WO2011146406A1 - Germline polymorphisms in vegf predict clinical outcomes in cancer patients treated with sorafenib - Google Patents

Germline polymorphisms in vegf predict clinical outcomes in cancer patients treated with sorafenib Download PDF

Info

Publication number
WO2011146406A1
WO2011146406A1 PCT/US2011/036680 US2011036680W WO2011146406A1 WO 2011146406 A1 WO2011146406 A1 WO 2011146406A1 US 2011036680 W US2011036680 W US 2011036680W WO 2011146406 A1 WO2011146406 A1 WO 2011146406A1
Authority
WO
WIPO (PCT)
Prior art keywords
patient
therapy
cancer
tissue
genotype
Prior art date
Application number
PCT/US2011/036680
Other languages
French (fr)
Inventor
Heinz-Josef Lenz
Original Assignee
University Of Southern California
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University Of Southern California filed Critical University Of Southern California
Publication of WO2011146406A1 publication Critical patent/WO2011146406A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/106Pharmacogenomics, i.e. genetic variability in individual responses to drugs and drug metabolism
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers

Definitions

  • This invention relates to the filed of pharmacogenomics and specifically to the application of gene expression and genetic polymorphisms to diagnose and treat diseases.
  • polymorphism is the occurrence in a population of two or more genetically determined alternative phenotypes due to different alleles. Polymorphism can be observed at the level of the whole individual (phenotype), in variant forms of proteins and blood group substances (biochemical polymorphism), morphological features of
  • chromosomes chromosomal polymorphism
  • DNA polymorphism DNA polymorphism
  • Polymorphism also plays a role in determining differences in an individual's response to drugs.
  • Pharmacogenetics and pharmacogenomics are multidisciplmary research efforts to study the relationship between genotype, gene expression profiles, and phenotype, as expressed in variability between individuals in response to or toxicity from drugs. Indeed, it is now known that cancer chemotherapy is limited by the predisposition of specific populations to drug toxicity or poor drug response.
  • germline polymorphisms in clinical oncology see Lenz (2004) J. Clin. Oncol. 22( 13) :2519-2521; Park et al. (2006) Curr. Opin. Pharma. 6(4):337-344; Zhang et al. (2006) Pharma.
  • the disclosure provides compositions and methods for determining the likely clinical outcomes of cancer patients treated with a therapy comprising administration of kinase inhibitor, in particular sorafenib. After determining if a patient is likely to be successfully treated, the disclosure also provides methods for treating the patient.
  • the disclosure provides a method for aiding in the selection of, or selecting or not selecting, a cancer patient for a therapy comprising administration of a kinase inhibitor, comprising, or alternatively consisting essentially of, or yet alternatively consisting of, screening a tissue or cell sample isolated from the patient for at least one vascular endothelial growth factor (VEGF) polymorphism of -1498 C/T or -634 G/C, wherein the patient is selected for the therapy if at least one genotype of:
  • VEGF vascular endothelial growth factor
  • Also provided is a method for aiding in the determination of, or determining whether or not a cancer patient is suitable for a therapy comprising administration of a kinase inhibitor, comprising, or alternatively consisting essentially of, or yet alternatively consisting of, screening a tissue or cell sample isolated from the patient for at least one VEGF polymorphism of -1498 C/T or -634 G/C, wherein the patient is suitable for the therapy if at least one genotype of:
  • a method for aiding in the determination of or determining whether a cancer patient is likely to experience a longer or shorter progression free survival following a therapy comprising administration of a kinase inhibitor, comprising, or alternatively consisting essentially of, or yet alternatively consisting of, screening a tissue or cell sample isolated from the patient for at least one VEGF polymorphism of -1498 C/T or - 634 G/C, wherein the presence of at least one genotype of:
  • Yet another aspect of the disclosure provides a method for aiding in the
  • a cancer patient is likely or not likely to respond to a therapy comprising administration of a kinase inhibitor, comprising, or alternatively consisting essentially of, or yet alternatively consisting of, screening a tissue or cell sample isolated from the patient for a VEGF -1498 C/T polymorphism, wherein a genotype of (T/T) determines that the patient is likely to respond to the therapy, or a genotype of (C/C or C/T) determines that the patient is not likely to respond to the therapy.
  • a kinase inhibitor comprising, or alternatively consisting essentially of, or yet alternatively consisting of, screening a tissue or cell sample isolated from the patient for a VEGF -1498 C/T polymorphism, wherein a genotype of (T/T) determines that the patient is likely to respond to the therapy, or a genotype of (C/C or C/T) determines that the patient is not likely to respond to the therapy.
  • VEGF genotype of:
  • a therapy comprising a kinase inhibitor.
  • the kinase inhibitor comprises a tyrosine kinase inhibitor.
  • the kinase inhibitor comprises a receptor tyrosine kinase inhibitor.
  • the kinase inhibitor comprises sorafenib or a chemical equivalent thereof.
  • the patient suffers from at least one cancer of the type of the group lung cancer, non-small cell lung cancer (NSCLC) including metastatic and non-metastatic NSCLC, breast cancer, head and neck cancer, ovarian cancer, colon cancer, rectal cancer, colorectal cancer, advanced renal cell carcinoma, esophageal cancer, gastric cancer, liver cancer, hepatocellular carcinoma (HCC), HCC refractory to surgery, bone cancer, spleen cancer, pancreatic cancer, or gallbladder cancer.
  • NSCLC non-small cell lung cancer
  • the patient suffers from at least NSCLC.
  • the NSCLS is metastatic NSCLC.
  • a mammal includes but is not limited to a human, a simian, a murine, a bovine, an equine, a porcine, a feline, a canine, or an ovine.
  • PCR 1 A PRACTICAL APPROACH (M. MacPherson et al. IRL Press at Oxford University Press (1991)); PCR 2: A PRACTICAL APPROACH (M.J. MacPherson, B.D. Hames and G.R. Taylor eds. (1995)); ANTIBODIES, A LABORATORY MANUAL (Harlow and Lane eds.
  • compositions and methods include the recited elements, but not excluding others.
  • Consisting essentially of when used to define compositions and methods shall mean excluding other elements of any essential significance to the composition or method.
  • Consisting of shall mean excluding more than trace elements of other ingredients for claimed compositions and substantial method steps. Embodiments defined by each of these transition terms are within the scope of this disclosure. Accordingly, it is intended that the methods and compositions can include additional steps and components (comprising) or alternatively including steps and
  • compositions of no significance (consisting essentially of) or alternatively, intending only the stated method steps or compositions (consisting of).
  • a "kinase inhibitor” or “protein kinase inhibitor” intends a molecule that specifically blocks the action of one or more protein kinases.
  • Non-limiting examples of protein kinases include serine kinases, threonine kinases, tyrosine kinases or histidine kinases.
  • Examples of kinase inhibitors include, without limitation, sorafenib, dasatinib, suitinib, and toceranib.
  • a "tyrosine kinase inhibitor” intends a molecule that specifically blocks the action of one or more tyrosine kinases.
  • a tyrosine kinase is an enzyme that can transfer a phosphate group from ATP to a tyrosine residue in a protein.
  • a "receptor tyrosine kinase inhibitor” intends a molecule that specifically blocks the action of one or more receptor tyrosine kinases.
  • a receptor tyrosine kinase (RTK) is a high-affinity cell surface receptor for many polypeptide growth factors, cytokines, and hormones. Examples of receptor tyrosine kinase inhibitors include, without limitation, axitinib, pazopanib, suitinib, sorafenib, and toceranib.
  • Sorafenib marketed as NexavarTM by Bayer, has a structure of 4-[4-[[4-chloro-3- (trifluoromethyl)phenyl]carbamoylamino] phenoxy]-N-methyl-pyridine-2-carboxamide. Sorafenib has been approved for the treatment of primary kidney cancer and advanced primary liver cancer. Sorafenib is a receptor tyrosine kinase inhibitor and is unique in targeting the Raf/Mek/Erk pathway (MAP Kinase pathway).
  • first line or second line or third line refers to the order of treatment received by a patient.
  • First line therapy regimens are treatments given first, whereas second or third line therapy are given after the first line therapy or after the second line therapy, respectively.
  • the National Cancer Institute defines first line therapy as "the first treatment for a disease or condition. In patients with cancer, primary treatment can be surgery, chemotherapy, radiation therapy, or a combination of these therapies. First line therapy is also referred to those skilled in the art as "primary therapy and primary treatment.” See National Cancer Institute website as www.cancer.gov, last visited on May 1, 2008.
  • a patient is given a subsequent chemotherapy regimen because the patient did not shown a positive clinical or sub-clinical response to the first line therapy or the first line therapy has stopped.
  • the term “equivalent” of "chemical equivalent” of a chemical means the ability of the chemical to selectively interact with its target protein, DNA, RNA or fragment thereof as measured by the inactivation of the target protein, incorporation of the chemical into the DNA or RNA or other suitable methods.
  • Chemical equivalents include, but are not limited to, those agents with the same or similar biological activity and include, without limitation a pharmaceutically acceptable salt or mixtures thereof that interact with and/or inactivate the same target protein, DNA, or RNA as the reference chemical.
  • Sorafenib intends a small molecule receptor tyrosine kinase inhibitor, such as an analog or prodrug of Sorafenib that also targets the Raf/Mek/Erk pathway (MAP Kinase pathway).
  • alleles refers to alternative forms of a gene or portions thereof. Alleles occupy the same locus or position on homologous chromosomes. When a subject has two identical alleles of a gene, the subject is said to be homozygous for the gene or allele. When a subject has two different alleles of a gene, the subject is said to be heterozygous for the gene. Alleles of a specific gene can differ from each other in a single nucleotide, or several nucleotides, and can include substitutions, deletions and insertions of nucleotides. An allele of a gene can also be a form of a gene containing a mutation.
  • determining the genotype of a cell or tissue sample intends to identify the genotypes of polymorphic loci of interest in the cell or tissue sample.
  • a polymorphic locus is a single nucleotide polymorphic (SNP) locus. If the allelic composition of a SNP locus is heterozygous, the genotype of the SNP locus will be identified as "X/Y" wherein X and Y are two different nucleotides, e.g., T/C for the VEGF - 1498 C/T SNP.
  • allelic composition of a SNP locus is heterozygous, the genotype of the SNP locus will be identified as "X/X" wherein X identifies the nucleotide that is present at both alleles, e.g., T/T for the VEGF -1498 C/T SNP.
  • genetic marker refers to an allelic variant of a polymorphic region of a gene of interest and/or the expression level of a gene of interest.
  • wild-type allele refers to an allele of a gene which, when present in two copies in a subject results in a wild-type phenotype. There can be several different wild-type alleles of a specific gene, since certain nucleotide changes in a gene may not affect the phenotype of a subject having two copies of the gene with the nucleotide changes.
  • polymorphism refers to the coexistence of more than one form of a gene or portion thereof.
  • a portion of a gene of which there are at least two different forms, i.e., two different nucleotide sequences, is referred to as a "polymorphic region of a gene.”
  • a polymorphic region can be a single nucleotide, the identity of which differs in different alleles.
  • a "polymorphic gene” refers to a gene having at least one polymorphic region.
  • genotype refers to the specific allelic composition of an entire cell or a certain gene and in some aspects a specific polymorphism associated with that gene, whereas the term “phenotype” refers to the detectable outward manifestations of a specific genotype.
  • amplification of polynucleotides includes methods such as PCR, ligation amplification (or ligase chain reaction, LCR) and amplification methods. These methods are known and widely practiced in the art. See, e.g., U.S. Patent Nos. 4,683,195 and 4,683,202 and Innis et al, 1990 (for PCR); and Wu et al. (1989) Genomics 4:560-569 (for LCR).
  • the PCR procedure describes a method of gene amplification which is comprised of (i) sequence-specific hybridization of primers to specific genes within a DNA sample (or library), (ii) subsequent amplification involving multiple rounds of annealing, elongation, and denaturation using a DNA polymerase, and (iii) screening the PCR products for a band of the correct size.
  • the primers used are oligonucleotides of sufficient length and appropriate sequence to provide initiation of polymerization, i.e. each primer is specifically designed to be complementary to each strand of the genomic locus to be amplified.
  • Reagents and hardware for conducting PCR are commercially available.
  • Primers useful to amplify sequences from a particular gene region are preferably complementary to, and hybridize specifically to sequences in the target region or in its flanking regions. Nucleic acid sequences generated by amplification may be sequenced directly. Alternatively the amplified sequence(s) may be cloned prior to sequence analysis. A method for the direct cloning and sequence analysis of enzymatically amplified genomic segments is known in the art.
  • encode refers to a polynucleotide which is said to "encode” a polypeptide if, in its native state or when manipulated by methods well known to those skilled in the art, it can be transcribed and/or translated to produce the mRNA for the polypeptide and/or a fragment thereof.
  • the antisense strand is the
  • isolated refers to molecules or biological or cellular materials being substantially free from other materials.
  • isolated refers to nucleic acid, such as DNA or RNA, or protein or polypeptide, or cell or cellular organelle, or tissue or organ, separated from other DNAs or RNAs, or proteins or
  • isolated also refers to a nucleic acid or peptide that is substantially free of cellular material, viral material, or culture medium when produced by recombinant DNA techniques, or chemical precursors or other chemicals when chemically synthesized.
  • isolated nucleic acid is meant to include nucleic acid fragments which are not naturally occurring as fragments and would not be found in the natural state.
  • isolated is also used herein to refer to polypeptides which are isolated from other cellular proteins and is meant to encompass both purified and recombinant polypeptides.
  • the term "isolated or recombinant” means separated from constituents, cellular and otherwise, in which the cell, tissue, polynucleotide, peptide, polypeptide, protein, antibody or fragment(s) thereof, which are normally associated in nature.
  • an isolated cell is a cell that is separated from tissue or cells of dissimilar phenotype or genotype.
  • An isolated polynucleotide is separated from the 3' and 5' contiguous nucleotides with which it is normally associated in its native or natural environment, e.g., on the chromosome.
  • polynucleotide, peptide, polypeptide, protein, antibody or fragment(s) thereof does not require “isolation” to distinguish it from its naturally occurring counterpart.
  • isolated is also used herein to refer to cells or tissues that are isolated from other cells or tissues and is meant to encompass both cultured and engineered cells or tissues.
  • the genetic marker or polymorphism is measured before and/or during treatment, and the values obtained are used by a clinician in assessing any of the following: (a) probable or likely suitability of an individual to initially receive treatment(s); (b) probable or likely unsuitability of an individual to initially receive treatment(s); (c) responsiveness to treatment; (d) probable or likely suitability of an individual to continue to receive treatment(s); (e) probable or likely unsuitability of an individual to continue to receive treatment(s); (f) adjusting dosage; (g) predicting likelihood of clinical benefits; or (h) toxicity.
  • measurement of the genetic marker or polymorphism in a clinical setting is a clear indication that this parameter was used as a basis for initiating, continuing, adjusting and/or ceasing administration of the treatments described herein.
  • a response to treatment includes a reduction in cachexia, increase in survival time, elongation in time to tumor progression, reduction in tumor mass, reduction in tumor burden and/or a prolongation in time to tumor metastasis, disease control rate, time to tumor recurrence, tumor response, complete response, partial response, stable disease, progressive disease, progression free survival, overall survival, each as measured by standards set by the National Cancer Institute and the U.S. Food and Drug Administration for the approval of new drugs. See Johnson et al. (2003) J. Clin. Oncol. 21(7): 1404-1411.
  • a "patient” as used herein intends an animal patient, a mammal patient or yet further a human patient.
  • a mammal includes but is not limited to a human, a simian, a murine, a bovine, an equine, a porcine, a feline, a canine, or an ovine.
  • An effective amount intends to indicate the amount of a compound or agent administered or delivered to the patient which is most likely to result in the desired response to treatment.
  • the amount is empirically determined by the patient's clinical parameters including, but not limited to the Stage of disease, age, gender, histology, and likelihood for tumor recurrence.
  • clinical outcome refers to any clinical observation or measurement relating to a patient's reaction to a therapy.
  • clinical outcomes include tumor response (TR), overall survival (OS), progression free survival (PFS), disease free survival, time to tumor recurrence (TTR), time to tumor progression (TTP), relative risk (RR), toxicity or side effect.
  • suitable for a therapy or “suitably treated with a therapy” shall mean that the patient is likely to exhibit one or more more desirable clinical outcome as compared to a patient or patients having the same disease and receiving the same therapy but possessing a different characteristic that is under consideration for the purpose of the comparison.
  • the characteristic under consideration is a genetic polymorphism or a somatic mutation.
  • the characteristic under consideration is expression level of a gene or a polypeptide.
  • a more desirable clinical outcome is relatively higher likelihood of or relatively better tumor response such as tumor load reduction.
  • a more desirable clinical outcome is relatively longer overall survival.
  • a more desirable clinical outcome is relatively longer progression free survival or time to tumor progression.
  • a more desirable clinical outcome is a higher disease control rate. In yet another aspect, a more desirable clinical outcome is relatively longer disease free survival. In further another aspect, a more desirable clinical outcome is relative reduction or delay in tumor recurrence. In another aspect, a more desirable clinical outcome is relatively decreased metastasis. In another aspect, a more desirable clinical outcome is relatively lower relative risk. In yet another aspect, a more desirable clinical outcome is relatively reduced toxicity or side effects. In some embodiments, more than one clinical outcomes are considered simultaneously. In one such aspect, a patient possessing a characteristic, such as a genotype of a genetic polymorphism, may exhibit more than one more desirable clinical outcomes as compared to a patient or patients having the same disease and receiving the same therapy but not possessing the characteristic.
  • a characteristic such as a genotype of a genetic polymorphism
  • the patient is considered suitable for the therapy.
  • a patient possessing a characteristic may exhibit one or more more desirable clinical outcome but simultaneously exhibit one or more less desirable clinical outcome.
  • the clinical outcomes will then be considered collectively, and a decision as to whether the patient is suitable for the therapy will be made accordingly, taking into account the patient's specific situation and the relevance of the clinical outcomes.
  • progression free survival or overall survival is weighted more heavily than tumor response in a collective decision making.
  • a "complete response" (CR) to a therapy defines patients with evaluable but non- measurable disease, whose tumor and all evidence of disease had disappeared.
  • a "partial response" (PR) to a therapy defines patients with anything less than complete response that were simply categorized as demonstrating partial response.
  • SD stable disease
  • Progressive disease indicates that the tumor has grown (i.e. become larger), spread (i.e. metastasized to another tissue or organ) or the overall cancer has gotten worse following treatment. For example, tumor growth of more than 20 percent since the start of treatment typically indicates progressive disease.
  • Disease free survival indicates the length of time after treatment of a cancer or tumor during which a patient survives with no signs of the cancer or tumor.
  • Non-response (NR) to a therapy defines patients whose tumor or evidence of disease has remained constant or has progressed.
  • OS Global System for Mobile Communications
  • Progression free survival indicates the length of time during and after treatment that the cancer does not grow.
  • Progression- free survival includes the amount of time patients have experienced a complete response or a partial response, as well as the amount of time patients have experienced stable disease.
  • DCR Disease Control Rate
  • No Correlation refers to a statistical analysis showing no relationship between the allelic variant of a polymorphic region or gene expression levels and clinical parameters.
  • Tumor Recurrence as used herein and as defined by the National Cancer Institute is cancer that has recurred (come back), usually after a period of time during which the cancer could not be detected. The cancer may come back to the same place as the original (primary) tumor or to another place in the body. It is also called recurrent cancer.
  • TTR Time to Tumor Recurrence
  • Relative Risk in statistics and mathematical epidemiology, refers to the risk of an event (or of developing a disease) relative to exposure. Relative risk is a ratio of the probability of the event occurring in the exposed group versus a non-exposed group.
  • identify or “identifying” is to associate or affiliate a patient closely to a group or population of patients who likely experience the same or a similar clinical response to treatment.
  • Stage I cancer typically identifies that the primary tumor is limited to the organ of origin.
  • Stage II intends that the primary tumor has spread into surrounding tissue and lymph nodes immediately draining the area of the tumor.
  • Stage III intends that the primary tumor is large, with fixation to deeper structures.
  • Stage IV intends that the primary tumor is large, with fixation to deeper structures. See pages 20 and 21, CANCER BIOLOGY, 2 nd Ed., Oxford University Press (1987).
  • a "tumor” is an abnormal growth of tissue resulting from uncontrolled, progressive multiplication of cells and serving no physiological function.
  • a “tumor” is also known as a neoplasm.
  • Having the same cancer is used when comparing one patient to another or alternatively, one patient population to another patient population.
  • the two patients or patient population will each have or be suffering from colon cancer.
  • blood refers to blood which includes all components of blood circulating in a subject including, but not limited to, red blood cells, white blood cells, plasma, clotting factors, small proteins, platelets and/or cryoprecipitate. This is typically the type of blood which is donated when a human patent gives blood.
  • Plasma is known in the art as the yellow liquid component of blood, in which the blood cells in whole blood are typically suspended. It makes up about 55% of the total blood volume. Blood plasma can be prepared by spinning a tube of fresh blood containing an anticoagulant in a centrifuge until the blood cells fall to the bottom of the tube. The blood plasma is then poured or drawn off. Blood plasma has a density of approximately 1025 kg/m3, or 1.025 kg/1.
  • a "normal cell corresponding to the tumor tissue type” refers to a normal cell from a same tissue type as the tumor tissue.
  • a non-limiting examples is a normal lung cell from a patient having lung tumor, or a normal colon cell from a patient having colon tumor.
  • a "blood cell” refers to any of the cells contained in blood.
  • a blood cell is also referred to as an erythrocyte or leukocyte, or a blood corpuscle.
  • Non-limiting examples of blood cells include white blood cells, red blood cells, and platelets.
  • a "native” or “natural” or “wild-type” antigen is a polypeptide, protein or a fragment which contains an epitope and which has been isolated from a natural biological source. It also can specifically bind to an antigen receptor.
  • this disclosure provides diagnostic, prognostic and therapeutic methods, which are based, at least in part, on determination of the identify of a genotype of interest identified herein.
  • information obtained using the diagnostic assays described herein is useful for determining if a subject is suitable for cancer treatment of a given type. Based on the prognostic information, a doctor can recommend a therapeutic protocol, useful for reducing the malignant mass or tumor in the patient or treat cancer in the individual.
  • a patient's likely clinical outcome following a clinical procedure such as a therapy or surgery can be expressed in relative terms.
  • a patient having a particular genotype or expression level may experience relatively longer overall survival than a patient or patients not having the genotype or expression level.
  • the patient having the particular genotype or expression level alternatively, can be considered as likely to survive.
  • a patient having a particular genotype or expression level may experience relatively longer progression free survival, or time to tumor progression, than a patient or patients not having the genotype or expression level.
  • the patient having the particular genotype or expression level alternatively, can be considered as not likely to suffer tumor progression.
  • a patient having a particular genotype or expression level may experience relatively shorter time to tumor recurrence than a patient or patients not having the genotype or expression level.
  • the patient having the particular genotype or expression level alternatively, can be considered as not likely to suffer tumor recurrence.
  • a patient having a particular genotype or expression level may experience relatively more complete response or partial response or higher disease control rate or than a patient or patients not having the genotype or expression level.
  • the patient having the particular genotype or expression level alternatively, can be considered as likely to respond. Accordingly, a patient that is likely to survive, or not likely to suffer tumor progression, or not likely to suffer tumor recurrence, or likely to respond following a clinical procedure is considered suitable for the clinical procedure.
  • information obtained using the diagnostic assays described herein may be used alone or in combination with other information, such as, but not limited to, genotypes or expression levels of other genes, clinical chemical parameters, histopathological parameters, or age, gender and weight of the subject.
  • the information obtained using the diagnostic assays described herein is useful in determining or identifying the clinical outcome of a treatment, selecting a patient for a treatment, or treating a patient, etc.
  • the information obtained using the diagnostic assays described herein is useful in aiding in the determination or identification of clinical outcome of a treatment, aiding in the selection of a patient for a treatment, or aiding in the treatment of a patient and etc.
  • the genotypes or expression levels of one or more genes as disclosed herein are used in a panel of genes, each of which contributes to the final diagnosis, prognosis or treatment.
  • the methods of this disclosure are useful for the diagnosis, prognosis and treatment of patients suffering from at least one or more cancer of the group: lung cancer, non-small cell lung cancer (NSCLC) including metastatic and non-metastatic NSCLC, renal cancer, advanced renal cell carcinoma, breast cancer, head and neck cancer, ovarian cancer, colon cancer, rectal cancer, colorectal cancer, esophageal cancer, gastric cancer, liver cancer, hepatocellular carcinoma (HCC), HCC refractory to surgery, bone cancer, spleen cancer, pancreatic cancer, or gallbladder cancer.
  • NSCLC non-small cell lung cancer
  • NSCLC non-small cell lung cancer
  • NSCLC non-small cell lung cancer
  • NSCLC non-small cell lung cancer
  • renal cancer advanced renal cell carcinoma
  • breast cancer head and neck cancer
  • ovarian cancer colon cancer
  • rectal cancer colorectal cancer
  • esophageal cancer gastric cancer
  • liver cancer hepatocellular carcinoma
  • HCC hepat
  • a mammal includes but is not limited to a human, a simian, a murine, a bovine, an equine, a porcine, a feline, a canine, or an ovine.
  • a method for aiding in the selection of or selecting or not selecting a cancer patient for a therapy comprising administration of a kinase inhibitor, comprising, or alternatively consisting essentially of, or yet alternatively consisting of, screening a tissue or cell sample isolated from the patient for at least one VEGF
  • polymorphism of -1498 C/T or -634 G/C wherein the patient is selected for the therapy if at least one genotype of:
  • the present disclosure provides a method for aiding in the selection of or selecting or not selecting a cancer patient for a therapy comprising
  • a kinase inhibitor comprising, or alternatively consisting essentially of, or yet alternatively consisting of, screening a tissue or cell sample isolated from the patient for at least one VEGF polymorphism of -1498 C/T or -634 G/C.
  • the kinase inhibitor is a tyrosine kinase inhibitor.
  • the kinase inhibitor is sorafenib.
  • the therapy is a third line therapy.
  • the cancer is non-small cell lung cancer, such as non-metastatic non-small cell lung cancer or metastatic non-small cell lung cancer.
  • the patient is selected for the therapy if at least one genotype of:
  • the patient is not selected for the therapy if neither (a) nor (b) is present.
  • the patient is selected for the therapy if at least one genotype of:
  • the patient is not selected for the therapy if neither (a) nor (b) is present.
  • Another aspect of the disclosure provides a method for aiding in the determination of or determining whether or not a cancer patient is suitable for a therapy comprising administration of a kinase inhibitor, comprising, or alternatively consisting essentially of, or yet alternatively consisting of, screening a tissue or cell sample isolated from the patient for at least one VEGF polymorphism of -1498 C/T or -634 G/C, wherein the patient is suitable for the therapy if at least one genotype of:
  • a method for aiding in the determination of or determining whether or not a cancer patient is suitable for a therapy comprising administration of a kinase inhibitor, comprising, or alternatively consisting essentially of, or yet alternatively consisting of, screening a tissue or cell sample isolated from the patient for at least one VEGF polymorphism of -1498 C/T or -634 G/C.
