造方法进行说明。
如图 2所示, 包括步骤:
S10, 提供主体, 所述主体包括相互垂直连接的第一主体和第二主体, 第 一主体具有第一表面, 所述第一主体内具有平行于所述第一表面的第一电极, 所述第二主体内具有垂直于第一表面的第二电极;
S20, 在所述第一主体上形成牺牲层;
S30, 在所述牺牲层上形成绝缘层, 所述绝缘层和所述牺牲层围成 U型凹 槽;
S40, 淀积形成覆盖所述牺牲层和绝缘层的导电层;
S50, 在所述牺牲层上的导电层上形成质量层, 所述质量层的顶部和所述 绝缘层顶部的导电层齐平;
S60, 去除所述绝缘层顶部的导电层;
S70, 去除所述绝缘层顶部的导电层和部分质量层, 所述质量层的顶部和 所述绝缘层顶部的导电层齐平;
S80, 去除所述牺牲层。
下面结合图 3至图 10进行详细说明。
首先, 进行步骤 S10, 如图 3所示, 提供主体 10, 所述主体 10包括第一 主体 100和第二主体 300。 所述第一主体 100可以为半导体基底, 所述半导体 基底可以是单晶、 多晶或非晶结构的硅或硅错(SiGe ), 也可以是绝缘体上硅 ( SOI ), 还可以包括其它的材料, 例如锑化铟、 碲化铅、 砷化铟、 磷化铟、 砷 化镓或锑化镓。 在第一主体内 100内具有第一电极 110, 所述第一电极 110平 行于所述第一主体 100的第一表面 100a (即上表面)设置。 所述第一电极 110 的材料可以为: 铝、 钛、 铜、 钴、 镍、 钽、 铂、 银和金的其中一种或其任意组 合。另外在所述第一主体 100内的第一电极 110下方还可以包括半导体材料层 105, 例如硅层, 在半导体材料层 105内可以具有已经制造好的 MOS器件。
在所述第一主体 100的部分区域上具有第二主体 300, 所述第二主体 300 可以为绝缘介质, 例如氧化硅、 氮化硅、 碳化硅、 氮氧化硅和碳氮氧化硅的其 中一种或其任意组合。 在所述第二主体 300 中具有垂直于所述第一主体 100 第一表面 100a的第二电极 310。 所述第二电极 310的材料为: 铝、 钛、 铜、 钨和钽的其中一种或其任意组合。
接着,进行步骤 S20,如图 4所示,在所述第一主体 100上形成牺牲层 102, 所述牺牲层 102覆盖所述第一主体 100的第一表面 100a, 例如可以采用化学 气相淀积( CVD )的方法形成牺牲层 102。所述牺牲层 102的材料可以为: 碳、 锗或者聚酰胺(polyamide )。 另外所述牺牲层的材料为纯度大于 50%的碳。 具 体的牺牲层 102可以为非晶碳(Amorphous Carbon ), 利用等离子体增强化学 气相沉积(PECVD )工艺, 在温度为 350°C ~450°C , 气压: 1 torr ~20torr, RF 功率: 800 W ~1500W,反应气体包括: C3H6和 HE,反应气体流量为 1000 sccm ~3000sccm, 其中 C3H6: HE 2: 1-5: 1。
接着, 进行步骤 S30, 如图 5所示, 在所述牺牲层 102上形成绝缘层 104, 所述绝缘层 104至少包括互不相连的两部分,第一部分 104a和第二部分 104b。 例如可以采用 CVD的方法在所述牺牲层 102上形成绝缘层 104, 所述绝缘层 104的材料可以为: 氧化硅、 氮化硅、 碳化硅、 氮氧化硅或碳氮氧化硅及其组 合。 所述所述绝缘层 104的厚度为 1 μ m~15 μ m。
接着, 进行步骤 S40, 如图 6所示, 在利用气相淀积方法, 具体的可以利 用化学气相淀积(CVD )或物理气相淀积(PVD ), 在所述牺牲层 102和绝缘 层 104上淀积形成导电层 230。 所述导电层 230的材料为: 铝、 钛、 铜、 钴、 镍、 钽、 铂、 银、 金或其组合。 所述导电层 230的厚度为 50θ Α~500θ Α。
