WO2011142115A1 - Hydrogen gas liquefaction method and hydrogen gas liquefaction plant - Google Patents

Hydrogen gas liquefaction method and hydrogen gas liquefaction plant Download PDF

Info

Publication number
WO2011142115A1
WO2011142115A1 PCT/JP2011/002576 JP2011002576W WO2011142115A1 WO 2011142115 A1 WO2011142115 A1 WO 2011142115A1 JP 2011002576 W JP2011002576 W JP 2011002576W WO 2011142115 A1 WO2011142115 A1 WO 2011142115A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
liquefied
gas
nitrogen
liquefaction
Prior art date
Application number
PCT/JP2011/002576
Other languages
French (fr)
Japanese (ja)
Inventor
誠二 山下
祥二 神谷
哲也 山本
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Publication of WO2011142115A1 publication Critical patent/WO2011142115A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0005Light or noble gases
    • F25J1/001Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0012Primary atmospheric gases, e.g. air
    • F25J1/0015Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/0062Light or noble gases, mixtures thereof
    • F25J1/0065Helium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0203Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle
    • F25J1/0204Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle as a single flow SCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0221Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop
    • F25J1/0223Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop in combination with the subsequent re-vaporisation of the originally liquefied gas at a second location to produce the external cryogenic component
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/012Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating
    • F17C2227/0309Heat exchange with the fluid by heating using another fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/05Regasification
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/45Hydrogen technologies in production processes