  • the kinase inhibitor is a tyrosine kinase inhibitor.
  • the kinase inhibitor is sorafenib.
  • the therapy is a third line therapy.
  • the cancer is non-small cell lung cancer, such as non-metastatic non-small cell lung cancer or metastatic non-small cell lung cancer.
  • the patient is suitable for the therapy if at least one genotype of:
  • the patient is not suitable for the therapy if neither (a) nor (b) is present.
  • the patient is suitable for the therapy if at least one genotype of:
  • a method for aiding in the determination of or determining whether a cancer patient is likely to experience a longer or shorter progression free survival following a therapy comprising administration of a kinase inhibitor, comprising, or alternatively consisting essentially of, or yet alternatively consisting of, screening a tissue or cell sample isolated from the patient for at least one VEGF polymorphism of -1498 C/T or - 634 G/C, wherein the presence of at least one genotype of:
  • a method for aiding in the determination of or determining whether a cancer patient is likely to experience a longer or shorter progression free survival following a therapy comprising administration of a kinase inhibitor, comprising, or alternatively consisting essentially of, or yet alternatively consisting of, screening a tissue or cell sample isolated from the patient for at least one VEGF polymorphism of -1498 C/T or -634 G/C.
  • the kinase inhibitor is a tyrosine kinase inhibitor.
  • the kinase inhibitor is sorafenib.
  • the therapy is a third line therapy.
  • the cancer is non-small cell lung cancer, such as non-metastatic non-small cell lung cancer or metastatic non-small cell lung cancer.
  • the presence of neither (a) nor (b) determines that the patient is likely to experience a shorter progression free survival as compared to a patient having at least one of the genotypes.
  • the presence of neither (a) nor (b) determines that the patient is likely to experience a shorter progression free survival as compared to a patient having at least one of the genotypes.
  • Still another aspect of the disclosure provides a method for aiding in the
  • a cancer patient is likely or not likely to respond to a therapy comprising administration of a kinase inhibitor, comprising, or alternatively consisting essentially of, or yet alternatively consisting of, screening a tissue or cell sample isolated from the patient for a VEGF -1498 C/T polymorphism, wherein a genotype of (T/T) determines that the patient is likely to respond to the therapy, or a genotype of (C/C or C/T) determines that the patient is not likely to respond to the therapy.
  • a kinase inhibitor comprising, or alternatively consisting essentially of, or yet alternatively consisting of, screening a tissue or cell sample isolated from the patient for a VEGF -1498 C/T polymorphism, wherein a genotype of (T/T) determines that the patient is likely to respond to the therapy, or a genotype of (C/C or C/T) determines that the patient is not likely to respond to the therapy.
  • a genotype of (T/T) determines that the patient is likely to respond to the therapy. In another aspect, a genotype of (C/C or C/T) determines that the patient is not likely to respond to the therapy.
  • the kinase inhibitor comprises a tyrosine kinase inhibitor.
  • the kinase inhibitor comprises a receptor tyrosine kinase inhibitor.
  • the kinase inhibitor comprises sorafenib or a chemical equivalent thereof.
  • the patient suffers from at least one cancer of the type of the group lung cancer, non-small cell lung cancer (NSCLC) including metastatic and non-metastatic NSCLC, breast cancer, head and neck cancer, ovarian cancer, colon cancer, rectal cancer, colorectal cancer, esophageal cancer, gastric cancer, advanced recal cell carcinoma, liver cancer, heaptocellualr carcinoma (HCC), HCC refractory to surgery, bone cancer, spleen cancer, pancreatic cancer, or gallbladder cancer.
  • NSCLC non-small cell lung cancer
  • the NSCLS is metastatic NSCLC.
  • Suitable patient samples in the methods include, but are not limited to a sample comprises, or alternatively consisting essentially of, or yet further consisting of, at least one of a tumor cell or tumor tissue, a normal cell or normal tissue, a normal cell or normal tissue adjacent to a tumor, a normal cell or normal tissue corresponding to the tumor tissue type, a blood cell, a peripheral blood lymphocyte, or combinations thereof.
  • the samples can be at least one of an original sample recently isolated from the patient, a fixed tissue, a frozen tissue, a biopsy tissue, a resection tissue, a microdissected tissue, or combinations thereof.
  • genotype is determined by a method comprising, or alternatively consisting essentially of, or yet further consisting of, polymerase chain reaction analysis (PCR), sequencing analysis, restriction enzyme analysis, mismatch cleavage analysis, single strand conformation polymorphism analysis, denaturing gradient gel electrophoresis, selective oligonucleotide hybridization, selective PCR amplification, selective primer extension, oligonucleotide ligation assay, exonuclease-resistant nucleotide analysis, Genetic Bit Analysis, primer-guided nucleotide incorporation analysis PCR, PCR-restriction fragment length polymorphism (PCR-RFLP), direct DNA sequencing, whole genome sequencing, sequencing, and/or microarray.
  • PCR polymerase chain reaction analysis
  • a mammal includes but is not limited to a simian, a murine, a bovine, an equine, a porcine, a feline, a canine, or an ovine.
  • information obtained using the diagnostic assays described herein is useful for determining if a subject will likely, more likely, or less likely to respond to cancer treatment of a given type. Based on the prognostic information, a doctor can recommend a therapeutic protocol, useful for treating reducing the malignant mass or tumor in the patient or treat cancer in the individual.
  • knowledge of the identity of a particular allele in an individual allows customization of therapy for a particular disease to the individual's genetic profile, the goal of "pharmacogenomics".
  • an individual's genetic profile can enable a doctor: 1) to more effectively prescribe a drug that will address the molecular basis of the disease or condition; 2) to better determine the appropriate dosage of a particular drug and 3) to identify novel targets for drug development.
  • the identity of the genotype or expression patterns of individual patients can then be compared to the genotype or expression profile of the disease to determine the appropriate drug and dose to administer to the patient.
  • Detection of point mutations or additional base pair repeats can be accomplished by molecular cloning of the specified allele and subsequent sequencing of that allele using techniques known in the art, in some aspects, after isolation of a suitable nucleic acid sample using methods known in the art.
  • the gene sequences can be amplified directly from a genomic DNA preparation from the tumor tissue using PCR, and the sequence composition is determined from the amplified product.
  • numerous methods are available for isolating and analyzing a subject's DNA for mutations at a given genetic locus such as the gene of interest.
  • a detection method is allele specific hybridization using probes overlapping the polymorphic site and having about 5, or alternatively 10, or alternatively 20, or alternatively 25, or alternatively 30 nucleotides around the polymorphic region.
  • several probes capable of hybridizing specifically to the allelic variant are attached to a solid phase support, e.g., a "chip".
  • Oligonucleotides can be bound to a solid support by a variety of processes, including lithography. For example a chip can hold up to 250,000 oligonucleotides (GeneChip, Affymetrix). Mutation detection analysis using these chips comprising oligonucleotides, also termed "DNA probe arrays" is described e.g., in Cronin et al. (1996) Human Mutation 7:244.
  • Amplification can be performed, e.g., by PCR and/or LCR, according to methods known in the art.
  • genomic DNA of a cell is exposed to two PCR primers and amplification for a number of cycles sufficient to produce the required amount of amplified DNA.
  • Alternative amplification methods include: self sustained sequence replication (Guatelli et al. (1990) Proc. Natl. Acad. Sci. USA 87: 1874-1878), transcriptional
  • any of a variety of sequencing reactions known in the art can be used to directly sequence at least a portion of the gene of interest and detect allelic variants, e.g., mutations, by comparing the sequence of the sample sequence with the corresponding wild-type (control) sequence.
  • Exemplary sequencing reactions include those based on techniques developed by Maxam and Gilbert (1997) Proc. Natl. Acad. Sci. USA 74:560) or Sanger et al. (1977) Proc. Nat. Acad. Sci. 74:5463).
  • any of a variety of automated sequencing procedures can be utilized when performing the subject assays (Biotechniques (1995) 19:448), including sequencing by mass spectrometry (see, for example, U.S. Patent No. 5,547,835 and International Patent Application Publication Number WO 94/16101, entitled DNA Sequencing by Mass Spectrometry by Koster; U.S. Patent No. 5,547,835 and international patent application Publication Number WO 94/21822 entitled "DNA Sequencing by Mass Spectrometry Via Exonuc lease Degradation" by Koster; U.S. Patent No. 5,605,798 and International Patent Application No. PCT/US96/03651 entitled DNA Diagnostics Based on Mass Spectrometry by Koster; Cohen et al. (1996) Adv.
  • the presence of the specific allele in DNA from a subject can be shown by restriction enzyme analysis.
  • the specific nucleotide polymorphism can result in a nucleotide sequence comprising a restriction site which is absent from the nucleotide sequence of another allelic variant.
  • protection from cleavage agents can be used to detect mismatched bases in RNA/RNA DNA/DNA, or RNA/DNA heteroduplexes (see, e.g., Myers et al. (1985) Science 230:1242).
  • the technique of "mismatch cleavage” starts by providing heteroduplexes formed by hybridizing a control nucleic acid, which is optionally labeled, e.g., RNA or DNA, comprising a nucleotide sequence of the allelic variant of the gene of interest with a sample nucleic acid, e.g., RNA or DNA, obtained from a tissue sample.
  • a control nucleic acid which is optionally labeled, e.g., RNA or DNA
  • sample nucleic acid e.g., RNA or DNA
  • the double-stranded duplexes are treated with an agent which cleaves single-stranded regions of the duplex such as duplexes formed based on basepair mismatches between the control and sample strands.
  • RNA/DNA duplexes can be treated with RNase and
  • DNA/DNA hybrids treated with SI nuclease to enzymatically digest the mismatched regions.
  • either DNA/DNA or RNA/DNA duplexes can be treated with hydroxylamine or osmium tetroxide and with piperidine in order to digest mismatched regions. After digestion of the mismatched regions, the resulting material is then separated by size on denaturing polyacrylamide gels to determine whether the control and sample nucleic acids have an identical nucleotide sequence or in which nucleotides they are different. See, for example, U.S. Patent No. 6,455,249, Cotton et al. (1988) Proc. Natl. Acad. Sci. USA 85:4397; Saleeba et al. (1992) Methods Enzy. 217:286-295.
  • the control or sample nucleic acid is labeled for detection.
  • alterations in electrophoretic mobility is used to identify the particular allelic variant.
  • SSCP single strand conformation polymorphism
  • SSCP single strand conformation polymorphism
  • DNA fragments of sample and control nucleic acids are denatured and allowed to renature.
  • the secondary structure of single-stranded nucleic acids varies according to sequence, the resulting alteration in electrophoretic mobility enables the detection of even a single base change.
  • the DNA fragments may be labeled or detected with labeled probes.
  • the sensitivity of the assay may be enhanced by using RNA (rather than DNA), in which the secondary structure is more sensitive to a change in sequence.
  • the subject method utilizes heteroduplex analysis to separate double stranded heteroduplex molecules on the basis of changes in electrophoretic mobility (Keen et al. (1991) Trends Genet. 7:5).
  • the identity of the allelic variant is obtained by analyzing the movement of a nucleic acid comprising the polymorphic region in
  • DGGE denaturing gradient gel electrophoresis
  • DNA will be modified to insure that it does not completely denature, for example by adding a GC clamp of approximately 40 bp of high-melting GC- rich DNA by PCR.
  • a temperature gradient is used in place of a denaturing agent gradient to identify differences in the mobility of control and sample DNA (Rosenbaum and Reissner (1987) Biophys. Chem. 265: 1275).
  • Examples of techniques for detecting differences of at least one nucleotide between 2 nucleic acids include, but are not limited to, selective oligonucleotide hybridization, selective amplification, or selective primer extension.
  • oligonucleotide probes may be prepared in which the known polymorphic nucleotide is placed centrally (allele- specific probes) and then hybridized to target DNA under conditions which permit hybridization only if a perfect match is found (Saiki et al. (1986) Nature 324: 163); Saiki et al. (1989) Proc. Natl. Acad. Sci. USA 86:6230 and Wallace et al. (1979) Nucl. Acids Res.
  • Such allele specific oligonucleotide hybridization techniques may be used for the detection of the nucleotide changes in the polymorphic region of the gene of interest. For example, oligonucleotides having the nucleotide sequence of the specific allelic variant are attached to a hybridizing membrane and this membrane is then hybridized with labeled sample nucleic acid. Analysis of the hybridization signal will then reveal the identity of the nucleotides of the sample nucleic acid.
  • Oligonucleotides used as primers for specific amplification may carry the allelic variant of interest in the center of the molecule (so that amplification depends on differential hybridization) (Gibbs et al. (1989) Nucleic Acids Res. 17:2437-2448) or at the extreme 3' end of one primer where, under appropriate conditions, mismatch can prevent, or reduce polymerase extension (Prossner (1993) Tibtech 11 :238 and Newton et al. (1989) Nucl. Acids Res. 17:2503). This technique is also termed "PROBE” for Probe Oligo Base Extension.
  • identification of the allelic variant is carried out using an oligonucleotide ligation assay (OLA), as described, e.g., in U.S. Patent No. 4,998,617 and in Landegren et al. (1988) Science 241 : 1077-1080.
  • OLA oligonucleotide ligation assay
  • oligonucleotides which are designed to be capable of hybridizing to abutting sequences of a single strand of a target.
  • One of the oligonucleotides is linked to a separation marker, e.g., biotinylated, and the other is detectably labeled. If the precise complementary sequence is found in a target molecule, the oligonucleotides will hybridize such that their termini abut, and create a ligation substrate. Ligation then permits the labeled oligonucleotide to be recovered using avidin, or another biotin ligand.
  • Nickerson et al. have described a nucleic acid detection assay that combines attributes of PCR and OLA (Nickerson et al. (1990) Proc. Natl. Acad. Sci. (U.S.A.) 87:8923-8927). In this method, PCR is used to achieve the exponential amplification of target DNA, which is then detected using OLA.
  • each OLA reaction can be detected by using hapten specific antibodies that are labeled with different enzyme reporters, alkaline phosphatase or horseradish peroxidase.
  • This system permits the detection of the two alleles using a high throughput format that leads to the production of two different colors.
  • the single base polymorphism can be detected by using a specialized exonuclease-resistant nucleotide, as disclosed, e.g., in Mundy, C. R. (U.S. Patent No. 4,656,127).
  • a primer complementary to the allelic sequence immediately 3 ' to the polymorphic site is permitted to hybridize to a target molecule obtained from a particular animal or human. If the polymorphic site on the target molecule contains a nucleotide that is complementary to the particular exonuclease-resistant nucleotide derivative present, then that derivative will be incorporated onto the end of the hybridized primer.
  • a solution-based method is used for determining the identity of the nucleotide of the polymorphic site.
  • Cohen, D. et al. (French Patent 2,650,840; PCT Appln. No. WO91/02087).
  • a primer is employed that is complementary to allelic sequences immediately 3' to a polymorphic site. The method determines the identity of the nucleotide of that site using labeled dideoxynucleotide derivatives, which, if complementary to the nucleotide of the polymorphic site will become incorporated onto the terminus of the primer.
  • GBA TM Genetic Bit Analysis
  • Goelet, P. et al. PCT Appln. No. 92/157112.
  • This method uses mixtures of labeled terminators and a primer that is complementary to the sequence 3' to a polymorphic site.
  • the labeled terminator that is incorporated is thus determined by, and complementary to, the nucleotide present in the polymorphic site of the target molecule being evaluated.
  • the method of Goelet, P. et al. supra is preferably a heterogeneous phase assay, in which the primer or the target molecule is immobilized to a solid phase.
  • the polymorphic region is located in the coding region of the gene of interest, yet other methods than those described above can be used for determining the identity of the allelic variant. For example, identification of the allelic variant, which encodes a mutated signal peptide, can be performed by using an antibody specifically recognizing the mutant protein in, e.g., immunohistochemistry or immunoprecipitation. Antibodies to the wild-type or signal peptide mutated forms of the signal peptide proteins can be prepared according to methods known in the art.
  • a solid phase support is used as a support capable of binding of a primer, probe, polynucleotide, an antigen or an antibody.
  • Well-known supports include glass, polystyrene, polypropylene, polyethylene, dextran, nylon, amylases, natural and modified celluloses, polyacrylamides, gabbros, and magnetite.
  • the nature of the support can be either soluble to some extent or insoluble for the purposes of the present disclosure.
  • the support material may have virtually any possible structural configuration so long as the coupled molecule is capable of binding to an antigen or antibody.
  • the support configuration may be spherical, as in a bead, or cylindrical, as in the inside surface of a test tube, or the external surface of a rod.
  • the surface may be flat such as a sheet, test strip, etc. or alternatively polystyrene beads.
  • suitable supports for binding antibody or antigen or will be able to ascertain the same by use of routine experimentation.
  • any of the above methods for detecting alterations in a gene or gene product or polymorphic variants can be used to monitor the course of treatment or therapy.
  • the methods described herein may be performed, for example, by utilizing pre- packaged diagnostic kits, such as those described below, comprising at least one probe or primer nucleic acid described herein, which may be conveniently used, e.g., to determine whether a subject is likely to experience tumor recurrence following therapy as described herein or has or is at risk of developing disease such as colon cancer.
  • Sample nucleic acid for use in the above-described diagnostic and prognostic methods can be obtained from any suitable cell type or tissue of a subject.
  • a subject's bodily fluid e.g. blood
  • nucleic acid tests can be performed on dry samples (e.g., hair or skin).
  • Diagnostic procedures can also be performed in situ directly upon tissue sections (fixed and/or frozen) of patient tissue obtained from biopsies or resections, such that no nucleic acid purification is necessary.
  • Nucleic acid reagents can be used as probes and/or primers for such in situ procedures (see, for example, Nuovo, G. J. (1992) PCR IN SITU HYBRIDIZATION: PROTOCOLS AND APPLICATIONS, Raven Press, NY).
  • Fingerprint profiles can be generated, for example, by utilizing a differential display procedure, Northern analysis and/or RT-PCR.
  • Antibodies directed against wild type or mutant peptides encoded by the allelic variants of the gene of interest may also be used in disease diagnostics and prognostics. Such diagnostic methods, may be used to detect abnormalities in the level of expression of the peptide, or abnormalities in the structure and/or tissue, cellular, or subcellular location of the peptide. Protein from the tissue or cell type to be analyzed may easily be detected or isolated using techniques which are well known to one of skill in the art, including but not limited to Western blot analysis. For a detailed explanation of methods for carrying out Western blot analysis, see Sambrook and Russell (2001) supra. The protein detection and isolation methods employed herein can also be such as those described in Harlow and Lane, (1999) supra.
  • the antibodies (or fragments thereof) useful in the present disclosure may, additionally, be employed histologically, as in immunofluorescence or immunoelectron microscopy, for in situ detection of the peptides or their allelic variants. In situ detection may be accomplished by removing a histological specimen from a patient, and applying thereto a labeled antibody of the present disclosure.
  • the antibody (or fragment) is preferably applied by overlaying the labeled antibody (or fragment) onto a biological sample.
  • Amplification can be performed, e.g., by PCR and/or LCR, according to methods known in the art.
  • PCR e.g., by PCR and/or LCR, according to methods known in the art.
  • Various non-limiting examples of PCR include the herein described methods.
  • Allele-specific PCR is a diagnostic or cloning technique is used to identify or utilize single-nucleotide polymorphisms (SNPs). It requires prior knowledge of a DNA sequence, including differences between alleles, and uses primers whose 3' ends encompass the SNP. PCR amplification under stringent conditions is much less efficient in the presence of a mismatch between template and primer, so successful amplification with an SNP-specific primer signals presence of the specific SNP in a sequence (See, Saiki et al. (1986) Nature 324(6093): 163-166 and U.S. Patent Nos.: 5,821,062; 7,052,845 or 7,250,258).
  • Assembly PCR or Polymerase Cycling Assembly is the artificial synthesis of long DNA sequences by performing PCR on a pool of long oligonucleotides with short overlapping segments.
  • the oligonucleotides alternate between sense and antisense directions, and the overlapping segments determine the order of the PCR fragments thereby selectively producing the final long DNA product (See, Stemmer et al. (1995) Gene
  • Asymmetric PCR is used to preferentially amplify one strand of the original DNA more than the other. It finds use in some types of sequencing and hybridization probing where having only one of the two complementary stands is required. PCR is carried out as usual, but with a great excess of the primers for the chosen strand. Due to the slow amplification later in the reaction after the limiting primer has been used up, extra cycles of PCR are required (See, Innis et al. (1988) Proc Natl Acad Sci U.S.A. 85(24):9436-9440 and U.S.
  • Colony PCR uses bacterial colonies, for example E. coli, which can be rapidly screened by PCR for correct DNA vector constructs. Selected bacterial colonies are picked with a sterile toothpick and dabbed into the PCR master mix or sterile water. The PCR is started with an extended time at 95 °C when standard polymerase is used or with a shortened denaturation step at 100°C and special chimeric DNA polymerase (Pavlov et al. (2006) "Thermostable DNA Polymerases for a Wide Spectrum of Applications: Comparison of a Robust Hybrid TopoTaq to other enzymes", in Kieleczawa J: DNA Sequencing II:
  • Helicase-dependent amplification is similar to traditional PCR, but uses a constant temperature rather than cycling through denaturation and annealing/extension cycles.
  • DNA Helicase an enzyme that unwinds DNA, is used in place of thermal denaturation (See, Myriam et al. (2004) EMBO reports 5(8):795-800 and U.S. Patent No. 7,282,328).
  • Hot-start PCR is a technique that reduces non-specific amplification during the initial set up stages of the PCR.
  • the technique may be performed manually by heating the reaction components to the melting temperature (e.g., 95°C) before adding the polymerase (Chou et al. (1992) Nucleic Acids Research 20: 1717-1723 and U.S. Patent Nos.: 5,576,197 and 6,265,169).
  • Specialized enzyme systems have been developed that inhibit the polymerase's activity at ambient temperature, either by the binding of an antibody (Sharkey et al. (1994) Bio/Technology 12:506-509) or by the presence of covalently bound inhibitors that only dissociate after a high-temperature activation step.
  • Hot- start/cold- finish PCR is achieved with new hybrid polymerases that are inactive at ambient temperature and are instantly activated at elongation temperature.
  • ISSR Intersequence-specific PCR method for DNA fingerprinting that amplifies regions between some simple sequence repeats to produce a unique fingerprint of amplified fragment lengths
  • Inverse PCR is a method used to allow PCR when only one internal sequence is known. This is especially useful in identifying flanking sequences to various genomic inserts. This involves a series of DNA digestions and self ligation, resulting in known sequences at either end of the unknown sequence (Ochman et al. (1988) Genetics 120:621-623 and U.S. Patent Nos.: 6,013,486; 6,106,843 or 7,132,587).
  • Ligation-mediated PCR uses small DNA linkers ligated to the DNA of interest and multiple primers annealing to the DNA linkers; it has been used for DNA sequencing, genome walking, and DNA footprinting (Mueller et al. (1988) Science 246:780-786).
  • Methylation-specific PCR is used to detect methylation of CpG islands in genomic DNA (Herman et al. (1996) Proc Natl Acad Sci U.S.A. 93(13):9821-9826 and U.S. Patent Nos.: 6,811,982; 6,835,541 or 7,125,673). DNA is first treated with sodium bisulfite, which converts unmethylated cytosine bases to uracil, which is recognized by PCR primers as thymine. Two PCRs are then carried out on the modified DNA, using primer sets identical except at any CpG islands within the primer sequences.
  • MLPA Multiplex Ligation-dependent Probe Amplification
  • Nested PCR increases the specificity of DNA amplification, by reducing
  • Two sets of primers are being used in two successive PCRs.
  • one pair of primers is used to generate DNA products, which besides the intended target, may still consist of non-specifically amplified DNA fragments.
  • the product(s) are then used in a second PCR with a set of primers whose binding sites are completely or partially different from and located 3 ' of each of the primers used in the first reaction (See, U.S. Patent Nos.: 5,994,006; 7,262,030 or 7,329,493).
  • Nested PCR is often more successful in specifically amplifying long DNA fragments than
  • Overlap-extension PCR is a genetic engineering technique allowing the construction of a DNA sequence with an alteration inserted beyond the limit of the longest practical primer length.
  • Quantitative PCR also known as RQ-PCR, QRT-PCR and RTQ-PCR, is used to measure the quantity of a PCR product following the reaction or in real-time. See, U.S. Patent Nos.: 6,258,540; 7,101,663 or 7,188,030.
  • Q-PCR is the method of choice to quantitatively measure starting amounts of DNA, cDNA or RNA.
  • Q-PCR is commonly used to determine whether a DNA sequence is present in a sample and the number of its copies in the sample. The method with currently the highest level of accuracy is digital PCR as described in U.S. Patent No. 6,440,705; U.S. Publication No. 2007/0202525; Dressman et al. (2003) Proc.
  • RT-PCR refers to reverse transcription PCR (see below), which is often used in conjunction with Q-PCR.
  • QRT-PCR methods use fluorescent dyes, such as Sybr Green, or fluorophore-containing DNA probes, such as TaqMan, to measure the amount of amplified product in real time.
  • RT-PCR Reverse Transcription PCR
  • RT-PCR is a method used to amplify, isolate or identify a known sequence from a cellular or tissue RNA (See, U.S. Patent Nos.: 6,759,195; 7,179,600 or 7,317,111). The PCR is preceded by a reaction using reverse transcriptase to convert RNA to cDNA.
  • RT-PCR is widely used in expression profiling, to determine the expression of a gene or to identify the sequence of an RNA transcript, including transcription start and termination sites and, if the genomic DNA sequence of a gene is known, to map the location of exons and introns in the gene.
  • the 5' end of a gene (corresponding to the transcription start site) is typically identified by an RT-PCR method, named Rapid
  • TAIL-PCR Thermal asymmetric interlaced PCR
  • Touchdown PCR a variant of PCR that aims to reduce nonspecific background by gradually lowering the annealing temperature as PCR cycling progresses.
  • the annealing temperature at the initial cycles is usually a few degrees (3-5 °C) above the T m of the primers used, while at the later cycles, it is a few degrees (3-5 °C) below the primer T m .
  • the higher temperatures give greater specificity for primer binding, and the lower temperatures permit more efficient amplification from the specific products formed during the initial cycles (Don et al. (1991) Nucl Acids Res 19:4008 and U.S. Patent No. 6,232,063).
  • probes are labeled with two fluorescent dye molecules to form so-called “molecular beacons” (Tyagi, S. and Kramer, F.R. (1996) Nat. Biotechnol. 14:303-8).
  • molecular beacons signal binding to a complementary nucleic acid sequence through relief of intramolecular fluorescence quenching between dyes bound to opposing ends on an oligonucleotide probe.
  • the use of molecular beacons for genotyping has been described (Kostrikis (1998) Science 279: 1228-9) as has the use of multiple beacons simultaneously (Marras (1999) Genet. Anal. 14: 151-6).
  • a quenching molecule is useful with a particular fluorophore if it has sufficient spectral overlap to substantially inhibit
  • fluorescence of the fluorophore when the two are held proximal to one another such as in a molecular beacon, or when attached to the ends of an oligonucleotide probe from about 1 to about 25 nucleotides.
  • Labeled probes also can be used in conjunction with amplification of a gene of interest. (Holland et al. (1991) Proc. Natl. Acad. Sci. 88:7276-7280). U.S. Patent No.
  • the probe is digested by the nuclease activity of a polymerase when hybridized to the target sequence to cause the fluorescent molecule to be separated from the quencher molecule, thereby causing fluorescence from the reporter molecule to appear.
  • the Taq-Man approach uses a probe containing a reporter molecule- quencher molecule pair that specifically anneals to a region of a target polynucleotide containing the polymorphism.
  • Probes can be affixed to surfaces for use as "gene chips.” Such gene chips can be used to detect genetic variations by a number of techniques known to one of skill in the art.
  • oligonucleotides are arrayed on a gene chip for determining the DNA sequence of a by the sequencing by hybridization approach, such as that outlined in U.S. Patent Nos. 6,025,136 and 6,018,041.
  • the probes of the disclosure also can be used for fluorescent detection of a genetic sequence.
  • Such techniques have been described, for example, in U.S. Patent Nos. 5,968,740 and 5,858,659.
  • a probe also can be affixed to an electrode surface for the electrochemical detection of nucleic acid sequences such as described by Kayem et al. U.S. Patent No. 5,952,172 and by Kelley et al. (1999) Nucleic Acids Res. 27:4830-4837.
  • This disclosure also provides for a prognostic panel of genetic markers selected from, but not limited to the genetic polymorphisms identified herein.
  • the prognostic panel comprises probes or primers or microarrays that can be used to amplify and/or for determining the molecular structure of the polymorphisms identified herein.
  • the probes or primers can be attached or supported by a solid phase support such as, but not limited to a gene chip or microarray.
