WO2011148934A1 - 圧力リング及びその製造方法 - Google Patents

圧力リング及びその製造方法 Download PDF

Info

Publication number
WO2011148934A1
WO2011148934A1 PCT/JP2011/061857 JP2011061857W WO2011148934A1 WO 2011148934 A1 WO2011148934 A1 WO 2011148934A1 JP 2011061857 W JP2011061857 W JP 2011061857W WO 2011148934 A1 WO2011148934 A1 WO 2011148934A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure ring
ring
thermal conductivity
temperature
spheroidized cementite
Prior art date
Application number
PCT/JP2011/061857
Other languages
English (en)
French (fr)
Inventor
祐司 島
高橋 純也
Original Assignee
株式会社リケン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社リケン filed Critical 株式会社リケン
Priority to CN201180025607.XA priority Critical patent/CN102906470B/zh
Priority to EP11786633.5A priority patent/EP2578909B1/en
Priority to US13/699,465 priority patent/US9617952B2/en
Publication of WO2011148934A1 publication Critical patent/WO2011148934A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F5/00Piston rings, e.g. associated with piston crown
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/40Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rings; for bearing races
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J9/00Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction
    • F16J9/26Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction characterised by the use of particular materials

Definitions

  • the present invention relates to a piston ring for an automobile engine, and more particularly to a pressure ring that is exposed to a high heat load environment of a high compression ratio engine and a method for manufacturing the same.
  • the heat transfer function among the three basic functions of the piston ring that is, the gas seal function, the heat transfer function, and the oil control function is used. Since the heat conduction function is closely related to the thermal conductivity of the base material and the surface treatment layer, the ring shape, etc., these can be optimized. Heat resistance and fatigue strength that can maintain the ring characteristics even when exposed to a thermal environment of about °C are also required.
  • the piston when the piston is made of aluminum (hereinafter referred to as “aluminum”), the aluminum softens as the temperature of the combustion chamber rises, and fatigue damage occurs due to high-temperature striking and sliding in the piston ring groove. As a result, ring groove wear and aluminum adhesion to the pressure ring are likely to occur. Also from this point, it is required to lower the ring groove temperature by using a pressure ring having high heat conduction. *
  • Japanese Patent Application Laid-Open No. 2009-235561 discloses an appropriate component range of C, Si, Mn, and Cr as a piston ring that is excellent in thermal conductivity and heat resistance and can be applied as a pressure ring.
  • Piston ring compositions have been proposed that are defined with predetermined parameters.
  • the target is a thermal conductivity of 35 W / m ⁇ K or more and a thermal sag (ring tangential tension reduction) of 4% or less, it is difficult to achieve that target.
  • automotive parts such as piston rings are required not only for superior characteristics but also for competitive prices. In other words, how to reduce costs is an important issue.
  • An object of the present invention is to provide a pressure ring that is excellent in thermal conductivity and heat resistance and can be used in an environment with a high heat load of an engine with a high compression ratio, and that is price competitive. It is another object of the present invention to provide a method for manufacturing the pressure ring.
  • Table 1 shows the composition of steel materials A to G used in the piston ring and the thermal conductivity at 200 ° C.
  • FIG. 6 shows the relationship between the thermal conductivity of each steel material and the composition sum of the alloy elements. That is, a material having a smaller alloy element amount has a higher thermal conductivity.
  • the heat resistance is inferior, and it cannot be used as a pressure ring in an environment with a high heat load.
  • the cost of steel is generally lower as the amount of alloying elements is smaller.
  • the more used the steel the more JIS (Japanese Industrial Standard) registered. Steel materials that are mass-produced like materials are less expensive. Therefore, in the present invention, basically, a JIS registered material having a small amount of alloying elements is used, and the microstructure is prepared so as to exhibit excellent heat-resistant settling properties even at a high temperature of 300 ° C.
  • the present inventor specifically, uses a steel material with a material symbol SUP10 specified in JIS G4801 and anneals the piston ring wire before oil tempering to precipitate spheroidized cementite.
  • a steel material with a material symbol SUP10 specified in JIS G4801 and anneals the piston ring wire before oil tempering to precipitate spheroidized cementite.
  • the oil tempering conditions it is possible to disperse an appropriate amount of spheroidized cementite in the tempered martensite matrix, to suppress dislocation movement and creep even at 300 ° C., and to improve heat resistance. I came up with it.
  • the pressure ring of the present invention is, by mass%, C: 0.45 to 0.55, Si: 0.15 to 0.35, Mn: 0.65 to 0.95, Cr: 0.80 to 1.10, V: 0.15 to 0.25, the balance being iron and inevitable impurities
  • a spheroidized cementite having an average particle size of 0.1 to 1.5 ⁇ m is dispersed in a tempered martensite matrix.
  • the spheroidized cementite having an average particle size of 0.5 to 1.0 ⁇ m is preferable.
  • the dispersion amount of the spheroidized cementite is preferably 1 to 6% by area on the microscopic structure observation surface.
  • the thermal conductivity of the pressure ring of the present invention is preferably 35 W / m ⁇ K or more, and the thermal settling rate (degree of tangential tension reduction of the ring) is preferably 4% or less.
  • the manufacturing method of the pressure ring of the present invention is, in mass%, C: 0.45-0.55, Si: 0.15-0.35, Mn: 0.65-0.95, Cr: 0.80-1.10, V: 0.15-0.25, and the balance is iron.
  • the annealing step is preferably performed at a temperature of 600 to 720 ° C.
  • the oil tempering step is preferably performed at a quenching temperature of 820 to 980 ° C. and a tempering temperature of 400 to 500 ° C.
  • the pressure ring of the present invention achieves both high thermal conductivity and high heat resistance, and even when used in an environment with a high thermal load such as a high compression ratio engine, the piston ring of the piston head is not reduced. Since heat can be efficiently released to the cooled cylinder wall, knocking can be suppressed without adjusting the ignition timing and high heat efficiency can be maintained. Similarly, the temperature of the ring groove of the aluminum piston can be lowered, and aluminum adhesion and ring groove wear can be suppressed. Furthermore, according to the manufacturing method of the present invention, since the steel material specified in JIS and mass-produced is used, the cost can be reduced.
