WO2011141714A1 - Organic light-emitting polymer and device - Google Patents
Organic light-emitting polymer and device Download PDFInfo
- Publication number
- WO2011141714A1 WO2011141714A1 PCT/GB2011/000737 GB2011000737W WO2011141714A1 WO 2011141714 A1 WO2011141714 A1 WO 2011141714A1 GB 2011000737 W GB2011000737 W GB 2011000737W WO 2011141714 A1 WO2011141714 A1 WO 2011141714A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polymer
- group
- optionally substituted
- light
- formula
- Prior art date
Links
- 229920000642 polymer Polymers 0.000 title claims abstract description 127
- 125000001072 heteroaryl group Chemical group 0.000 claims abstract description 36
- 238000000034 method Methods 0.000 claims abstract description 28
- 230000021615 conjugation Effects 0.000 claims abstract description 14
- 125000003107 substituted aryl group Chemical group 0.000 claims abstract description 14
- 125000006850 spacer group Chemical group 0.000 claims abstract description 13
- 239000000178 monomer Substances 0.000 claims description 45
- 239000000203 mixture Substances 0.000 claims description 38
- 125000000217 alkyl group Chemical group 0.000 claims description 32
- 125000001424 substituent group Chemical group 0.000 claims description 29
- 239000002019 doping agent Substances 0.000 claims description 27
- 229910052757 nitrogen Inorganic materials 0.000 claims description 26
- 229910052799 carbon Inorganic materials 0.000 claims description 12
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 12
- 125000004432 carbon atom Chemical group C* 0.000 claims description 10
- 239000002904 solvent Substances 0.000 claims description 9
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 claims description 8
- 125000000732 arylene group Chemical group 0.000 claims description 8
- 229910052717 sulfur Inorganic materials 0.000 claims description 8
- 238000000151 deposition Methods 0.000 claims description 7
- NIHNNTQXNPWCJQ-UHFFFAOYSA-N fluorene Chemical compound C1=CC=C2CC3=CC=CC=C3C2=C1 NIHNNTQXNPWCJQ-UHFFFAOYSA-N 0.000 claims description 7
- 229910052736 halogen Inorganic materials 0.000 claims description 7
- 150000002367 halogens Chemical class 0.000 claims description 7
- 125000000843 phenylene group Chemical group C1(=C(C=CC=C1)*)* 0.000 claims description 7
- 125000005549 heteroarylene group Chemical group 0.000 claims description 4
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 4
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 claims description 4
- JYEUMXHLPRZUAT-UHFFFAOYSA-N 1,2,3-triazine Chemical compound C1=CN=NN=C1 JYEUMXHLPRZUAT-UHFFFAOYSA-N 0.000 claims description 3
- 125000005264 aryl amine group Chemical group 0.000 claims description 3
- ZADPBFCGQRWHPN-UHFFFAOYSA-N boronic acid Chemical compound OBO ZADPBFCGQRWHPN-UHFFFAOYSA-N 0.000 claims description 3
- 150000002148 esters Chemical class 0.000 claims description 3
- 238000001704 evaporation Methods 0.000 claims description 3
- 125000005647 linker group Chemical group 0.000 claims description 3
- WCPAKWJPBJAGKN-UHFFFAOYSA-N oxadiazole Chemical compound C1=CON=N1 WCPAKWJPBJAGKN-UHFFFAOYSA-N 0.000 claims description 3
- 150000001875 compounds Chemical class 0.000 claims description 2
- 238000006713 insertion reaction Methods 0.000 claims description 2
- 150000003459 sulfonic acid esters Chemical class 0.000 claims description 2
- 239000010410 layer Substances 0.000 description 100
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 47
- 239000000463 material Substances 0.000 description 42
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 32
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 24
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 21
- 125000003118 aryl group Chemical group 0.000 description 20
- 239000007787 solid Substances 0.000 description 20
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 18
- 229910052751 metal Inorganic materials 0.000 description 18
- 239000002184 metal Substances 0.000 description 18
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 17
- 239000000243 solution Substances 0.000 description 17
- 230000000052 comparative effect Effects 0.000 description 16
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 14
- -1 poly(phenylenevinylene) Polymers 0.000 description 14
- 238000002347 injection Methods 0.000 description 13
- 239000007924 injection Substances 0.000 description 13
- 229910052760 oxygen Inorganic materials 0.000 description 13
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 12
- 238000006243 chemical reaction Methods 0.000 description 12
- 239000000758 substrate Substances 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 9
- 238000004768 lowest unoccupied molecular orbital Methods 0.000 description 9
- 125000004429 atom Chemical group 0.000 description 8
- 238000004770 highest occupied molecular orbital Methods 0.000 description 8
- 239000003446 ligand Substances 0.000 description 8
- 239000003921 oil Substances 0.000 description 8
- 239000012044 organic layer Substances 0.000 description 8
- 238000003786 synthesis reaction Methods 0.000 description 8
- 230000005525 hole transport Effects 0.000 description 7
- 239000000047 product Substances 0.000 description 7
- 239000000377 silicon dioxide Substances 0.000 description 7
- 238000004528 spin coating Methods 0.000 description 7
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 6
- 0 CC(*CC(c(cc1)c(*)cc1C(N)=NC([C@]1C=C(*)C(c2c*(*)c(C)cc2)=CC1)=NC(*)c1ccc(*)cc1)=C1)=C1I Chemical compound CC(*CC(c(cc1)c(*)cc1C(N)=NC([C@]1C=C(*)C(c2c*(*)c(C)cc2)=CC1)=NC(*)c1ccc(*)cc1)=C1)=C1I 0.000 description 6