  • the panel contains the herein identified probes or primers as wells as other probes or primers.
  • the panel includes one or more of the above noted probes or primers and others.
  • the panel consist only of the above- noted probes or primers.
  • Primers or probes can be affixed to surfaces for use as "gene chips” or "microarray.” Such gene chips or microarrays can be used to detect genetic variations by a number of techniques known to one of skill in the art. In one technique, oligonucleotides are arrayed on a gene chip for determining the DNA sequence of a by the sequencing by hybridization approach, such as that outlined in U.S. Patent Nos. 6,025,136 and 6,018,041. The probes of the disclosure also can be used for fluorescent detection of a genetic sequence. Such techniques have been described, for example, in U.S. Patent Nos. 5,968,740 and 5,858,659.
  • a probe also can be affixed to an electrode surface for the electrochemical detection of nucleic acid sequences such as described by Kayem et al. U.S. Patent No. 5,952,172 and by Kelley et al. (1999) Nucleic Acids Res. 27:4830-4837.
  • Various "gene chips” or “microarray” and similar technologies are know in the art. Examples of such include, but are not limited to LabCard (ACLARA Bio Sciences Inc.); GeneChip (Affymetric, Inc); LabChip (Caliper Technologies Corp); a low-density array with electrochemical sensing (Clinical Micro Sensors); LabCD System (Gamera Bioscience Corp.); Omni Grid (Gene Machines); Q Array (Genetix Ltd.); a high-throughput, automated mass spectrometry systems with liquid-phase expression technology (Gene Trace Systems, Inc.); a thermal jet spotting system (Hewlett Packard Company); Hyseq HyChip (Hyseq, Inc.); BeadArray (Illumina, Inc.); GEM (Incyte Microarray Systems); a high-throughput microarraying system that can dispense from 12 to 64 spots onto multiple glass slides (Intelligent Bio-Instruments); Molecular Biology Workstation and NanoChip (Nan
  • PiezoTip piezoelectric drop-on-demand tips (Packard Instruments, Inc.); FlexJet (Rosetta Inpharmatic, Inc.); MALDI-TOF mass spectrometer (Sequnome); ChipMaker 2 and
  • ChipMaker 3 (TeleChem International, Inc.); and GenoSensor (Vysis, Inc.) as identified and described in Heller (2002) Annu. Rev. Biomed. Eng. 4: 129-153.
  • Examples of "Gene chips” or a “microarray” are also described in U.S. Patent Publ. Nos.: 2007/0111322, 2007/0099198, 2007/0084997, 2007/0059769 and 2007/0059765 and US Patent 7,138,506, 7,070,740, and 6,989,267.
  • probes or primers for the gene of interest are provided alone or in combination with other probes and/or primers.
  • a suitable sample is obtained from the patient extraction of genomic DNA, RNA, or any combination thereof and amplified if necessary.
  • the DNA or RNA sample is contacted to the gene chip or microarray panel under conditions suitable for hybridization of the gene(s) of interest to the probe(s) or primer(s) contained on the gene chip or microarray.
  • the probes or primers may be detectably labeled thereby identifying the polymorphism in the gene(s) of interest.
  • nucleic Acids may be used to identify the probes or primers which hybridized with the DNA or RNA of the gene(s) of interest. The genetic profile of the patient is then determined with the aid of the aforementioned apparatus and methods.
  • the nucleic acid sequences of the gene of interest, or portions thereof can be the basis for probes or primers, e.g., in methods for determining expression level of the gene of interest or the allelic variant of a polymorphic region of a gene of interest identified in the experimental section below.
  • they can be used in the methods of the disclosure to determine which therapy is most likely to treat an individual's cancer.
  • the methods of the disclosure can use nucleic acids isolated from vertebrates.
  • the vertebrate nucleic acids are mammalian nucleic acids.
  • the nucleic acids used in the methods of the disclosure are human nucleic acids.
  • Primers for use in the methods of the disclosure are nucleic acids which hybridize to a nucleic acid sequence which is adjacent to the region of interest or which covers the region of interest and is extended.
  • a primer can be used alone in a detection method, or a primer can be used together with at least one other primer or probe in a detection method.
  • Primers can also be used to amplify at least a portion of a nucleic acid.
  • Probes for use in the methods of the disclosure are nucleic acids which hybridize to the gene of interest and which are not further extended.
  • a probe is a nucleic acid which hybridizes to the gene of interest, and which by hybridization or absence of hybridization to the DNA of a subject will be indicative of the identity of the allelic variant of the expression levels of the gene of interest.
  • Primers and/or probes for use in the methods can be provided as isolated single stranded oligonucleotides or alternatively, as isolated double stranded oligonucleotides.
  • primers comprise a nucleotide sequence which comprises a region having a nucleotide sequence which hybridizes under stringent conditions to about: 6, or alternatively 8, or alternatively 10, or alternatively 12, or alternatively 25, or alternatively 30, or alternatively 40, or alternatively 50, or alternatively 75 consecutive nucleotides of the gene of interest.
  • Primers can be complementary to nucleotide sequences located close to each other or further apart, depending on the use of the amplified DNA.
  • primers can be chosen such that they amplify DNA fragments of at least about 10 nucleotides or as much as several kilobases.
  • the primers of the disclosure will hybridize selectively to nucleotide sequences located about 100 to about 1000 nucleotides apart.
  • a forward primer i.e., 5' primer
  • a reverse primer i.e., 3' primer
  • primers of the disclosure are nucleic acids which are capable of selectively hybridizing to the gene.
  • primers can be specific for the gene of interest sequence, so long as they have a nucleotide sequence which is capable of hybridizing to the gene of interest.
  • the probe or primer may further comprises a label attached thereto, which, e.g., is capable of being detected, e.g. the label group is selected from amongst radioisotopes, fluorescent compounds, enzymes, and enzyme co-factors.
  • nucleic acids used as probes or primers may be modified to become more stable.
  • exemplary nucleic acid molecules which are modified include phosphoramidate, phosphothioate and methylphosphonate analogs of DNA (see also U.S. Patent Nos. 5,176,996; 5,264,564 and 5,256,775).
  • nucleic acids used in the methods of the disclosure can also be modified at the base moiety, sugar moiety, or phosphate backbone, for example, to improve stability of the molecule.
  • the nucleic acids, e.g., probes or primers may include other appended groups such as peptides (e.g., for targeting host cell receptors in vivo), or agents facilitating transport across the cell membrane. See, e.g., Letsinger et al. (1989) Proc. Natl. Acad. Sci. U.S.A.
  • nucleic acid used in the methods of the disclosure may be conjugated to another molecule, e.g., a peptide, hybridization triggered cross-linking agent, transport agent, hybridization-triggered cleavage agent, etc.
  • the isolated nucleic acids used in the methods of the disclosure can also comprise at least one modified sugar moiety selected from the group including but not limited to arabinose, 2-fluoroarabinose, xylulose, and hexose or, alternatively, comprise at least one modified phosphate backbone selected from the group consisting of a phosphorothioate, a phosphorodithioate, a phosphoramidothioate, a phosphoramidate, a phosphordiamidate, a methylphosphonate, an alkyl phosphotriester, and a formacetal or analog thereof.
  • nucleic acids, or fragments thereof, to be used in the methods of the disclosure can be prepared according to methods known in the art and described, e.g., in Sambrook et al. (2001) supra.
  • discrete fragments of the DNA can be prepared and cloned using restriction enzymes.
  • discrete fragments can be prepared using the Polymerase Chain Reaction (PCR) using primers having an appropriate sequence under the
  • Oligonucleotides can be synthesized by standard methods known in the art, e.g. by use of an automated DNA synthesizer (such as are commercially available from Biosearch, Applied Biosystems, etc.). As examples, phosphorothioate oligonucleotides can be synthesized by the method of Stein et al. (1988) Nucl. Acids Res. 16:3209,
  • methylphosphonate oligonucleotides can be prepared by use of controlled pore glass polymer supports. Sarin et al. (1988) Proc. Natl. Acad. Sci. U.S.A. 85:7448-7451. Methods of Treatment
  • the disclosure further provides methods of treating patients having solid malignant tissue mass or tumor from the group: lung cancer, non-small cell lung cancer (NSCLC) including metastatic and non-metastatic NSCLC, advanced renal cell carcinoma, breast cancer, head and neck cancer, ovarian cancer, colon cancer, rectal cancer, colorectal cancer, esophageal cancer, gastric cancer, liver cancer, hepatocellular carcinoma (HCC), HCC refractory to surgery, bone cancer, spleen cancer, pancreatic cancer, or gallbladder cancer.
  • NSCLC non-small cell lung cancer
  • NSCLC non-small cell lung cancer
  • HCC hepatocellular carcinoma
  • the kinase inhibitor is a tyrosine kinase inhibitor.
  • the kinase inhibitor is sorafenib.
  • the therapy is a third line therapy.
  • the cancer is non-small cell lung cancer, such as non-metastatic non-small cell lung cancer or metastatic non-small cell lung cancer.
  • a therapy comprising, or alternatively consisting essentially of, or yet alternatively consisting of, a kinase inhibitor for the manufacture of a medicament for aiding in the treatment of or in treating a cancer patient selected for treatment based on the presence of at least one VEGF genotype of:
  • the kinase inhibitor is a tyrosine kinase inhibitor. In another aspect, the kinase inhibitor is sorafenib. In some aspects, the therapy is a third line therapy. In some aspects, the cancer is non-small cell lung cancer, such as non-metastatic non-small cell lung cancer or metastatic non-small cell lung cancer.
  • a therapy comprising, or alternatively consisting essentially of, or yet alternatively consisting of, a kinase inhibitor for use in aiding in the treatment of or in treating a cancer patient selected for treatment based on the presence of at least one VEGF genotype of:
  • the kinase inhibitor is a tyrosine kinase inhibitor. In another aspect, the kinase inhibitor is sorafenib. In some aspects, the therapy is a third line therapy. In some aspects, the cancer is non-small cell lung cancer, such as non-metastatic non-small cell lung cancer or metastatic non-small cell lung cancer.
  • the patient was selected by a method comprising, or alternatively consisting essentially of, or yet alternatively consisting of, screening a tissue or cell sample isolated from the patient for at least one VEGF polymorphism of -1498 C/T or -634 G/C.
  • the kinase inhibitor comprises a tyrosine kinase inhibitor.
  • the kinase inhibitor comprises a receptor tyrosine kinase inhibitor.
  • the kinase inhibitor comprises sorafenib or a chemical equivalent thereof.
  • the patient suffers from at least one cancer of the type of the group lung cancer, non-small cell lung cancer (NSCLC) including metastatic and non-metastatic NSCLC, breast cancer, head and neck cancer, ovarian cancer, colon cancer, rectal cancer, colorectal cancer, esophageal cancer, advanced renal cell carcinoma, gastric cancer, liver cancer, hepatocellular carcinoma (HCC), HCC refractory to surgery, bone cancer, spleen cancer, pancreatic cancer, or gallbladder cancer.
  • NSCLC non-small cell lung cancer
  • the NSCLS is metastatic NSCLC.
  • the patient has failed at least one, or alternatively at least two prior chemotherapy regimens.
  • the therapy is a first line, second line or third line therapy.
  • Suitable samples for the methods as described herein the sample comprises, or alternatively consisting essentially of, or yet further consisting of, plasma, at least one of a tumor cell, a normal cell adjacent to a tumor, a normal cell corresponding to the tumor tissue type, a blood cell, a peripheral blood lymphocyte, or combinations thereof.
  • the samples can be any one or more of a fixed tissue, an original sample just isolated from the patient, a frozen tissue, a biopsy tissue, a resection tissue, a microdissected tissue, or combinations thereof.
  • genotype is determined by a method comprising, or alternatively consisting essentially of, or yet further consisting of, polymerase chain reaction analysis (PCR), sequencing analysis, restriction enzyme analysis, mismatch cleavage analysis, single strand conformation polymorphism analysis, denaturing gradient gel electrophoresis, selective oligonucleotide hybridization, selective PCR amplification, selective primer extension, oligonucleotide ligation assay, exonuclease-resistant nucleotide analysis, Genetic Bit Analysis, primer-guided nucleotide incorporation analysis PCR, PCR-restriction fragment length polymorphism (PCR-RFLP), direct DNA sequencing, whole genome sequencing, sequencing, and/or microarray.
  • PCR polymerase chain reaction analysis
  • a mammal includes but is not limited to a human, a simian, a murine, a bovine, an equine, a porcine or an ovine.
  • a formulation comprising the necessary therapy or equivalent thereof is further provided herein.
  • the formulation can further comprise one or more preservatives or stabilizers.
  • Any suitable concentration or mixture can be used as known in the art, such as 0.001-5%, or any range or value therein, such as, but not limited to 0.001, 0.003, 0.005, 0.009, 0.01, 0.02, 0.03, 0.05, 0.09, 0.1, 0.2, 0.3, O.4., 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 4.0, 4.3, 4.5, 4.6, 4.7, 4.8, 4.9, or any range or value therein.
  • Non-limiting examples include, no preservative, 0.1-2% m-cresol (e.g., 0.2, 0.3. 0.4, 0.5, 0.9, 1.0%), 0.1-3% benzyl alcohol (e.g., 0.5, 0.9, 1.1., 1.5, 1.9, 2.0, 2.5%), 0.001-0.5% thimerosal (e.g., 0.005, 0.01), 0.001-2.0% phenol (e.g., 0.05, 0.25, 0.28, 0.5, 0.9, 1.0%), 0.0005-1.0% alkylparaben(s) (e.g., 0.00075, 0.0009, 0.001, 0.002, 0.005, 0.0075, 0.009, 0.01, 0.02, 0.05, 0.075, 0.09, 0.1, 0.2, 0.3, 0.5, 0.75, 0.9, and 1.0%).
  • 0.1-2% m-cresol e.g., 0.2, 0.3. 0.4, 0.5, 0.9, 1.0%
  • compositions typically intends a combination of the active agent and another carrier, e.g., compound or composition, inert (for example, a detectable agent or label) or active, such as an adjuvant, diluent, binder, stabilizer, buffers, salts, lipophilic solvents, preservative, adjuvant or the like and include pharmaceutically acceptable carriers.
  • another carrier e.g., compound or composition, inert (for example, a detectable agent or label) or active, such as an adjuvant, diluent, binder, stabilizer, buffers, salts, lipophilic solvents, preservative, adjuvant or the like and include pharmaceutically acceptable carriers.
  • Carriers also include pharmaceutical excipients and additives proteins, peptides, amino acids, lipids, and carbohydrates (e.g., sugars, including monosaccharides, di-, tri-, terra-, and oligosaccharides; derivatized sugars such as alditols, aldonic acids, esterified sugars and the like; and polysaccharides or sugar polymers), which can be present singly or in combination, comprising alone or in
  • Exemplary protein excipients include serum albumin such as human serum albumin (HSA), recombinant human albumin (rHA), gelatin, casein, and the like.
  • Representative amino acid/antibody components which can also function in a buffering capacity, include alanine, glycine, arginine, betaine, histidine, glutamic acid, aspartic acid, cysteine, lysine, leucine, isoleucine, valine, methionine, phenylalanine, aspartame, and the like.
  • Carbohydrate excipients are also intended within the scope of this disclosure, examples of which include but are not limited to monosaccharides such as fructose, maltose, galactose, glucose, D-mannose, sorbose, and the like;
  • disaccharides such as lactose, sucrose, trehalose, cellobiose, and the like
  • polysaccharides such as raffmose, melezitose, maltodextrins, dextrans, starches, and the like
  • alditols such as mannitol, xylitol, maltitol, lactitol, xylitol sorbitol (glucitol) and myoinositol.
  • the term carrier further includes a buffer or a pH adjusting agent; typically, the buffer is a salt prepared from an organic acid or base.
  • Representative buffers include organic acid salts such as salts of citric acid, ascorbic acid, gluconic acid, carbonic acid, tartaric acid, succinic acid, acetic acid, or phthalic acid; Tris, tromethamine hydrochloride, or phosphate buffers.
  • Additional carriers include polymeric excipients/additives such as
  • polyvinylpyrrolidones e.g., ficolls (a polymeric sugar), dextrates (e.g., cyclodextrins, such as 2- hydroxypropyl-. quadrature. -cyclodextrin), polyethylene glycols, flavoring agents, antimicrobial agents, sweeteners, antioxidants, antistatic agents, surfactants (e.g.,
  • polysorbates such as "TWEEN 20” and “TWEEN 80"
  • lipids e.g., phospholipids, fatty acids
  • steroids e.g., cholesterol
  • chelating agents e.g., EDTA
  • the term "pharmaceutically acceptable carrier” encompasses any of the standard pharmaceutical carriers, such as a phosphate buffered saline solution, water, and emulsions, such as an oil/water or water/oil emulsion, and various types of wetting agents.
  • compositions also can include stabilizers and preservatives and any of the above noted carriers with the additional provisio that they be acceptable for use in vivo.
  • carriers stabilizers and adjuvants
  • capecitabine/docetaxel the "Cooper regimen” fluorouracil-levamisole, fluorouracil- leucovorin, fluorouracil/oxaliplatin, methotrexate-leucovorin, and the like.
  • Combinations of chemotherapies and molecular targeted therapies, biologic therapies, and radiation therapies are also well known to the art; including therapies such as trastuzumab plus paclitaxel, alone or in further combination with platinum compounds such as oxaliplatin, for certain breast cancers, and many other such regimens for other cancers; and the "Dublin regimen” 5 -fiuorouracil IV over 16 hours on days 1-5 and 75 mg/m cisplatin IV or oxaliplatin over 8 hours on day 7, with repetition at 6 weeks, in combination with 40 Gy radiotherapy in 15 fractions over the first 3 weeks) and the "Michigan regimen” (fiuorouracil plus cisplatin or oxaliplatin plus vinblastine plus radiotherapy), both for esophageal cancer, and many other such regimens for other cancers, including colorectal cancer.
  • therapies such as trastuzumab plus paclitaxel, alone or in further combination with platinum compounds such as oxaliplatin, for certain
  • the method for treating a patient further comprises, or alternatively consists essentially of, or yet further consists of surgical resection of a metastatic or non-metastatic solid malignant tumor and, in some aspects, in combination with radiation.
  • Methods for treating these tumors as Stage I, Stage II, Stage III, or Stage IV by surgical resection and/or radiation are known to one skilled in the art. Guidelines describing methods for treatment by surgical resection and/or radiation can be found at the National Comprehensive Cancer Network's web site, nccn.org, last accessed on May 27, 2008.
  • the disclosure provides an article of manufacture, comprising packaging material and at least one vial comprising a solution of the chemotherapy as described herein and/or or at least one antibody or its biological equivalent with the prescribed buffers and/or preservatives, optionally in an aqueous diluent, wherein said packaging material comprises a label that indicates that such solution can be held over a period of 1, 2, 3, 4, 5, 6, 9, 12, 18, 20, 24, 30, 36,40, 48, 54, 60, 66, 72 hours or greater.
  • the disclosure further comprises an article of manufacture, comprising packaging material, a first vial comprising the chemotherapy and/or at least one lyophilized antibody or its biological equivalent and a second vial comprising an aqueous diluent of prescribed buffer or preservative, wherein said packaging material comprises a label that instructs a patient to reconstitute the therapeutic in the aqueous diluent to form a solution that can be held over a period of twenty-four hours or greater.
  • Chemotherapeutic formulations of the present disclosure can be prepared by a process which comprises mixing at least one antibody or biological equivalent and a preservative selected from the group consisting of phenol, m-cresol, p-cresol, o-cresol, chlorocresol, benzyl alcohol, alkylparaben, (methyl, ethyl, propyl, butyl and the like), benzalkonium chloride, benzethonium chloride, sodium dehydroacetate and thimerosal or mixtures thereof in an aqueous diluent.
  • a preservative selected from the group consisting of phenol, m-cresol, p-cresol, o-cresol, chlorocresol, benzyl alcohol, alkylparaben, (methyl, ethyl, propyl, butyl and the like), benzalkonium chloride, benzethonium chloride, sodium dehydroacetate and thimerosal or mixtures thereof in an
  • a measured amount of at least one antibody in buffered solution is combined with the desired preservative in a buffered solution in quantities sufficient to provide the antibody and preservative at the desired concentrations.
  • Variations of this process would be recognized by one of skill in the art, e.g., the order the components are added, whether additional additives are used, the temperature and pH at which the formulation is prepared, are all factors that can be optimized for the concentration and means of administration used.
  • compositions and formulations can be provided to patients as clear solutions or as dual vials comprising a vial of lyophilized antibody that is reconstituted with a second vial containing the aqueous diluent. Either a single solution vial or dual vial requiring
  • Recognized devices comprising these single vial systems include those pen- injector devices for delivery of a solution such as BD Pens, BD Autojectore, Humaject® NovoPen®, B-D®Pen, AutoPen®, and OptiPen®, GenotropinPen®, Genotronorm Pen®, Humatro Pen®, Reco-Pen®, Roferon Pen®, Biojector®, iject®, J-tip Needle-Free Injector®, Intraject®, Medi-Ject®, e.g., as made or developed by Becton Dickensen (Franklin Lakes, N.J.
  • chemotherapeutic agent of the disclosure e.g., encapsulation in liposomes, microparticles, microcapsules, expression by recombinant cells, receptor-mediated endocytosis. See e.g., Wu and Wu (1987) J. Biol. Chem. 262:4429-4432 for construction of a therapeutic nucleic acid as part of a retroviral or other vector, etc.
  • Methods of delivery include but are not limited to intra-arterial, intra-muscular, intravenous, intranasal and oral routes.
  • agents identified herein as effective for their intended purpose can be administered to subjects or individuals identified by the methods herein as suitable for the therapy.
  • Therapeutic amounts can be empirically determined and will vary with the pathology being treated, the subject being treated and the efficacy and toxicity of the agent.
  • This disclosure also provides the use of a therapy comprising a kinase inhibitor for the treatment of a cancer patient selected for suitable for the therapy identified by the method as described herein. Also provided is a therapy of a medicament comprising an effective amount of an kinase inhibitor as described herein for treatment of a cancer patient having the genotype as described herein.
  • compositions are well known to those of ordinary skill in the art and include, but are not limited to, oral, microinjection, intravenous or parenteral administration.
  • the compositions are intended for topical, oral, or local administration as well as intravenously, subcutaneously, or intramuscularly. Administration can be effected continuously or intermittently throughout the course of the treatment.
  • kits for use in selecting a cancer patient for a therapy comprising administration of a kinase inhibitor, comprising suitable primers or probes or a microarray for determining at least one VEGF polymorphism of -1498 C/T or -634 G/C, and instructions for use therein.
  • kits for use in determining whether a cancer patient is likely to respond to a therapy comprising administration of a kinase inhibitor, comprising, or alternatively consisting essentially of, or yet alternatively consisting of, suitable primers or probes or a microarray for determining the VEGF -1498 C/T polymorphism, and instructions for use therein.
  • the kit further comprises an effective amount of the therapy.
  • the kinase inhibitor comprises a tyrosine kinase inhibitor.
  • the kinase inhibitor comprises a receptor tyrosine kinase inhibitor.
  • the kinase inhibitor comprises sorafenib or a chemical equivalent thereof.
  • the patient suffers from at least one cancer of the type of the group lung cancer, non-small cell lung cancer (NSCLC) including metastatic and non-metastatic NSCLC, breast cancer, advanced renal cell carcinoma, head and neck cancer, ovarian cancer, colon cancer, rectal cancer, colorectal cancer, esophageal cancer, gastric cancer, liver cancer, hepatocellular carcinoma (HCC), HCC refractory to surgery, bone cancer, spleen cancer, pancreatic cancer, or gallbladder cancer.
  • NSCLC non-small cell lung cancer
  • the patient suffers from at least NSCLC.
  • the NSCLS is metastatic NSCLC.
  • the patient has failed at least one, or alternatively at least two prior chemotherapy regimens.
  • the therapy is a first line, second line or third line therapy.
  • Suitable samples for the methods as described herein the sample comprises, or alternatively consisting essentially of, or yet further consisting of, at least one of a tumor cell, a normal cell adjacent to an original sample just isolated from the patient, a tumor, a normal cell corresponding to the tumor tissue type, a blood cell, a peripheral blood lymphocyte, or combinations thereof.
  • the samples can be any one or more of a fixed tissue, a frozen tissue, a biopsy tissue, a resection tissue, a microdissected tissue, or combinations thereof.
  • genotype is determined by a method comprising, or alternatively consisting essentially of, or yet further consisting of, polymerase chain reaction analysis (PCR), sequencing analysis, restriction enzyme analysis, mismatch cleavage analysis, single strand conformation polymorphism analysis, denaturing gradient gel electrophoresis, selective oligonucleotide hybridization, selective PCR amplification, selective primer extension, oligonucleotide ligation assay, exonuclease-resistant nucleotide analysis, Genetic Bit Analysis, primer-guided nucleotide incorporation analysis PCR, PCR-restriction fragment length polymorphism (PCR-RFLP), direct DNA sequencing, whole genome sequencing, sequencing, and/or microarray.
  • PCR polymerase chain reaction analysis
  • a mammal includes but is not limited to a simian, a murine, a bovine, an equine, a porcine or an ovine.
  • the disclosure provides diagnostic methods for determining the polymorphic region of the gene of interest.
  • the methods use probes or primers or microarrays comprising nucleotide sequences which are complementary to the gene of interest.
  • the disclosure provides kits for performing these methods as well as instructions for carrying out the methods of this disclosure such as collecting tissue and/or performing the screen, and/or analyzing the results, and / or administration of an effective amount of a therapy. These can be used alone or in combination with other suitable chemotherapy or biological therapy.
  • the kit can comprise at least one probe or primer which is capable of specifically hybridizing to the gene of interest and instructions for use.
  • the kits preferably comprise at least one of the above described nucleic acids.
  • Preferred kits for amplifying at least a portion of the gene of interest comprise two primers, at least one of which is capable of hybridizing to the allelic variant sequence.
  • Such kits are suitable for detection of genotype by, for example, fluorescence detection, by electrochemical detection, or by other detection.
  • Oligonucleotides whether used as probes or primers, contained in a kit can be detectably labeled. Labels can be detected either directly, for example for fluorescent labels, or indirectly. Indirect detection can include any detection method known to one of skill in the art, including biotin-avidin interactions, antibody binding and the like. Fluorescently labeled oligonucleotides also can contain a quenching molecule. Oligonucleotides can be bound to a surface. In one embodiment, the preferred surface is silica or glass. In another embodiment, the surface is a metal electrode.
  • kits of the disclosure comprise at least one reagent necessary to perform the assay.
  • the kit can comprise an enzyme.
  • the kit can comprise a buffer or any other necessary reagent.
  • Conditions for incubating a nucleic acid probe with a test sample depend on the format employed in the assay, the detection methods used, and the type and nature of the nucleic acid probe used in the assay.
  • One skilled in the art will recognize that any one of the commonly available hybridization, amplification or immunological assay formats can readily be adapted to employ the nucleic acid probes for use in the present disclosure. Examples of such assays can be found in Chard, T. (1986) AN INTRODUCTION TO
  • test samples used in the diagnostic kits include cells, protein or membrane extracts of cells, or biological fluids such as sputum, blood, serum, plasma, or urine.
  • the test samples may also be nn original sample just isolated from the patient, a tumor cell, a normal cell adjacent to a tumor, a normal cell corresponding to the tumor tissue type, a blood cell, a peripheral blood lymphocyte, or combinations thereof.
  • the test sample used in the above- described method will vary based on the assay format, nature of the detection method and the tissues, cells or extracts used as the sample to be assayed. Methods for preparing protein extracts or membrane extracts of cells are known in the art and can be readily adapted in order to obtain a sample which is compatible with the system utilized.
  • kits can include all or some of the positive controls, negative controls, reagents, primers, sequencing markers, probes and antibodies described herein for determining the subject's genotype in the polymorphic region of the gene of interest.
  • these suggested kit components may be packaged in a manner customary for use by those of skill in the art.
  • these suggested kit components may be provided in solution or as a liquid dispersion or the like.
  • the identification of the polymorphic region or the expression level of the gene of interest can also be useful for identifying an individual among other individuals from the same species.
  • DNA sequences can be used as a fingerprint for detection of different individuals within the same species. Thompson, J. S. and Thompson, eds., (1991) GENETICS IN MEDICINE, W B Saunders Co., Philadelphia, Pa. This is useful, e.g., in forensic studies.
  • E2501 was a randomized discontinuation phase II study of sorafenib versus placebo in patients with metastatic non-small cell lung cancer (NSCLC) who have failed at least two prior chemotherapy regimens.
  • NSCLC metastatic non-small cell lung cancer
  • PCR-RFLP assays were performed on genomic DNA extracted from plasma of patients. There were 88 plasma samples available for analysis: these included 76 patients from Step 1 and 18 (14 on S and 4 on P) from Step 2.
  • DCR disease control rate
  • a DCR include patients who had partial response or stable disease.
  • Patients harboring any C allele of VEGF -1498 (C/C+C/T) had a worse DCR compared with T/T genotype (26% vs. 56%) (P 0.021).
  • This example shows polymorphisms in the VEGF gene may predict DCR and PFS in NSCLC patients treated with sorafenib.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Hospice & Palliative Care (AREA)
  • Biophysics (AREA)
  • Oncology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The disclosure provides compositions and methods for determining the likely clinical outcomes of cancer patients treated with a therapy comprising a kinase inhibitor, in particular sorafenib. Said methods comprise screening for -1498 C/T and/or -634 G/C polymorphisms within the VEGF gene. After determining if a patient is likely to be successfully treated, the disclosure also provides methods for treating the patients.