  • FIG. 2 is a diagram showing a secondary electron image photograph taken by a scanning electron microscope of a cross section of Example 1.
  • FIG. 6 is a view showing a secondary electron image photograph of a cross section of Comparative Example 1 by a scanning electron microscope.
  • FIG. It is the figure which showed the relationship between the thermal conductivity of Examples 1 and 5 and Comparative Examples 1, 2, and 5 and a thermal settling rate. It is the figure which showed the aluminum adhesion test typically. It is a figure which shows the aluminum adhesion test result of Examples 1-3 and Comparative Examples 2-4. It is a figure which shows the relationship between the composition sum of the alloy element of the steel materials currently used for the piston ring, and thermal conductivity.
  • the pressure ring of the present invention is in mass%, C: 0.45-0.55, Si: 0.15-0.35, Mn: 0.65-0.95, Cr: 0.80-1.10, V: 0.15-0.25, the balance being iron and inevitable impurities
  • a spheroidized cementite having an average particle size of 0.1 to 1.5 ⁇ m is dispersed in a tempered martensite matrix.
  • the above composition is basically a steel material composition of material symbol SUP10 defined in JIS G 4801, and contains a little Cr and V, but has a small total amount of alloy elements, and therefore has a high thermal conductivity. However, the heat resistance is not sufficient.
  • relatively large spheroidized cementite is dispersed in a tempered martensite matrix.
  • This spheroidized cementite is known as residual cementite in spring steel treated with oil temper, and is also a source of stress concentration, so it is seen as a factor that degrades the mechanical properties of steel wires. From the fact that when used in the pressure ring of the ring, excellent heat resistance is achieved, the presence of spheroidized cementite remaining in the matrix after oil temper creates distortion in the crystal lattice, so even at 300 ° C It can be inferred that dislocations are difficult to move.
  • the spheroidized cementite has an average particle size of 0.1 ⁇ m or more.
  • Residual cementite of about 0.1 ⁇ m or less is not observed as spheroidized cementite having an average particle size of less than 0.1 ⁇ m because it dissolves into austenite in the solution treatment of oil temper treatment.
  • the average particle diameter exceeds 1.5 ⁇ m, it is not preferable because it causes fatigue fracture and reduces fatigue strength.
  • the average particle size is preferably 0.5 to 1.0 ⁇ m.
  • the dispersion amount of the spheroidized cementite is preferably 1 to 6% by area on the microscope structure observation surface. Further, if the amount of dispersion is within this range, the thermal conductivity is preferably 35 W / m ⁇ K or more, and the thermal sag ratio (degree of tangential tension reduction based on JIS B 8032-5) is preferably 4% or less.
  • the heat conductivity of the commonly used Si-Cr steel is about 31 W / m ⁇ K, and the heat conductivity of about 35 W / m ⁇ K is a conventional flake graphite cast iron that exhibits excellent heat conductivity. Comparable to the thermal conductivity of the piston ring.
  • the thermal conductivity is mainly governed by the movement of free electrons in the crystal grains, so the smaller the solid solution element, the higher the thermal conductivity.
  • SUP10 used in the present invention has a particularly small amount of Si as a solid solution strengthening element compared to Si-Cr steel, and the formation of spheroidized cementite also reduces solid solution C and leads to an improvement in thermal conductivity. it is conceivable that.
  • JIS B 8032-5 stipulates that the thermal sag rate is 8% or less of the tangential tension decrease under the test conditions of 300 ° C x 3 hours. The target value was about 4%, the same level as Si-Cr steel.
  • Steel pressure rings are usually subjected to various surface treatments on the outer peripheral sliding surface from the viewpoint of wear resistance and scuff resistance.
  • Cr plating is preferable if thermal conductivity is a priority.
  • wear resistance and scuff resistance are important, CrN coating by ion plating and DLC coating are suitable for aluminum cylinders.
  • a suitable surface treatment can be selected depending on the material and the use environment. Of course, nitriding is also included.
  • the wire used for manufacturing the pressure ring of the present invention is in mass%, C: 0.45 to 0.55, Si: 0.15 to 0.35, Mn: 0.65 to 0.95, Cr: 0.80 to 1.10, V: 0.15 to 0.25, the balance being
  • SUP10 steel material
  • a wire rod having a predetermined cross-sectional shape is obtained through a series of treatments including annealing and tempering, and is prepared by performing spheroidizing annealing instead of partial patenting treatment.
  • the patenting treatment is a heat treatment method in which a constant tempering transformation or cooling transformation is performed continuously in a line heat treatment to form a fine pearlite structure, and is specifically performed in a temperature range of approximately 900 to 600 ° C.
  • the annealing process performed instead of the patenting process is preferably performed for 30 to 240 minutes at a temperature of 600 to 720 ° C. below the AC1 point of the Fe—C phase diagram. Since the spheroidized cementite having a predetermined particle diameter formed by spheroidizing annealing is affected by the subsequent heat treatment and affects the subsequent wire drawing, it is preferably performed immediately before the final oil temper treatment.
  • spheroidizing annealing instead of the second patenting process, but in that case, spheroidizing annealing must be batch processing, that is, the batch processing is sandwiched in the middle of the continuous processing of the conventional production line. In other words, productivity has to be reduced. Although priority may be given to productivity, it may be performed instead of the first patenting treatment, but care must be taken that the particle size of the spheroidized cementite is within a predetermined range.
  • the oil tempering process is a so-called oil quenching-tempering process, but it is necessary to set the temperature and time so that all of the spheroidized carbides are not dissolved, that is, a preferable area ratio is obtained.
  • the quenching process is performed after heating for several tens of seconds to several minutes (eg, 30 seconds to 3 minutes) at a temperature of 820 to 980 ° C.