- 208000033962 Fontaine progeroid syndrome Diseases 0.000 description 6
- 125000003545 alkoxy group Chemical group 0.000 description 6
- 238000002290 gas chromatography-mass spectrometry Methods 0.000 description 6
- 239000011521 glass Substances 0.000 description 6
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 6
- 150000002739 metals Chemical class 0.000 description 6
- 239000011368 organic material Substances 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 230000009467 reduction Effects 0.000 description 6
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 6
- 241000284156 Clerodendrum quadriloculare Species 0.000 description 5
- 239000004793 Polystyrene Substances 0.000 description 5
- 239000004411 aluminium Substances 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 230000000903 blocking effect Effects 0.000 description 5
- 238000004440 column chromatography Methods 0.000 description 5
- 230000005281 excited state Effects 0.000 description 5
- 238000004128 high performance liquid chromatography Methods 0.000 description 5
- 239000011159 matrix material Substances 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 239000004033 plastic Substances 0.000 description 5
- 229920003023 plastic Polymers 0.000 description 5
- 229920002223 polystyrene Polymers 0.000 description 5
- 239000002244 precipitate Substances 0.000 description 5
- 238000010791 quenching Methods 0.000 description 5
- 230000000171 quenching effect Effects 0.000 description 5
- 239000003039 volatile agent Substances 0.000 description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 4
- 239000012267 brine Substances 0.000 description 4
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 4
- 229920001577 copolymer Polymers 0.000 description 4
- 238000002484 cyclic voltammetry Methods 0.000 description 4
- 239000008393 encapsulating agent Substances 0.000 description 4
- 239000010408 film Substances 0.000 description 4
- 238000005191 phase separation Methods 0.000 description 4
- 235000012239 silicon dioxide Nutrition 0.000 description 4
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 4
- 238000010129 solution processing Methods 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical group [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 3
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 3
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 3
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- 229910021607 Silver chloride Inorganic materials 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 3
- UMIVXZPTRXBADB-UHFFFAOYSA-N benzocyclobutene Chemical group C1=CC=C2CCC2=C1 UMIVXZPTRXBADB-UHFFFAOYSA-N 0.000 description 3
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 3
- 229910052794 bromium Inorganic materials 0.000 description 3
- 239000000412 dendrimer Substances 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- KTWOOEGAPBSYNW-UHFFFAOYSA-N ferrocene Chemical compound [Fe+2].C=1C=C[CH-]C=1.C=1C=C[CH-]C=1 KTWOOEGAPBSYNW-UHFFFAOYSA-N 0.000 description 3
- 239000000706 filtrate Substances 0.000 description 3
- 229910052731 fluorine Inorganic materials 0.000 description 3
- 239000011737 fluorine Substances 0.000 description 3
- 125000005842 heteroatom Chemical group 0.000 description 3
- 229920001519 homopolymer Polymers 0.000 description 3
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 3
- 238000007641 inkjet printing Methods 0.000 description 3
- MZRVEZGGRBJDDB-UHFFFAOYSA-N n-Butyllithium Substances [Li]CCCC MZRVEZGGRBJDDB-UHFFFAOYSA-N 0.000 description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 3
- 229920002098 polyfluorene Polymers 0.000 description 3
- 238000007639 printing Methods 0.000 description 3
- 239000011541 reaction mixture Substances 0.000 description 3
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 3
- 150000003384 small molecules Chemical class 0.000 description 3
- FVAUCKIRQBBSSJ-UHFFFAOYSA-M sodium iodide Chemical compound [Na+].[I-] FVAUCKIRQBBSSJ-UHFFFAOYSA-M 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- SWJPEBQEEAHIGZ-UHFFFAOYSA-N 1,4-dibromobenzene Chemical compound BrC1=CC=C(Br)C=C1 SWJPEBQEEAHIGZ-UHFFFAOYSA-N 0.000 description 2
- 125000001140 1,4-phenylene group Chemical group [H]C1=C([H])C([*:2])=C([H])C([H])=C1[*:1] 0.000 description 2
- UJOBWOGCFQCDNV-UHFFFAOYSA-N 9H-carbazole Chemical compound C1=CC=C2C3=CC=CC=C3NC2=C1 UJOBWOGCFQCDNV-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000002262 Schiff base Substances 0.000 description 2
- 150000004753 Schiff bases Chemical class 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-M acrylate group Chemical group C(C=C)(=O)[O-] NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 2
- RDOXTESZEPMUJZ-UHFFFAOYSA-N anisole Chemical compound COC1=CC=CC=C1 RDOXTESZEPMUJZ-UHFFFAOYSA-N 0.000 description 2
- 239000010405 anode material Substances 0.000 description 2
- 125000003710 aryl alkyl group Chemical group 0.000 description 2
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Chemical compound [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 2
- DKPFZGUDAPQIHT-UHFFFAOYSA-N butyl acetate Chemical compound CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 2
- 229940043232 butyl acetate Drugs 0.000 description 2
- 150000001735 carboxylic acids Chemical class 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 239000010406 cathode material Substances 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- DOBRDRYODQBAMW-UHFFFAOYSA-N copper(i) cyanide Chemical compound [Cu+].N#[C-] DOBRDRYODQBAMW-UHFFFAOYSA-N 0.000 description 2