Definitions

  • the present invention reduces the energy when liquefying hydrogen gas by producing liquefied nitrogen by the cold heat of liquefied hydrogen when vaporizing liquefied hydrogen transported to a hydrogen consuming area into hydrogen gas.
  • the present invention relates to a hydrogen gas liquefaction method and a hydrogen gas liquefaction plant.
  • Hydrocarbon or hydrogen gas such as natural gas is transported after being liquefied to increase transport density.
  • Hydrogen gas can be mass-produced from coal, oil, or natural gas, and does not emit carbon dioxide at all even when it is burned. Thus, hydrogen gas is attracting particular attention from the viewpoint of preventing global warming.
  • Hydrogen gas is manufactured and liquefied in a coal, oil, or natural gas production area, and is transported as liquefied hydrogen to a hydrogen consumption area by a transportation means such as a tanker.
  • Patent Document 1 discloses natural energy such as wind, solar heat, sunlight, wave power, tidal power, or ocean temperature difference in order to electrolyze water to produce hydrogen gas or to liquefy hydrogen gas.
  • a power generation facility that obtains electric power by using a power source is disclosed.
  • Patent Document 2 discloses a hydrogen transport system that electrolyzes water using electric power generated using natural energy and can easily and quickly transport the obtained hydrogen to a hydrogen consuming facility. Has been.
  • hydrogen gas Since hydrogen gas has a very low boiling point of ⁇ 252.6 ° C., a great deal of energy is required to liquefy it.
  • hydrogen gas is preliminarily cooled with liquefied nitrogen (boiling point: 195.8 ° C.), further cooled by a refrigeration cycle using helium as a refrigerant, and expanded and temperature lowered by using the Joule-Thompson effect. Is manufactured. For this reason, big energy (electric power) is needed for manufacture of liquefied nitrogen, and operation of a refrigerating cycle.
  • the energy that can be recovered by the expansion of the hydrogen gas and the working medium is actually much less than the energy required to liquefy the hydrogen gas, and it is difficult to efficiently recover the cold energy of liquefied hydrogen. Met.
  • liquefied hydrogen produced in the hydrogen production area is transported by sea mainly to distant hydrogen consumption areas by tankers, but after loading and unloading the liquefied hydrogen that is the cargo in the hydrogen consumption area, it is returned to the hydrogen production area again. There is a need. At this time, the tanker that has become empty loads the seawater in the hydrogen consuming area as ballast and drains the ballast water in the hydrogen producing area.
  • ballast water As ballast will carry alien species to distant seas. For this reason, from the viewpoint of protecting the natural environment, in recent years, it has been internationally required to replace ballast water at a place away from the coast or to perform sterilization treatment with sodium hypochlorite or the like. Due to such replacement or sterilization of ballast water, the tendency to increase the transportation cost and transportation time by tankers is becoming a problem in the maritime transportation of liquefied hydrogen.
  • An object of the present invention is to provide a hydrogen gas liquefaction method and a hydrogen gas liquefaction plant that can recover the cold energy of liquefied hydrogen and effectively use it as energy required for liquefying hydrogen gas.
  • the present inventor can exchange heat of liquefied hydrogen and nitrogen gas in a hydrogen consuming area to obtain hydrogen gas and liquefied nitrogen, and transport the obtained liquefied nitrogen to a hydrogen production place and use it for liquefaction of hydrogen gas.
  • the present inventors have found that the generated nitrogen gas can be released into the atmosphere and can effectively use the cold heat of liquefied hydrogen, and have completed the present invention.
  • the present invention A hydrogen liquefaction process for producing liquefied hydrogen by cooling the hydrogen gas by heat-exchanging hydrogen gas and liquefied nitrogen in a hydrogen production area; A first transport process for transporting liquefied hydrogen to a hydrogen consumption area; A hydrogen vaporization step of generating hydrogen gas from liquefied hydrogen by heat-exchanging liquefied hydrogen and nitrogen gas in a hydrogen consumption area; A second transport step for transporting the liquefied nitrogen obtained in the hydrogen vaporization step to a hydrogen production site;
  • the present invention relates to a hydrogen gas liquefaction method characterized in that cold heat is circulated and utilized between a hydrogen vaporization step and a hydrogen liquefaction step.
  • the present invention also provides: A hydrogen liquefying means for producing hydrogen and nitrogen gas by heat-exchanging hydrogen gas and liquefied nitrogen; A hydrogen vaporization means for producing hydrogen gas and liquefied nitrogen by heat-exchanging liquefied hydrogen and nitrogen gas; A first transport means for transporting the liquefied hydrogen produced by the hydrogen liquefaction means to the hydrogen vaporization means; A second transport means for transporting the liquefied nitrogen produced by the hydrogen vaporization means to the hydrogen liquefaction means; With The present invention relates to a hydrogen gas liquefaction plant characterized in that cold heat is circulated and utilized between hydrogen vaporization means and hydrogen liquefaction means.
  • liquefied nitrogen and nitrogen gas are subjected to heat exchange in a hydrogen consumption area, and liquefied nitrogen is produced by the cold energy of liquefied hydrogen. If this liquefied nitrogen is transported to the hydrogen production site and exchanged with hydrogen gas, the energy required for liquefying the hydrogen gas can be reduced. Furthermore, since nitrogen gas generated from liquefied nitrogen is originally a harmless gas separated from the atmosphere, there is no adverse effect on the environment even if it is released into the atmosphere. For this reason, unlike the case where chlorofluorocarbon or the like is used as the heat medium, it is not necessary to collect the heat medium when the hydrogen gas is liquefied and return it to the hydrogen consumption area.
  • liquefied hydrogen and liquefied nitrogen can use the same transportation means (tankers, tank trucks, freight trains, etc. for ultra-low temperature liquid transportation), the transportation means currently used between the hydrogen production area and the hydrogen consumption area, It can be used by modifying the tank, etc., and it is not necessary to prepare special means separately.
  • the first transport step and the second transport step are marine transport by tankers.
  • a tanker When a large amount of liquefied hydrogen is transported from a hydrogen production area, a tanker is generally used.
  • the tanker loaded with liquefied hydrogen at the hydrogen production site loads and unloads liquefied hydrogen at the hydrogen consumption site, and then returns to the hydrogen production site to continue transporting liquefied hydrogen.
  • the ballast water since the liquefied hydrogen tank of the tanker heading from the hydrogen consumption area to the hydrogen production area is empty, the ballast water must be loaded and operated in the ballast tank.
  • liquefied nitrogen is produced in a hydrogen consuming area. If this liquefied nitrogen is loaded on a tanker, ballast water is not required, so the seawater in the hydrogen consuming area is brought into the hydrogen producing area. There is nothing.
  • the energy required for the liquefaction of hydrogen gas can be saved as compared with the prior art by effectively using the cold energy of the liquefied hydrogen.
  • FIG. 1 is a conceptual diagram illustrating the hydrogen liquefaction method of the present invention.
  • hydrogen gas is produced from coal, petroleum, etc.
  • liquefied hydrogen is produced by a known hydrogen gas liquefying means.
  • the liquefied hydrogen is transported to the hydrogen consumption area by a first transport means such as a tanker for transporting the cryogenic liquid.
  • liquefied hydrogen and nitrogen gas separated from the air by the air separation device are heat-exchanged in the hydrogen vaporization device (heat exchanger).
  • the hydrogen vaporizer a known heat exchanger such as a plate fin heat exchanger can be used.
  • Hydrogen gas and liquefied nitrogen are obtained from the hydrogen vaporizer.
  • the hydrogen gas is stored in a storage facility such as a hydrogen gas tank or supplied to a place where the hydrogen gas is used by a pipeline.
  • liquefied nitrogen is transported to a hydrogen production site by a second transport means such as a tanker for transporting an ultra-low temperature liquid.
  • the same tanker or the like may be used in the second transport means and the first transport means, but another tanker or the like that can transport liquefied nitrogen may be used.
  • transportation means such as a tanker heading from a hydrogen consumption area to a hydrogen production area is empty. For this reason, if it is a tanker, seawater will be loaded as ballast water and will be sent to a hydrogen production place.
  • ballast water is not required. That is, liquefied nitrogen can be transported to a hydrogen production site without taking any special transportation means, and alien species in seawater of the hydrogen consumption region are not transported to the hydrogen production site.
  • liquefied nitrogen and hydrogen gas are heat-exchanged in a hydrogen liquefier (heat exchanger).
  • a known heat exchanger such as a plate fin heat exchanger can be used.
  • the hydrogen gas precooled with liquefied nitrogen is further cooled by a known (cooling device) equipped with a cooling means using helium as a refrigerant, and then expanded by a Joule-Thompson valve. And is taken out of the apparatus.
  • the cold energy of liquefied hydrogen that has been discarded in seawater or the like can be circulated and utilized for liquefaction of hydrogen gas via liquefied nitrogen.
  • liquefied hydrogen and nitrogen gas are heat-exchanged in the hydrogen consumption area, and liquefied nitrogen is produced by the cold energy of liquefied hydrogen.
  • the produced liquefied nitrogen and hydrogen gas are heat-exchanged.
  • the cold energy can be circulated and utilized between hydrogen and nitrogen.
  • nitrogen gas is taken out from the hydrogen liquefaction device, it can be released into the atmosphere as it is. Since the released nitrogen is separated from the atmosphere at the hydrogen consuming area, even if it is released into the atmosphere at the hydrogen producing area, it will only return the separated nitrogen gas to the atmosphere. None give. Further, by releasing it into the atmosphere as it is, facilities and means such as recovery and storage of nitrogen gas and retransportation to a hydrogen consumption area are completely unnecessary. In this way, the cost can be greatly reduced as compared with the case where the cold energy of liquefied hydrogen is transferred to Freon.
  • a tanker with a loading capacity of 150,000 m 3 can carry 11,100 tons of liquefied hydrogen. If the cold heat of 11,100 tons of liquefied hydrogen is reused, 108,000 tons (130,000 m 3 ) of liquefied nitrogen can be produced. Since 0.44 kwh is required for the production of liquefied nitrogen and 0.91 kwh is required for the operation of the refrigeration cycle (total 1.35 kwh) per 1 Nm 3 of liquefied hydrogen, it is possible to reduce energy (electric power) by 30% or more. is there.
  • the amount of energy recovery required for the liquefaction of hydrogen gas is more than nine times that of the prior art.
  • the hydrogen gas liquefaction method and hydrogen gas liquefaction plant of the present invention are useful in the energy field.

Abstract

A hydrogen gas liquefaction method and a hydrogen gas liquefaction plant are provided in which the cold energy possessed by liquefied hydrogen can be recovered and effectively utilized as energy required for liquefaction of hydrogen gas. The hydrogen gas liquefaction method is characterized by comprising: a hydrogen liquefaction step in which in a hydrogen production place, hydrogen gas is heat-exchanged with liquefied nitrogen to thereby cool the hydrogen gas and produce liquefied hydrogen; a first transportation step in which the liquefied hydrogen is transported to a hydrogen consumption region; a hydrogen vaporization step in which in the hydrogen consumption region, the liquefied hydrogen is heat-exchanged with nitrogen gas to thereby generate hydrogen gas from the liquefied hydrogen; and a second transportation step in which the liquefied nitrogen obtained in the hydrogen vaporization step is transported to the hydrogen production place. The method hence is characterized in that cold is circulated between the hydrogen vaporization step and the hydrogen liquefaction step and utilized therein.