Description

GERMLINE POLYMORPHISMS IN VEGF PREDICT CLINICAL OUTCOMES IN CANCER PATIENTS TREATED WITH SORAFENIB
CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] This application claims the benefit under 35 U.S.C. § 119(e) of U.S. Provisional Application No. 61/345,545, filed on May 17, 2010, the contents of which are hereby incorporated by reference in their entirety into the present disclosure.
STATEMENT AS TO FEDERALLY SPONSORED RESEARCH OR
DEVELOPMENT
[0002] This invention was made with government support under the National Institutes of Health and National Cancer Institute Grant No . U01 C A 114771 subcontract No . SPEC S 0700. Accordingly, the U.S. Government has certain rights to the invention.
FIELD OF THE INVENTION
[0003] This invention relates to the filed of pharmacogenomics and specifically to the application of gene expression and genetic polymorphisms to diagnose and treat diseases.
BACKGROUND
[0004] In nature, organisms of the same species usually differ from each other in some aspects, e.g., their appearance. The differences are genetically determined and are referred to as polymorphism. Genetic polymorphism is the occurrence in a population of two or more genetically determined alternative phenotypes due to different alleles. Polymorphism can be observed at the level of the whole individual (phenotype), in variant forms of proteins and blood group substances (biochemical polymorphism), morphological features of
chromosomes (chromosomal polymorphism) or at the level of DNA in differences of nucleotides (DNA polymorphism).
[0005] Polymorphism also plays a role in determining differences in an individual's response to drugs. Pharmacogenetics and pharmacogenomics are multidisciplmary research efforts to study the relationship between genotype, gene expression profiles, and phenotype, as expressed in variability between individuals in response to or toxicity from drugs. Indeed, it is now known that cancer chemotherapy is limited by the predisposition of specific populations to drug toxicity or poor drug response. For a review of the use of germline polymorphisms in clinical oncology, see Lenz (2004) J. Clin. Oncol. 22( 13) :2519-2521; Park et al. (2006) Curr. Opin. Pharma. 6(4):337-344; Zhang et al. (2006) Pharma. and Genomics 16(7):475-483 and U.S. Patent Publ. No. 2006/0115827. For a review of pharmacogenetics and pharmacogenomics in therapeutic antibody development for the treatment of cancer, see Yan and Beckman (2005) Biotechniques 39:565-568.
[0006] Although considerable research correlating gene expression and/or polymorphisms has been reported, much work remains to be done. This disclosure supplements the existing body of knowledge and provides related advantages as well.
SUMMARY
[0007] The disclosure provides compositions and methods for determining the likely clinical outcomes of cancer patients treated with a therapy comprising administration of kinase inhibitor, in particular sorafenib. After determining if a patient is likely to be successfully treated, the disclosure also provides methods for treating the patient.
[0008] Thus, in one aspect, the disclosure provides a method for aiding in the selection of, or selecting or not selecting, a cancer patient for a therapy comprising administration of a kinase inhibitor, comprising, or alternatively consisting essentially of, or yet alternatively consisting of, screening a tissue or cell sample isolated from the patient for at least one vascular endothelial growth factor (VEGF) polymorphism of -1498 C/T or -634 G/C, wherein the patient is selected for the therapy if at least one genotype of:
(a) (C/C or T/T) for -1498 C/T; or
(b) (C/C) for -634 G/C
is present, or the patient is not selected for the therapy if neither (a) nor (b) is present.
[0009] Also provided is a method for aiding in the determination of, or determining whether or not a cancer patient is suitable for a therapy comprising administration of a kinase inhibitor, comprising, or alternatively consisting essentially of, or yet alternatively consisting of, screening a tissue or cell sample isolated from the patient for at least one VEGF polymorphism of -1498 C/T or -634 G/C, wherein the patient is suitable for the therapy if at least one genotype of:
(a) (C/C or T/T) for -1498 C/T; or (b) (C/C) for -634 G/C
is present, or the patient is not suitable for the therapy if neither (a) nor (b) is present.
[0010] Further provided is a method for aiding in the determination of or determining whether a cancer patient is likely to experience a longer or shorter progression free survival following a therapy comprising administration of a kinase inhibitor, comprising, or alternatively consisting essentially of, or yet alternatively consisting of, screening a tissue or cell sample isolated from the patient for at least one VEGF polymorphism of -1498 C/T or - 634 G/C, wherein the presence of at least one genotype of:
(a) (C/C or T/T) for -1498 C/T; or
(b) (C/C) for -634 G/C
determines that the patient is likely to experience a longer progression free survival as compared to a patient having neither of the genotypes, or the presence of neither (a) nor (b) determines that the patient is likely to experience a shorter progression free survival as compared to a patient having at least one of the genotypes.
[0011] Yet another aspect of the disclosure provides a method for aiding in the
determination of or determining whether a cancer patient is likely or not likely to respond to a therapy comprising administration of a kinase inhibitor, comprising, or alternatively consisting essentially of, or yet alternatively consisting of, screening a tissue or cell sample isolated from the patient for a VEGF -1498 C/T polymorphism, wherein a genotype of (T/T) determines that the patient is likely to respond to the therapy, or a genotype of (C/C or C/T) determines that the patient is not likely to respond to the therapy.
[0012] After a patient is identified or selected, methods of treating the patient is also provided. In one aspect, provided is a method for aiding in the treatment of or for treating a cancer patient selected for treatment based on the presence of at least one VEGF genotype of:
(a) (C/C or T/T) for -1498 C/T; or
(b) (C/C) for -634 G/C
in a tissue or cell sample from the patient, comprising, or alternatively consisting essentially of, or yet alternatively consisting of, administering to the patient a therapy comprising a kinase inhibitor.
[0013] In one aspect of any of the above methods, the kinase inhibitor comprises a tyrosine kinase inhibitor. In another aspect, the kinase inhibitor comprises a receptor tyrosine kinase inhibitor. Yet in another aspect, the kinase inhibitor comprises sorafenib or a chemical equivalent thereof.
[0014] In one aspect of any of the above methods, the patient suffers from at least one cancer of the type of the group lung cancer, non-small cell lung cancer (NSCLC) including metastatic and non-metastatic NSCLC, breast cancer, head and neck cancer, ovarian cancer, colon cancer, rectal cancer, colorectal cancer, advanced renal cell carcinoma, esophageal cancer, gastric cancer, liver cancer, hepatocellular carcinoma (HCC), HCC refractory to surgery, bone cancer, spleen cancer, pancreatic cancer, or gallbladder cancer. In another aspect, the patient suffers from at least NSCLC. In a particular aspect, the NSCLS is metastatic NSCLC.
[0015] The methods are useful in the assistance of an animal, a mammal or yet further a human patient. For the purpose of illustration only, a mammal includes but is not limited to a human, a simian, a murine, a bovine, an equine, a porcine, a feline, a canine, or an ovine.
DETAILED DESCRIPTION OF THE DISCLOSURE
[0016] Throughout this disclosure, various publications, patents and published patent specifications are referenced by an identifying citation. The disclosures of these publications, patents and published patent specifications are hereby incorporated by reference into the present disclosure to more fully describe the state of the art to which this disclosure pertains.
[0017] The practice of the present disclosure employs, unless otherwise indicated, conventional techniques of molecular biology (including recombinant techniques), microbiology, cell biology, biochemistry and immunology, which are within the skill of the art. Such techniques are explained fully in the literature for example in the following publications. See, e.g., Sambrook and Russell eds. MOLECULAR CLONING: A
LABORATORY MANUAL, 3rd edition (2001); the series CURRENT PROTOCOLS IN MOLECULAR BIOLOGY (F. M. Ausubel et al. eds. (2007)); the series METHODS IN ENZYMOLOGY (Academic Press, Inc., N.Y.); PCR 1 : A PRACTICAL APPROACH (M. MacPherson et al. IRL Press at Oxford University Press (1991)); PCR 2: A PRACTICAL APPROACH (M.J. MacPherson, B.D. Hames and G.R. Taylor eds. (1995)); ANTIBODIES, A LABORATORY MANUAL (Harlow and Lane eds. (1999)); CULTURE OF ANIMAL CELLS : A MANUAL OF BASIC TECHNIQUE (R.I. Freshney 5th edition (2005)); OLIGONUCLEOTIDE SYNTHESIS (M. J. Gait ed. (1984)); Mullis et al. U.S. Patent No. 4,683,195; NUCLEIC ACID HYBRIDIZATION (B. D. Hames & S. J. Higgins eds. (1984)); NUCLEIC ACID HYBRIDIZATION (M.L.M. Anderson (1999)); TRANSCRIPTION AND TRANSLATION (B. D. Hames & S. J. Higgins eds. (1984)); IMMOBILIZED CELLS AND ENZYMES (IRL Press (1986)); B. Perbal, A PRACTICAL GUIDE TO MOLECULAR CLONING (1984); GENE TRANSFER VECTORS FOR MAMMALIAN CELLS (J. H. Miller and M. P. Calos eds. (1987) Cold Spring Harbor Laboratory); GENE TRANSFER AND EXPRESSION IN MAMMALIAN CELLS (S.C. Makrides ed. (2003))
IMMUNOCHEMICAL METHODS IN CELL AND MOLECULAR BIOLOGY (Mayer and Walker, eds., Academic Press, London (1987)); WEIR'S HANDBOOK OF
EXPERIMENTAL IMMUNOLOGY (L.A. Herzenberg et al. eds (1996)).
Definitions
[0018] As used herein, certain terms may have the following defined meanings. As used in the specification and claims, the singular form "a," "an" and "the" include singular and plural references unless the context clearly dictates otherwise. For example, the term "a cell" includes a single cell as well as a plurality of cells, including mixtures thereof.
[0019] As used herein, the term "comprising" is intended to mean that the compositions and methods include the recited elements, but not excluding others. "Consisting essentially of when used to define compositions and methods, shall mean excluding other elements of any essential significance to the composition or method. "Consisting of shall mean excluding more than trace elements of other ingredients for claimed compositions and substantial method steps. Embodiments defined by each of these transition terms are within the scope of this disclosure. Accordingly, it is intended that the methods and compositions can include additional steps and components (comprising) or alternatively including steps and
compositions of no significance (consisting essentially of) or alternatively, intending only the stated method steps or compositions (consisting of).
[0020] All numerical designations, e.g., pH, temperature, time, concentration, and molecular weight, including ranges, are approximations which are varied ( + ) or ( - ) by increments of 0.1. It is to be understood, although not always explicitly stated that all numerical designations are preceded by the term "about". The term "about" also includes the exact value "X" in addition to minor increments of "X" such as "X + 0.1 " or "X - 0.1." It also is to be understood, although not always explicitly stated, that the reagents described herein are merely exemplary and that equivalents of such are known in the art.
[0021] As will be understood by one skilled in the art, for any and all purposes, particularly in terms of providing a written description, all ranges disclosed herein also encompass any and all possible subranges and combinations of subranges thereof. Any listed range can be easily recognized as sufficiently describing and enabling the same range being broken down into at least equal halves, thirds, quarters, fifths, tenths, etc. As a non-limiting example, each range discussed herein can be readily broken down into a lower third, middle third and upper third, etc. As will also be understood by one skilled in the art all language such as "up to," "at least," "greater than," "less than," and the like include the number recited and refer to ranges which can be subsequently broken down into subranges as discussed above.
[0022] A "kinase inhibitor" or "protein kinase inhibitor" intends a molecule that specifically blocks the action of one or more protein kinases. Non-limiting examples of protein kinases include serine kinases, threonine kinases, tyrosine kinases or histidine kinases. Examples of kinase inhibitors include, without limitation, sorafenib, dasatinib, suitinib, and toceranib.
[0023] A "tyrosine kinase inhibitor" intends a molecule that specifically blocks the action of one or more tyrosine kinases. A tyrosine kinase is an enzyme that can transfer a phosphate group from ATP to a tyrosine residue in a protein. A "receptor tyrosine kinase inhibitor" intends a molecule that specifically blocks the action of one or more receptor tyrosine kinases. A receptor tyrosine kinase (RTK) is a high-affinity cell surface receptor for many polypeptide growth factors, cytokines, and hormones. Examples of receptor tyrosine kinase inhibitors include, without limitation, axitinib, pazopanib, suitinib, sorafenib, and toceranib.
[0024] Sorafenib, marketed as Nexavar™ by Bayer, has a structure of 4-[4-[[4-chloro-3- (trifluoromethyl)phenyl]carbamoylamino] phenoxy]-N-methyl-pyridine-2-carboxamide. Sorafenib has been approved for the treatment of primary kidney cancer and advanced primary liver cancer. Sorafenib is a receptor tyrosine kinase inhibitor and is unique in targeting the Raf/Mek/Erk pathway (MAP Kinase pathway).
[0025] The phrase "first line" or "second line" or "third line" refers to the order of treatment received by a patient. First line therapy regimens are treatments given first, whereas second or third line therapy are given after the first line therapy or after the second line therapy, respectively. The National Cancer Institute defines first line therapy as "the first treatment for a disease or condition. In patients with cancer, primary treatment can be surgery, chemotherapy, radiation therapy, or a combination of these therapies. First line therapy is also referred to those skilled in the art as "primary therapy and primary treatment." See National Cancer Institute website as www.cancer.gov, last visited on May 1, 2008.
Typically, a patient is given a subsequent chemotherapy regimen because the patient did not shown a positive clinical or sub-clinical response to the first line therapy or the first line therapy has stopped.
[0026] In one aspect, the term "equivalent" of "chemical equivalent" of a chemical means the ability of the chemical to selectively interact with its target protein, DNA, RNA or fragment thereof as measured by the inactivation of the target protein, incorporation of the chemical into the DNA or RNA or other suitable methods. Chemical equivalents include, but are not limited to, those agents with the same or similar biological activity and include, without limitation a pharmaceutically acceptable salt or mixtures thereof that interact with and/or inactivate the same target protein, DNA, or RNA as the reference chemical. For the purpose of this disclosure a chemical equivalent of Sorafenib intends a small molecule receptor tyrosine kinase inhibitor, such as an analog or prodrug of Sorafenib that also targets the Raf/Mek/Erk pathway (MAP Kinase pathway).
[0027] The term "allele," which is used interchangeably herein with "allelic variant" refers to alternative forms of a gene or portions thereof. Alleles occupy the same locus or position on homologous chromosomes. When a subject has two identical alleles of a gene, the subject is said to be homozygous for the gene or allele. When a subject has two different alleles of a gene, the subject is said to be heterozygous for the gene. Alleles of a specific gene can differ from each other in a single nucleotide, or several nucleotides, and can include substitutions, deletions and insertions of nucleotides. An allele of a gene can also be a form of a gene containing a mutation.
[0028] As used herein, the term "determining the genotype of a cell or tissue sample" intends to identify the genotypes of polymorphic loci of interest in the cell or tissue sample. In one aspect, a polymorphic locus is a single nucleotide polymorphic (SNP) locus. If the allelic composition of a SNP locus is heterozygous, the genotype of the SNP locus will be identified as "X/Y" wherein X and Y are two different nucleotides, e.g., T/C for the VEGF - 1498 C/T SNP. If the allelic composition of a SNP locus is heterozygous, the genotype of the SNP locus will be identified as "X/X" wherein X identifies the nucleotide that is present at both alleles, e.g., T/T for the VEGF -1498 C/T SNP.
[0029] The term "genetic marker" refers to an allelic variant of a polymorphic region of a gene of interest and/or the expression level of a gene of interest.
[0030] The term "wild-type allele" refers to an allele of a gene which, when present in two copies in a subject results in a wild-type phenotype. There can be several different wild-type alleles of a specific gene, since certain nucleotide changes in a gene may not affect the phenotype of a subject having two copies of the gene with the nucleotide changes.
[0031] The term "polymorphism" refers to the coexistence of more than one form of a gene or portion thereof. A portion of a gene of which there are at least two different forms, i.e., two different nucleotide sequences, is referred to as a "polymorphic region of a gene." A polymorphic region can be a single nucleotide, the identity of which differs in different alleles.
[0032] A "polymorphic gene" refers to a gene having at least one polymorphic region.
[0033] The term "genotype" refers to the specific allelic composition of an entire cell or a certain gene and in some aspects a specific polymorphism associated with that gene, whereas the term "phenotype" refers to the detectable outward manifestations of a specific genotype.
[0034] The phrase "amplification of polynucleotides" includes methods such as PCR, ligation amplification (or ligase chain reaction, LCR) and amplification methods. These methods are known and widely practiced in the art. See, e.g., U.S. Patent Nos. 4,683,195 and 4,683,202 and Innis et al, 1990 (for PCR); and Wu et al. (1989) Genomics 4:560-569 (for LCR). In general, the PCR procedure describes a method of gene amplification which is comprised of (i) sequence-specific hybridization of primers to specific genes within a DNA sample (or library), (ii) subsequent amplification involving multiple rounds of annealing, elongation, and denaturation using a DNA polymerase, and (iii) screening the PCR products for a band of the correct size. The primers used are oligonucleotides of sufficient length and appropriate sequence to provide initiation of polymerization, i.e. each primer is specifically designed to be complementary to each strand of the genomic locus to be amplified. [0035] Reagents and hardware for conducting PCR are commercially available. Primers useful to amplify sequences from a particular gene region are preferably complementary to, and hybridize specifically to sequences in the target region or in its flanking regions. Nucleic acid sequences generated by amplification may be sequenced directly. Alternatively the amplified sequence(s) may be cloned prior to sequence analysis. A method for the direct cloning and sequence analysis of enzymatically amplified genomic segments is known in the art.
[0036] The term "encode" as it is applied to polynucleotides refers to a polynucleotide which is said to "encode" a polypeptide if, in its native state or when manipulated by methods well known to those skilled in the art, it can be transcribed and/or translated to produce the mRNA for the polypeptide and/or a fragment thereof. The antisense strand is the
complement of such a nucleic acid, and the encoding sequence can be deduced therefrom.
[0037] The term "isolated" as used herein refers to molecules or biological or cellular materials being substantially free from other materials. In one aspect, the term "isolated" refers to nucleic acid, such as DNA or RNA, or protein or polypeptide, or cell or cellular organelle, or tissue or organ, separated from other DNAs or RNAs, or proteins or
polypeptides, or cells or cellular organelles, or tissues or organs, respectively, that are present in the natural source. The term "isolated" also refers to a nucleic acid or peptide that is substantially free of cellular material, viral material, or culture medium when produced by recombinant DNA techniques, or chemical precursors or other chemicals when chemically synthesized. Moreover, an "isolated nucleic acid" is meant to include nucleic acid fragments which are not naturally occurring as fragments and would not be found in the natural state. The term "isolated" is also used herein to refer to polypeptides which are isolated from other cellular proteins and is meant to encompass both purified and recombinant polypeptides. In other embodiments, the term "isolated or recombinant" means separated from constituents, cellular and otherwise, in which the cell, tissue, polynucleotide, peptide, polypeptide, protein, antibody or fragment(s) thereof, which are normally associated in nature. For example, an isolated cell is a cell that is separated from tissue or cells of dissimilar phenotype or genotype. An isolated polynucleotide is separated from the 3' and 5' contiguous nucleotides with which it is normally associated in its native or natural environment, e.g., on the chromosome. As is apparent to those of skill in the art, a non-naturally occurring
polynucleotide, peptide, polypeptide, protein, antibody or fragment(s) thereof, does not require "isolation" to distinguish it from its naturally occurring counterpart. The term "isolated" is also used herein to refer to cells or tissues that are isolated from other cells or tissues and is meant to encompass both cultured and engineered cells or tissues.
[0038] When a genetic marker or polymorphism "is used as a basis" for identifying or selecting a patient for a treatment described herein, the genetic marker or polymorphism is measured before and/or during treatment, and the values obtained are used by a clinician in assessing any of the following: (a) probable or likely suitability of an individual to initially receive treatment(s); (b) probable or likely unsuitability of an individual to initially receive treatment(s); (c) responsiveness to treatment; (d) probable or likely suitability of an individual to continue to receive treatment(s); (e) probable or likely unsuitability of an individual to continue to receive treatment(s); (f) adjusting dosage; (g) predicting likelihood of clinical benefits; or (h) toxicity. As would be well understood by one in the art, measurement of the genetic marker or polymorphism in a clinical setting is a clear indication that this parameter was used as a basis for initiating, continuing, adjusting and/or ceasing administration of the treatments described herein.
[0039] The term "treating" as used herein is intended to encompass curing as well as ameliorating at least one symptom of the condition or disease. For example, in the case of cancer, a response to treatment includes a reduction in cachexia, increase in survival time, elongation in time to tumor progression, reduction in tumor mass, reduction in tumor burden and/or a prolongation in time to tumor metastasis, disease control rate, time to tumor recurrence, tumor response, complete response, partial response, stable disease, progressive disease, progression free survival, overall survival, each as measured by standards set by the National Cancer Institute and the U.S. Food and Drug Administration for the approval of new drugs. See Johnson et al. (2003) J. Clin. Oncol. 21(7): 1404-1411.
[0040] A "patient" as used herein intends an animal patient, a mammal patient or yet further a human patient. For the purpose of illustration only, a mammal includes but is not limited to a human, a simian, a murine, a bovine, an equine, a porcine, a feline, a canine, or an ovine.
[0041] "An effective amount" intends to indicate the amount of a compound or agent administered or delivered to the patient which is most likely to result in the desired response to treatment. The amount is empirically determined by the patient's clinical parameters including, but not limited to the Stage of disease, age, gender, histology, and likelihood for tumor recurrence.
[0042] The term "clinical outcome", "clinical parameter", "clinical response", or "clinical endpoint" refers to any clinical observation or measurement relating to a patient's reaction to a therapy. Non-limiting examples of clinical outcomes include tumor response (TR), overall survival (OS), progression free survival (PFS), disease free survival, time to tumor recurrence (TTR), time to tumor progression (TTP), relative risk (RR), toxicity or side effect.
[0043] The term "suitable for a therapy" or "suitably treated with a therapy" shall mean that the patient is likely to exhibit one or more more desirable clinical outcome as compared to a patient or patients having the same disease and receiving the same therapy but possessing a different characteristic that is under consideration for the purpose of the comparison. In one aspect, the characteristic under consideration is a genetic polymorphism or a somatic mutation. In another aspect, the characteristic under consideration is expression level of a gene or a polypeptide. In one aspect, a more desirable clinical outcome is relatively higher likelihood of or relatively better tumor response such as tumor load reduction. In another aspect, a more desirable clinical outcome is relatively longer overall survival. In yet another aspect, a more desirable clinical outcome is relatively longer progression free survival or time to tumor progression. In yet another aspect, a more desirable clinical outcome is a higher disease control rate. In yet another aspect, a more desirable clinical outcome is relatively longer disease free survival. In further another aspect, a more desirable clinical outcome is relative reduction or delay in tumor recurrence. In another aspect, a more desirable clinical outcome is relatively decreased metastasis. In another aspect, a more desirable clinical outcome is relatively lower relative risk. In yet another aspect, a more desirable clinical outcome is relatively reduced toxicity or side effects. In some embodiments, more than one clinical outcomes are considered simultaneously. In one such aspect, a patient possessing a characteristic, such as a genotype of a genetic polymorphism, may exhibit more than one more desirable clinical outcomes as compared to a patient or patients having the same disease and receiving the same therapy but not possessing the characteristic. As defined herein, the patient is considered suitable for the therapy. In another such aspect, a patient possessing a characteristic may exhibit one or more more desirable clinical outcome but simultaneously exhibit one or more less desirable clinical outcome. The clinical outcomes will then be considered collectively, and a decision as to whether the patient is suitable for the therapy will be made accordingly, taking into account the patient's specific situation and the relevance of the clinical outcomes. In some embodiments, progression free survival or overall survival is weighted more heavily than tumor response in a collective decision making.
[0044] A "complete response" (CR) to a therapy defines patients with evaluable but non- measurable disease, whose tumor and all evidence of disease had disappeared.
[0045] A "partial response" (PR) to a therapy defines patients with anything less than complete response that were simply categorized as demonstrating partial response.
[0046] "Stable disease" (SD) indicates that the patient is stable.
[0047] "Progressive disease" (PD) indicates that the tumor has grown (i.e. become larger), spread (i.e. metastasized to another tissue or organ) or the overall cancer has gotten worse following treatment. For example, tumor growth of more than 20 percent since the start of treatment typically indicates progressive disease. "Disease free survival" indicates the length of time after treatment of a cancer or tumor during which a patient survives with no signs of the cancer or tumor.
[0048] "Non-response" (NR) to a therapy defines patients whose tumor or evidence of disease has remained constant or has progressed.
[0049] "Overall Survival" (OS) intends a prolongation in life expectancy as compared to naive or untreated individuals or patients.
[0050] "Progression free survival" (PFS) or "Time to Tumor Progression" (TTP) indicates the length of time during and after treatment that the cancer does not grow. Progression- free survival includes the amount of time patients have experienced a complete response or a partial response, as well as the amount of time patients have experienced stable disease.
[0051] "Disease Control Rate or (DCR)" includes a combination of the endpoints of partial response or stable disease over all patients in the group receiving a therapy.
[0052] "No Correlation" refers to a statistical analysis showing no relationship between the allelic variant of a polymorphic region or gene expression levels and clinical parameters.
[0053] "Tumor Recurrence" as used herein and as defined by the National Cancer Institute is cancer that has recurred (come back), usually after a period of time during which the cancer could not be detected. The cancer may come back to the same place as the original (primary) tumor or to another place in the body. It is also called recurrent cancer.
[0054] "Time to Tumor Recurrence" (TTR) is defined as the time from the date of diagnosis of the cancer to the date of first recurrence, death, or until last contact if the patient was free of any tumor recurrence at the time of last contact. If a patient had not recurred, then TTR was censored at the time of death or at the last follow-up.
[0055] "Relative Risk" (RR), in statistics and mathematical epidemiology, refers to the risk of an event (or of developing a disease) relative to exposure. Relative risk is a ratio of the probability of the event occurring in the exposed group versus a non-exposed group.
[0056] The term "identify" or "identifying" is to associate or affiliate a patient closely to a group or population of patients who likely experience the same or a similar clinical response to treatment.
[0057] As used herein, the terms "Stage I cancer," "Stage II cancer," "Stage III cancer," and "Stage IV" refer to the TNM staging classification for cancer. Stage I cancer typically identifies that the primary tumor is limited to the organ of origin. Stage II intends that the primary tumor has spread into surrounding tissue and lymph nodes immediately draining the area of the tumor. Stage III intends that the primary tumor is large, with fixation to deeper structures. Stage IV intends that the primary tumor is large, with fixation to deeper structures. See pages 20 and 21, CANCER BIOLOGY, 2nd Ed., Oxford University Press (1987).