- 125000004093 cyano group Chemical group *C#N 0.000 description 2
- DMBHHRLKUKUOEG-UHFFFAOYSA-N diphenylamine Chemical compound C=1C=CC=CC=1NC1=CC=CC=C1 DMBHHRLKUKUOEG-UHFFFAOYSA-N 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- HVQAJTFOCKOKIN-UHFFFAOYSA-N flavonol Chemical compound O1C2=CC=CC=C2C(=O)C(O)=C1C1=CC=CC=C1 HVQAJTFOCKOKIN-UHFFFAOYSA-N 0.000 description 2
- 125000003983 fluorenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3CC12)* 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 229910021397 glassy carbon Inorganic materials 0.000 description 2
- 150000005171 halobenzenes Chemical class 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 239000011147 inorganic material Substances 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 229910052741 iridium Inorganic materials 0.000 description 2
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 2
- 229910052747 lanthanoid Inorganic materials 0.000 description 2
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910001512 metal fluoride Inorganic materials 0.000 description 2
- 125000004430 oxygen atom Chemical group O* 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 2
- 229920001467 poly(styrenesulfonates) Polymers 0.000 description 2
- 239000011970 polystyrene sulfonate Substances 0.000 description 2
- 229960002796 polystyrene sulfonate Drugs 0.000 description 2
- 229920005604 random copolymer Polymers 0.000 description 2
- 238000001953 recrystallisation Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- AQRLNPVMDITEJU-UHFFFAOYSA-N triethylsilane Chemical compound CC[SiH](CC)CC AQRLNPVMDITEJU-UHFFFAOYSA-N 0.000 description 2
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- ZQUSYVORYNBGLG-FQEVSTJZSA-N (2s)-2-[[1-(7-chloroquinolin-4-yl)-5-(2,6-dimethoxyphenyl)pyrazole-3-carbonyl]amino]-4-methylpentanoic acid Chemical compound COC1=CC=CC(OC)=C1C1=CC(C(=O)N[C@@H](CC(C)C)C(O)=O)=NN1C1=CC=NC2=CC(Cl)=CC=C12 ZQUSYVORYNBGLG-FQEVSTJZSA-N 0.000 description 1
- POILWHVDKZOXJZ-ARJAWSKDSA-M (z)-4-oxopent-2-en-2-olate Chemical compound C\C([O-])=C\C(C)=O POILWHVDKZOXJZ-ARJAWSKDSA-M 0.000 description 1
- YJTKZCDBKVTVBY-UHFFFAOYSA-N 1,3-Diphenylbenzene Chemical group C1=CC=CC=C1C1=CC=CC(C=2C=CC=CC=2)=C1 YJTKZCDBKVTVBY-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- OCJBOOLMMGQPQU-UHFFFAOYSA-N 1,4-dichlorobenzene Chemical compound ClC1=CC=C(Cl)C=C1 OCJBOOLMMGQPQU-UHFFFAOYSA-N 0.000 description 1
- ROUYUBHVBIKMQO-UHFFFAOYSA-N 1,4-diiodobutane Chemical compound ICCCCI ROUYUBHVBIKMQO-UHFFFAOYSA-N 0.000 description 1
- VMKOFRJSULQZRM-UHFFFAOYSA-N 1-bromooctane Chemical compound CCCCCCCCBr VMKOFRJSULQZRM-UHFFFAOYSA-N 0.000 description 1
- BKIDJIYDGSCJCR-UHFFFAOYSA-N 2-methylpropan-2-amine;perchloric acid Chemical compound CC(C)(C)[NH3+].[O-]Cl(=O)(=O)=O BKIDJIYDGSCJCR-UHFFFAOYSA-N 0.000 description 1
- ZQOZLLNCVHPQMV-UHFFFAOYSA-N 2-tert-butylbenzoyl chloride Chemical compound CC(C)(C)C1=CC=CC=C1C(Cl)=O ZQOZLLNCVHPQMV-UHFFFAOYSA-N 0.000 description 1
- WDYVUKGVKRZQNM-UHFFFAOYSA-N 6-phosphonohexylphosphonic acid Chemical compound OP(O)(=O)CCCCCCP(O)(O)=O WDYVUKGVKRZQNM-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- 239000005725 8-Hydroxyquinoline Substances 0.000 description 1
- UHBIKXOBLZWFKM-UHFFFAOYSA-N 8-hydroxy-2-quinolinecarboxylic acid Chemical compound C1=CC=C(O)C2=NC(C(=O)O)=CC=C21 UHBIKXOBLZWFKM-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 229910052692 Dysprosium Inorganic materials 0.000 description 1
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- SIKJAQJRHWYJAI-UHFFFAOYSA-N Indole Chemical class C1=CC=C2NC=CC2=C1 SIKJAQJRHWYJAI-UHFFFAOYSA-N 0.000 description 1
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 1
- 229910015711 MoOx Inorganic materials 0.000 description 1
- 229920000557 Nafion® Polymers 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 229920000265 Polyparaphenylene Polymers 0.000 description 1
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 1
- 229910019897 RuOx Inorganic materials 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910052771 Terbium Inorganic materials 0.000 description 1
- 229910052775 Thulium Inorganic materials 0.000 description 1
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 1
- OLBVUFHMDRJKTK-UHFFFAOYSA-N [N].[O] Chemical compound [N].[O] OLBVUFHMDRJKTK-UHFFFAOYSA-N 0.000 description 1
- QRSFFHRCBYCWBS-UHFFFAOYSA-N [O].[O] Chemical compound [O].[O] QRSFFHRCBYCWBS-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- CUJRVFIICFDLGR-UHFFFAOYSA-N acetylacetonate Chemical compound CC(=O)[CH-]C(C)=O CUJRVFIICFDLGR-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001336 alkenes Chemical group 0.000 description 1
- 150000005224 alkoxybenzenes Chemical class 0.000 description 1
- 150000004996 alkyl benzenes Chemical class 0.000 description 1
- 125000004414 alkyl thio group Chemical group 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- VMPVEPPRYRXYNP-UHFFFAOYSA-I antimony(5+);pentachloride Chemical compound Cl[Sb](Cl)(Cl)(Cl)Cl VMPVEPPRYRXYNP-UHFFFAOYSA-I 0.000 description 1
- 239000013011 aqueous formulation Substances 0.000 description 1
- 150000004982 aromatic amines Chemical class 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- OYLGJCQECKOTOL-UHFFFAOYSA-L barium fluoride Chemical compound [F-].[F-].[Ba+2] OYLGJCQECKOTOL-UHFFFAOYSA-L 0.000 description 1
- 229910001632 barium fluoride Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 125000001246 bromo group Chemical group Br* 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- ICMGJLRWDJYLGU-UHFFFAOYSA-N carbamic acid;2-hydroxybenzoic acid Chemical class NC(O)=O.OC(=O)C1=CC=CC=C1O ICMGJLRWDJYLGU-UHFFFAOYSA-N 0.000 description 1