Description

水素ガス液化方法及び水素ガス液化プラントHydrogen gas liquefaction method and hydrogen gas liquefaction plant
 本発明は、水素消費地へと輸送された液化水素を水素ガスに気化させる際に、液化水素の有する冷熱によって液化窒素を製造することにより、水素ガスを液化する際のエネルギーを削減するための水素ガス液化方法及び水素ガス液化プラントに関する。 The present invention reduces the energy when liquefying hydrogen gas by producing liquefied nitrogen by the cold heat of liquefied hydrogen when vaporizing liquefied hydrogen transported to a hydrogen consuming area into hydrogen gas. The present invention relates to a hydrogen gas liquefaction method and a hydrogen gas liquefaction plant.
 天然ガスのような炭化水素又は水素ガスは、輸送密度を高めるために液化した後、輸送される。水素ガスは、石炭、石油又は天然ガスから大量生産することが可能であり、燃焼しても二酸化炭素を全く排出しないこともあり、地球温暖化防止の観点から特に注目されている。水素ガスは、石炭、石油又は天然ガスの生産地において製造及び液化され、液化水素としてタンカー等の輸送手段によって水素消費地へと輸送されている。 Hydrocarbon or hydrogen gas such as natural gas is transported after being liquefied to increase transport density. Hydrogen gas can be mass-produced from coal, oil, or natural gas, and does not emit carbon dioxide at all even when it is burned. Thus, hydrogen gas is attracting particular attention from the viewpoint of preventing global warming. Hydrogen gas is manufactured and liquefied in a coal, oil, or natural gas production area, and is transported as liquefied hydrogen to a hydrogen consumption area by a transportation means such as a tanker.
 特許文献1には、水を電気分解して水素ガスを製造したり、水素ガスを液化したりするために、風力、太陽熱、太陽光、波力、潮力又は海洋温度差のような自然エネルギーを利用して電力を得る発電設備が開示されている。また、特許文献2には、自然エネルギーを利用して発電した電力によって水を電気分解し、得られた水素を目的とする水素消費施設に、容易かつ短時間で輸送し得る水素輸送システムが開示されている。 Patent Document 1 discloses natural energy such as wind, solar heat, sunlight, wave power, tidal power, or ocean temperature difference in order to electrolyze water to produce hydrogen gas or to liquefy hydrogen gas. A power generation facility that obtains electric power by using a power source is disclosed. Patent Document 2 discloses a hydrogen transport system that electrolyzes water using electric power generated using natural energy and can easily and quickly transport the obtained hydrogen to a hydrogen consuming facility. Has been.
特許第4317732号公報Japanese Patent No. 4317732 特開2005-220946号公報Japanese Patent Laid-Open No. 2005-220946
 水素ガスは沸点が-252.6℃と非常に低いため、液化するためには多大なエネルギーが必要である。通常は、水素ガスを液化窒素(沸点-195.8℃)によって予備冷却した後、さらにヘリウムを冷媒とする冷凍サイクルによって冷却し、ジュールトムソン効果を利用して膨張及び温度低下させることによって液化水素が製造される。このため、液化窒素の製造及び冷凍サイクルの運転に大きなエネルギー(電力)が必要となる。 Since hydrogen gas has a very low boiling point of −252.6 ° C., a great deal of energy is required to liquefy it. Usually, hydrogen gas is preliminarily cooled with liquefied nitrogen (boiling point: 195.8 ° C.), further cooled by a refrigeration cycle using helium as a refrigerant, and expanded and temperature lowered by using the Joule-Thompson effect. Is manufactured. For this reason, big energy (electric power) is needed for manufacture of liquefied nitrogen, and operation of a refrigerating cycle.
 液化水素を水素消費地において水素ガスに気化させる際には、海水、河川水等と液化水素とを熱交換させ液化水素を加温する。すなわち、液化水素の製造に大きなエネルギーが必要であるにも拘わらず、液化水素の有する冷熱エネルギーを回収することは行われてこなかった。一方、水素ガスの膨張を利用してタービンを回転させ、エネルギーを回収することは行われている。また、海水、河川水等と液化水素とを熱交換させる前に、エタンガス等の低沸点の作動媒体と液化水素とを熱交換し、凝縮した作動媒体を海水、河川水等と熱交換して蒸発させ、作動媒体の膨張によってタービンを回転させ、別途エネルギーを回収することも行われるようになった。 When vaporizing liquefied hydrogen into hydrogen gas in a hydrogen consuming area, heat is exchanged between seawater, river water, etc., and liquefied hydrogen to heat the liquefied hydrogen. That is, although a large amount of energy is required for producing liquefied hydrogen, it has not been possible to recover the cold energy of liquefied hydrogen. On the other hand, the energy is recovered by rotating the turbine using the expansion of hydrogen gas. In addition, before exchanging heat between seawater, river water, etc., and liquefied hydrogen, heat exchange between low-boiling working medium such as ethane gas and liquefied hydrogen, and heat exchange between the condensed working medium and seawater, river water, etc. Evaporation, rotation of the turbine by expansion of the working medium, and recovery of energy separately have also been performed.
 しかし、水素ガス及び作動媒体の膨張によって回収できるエネルギーは、水素ガスを液化するために必要なエネルギーと比較するとかなり少ないのが実情であり、液化水素の有する冷熱エネルギーを効率よく回収することは困難であった。 However, the energy that can be recovered by the expansion of the hydrogen gas and the working medium is actually much less than the energy required to liquefy the hydrogen gas, and it is difficult to efficiently recover the cold energy of liquefied hydrogen. Met.
 水素消費地において、液化水素とフロン等の冷媒とを熱交換させ、液化フロンを水素ガス生産地まで輸送し、水素ガスの液化に利用することも可能ではある。ところが、水素ガスと液化フロンとを熱交換させると、気化したフロンガスをそのまま大気中に放出することはできないため、フロンガスを回収する必要がある。さらに、回収したフロンガスを水素消費地まで輸送するためには、別途フロンガスを液化する必要があり、液化水素から冷熱を回収できても、システム全体としては全くエネルギーを節約することができない。 It is also possible to exchange liquefied hydrogen and a refrigerant such as chlorofluorocarbon in a hydrogen consuming area, transport the liquefied chlorofluorocarbon to a hydrogen gas production area, and use it for liquefaction of hydrogen gas. However, if heat exchange is performed between hydrogen gas and liquefied chlorofluorocarbon, the vaporized chlorofluorocarbon gas cannot be released into the atmosphere as it is, and therefore the chlorofluorocarbon gas must be recovered. Further, in order to transport the recovered chlorofluorocarbon gas to the hydrogen consumption area, it is necessary to liquefy the chlorofluorocarbon gas separately, and even if cold heat can be recovered from the liquefied hydrogen, the entire system cannot save energy at all.
 一方、水素生産地で製造された液化水素は、主としてタンカーによって遠方の水素消費地まで海上輸送されるが、水素消費地で積み荷である液化水素を積み降ろした後、再び水素生産地へと引き返す必要がある。このとき、空荷となったタンカーは、水素消費地の海水をバラストとして積み込み、水素生産地でバラスト水を排水することになる。 On the other hand, liquefied hydrogen produced in the hydrogen production area is transported by sea mainly to distant hydrogen consumption areas by tankers, but after loading and unloading the liquefied hydrogen that is the cargo in the hydrogen consumption area, it is returned to the hydrogen production area again. There is a need. At this time, the tanker that has become empty loads the seawater in the hydrogen consuming area as ballast and drains the ballast water in the hydrogen producing area.