[0058] A "tumor" is an abnormal growth of tissue resulting from uncontrolled, progressive multiplication of cells and serving no physiological function. A "tumor" is also known as a neoplasm.
[0059] "Having the same cancer" is used when comparing one patient to another or alternatively, one patient population to another patient population. For example, the two patients or patient population will each have or be suffering from colon cancer.
[0060] The term "blood" refers to blood which includes all components of blood circulating in a subject including, but not limited to, red blood cells, white blood cells, plasma, clotting factors, small proteins, platelets and/or cryoprecipitate. This is typically the type of blood which is donated when a human patent gives blood. [0061] Plasma is known in the art as the yellow liquid component of blood, in which the blood cells in whole blood are typically suspended. It makes up about 55% of the total blood volume. Blood plasma can be prepared by spinning a tube of fresh blood containing an anticoagulant in a centrifuge until the blood cells fall to the bottom of the tube. The blood plasma is then poured or drawn off. Blood plasma has a density of approximately 1025 kg/m3, or 1.025 kg/1.
[0062] A "normal cell corresponding to the tumor tissue type" refers to a normal cell from a same tissue type as the tumor tissue. A non-limiting examples is a normal lung cell from a patient having lung tumor, or a normal colon cell from a patient having colon tumor.
[0063] A "blood cell" refers to any of the cells contained in blood. A blood cell is also referred to as an erythrocyte or leukocyte, or a blood corpuscle. Non-limiting examples of blood cells include white blood cells, red blood cells, and platelets.
[0064] A "native" or "natural" or "wild-type" antigen is a polypeptide, protein or a fragment which contains an epitope and which has been isolated from a natural biological source. It also can specifically bind to an antigen receptor.
Descriptive Embodiments
[0065] In one aspect, this disclosure provides diagnostic, prognostic and therapeutic methods, which are based, at least in part, on determination of the identify of a genotype of interest identified herein.
[0066] For example, information obtained using the diagnostic assays described herein is useful for determining if a subject is suitable for cancer treatment of a given type. Based on the prognostic information, a doctor can recommend a therapeutic protocol, useful for reducing the malignant mass or tumor in the patient or treat cancer in the individual.
[0067] A patient's likely clinical outcome following a clinical procedure such as a therapy or surgery can be expressed in relative terms. For example, a patient having a particular genotype or expression level may experience relatively longer overall survival than a patient or patients not having the genotype or expression level. The patient having the particular genotype or expression level, alternatively, can be considered as likely to survive. Similarly, a patient having a particular genotype or expression level may experience relatively longer progression free survival, or time to tumor progression, than a patient or patients not having the genotype or expression level. The patient having the particular genotype or expression level, alternatively, can be considered as not likely to suffer tumor progression. Further, a patient having a particular genotype or expression level may experience relatively shorter time to tumor recurrence than a patient or patients not having the genotype or expression level. The patient having the particular genotype or expression level, alternatively, can be considered as not likely to suffer tumor recurrence. Yet in another example, a patient having a particular genotype or expression level may experience relatively more complete response or partial response or higher disease control rate or than a patient or patients not having the genotype or expression level. The patient having the particular genotype or expression level, alternatively, can be considered as likely to respond. Accordingly, a patient that is likely to survive, or not likely to suffer tumor progression, or not likely to suffer tumor recurrence, or likely to respond following a clinical procedure is considered suitable for the clinical procedure.
[0068] It is to be understood that information obtained using the diagnostic assays described herein may be used alone or in combination with other information, such as, but not limited to, genotypes or expression levels of other genes, clinical chemical parameters, histopathological parameters, or age, gender and weight of the subject. When used alone, the information obtained using the diagnostic assays described herein is useful in determining or identifying the clinical outcome of a treatment, selecting a patient for a treatment, or treating a patient, etc. When used in combination with other information, on the other hand, the information obtained using the diagnostic assays described herein is useful in aiding in the determination or identification of clinical outcome of a treatment, aiding in the selection of a patient for a treatment, or aiding in the treatment of a patient and etc. In a particular aspect, the genotypes or expression levels of one or more genes as disclosed herein are used in a panel of genes, each of which contributes to the final diagnosis, prognosis or treatment.
[0069] The methods of this disclosure are useful for the diagnosis, prognosis and treatment of patients suffering from at least one or more cancer of the group: lung cancer, non-small cell lung cancer (NSCLC) including metastatic and non-metastatic NSCLC, renal cancer, advanced renal cell carcinoma, breast cancer, head and neck cancer, ovarian cancer, colon cancer, rectal cancer, colorectal cancer, esophageal cancer, gastric cancer, liver cancer, hepatocellular carcinoma (HCC), HCC refractory to surgery, bone cancer, spleen cancer, pancreatic cancer, or gallbladder cancer. [0070] The methods are useful in the assistance of an animal, a mammal or yet further a human patient. For the purpose of illustration only, a mammal includes but is not limited to a human, a simian, a murine, a bovine, an equine, a porcine, a feline, a canine, or an ovine.
Diagnostic Methods
[0071] Provided, in one aspect, is a method for aiding in the selection of or selecting or not selecting a cancer patient for a therapy comprising administration of a kinase inhibitor, comprising, or alternatively consisting essentially of, or yet alternatively consisting of, screening a tissue or cell sample isolated from the patient for at least one VEGF
polymorphism of -1498 C/T or -634 G/C, wherein the patient is selected for the therapy if at least one genotype of:
(a) (C/C or T/T) for -1498 C/T; or
(b) (C/C) for -634 G/C
is present, or the patient is not selected for the therapy if neither (a) nor (b) is present.
[0072] In another aspect, the present disclosure provides a method for aiding in the selection of or selecting or not selecting a cancer patient for a therapy comprising
administration of a kinase inhibitor, comprising, or alternatively consisting essentially of, or yet alternatively consisting of, screening a tissue or cell sample isolated from the patient for at least one VEGF polymorphism of -1498 C/T or -634 G/C. In one aspect, the kinase inhibitor is a tyrosine kinase inhibitor. In another aspect, the kinase inhibitor is sorafenib. In some aspects, the therapy is a third line therapy. In some aspects, the cancer is non-small cell lung cancer, such as non-metastatic non-small cell lung cancer or metastatic non-small cell lung cancer. In one aspect, the patient is selected for the therapy if at least one genotype of:
(a) (C/C or T/T) for -1498 C/T; or
(b) (C/C) for -634 G/C
is present. In another aspect, the patient is not selected for the therapy if neither (a) nor (b) is present.
[0073] In one aspect, the patient is selected for the therapy if at least one genotype of:
(a) (C/C or T/T) for -1498 C/T; or
(b) (C/C) for -634 G/C is present. In another aspect, the patient is not selected for the therapy if neither (a) nor (b) is present.
[0074] Another aspect of the disclosure provides a method for aiding in the determination of or determining whether or not a cancer patient is suitable for a therapy comprising administration of a kinase inhibitor, comprising, or alternatively consisting essentially of, or yet alternatively consisting of, screening a tissue or cell sample isolated from the patient for at least one VEGF polymorphism of -1498 C/T or -634 G/C, wherein the patient is suitable for the therapy if at least one genotype of:
(a) (C/C or T/T) for -1498 C/T; or
(b) (C/C) for -634 G/C
is present, or the patient is not suitable for the therapy if neither (a) nor (b) is present.
[0075] Also provided is a method for aiding in the determination of or determining whether or not a cancer patient is suitable for a therapy comprising administration of a kinase inhibitor, comprising, or alternatively consisting essentially of, or yet alternatively consisting of, screening a tissue or cell sample isolated from the patient for at least one VEGF polymorphism of -1498 C/T or -634 G/C. In one aspect, the kinase inhibitor is a tyrosine kinase inhibitor. In another aspect, the kinase inhibitor is sorafenib. In some aspects, the therapy is a third line therapy. In some aspects, the cancer is non-small cell lung cancer, such as non-metastatic non-small cell lung cancer or metastatic non-small cell lung cancer. In one aspect, the patient is suitable for the therapy if at least one genotype of:
(a) (C/C or T/T) for -1498 C/T; or
(b) (C/C) for -634 G/C
is present. In another aspect, the patient is not suitable for the therapy if neither (a) nor (b) is present.
[0076] In one aspect, the patient is suitable for the therapy if at least one genotype of:
(a) (C/C or T/T) for -1498 C/T; or
(b) (C/C) for -634 G/C
is present. In another aspect, the patient is not suitable for the therapy if neither (a) nor (b) is present. [0077] Further provided is a method for aiding in the determination of or determining whether a cancer patient is likely to experience a longer or shorter progression free survival following a therapy comprising administration of a kinase inhibitor, comprising, or alternatively consisting essentially of, or yet alternatively consisting of, screening a tissue or cell sample isolated from the patient for at least one VEGF polymorphism of -1498 C/T or - 634 G/C, wherein the presence of at least one genotype of:
(a) (C/C or T/T) for -1498 C/T; or
(b) (C/C) for -634 G/C
determines that the patient is likely to experience a longer progression free survival as compared to a patient having neither of the genotypes, or the presence of neither (a) nor (b) determines that the patient is likely to experience a shorter progression free survival as compared to a patient having at least one of the genotypes.
[0078] Also provided is a method for aiding in the determination of or determining whether a cancer patient is likely to experience a longer or shorter progression free survival following a therapy comprising administration of a kinase inhibitor, comprising, or alternatively consisting essentially of, or yet alternatively consisting of, screening a tissue or cell sample isolated from the patient for at least one VEGF polymorphism of -1498 C/T or -634 G/C. In one aspect, the kinase inhibitor is a tyrosine kinase inhibitor. In another aspect, the kinase inhibitor is sorafenib. In some aspects, the therapy is a third line therapy. In some aspects, the cancer is non-small cell lung cancer, such as non-metastatic non-small cell lung cancer or metastatic non-small cell lung cancer. In one aspect, the presence of at least one genotype of:
(a) (C/C or T/T) for -1498 C/T; or
(b) (C/C) for -634 G/C
determines that the patient is likely to experience a longer progression free survival as compared to a patient having neither of the genotypes. In another aspect, the presence of neither (a) nor (b) determines that the patient is likely to experience a shorter progression free survival as compared to a patient having at least one of the genotypes.
[0079] In one aspect, the presence of at least one genotype of:
(a) (C/C or T/T) for -1498 C/T; or
(b) (C/C) for -634 G/C
determines that the patient is likely to experience a longer progression free survival as compared to a patient having neither of the genotypes. In another aspect, the presence of neither (a) nor (b) determines that the patient is likely to experience a shorter progression free survival as compared to a patient having at least one of the genotypes.
[0080] Still another aspect of the disclosure provides a method for aiding in the
determination of or determining whether a cancer patient is likely or not likely to respond to a therapy comprising administration of a kinase inhibitor, comprising, or alternatively consisting essentially of, or yet alternatively consisting of, screening a tissue or cell sample isolated from the patient for a VEGF -1498 C/T polymorphism, wherein a genotype of (T/T) determines that the patient is likely to respond to the therapy, or a genotype of (C/C or C/T) determines that the patient is not likely to respond to the therapy.
[0081] In one aspect, a genotype of (T/T) determines that the patient is likely to respond to the therapy. In another aspect, a genotype of (C/C or C/T) determines that the patient is not likely to respond to the therapy.
[0082] In one aspect of any of the above methods, the kinase inhibitor comprises a tyrosine kinase inhibitor. In another aspect, the kinase inhibitor comprises a receptor tyrosine kinase inhibitor. Yet in another aspect, the kinase inhibitor comprises sorafenib or a chemical equivalent thereof.
[0083] In one aspect of any of the above methods, the patient suffers from at least one cancer of the type of the group lung cancer, non-small cell lung cancer (NSCLC) including metastatic and non-metastatic NSCLC, breast cancer, head and neck cancer, ovarian cancer, colon cancer, rectal cancer, colorectal cancer, esophageal cancer, gastric cancer, advanced recal cell carcinoma, liver cancer, heaptocellualr carcinoma (HCC), HCC refractory to surgery, bone cancer, spleen cancer, pancreatic cancer, or gallbladder cancer. In another aspect, the patient suffers from at least NSCLC. In a particular aspect, the NSCLS is metastatic NSCLC.
[0084] In another aspect of any of the above methods, the patient has failed at least one, or alternatively at least two prior chemotherapy regimens. In one embodiment, the therapy is a first line, second line or third line therapy. [0085] Suitable patient samples in the methods include, but are not limited to a sample comprises, or alternatively consisting essentially of, or yet further consisting of, at least one of a tumor cell or tumor tissue, a normal cell or normal tissue, a normal cell or normal tissue adjacent to a tumor, a normal cell or normal tissue corresponding to the tumor tissue type, a blood cell, a peripheral blood lymphocyte, or combinations thereof. The samples can be at least one of an original sample recently isolated from the patient, a fixed tissue, a frozen tissue, a biopsy tissue, a resection tissue, a microdissected tissue, or combinations thereof.
[0086] Any suitable method for identifying the genotype in the patient sample can be used and the disclosures described herein are not to be limited to these methods. For the purpose of illustration only, the genotype is determined by a method comprising, or alternatively consisting essentially of, or yet further consisting of, polymerase chain reaction analysis (PCR), sequencing analysis, restriction enzyme analysis, mismatch cleavage analysis, single strand conformation polymorphism analysis, denaturing gradient gel electrophoresis, selective oligonucleotide hybridization, selective PCR amplification, selective primer extension, oligonucleotide ligation assay, exonuclease-resistant nucleotide analysis, Genetic Bit Analysis, primer-guided nucleotide incorporation analysis PCR, PCR-restriction fragment length polymorphism (PCR-RFLP), direct DNA sequencing, whole genome sequencing, sequencing, and/or microarray. These methods as well as equivalents or alternatives thereto are described herein.
[0087] The methods are useful in the assistance of an animal, a mammal or yet further a human patient. For the purpose of illustration only, a mammal includes but is not limited to a simian, a murine, a bovine, an equine, a porcine, a feline, a canine, or an ovine.
Polymorphic Region
[0088] For example, information obtained using the diagnostic assays described herein is useful for determining if a subject will likely, more likely, or less likely to respond to cancer treatment of a given type. Based on the prognostic information, a doctor can recommend a therapeutic protocol, useful for treating reducing the malignant mass or tumor in the patient or treat cancer in the individual.
[0089] In addition, knowledge of the identity of a particular allele in an individual (the gene profile) allows customization of therapy for a particular disease to the individual's genetic profile, the goal of "pharmacogenomics". For example, an individual's genetic profile can enable a doctor: 1) to more effectively prescribe a drug that will address the molecular basis of the disease or condition; 2) to better determine the appropriate dosage of a particular drug and 3) to identify novel targets for drug development. The identity of the genotype or expression patterns of individual patients can then be compared to the genotype or expression profile of the disease to determine the appropriate drug and dose to administer to the patient.
[0090] The ability to target populations expected to show the highest clinical benefit, based on the normal or disease genetic profile, can enable: 1) the repositioning of marketed drugs with disappointing market results; 2) the rescue of drug candidates whose clinical development has been discontinued as a result of safety or efficacy limitations, which are patient subgroup-specific; and 3) an accelerated and less costly development for drug candidates and more optimal drug labeling.
[0091] Detection of point mutations or additional base pair repeats can be accomplished by molecular cloning of the specified allele and subsequent sequencing of that allele using techniques known in the art, in some aspects, after isolation of a suitable nucleic acid sample using methods known in the art. Alternatively, the gene sequences can be amplified directly from a genomic DNA preparation from the tumor tissue using PCR, and the sequence composition is determined from the amplified product. As described more fully below, numerous methods are available for isolating and analyzing a subject's DNA for mutations at a given genetic locus such as the gene of interest.
[0092] A detection method is allele specific hybridization using probes overlapping the polymorphic site and having about 5, or alternatively 10, or alternatively 20, or alternatively 25, or alternatively 30 nucleotides around the polymorphic region. In another embodiment of the disclosure, several probes capable of hybridizing specifically to the allelic variant are attached to a solid phase support, e.g., a "chip". Oligonucleotides can be bound to a solid support by a variety of processes, including lithography. For example a chip can hold up to 250,000 oligonucleotides (GeneChip, Affymetrix). Mutation detection analysis using these chips comprising oligonucleotides, also termed "DNA probe arrays" is described e.g., in Cronin et al. (1996) Human Mutation 7:244.
[0093] In other detection methods, it is necessary to first amplify at least a portion of the gene of interest prior to identifying the allelic variant. Amplification can be performed, e.g., by PCR and/or LCR, according to methods known in the art. In one embodiment, genomic DNA of a cell is exposed to two PCR primers and amplification for a number of cycles sufficient to produce the required amount of amplified DNA.
[0094] Alternative amplification methods include: self sustained sequence replication (Guatelli et al. (1990) Proc. Natl. Acad. Sci. USA 87: 1874-1878), transcriptional
amplification system (Kwoh et al. (1989) Proc. Natl. Acad. Sci. USA 86: 1173-1177), Q-Beta Replicase (Lizardi et al. (1988) Bio/Technology 6: 1197), or any other nucleic acid amplification method, followed by the detection of the amplified molecules using techniques known to those of skill in the art. These detection schemes are useful for the detection of nucleic acid molecules if such molecules are present in very low numbers.
[0095] In one embodiment, any of a variety of sequencing reactions known in the art can be used to directly sequence at least a portion of the gene of interest and detect allelic variants, e.g., mutations, by comparing the sequence of the sample sequence with the corresponding wild-type (control) sequence. Exemplary sequencing reactions include those based on techniques developed by Maxam and Gilbert (1997) Proc. Natl. Acad. Sci. USA 74:560) or Sanger et al. (1977) Proc. Nat. Acad. Sci. 74:5463). It is also contemplated that any of a variety of automated sequencing procedures can be utilized when performing the subject assays (Biotechniques (1995) 19:448), including sequencing by mass spectrometry (see, for example, U.S. Patent No. 5,547,835 and International Patent Application Publication Number WO 94/16101, entitled DNA Sequencing by Mass Spectrometry by Koster; U.S. Patent No. 5,547,835 and international patent application Publication Number WO 94/21822 entitled "DNA Sequencing by Mass Spectrometry Via Exonuc lease Degradation" by Koster; U.S. Patent No. 5,605,798 and International Patent Application No. PCT/US96/03651 entitled DNA Diagnostics Based on Mass Spectrometry by Koster; Cohen et al. (1996) Adv.
Chromat. 36: 127-162; and Griffin et al. (1993) Appl. Biochem. Bio. 38: 147-159). It will be evident to one skilled in the art that, for certain embodiments, the occurrence of only one, two or three of the nucleic acid bases need be determined in the sequencing reaction. For instance, A-track or the like, e.g., where only one nucleotide is detected, can be carried out.
[0096] Yet other sequencing methods are disclosed, e.g., in U.S. Patent No. 5,580,732 entitled "Method of DNA Sequencing Employing A Mixed DNA-Polymer Chain Probe" and U.S. Patent No. 5,571,676 entitled "Method For Mismatch-Directed In Vitro DNA
Sequencing." [0097] In some cases, the presence of the specific allele in DNA from a subject can be shown by restriction enzyme analysis. For example, the specific nucleotide polymorphism can result in a nucleotide sequence comprising a restriction site which is absent from the nucleotide sequence of another allelic variant.
[0098] In a further embodiment, protection from cleavage agents (such as a nuclease, hydroxylamine or osmium tetroxide and with piperidine) can be used to detect mismatched bases in RNA/RNA DNA/DNA, or RNA/DNA heteroduplexes (see, e.g., Myers et al. (1985) Science 230:1242). In general, the technique of "mismatch cleavage" starts by providing heteroduplexes formed by hybridizing a control nucleic acid, which is optionally labeled, e.g., RNA or DNA, comprising a nucleotide sequence of the allelic variant of the gene of interest with a sample nucleic acid, e.g., RNA or DNA, obtained from a tissue sample. The double-stranded duplexes are treated with an agent which cleaves single-stranded regions of the duplex such as duplexes formed based on basepair mismatches between the control and sample strands. For instance, RNA/DNA duplexes can be treated with RNase and
DNA/DNA hybrids treated with SI nuclease to enzymatically digest the mismatched regions. In other embodiments, either DNA/DNA or RNA/DNA duplexes can be treated with hydroxylamine or osmium tetroxide and with piperidine in order to digest mismatched regions. After digestion of the mismatched regions, the resulting material is then separated by size on denaturing polyacrylamide gels to determine whether the control and sample nucleic acids have an identical nucleotide sequence or in which nucleotides they are different. See, for example, U.S. Patent No. 6,455,249, Cotton et al. (1988) Proc. Natl. Acad. Sci. USA 85:4397; Saleeba et al. (1992) Methods Enzy. 217:286-295. In another embodiment, the control or sample nucleic acid is labeled for detection.
[0099] In other embodiments, alterations in electrophoretic mobility is used to identify the particular allelic variant. For example, single strand conformation polymorphism (SSCP) may be used to detect differences in electrophoretic mobility between mutant and wild type nucleic acids (Orita et al. (1989) Proc. Natl. Acad. Sci. USA 86:2766; Cotton (1993) Mutat.
Res. 285: 125-144 and Hayashi (1992) Genet Anal Tech. Appl. 9:73-79). Single-stranded
DNA fragments of sample and control nucleic acids are denatured and allowed to renature. The secondary structure of single-stranded nucleic acids varies according to sequence, the resulting alteration in electrophoretic mobility enables the detection of even a single base change. The DNA fragments may be labeled or detected with labeled probes. The sensitivity of the assay may be enhanced by using RNA (rather than DNA), in which the secondary structure is more sensitive to a change in sequence. In another preferred embodiment, the subject method utilizes heteroduplex analysis to separate double stranded heteroduplex molecules on the basis of changes in electrophoretic mobility (Keen et al. (1991) Trends Genet. 7:5).
[0100] In yet another embodiment, the identity of the allelic variant is obtained by analyzing the movement of a nucleic acid comprising the polymorphic region in
polyacrylamide gels containing a gradient of denaturant, which is assayed using denaturing gradient gel electrophoresis (DGGE) (Myers et al. (1985) Nature 313:495). When DGGE is used as the method of analysis, DNA will be modified to insure that it does not completely denature, for example by adding a GC clamp of approximately 40 bp of high-melting GC- rich DNA by PCR. In a further embodiment, a temperature gradient is used in place of a denaturing agent gradient to identify differences in the mobility of control and sample DNA (Rosenbaum and Reissner (1987) Biophys. Chem. 265: 1275).
[0101] Examples of techniques for detecting differences of at least one nucleotide between 2 nucleic acids include, but are not limited to, selective oligonucleotide hybridization, selective amplification, or selective primer extension. For example, oligonucleotide probes may be prepared in which the known polymorphic nucleotide is placed centrally (allele- specific probes) and then hybridized to target DNA under conditions which permit hybridization only if a perfect match is found (Saiki et al. (1986) Nature 324: 163); Saiki et al. (1989) Proc. Natl. Acad. Sci. USA 86:6230 and Wallace et al. (1979) Nucl. Acids Res.
6:3543). Such allele specific oligonucleotide hybridization techniques may be used for the detection of the nucleotide changes in the polymorphic region of the gene of interest. For example, oligonucleotides having the nucleotide sequence of the specific allelic variant are attached to a hybridizing membrane and this membrane is then hybridized with labeled sample nucleic acid. Analysis of the hybridization signal will then reveal the identity of the nucleotides of the sample nucleic acid.
[0102] Alternatively, allele specific amplification technology which depends on selective PCR amplification may be used in conjunction with the instant disclosure. Oligonucleotides used as primers for specific amplification may carry the allelic variant of interest in the center of the molecule (so that amplification depends on differential hybridization) (Gibbs et al. (1989) Nucleic Acids Res. 17:2437-2448) or at the extreme 3' end of one primer where, under appropriate conditions, mismatch can prevent, or reduce polymerase extension (Prossner (1993) Tibtech 11 :238 and Newton et al. (1989) Nucl. Acids Res. 17:2503). This technique is also termed "PROBE" for Probe Oligo Base Extension. In addition it may be desirable to introduce a novel restriction site in the region of the mutation to create cleavage- based detection (Gasparini et al. (1992) Mol. Cell Probes 6: 1).
[0103] In another embodiment, identification of the allelic variant is carried out using an oligonucleotide ligation assay (OLA), as described, e.g., in U.S. Patent No. 4,998,617 and in Landegren et al. (1988) Science 241 : 1077-1080. The OLA protocol uses two
oligonucleotides which are designed to be capable of hybridizing to abutting sequences of a single strand of a target. One of the oligonucleotides is linked to a separation marker, e.g., biotinylated, and the other is detectably labeled. If the precise complementary sequence is found in a target molecule, the oligonucleotides will hybridize such that their termini abut, and create a ligation substrate. Ligation then permits the labeled oligonucleotide to be recovered using avidin, or another biotin ligand. Nickerson et al. have described a nucleic acid detection assay that combines attributes of PCR and OLA (Nickerson et al. (1990) Proc. Natl. Acad. Sci. (U.S.A.) 87:8923-8927). In this method, PCR is used to achieve the exponential amplification of target DNA, which is then detected using OLA.
[0104] Several techniques based on this OLA method have been developed and can be used to detect the specific allelic variant of the polymorphic region of the gene of interest. For example, U.S. Patent No. 5,593,826 discloses an OLA using an oligonucleotide having 3'- amino group and a 5'-phosphorylated oligonucleotide to form a conjugate having a phosphoramidate linkage. In another variation of OLA described in Tobe et al. (1996) Nucleic Acids Res. 24: 3728, OLA combined with PCR permits typing of two alleles in a single microtiter well. By marking each of the allele-specific primers with a unique hapten, i.e. digoxigenin and fluorescein, each OLA reaction can be detected by using hapten specific antibodies that are labeled with different enzyme reporters, alkaline phosphatase or horseradish peroxidase. This system permits the detection of the two alleles using a high throughput format that leads to the production of two different colors.
[0105] In one embodiment, the single base polymorphism can be detected by using a specialized exonuclease-resistant nucleotide, as disclosed, e.g., in Mundy, C. R. (U.S. Patent No. 4,656,127). According to the method, a primer complementary to the allelic sequence immediately 3 ' to the polymorphic site is permitted to hybridize to a target molecule obtained from a particular animal or human. If the polymorphic site on the target molecule contains a nucleotide that is complementary to the particular exonuclease-resistant nucleotide derivative present, then that derivative will be incorporated onto the end of the hybridized primer. Such incorporation renders the primer resistant to exonuclease, and thereby permits its detection. Since the identity of the exonuclease-resistant derivative of the sample is known, a finding that the primer has become resistant to exonucleases reveals that the nucleotide present in the polymorphic site of the target molecule was complementary to that of the nucleotide derivative used in the reaction. This method has the advantage that it does not require the determination of large amounts of extraneous sequence data.