接着, 进行步骤 S50, 参考图 7, 在所述牺牲层 102上的导电层 230上形 成质量层 233, 然后利用化学机械研磨(CMP )的方法研磨, 使得所述质量层 233的顶部和所述绝缘层 104顶部的导电层 230齐平。
接着, 进行步骤 S60, 参考图 8, 可以利用 CMP去除所述绝缘层 104顶 部的导电层 230和部分质量层 233。 从而导电层 230剩余的部分就包括位于绝 缘层 104侧壁上的部分, 即第四电极 231 , 和位于牺牲层 102上的部分, 即第 三电极 211。
接着, 进行步骤 S70, 参考图 9, 去除所述绝缘层 104, 例如可以采用刻 蚀或者清洗的方法去除所述绝缘层 104。
接着, 进行步骤 S80, 参考图 10, 去除所述牺牲层 102。 具体的, 可以利 用清洗或者灰化的方法去除牺牲层,例如所述灰化方法可以为利用氧气或氮气 工艺所形成的致密活性炭, 所述去除材料为氧气, 采用加热为 350°C ~450°C , 在此温度下,致密活性炭并不会发生剧烈燃烧,而可以被氧化成二氧化碳气体, 并通过通孔排出,牺牲层能够彻底地去除,而器件的其余部分并不会受到影响。
在上述步骤之后, 所述第四电极 231、 第三电极 211和质量层 233就构成 惯性质量块。 所述第四电极、 第二电极及其之间的气体构成电容器, 即垂直电 容。 所述第三电极、 第一电极及其之间的气体构成电容器, 即水平电容。 本发 明在主体中设置了第二电极, 因此当主体发生水平方向的移动或者旋转,质量 块保持不动, 则第二电极和第四电极构成的垂直电容的电容值发生变化,从而 对其进行测量, 可以获得主体的运动情况, 例如加速度、 移动的距离、 旋转的 角度或者旋转的速度等等。同样,当主体发生垂直于水平方向的移动或者旋转, 质量块保持不动, 则第一电极和第三电极构成的水平电容的电容值发生变化, 从而对其进行测量, 可以获得主体的运动情况, 例如加速度、 移动的距离、 旋 转的角度或者旋转的速度等等,因此上述实施例可用于形成个各种功能的传感 器。
在本发明中的质量块采用了两层的结构, 外层为电极内层为质量层, 外层 为了保证形成特性较好的电容可以采用错硅等材料,内层的质量层由于只是起 到增加重量的作用, 因此可以采用价格相对便宜的氧化硅等材料, 由于质量层 的价格便宜, 因此可以做的质量块的体积较大, 即使增大质量块的体积, 由于 外层很薄因此锗硅需要的并不多, 因此这样可以增加质量重量而成本不会升 高, 相反的降低了成本。
在上述的制造过程中,可以在步骤 S20之前将所述第二主体利用掩膜层掩 蔽, 从而在步骤 S80之后将所述掩膜层去除。
另外在步骤 S60之后还可以在质量层 233和第四电极 231上形成金属层, 例如铝材料层、 铜材料层等等。
对于不同的应用环境还可以进一步的将所述惯性质量快与所述主体 10活 动连接,例如在加速传感器中可以设置水平方向的弹性部件将所述惯性质量块 在水平方向和主体相连, 另外设置垂直于水平方向的弹性部件,将所述惯性质 量快在垂直于水平方向与主体 10相连。 对于陀螺仪中可以将主体中设置旋转 轴及可以绕旋转轴旋转的悬臂, 所述惯性质量块和主体之间通过悬臂相连,从 而惯性质量块可以绕旋转轴旋转,对于不同的传感器中的应用, 本领域技术人 员可以根据相关经验获得, 在此不——赘述。
另外, 上述实施例中只对具有一个质量块的传感器进行了说明, 除此之外 本发明还可以用于制造具有多个质量块的传感器, 方法可参考前述实施例, 不 再赘述。 另外还可以在主体中设置多个第二主体和第二电极。
以上所述,仅是本发明的较佳实施例而已, 并非对本发明作任何形式上的 限制。 任何熟悉本领域的技术人员, 在不脱离本发明技术方案范围情况下, 都 可利用上述揭示的方法和技术内容对本发明技术方案作出许多可能的变动和 修饰, 或修改为等同变化的等效实施例。 因此, 凡是未脱离本发明技术方案的 修饰, 均仍属于本发明技术方案保护的范围内。