 バラストとして海水を利用すると、外来種を遠方の海まで運ぶことになる。このため、自然環境保護の観点から、近年では沿岸から離れた場所でバラスト水を入れ替えるか、次亜塩素酸ナトリウム等による殺菌処理を行うことが国際的に求められている。このようなバラスト水の入れ替え又は殺菌処理のために、従来よりもタンカーによる輸送コスト及び輸送時間が増大する傾向になることも、液化水素の海上輸送上の問題となりつつある。 海水 Using seawater as ballast will carry alien species to distant seas. For this reason, from the viewpoint of protecting the natural environment, in recent years, it has been internationally required to replace ballast water at a place away from the coast or to perform sterilization treatment with sodium hypochlorite or the like. Due to such replacement or sterilization of ballast water, the tendency to increase the transportation cost and transportation time by tankers is becoming a problem in the maritime transportation of liquefied hydrogen.
 本発明は、液化水素の有する冷熱エネルギーを回収し、水素ガスの液化に要するエネルギーとして有効利用することができる水素ガス液化方法及び水素ガス液化プラントの提供を目的とする。 An object of the present invention is to provide a hydrogen gas liquefaction method and a hydrogen gas liquefaction plant that can recover the cold energy of liquefied hydrogen and effectively use it as energy required for liquefying hydrogen gas.
 本発明者は、水素消費地において液化水素と窒素ガスを熱交換させて水素ガス及び液化窒素とすれば、得られた液化窒素を水素生産地に輸送して水素ガスの液化に利用しても、発生した窒素ガスは大気中に放出可能であり、液化水素の有する冷熱を有効に利用し得ることを見出し、本発明を完成させるに至った。 The present inventor can exchange heat of liquefied hydrogen and nitrogen gas in a hydrogen consuming area to obtain hydrogen gas and liquefied nitrogen, and transport the obtained liquefied nitrogen to a hydrogen production place and use it for liquefaction of hydrogen gas. The present inventors have found that the generated nitrogen gas can be released into the atmosphere and can effectively use the cold heat of liquefied hydrogen, and have completed the present invention.
 具体的に、本発明は、
 水素生産地において、水素ガスと液化窒素を熱交換させることにより、水素ガスを冷却して液化水素を製造する水素液化工程と、
 液化水素を水素消費地まで輸送する第一輸送工程と、
 水素消費地において、液化水素と窒素ガスを熱交換させることにより、液化水素から水素ガスを発生させる水素気化工程と、
 水素気化工程において得られた液化窒素を水素生産地まで輸送する第二輸送工程と、
を有し、
水素気化工程と水素液化工程の間で冷熱が循環利用されることを特徴とする、水素ガス液化方法に関する。
Specifically, the present invention
A hydrogen liquefaction process for producing liquefied hydrogen by cooling the hydrogen gas by heat-exchanging hydrogen gas and liquefied nitrogen in a hydrogen production area;
A first transport process for transporting liquefied hydrogen to a hydrogen consumption area;
A hydrogen vaporization step of generating hydrogen gas from liquefied hydrogen by heat-exchanging liquefied hydrogen and nitrogen gas in a hydrogen consumption area;
A second transport step for transporting the liquefied nitrogen obtained in the hydrogen vaporization step to a hydrogen production site;
Have
The present invention relates to a hydrogen gas liquefaction method characterized in that cold heat is circulated and utilized between a hydrogen vaporization step and a hydrogen liquefaction step.
 また、本発明は、
 水素ガスと液化窒素を熱交換させ、液化水素と窒素ガスを製造する水素液化手段と、
 液化水素と窒素ガスを熱交換させ、水素ガスと液化窒素を製造する水素気化手段と、
 水素液化手段が製造した液化水素を水素気化手段まで輸送する第一輸送手段と、
 水素気化手段が製造した液化窒素を水素液化手段まで輸送する第二輸送手段と、
を備え、
水素気化手段と水素液化手段の間で冷熱が循環利用されることを特徴とする、水素ガス液化プラントに関する。
The present invention also provides:
A hydrogen liquefying means for producing hydrogen and nitrogen gas by heat-exchanging hydrogen gas and liquefied nitrogen;
A hydrogen vaporization means for producing hydrogen gas and liquefied nitrogen by heat-exchanging liquefied hydrogen and nitrogen gas;
A first transport means for transporting the liquefied hydrogen produced by the hydrogen liquefaction means to the hydrogen vaporization means;
A second transport means for transporting the liquefied nitrogen produced by the hydrogen vaporization means to the hydrogen liquefaction means;
With
The present invention relates to a hydrogen gas liquefaction plant characterized in that cold heat is circulated and utilized between hydrogen vaporization means and hydrogen liquefaction means.
 本発明では、水素消費地において、液化水素と窒素ガスを熱交換させ、液化水素の有する冷熱エネルギーによって液化窒素を製造する。この液化窒素を水素生産地まで輸送し、水素ガスと熱交換させれば、水素ガスの液化に要するエネルギーを削減することが可能となる。さらに、液化窒素から発生した窒素ガスは、元々大気中から分離した無害なガスであるため、大気中に放出しても環境に対する悪影響は全く出ない。このため、フロンなどを熱媒体とする場合と異なり、水素ガスの液化時に熱媒体を回収し、さらに水素消費地へと返送する必要もない。 In the present invention, liquefied nitrogen and nitrogen gas are subjected to heat exchange in a hydrogen consumption area, and liquefied nitrogen is produced by the cold energy of liquefied hydrogen. If this liquefied nitrogen is transported to the hydrogen production site and exchanged with hydrogen gas, the energy required for liquefying the hydrogen gas can be reduced. Furthermore, since nitrogen gas generated from liquefied nitrogen is originally a harmless gas separated from the atmosphere, there is no adverse effect on the environment even if it is released into the atmosphere. For this reason, unlike the case where chlorofluorocarbon or the like is used as the heat medium, it is not necessary to collect the heat medium when the hydrogen gas is liquefied and return it to the hydrogen consumption area.
 また、液化水素と液化窒素は、同じ輸送手段(超低温液体輸送用のタンカー、タンクローリー、貨物列車等)を使用し得るので、水素生産地及び水素消費地間で現在使用されている輸送手段を、タンク等を改変することによって活用でき、特別な手段を別途用意する必要がない。 In addition, since liquefied hydrogen and liquefied nitrogen can use the same transportation means (tankers, tank trucks, freight trains, etc. for ultra-low temperature liquid transportation), the transportation means currently used between the hydrogen production area and the hydrogen consumption area, It can be used by modifying the tank, etc., and it is not necessary to prepare special means separately.
 本発明の水素ガス液化方法では、第一輸送工程及び第二輸送工程がタンカーによる海上輸送であることが好ましい。 In the hydrogen gas liquefaction method of the present invention, it is preferable that the first transport step and the second transport step are marine transport by tankers.