- 150000001716 carbazoles Chemical class 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical class OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 description 1
- 150000004777 chromones Chemical class 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 229940125904 compound 1 Drugs 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 229920000547 conjugated polymer Polymers 0.000 description 1
- 150000004696 coordination complex Chemical class 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 229920000736 dendritic polymer Polymers 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 150000004790 diaryl sulfoxides Chemical class 0.000 description 1
- 229940117389 dichlorobenzene Drugs 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- KBQHZAAAGSGFKK-UHFFFAOYSA-N dysprosium atom Chemical compound [Dy] KBQHZAAAGSGFKK-UHFFFAOYSA-N 0.000 description 1
- 239000003480 eluent Substances 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical compound [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 description 1
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- YLQWCDOCJODRMT-UHFFFAOYSA-N fluoren-9-one Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3C2=C1 YLQWCDOCJODRMT-UHFFFAOYSA-N 0.000 description 1
- 150000002220 fluorenes Chemical class 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 125000001188 haloalkyl group Chemical group 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 150000002390 heteroarenes Chemical class 0.000 description 1
- 125000004446 heteroarylalkyl group Chemical group 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000012966 insertion method Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 125000002346 iodo group Chemical group I* 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- DLEDOFVPSDKWEF-UHFFFAOYSA-N lithium butane Chemical compound [Li+].CCC[CH2-] DLEDOFVPSDKWEF-UHFFFAOYSA-N 0.000 description 1
- CCZVEWRRAVASGL-UHFFFAOYSA-N lithium;2-methanidylpropane Chemical compound [Li+].CC(C)[CH2-] CCZVEWRRAVASGL-UHFFFAOYSA-N 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- UZKWTJUDCOPSNM-UHFFFAOYSA-N methoxybenzene Substances CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- YCWSUKQGVSGXJO-NTUHNPAUSA-N nifuroxazide Chemical group C1=CC(O)=CC=C1C(=O)N\N=C\C1=CC=C([N+]([O-])=O)O1 YCWSUKQGVSGXJO-NTUHNPAUSA-N 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 229940078552 o-xylene Drugs 0.000 description 1
- 238000013086 organic photovoltaic Methods 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 1
- 125000003566 oxetanyl group Chemical group 0.000 description 1
- MPQXHAGKBWFSNV-UHFFFAOYSA-N oxidophosphanium Chemical class [PH3]=O MPQXHAGKBWFSNV-UHFFFAOYSA-N 0.000 description 1
- 229960003540 oxyquinoline Drugs 0.000 description 1
- YJVFFLUZDVXJQI-UHFFFAOYSA-L palladium(ii) acetate Chemical compound [Pd+2].CC([O-])=O.CC([O-])=O YJVFFLUZDVXJQI-UHFFFAOYSA-L 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000000103 photoluminescence spectrum Methods 0.000 description 1
- 229960005235 piperonyl butoxide Drugs 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920000553 poly(phenylenevinylene) Polymers 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 229920000412 polyarylene Polymers 0.000 description 1
- 229920000123 polythiophene Polymers 0.000 description 1
- 150000004032 porphyrins Chemical class 0.000 description 1
- 229910000160 potassium phosphate Inorganic materials 0.000 description 1
- 235000011009 potassium phosphates Nutrition 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 229910052702 rhenium Inorganic materials 0.000 description 1
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- KZUNJOHGWZRPMI-UHFFFAOYSA-N samarium atom Chemical compound [Sm] KZUNJOHGWZRPMI-UHFFFAOYSA-N 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 230000001235 sensitizing effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 235000009518 sodium iodide Nutrition 0.000 description 1
- 125000000547 substituted alkyl group Chemical group 0.000 description 1
- 150000003460 sulfonic acids Chemical class 0.000 description 1
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 description 1
- 150000003462 sulfoxides Chemical class 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- GZCRRIHWUXGPOV-UHFFFAOYSA-N terbium atom Chemical compound [Tb] GZCRRIHWUXGPOV-UHFFFAOYSA-N 0.000 description 1
- YBRBMKDOPFTVDT-UHFFFAOYSA-O tert-butylammonium Chemical compound CC(C)(C)[NH3+] YBRBMKDOPFTVDT-UHFFFAOYSA-O 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229930192474 thiophene Natural products 0.000 description 1
- 150000003577 thiophenes Chemical class 0.000 description 1
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229910000314 transition metal oxide Inorganic materials 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 125000005259 triarylamine group Chemical group 0.000 description 1
- 150000003852 triazoles Chemical class 0.000 description 1
- ITMCEJHCFYSIIV-UHFFFAOYSA-N triflic acid Chemical compound OS(=O)(=O)C(F)(F)F ITMCEJHCFYSIIV-UHFFFAOYSA-N 0.000 description 1
- PWYVVBKROXXHEB-UHFFFAOYSA-M trimethyl-[3-(1-methyl-2,3,4,5-tetraphenylsilol-1-yl)propyl]azanium;iodide Chemical compound [I-].C[N+](C)(C)CCC[Si]1(C)C(C=2C=CC=CC=2)=C(C=2C=CC=CC=2)C(C=2C=CC=CC=2)=C1C1=CC=CC=C1 PWYVVBKROXXHEB-UHFFFAOYSA-M 0.000 description 1
- ODHXBMXNKOYIBV-UHFFFAOYSA-N triphenylamine Chemical compound C1=CC=CC=C1N(C=1C=CC=CC=1)C1=CC=CC=C1 ODHXBMXNKOYIBV-UHFFFAOYSA-N 0.000 description 1