[0106] In another embodiment of the disclosure, a solution-based method is used for determining the identity of the nucleotide of the polymorphic site. Cohen, D. et al. (French Patent 2,650,840; PCT Appln. No. WO91/02087). As in the Mundy method of U.S. Patent No. 4,656,127, a primer is employed that is complementary to allelic sequences immediately 3' to a polymorphic site. The method determines the identity of the nucleotide of that site using labeled dideoxynucleotide derivatives, which, if complementary to the nucleotide of the polymorphic site will become incorporated onto the terminus of the primer.
[0107] An alternative method, known as Genetic Bit Analysis or GBA is described by Goelet, P. et al. (PCT Appln. No. 92/15712). This method uses mixtures of labeled terminators and a primer that is complementary to the sequence 3' to a polymorphic site. The labeled terminator that is incorporated is thus determined by, and complementary to, the nucleotide present in the polymorphic site of the target molecule being evaluated. In contrast to the method of Cohen et al. (French Patent 2,650,840; PCT Appln. No. W091/02087) the method of Goelet, P. et al. supra, is preferably a heterogeneous phase assay, in which the primer or the target molecule is immobilized to a solid phase.
[0108] Several primer-guided nucleotide incorporation procedures for assaying
polymorphic sites in DNA have been described (Komher, J. S. et al. (1989) Nucl. Acids. Res. 17:7779-7784; Sokolov, B. P. (1990) Nucl. Acids Res. 18:3671; Syvanen, A.-C. et al. (1990) Genomics 8:684-692; Kuppuswamy, M. N. et al. (1991) Proc. Natl. Acad. Sci. (U.S.A.)
88: 1143-1147; Prezant, T. R. et al. (1992) Hum. Mutat. 1 : 159-164; Ugozzoli, L. et al. (1992) GATA 9: 107-112; Nyren, P. et al. (1993) Anal. Biochem. 208: 171-175). These methods differ from GB A™ in that they all rely on the incorporation of labeled deoxynucleotides to discriminate between bases at a polymorphic site. In such a format, since the signal is proportional to the number of deoxynucleotides incorporated, polymorphisms that occur in runs of the same nucleotide can result in signals that are proportional to the length of the run (Syvanen, A.-C. et al. (1993) Amer. J. Hum. Genet. 52:46-59).
[0109] If the polymorphic region is located in the coding region of the gene of interest, yet other methods than those described above can be used for determining the identity of the allelic variant. For example, identification of the allelic variant, which encodes a mutated signal peptide, can be performed by using an antibody specifically recognizing the mutant protein in, e.g., immunohistochemistry or immunoprecipitation. Antibodies to the wild-type or signal peptide mutated forms of the signal peptide proteins can be prepared according to methods known in the art.
[0110] Often a solid phase support is used as a support capable of binding of a primer, probe, polynucleotide, an antigen or an antibody. Well-known supports include glass, polystyrene, polypropylene, polyethylene, dextran, nylon, amylases, natural and modified celluloses, polyacrylamides, gabbros, and magnetite. The nature of the support can be either soluble to some extent or insoluble for the purposes of the present disclosure. The support material may have virtually any possible structural configuration so long as the coupled molecule is capable of binding to an antigen or antibody. Thus, the support configuration may be spherical, as in a bead, or cylindrical, as in the inside surface of a test tube, or the external surface of a rod. Alternatively, the surface may be flat such as a sheet, test strip, etc. or alternatively polystyrene beads. Those skilled in the art will know many other suitable supports for binding antibody or antigen, or will be able to ascertain the same by use of routine experimentation.
[0111] Moreover, it will be understood that any of the above methods for detecting alterations in a gene or gene product or polymorphic variants can be used to monitor the course of treatment or therapy.
[0112] The methods described herein may be performed, for example, by utilizing pre- packaged diagnostic kits, such as those described below, comprising at least one probe or primer nucleic acid described herein, which may be conveniently used, e.g., to determine whether a subject is likely to experience tumor recurrence following therapy as described herein or has or is at risk of developing disease such as colon cancer.
[0113] Sample nucleic acid for use in the above-described diagnostic and prognostic methods can be obtained from any suitable cell type or tissue of a subject. For example, a subject's bodily fluid (e.g. blood) can be obtained by known techniques (e.g., venipuncture). Alternatively, nucleic acid tests can be performed on dry samples (e.g., hair or skin).
Diagnostic procedures can also be performed in situ directly upon tissue sections (fixed and/or frozen) of patient tissue obtained from biopsies or resections, such that no nucleic acid purification is necessary. Nucleic acid reagents can be used as probes and/or primers for such in situ procedures (see, for example, Nuovo, G. J. (1992) PCR IN SITU HYBRIDIZATION: PROTOCOLS AND APPLICATIONS, Raven Press, NY).
[0114] In addition to methods which focus primarily on the detection of one nucleic acid sequence, profiles can also be assessed in such detection schemes. Fingerprint profiles can be generated, for example, by utilizing a differential display procedure, Northern analysis and/or RT-PCR.
[0115] Antibodies directed against wild type or mutant peptides encoded by the allelic variants of the gene of interest may also be used in disease diagnostics and prognostics. Such diagnostic methods, may be used to detect abnormalities in the level of expression of the peptide, or abnormalities in the structure and/or tissue, cellular, or subcellular location of the peptide. Protein from the tissue or cell type to be analyzed may easily be detected or isolated using techniques which are well known to one of skill in the art, including but not limited to Western blot analysis. For a detailed explanation of methods for carrying out Western blot analysis, see Sambrook and Russell (2001) supra. The protein detection and isolation methods employed herein can also be such as those described in Harlow and Lane, (1999) supra. This can be accomplished, for example, by immunofluorescence techniques employing a fluorescently labeled antibody (see below) coupled with light microscopic, flow cytometric, or fluorimetric detection. The antibodies (or fragments thereof) useful in the present disclosure may, additionally, be employed histologically, as in immunofluorescence or immunoelectron microscopy, for in situ detection of the peptides or their allelic variants. In situ detection may be accomplished by removing a histological specimen from a patient, and applying thereto a labeled antibody of the present disclosure. The antibody (or fragment) is preferably applied by overlaying the labeled antibody (or fragment) onto a biological sample. Through the use of such a procedure, it is possible to determine not only the presence of the subject polypeptide, but also its distribution in the examined tissue. Using the present disclosure, one of ordinary skill will readily perceive that any of a wide variety of histological methods (such as staining procedures) can be modified in order to achieve such in situ detection.
[0116] In one embodiment, it is necessary to first amplify at least a portion of the gene of interest prior to identifying the polymorphic region of the gene of interest in a sample.
Amplification can be performed, e.g., by PCR and/or LCR, according to methods known in the art. Various non-limiting examples of PCR include the herein described methods.
[0117] Allele-specific PCR is a diagnostic or cloning technique is used to identify or utilize single-nucleotide polymorphisms (SNPs). It requires prior knowledge of a DNA sequence, including differences between alleles, and uses primers whose 3' ends encompass the SNP. PCR amplification under stringent conditions is much less efficient in the presence of a mismatch between template and primer, so successful amplification with an SNP-specific primer signals presence of the specific SNP in a sequence (See, Saiki et al. (1986) Nature 324(6093): 163-166 and U.S. Patent Nos.: 5,821,062; 7,052,845 or 7,250,258).
[0118] Assembly PCR or Polymerase Cycling Assembly (PCA) is the artificial synthesis of long DNA sequences by performing PCR on a pool of long oligonucleotides with short overlapping segments. The oligonucleotides alternate between sense and antisense directions, and the overlapping segments determine the order of the PCR fragments thereby selectively producing the final long DNA product (See, Stemmer et al. (1995) Gene
164(l):49-53 and U.S. Patent Nos.: 6,335,160; 7,058,504 or 7,323,336)
[0119] Asymmetric PCR is used to preferentially amplify one strand of the original DNA more than the other. It finds use in some types of sequencing and hybridization probing where having only one of the two complementary stands is required. PCR is carried out as usual, but with a great excess of the primers for the chosen strand. Due to the slow amplification later in the reaction after the limiting primer has been used up, extra cycles of PCR are required (See, Innis et al. (1988) Proc Natl Acad Sci U.S.A. 85(24):9436-9440 and U.S. Patent Nos.: 5,576,180; 6,106,777 or 7,179,600) A recent modification on this process, known as Linear- After- The-Exponential-PCR (LATE-PCR), uses a limiting primer with a higher melting temperature (Tm) than the excess primer to maintain reaction efficiency as the limiting primer concentration decreases mid-reaction (Pierce et al. (2007) Methods Mol. Med. 132:65-85).
[0120] Colony PCR uses bacterial colonies, for example E. coli, which can be rapidly screened by PCR for correct DNA vector constructs. Selected bacterial colonies are picked with a sterile toothpick and dabbed into the PCR master mix or sterile water. The PCR is started with an extended time at 95 °C when standard polymerase is used or with a shortened denaturation step at 100°C and special chimeric DNA polymerase (Pavlov et al. (2006) "Thermostable DNA Polymerases for a Wide Spectrum of Applications: Comparison of a Robust Hybrid TopoTaq to other enzymes", in Kieleczawa J: DNA Sequencing II:
Optimizing Preparation and Cleanup. Jones and Bartlett, pp. 241-257)
[0121] Helicase-dependent amplification is similar to traditional PCR, but uses a constant temperature rather than cycling through denaturation and annealing/extension cycles. DNA Helicase, an enzyme that unwinds DNA, is used in place of thermal denaturation (See, Myriam et al. (2004) EMBO reports 5(8):795-800 and U.S. Patent No. 7,282,328).
[0122] Hot-start PCR is a technique that reduces non-specific amplification during the initial set up stages of the PCR. The technique may be performed manually by heating the reaction components to the melting temperature (e.g., 95°C) before adding the polymerase (Chou et al. (1992) Nucleic Acids Research 20: 1717-1723 and U.S. Patent Nos.: 5,576,197 and 6,265,169). Specialized enzyme systems have been developed that inhibit the polymerase's activity at ambient temperature, either by the binding of an antibody (Sharkey et al. (1994) Bio/Technology 12:506-509) or by the presence of covalently bound inhibitors that only dissociate after a high-temperature activation step. Hot- start/cold- finish PCR is achieved with new hybrid polymerases that are inactive at ambient temperature and are instantly activated at elongation temperature.
[0123] Intersequence-specific (ISSR) PCR method for DNA fingerprinting that amplifies regions between some simple sequence repeats to produce a unique fingerprint of amplified fragment lengths (Zietkiewicz et al. (1994) Genomics 20(2): 176-83).
[0124] Inverse PCR is a method used to allow PCR when only one internal sequence is known. This is especially useful in identifying flanking sequences to various genomic inserts. This involves a series of DNA digestions and self ligation, resulting in known sequences at either end of the unknown sequence (Ochman et al. (1988) Genetics 120:621-623 and U.S. Patent Nos.: 6,013,486; 6,106,843 or 7,132,587).
[0125] Ligation-mediated PCR uses small DNA linkers ligated to the DNA of interest and multiple primers annealing to the DNA linkers; it has been used for DNA sequencing, genome walking, and DNA footprinting (Mueller et al. (1988) Science 246:780-786).
[0126] Methylation-specific PCR (MSP) is used to detect methylation of CpG islands in genomic DNA (Herman et al. (1996) Proc Natl Acad Sci U.S.A. 93(13):9821-9826 and U.S. Patent Nos.: 6,811,982; 6,835,541 or 7,125,673). DNA is first treated with sodium bisulfite, which converts unmethylated cytosine bases to uracil, which is recognized by PCR primers as thymine. Two PCRs are then carried out on the modified DNA, using primer sets identical except at any CpG islands within the primer sequences. At these points, one primer set recognizes DNA with cytosines to amplify methylated DNA, and one set recognizes DNA with uracil or thymine to amplify unmethylated DNA. MSP using qPCR can also be performed to obtain quantitative rather than qualitative information about methylation. [0127] Multiplex Ligation-dependent Probe Amplification (MLPA) permits multiple targets to be amplified with only a single primer pair, thus avoiding the resolution limitations of multiplex PCR (see below).
[0128] Multiplex -PCR uses of multiple, unique primer sets within a single PCR mixture to produce amplicons of varying sizes specific to different DNA sequences (See, U.S. Patent Nos.: 5,882,856; 6,531,282 or 7,118,867). By targeting multiple genes at once, additional information may be gained from a single test run that otherwise would require several times the reagents and more time to perform. Annealing temperatures for each of the primer sets must be optimized to work correctly within a single reaction, and amplicon sizes, i.e., their base pair length, should be different enough to form distinct bands when visualized by gel electrophoresis.
[0129] Nested PCR increases the specificity of DNA amplification, by reducing
background due to non-specific amplification of DNA. Two sets of primers are being used in two successive PCRs. In the first reaction, one pair of primers is used to generate DNA products, which besides the intended target, may still consist of non-specifically amplified DNA fragments. The product(s) are then used in a second PCR with a set of primers whose binding sites are completely or partially different from and located 3 ' of each of the primers used in the first reaction (See, U.S. Patent Nos.: 5,994,006; 7,262,030 or 7,329,493). Nested PCR is often more successful in specifically amplifying long DNA fragments than
conventional PCR, but it requires more detailed knowledge of the target sequences.
[0130] Overlap-extension PCR is a genetic engineering technique allowing the construction of a DNA sequence with an alteration inserted beyond the limit of the longest practical primer length.
[0131] Quantitative PCR (Q-PCR), also known as RQ-PCR, QRT-PCR and RTQ-PCR, is used to measure the quantity of a PCR product following the reaction or in real-time. See, U.S. Patent Nos.: 6,258,540; 7,101,663 or 7,188,030. Q-PCR is the method of choice to quantitatively measure starting amounts of DNA, cDNA or RNA. Q-PCR is commonly used to determine whether a DNA sequence is present in a sample and the number of its copies in the sample. The method with currently the highest level of accuracy is digital PCR as described in U.S. Patent No. 6,440,705; U.S. Publication No. 2007/0202525; Dressman et al. (2003) Proc. Natl. Acad. Sci USA 100(15):8817-8822 and Vogelstein et al. (1999) Proc. Natl. Acad. Sci. USA. 96(16):9236-9241. More commonly, RT-PCR refers to reverse transcription PCR (see below), which is often used in conjunction with Q-PCR. QRT-PCR methods use fluorescent dyes, such as Sybr Green, or fluorophore-containing DNA probes, such as TaqMan, to measure the amount of amplified product in real time.
[0132] Reverse Transcription PCR (RT-PCR) is a method used to amplify, isolate or identify a known sequence from a cellular or tissue RNA (See, U.S. Patent Nos.: 6,759,195; 7,179,600 or 7,317,111). The PCR is preceded by a reaction using reverse transcriptase to convert RNA to cDNA. RT-PCR is widely used in expression profiling, to determine the expression of a gene or to identify the sequence of an RNA transcript, including transcription start and termination sites and, if the genomic DNA sequence of a gene is known, to map the location of exons and introns in the gene. The 5' end of a gene (corresponding to the transcription start site) is typically identified by an RT-PCR method, named Rapid
Amplification of cDNA Ends (RACE-PCR).
[0133] Thermal asymmetric interlaced PCR (TAIL-PCR) is used to isolate unknown sequence flanking a known sequence. Within the known sequence TAIL-PCR uses a nested pair of primers with differing annealing temperatures; a degenerate primer is used to amplify in the other direction from the unknown sequence (Liu et al. (1995) Genomics 25(3):674-81). [0134] Touchdown PCR a variant of PCR that aims to reduce nonspecific background by gradually lowering the annealing temperature as PCR cycling progresses. The annealing temperature at the initial cycles is usually a few degrees (3-5 °C) above the Tm of the primers used, while at the later cycles, it is a few degrees (3-5 °C) below the primer Tm. The higher temperatures give greater specificity for primer binding, and the lower temperatures permit more efficient amplification from the specific products formed during the initial cycles (Don et al. (1991) Nucl Acids Res 19:4008 and U.S. Patent No. 6,232,063).
[0135] In one embodiment of the disclosure, probes are labeled with two fluorescent dye molecules to form so-called "molecular beacons" (Tyagi, S. and Kramer, F.R. (1996) Nat. Biotechnol. 14:303-8). Such molecular beacons signal binding to a complementary nucleic acid sequence through relief of intramolecular fluorescence quenching between dyes bound to opposing ends on an oligonucleotide probe. The use of molecular beacons for genotyping has been described (Kostrikis (1998) Science 279: 1228-9) as has the use of multiple beacons simultaneously (Marras (1999) Genet. Anal. 14: 151-6). A quenching molecule is useful with a particular fluorophore if it has sufficient spectral overlap to substantially inhibit
fluorescence of the fluorophore when the two are held proximal to one another, such as in a molecular beacon, or when attached to the ends of an oligonucleotide probe from about 1 to about 25 nucleotides.
[0136] Labeled probes also can be used in conjunction with amplification of a gene of interest. (Holland et al. (1991) Proc. Natl. Acad. Sci. 88:7276-7280). U.S. Patent No.
5,210,015 by Gelfand et al. describe fluorescence-based approaches to provide real time measurements of amplification products during PCR. Such approaches have either employed intercalating dyes (such as ethidium bromide) to indicate the amount of double-stranded DNA present, or they have employed probes containing fluorescence-quencher pairs (also referred to as the "Taq-Man" approach) where the probe is cleaved during amplification to release a fluorescent molecule whose concentration is proportional to the amount of double- stranded DNA present. During amplification, the probe is digested by the nuclease activity of a polymerase when hybridized to the target sequence to cause the fluorescent molecule to be separated from the quencher molecule, thereby causing fluorescence from the reporter molecule to appear. The Taq-Man approach uses a probe containing a reporter molecule- quencher molecule pair that specifically anneals to a region of a target polynucleotide containing the polymorphism. [0137] Probes can be affixed to surfaces for use as "gene chips." Such gene chips can be used to detect genetic variations by a number of techniques known to one of skill in the art. In one technique, oligonucleotides are arrayed on a gene chip for determining the DNA sequence of a by the sequencing by hybridization approach, such as that outlined in U.S. Patent Nos. 6,025,136 and 6,018,041. The probes of the disclosure also can be used for fluorescent detection of a genetic sequence. Such techniques have been described, for example, in U.S. Patent Nos. 5,968,740 and 5,858,659. A probe also can be affixed to an electrode surface for the electrochemical detection of nucleic acid sequences such as described by Kayem et al. U.S. Patent No. 5,952,172 and by Kelley et al. (1999) Nucleic Acids Res. 27:4830-4837.
[0138] This disclosure also provides for a prognostic panel of genetic markers selected from, but not limited to the genetic polymorphisms identified herein. The prognostic panel comprises probes or primers or microarrays that can be used to amplify and/or for determining the molecular structure of the polymorphisms identified herein. The probes or primers can be attached or supported by a solid phase support such as, but not limited to a gene chip or microarray. The probes or primers can be detectably labeled. This aspect of the disclosure is a means to identify the genotype of a patient sample for the genes of interest identified above.
[0139] In one aspect, the panel contains the herein identified probes or primers as wells as other probes or primers. In a alternative aspect, the panel includes one or more of the above noted probes or primers and others. In a further aspect, the panel consist only of the above- noted probes or primers.
[0140] Primers or probes can be affixed to surfaces for use as "gene chips" or "microarray." Such gene chips or microarrays can be used to detect genetic variations by a number of techniques known to one of skill in the art. In one technique, oligonucleotides are arrayed on a gene chip for determining the DNA sequence of a by the sequencing by hybridization approach, such as that outlined in U.S. Patent Nos. 6,025,136 and 6,018,041. The probes of the disclosure also can be used for fluorescent detection of a genetic sequence. Such techniques have been described, for example, in U.S. Patent Nos. 5,968,740 and 5,858,659. A probe also can be affixed to an electrode surface for the electrochemical detection of nucleic acid sequences such as described by Kayem et al. U.S. Patent No. 5,952,172 and by Kelley et al. (1999) Nucleic Acids Res. 27:4830-4837.
[0141] Various "gene chips" or "microarray" and similar technologies are know in the art. Examples of such include, but are not limited to LabCard (ACLARA Bio Sciences Inc.); GeneChip (Affymetric, Inc); LabChip (Caliper Technologies Corp); a low-density array with electrochemical sensing (Clinical Micro Sensors); LabCD System (Gamera Bioscience Corp.); Omni Grid (Gene Machines); Q Array (Genetix Ltd.); a high-throughput, automated mass spectrometry systems with liquid-phase expression technology (Gene Trace Systems, Inc.); a thermal jet spotting system (Hewlett Packard Company); Hyseq HyChip (Hyseq, Inc.); BeadArray (Illumina, Inc.); GEM (Incyte Microarray Systems); a high-throughput microarraying system that can dispense from 12 to 64 spots onto multiple glass slides (Intelligent Bio-Instruments); Molecular Biology Workstation and NanoChip (Nanogen, Inc.); a micro fluidic glass chip (Orchid biosciences, Inc.); BioChip Arrayer with four
PiezoTip piezoelectric drop-on-demand tips (Packard Instruments, Inc.); FlexJet (Rosetta Inpharmatic, Inc.); MALDI-TOF mass spectrometer (Sequnome); ChipMaker 2 and
ChipMaker 3 (TeleChem International, Inc.); and GenoSensor (Vysis, Inc.) as identified and described in Heller (2002) Annu. Rev. Biomed. Eng. 4: 129-153. Examples of "Gene chips" or a "microarray" are also described in U.S. Patent Publ. Nos.: 2007/0111322, 2007/0099198, 2007/0084997, 2007/0059769 and 2007/0059765 and US Patent 7,138,506, 7,070,740, and 6,989,267.
[0142] In one aspect, "gene chips" or "microarrays" containing probes or primers for the gene of interest are provided alone or in combination with other probes and/or primers. A suitable sample is obtained from the patient extraction of genomic DNA, RNA, or any combination thereof and amplified if necessary. The DNA or RNA sample is contacted to the gene chip or microarray panel under conditions suitable for hybridization of the gene(s) of interest to the probe(s) or primer(s) contained on the gene chip or microarray. The probes or primers may be detectably labeled thereby identifying the polymorphism in the gene(s) of interest. Alternatively, a chemical or biological reaction may be used to identify the probes or primers which hybridized with the DNA or RNA of the gene(s) of interest. The genetic profile of the patient is then determined with the aid of the aforementioned apparatus and methods. Nucleic Acids
[0143] In one aspect, the nucleic acid sequences of the gene of interest, or portions thereof, can be the basis for probes or primers, e.g., in methods for determining expression level of the gene of interest or the allelic variant of a polymorphic region of a gene of interest identified in the experimental section below. Thus, they can be used in the methods of the disclosure to determine which therapy is most likely to treat an individual's cancer.
[0144] The methods of the disclosure can use nucleic acids isolated from vertebrates. In one aspect, the vertebrate nucleic acids are mammalian nucleic acids. In a further aspect, the nucleic acids used in the methods of the disclosure are human nucleic acids.
[0145] Primers for use in the methods of the disclosure are nucleic acids which hybridize to a nucleic acid sequence which is adjacent to the region of interest or which covers the region of interest and is extended. A primer can be used alone in a detection method, or a primer can be used together with at least one other primer or probe in a detection method. Primers can also be used to amplify at least a portion of a nucleic acid. Probes for use in the methods of the disclosure are nucleic acids which hybridize to the gene of interest and which are not further extended. For example, a probe is a nucleic acid which hybridizes to the gene of interest, and which by hybridization or absence of hybridization to the DNA of a subject will be indicative of the identity of the allelic variant of the expression levels of the gene of interest. Primers and/or probes for use in the methods can be provided as isolated single stranded oligonucleotides or alternatively, as isolated double stranded oligonucleotides.
[0146] In one embodiment, primers comprise a nucleotide sequence which comprises a region having a nucleotide sequence which hybridizes under stringent conditions to about: 6, or alternatively 8, or alternatively 10, or alternatively 12, or alternatively 25, or alternatively 30, or alternatively 40, or alternatively 50, or alternatively 75 consecutive nucleotides of the gene of interest.
[0147] Primers can be complementary to nucleotide sequences located close to each other or further apart, depending on the use of the amplified DNA. For example, primers can be chosen such that they amplify DNA fragments of at least about 10 nucleotides or as much as several kilobases. Preferably, the primers of the disclosure will hybridize selectively to nucleotide sequences located about 100 to about 1000 nucleotides apart. [0148] For amplifying at least a portion of a nucleic acid, a forward primer (i.e., 5' primer) and a reverse primer (i.e., 3' primer) will preferably be used. Forward and reverse primers hybridize to complementary strands of a double stranded nucleic acid, such that upon extension from each primer, a double stranded nucleic acid is amplified.
[0149] Yet other preferred primers of the disclosure are nucleic acids which are capable of selectively hybridizing to the gene. Thus, such primers can be specific for the gene of interest sequence, so long as they have a nucleotide sequence which is capable of hybridizing to the gene of interest.
[0150] The probe or primer may further comprises a label attached thereto, which, e.g., is capable of being detected, e.g. the label group is selected from amongst radioisotopes, fluorescent compounds, enzymes, and enzyme co-factors.
[0151] Additionally, the isolated nucleic acids used as probes or primers may be modified to become more stable. Exemplary nucleic acid molecules which are modified include phosphoramidate, phosphothioate and methylphosphonate analogs of DNA (see also U.S. Patent Nos. 5,176,996; 5,264,564 and 5,256,775).
[0152] The nucleic acids used in the methods of the disclosure can also be modified at the base moiety, sugar moiety, or phosphate backbone, for example, to improve stability of the molecule. The nucleic acids, e.g., probes or primers, may include other appended groups such as peptides (e.g., for targeting host cell receptors in vivo), or agents facilitating transport across the cell membrane. See, e.g., Letsinger et al. (1989) Proc. Natl. Acad. Sci. U.S.A.
86:6553-6556; Lemaitre et al. (1987) Proc. Natl. Acad. Sci. 84:648-652; and PCT Publ. No. WO 88/09810, published Dec. 15, 1988), hybridization-triggered cleavage agents, (see, e.g., Krol et al. (1988) BioTechniques 6:958-976) or intercalating agents (see, e.g., Zon (1988) Pharm. Res. 5:539-549. To this end, the nucleic acid used in the methods of the disclosure may be conjugated to another molecule, e.g., a peptide, hybridization triggered cross-linking agent, transport agent, hybridization-triggered cleavage agent, etc.
[0153] The isolated nucleic acids used in the methods of the disclosure can also comprise at least one modified sugar moiety selected from the group including but not limited to arabinose, 2-fluoroarabinose, xylulose, and hexose or, alternatively, comprise at least one modified phosphate backbone selected from the group consisting of a phosphorothioate, a phosphorodithioate, a phosphoramidothioate, a phosphoramidate, a phosphordiamidate, a methylphosphonate, an alkyl phosphotriester, and a formacetal or analog thereof.
[0154] The nucleic acids, or fragments thereof, to be used in the methods of the disclosure can be prepared according to methods known in the art and described, e.g., in Sambrook et al. (2001) supra. For example, discrete fragments of the DNA can be prepared and cloned using restriction enzymes. Alternatively, discrete fragments can be prepared using the Polymerase Chain Reaction (PCR) using primers having an appropriate sequence under the
manufacturer's conditions, (described above).
[0155] Oligonucleotides can be synthesized by standard methods known in the art, e.g. by use of an automated DNA synthesizer (such as are commercially available from Biosearch, Applied Biosystems, etc.). As examples, phosphorothioate oligonucleotides can be synthesized by the method of Stein et al. (1988) Nucl. Acids Res. 16:3209,