 水素生産地から大量の液化水素を輸送する場合、タンカーが利用されることが一般的である。水素生産地で液化水素を積み込んだタンカーは、水素消費地で液化水素を積み降ろした後、再び水素生産地へと引き返して、液化水素の輸送を継続する。ここで、水素消費地から水素生産地へと向かうタンカーの液化水素タンクは空であるため、バラストタンクにバラスト水を積み込んで運行しなければならない。 When a large amount of liquefied hydrogen is transported from a hydrogen production area, a tanker is generally used. The tanker loaded with liquefied hydrogen at the hydrogen production site loads and unloads liquefied hydrogen at the hydrogen consumption site, and then returns to the hydrogen production site to continue transporting liquefied hydrogen. Here, since the liquefied hydrogen tank of the tanker heading from the hydrogen consumption area to the hydrogen production area is empty, the ballast water must be loaded and operated in the ballast tank.
 しかし、上述したように、近年、海水をバラスト水として使用することに制限が課せられるようになっている。このため、タンカーによる海上輸送にかかるコスト及び時間が増大する傾向にある。 However, as described above, in recent years, restrictions have been imposed on the use of seawater as ballast water. For this reason, the cost and time required for marine transportation by tankers tend to increase.
 本発明の水素ガス液化方法では、水素消費地で液化窒素が製造されるので、この液化窒素をタンカーに積載すれば、バラスト水が不要であるので、水素消費地の海水を水素生産地へ持ち込むことがない。 In the hydrogen gas liquefaction method of the present invention, liquefied nitrogen is produced in a hydrogen consuming area. If this liquefied nitrogen is loaded on a tanker, ballast water is not required, so the seawater in the hydrogen consuming area is brought into the hydrogen producing area. There is nothing.
 水素気化工程においては、空気分離手段によって空気から窒素ガスを製造することが好ましい。 In the hydrogen vaporization step, it is preferable to produce nitrogen gas from air by air separation means.
 空気は普遍的に存在するので、冷熱を循環利用するための冷媒として利用することができるが、あらかじめ空気分離手段によって窒素ガスのみを取り出して冷媒として利用すれば、水素と窒素は混合しても反応しないので、空荷の液化水素タンク内に若干の水素が残っていても、冷媒の窒素自身でパージ操作が可能であり、液化水素タンクと液化窒素タンクを共用することが可能となる。このとき、空気から窒素ガスを分離することによって、水素消費地において窒素ガスを製造するようにすれば、水素生産地で窒素ガスを大気中に放出しても、大気成分に変動を与えることがない。 Since air exists universally, it can be used as a refrigerant for circulating cold. However, if only nitrogen gas is taken out by air separation means in advance and used as a refrigerant, hydrogen and nitrogen can be mixed. Since there is no reaction, even if some hydrogen remains in the empty liquefied hydrogen tank, the purge operation can be performed with the nitrogen of the refrigerant itself, and the liquefied hydrogen tank and the liquefied nitrogen tank can be shared. At this time, if nitrogen gas is produced in the hydrogen consuming area by separating the nitrogen gas from the air, even if the nitrogen gas is released into the atmosphere at the hydrogen producing area, the atmospheric components may be changed. Absent.
 また、水素消費地において窒素ガスを製造するようにすれば、水素生産地において液化窒素から熱交換により相変化した窒素ガスを水素消費地に送り返す必要がなくなるため、水素ガス液化に係るエネルギー効率を向上させることが可能となる。 In addition, if nitrogen gas is produced in the hydrogen consuming area, it is not necessary to send back the phase-changed nitrogen gas from liquefied nitrogen by heat exchange to the hydrogen consuming area in the hydrogen producing area. It becomes possible to improve.
 本発明によれば、液化水素の冷熱エネルギーの有効利用により、水素ガスの液化に要するエネルギーを、従来技術と比較して節約することが可能である。 According to the present invention, the energy required for the liquefaction of hydrogen gas can be saved as compared with the prior art by effectively using the cold energy of the liquefied hydrogen.
本発明の水素液化方法を説明する概念図である。It is a conceptual diagram explaining the hydrogen liquefaction method of this invention. 液化水素からの冷熱エネルギーを回収する従来技術の一例である。It is an example of the prior art which collects the cold energy from liquefied hydrogen. 液化水素からの冷熱エネルギーを回収する従来技術の別の一例である。It is another example of the prior art which collect | recovers the cold energy from liquefied hydrogen.
 本発明の実施形態について、図面を参酌しながら説明する。なお、本発明は以下に限定されない。 Embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the following.
 図1は、本発明の水素液化方法を説明する概念図を表す。まず、水素生産地において、石炭、石油等から水素ガスが製造され、公知の水素ガス液化手段によって液化水素が製造される。液化水素は、超低温液体を輸送するためのタンカー等の第一輸送手段によって、水素消費地へと輸送される。 FIG. 1 is a conceptual diagram illustrating the hydrogen liquefaction method of the present invention. First, in a hydrogen production area, hydrogen gas is produced from coal, petroleum, etc., and liquefied hydrogen is produced by a known hydrogen gas liquefying means. The liquefied hydrogen is transported to the hydrogen consumption area by a first transport means such as a tanker for transporting the cryogenic liquid.
 水素消費地では、液化水素と、空気分離装置(空気分離手段)によって空気から分離された窒素ガスとが、水素気化装置(熱交換器)において熱交換される。水素気化装置は、プレートフィン熱交換器等の公知の熱交換器を使用し得る。 In the hydrogen consumption area, liquefied hydrogen and nitrogen gas separated from the air by the air separation device (air separation means) are heat-exchanged in the hydrogen vaporization device (heat exchanger). As the hydrogen vaporizer, a known heat exchanger such as a plate fin heat exchanger can be used.
 水素気化装置からは、水素ガスと液化窒素とが得られる。水素ガスは、水素ガスタンク等の貯蔵施設に貯蔵されるか、パイプラインによって水素ガス使用場所へと供給される。一方、液化窒素は、超低温液体を輸送するためのタンカー等の第二輸送手段によって、水素生産地へと輸送される。第二輸送手段と第一輸送手段において同じタンカー等を使用しても良いが、液化窒素を輸送できる別のタンカー等を使用しても良い。 Hydrogen gas and liquefied nitrogen are obtained from the hydrogen vaporizer. The hydrogen gas is stored in a storage facility such as a hydrogen gas tank or supplied to a place where the hydrogen gas is used by a pipeline. On the other hand, liquefied nitrogen is transported to a hydrogen production site by a second transport means such as a tanker for transporting an ultra-low temperature liquid. The same tanker or the like may be used in the second transport means and the first transport means, but another tanker or the like that can transport liquefied nitrogen may be used.
 従来は、水素消費地から水素生産地へと向かうタンカー等の輸送手段は、空荷である。このため、タンカーであれば海水をバラスト水として積み込んで水素生産地へと回送される。しかし、本発明では、液化水素の貯蔵タンクに液化窒素を貯蔵することができるため、バラスト水が不要となる。すなわち、特別な輸送手段を取らなくても、液化窒素を水素生産地へと輸送することが可能であり、水素消費地の海水中の外来種を水素生産地へと運ぶこともない。 Conventionally, transportation means such as a tanker heading from a hydrogen consumption area to a hydrogen production area is empty. For this reason, if it is a tanker, seawater will be loaded as ballast water and will be sent to a hydrogen production place. However, in the present invention, since liquefied nitrogen can be stored in a liquefied hydrogen storage tank, ballast water is not required. That is, liquefied nitrogen can be transported to a hydrogen production site without taking any special transportation means, and alien species in seawater of the hydrogen consumption region are not transported to the hydrogen production site.