Claims

权 利 要 求
1、 一种惯性 机电传感器, 包括能够相对移动的主体和质量块, 所述主体包括具有第一表面的第一主体和垂直并连接所述第一表面的第 二主体, 所述第一主体内具有平行于所述第一表面的第一电极, 所述第二主体 内具有垂直于所述第一表面的第二电极,
其特征在于, 所述质量块悬置在所述第二主体和第一主体形成的空间内, 所述质量块包括平行且相对于所述第一表面的第三电极、垂直于所述第一表面 的第四电极和质量层, 所述第三电极和第四电极相连并构成 U型凹槽, 所述 质量层填充于所述 U型凹槽内。
2、 根据权利要求 1所述的惯性微机电传感器, 其特征在于, 所述第一主 体还包括位于所述第一电极下方的半导体材料层, 所述半导体材料层内具有 MOS器件。
3、 根据权利要求 1所述的惯性微机电传感器, 其特征在于, 所述第一电 极的材料为: 铝、 钛、 铜、 钴、 镍、 钽、 铂、 银和金的其中一种或其任意组合。
4、 根据权利要求 1所述的惯性微机电传感器, 其特征在于, 所述第二主 体的材料为: 氧化硅、 氮化硅、 碳化硅、 氮氧化硅和碳氮氧化硅的其中一种或 其任意组合。
5、 根据权利要求 1所述的惯性微机电传感器, 其特征在于, 所述第二电 极的材料为: 铝、 钛、 铜、 钨和钽的其中一种或其任意组合。
6、 根据权利要求 1所述的惯性微机电传感器, 其特征在于, 所述第三电 极和第四电极的材料为: 铝、 钛、 铜、 钴、 镍、 钽、 铂、 银和金的其中一种或 其任意组合。
7、 根据权利要求 1所述的惯性微机电传感器, 其特征在于, 所述质量层 的材料为: 钨、 错硅、 锗、 铝、 氧化物和氮化硅的其中一种或其任意组合。
8、 一种权利要求 1所述的惯性微机电传感器的制造方法, 其特征在于, 包括步骤: 提供主体, 所述主体包括相互垂直连接的第一主体和第二主体, 第一主体 具有第一表面, 所述第一主体内具有平行于所述第一表面的第一电极, 所述第 二主体内具有垂直于第一表面的第二电极; 在所述第一主体上形成牺牲层; 在所述牺牲层上形成绝缘层, 所述绝缘层和所述牺牲层构成 U型凹槽; 淀积形成覆盖所述牺牲层和绝缘层的导电层;
在所述牺牲层上的导电层上形成质量层,所述质量层的顶部和所述绝缘层 顶部的导电层齐平;
去除所述绝缘层顶部的导电层和部分质量层,所述质量层的顶部和所述绝 缘层顶部的导电层齐平;
去除所述绝缘层; 去除所述牺牲层。
9、 根据权利要求 8所述的惯性微机电传感器的制造方法, 其特征在于, 所述牺牲层的材料为纯度大于 50%的碳。
10、 根据权利要求 8所述的惯性微机电传感器的制造方法, 其特征在于, 所述形成牺牲层是利用等离子体增强化学气相沉积工艺, 且温度为 350°C ~450
°C。
11、 根据权利要求 8所述的惯性微机电传感器的制造方法, 其特征在于, 所述去除牺牲层的方法为: 利用氧气或者氮气的等离子体进行灰化。
12、 根据权利要求 8所述的惯性微机电传感器的制造方法, 其特征在于, 所述淀积形成覆盖所述牺牲层和绝缘层的导电层的方法包括化学气相淀 积和物理气相淀积。
PCT/CN2011/070630 2010-06-11 2011-01-26 惯性微机电传感器及其制造方法 WO2011153837A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/703,568 US20130139594A1 (en) 2010-06-11 2011-01-26 Lexvu opto microelectronics technology shanghai (ltd)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010200713.4 2010-06-11
CN201010200713.4A CN102275860B (zh) 2010-06-11 2010-06-11 惯性微机电传感器的制造方法

Publications (1)

Publication Number Publication Date
WO2011153837A1 true WO2011153837A1 (zh) 2011-12-15

Family

ID=45097504

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/070630 WO2011153837A1 (zh) 2010-06-11 2011-01-26 惯性微机电传感器及其制造方法

Country Status (3)