  • the tempering process is performed at a temperature of 400 to 500 ° C. It is preferably performed for about 10 seconds to several minutes (for example, 30 seconds to 3 minutes).
  • the particle size and area ratio of spheroidized cementite may fall in a preferable range.
  • the pressure ring of the present invention is formed from the above-mentioned wire drawn to a predetermined cross-sectional shape into a free shape of the ring, usually using a cam forming machine, and subjected to heat treatment for removing strain, and grinding the side surface, outer periphery, joint, etc. And processed into a predetermined ring shape.
  • surface treatment such as plating or PVD is performed as necessary.
  • Examples 1 to 3 Made of SUP10 steel rolled to 8 mm ⁇ diameter, consisting of heating (900 ° C)-patenting (600 ° C)-pickling-wire drawing-heating (900 ° C)-patenting (600 ° C)-pickling-wire drawing-oil temper
  • heating 900 ° C)-patenting (600 ° C)-pickling-wire drawing-heating
  • an annealing process at 700 ° C. for 60 minutes was introduced instead of the second patenting treatment, and finally a wire rod having a thickness of 1.0 mm and a width of 2.3 mm and a rectangular cross section was prepared.
  • oil temper treatment a treatment comprising a quenching step of quenching in oil at 60 ° C. and a tempering step of 470 ° C.
  • FIG. 1 shows a microscopic structure of a wire material by a scanning electron microscope, and white fine spherical cementite dispersed in tempered martensite is observed. Further, this structure was enlarged, and the average particle diameter and area ratio of spherical cementite were measured by image analysis. As a result, the average particle diameter was 0.8 ⁇ m and the area ratio was 2.4%.
  • Examples 4 to 5 (E4 to E5) Using a SUP10 steel material, a rectangular wire material having a thickness of 1.0 mm and a width of 2.3 mm was manufactured by annealing at 700 ° C. instead of the second patenting treatment in the same manner as in Examples 1 to 3. However, in order to prepare spheroidized cementite dispersed in the tempered martensite matrix, the heating temperature before quenching in the oil temper treatment was 980 ° C. in Example 4 and 820 ° C. in Example 5. As in Example 1, the average particle diameter and area ratio of spherical cementite were measured by image analysis from the microstructure of the wire rod using a scanning electron microscope. As a result, in Examples 4 and 5, the average particle diameters were 0.4 ⁇ m and 1.2 ⁇ m, and the area The rates were 0.3% and 5.3%.
  • a pressure ring with a nominal diameter of 73 mm was formed from a wire rod having a thickness of 1.0 mm and a width of 2.3 mm according to Examples 1 to 5 and having a nominal diameter of 73 mm, and the coating treatment shown in Table 2 was performed. That is, a CrN film by ion plating was applied to the outer peripheral surface, and a zinc phosphate-based film (Example 2) and a manganese phosphate-based film (Example 3) were applied to the side surfaces.
  • Comparative Examples 1 to 5 (C1 to C5)
  • the cross-sectional shape with a thickness of 1.0 mm and a width of 2.3 mm was manufactured in the same manner as in Comparative Example 1 using Si-Cr steel (JIS SWOSC-V) instead of SUP10 steel in Comparative Example 1 and Comparative Example 1.
  • a pressure ring formed from a rectangular wire and subjected to the surface treatment shown in Table 2 in the same manner as in Examples 1 to 5 is replaced with a hard steel wire (JIS SWRH62A) instead of the SUP10 steel in Comparative Examples 2 to 4 and Comparative Example 1.
  • a pressure ring formed from a wire rod having a thickness of 1.0 mm and a width of 2.3 mm and having a rectangular cross-sectional shape manufactured in the same manner as in Comparative Example 1 was used as Comparative Example 5. All of the outer peripheral surfaces of Comparative Examples 1 to 5 were coated with a CrN coating, the side surface of Comparative Example 3 was coated with a zinc phosphate coating, and the side of Comparative Example 4 was coated with a manganese phosphate coating.
  • FIG. 2 shows a microstructure of the wire material of Comparative Example 1 by a scanning electron microscope, and only uniform tempered martensite was observed, and fine spherical cementite as in Example 1 was not observed.
  • Thermal sag test The thermal sag test is based on JIS B 8032-5. First, the tension is measured, the ring is closed to the nominal diameter, heated at 300 ° C. for 3 hours, and then the tension is measured again to evaluate the rate of decline (degree of tangential tension decline in JIS). The test was conducted 5 times for Examples 1, 4 and 5 and Comparative Examples 1, 2 and 5, and the average value of the results is shown in Table 2.
  • Example 1 shows an average heat resistance of 24% better than Comparative Example 1 with approximately the same thermal conductivity, Example 4 shows 4%, and Example 5 shows 26% better heat resistance. Achieved less than 4%. The variation was small.
  • Thermal conductivity was measured for Examples 1, 4, 5 and Comparative Examples 1, 2, 5 by the laser flash method. The results are shown in Table 2. The thermal conductivity of Example 1 was higher than that of Comparative Example 2 of the Si—Cr steel, but was lower than that of Comparative Example 5 of the hard steel wire. That is, it was confirmed that it depends on the amount of alloying elements.
  • FIG. 3 shows the relationship between the thermal settling rate and the thermal conductivity. As seen in Comparative Examples 1, 2, and 5, the thermal settling rate increases as the thermal conductivity increases. However, Examples 1 and 5 were below the line shown by the three comparative examples, and it was confirmed that the thermal settling rate was reduced even with the same thermal conductivity, that is, the heat settling property was improved.
  • Aluminum adhesion test The aluminum adhesion test is performed by using the apparatus shown in Fig. 4 (for example, Ribbon Tribolic IV) and placing the ring (pressure ring) coaxially on a shaft rotating at a low speed.
  • the adjusted piston material AC8A material
  • a surface pressure load is periodically generated between the ring and the piston material until aluminum adhesion occurs. If aluminum adhesion occurs, the torque of the rotating shaft fluctuates and the temperature also rises. The life is evaluated by the number of duty cycles at that time.
  • the test conditions were a test temperature of 240 ° C, a contact pressure load touch width of 0 to 1.1 MPa, a contact pressure load cycle number of 3.3 Hz, a ring rotation speed of 3.3 m / sec (one-way rotation), and an additive-free base oil SAE30.
  • a test temperature of 240 ° C a contact pressure load touch width of 0 to 1.1 MPa
  • a contact pressure load cycle number 3.3 Hz
  • a ring rotation speed 3.3 m / sec (one-way rotation)
  • SAE30 additive-free base oil