 水素生産地では、液化窒素と水素ガスとが、水素液化装置(熱交換器)において熱交換される。水素液化装置は、プレートフィン熱交換器等の公知の熱交換器を使用し得る。水素液化装置では、液化窒素によって予備冷却された水素ガスは、ヘリウムを冷媒として使用する冷却手段を備えた公知の(冷却装置)によってさらに冷却された後、ジュールトムソン弁によって膨張させられ、液化水素となって装置外へ取り出される。 In the hydrogen production area, liquefied nitrogen and hydrogen gas are heat-exchanged in a hydrogen liquefier (heat exchanger). As the hydrogen liquefaction apparatus, a known heat exchanger such as a plate fin heat exchanger can be used. In the hydrogen liquefaction device, the hydrogen gas precooled with liquefied nitrogen is further cooled by a known (cooling device) equipped with a cooling means using helium as a refrigerant, and then expanded by a Joule-Thompson valve. And is taken out of the apparatus.
 水素ガスの液化においては、液化窒素を用いて水素ガスを予備冷却する必要がある。液化窒素を製造するためには、窒素ガスを加圧した後、冷却し、ジュールトムソン弁によって膨張させる必要がある。このため、液化窒素を製造するためにも、大きなエネルギー(電力)が必要である。 In the liquefaction of hydrogen gas, it is necessary to precool the hydrogen gas using liquefied nitrogen. In order to produce liquefied nitrogen, it is necessary to pressurize nitrogen gas, cool it, and expand it with a Joule-Thomson valve. For this reason, in order to manufacture liquefied nitrogen, big energy (electric power) is required.
 しかし、本発明では、従来は海水中等に捨てられていた液化水素が有する冷熱エネルギーは、液化窒素を介して水素ガスの液化に循環利用することができる。つまり、水素消費地においては、液化水素と窒素ガスを熱交換させ、液化水素の有する冷熱エネルギーによって液化窒素を製造し、水素生産地においては、この製造された液化窒素と水素ガスを熱交換させ、液化窒素の有する冷熱エネルギーによって液化水素を製造することにより、水素と窒素の間で冷熱エネルギーを循環利用することができる。 However, in the present invention, the cold energy of liquefied hydrogen that has been discarded in seawater or the like can be circulated and utilized for liquefaction of hydrogen gas via liquefied nitrogen. In other words, liquefied hydrogen and nitrogen gas are heat-exchanged in the hydrogen consumption area, and liquefied nitrogen is produced by the cold energy of liquefied hydrogen. In the hydrogen production area, the produced liquefied nitrogen and hydrogen gas are heat-exchanged. Further, by producing liquefied hydrogen by the cold energy of liquefied nitrogen, the cold energy can be circulated and utilized between hydrogen and nitrogen.
 このため、海上輸送手段であるタンカーによって液化窒素をバラスト水の替わりに輸送する場合はもちろん、陸上輸送手段であるタンクローリー又は貨物列車によって液化窒素を輸送する場合であっても、水素ガスの液化の度に、液化窒素を製造する従来の水素ガス液化方法と比較して、エネルギーを削減することが可能である。 For this reason, even when liquefied nitrogen is transported in place of ballast water by a tanker, which is a sea transport means, as well as when liquefied nitrogen is transported by a tank truck or a freight train, which is a land transport means, Each time, it is possible to reduce energy compared to the conventional hydrogen gas liquefaction method for producing liquefied nitrogen.
 なお、水素液化装置からは、窒素ガスが取り出されるが、これはそのまま大気中へと放出することができる。放出する窒素は、水素消費地において大気中から分離されたものであるため、水素生産地において大気中に放出しても、分離した窒素ガスを大気中に戻すだけであるため、環境に影響を与えることがない。また、そのまま大気中へと放出させることにより、窒素ガスの回収、貯蔵、水素消費地への再輸送等の設備及び手段は全く不要である。このように、フロンに液化水素の冷熱エネルギーを移動させる場合と比較して、大幅にコストを削減することが可能である。 In addition, although nitrogen gas is taken out from the hydrogen liquefaction device, it can be released into the atmosphere as it is. Since the released nitrogen is separated from the atmosphere at the hydrogen consuming area, even if it is released into the atmosphere at the hydrogen producing area, it will only return the separated nitrogen gas to the atmosphere. Never give. Further, by releasing it into the atmosphere as it is, facilities and means such as recovery and storage of nitrogen gas and retransportation to a hydrogen consumption area are completely unnecessary. In this way, the cost can be greatly reduced as compared with the case where the cold energy of liquefied hydrogen is transferred to Freon.
 (実施例)
 積載量15万mのタンカーは、液化水素11,100トンを積載することができる。液化水素11,100トンの冷熱を再利用すれば、液化窒素108,000トン(13万m)を製造することが可能である。液化水素1Nm当たり、液化窒素の製造に0.44kwh、冷凍サイクルの運転に0.91kwhが必要である(合計1.35kwh)ため、30%以上のエネルギー(電力)を削減することが可能である。
(Example)
A tanker with a loading capacity of 150,000 m 3 can carry 11,100 tons of liquefied hydrogen. If the cold heat of 11,100 tons of liquefied hydrogen is reused, 108,000 tons (130,000 m 3 ) of liquefied nitrogen can be produced. Since 0.44 kwh is required for the production of liquefied nitrogen and 0.91 kwh is required for the operation of the refrigeration cycle (total 1.35 kwh) per 1 Nm 3 of liquefied hydrogen, it is possible to reduce energy (electric power) by 30% or more. is there.
 (比較例)
 液化水素を海水等と熱交換させ、水素ガスの膨張によってタービン(断熱効率75%)を回転させてエネルギーを回収する従来技術(図2、水素ガスの膨張比8)の場合、水素流量1Nm/hのときに0.033kwの発電量である。海水等と熱交換させる前に、エタンを作動媒体として液化水素と熱交換させるエタンサイクルを組み込んだ従来技術(図3、エタンガスの膨張比33.5)の場合でも、水素流量1Nm/hのときに0.048kwの発電量である。
(Comparative example)
In the case of the conventional technique (FIG. 2, hydrogen gas expansion ratio 8) in which liquefied hydrogen is heat-exchanged with seawater or the like and the turbine (adiabatic efficiency 75%) is rotated by the expansion of hydrogen gas to recover energy, a hydrogen flow rate of 1 Nm 3 The power generation amount is 0.033 kW at / h. Even in the case of the conventional technology (FIG. 3, ethane gas expansion ratio 33.5) incorporating an ethane cycle in which ethane is used as a working medium and heat exchange with liquefied hydrogen before heat exchange with seawater, etc., the hydrogen flow rate is 1 Nm 3 / h. Sometimes the power generation amount is 0.048kw.
 このように、本発明では、水素ガスの液化に要するエネルギー回収量が、従来技術と比較して9倍以上多い。 Thus, in the present invention, the amount of energy recovery required for the liquefaction of hydrogen gas is more than nine times that of the prior art.
 本発明の水素ガス液化方法及び水素ガス液化プラントは、エネルギー分野において有用である。 The hydrogen gas liquefaction method and hydrogen gas liquefaction plant of the present invention are useful in the energy field.