methylphosphonate oligonucleotides can be prepared by use of controlled pore glass polymer supports. Sarin et al. (1988) Proc. Natl. Acad. Sci. U.S.A. 85:7448-7451. Methods of Treatment
[0156] The disclosure further provides methods of treating patients having solid malignant tissue mass or tumor from the group: lung cancer, non-small cell lung cancer (NSCLC) including metastatic and non-metastatic NSCLC, advanced renal cell carcinoma, breast cancer, head and neck cancer, ovarian cancer, colon cancer, rectal cancer, colorectal cancer, esophageal cancer, gastric cancer, liver cancer, hepatocelular carcinoma (HCC), HCC refractory to surgery, bone cancer, spleen cancer, pancreatic cancer, or gallbladder cancer.
[0157] Also provided is a method for aiding in the treatment of or for treating a cancer patient selected for treatment based on the presence of at least one VEGF genotype of:
(a) (C/C or T/T) for -1498 C/T; or
(b) (C/C) for -634 G/C
in a tissue or cell sample from the patient, comprising, or alternatively consisting essentially of, or yet alternatively consisting of, administering to the patient a therapy comprising a kinase inhibitor. In one aspect, the kinase inhibitor is a tyrosine kinase inhibitor. In another aspect, the kinase inhibitor is sorafenib. In some aspects, the therapy is a third line therapy. In some aspects, the cancer is non-small cell lung cancer, such as non-metastatic non-small cell lung cancer or metastatic non-small cell lung cancer. [0158] Further provided is the use of a therapy comprising, or alternatively consisting essentially of, or yet alternatively consisting of, a kinase inhibitor for the manufacture of a medicament for aiding in the treatment of or in treating a cancer patient selected for treatment based on the presence of at least one VEGF genotype of:
(a) (C/C or T/T) for -1498 C/T; or
(b) (C/C) for -634 G/C.
In one aspect, the kinase inhibitor is a tyrosine kinase inhibitor. In another aspect, the kinase inhibitor is sorafenib. In some aspects, the therapy is a third line therapy. In some aspects, the cancer is non-small cell lung cancer, such as non-metastatic non-small cell lung cancer or metastatic non-small cell lung cancer.
[0159] Yet further provided is a therapy comprising, or alternatively consisting essentially of, or yet alternatively consisting of, a kinase inhibitor for use in aiding in the treatment of or in treating a cancer patient selected for treatment based on the presence of at least one VEGF genotype of:
(a) (C/C or T/T) for -1498 C/T; or
(b) (C/C) for -634 G/C.
In one aspect, the kinase inhibitor is a tyrosine kinase inhibitor. In another aspect, the kinase inhibitor is sorafenib. In some aspects, the therapy is a third line therapy. In some aspects, the cancer is non-small cell lung cancer, such as non-metastatic non-small cell lung cancer or metastatic non-small cell lung cancer.
[0160] In one aspect of any of the above methods, use or therapy, the patient was selected by a method comprising, or alternatively consisting essentially of, or yet alternatively consisting of, screening a tissue or cell sample isolated from the patient for at least one VEGF polymorphism of -1498 C/T or -634 G/C.
[0161] In one aspect of any of the above methods, uses, or therapies, the kinase inhibitor comprises a tyrosine kinase inhibitor. In another aspect, the kinase inhibitor comprises a receptor tyrosine kinase inhibitor. Yet in another aspect, the kinase inhibitor comprises sorafenib or a chemical equivalent thereof.
[0162] In one aspect of any of the above methods, uses, or therapies, the patient suffers from at least one cancer of the type of the group lung cancer, non-small cell lung cancer (NSCLC) including metastatic and non-metastatic NSCLC, breast cancer, head and neck cancer, ovarian cancer, colon cancer, rectal cancer, colorectal cancer, esophageal cancer, advanced renal cell carcinoma, gastric cancer, liver cancer, hepatocellular carcinoma (HCC), HCC refractory to surgery, bone cancer, spleen cancer, pancreatic cancer, or gallbladder cancer. In another aspect, the patient suffers from at least NSCLC. In a particular aspect, the NSCLS is metastatic NSCLC. In another aspect, the patient has failed at least one, or alternatively at least two prior chemotherapy regimens. In one embodiment, the therapy is a first line, second line or third line therapy.
[0163] Suitable samples for the methods as described herein, the sample comprises, or alternatively consisting essentially of, or yet further consisting of, plasma, at least one of a tumor cell, a normal cell adjacent to a tumor, a normal cell corresponding to the tumor tissue type, a blood cell, a peripheral blood lymphocyte, or combinations thereof. The samples can be any one or more of a fixed tissue, an original sample just isolated from the patient, a frozen tissue, a biopsy tissue, a resection tissue, a microdissected tissue, or combinations thereof.
[0164] Any suitable method for identifying the genotype in the patient sample can be used and the disclosures described herein are not to be limited to these methods. For the purpose of illustration only, the genotype is determined by a method comprising, or alternatively consisting essentially of, or yet further consisting of, polymerase chain reaction analysis (PCR), sequencing analysis, restriction enzyme analysis, mismatch cleavage analysis, single strand conformation polymorphism analysis, denaturing gradient gel electrophoresis, selective oligonucleotide hybridization, selective PCR amplification, selective primer extension, oligonucleotide ligation assay, exonuclease-resistant nucleotide analysis, Genetic Bit Analysis, primer-guided nucleotide incorporation analysis PCR, PCR-restriction fragment length polymorphism (PCR-RFLP), direct DNA sequencing, whole genome sequencing, sequencing, and/or microarray. These methods as well as equivalents or alternatives thereto are described herein.
[0165] The methods are useful in the assistance of an animal, a mammal or yet further a human patient. For the purpose of illustration only, a mammal includes but is not limited to a human, a simian, a murine, a bovine, an equine, a porcine or an ovine. Accordingly, a formulation comprising the necessary therapy or equivalent thereof is further provided herein. The formulation can further comprise one or more preservatives or stabilizers. Any suitable concentration or mixture can be used as known in the art, such as 0.001-5%, or any range or value therein, such as, but not limited to 0.001, 0.003, 0.005, 0.009, 0.01, 0.02, 0.03, 0.05, 0.09, 0.1, 0.2, 0.3, O.4., 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 4.0, 4.3, 4.5, 4.6, 4.7, 4.8, 4.9, or any range or value therein. Non-limiting examples include, no preservative, 0.1-2% m-cresol (e.g., 0.2, 0.3. 0.4, 0.5, 0.9, 1.0%), 0.1-3% benzyl alcohol (e.g., 0.5, 0.9, 1.1., 1.5, 1.9, 2.0, 2.5%), 0.001-0.5% thimerosal (e.g., 0.005, 0.01), 0.001-2.0% phenol (e.g., 0.05, 0.25, 0.28, 0.5, 0.9, 1.0%), 0.0005-1.0% alkylparaben(s) (e.g., 0.00075, 0.0009, 0.001, 0.002, 0.005, 0.0075, 0.009, 0.01, 0.02, 0.05, 0.075, 0.09, 0.1, 0.2, 0.3, 0.5, 0.75, 0.9, and 1.0%).
[0166] The agents or drugs can be administered as a composition. A "composition" typically intends a combination of the active agent and another carrier, e.g., compound or composition, inert (for example, a detectable agent or label) or active, such as an adjuvant, diluent, binder, stabilizer, buffers, salts, lipophilic solvents, preservative, adjuvant or the like and include pharmaceutically acceptable carriers. Carriers also include pharmaceutical excipients and additives proteins, peptides, amino acids, lipids, and carbohydrates (e.g., sugars, including monosaccharides, di-, tri-, terra-, and oligosaccharides; derivatized sugars such as alditols, aldonic acids, esterified sugars and the like; and polysaccharides or sugar polymers), which can be present singly or in combination, comprising alone or in
combination 1-99.99% by weight or volume. Exemplary protein excipients include serum albumin such as human serum albumin (HSA), recombinant human albumin (rHA), gelatin, casein, and the like. Representative amino acid/antibody components, which can also function in a buffering capacity, include alanine, glycine, arginine, betaine, histidine, glutamic acid, aspartic acid, cysteine, lysine, leucine, isoleucine, valine, methionine, phenylalanine, aspartame, and the like. Carbohydrate excipients are also intended within the scope of this disclosure, examples of which include but are not limited to monosaccharides such as fructose, maltose, galactose, glucose, D-mannose, sorbose, and the like;
disaccharides, such as lactose, sucrose, trehalose, cellobiose, and the like; polysaccharides, such as raffmose, melezitose, maltodextrins, dextrans, starches, and the like; and alditols, such as mannitol, xylitol, maltitol, lactitol, xylitol sorbitol (glucitol) and myoinositol.
[0167] The term carrier further includes a buffer or a pH adjusting agent; typically, the buffer is a salt prepared from an organic acid or base. Representative buffers include organic acid salts such as salts of citric acid, ascorbic acid, gluconic acid, carbonic acid, tartaric acid, succinic acid, acetic acid, or phthalic acid; Tris, tromethamine hydrochloride, or phosphate buffers. Additional carriers include polymeric excipients/additives such as
polyvinylpyrrolidones, ficolls (a polymeric sugar), dextrates (e.g., cyclodextrins, such as 2- hydroxypropyl-. quadrature. -cyclodextrin), polyethylene glycols, flavoring agents, antimicrobial agents, sweeteners, antioxidants, antistatic agents, surfactants (e.g.,
polysorbates such as "TWEEN 20" and "TWEEN 80"), lipids (e.g., phospholipids, fatty acids), steroids (e.g., cholesterol), and chelating agents (e.g., EDTA).
[0168] As used herein, the term "pharmaceutically acceptable carrier" encompasses any of the standard pharmaceutical carriers, such as a phosphate buffered saline solution, water, and emulsions, such as an oil/water or water/oil emulsion, and various types of wetting agents.
The compositions also can include stabilizers and preservatives and any of the above noted carriers with the additional provisio that they be acceptable for use in vivo. For examples of carriers, stabilizers and adjuvants, see Martin REMINGTON'S PHARM. SCI., 15th Ed. (Mack Publ. Co., Easton (1975) and Williams & Williams, (1995), and in the
"PHYSICIAN'S DESK REFERENCE", 52nd ed., Medical Economics, Montvale, N.J.
(1998).
[0169] Many combination chemotherapeutic regimens are known to the art, such as combinations of platinum compounds and taxanes, e.g. carboplatin/paclitaxel,
capecitabine/docetaxel, the "Cooper regimen", fluorouracil-levamisole, fluorouracil- leucovorin, fluorouracil/oxaliplatin, methotrexate-leucovorin, and the like.
[0170] Combinations of chemotherapies and molecular targeted therapies, biologic therapies, and radiation therapies are also well known to the art; including therapies such as trastuzumab plus paclitaxel, alone or in further combination with platinum compounds such as oxaliplatin, for certain breast cancers, and many other such regimens for other cancers; and the "Dublin regimen" 5 -fiuorouracil IV over 16 hours on days 1-5 and 75 mg/m cisplatin IV or oxaliplatin over 8 hours on day 7, with repetition at 6 weeks, in combination with 40 Gy radiotherapy in 15 fractions over the first 3 weeks) and the "Michigan regimen" (fiuorouracil plus cisplatin or oxaliplatin plus vinblastine plus radiotherapy), both for esophageal cancer, and many other such regimens for other cancers, including colorectal cancer. [0171] In another aspect of the disclosure, the method for treating a patient further comprises, or alternatively consists essentially of, or yet further consists of surgical resection of a metastatic or non-metastatic solid malignant tumor and, in some aspects, in combination with radiation. Methods for treating these tumors as Stage I, Stage II, Stage III, or Stage IV by surgical resection and/or radiation are known to one skilled in the art. Guidelines describing methods for treatment by surgical resection and/or radiation can be found at the National Comprehensive Cancer Network's web site, nccn.org, last accessed on May 27, 2008.
[0172] The disclosure provides an article of manufacture, comprising packaging material and at least one vial comprising a solution of the chemotherapy as described herein and/or or at least one antibody or its biological equivalent with the prescribed buffers and/or preservatives, optionally in an aqueous diluent, wherein said packaging material comprises a label that indicates that such solution can be held over a period of 1, 2, 3, 4, 5, 6, 9, 12, 18, 20, 24, 30, 36,40, 48, 54, 60, 66, 72 hours or greater. The disclosure further comprises an article of manufacture, comprising packaging material, a first vial comprising the chemotherapy and/or at least one lyophilized antibody or its biological equivalent and a second vial comprising an aqueous diluent of prescribed buffer or preservative, wherein said packaging material comprises a label that instructs a patient to reconstitute the therapeutic in the aqueous diluent to form a solution that can be held over a period of twenty-four hours or greater.
[0173] Chemotherapeutic formulations of the present disclosure can be prepared by a process which comprises mixing at least one antibody or biological equivalent and a preservative selected from the group consisting of phenol, m-cresol, p-cresol, o-cresol, chlorocresol, benzyl alcohol, alkylparaben, (methyl, ethyl, propyl, butyl and the like), benzalkonium chloride, benzethonium chloride, sodium dehydroacetate and thimerosal or mixtures thereof in an aqueous diluent. Mixing of the antibody and preservative in an aqueous diluent is carried out using conventional dissolution and mixing procedures. For example, a measured amount of at least one antibody in buffered solution is combined with the desired preservative in a buffered solution in quantities sufficient to provide the antibody and preservative at the desired concentrations. Variations of this process would be recognized by one of skill in the art, e.g., the order the components are added, whether additional additives are used, the temperature and pH at which the formulation is prepared, are all factors that can be optimized for the concentration and means of administration used.
[0174] The compositions and formulations can be provided to patients as clear solutions or as dual vials comprising a vial of lyophilized antibody that is reconstituted with a second vial containing the aqueous diluent. Either a single solution vial or dual vial requiring
reconstitution can be reused multiple times and can suffice for a single or multiple cycles of patient treatment and thus provides a more convenient treatment regimen than currently available. Recognized devices comprising these single vial systems include those pen- injector devices for delivery of a solution such as BD Pens, BD Autojectore, Humaject® NovoPen®, B-D®Pen, AutoPen®, and OptiPen®, GenotropinPen®, Genotronorm Pen®, Humatro Pen®, Reco-Pen®, Roferon Pen®, Biojector®, iject®, J-tip Needle-Free Injector®, Intraject®, Medi-Ject®, e.g., as made or developed by Becton Dickensen (Franklin Lakes, N.J. available at bectondickenson.com), Disetronic (Burgdorf, Switzerland, available at disetronic.com; Bioject, Portland, Oregon (available at bioject.com); National Medical Products, Weston Medical (Peterborough, UK, available at weston-medical.com), Medi-Ject Corp (Minneapolis, Minn., available at mediject.com).
[0175] Various delivery systems are known and can be used to administer a
chemotherapeutic agent of the disclosure, e.g., encapsulation in liposomes, microparticles, microcapsules, expression by recombinant cells, receptor-mediated endocytosis. See e.g., Wu and Wu (1987) J. Biol. Chem. 262:4429-4432 for construction of a therapeutic nucleic acid as part of a retroviral or other vector, etc. Methods of delivery include but are not limited to intra-arterial, intra-muscular, intravenous, intranasal and oral routes. In a specific embodiment, it may be desirable to administer the pharmaceutical compositions of the disclosure locally to the area in need of treatment; this may be achieved by, for example, and not by way of limitation, local infusion during surgery, by injection or by means of a catheter.
[0176] The agents identified herein as effective for their intended purpose can be administered to subjects or individuals identified by the methods herein as suitable for the therapy. Therapeutic amounts can be empirically determined and will vary with the pathology being treated, the subject being treated and the efficacy and toxicity of the agent.
[0177] This disclosure also provides the use of a therapy comprising a kinase inhibitor for the treatment of a cancer patient selected for suitable for the therapy identified by the method as described herein. Also provided is a therapy of a medicament comprising an effective amount of an kinase inhibitor as described herein for treatment of a cancer patient having the genotype as described herein.
[0178] Methods of administering pharmaceutical compositions are well known to those of ordinary skill in the art and include, but are not limited to, oral, microinjection, intravenous or parenteral administration. The compositions are intended for topical, oral, or local administration as well as intravenously, subcutaneously, or intramuscularly. Administration can be effected continuously or intermittently throughout the course of the treatment.
Methods of determining the most effective means and dosage of administration are well known to those of skill in the art and will vary with the cancer being treated and the patient, and the subject being treated. Single or multiple administrations can be carried out with the dose level and pattern being selected by the treating physician.
Kits
[0179] Also provided is a kit for use in selecting a cancer patient for a therapy comprising administration of a kinase inhibitor, comprising suitable primers or probes or a microarray for determining at least one VEGF polymorphism of -1498 C/T or -634 G/C, and instructions for use therein.
[0180] Further provided is a kit for use in determining whether a cancer patient is likely to respond to a therapy comprising administration of a kinase inhibitor, comprising, or alternatively consisting essentially of, or yet alternatively consisting of, suitable primers or probes or a microarray for determining the VEGF -1498 C/T polymorphism, and instructions for use therein.
[0181] In one aspect, the kit further comprises an effective amount of the therapy. In one aspect, the kinase inhibitor comprises a tyrosine kinase inhibitor. In another aspect, the kinase inhibitor comprises a receptor tyrosine kinase inhibitor. Yet in another aspect, the kinase inhibitor comprises sorafenib or a chemical equivalent thereof.
[0182] In one aspect of any of the kits, the patient suffers from at least one cancer of the type of the group lung cancer, non-small cell lung cancer (NSCLC) including metastatic and non-metastatic NSCLC, breast cancer, advanced renal cell carcinoma, head and neck cancer, ovarian cancer, colon cancer, rectal cancer, colorectal cancer, esophageal cancer, gastric cancer, liver cancer, hepatocellular carcinoma (HCC), HCC refractory to surgery, bone cancer, spleen cancer, pancreatic cancer, or gallbladder cancer. In another aspect, the patient suffers from at least NSCLC. In a particular aspect, the NSCLS is metastatic NSCLC. In another aspect, the patient has failed at least one, or alternatively at least two prior chemotherapy regimens. In one embodiment, the therapy is a first line, second line or third line therapy.
[0183] Suitable samples for the methods as described herein, the sample comprises, or alternatively consisting essentially of, or yet further consisting of, at least one of a tumor cell, a normal cell adjacent to an original sample just isolated from the patient, a tumor, a normal cell corresponding to the tumor tissue type, a blood cell, a peripheral blood lymphocyte, or combinations thereof. The samples can be any one or more of a fixed tissue, a frozen tissue, a biopsy tissue, a resection tissue, a microdissected tissue, or combinations thereof.
[0184] Any suitable method for identifying the genotype in the patient sample can be used and the disclosures described herein are not to be limited to these methods. For the purpose of illustration only, the genotype is determined by a method comprising, or alternatively consisting essentially of, or yet further consisting of, polymerase chain reaction analysis (PCR), sequencing analysis, restriction enzyme analysis, mismatch cleavage analysis, single strand conformation polymorphism analysis, denaturing gradient gel electrophoresis, selective oligonucleotide hybridization, selective PCR amplification, selective primer extension, oligonucleotide ligation assay, exonuclease-resistant nucleotide analysis, Genetic Bit Analysis, primer-guided nucleotide incorporation analysis PCR, PCR-restriction fragment length polymorphism (PCR-RFLP), direct DNA sequencing, whole genome sequencing, sequencing, and/or microarray. These methods as well as equivalents or alternatives thereto are described herein.
[0185] The methods are useful in the assistance of an animal, a mammal or yet further a human patient. For the purpose of illustration only, a mammal includes but is not limited to a simian, a murine, a bovine, an equine, a porcine or an ovine.
[0186] As set forth herein, the disclosure provides diagnostic methods for determining the polymorphic region of the gene of interest. In some embodiments, the methods use probes or primers or microarrays comprising nucleotide sequences which are complementary to the gene of interest. Accordingly, the disclosure provides kits for performing these methods as well as instructions for carrying out the methods of this disclosure such as collecting tissue and/or performing the screen, and/or analyzing the results, and / or administration of an effective amount of a therapy. These can be used alone or in combination with other suitable chemotherapy or biological therapy.
[0187] The kit can comprise at least one probe or primer which is capable of specifically hybridizing to the gene of interest and instructions for use. The kits preferably comprise at least one of the above described nucleic acids. Preferred kits for amplifying at least a portion of the gene of interest comprise two primers, at least one of which is capable of hybridizing to the allelic variant sequence. Such kits are suitable for detection of genotype by, for example, fluorescence detection, by electrochemical detection, or by other detection.
[0188] Oligonucleotides, whether used as probes or primers, contained in a kit can be detectably labeled. Labels can be detected either directly, for example for fluorescent labels, or indirectly. Indirect detection can include any detection method known to one of skill in the art, including biotin-avidin interactions, antibody binding and the like. Fluorescently labeled oligonucleotides also can contain a quenching molecule. Oligonucleotides can be bound to a surface. In one embodiment, the preferred surface is silica or glass. In another embodiment, the surface is a metal electrode.
[0189] Yet other kits of the disclosure comprise at least one reagent necessary to perform the assay. For example, the kit can comprise an enzyme. Alternatively the kit can comprise a buffer or any other necessary reagent.
[0190] Conditions for incubating a nucleic acid probe with a test sample depend on the format employed in the assay, the detection methods used, and the type and nature of the nucleic acid probe used in the assay. One skilled in the art will recognize that any one of the commonly available hybridization, amplification or immunological assay formats can readily be adapted to employ the nucleic acid probes for use in the present disclosure. Examples of such assays can be found in Chard, T. (1986) AN INTRODUCTION TO
RADIOIMMUNOASSAY AND RELATED TECHNIQUES Elsevier Science Publishers, Amsterdam, The Netherlands; Bullock, G.R. et al, TECHNIQUES IN
IMMUNOCYTOCHEMISTRY Academic Press, Orlando, FL Vol. 1 (1982), Vol. 2 (1983), Vol. 3 (1985); Tijssen, P. (1985) PRACTICE AND THEORY OF IMMUNOASSAYS: LABORATORY TECHNIQUES IN BIOCHEMISTRY AND MOLECULAR BIOLOGY, Elsevier Science Publishers, Amsterdam, The Netherlands.
[0191] The test samples used in the diagnostic kits include cells, protein or membrane extracts of cells, or biological fluids such as sputum, blood, serum, plasma, or urine. The test samples may also be nn original sample just isolated from the patient, a tumor cell, a normal cell adjacent to a tumor, a normal cell corresponding to the tumor tissue type, a blood cell, a peripheral blood lymphocyte, or combinations thereof. The test sample used in the above- described method will vary based on the assay format, nature of the detection method and the tissues, cells or extracts used as the sample to be assayed. Methods for preparing protein extracts or membrane extracts of cells are known in the art and can be readily adapted in order to obtain a sample which is compatible with the system utilized.
[0192] The kits can include all or some of the positive controls, negative controls, reagents, primers, sequencing markers, probes and antibodies described herein for determining the subject's genotype in the polymorphic region of the gene of interest.
[0193] As amenable, these suggested kit components may be packaged in a manner customary for use by those of skill in the art. For example, these suggested kit components may be provided in solution or as a liquid dispersion or the like.
Other Uses for the Nucleic Acids of the Disclosure
[0194] The identification of the polymorphic region or the expression level of the gene of interest can also be useful for identifying an individual among other individuals from the same species. For example, DNA sequences can be used as a fingerprint for detection of different individuals within the same species. Thompson, J. S. and Thompson, eds., (1991) GENETICS IN MEDICINE, W B Saunders Co., Philadelphia, Pa. This is useful, e.g., in forensic studies.
[0195] The disclosure now being generally described, it will be more readily understood by reference to the following example which is included merely for purposes of illustration of certain aspects and embodiments of the present disclosure, and are not intended to limit the disclosure. EXPERIMENTAL DETAILS
EXAMPLE 1
[0196] E2501 was a randomized discontinuation phase II study of sorafenib versus placebo in patients with metastatic non-small cell lung cancer (NSCLC) who have failed at least two prior chemotherapy regimens. Gene polymorphisms for VEGF, EGF, EGFR, IL-8, CXCR2, COX-2, KDR, ICAM1, FGFR4 were tested for their correlation with clinical outcome in patients enrolled in E2501.
[0197] Methods: During Step 1, 333 patients received 400 mg of sorafenib orally twice daily for 2 cycles (2 months). Responding patients (N= 12) on Step 1 continued on sorafenib; progressing patients went off study, and patients with stable disease (N=107) were randomized to placebo or sorafenib (Step 2). PCR-RFLP assays were performed on genomic DNA extracted from plasma of patients. There were 88 plasma samples available for analysis: these included 76 patients from Step 1 and 18 (14 on S and 4 on P) from Step 2. Primers used for this study included, for VEGF -634 (rs2010963) G/C, forward primer: GGA TTT TGG AAA CCA GCA GA (SEQ ID NO: 1), reverse primer: GTC ACT CAC TTT GCC CCT GT (SEQ ID NO: 2), for VEGF -1498 (rs833061) C/T, forward primer: TGA GGA CGT GTG TGT CTG TG (SEQ ID NO: 3), and reverse primer: CTA TTG GAA TCC TGG AGT GAC C (SEQ ID NO: 4).
[0198] Results: Patients with CC genotype for VEGF -1498 C/T had significantly lower disease control rate (DCR) (N=22, 22.7%) compared those with T/T genotype (N=25, 56%) (P=0.036). A DCR include patients who had partial response or stable disease. Patients harboring any C allele of VEGF -1498 (C/C+C/T) had a worse DCR compared with T/T genotype (26% vs. 56%) (P=0.021). VEGF -634 G/C and VEGF -1498 C/T showed significant differences in progression free survival (PFS) among their three genotypes (p=0.036 and p=0.025, respectively). Patients on step 2 receiving sorafenib with G/G or G/C (N=6/4) VEGF -634 G/C genotypes tended to have shorter PFS (median=l .7-2.8 months) compared with C/C for VEGF -634 G/C genotype (N=2, median=7.7 months) (p=0.23). Patients with C/C for VEGF -1498 C/T genotype had significantly longer PFS (N=4, median=7.5 months) compared with C/T genotype (N=2, median=1.7 months) (p=0.018), but no difference with T/T genotype (N=7, median=2.8 months) (p=0.60). [0199] This example shows polymorphisms in the VEGF gene may predict DCR and PFS in NSCLC patients treated with sorafenib.
[0200] The disclosure illustratively described herein may suitably be practiced in the absence of any element or elements, limitation or limitations, not specifically disclosed herein. Thus, for example, the terms "comprising", "including," containing", etc. shall be read expansively and without limitation. Additionally, the terms and expressions employed herein have been used as terms of description and not of limitation, and there is no intention in the use of such terms and expressions of excluding any equivalents of the features shown and described or portions thereof, but it is recognized that various modifications are possible within the scope of the disclosure claimed.
[0201] Thus, it should be understood that although the present disclosure has been specifically disclosed by preferred embodiments and optional features, modification, improvement and variation of the disclosure embodied therein herein disclosed may be resorted to by those skilled in the art, and that such modifications, improvements and variations are considered to be within the scope of this disclosure. The materials, methods, and examples provided here are representative of preferred embodiments, are exemplary, and are not intended as limitations on the scope of the disclosure.
[0202] The disclosure has been described broadly and generically herein. Each of the narrower species and subgeneric groupings falling within the generic disclosure also form part of the disclosure. This includes the generic description of the disclosure with a proviso or negative limitation removing any subject matter from the genus, regardless of whether or not the excised material is specifically recited herein.
[0203] In addition, where features or aspects of the disclosure are described in terms of Markush groups, those skilled in the art will recognize that the disclosure is also thereby described in terms of any individual member or subgroup of members of the Markush group.
[0204] All publications, patent applications, patents, and other references mentioned herein are expressly incorporated by reference in their entirety, to the same extent as if each were incorporated by reference individually. In case of conflict, the present specification, including definitions, will control.