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)

Abstract

高圧縮比のエンジンの熱負荷の高い環境で使用することが可能な、熱伝導性と耐熱ヘタリ性に優れ、且つ価格競争力のある圧力リングを提供するため、JIS G 4801に規定される材料記号SUP10なる合金元素量の少ない鋼材を用い、ピストンリング線材をオイルテンパー処理する前に、焼鈍し、平均粒径0.1~1.5μmの球状化セメンタイトを焼戻マルテンサイトマトリックス中に分散させることによって、300℃においても転位の移動やクリープを抑制し、耐熱ヘタリ性を向上させる。

Description

圧力リング及びその製造方法
 本発明は、自動車エンジン用ピストンリングに関し、特に高圧縮比のエンジンの熱負荷の高い環境に晒される圧力リング及びその製造方法に関する。 
 近年、自動車エンジンは、環境対応のため、燃費の向上、低エミッション化、高出力化が図られ、エンジン仕様は、高圧縮比化、高負荷化の傾向にある。ところが、一般に圧縮比を高くすると、燃焼室温度も高くなりノッキングが発生し易くなる。通常のノッキング対策は点火時期(進角)を遅らせることで対応されているが、それでは高い熱効率を維持できないため、燃焼室壁温度を下げる方向の検討も行われている。燃焼室壁温度の低下には、ピストン冠面温度を下げることが有効で、それにはピストンの熱を冷却されたシリンダ壁へ圧力リングを経て逃れさせることが最も効果的である。すなわち、ピストンリングの三つの基本機能であるガスシール機能、熱伝導機能、オイルコントロール機能のうちの熱伝導機能を利用することになる。熱伝導機能は、母材や表面処理層の熱伝導率、リング形状等に密接に関係するので、これらを最適化すれば良い一方、材料の選定にあたっては、熱伝導率の他に、約300℃程度の熱的環境に晒されてもリング特性を維持できる耐熱ヘタリ性や疲労強度も要求される。
 また、ピストンがアルミニウム(以下「アルミ」という。)製の場合、燃焼室温度の上昇に伴いアルミが軟化し、ピストンのリング溝内で、圧力リングによる高温での叩きと摺動により疲労破壊を起こし、リング溝摩耗や圧力リングへのアルミ凝着が発生しやすくなる。この点からも熱伝導の高い圧力リングを用いてリング溝温度を下げることが要求される。 
 上記のような要求に対して、例えば特開2009-235561には、熱伝導性と耐熱ヘタリ性に優れ、圧力リングとして適用可能なピストンリングとして、C、Si、Mn、Crの適正成分範囲を所定のパラメータに規定したピストンリング組成が提案されている。
 しかしながら、例えば、熱伝導率が35 W/m・K以上、熱ヘタリ率(リングの接線張力減退度)が4%以下を目標とすれば、その目標を達成するのは困難な状況にある。
 さらに、ピストンリングのような自動車部品では、優れた特性だけでなく、競争力のある価格も要求されている。すなわち、いかにコストを低減できるかも重要な課題である。
 本発明は、高圧縮比のエンジンの熱負荷の高い環境で使用することが可能な、熱伝導性と耐熱ヘタリ性に優れ、且つ価格競争力のある圧力リングを提供することを課題とする。また、上記圧力リングの製造方法を提供することを課題とする。
 表1に、ピストンリングに使用されている鋼材A~Gの組成と200℃における熱伝導率を示す。各鋼材の熱伝導率と合金元素の組成和との関係を整理すると図6のようになる。すなわち、合金元素量が少ない材料ほど熱伝導率が高い。
Figure JPOXMLDOC01-appb-T000001
 しかし、実際には、合金元素量が少なくなると、耐熱ヘタリ性に劣り、熱負荷の高い環境では圧力リングとしての使用に供せなくなる。また、鋼材のコストは、一般に合金元素量が少ないほど安価であるが、それに加えて、市場経済の観点からは、市場で使用されている量が多いほど、すなわち、JIS(日本工業規格)登録材料のように大量生産されている鋼材ほど安価である。よって、本発明では、基本的には合金元素量の少ないJIS登録材料を使用し、300℃の高温でも優れた耐熱ヘタリ性を発揮するように顕微鏡組織を調製することとする。本発明者は、鋭意研究の結果、具体的には、JIS G 4801に規定される材料記号SUP10なる鋼材を用い、ピストンリング線材をオイルテンパー処理する前に、焼鈍し、球状化セメンタイトを析出させ、かつオイルテンパー処理条件を最適化することにより焼戻マルテンサイトマトリックス中に球状化セメンタイトを適量分散させ、300℃においても転位の移動やクリープを抑制し、耐熱ヘタリ性を向上させることができることに想到した。
 すなわち、本発明の圧力リングは、質量%で、C:0.45~0.55、Si:0.15~0.35、Mn:0.65~0.95、Cr:0.80~1.10、V:0.15~0.25、残部が鉄及び不可避的不純物からなる組成を有し、焼戻マルテンサイトマトリックス中に平均粒径0.1~1.5μmの球状化セメンタイトが分散していることを特徴とする。好ましくは平均粒径0.5~1.0μmの球状化セメンタイトとする。また、球状化セメンタイトの分散量は、顕微鏡組織観察面において、1~6面積%とすることが好ましい。
 さらに、本発明の圧力リングの熱伝導率は35 W/m・K以上であり、熱ヘタリ率(リングの接線張力減退度)は4%以下であることが好ましい。
 また、本発明の圧力リングの製造方法は、質量%で、C:0.45~0.55、Si:0.15~0.35、Mn:0.65~0.95、Cr:0.80~1.10、V:0.15~0.25、残部が鉄及び不可避的不純物からなる組成を有し、焼戻しマルテンサイトマトリックス中に平均粒径0.1~1.5μmの球状化セメンタイトが分散している圧力リングを製造する方法であって、圧力リング成形前のオイルテンパー処理工程以前に焼鈍工程を含むことを特徴とする。焼鈍工程は、温度600~720℃で行われることが好ましく、オイルテンパー処理工程は、焼入温度820~980℃、焼戻温度400~500℃で行われることが好ましい。