Claims (5)

  1.  水素生産地において、水素ガスと液化窒素を熱交換させることにより、水素ガスを冷却して液化水素を製造する水素液化工程と、
     液化水素を水素消費地まで輸送する第一輸送工程と、
     水素消費地において、液化水素と窒素ガスを熱交換させることにより、液化水素から水素ガスを発生させる水素気化工程と、
     水素気化工程において得られた液化窒素を水素生産地まで輸送する第二輸送工程と、
    を有し、
    水素気化工程と水素液化工程の間で冷熱が循環利用されることを特徴とする、水素ガス液化方法。
    A hydrogen liquefaction process for producing liquefied hydrogen by cooling the hydrogen gas by heat-exchanging hydrogen gas and liquefied nitrogen in a hydrogen production area;
    A first transport process for transporting liquefied hydrogen to a hydrogen consumption area;
    A hydrogen vaporization step of generating hydrogen gas from liquefied hydrogen by heat-exchanging liquefied hydrogen and nitrogen gas in a hydrogen consumption area;
    A second transport step for transporting the liquefied nitrogen obtained in the hydrogen vaporization step to a hydrogen production site;
    Have
    A hydrogen gas liquefaction method, wherein cold heat is circulated and utilized between a hydrogen vaporization step and a hydrogen liquefaction step.
  2.  前記第一輸送工程及び前記第二輸送工程がタンカーによる海上輸送である、請求項1に記載の水素ガス液化方法。 The hydrogen gas liquefaction method according to claim 1, wherein the first transport step and the second transport step are sea transport by tankers.
  3.  前記水素気化工程において、空気分離手段によって空気から窒素ガスを製造する、請求項1に記載の水素ガス液化方法。 The hydrogen gas liquefaction method according to claim 1, wherein, in the hydrogen vaporization step, nitrogen gas is produced from air by air separation means.
  4.  水素ガスと液化窒素を熱交換させ、液化水素と窒素ガスを製造する水素液化手段と、
     液化水素と窒素ガスを熱交換させ、水素ガスと液化窒素を製造する水素気化手段と、
     水素液化手段が製造した液化水素を水素気化手段まで輸送する第一輸送手段と、
     水素気化手段が製造した液化窒素を水素液化手段まで輸送する第二輸送手段と、
    を備え、
    水素気化手段と水素液化手段の間で冷熱が循環利用されることを特徴とする、水素ガス液化プラント。
    A hydrogen liquefying means for producing hydrogen and nitrogen gas by heat-exchanging hydrogen gas and liquefied nitrogen;
    A hydrogen vaporization means for producing hydrogen gas and liquefied nitrogen by heat-exchanging liquefied hydrogen and nitrogen gas;
    A first transport means for transporting the liquefied hydrogen produced by the hydrogen liquefaction means to the hydrogen vaporization means;
    A second transport means for transporting the liquefied nitrogen produced by the hydrogen vaporization means to the hydrogen liquefaction means;
    With
    A hydrogen gas liquefaction plant, wherein cold heat is circulated and utilized between hydrogen vaporization means and hydrogen liquefaction means.
  5.  前記水素気化手段が、空気分離手段によって空気から窒素ガスを製造する、請求項4に記載の水素ガス液化プラント。 The hydrogen gas liquefaction plant according to claim 4, wherein the hydrogen vaporization means produces nitrogen gas from air by air separation means.
PCT/JP2011/002576 2010-05-10 2011-05-09 Hydrogen gas liquefaction method and hydrogen gas liquefaction plant WO2011142115A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010108350A JP2011237100A (en) 2010-05-10 2010-05-10 Hydrogen gas liquefaction method, and hydrogen gas liquefaction plant
JP2010-108350 2010-05-10