Country Link
US (1) US20130139594A1 (zh)
CN (1) CN102275860B (zh)
WO (1) WO2011153837A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6331266B2 (ja) * 2013-05-24 2018-05-30 セイコーエプソン株式会社 センサーユニット並びに電子機器および運動体
US20150247879A1 (en) * 2014-03-03 2015-09-03 Infineon Technologies Ag Acceleration sensor
EP3620429A1 (en) * 2018-09-06 2020-03-11 Infineon Technologies AG Mems membrane transducer and method for producing same
CN114367431B (zh) * 2022-01-10 2023-05-23 京东方科技集团股份有限公司 一种换能器及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07325107A (ja) * 1994-04-04 1995-12-12 Murata Mfg Co Ltd 加速度検出装置
JPH08220133A (ja) * 1995-02-10 1996-08-30 Tokin Corp 加速度センサ
JP2009276305A (ja) * 2008-05-19 2009-11-26 Mitsutoyo Corp Mems加速度センサ
US20100116057A1 (en) * 2007-05-17 2010-05-13 Rohm Co., Ltd. Mems sensor and method of manufacturing the same
JP2010117247A (ja) * 2008-11-13 2010-05-27 Alps Electric Co Ltd Memsセンサ及びその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5211051A (en) * 1987-11-09 1993-05-18 California Institute Of Technology Methods and apparatus for improving sensor performance
US5007292A (en) * 1988-08-31 1991-04-16 Amoco Corporation Multicomponent transducer
US5249465A (en) * 1990-12-11 1993-10-05 Motorola, Inc. Accelerometer utilizing an annular mass
DE59304431D1 (de) * 1993-05-05 1996-12-12 Litef Gmbh Mikromechanische Beschleunigungsmessvorrichtung und Verfahren zu deren Herstellung
JP2005069852A (ja) * 2003-08-25 2005-03-17 Seiko Instruments Inc 容量型力学量センサ
JP2010071850A (ja) * 2008-09-19 2010-04-02 Kyocera Corp 加速度センサ素子、加速度センサ装置及び加速度センサ素子の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07325107A (ja) * 1994-04-04 1995-12-12 Murata Mfg Co Ltd 加速度検出装置
JPH08220133A (ja) * 1995-02-10 1996-08-30 Tokin Corp 加速度センサ
US20100116057A1 (en) * 2007-05-17 2010-05-13 Rohm Co., Ltd. Mems sensor and method of manufacturing the same
JP2009276305A (ja) * 2008-05-19 2009-11-26 Mitsutoyo Corp Mems加速度センサ
JP2010117247A (ja) * 2008-11-13 2010-05-27 Alps Electric Co Ltd Memsセンサ及びその製造方法

Also Published As

Publication number Publication date
CN102275860A (zh) 2011-12-14
CN102275860B (zh) 2014-12-31
US20130139594A1 (en) 2013-06-06

Similar Documents

Publication Publication Date Title
EP3155667B1 (en) Monolithic cmos-integration of free-and non-free-standing mems structures in a sealed cavity
US8003422B2 (en) Micro-electro-mechanical system device and method for making same
US8907434B2 (en) MEMS inertial sensor and method for manufacturing the same
EP2344416B1 (en) Plurality of smaller mems devices to replace a larger mems device
US9233839B2 (en) MEMS device and method of forming the same
US20150090043A1 (en) Mems
US9556017B2 (en) Apparatus and method for preventing stiction of MEMS devices encapsulated by active circuitry
TWI553884B (zh) 具有內嵌式聲通道的電容感測結構及製造其之方法
US8900905B1 (en) MEMS device and method of forming the same
WO2011153800A1 (zh) 微机电装置及其制造方法
WO2011153837A1 (zh) 惯性微机电传感器及其制造方法
US8507306B2 (en) Reduced stiction MEMS device with exposed silicon carbide
WO2012088814A1 (zh) 惯性微机电传感器及其制作方法
JP2007267272A (ja) コンデンサマイクロフォン
WO2011153839A1 (zh) 陀螺仪及其制造方法
US20170050841A1 (en) Semiconductive structure and manufacturing method thereof
US9493346B2 (en) Capacitor with planarized bonding for CMOS-MEMS integration
KR101408904B1 (ko) 고온 공정이 가능한 mems 디바이스 제조방법
JP2010074523A (ja) 犠牲層のエッチング方法、memsデバイスの製造方法およびmemsデバイス
WO2012088823A1 (zh) 微机电传感器的形成方法
US20220219973A1 (en) Conductive bond structure to increase membrane sensitivty in mems device
US20210292157A1 (en) Composite spring structure to reinforce mechanical robustness of a mems device
CN108203075B (zh) 一种mems器件及其制备方法、电子装置
TWI758666B (zh) 積體晶片及其製造方法
TWI848200B (zh) 使用一固態半導體製程之後段製程金屬層建立之微機電裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11791829

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13703568

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11791829

Country of ref document: EP

Kind code of ref document: A1