 本発明の圧力リングは、高熱伝導率と高い耐熱ヘタリ性を両立させており、高圧縮比エンジンのような熱負荷の高い環境での使用においても、リングの張力を減退させることなくピストンヘッドの熱を冷却されたシリンダ壁に効率良く逃すことができるため、点火時期を遅らすような調整をすることなくノッキングを抑制でき、高熱効率を維持できる。また同様に、アルミピストンのリング溝の温度を下げることもでき、アルミ凝着やリング溝摩耗を抑制することができる。さらに、本発明の製造方法によれば、JISに規定され大量生産されている鋼材を使用しているので、コストを低減することができる。
実施例1の断面の走査電子顕微鏡による二次電子像写真を示した図である。 比較例1の断面の走査電子顕微鏡による二次電子像写真を示した図である。 実施例1、5及び比較例1、2、5の熱伝導率と熱ヘタリ率との関係を示した図である。 アルミ凝着試験を模式的に示した図である。 実施例1~3及び比較例2~4のアルミ凝着試験結果を示す図である。 ピストンリングに使用されている鋼材の合金元素の組成和と熱伝導率との関係を示す図である。
 本発明の圧力リングは、質量%で、C:0.45~0.55、Si:0.15~0.35、Mn:0.65~0.95、Cr:0.80~1.10、V:0.15~0.25、残部が鉄及び不可避的不純物からなる組成を有し、焼戻マルテンサイトマトリックス中に平均粒径0.1~1.5μmの球状化セメンタイトが分散していることを特徴とする。上記組成は、基本的に、JIS G 4801に規定される材料記号SUP10の鋼材組成であり、CrとVを僅かに含むが合金元素の総量が少ないため、熱伝導率が高い。しかし、耐熱ヘタリ性は充分ではない。本発明では、比較的大きな球状化したセメンタイトを焼戻マルテンサイトマトリックス中に分散する。この球状化セメンタイトは、オイルテンパー処理するバネ鋼では残留セメンタイトとして知られており、応力集中源にもなるため、鋼線の機械的性質を低下させる要因として見られているものであるが、ピストンリングの圧力リングに使用した場合、優れた耐熱ヘタリ性を実現している事実からは、オイルテンパー後のマトリックス中に残った球状化セメンタイトの存在によって、結晶格子に歪みをつくるため、300℃でも転位を動きにくくするものと推量できる。本発明において、球状化セメンタイトは平均粒径0.1μm以上である。0.1μm程度以下の残留セメンタイトは、オイルテンパー処理の溶体化処理においてオーステナイト中に溶け込むため、平均粒径0.1μm未満の球状化セメンタイトとしては観測されない。また平均粒径が1.5μmを超えると疲労破壊の起源となって疲労強度を低減するので好ましくない。好ましくは平均粒径0.5~1.0μmとする。
 また、球状化セメンタイトの分散量は、顕微鏡組織観察面において、1~6面積%とすることが好ましい。さらにこの範囲の分散量であれば、熱伝導率が35 W/m・K以上となり、熱ヘタリ率(JIS B 8032-5に基づく接線張力減退度)も4%以下となり好ましい。通常使用されているSi-Cr鋼の熱伝導率は31 W/m・K程度であり、35 W/m・K程度の熱伝導率は、優れた熱伝導率を示す従来の片状黒鉛鋳鉄ピストンリングの熱伝導率に匹敵する。金属においては、熱伝導率は主に結晶粒内の自由電子の運動に支配されるため、固溶元素の少ないほど熱伝導率は向上する。本発明に使用するSUP10は、Si-Cr鋼に比べて固溶強化元素であるSiが特に少ないこと、また球状化セメンタイトを形成することも固溶Cを低減して熱伝導率の向上につながると考えられる。また、熱ヘタリ率は、JIS B 8032-5では、スチールリングの場合300℃×3時間の試験条件で接線張力減退度8%以下と規定されているが、小さければ小さいほど好ましく、材料開発における目標値としてSi-Cr鋼と同レベルの4%程度とした。 
 鋼製圧力リングは、通常、耐摩耗性、耐スカッフ性の観点から、外周摺動面には様々な表面処理が行われている。熱伝導率が優先されるならCrめっきが好ましいが、耐摩耗性、耐スカッフ性を重視するならイオンプレーティングによるCrN皮膜、アルミシリンダーにはDLC皮膜が適しており、同じ圧力リングでも摺動相手材や使用環境等によって適した表面処理を選択することができる。もちろん、窒化処理も含まれる。
 本発明の圧力リングの製造に使用される線材は、質量%で、C:0.45~0.55、Si:0.15~0.35、Mn:0.65~0.95、Cr:0.80~1.10、V:0.15~0.25、残部が鉄及び不可避的不純物からなる組成の鋼材(SUP10)を溶製後、熱間圧延により線材とし、線材から通常はパテンチング-酸洗-伸線-パテンチング-酸洗-伸線-オイルテンパー(オイル焼入-焼戻)からなる一連の処理を経て所定の断面形状の線材としているところ、一部のパテンチングの処理の代わりに球状化焼鈍を行うことにより調製される。パテンチング処理とは、ライン熱処理において連続的に恒温変態又は冷却変態させて微細なパーライト組織にする熱処理法であり、具体的にはほぼ900から600℃の温度範囲で行われる。また、本発明において、このパテンチング処理の代わりに行われる焼鈍工程は、Fe-C状態図のAC1点以下の温度600~720℃の温度で30~240分間行うのが好ましい。球状化焼鈍によって形成された所定の粒径の球状化セメンタイトは、その後の熱処理の影響を受け、またその後の伸線に影響するため、最後のオイルテンパー処理の直前に行うことが好ましい。従って、二回目のパテンチング処理の代わりに球状化焼鈍を行うことが好ましいが、その場合、球状化焼鈍はバッチ処理にせざるを得ず、すなわち従来の製造ラインの連続処理の途中にバッチ処理を挟むことになり生産性を落とさざるを得ない。生産性を優先し、一回目のパテンチング処理の代わりに行ってもよいが、球状化セメンタイトの粒径が所定の範囲にはいるよう注意が必要である。オイルテンパー処理は、いわゆる油焼入-焼戻処理であるが、球状化炭化物が全て溶け込まないような、すなわち好ましい面積率となるような温度と時間に設定する必要がある。本発明では、焼入工程は820~980℃の温度で数十秒~数分(例えば、30秒~3分)の加熱をした後に行い、焼戻工程は、400~500℃の温度で数十秒~数分(例えば、30秒~3分)程度行うのが好ましい。各熱処理温度と時間については、熱処理炉のサイズ、処理物の断面積により異なるため、球状化セメンタイトの粒径、面積率が好ましい範囲にはいるよう適宜調整する必要がある。