Publications (1)

Publication Number Publication Date
WO2011142115A1 true WO2011142115A1 (en) 2011-11-17

Family

ID=44914175

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/002576 WO2011142115A1 (en) 2010-05-10 2011-05-09 Hydrogen gas liquefaction method and hydrogen gas liquefaction plant

Country Status (2)

Country Link
JP (1) JP2011237100A (en)
WO (1) WO2011142115A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014234928A (en) * 2013-05-30 2014-12-15 ヒュンダイ ヘビー インダストリーズ カンパニー リミテッド Liquefied gas treatment system
FR3017009A1 (en) * 2014-01-30 2015-07-31 Claude Favy METHOD FOR STORING, TRANSPORTING AND RETURNING ELECTRICAL ENERGY
US20210254789A1 (en) * 2018-05-07 2021-08-19 L'Air Liquide, Société Anonyme Pour I'Etude et I'Exploitation des Precédés Georges Claude Method and facility for storing and distributing liquefied hydrogen

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2713556C1 (en) 2016-03-10 2020-02-05 ДжГК Корпорейшн New production equipment and method of producing liquefied hydrogen and liquefied natural gas
KR102267677B1 (en) * 2019-10-22 2021-06-22 고등기술연구원연구조합 System for cold heat transfer and hydrogen liquefaction using cold heat circulation of liguified hydrogen

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2975604A (en) * 1956-05-07 1961-03-21 Little Inc A Method of distribution of condensable gases
US3018632A (en) * 1959-05-11 1962-01-30 Hydrocarbon Research Inc Cyclic process for transporting methane
US3400547A (en) * 1966-11-02 1968-09-10 Williams Process for liquefaction of natural gas and transportation by marine vessel
JP2003072675A (en) * 2001-09-04 2003-03-12 Mitsubishi Heavy Ind Ltd Hydrogen recovery system provided with hydrogen manufacturing plant

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2975604A (en) * 1956-05-07 1961-03-21 Little Inc A Method of distribution of condensable gases
US3018632A (en) * 1959-05-11 1962-01-30 Hydrocarbon Research Inc Cyclic process for transporting methane
US3400547A (en) * 1966-11-02 1968-09-10 Williams Process for liquefaction of natural gas and transportation by marine vessel
JP2003072675A (en) * 2001-09-04 2003-03-12 Mitsubishi Heavy Ind Ltd Hydrogen recovery system provided with hydrogen manufacturing plant

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014234928A (en) * 2013-05-30 2014-12-15 ヒュンダイ ヘビー インダストリーズ カンパニー リミテッド Liquefied gas treatment system
JP2014234927A (en) * 2013-05-30 2014-12-15 ヒュンダイ ヘビー インダストリーズ カンパニー リミテッド Liquefied gas treatment system
CN104214012A (en) * 2013-05-30 2014-12-17 现代重工业株式会社 Liquefied gas treatment system
CN104214507A (en) * 2013-05-30 2014-12-17 现代重工业株式会社 Liquefied gas treatment system
JP2017036837A (en) * 2013-05-30 2017-02-16 ヒュンダイ ヘビー インダストリーズ カンパニー リミテッド Liquefied gas processing system
US10767921B2 (en) 2013-05-30 2020-09-08 Hyundai Heavy Industries Co., Ltd. Liquefied gas treatment system
FR3017009A1 (en) * 2014-01-30 2015-07-31 Claude Favy METHOD FOR STORING, TRANSPORTING AND RETURNING ELECTRICAL ENERGY
US20210254789A1 (en) * 2018-05-07 2021-08-19 L'Air Liquide, Société Anonyme Pour I'Etude et I'Exploitation des Precédés Georges Claude Method and facility for storing and distributing liquefied hydrogen

Also Published As

Publication number Publication date
JP2011237100A (en) 2011-11-24

Similar Documents

Publication Publication Date Title
KR102116718B1 (en) Method for liquefying natural gas in LNG carriers storing liquid nitrogen
Pospíšil et al. Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage
JP5334576B2 (en) Method of treating a gas stream using a clathrate hydrate generation and dissociation module
JP5660845B2 (en) Liquefaction method, liquefaction apparatus, and floating liquefied gas production facility equipped with the same
KR102137939B1 (en) Method for producing expander-based LNG, reinforced with liquid nitrogen
WO2011142115A1 (en) Hydrogen gas liquefaction method and hydrogen gas liquefaction plant
KR101924533B1 (en) Power generating and desalination composite plant
CN101787314B (en) Process for compact natural gas liquefying and floating production
KR102005812B1 (en) Air Liquefaction System and Method
JP2011245995A (en) Liquefied gas carrier
JP2005220946A (en) Hydrogen transportation system
Andriani et al. A review of hydrogen production from onboard ammonia decomposition: Maritime applications of concentrated solar energy and boil-off gas recovery
KR20170107265A (en) Partial reliquefaction system of Boil-Off-Gas for a ship
CN202030720U (en) Offshore natural gas liquefaction device
KR101623092B1 (en) Method and apparatus for reliquefying boil-off gas using cold-heat power generation
KR20150030938A (en) Apparatus for the reliquefaction of boil-off gas
KR102512996B1 (en) System and Method for Controlling Boil-Off Gas of Liquefied Hydrogen
KR101268914B1 (en) Liquefaction Cost Reducing Method using Brine for CCS Chain
KR20240050697A (en) rare gas production system and liquefied hydrogen receiving terminal connected to the system
KR101599411B1 (en) System And Method For Treatment Of Boil Off Gas
KR20240017575A (en) Liquefied Hydrogen Supply System and Method
Lee et al. Modeling and Simulation of Ship Transport of CO2
KR20230140108A (en) CO2 treatment system and structure having the same
KR20240049026A (en) CO2 treatment system and structure having the same
KR20130074230A (en) Process and apparatus for the liquefaction of carbon dioxide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11780374

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11780374

Country of ref document: EP

Kind code of ref document: A1