- 125000006617 triphenylamine group Chemical group 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 238000005292 vacuum distillation Methods 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- 238000002061 vacuum sublimation Methods 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/10—Organic polymers or oligomers
- H10K85/151—Copolymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G61/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G61/12—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/02—Polyamines
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/06—Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/10—Organic polymers or oligomers
- H10K85/111—Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2101/00—Properties of the organic materials covered by group H10K85/00
- H10K2101/10—Triplet emission
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2101/00—Properties of the organic materials covered by group H10K85/00
- H10K2101/30—Highest occupied molecular orbital [HOMO], lowest unoccupied molecular orbital [LUMO] or Fermi energy values
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
- H10K50/125—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/14—Carrier transporting layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/30—Coordination compounds
- H10K85/341—Transition metal complexes, e.g. Ru(II)polypyridine complexes
- H10K85/342—Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
Definitions
- This invention relates to light-emitting and / or charge transporting polymers, methods of making the same and organic light emitting devices comprising said polymers.
- Electronic devices comprising active organic materials are attracting increasing attention for use in devices such as organic light emitting diodes, organic photovoltaic devices, organic photosensors, organic transistors and memory array devices.
- Devices comprising organic materials offer benefits such as low weight, low power consumption and flexibility.
- soluble organic materials allows use of solution processing in device manufacture, for example inkjet printing or spin-coating.
- OLED organic light-emissive device
- ITO indium-tin-oxide
- a layer of a thin film of at least one electroluminescent organic material is provided over the first electrode.
- a cathode is provided over the layer of electroluminescent organic material.
- transporting, charge injecting or charge blocking layers may be provided between the anode and the light-emitting layer and / or between the cathode and the light-emitting layer.
- holes are injected into the device through the anode and electrons are injected into the device through the cathode.
- the holes and electrons combine in the organic light- emitting layer to form an excitons which then undergo radiative decay to give light.
- the organic light- emissive material is a conjugated polymer such as poly(phenylenevinylene).
- the organic light-emissive material is of the class known as small molecule materials, such as tris-(8-hydroxyquinoline) aluminium ( "Alq ⁇ " ).
- WO 99/54385 discloses polymers comprising triphenylamine repeat units and fluorene repeat units.
- US 2005/18741 1 discloses amine-containing charge-transporting materials.
- the invention provides a polymer comprising a repeat unit of formula (I):
- CT represents a conjugated charge-transporting group
- each Ar independently represents an optionally substituted aryl or heteroaryl group
- each q is independently at least 1
- each Sp independently represents a spacer group forming a break in conjugation between Ar and CT.
- CT represents a hole-transporting group.
- CT represents an optionally substituted arylamine group.
- CT represents an optionally substituted repeat unit of formula (V):
- Ar 1 and Ar 2 in each occurrence are independently selected from optionally substituted aryl or heteroaryl groups, n is greater than or equal to I , preferably 1 or 2, R in each occurrence is independently selected from H or a substituent, preferably a substituent, x and y are each independently 1, 2 or 3 and any of Ar 1 , Ar 2 and R may be linked by a direct bond or a divalent linking group.
- CT represents an electron-transporting group.
- CT comprises a heteroaryl group with high electron affinity (in particular 3 eV or higher, preferably 3.2 eV or higher) and high ionisation potential (in particular 5.8 eV or higher).
- CT represents a compound of formula (11):
- Het represents an optionally substituted heteroaryl group with high electron affinity and high ionisation potential, preferably triazine or oxadiazole.
- each Ar independently represents optionally substituted phenylene, fluorene or pyridine.
- the polymer comprises a repeat unit of formula (la):
- the polymer comprises a repeat unit having at least three linking positions, the repeat unit not being a repeat unit according to formula (I).
- the invention provides a composition comprising a polymer according to the first aspect and at least one light-emitting dopant.
- the at least one light-emitting dopant may be chemically bound to the polymer.
- the at least one light-emitting dopant may be bound in the main chain of the polymer or bound as a side group or end group of the polymer.
- the invention provides a composition comprising a solvent and a polymer according to the first aspect or a polymer composition according to the second aspect.
- the invention provides an organic light-emitting device comprising an anode, a cathode and a light-emitting layer between the anode and cathode, wherein the light- emitting layer comprises a composition according to the second aspect.