 本発明の圧力リングは、所定の断面形状に伸線された上記線材から、通常はカム成形機を用いてリングの自由形状に成形され、歪取り熱処理を行い、側面、外周、合口等を研削し、所定のリング形状に加工して得られる。もちろん、必要に応じて、めっきやPVD等の表面処理が施される。
 実施例1~3(E1~E3)
 直径8 mmφに圧延したSUP10鋼材から、加熱(900℃)-パテンチング(600℃)-酸洗-伸線-加熱(900℃)-パテンチング(600℃)-酸洗-伸線-オイルテンパーからなる伸線工程において、二回目のパテンチング処理の代わりに700℃、60分の焼鈍工程を導入して、最終的に厚さ1.0 mm、幅2.3 mmの断面形状が矩形の線材を準備した。ここで、オイルテンパー処理としては、930℃、45秒の加熱後、60℃のオイル中に焼入する焼入工程と、470℃、60秒の焼戻工程からなる処理を行った。図1に線材の走査電子顕微鏡による顕微鏡組織を示すが、焼戻マルテンサイト中に分散する白色の微細な球状セメンタイトが観察される。また、この組織を拡大し、画像解析により球状セメンタイトの平均粒径と面積率を測定した結果、平均粒径は0.8μm、面積率は2.4%であった。
 実施例4~5(E4~E5)
 SUP10鋼材を用いて、実施例1~3と同様の方法で、二回目のパテンチング処理の代わりに、700℃での焼鈍を行い厚さ1.0 mm、幅2.3 mmの矩形の線材を製造した。但し、焼戻マルテンサイトマトリックス中に分散する球状化セメンタイトを調製するため、オイルテンパー処理の焼入前の加熱温度を、実施例4では980℃、実施例5では820℃とした。実施例1と同様に線材の走査電子顕微鏡による顕微鏡組織から画像解析により球状セメンタイトの平均粒径と面積率を測定した結果、実施例4及び5において、平均粒径が0.4μm及び1.2μm、面積率は0.3%及び5.3%であった。
 上記実施例1~5にかかる厚さ1.0 mm、幅2.3 mmの断面形状が矩形の線材から、呼称径73 mmφの圧力リングを成形し、表2に示す皮膜処理を施した。すなわち、外周面にイオンプレーティングによるCrN皮膜、側面にはリン酸亜鉛系皮膜(実施例2)、リン酸マンガン系皮膜(実施例3)を施した。
 比較例1~5(C1~C5)
 実施例1~5の伸線工程で、焼鈍工程を導入しない従来のパテンチング処理を2回行う伸線工程で製造した厚さ1.0 mm、幅2.3 mmの断面形状が矩形の線材から成形した圧力リングを比較例1、比較例1のSUP10鋼材の代わりにSi-Cr鋼(JIS SWOSC-V)を使用して比較例1と同様の方法で製造した厚さ1.0 mm、幅2.3 mmの断面形状が矩形の線材から成形し、実施例1~5と同様に、表2に示す表面処理を施した圧力リングを比較例2~4、比較例1のSUP10鋼材の代わりに硬鋼線(JIS SWRH62A)を使用して比較例1と同様の方法で製造した厚さ1.0 mm、幅2.3 mmの断面形状が矩形の線材から成形した圧力リングを比較例5とした。比較例1~5の外周面に全てCrN皮膜を施し、比較例3の側面にリン酸亜鉛系皮膜、比較例4の側面にリン酸マンガン系皮膜を施した。 
 図2に比較例1の線材の走査電子顕微鏡による顕微鏡組織を示すが、均一な焼戻マルテンサイトが観察されるのみで、実施例1のような微細な球状セメンタイトは観察されなかった。
 熱ヘタリ試験
 熱ヘタリ試験は、JIS B 8032-5に基づく。最初に張力を測定し、呼称径にリングを閉じて300℃で3時間加熱した後、再度張力を測定して、その減退率(JISでは接線方向張力減退度)を評価することによって行われる。試験は、実施例1、4及び5並びに比較例1、2及び5について5回行い、その結果の平均値を表2示す。実施例1は平均値でほぼ同じ熱伝導率の比較例1よりも24%、実施例4は4%、実施例5は26%優れた耐熱ヘタリ性を示し、実施例1と5では目標とした4%以下を達成した。なお、バラツキも小さかった。
 熱伝導率測定
 熱伝導率は、実施例1、4、5、比較例1、2、5について、レーザーフラッシュ法により測定した。結果を表2に示す。実施例1の熱伝導率はSi-Cr鋼の比較例2よりも高かったが、硬鋼線の比較例5よりは低かった。すなわち、合金元素量に依存することが確認された。 
 熱ヘタリ率と熱伝導率の関係を図3に示すが、比較例1、2、5を見る限り、熱伝導率が上がれば熱ヘタリ率も上がる。しかし、実施例1、5は三つの比較例が示すラインよりも下側にあり、同じ熱伝導率でも熱ヘタリ率が低減し、すなわち耐熱ヘタリ性が向上したことが確認できた。
 アルミ凝着試験
 アルミ凝着試験は、図4に示す装置(例えば、リケン製トライボリックIV)を用い、リング(圧力リング)を低速で回転する軸上に同軸に載置し、所定の温度に調節したピストン材(AC8A材)を一定の周期で軸方向に往復動させ、リングとピストン材とに面圧荷重を周期的に発生させて、アルミ凝着が発生するまで継続する試験である。アルミ凝着が発生すれば回転軸のトルクが変動し、また温度も上昇する。そのときの負荷サイクル数で寿命を評価する。試験条件としては、試験温度240℃、面圧負荷触れ幅0~1.1MPa、面圧負荷サイクル数3.3Hz、リング回転速度3.3m/sec(一方向回転)とし、さらに潤滑剤として無添加ベースオイルSAE30をリング表面に0.08cc塗布した。その結果を表2及び図5に示す。耐アルミ凝着寿命は、実施例1の表面処理なし(生材)の場合は、比較例2に比べて51%、実施例2のリン酸亜鉛系皮膜の場合は、比較例3に比べて43%向上した。一方、実施例3のリン酸マンガン系皮膜の場合は、母材の違いによる耐アルミ凝着寿命に差は認められなかった。これはリン酸マンガン系皮膜自体の表面粗さが影響するためと考えられる。
Figure JPOXMLDOC01-appb-T000002