Claims

WHAT IS CLAIMED IS:
1. A method for aiding in the selection of, or selecting or not selecting, a cancer patient for a therapy comprising a kinase inhibitor, comprising screening a tissue or cell sample isolated from the patient for at least one VEGF polymorphism of -1498 C/T or -634 G/C, wherein the patient is selected for the therapy if at least one genotype of:
(a) (C/C or T/T) for -1498 C/T; or
(b) (C/C) for -634 G/C
is present, or the patient is not selected for the therapy if neither (a) nor (b) is present.
2. The method of claim 1 , wherein the patient is selected for the therapy if at least one genotype of:
(a) (C/C or T/T) for -1498 C/T; or
(b) (C/C) for -634 G/C
is present.
3. The method of claim 1, wherein the patient is not selected for the therapy if neither (a) nor (b) is present.
4. A method for aiding in the determination of or determining whether or not a cancer patient is suitable for a therapy comprising a kinase inhibitor, comprising screening a tissue or cell sample isolated from the patient for at least one VEGF polymorphism of -1498 C/T or -634 G/C, wherein the patient is suitable for the therapy if at least one genotype of:
(a) (C/C or T/T) for -1498 C/T; or
(b) (C/C) for -634 G/C
is present, or the patient is not suitable for the therapy if neither (a) nor (b) is present.
5. The method of claim 4, wherein the patient is suitable for the therapy if at least one genotype of:
(a) (C/C or T/T) for -1498 C/T; or
(b) (C/C) for -634 G/C
is present.
The method of claim 5, wherein the patient is not suitable for the therapy if neither (a) nor (b) is present.
A method for aiding in the determination of, or determining whether a cancer patient is likely to experience a longer or shorter progression free survival following a therapy comprising a kinase inhibitor, comprising screening a tissue or cell sample isolated from the patient for at least one VEGF polymorphism of -1498 C/T or -634 G/C, wherein the presence of at least one genotype of:
(a) (C/C or T/T) for -1498 C/T; or
(b) (C/C) for -634 G/C
determines that the patient is likely to experience a longer progression free survival, or the presence of neither (a) nor (b) determines that the patient is likely to experience a shorter progression free survival.
The method of claim 7, wherein the presence of at least one genotype of:
(a) (C/C or T/T) for -1498 C/T; or
(b) (C/C) for -634 G/C
determines that the patient is likely to experience a longer progression free survival as compared to a patient having neither of the genotypes.
The method of claim 8, wherein the presence of neither (a) nor (b) determines that the patient is likely to experience a shorter progression free survival as compared to a patient having at least one of the genotypes.
0. A method for aiding in the treatment of or for treating a cancer patient selected for treatment based on the presence of at least one VEGF genotype of:
(a) (C/C or T/T) for -1498 C/T; or
(b) (C/C) for -634 G/C
in a tissue or cell sample from the patient, comprising administering to the patient a therapy comprising a kinase inhibitor.
1. Use of a therapy comprising a kinase inhibitor for the manufacture of a medicament for aiding in the treatment of or in treating a cancer patient selected for treatment based on the presence of at least one VEGF genotype of: (a) (C/C or T/T) for -1498 C/T; or
(b) (C/C) for -634 G/C, in a cell or tissue sample isolated from the patient.
12. A therapy comprising a kinase inhibitor for use in aiding in the treatment of or in treating a cancer patient selected for treatment based on the presence of at least one VEGF genotype of:
(a) (C/C or T/T) for -1498 C/T; or
(b) (C/C) for -634 G/C, in a cell or tissue sample isolated from the patient..
13. The method of claim 10, the use of claim 11, or the therapy of claim 12, wherein the patient was selected by a method comprising screening a tissue or cell sample isolated from the patient for at least one VEGF polymorphism of -1498 C/T or -634 G/C.
14. A method for aiding in the determination of or determining whether a cancer patient is likely or not likely to respond to a therapy comprising a kinase inhibitor, comprising screening a tissue or cell sample isolated from the patient for a VEGF -1498 C/T polymorphism, wherein a genotype of (T/T) determines that the patient is likely to respond to the therapy, or a genotype of (C/C or C/T) determines that the patient is not likely to respond to the therapy.
15. The method of claim 14, wherein a genotype of (T/T) determines that the patient is likely to respond to the therapy.
16. The method of claim 14, wherein a genotype of (C/C or C/T) determines that the patient is not likely to respond to the therapy.
17. The method of any one of claims 1 to 10 or 13 to 16, the use of claim 11 or 13, or the therapy of claim 12 or 13, wherein the kinase inhibitor comprises a tyrosine kinase inhibitor.
18. The method of any one of claims 1 to 10 or 13 to 16, the use of claim 11 or 13, or the therapy of claim 12 or 13, wherein the kinase inhibitor comprises sorafenib or a chemical equivalent thereof.
19. The method of any one of claims 1 to 10 or 13 to 18, the use of any one of claims 11, 13, 17 or 18, or the therapy of any one of claims 12, 13, 17 or 18, wherein the therapy is a third line therapy.
20. The method of any one of claims 1 to 10 or 13 to 19, the use of any one of claims 11, 13, or 17 to 19, or the therapy of any one of claims 12, 13, or 17 to 19, wherein the patient suffers from one or more cancer selected from lung cancer, non-small cell lung cancer, breast cancer, head and neck cancer, ovarian cancer, renal cancer, advanced renal cell carcinoma, colon cancer, rectal cancer, colorectal cancer, esophageal cancer, gastric cancer, liver cancer, hepatocellular carcinoma (HCC), HCC refractory to surgery, bone cancer, spleen cancer, pancreatic cancer, or gallbladder cancer.
21. The method, use or therapy of claim 20, wherein the patient suffers from non- metastatic non-small cell lung cancer or metastatic non-small cell lung cancer.
22. The method of any one of claims 1 to 9 or 12 to 21, the use of any one of claims 13 or 17 to 21, or the therapy of any one of claims 13, or 17 to 21, wherein the sample comprises at least one of a tumor cell or tumor tissue, a normal cell or normal tissue, a normal cell or normal tissue adjacent to a tumor, a normal cell or normal tissue corresponding to the tumor tissue type, a blood cell, a peripheral blood lymphocyte, or combinations thereof.
23. The method of any one of claims 1 to 9 or 12 to 22, the use of any one of claims 13 or 17 to 22, or the therapy of any one of claims 13, or 17 to 22, wherein the sample is at least one of an original sample just isolated from the patient, a fixed tissue, a frozen tissue, a biopsy tissue, a resection tissue, a microdissected tissue, or combinations thereof.
24. The method of any one of claims 1 to 10 or 13 to 23, the use of any one of claims 11, 13, or 17 to 23, or the therapy of any one of claims 12, 13, or 17 to 23, wherein the screening is by a method comprising polymerase chain reaction analysis (PCR), sequencing analysis, restriction enzyme analysis, mismatch cleavage analysis, single strand conformation polymorphism analysis, denaturing gradient gel electrophoresis, selective oligonucleotide hybridization, selective PCR amplification, selective primer extension, oligonucleotide ligation assay, exonuclease-resistant nucleotide analysis, Genetic Bit Analysis, primer-guided nucleotide incorporation analysis PCR, PCR- restriction fragment length polymorphism (PCR-RFLP), direct DNA sequencing, whole genome sequencing, sequencing, and/or microarray.
25. The method of any one of claims 1 to 10 or 13 to 24, the use of any one of claims 11, 13, or 17 to 24, or the therapy of any one of claims 12, 13, or 17 to 24, wherein the patient is an animal patient.
26. The method, use or therapy of claim 25, wherein the patient is a mammalian, simian, murine, human, bovine, equine, porcine, feline, canine or ovine patient.
27. The method, use or therapy of claim 26, wherein the patient is a human patient.
28. A kit for use in selecting a cancer patient for a therapy comprising a kinase inhibitor, comprising suitable primers or probes or a microarray for determining at least one VEGF polymorphism of -1498 C/T or -634 G/C, and instructions for use therein.
29. A kit for use in determining whether a cancer patient is likely to respond to a therapy comprising a kinase inhibitor, comprising suitable primers or probes or a microarray for determining the VEGF -1498 C/T polymorphism, and instructions for use therein.
30. The kit of claim 28 or 29, further comprising an effective amount of the therapy.
31. The kit of any one of claims 28 to 30, wherein the kinase inhibitor comprises a
tyrosine kinase inhibitor.
32. The kit of any one of claims 28 to 30, wherein the kinase inhibitor comprises
sorafenib or a chemical equivalent thereof.
33. The kit of any one of claims 28 to 32, wherein the therapy is a third line therapy.
34. The kit of any one of claims 27 to 33, wherein the patient suffers from metastatic non- small cell lung cancer or non-metastatic small cell lung cancer. A prognostic panel of primer or probes or a microarray comprising nucleic acids that identify the genotype in a patient sample for VEGF polymorphisms of -1498 C/T or - 634 G/C.
PCT/US2011/036680 2010-05-17 2011-05-16 Germline polymorphisms in vegf predict clinical outcomes in cancer patients treated with sorafenib WO2011146406A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US34554510P 2010-05-17 2010-05-17
US61/345,545 2010-05-17

Publications (1)

Publication Number Publication Date
WO2011146406A1 true WO2011146406A1 (en) 2011-11-24

Family

ID=44992007

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2011/036680 WO2011146406A1 (en) 2010-05-17 2011-05-16 Germline polymorphisms in vegf predict clinical outcomes in cancer patients treated with sorafenib

Country Status (1)

Country Link
WO (1) WO2011146406A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009073540A2 (en) * 2007-11-30 2009-06-11 Schneider Bryan P Vegf polymorphisms and anti-angiogenesis therapy
WO2010124265A1 (en) * 2009-04-24 2010-10-28 University Of Southern California Polymorphisms in angiogenesis pathway genes associated with tumor recurrence in surgery treated cancer patients
WO2010124264A2 (en) * 2009-04-24 2010-10-28 University Of Southern California Genetic variants in angiogenesis pathway associated with clinical outcome

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009073540A2 (en) * 2007-11-30 2009-06-11 Schneider Bryan P Vegf polymorphisms and anti-angiogenesis therapy
WO2010124265A1 (en) * 2009-04-24 2010-10-28 University Of Southern California Polymorphisms in angiogenesis pathway genes associated with tumor recurrence in surgery treated cancer patients
WO2010124264A2 (en) * 2009-04-24 2010-10-28 University Of Southern California Genetic variants in angiogenesis pathway associated with clinical outcome

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
GERGER, A. ET AL.: "Molecular Predictors of Response to Antiangiogenesis Therapies", THE CANCER JOURNAL, vol. 17, no. 2, 2011, pages 134 - 141 *
KIM, D.H. ET AL.: "Clinical relevance of vascular endothelial growth factor (VEGFA) and VEGF receptor (VEGFR2) gene polymorphism on the treatment outcome following imatinib therapy", ANNALS OF ONCOLOGY, vol. 21, no. 6, 2010, pages 1179 - 1188 *
LOUPAKIS, F. ET AL.: "Retrospective exploratory analysis of VEGF polymorphisms in the prediction of benefit from first-line FOLRIRI plus bevacizumab in metastatic colorectal cancer", BMC CANCER, vol. 11, no. 247, 2011, pages 1 - 9 *
MASAGO, K. ET AL.: "Effect of vascular endothelial growth factor polymorphisms on survival in advanced-stage non-small-cell lung cancer", CANCER SCIENCE, vol. 100, no. 10, 2009, pages 1917 - 1922 *
PYTEL, D. ET AL.: "Tyrosine Blockers: New Hope for Successful Cancer Therapy", ANTI- CANCER AGENTS IN MEDICINAL CHEMISTRY, vol. 9, no. 1, 2009, pages 66 - 76 *
SCHNEIDER, B.P. ET AL.: "The Role of Vascular Endothelial Growth Factor Genetic Variability in Cancer", CLINICAL CANCER RESEARCH, vol. 15, no. 17, 2009, pages 5297 - 5302 *
ZHANG, W. ET AL.: "Use of germline polymorphisms in VEGF to predict tumor response and progression-free survival in non-small lung cancer (NSCLC) patients treated with sorafenib: Subset pharmacogenetic analysis of Eastern Cooperative Oncology Group (ECOG) trial E2501", JOURNAL OF CLINICAL ONCOLOGY, 2010 ASCO ANNUAL MEETING PROCEEDINGS (POST MEETING EDITION), vol. 28, no. 15, 20 May 2010 (2010-05-20), pages 7607 *

Similar Documents

Publication Publication Date Title
WO2010123625A1 (en) Cd133 polymorphisms predict clinical outcome in patients with cancer
US20120100134A1 (en) Genetic variants in angiogenesis pathway associated with clinical outcome
WO2013172933A1 (en) Ethnic gene profile of genes involved in angiogenesis may predict regional bevacizumab efficacy difference in gastric cancer
EP2115163A2 (en) Gene polymorphisms as sex-specific predictors in cancer therapy
WO2009140556A2 (en) Genotype and expression analysis for use in predicting outcome and therapy selection
US20120108441A1 (en) Polymorphisms in angiogenesis pathway genes associated with tumor recurrence in surgery treated cancer patients
US8216781B2 (en) Gene polymorphisms as predictors of tumor progression and their use in cancer therapy
US20100152202A1 (en) Tissue Factor Promoter Polymorphisms
US20120108445A1 (en) Vegf and vegfr1 gene expression useful for cancer prognosis
US20110160216A1 (en) Thymidylate Synthase Haplotype is Associated with Tumor Recurrence in Stage II and Stage III Colon Cancer Patients
WO2013172932A1 (en) Colon cancer tumor suppressor gene, b-defensin 1, predicts recurrence in patients with stage ii and iii colon cancer
US20120100135A1 (en) Genetic polymorphisms associated with clinical outcomes of topoisomerase inhibitor therapy for cancer
US20120288861A1 (en) Germline polymorphisms in the sparc gene associated with clinical outcome in gastric cancer
US20130023430A1 (en) Cancer stem cell gene variants are associated with tumor recurrence
US20140005064A1 (en) Polymorphisms in angiogenesis pathway genes associated with tumor recurrence in surgery treated cancer patients
WO2013172934A1 (en) Integrin genetic variants and stage-specific tumor recurrence in patients with stage ii and iii colon cancer
US20120094844A1 (en) Genetic variants in il-6, p53, mmp-9 and cxcr predict clinical outcome in patients with cancer
US20120289424A1 (en) Igf1r polymorphism predicts tumor recurrence in breast cancer patients
US20110105529A1 (en) ERCC-1 Gene Expression Predicts Chemotherapy Outcome
WO2011146406A1 (en) Germline polymorphisms in vegf predict clinical outcomes in cancer patients treated with sorafenib
US20120289410A1 (en) Genetic variant in formyl peptide receptor 2 (fpr2) predicts clinical outcome in cancer patients
US20120107309A1 (en) Polymorphism in k-ras 3' untranslated region associated with clinical outcomes of cancer treatments independent of k-ras mutation status
WO2011146411A1 (en) Grp78 gene polymorphism rs391957 is associated with tumor recurrence and survival in gastrointestinal cancer patients
WO2011146405A1 (en) Egf +61g/a and ts 5'utr 2r/3r polymorphisms predict clinical outcomes in cancer patients undergoing anti-egfr therapy
WO2011085334A1 (en) Cd44 polymorphisms predict clinical outcome in patients with gastric cancer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11784044

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11784044

Country of ref document: EP

Kind code of ref document: A1