- the invention provides an organic light-emitting device comprising an anode, a cathode a light-emitting layer between the anode and cathode, and at least one charge transporting layer between the anode and cathode, wherein the at least one charge transporting layer comprises a polymer according to the first aspect
- the invention provides a method of forming an organic light-emitting device according to the fourth or fifth aspect comprising the steps of depositing the composition according to the third aspect and evaporating the solvent.
- CT represents a conjugated charge-transporting group
- each Ar independently represents an optionally substituted aryl or heteroaryl group
- each q is independently at least 1
- p is at least 2
- each X independently represents a group suitable for metal-insertion reaction
- each Sp represents a spacer group forming a break in conjugation between Ar and CT.
- each X is independently selected from halogen, boronic acid, optionally substituted boronic ester and optionally substituted sulfonic acid ester.
- the terminal Ar group bound to X is substituted.
- the invention provides a method of forming a polymer according to the first aspect comprising the step of polymerising a monomer according to the seventh aspect.
- the method comprises the step of polymerising two monomers of formula (Ib) wherein at least one of CT, Sp and (Ar)q are different between the two monomers.
- CT is different between the two monomers.
- the monomer is polymerised with an optionally substituted arylene or heteroarylene comonomer, preferably a comonomer comprising phenyl substituted with one or more alkyl groups,
- Aryl and “heteroaryl” as used herein includes both fused and unfused aryl and heteroaryl groups respectively.
- FIG. 1 illustrates an organic light-emitting device according to an embodiment of the invention.
- Figure 2 illustrates the photoluminescence spectra of two blue-light emitting phosphorescent materials.
- FIG. 1 illustrates the structure of an OLED according to an embodiment of the invention.
- the OLED comprises a transparent glass or plastic substrate 1 , an anode 2, a cathode 4 and a light-emitting layer 3 provided between anode 2 and the cathode 4. Further layers may be located between anode 2 and the cathode, such as charge transporting, charge injecting or charge blocking layers.
- Light-emitting layer 3 may be patterned or unpatterned.
- a device comprising an unpatterned layer may be used as an illumination source, for example.
- a white light emitting device is particularly suitable for this purpose.
- a device comprising a patterned layer may be, for example, an active matrix display or a passive matrix display. In the case of an active matrix display, a patterned light-emitting layer is typically used in combination with a patterned anode layer and an unpatterned cathode.
- the anode layer is formed of parallel stripes of anode material, and parallel stripes of electroluminescent material and cathode material arranged perpendicular to the anode material wherein the stripes of electroluminescent material and cathode material are typically separated by stripes of insulating material ("cathode separators") formed by photolithography.
- the polymer of the present invention may be provided in light-emitting layer 3. Additionally or alternatively, the polymer of the invention may be provided as a hole transporting polymer in a hole transporting layer of the device or as an electron transporting polymer in the electron transporting layer of the device. It will be appreciated that the suitability of the polymer for use in a hole or electron transporting layer will depend on the nature of the polymer, and in particular its charge-transporting unit.
- the polymer may itself emit light or it may be used in combination with a fluorescent or phosphorescent light-emitting dopant.
- the polymer is a hole-transporting polymer it preferably has a highest occupied molecular orbital (HOMO) level that is the same as or more negative than that of the light-emitting material .
- the polymer in this case has a HOMO level greater than 5.1 eV or greater than 5.3 eV.
- the polymer in the case where the polymer is an electron -transporting polymer then it preferably has a lowest unoccupied molecular orbital (LUMO) level that is the same as or less negative than that of the light-emitting material.
- the polymer in this case has a LUMO level greater than 3 eV.
- HOMO and LUMO levels may be measured by cyclic voltammetry (CV).
- the working electrode potential is ramped linearly versus time. When cyclic voltammetry reaches a set potential the working electrode's potential ramp is inverted. This inversion can happen multiple times during a single experiment.
- the current at the working electrode is plotted versus the applied voltage to give the cyclic vo!lammogram trace.
- Apparatus to measure HOMO or LUMO energy levels by CV may comprise a cell containing a tert-butyl ammonium perchlorate/ or tertbutyl ammonium hexafluorophosphate solution in acetonitrile, a glassy carbon working electrode where the sample is coated as a film, a platinium counter electrode (donor or acceptor of electrons) and a reference glass electrode no leak Ag/AgCl. Ferrocene is added in the cell at the end of the experiment for calculation purposes. (Measurement of the difference of potential between Ag/AgCl/ferrocene and sample/ferrocene).
- Co-polymerisation of a monomer comprising a conjugated charge-transport group with other conjugated groups results in conjugation of the charge-transport group with the conjugated co-repeat units which typically results in a lowering of both the excited state singlet energy level (S t ) and excited state triplet energy level (Tj ) of the polymer as
- the polymer is used as a light-emitting polymer, this has the effect of red-shifting the polymer's colour of emission.
- the polymer is used as a charge-transporting host in combination with a light-emitting dopant, this has the effect of limiting the range of dopants that can be used; in the case of a fluorescent dopant the Si level of the host must be higher than that of the dopant, and in the case of a phosphorescent dopant the T
- level must be >2.4 eV for phosphorescent green and > 2.7 eV for phosphorescent blue.
- the charge transporting unit is isolated from further conjugated units present in the polymer chain, thus preventing reduction of Si and Ti levels of the polymer.
- Suitable hole transporting groups are materials which have low ionisation potentials together with low electron affinities.
- Typically hole transport materials have a electron affinity of 2.9 eV or lower and an ionisation potential of 5.8 eV or lower, preferably 5.7 eV or lower.