Claims (6)

  1. 質量%で、C:0.45~0.55、Si:0.15~0.35、Mn:0.65~0.95、Cr:0.80~1.10、V:0.15~0.25、残部が鉄及び不可避的不純物からなる組成を有し、焼戻しマルテンサイトマトリックス中に平均粒径0.1~1.5μmの球状化セメンタイトが分散していることを特徴とする圧力リング。
  2. 前記球状化セメンタイトの分散量が、顕微鏡組織観察面において、1~6面積%であることを特徴とする請求項1に記載の圧力リング。
  3. 熱伝導率が35 W/m・K以上であり、熱ヘタリ率が4%以下であることを特徴とする請求項1又は2に記載の圧力リング。
  4. 質量%で、C:0.45~0.55、Si:0.15~0.35、Mn:0.65~0.95、Cr:0.80~1.10、V:0.15~0.25、残部が鉄及び不可避的不純物からなる組成を有し、焼戻しマルテンサイトマトリックス中に平均粒径0.1~1.5μmの球状化セメンタイトが分散している圧力リングを製造する方法であって、圧力リング成形前のオイルテンパー処理工程以前に焼鈍工程を含むことを特徴とする圧力リングの製造方法。
  5. 前記焼鈍工程が温度600~720℃で行われることを特徴とする請求項4に記載の圧力リングの製造方法。
  6. 前記オイルテンパー処理工程が焼入温度820~980℃、焼戻温度400~500℃で行われることを特徴とする請求項4又は5に記載の圧力リングの製造方法。


     
PCT/JP2011/061857 2010-05-25 2011-05-24 圧力リング及びその製造方法 WO2011148934A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180025607.XA CN102906470B (zh) 2010-05-25 2011-05-24 压力环及其制造方法
EP11786633.5A EP2578909B1 (en) 2010-05-25 2011-05-24 Pressure ring and method for producing the same
US13/699,465 US9617952B2 (en) 2010-05-25 2011-05-24 Compression ring and its production method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010119048A JP5676146B2 (ja) 2010-05-25 2010-05-25 圧力リング及びその製造方法
JP2010-119048 2010-05-25

Publications (1)

Publication Number Publication Date
WO2011148934A1 true WO2011148934A1 (ja) 2011-12-01

Family

ID=45003924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/061857 WO2011148934A1 (ja) 2010-05-25 2011-05-24 圧力リング及びその製造方法

Country Status (5)

Country Link
US (1) US9617952B2 (ja)
EP (1) EP2578909B1 (ja)
JP (1) JP5676146B2 (ja)
CN (2) CN102906470B (ja)
WO (1) WO2011148934A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015034086A1 (ja) * 2013-09-09 2015-03-12 日本ピストンリング株式会社 内燃機関用高熱伝導性ピストンリング
WO2021075326A1 (ja) * 2019-10-17 2021-04-22 Tpr株式会社 コンプレッションリング、及びコンプレッションリングを備えたピストン

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6454103B2 (ja) * 2013-08-12 2019-01-16 株式会社リケン 圧力リング
JP6313601B2 (ja) * 2014-01-23 2018-04-18 株式会社リケン ピストンリング及びその製造方法
JP2015214738A (ja) * 2014-05-13 2015-12-03 株式会社東芝 耐食性金属部材、パワーデバイス用ヒートシンク、発電機用回転翼及び耐食性金属部材の製造方法
CN104195307B (zh) * 2014-08-05 2016-06-29 东北大学 一种发电机护环的径向环形轧制方法
EP3168506A4 (en) * 2014-08-11 2017-10-04 Kabushiki Kaisha Riken Pressure ring
WO2020104438A1 (de) * 2018-11-20 2020-05-28 Ks Kolbenschmidt Gmbh Materialzusammensetzung für eine beschichtung für bauteile von brennkraftmaschinen

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5845357A (ja) * 1981-09-10 1983-03-16 Hitachi Metals Ltd ピストンリング材
JPS63223147A (ja) * 1987-03-11 1988-09-16 Hitachi Metals Ltd ピストンリング用線材
JP2000337511A (ja) * 1999-05-25 2000-12-05 Mitsubishi Materials Corp 耐摩耗性および熱伝導性のすぐれた遊離黒鉛析出鉄系焼結材料製ピストンリング耐摩環
JP2001294989A (ja) * 2000-04-07 2001-10-26 Mitsui Eng & Shipbuild Co Ltd 耐摩耗性鋼及び内燃機関のピストンリング又はライナー材料
JP2007321199A (ja) * 2006-05-31 2007-12-13 Kobe Steel Ltd 耐焼付性に優れたピストンリング用鋼材、ピストンリング用異形線、並びにピストンリング
JP2009235561A (ja) 2008-03-04 2009-10-15 Nissan Motor Co Ltd ピストンリング