- Suitable charge-transporting groups include groups disclosed in, for example, Shirota and Kageyama, Chem. Rev. 2007, 107, 953-1010 and include, for example, arylamines, in particular triarylamines; and hetcroaromatics, including fused and oligomeric heteroaromatics such as oligothiophene or fused thiophenes.
- Preferred hole transport groups include arylamine repeat units, in particular repeat units of formula (V):
- Ar' and Ar 2 in each occurrence are independently selected from optionally
- n is greater than or equal to 1, preferably 1 or 2
- R is H or a substituent, preferably a substituent
- x and y are each independently 1, 2 or 3.
- R is preferably alkyl, Ar 3 , or a branched or linear chain of Ar 3 groups, for example -(Ar 3 ) r , wherein Ar 3 in each occurrence is independently selected from aryl or heteroaryl and r is at least 1 , optionally 1, 2 or 3.
- Ar 1 , Ar 2 and Ar 3 may independently be substituted with one or more substituents.
- R may comprise a crosslinkable group, for example a group comprising a polymerisable double bond such and a vinyl or acrylate group, or a benzocyclobutane group.
- any of the aryl or heteroaryl groups in the repeat unit of Formula (V) may be linked by a direct bond or a divalent linking atom or group.
- Preferred divalent linking atoms and groups include 0, S; substituted N; and substituted C.
- substituted N or substituted C of R 3 , R 4 or of the divalent linking group may independently in each occurrence be NR 6 or CR 6 2 respectively wherein R 6 is alkyl or optionally substituted aryl or heteroaryl.
- Optional substituents for aryl or heteroaryl groups R 6 may be selected from R 4 or R 5 .
- R is Ar 3 and each of Ar 1 , Ar 2 and Ar 3 are independently and optionally substituted with one or more Ci-20 alkyl groups.
- Particularly preferred units satisfying Formula 1 include units of Formulae 1-3:
- Ar 1 and Ar 2 are as defined above; and Ar 3 is optionally substituted aryl or heteroaryl.
- preferred substituents for Ar 3 include substituents as described forAr 1 and Ar 2 , in particular alkyl and alkoxy groups.
- Ar 1 , Ar 2 and Ar 3 are preferably phenyl, each of which may independently be substituted with one or more substituents as described above.
- aryl or heteroaryl groups of formula (V) are phenyl, each phenyl group being optionally substituted with one or more alkyl groups.
- Ar 1 and Ar 2 are phenyl, each of which may be substituted with one or more C
- Specific hole transporting units include the following:
- Suitable electron transport materials are materials which have high electron affinities together with high ionisation potentials. Typically electron transport materials have electron affinities of 3 eV or higher, preferably 3.2 eV or higher and ionisation potentials of 5.8 eV or higher. Suitable electron transport groups include groups disclosed in, for example, Shirota and Kageyama, Chem. Rev. 2007, 107, 53-1010. Electron transport groups include groups comprising formula (II);
- Het represents an optionally substituted heteroaryl group with high electron affinity.
- Optional substituents for Het are as described with respect to R above. In the case where Het is substituted with an aryl or heteroaryl group, this may be a group -(Ar 3 )r as described above.
- Suitable heteroaryls with high electron affinity include triazine, pyrimidine, oxadiazole, pyridine, triazole, triarylborane, sulfoxide and silole.
- Exemplary electron-transporting groups include the following:
- Suitable electron transport materials include ketones, diarylsulfoxides, and phosphine oxides, for example;
- each R is H or a substituent, preferably H or alkyl or aryl.
- Certain groups may function as both hole- and electron-transporting groups. These are so- called bipolar groups and include carbazoles, in particular groups of formulae 1, 2 or 3 in which two of Ar 1 , Ar 2 and Ar 3 are phenyl groups linked by a direct C-C bond. Bipolar groups typically have an electron affinity around 3 eV and ionisation potential around 5.8 eV
- Exemplary bipolar groups include the following:
- repeat units described herein describe the case where the repeat units of formula (I) is linked through 2 positions.
- the repeat units of formula (I) form linear links within a polymer chain.
- any of these examples may readily be modified to provide repeat units in which the repeat unit of formula (I) comprises more than two linking positions.
- the repeat unit of formula (1) may provide a branching point to form a branched polymer, in particular a dendritic or "starburst" polymer, comprising a core and branches radiating from the core.
- Exemplary CT groups to form such a starburst polymer include the following:
- the polymer may include both repeat units of formula (I) having two linking positions and repeat units of formula (1) having more than 2, for example 3, linking positions.
- Charge transporting groups may be provided in a core or branch of the starburst polymer.
- starburst cores that may be used in combination with repeat units of formula I) in the starburst polymer's branches:
- the spacer group may be any group providing a break in conjugation between the charge- transporting group and Ar group and may be wholly or partially saturated.
- Exemplary spacer groups include branched or straight-chain alkyl groups such as groups of formula -( ⁇ 2 ) ⁇ - wherein v is 1-10, preferably 2-4.
- Another exemplary spacer group has formula (CH 2 CH 2 0) W in which w is 1 -5, preferably 1 -3.
- Alkyl spacer chains may additionally serve to increase solubility of the polymer in common organic solvents.
- the spacer group may contain conjugated groups.
- the spacer group may contain an optionally substituted aryl or heteroaryl group such as optionally substituted phenyl.
- the spacer atom adjacent to CT and the spacer atom adjacent to Ar is not part of a conjugated system such that any such conjugated groups within the spacer are not conjugated with either the CT or Ar groups.
- Ar groups from adjacent repeat units may link to form a conjugated chain of Ar groups. If q is 1, a chain of 2 Ar groups is present. If q is 2; a chain of 4 Ar groups is present.