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0295111B1 (en) * 1987-06-11 1994-11-02 Aichi Steel Works, Ltd. A steel having good wear resistance
JPH06299296A (ja) * 1993-04-15 1994-10-25 Kobe Steel Ltd 耐脱炭性に優れた高強度ばね用鋼
DE19821797C1 (de) * 1998-05-15 1999-07-08 Skf Gmbh Verfahren zur Herstellung von gehärteten Teilen aus Stahl
KR100368530B1 (ko) 1998-12-21 2003-01-24 가부시키가이샤 고베 세이코쇼 가공성이 우수한 스프링용 강
JP2000239797A (ja) * 1998-12-21 2000-09-05 Kobe Steel Ltd 加工性に優れたばね用鋼およびばね用鋼線の製法
JP4435953B2 (ja) * 1999-12-24 2010-03-24 新日本製鐵株式会社 冷間鍛造用棒線材とその製造方法
JP4435954B2 (ja) 1999-12-24 2010-03-24 新日本製鐵株式会社 冷間鍛造用棒線材とその製造方法
JP4724275B2 (ja) * 2000-07-17 2011-07-13 株式会社リケン 耐スカッフィング性、耐クラッキング性及び耐疲労性に優れたピストンリング及びその製造方法
US6485026B1 (en) * 2000-10-04 2002-11-26 Dana Corporation Non-stainless steel nitrided piston ring, and method of making the same
JP3737952B2 (ja) * 2001-02-16 2006-01-25 本田技研工業株式会社 Cvtベルト用押しブロックおよびその製造方法
JP4812220B2 (ja) * 2002-05-10 2011-11-09 株式会社小松製作所 高硬度高靭性鋼
JP4390526B2 (ja) * 2003-03-11 2009-12-24 株式会社小松製作所 転動部材およびその製造方法
JP2005163173A (ja) * 2003-11-14 2005-06-23 Komatsu Ltd 歯車部材およびその製造方法
JP4608242B2 (ja) * 2004-06-07 2011-01-12 株式会社神戸製鋼所 冷間曲げ加工用鋼材
KR100851083B1 (ko) 2004-11-30 2008-08-08 신닛뽄세이테쯔 카부시키카이샤 고강도 스프링용 강 및 강선
CN100480411C (zh) * 2004-11-30 2009-04-22 新日本制铁株式会社 高强度弹簧用钢及钢线
JP4555768B2 (ja) * 2004-11-30 2010-10-06 新日本製鐵株式会社 高強度ばね用鋼線
US7575619B2 (en) 2005-03-29 2009-08-18 Hitachi Powdered Metals Co., Ltd. Wear resistant sintered member
JP5344454B2 (ja) 2005-11-21 2013-11-20 独立行政法人物質・材料研究機構 温間加工用鋼、その鋼を用いた温間加工方法、およびそれにより得られる鋼材ならびに鋼部品
JP4868935B2 (ja) * 2006-05-11 2012-02-01 株式会社神戸製鋼所 耐へたり性に優れた高強度ばね用鋼線
EP1887096A1 (de) 2006-08-09 2008-02-13 Rovalma, S.A. Warmarbeitsstahl
KR20090071164A (ko) * 2007-12-27 2009-07-01 주식회사 포스코 노치 인성이 우수한 내지연파괴 고강도 볼트 및 그 제조방법
US8409712B2 (en) 2008-01-21 2013-04-02 Hitachi Metals Ltd. Alloy to be surface-coated and sliding members

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5845357A (ja) * 1981-09-10 1983-03-16 Hitachi Metals Ltd ピストンリング材
JPS63223147A (ja) * 1987-03-11 1988-09-16 Hitachi Metals Ltd ピストンリング用線材
JP2000337511A (ja) * 1999-05-25 2000-12-05 Mitsubishi Materials Corp 耐摩耗性および熱伝導性のすぐれた遊離黒鉛析出鉄系焼結材料製ピストンリング耐摩環
JP2001294989A (ja) * 2000-04-07 2001-10-26 Mitsui Eng & Shipbuild Co Ltd 耐摩耗性鋼及び内燃機関のピストンリング又はライナー材料
JP2007321199A (ja) * 2006-05-31 2007-12-13 Kobe Steel Ltd 耐焼付性に優れたピストンリング用鋼材、ピストンリング用異形線、並びにピストンリング
JP2009235561A (ja) 2008-03-04 2009-10-15 Nissan Motor Co Ltd ピストンリング

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2578909A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015034086A1 (ja) * 2013-09-09 2015-03-12 日本ピストンリング株式会社 内燃機関用高熱伝導性ピストンリング
US10344860B2 (en) 2013-09-09 2019-07-09 Nippon Piston Ring Co., Ltd. Highly heat conductive piston ring for internal combustion engine
WO2021075326A1 (ja) * 2019-10-17 2021-04-22 Tpr株式会社 コンプレッションリング、及びコンプレッションリングを備えたピストン
JPWO2021075326A1 (ja) * 2019-10-17 2021-11-04 Tpr株式会社 コンプレッションリング、及びコンプレッションリングを備えたピストン

Also Published As

Publication number Publication date
US9617952B2 (en) 2017-04-11
CN102906470A (zh) 2013-01-30
JP5676146B2 (ja) 2015-02-25
EP2578909A4 (en) 2015-04-29
EP2578909B1 (en) 2016-06-22
CN104962719B (zh) 2017-05-24
CN104962719A (zh) 2015-10-07
US20130062835A1 (en) 2013-03-14
EP2578909A1 (en) 2013-04-10
JP2011247310A (ja) 2011-12-08
CN102906470B (zh) 2015-05-13

Similar Documents

Publication Publication Date Title
WO2011148934A1 (ja) 圧力リング及びその製造方法
WO2015023002A1 (ja) 圧力リング
CN103154293B (zh) 冷锻性优异的渗碳用钢及其制造方法
JP5693126B2 (ja) コイルばね及びその製造方法
WO2012176834A1 (ja) 圧力リング及びその製造方法
JP5763260B2 (ja) 圧力リング用線材及びその製造方法
WO2017014139A1 (ja) ピストンリング及びその製造方法
JP2016166385A (ja) 表面改質ばね用ステンレス鋼板及びその製造方法
JP6454103B2 (ja) 圧力リング
WO2015111642A1 (ja) ピストンリング及びその製造方法
JP6123950B1 (ja) ばね用ステンレス鋼板およびその製造方法
JPS6121302B2 (ja)
CN108998648B (zh) 一种铁素体-孪晶马氏体低碳钢的制备方法
WO2015068601A1 (ja) 転がり軸受の粗形材の製造方法
JP3952328B2 (ja) 耐スカッフィング性および加工性に優れたピストンリング材
JPH0559526A (ja) 耐摩耗性及び転動疲労性に優れた鋼の製造法
JPS6119703B2 (ja)
JP2005314744A (ja) ピストンリング用材料及びその材料を用いたピストンリング
JP2002348639A (ja) イオンプレーティング処理に適した疲労強度,耐熱へたり性に優れたピストンリング用鋼
JP2007119800A (ja) 冷間鍛造および耐摩耗用途に適した合金鋼およびその製造方法
JPH04214853A (ja) 高強度摺動材料
JP2006118027A (ja) 冷間鍛造用鋼およびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180025607.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11786633

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13699465

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1201006102

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 10780/DELNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2011786633

Country of ref document: EP