- the T t or Si level as appropriate must be maintained at a higher energy level than that of the dopant, and so the chain of conjugated Ar groups must have suitably high t and / or Si levels.
- Each Ar group may be a fused or unfused aromatic or heteroaromatic group.
- exemplary Ar groups include optionally substituted phenylenes and fluorenes.
- exemplary fluorene Ar groups include optionally substituted groups formula IV:
- R 1 and R 2 are independently H or a substituent and wherein R 1 and R 2 may be linked to form a ring.
- R or R is aryl or heteroaryl
- R 1 and / or R 2 may comprise a crosslinkable-group, for example a group comprising a polymerisabie double bond such and a vinyl or acrylate group, or a benzocyclobutane group.
- Exemplary phenylene Ar groups have formula (VI):
- the Ar group of formula (VI) is a 1 ,4-phenylene repeat unit.
- Preferred methods for preparation of polymers comprise "metal insertion" reactions of monomers comprising a reactive leaving group bound to the terminal Ar group of a unit of formula (I).
- Exemplary metal insertion methods are Suzuki polymerisation as described in, for example, WO 00/53656 and Yamamoto polymerisation as described in, f r example, T. Yamamoto, "Electrically Conducting And Thermally Stable ⁇ - Conjugated Poly(aryIene)s Prepared by Organomctallic Processes", Progress in Polymer Science 1993, 17, 1 153- 1205.
- Yamamoto polymerisation a nickel complex catalyst is used; in the case of Suzuki polymerisation, a palladium complex catalyst is used.
- a monomer having two reactive halogen groups is used.
- at least one reactive group is a boron derivative group such as a boronic acid or boronic ester and the other reactive group is a halogen.
- Preferred halogens are chlorine, bromine and iodine, most preferably bromine.
- other leaving groups capable of participating in metal insertion include groups include tosylate, mesylate and inflate.
- repeat units illustrated throughout this application may be derived from a monomer carrying suitable leaving groups.
- an end group or side group may be bound to the polymer by reaction of a suitable leaving group.
- Exemplary monomers include the following:
- R' is as described above.
- Suzuki polymerisation may be used to prepare regioregular, block and random copolymers.
- homopolymers or random copolymers may be prepared when one reactive group is a halogen and the other reactive group is a boron derivative group.
- block or regioregular, in particular AB, copolymers may be prepared when both reactive groups of a first monomer are boron and both reactive groups of a second monomer are halogen.
- Exemplary polymers formed by polymerisation of these monomers include homopolymers, such as the following homopolymer in which two adjacent repeat units of formula (I) are illustrated:
- Co-polymers may contain two or more repeat units.
- two charge transporting monomers can be co-polymerised:
- co-repeat units include optionally substituted (hetero)arylene groups, in particular pheny!ene repeat units substituted with one or more R* groups, in particular one or more alkyl groups.
- Co-repeat units optionally carry substituents at a ring carbon atom adjacent to at least one of the linking atoms of the repeat units.
- (Hetero)arylene co-repeat units may be linked through any position.
- phenylene repeat units may be para (1,4) linked, meta (1,3) linked or ortho (1,2) linked.
- the choice of linking positions may affect the degree of conjugation of the co-repeat unit to adjacent repeat units.
- Exemplary combinations of (Ar)q of the repeat unit of formula (I) and optionally substituted phenylene co-repeat units include the following:
- substituents R' on the co-repeat unit may serve to create steric hindrance with the adjacent repeat unit, resulting in a twist along the polymer backbone that reduces conjugation along the backbone by reducing the amount of pi orbital overlap between adjacent repeat units that are not in the same plane. This can serve to prevent extended conjugation between (Ar)q and co-repeat units and thereby avoid a reduction in excited state energy levels as a result of this extended conjugation.
- terminal Ar of an (Ar)q group of a repeat unit of formula (1) may be substituted with one or more substituents R' in order to create a twist in either homopolyrners or copolymers comprising that repeat unit.
- a further co-repeat unit suitable for use in combination with any of the aforementioned groups Ar(q), includes the following:
- R' is as described above.
- the Si atom breaks conjugation across the repeat unit.
- Other repeat units comprising conjugation-breaking atoms in the polymer backbone may likewise be used.
- Exemplary polymers comprising a repeat unit of formula (I) and a co-repeat unit include the following. It will be appreciated that the copolymer may comprise one or more further co- repeat units.
- Materials that may be used as fluorescent or phosphorescent light-emitting dopants with the polymers of the invention include metal complexes comprising optionally substituted complexes of formula (III):
- M is a metal; each of L 1 , L 2 and L is a coordinating group; q is an integer; r and s are each independently 0 or an integer; and the sum of (a. q) + (b. r) -t- (c.s) is equal to the number of coordination sites available on M, wherein a is the number of coordination sites on L 1 , b is the number of coordination sites on L 2 and c is the number of coordination sites on
- Heavy elements M induce strong spin-orbit coupling to allow rapid intersystem crossing and emission from triplet or higher states (phosphorescence).
- Suitable heavy metals M include:
- - lanthanide metals such as cerium, samarium, europium, terbium, dysprosium, thulium, erbium and neodymium;
- - d-block metals in particular those in rows 2 and 3 i.e. elements 39 to 48 and 72 to SO, in particular ruthenium, rhodium, palladium, rhenium, osmium, iridium, platinum and gold. Iridium is particularly preferred.
- Suitable coordinating groups for the f-block metals include oxygen or nitrogen donor systems such as carboxylic acids, 1 ,3-dikctonates, hydroxy carboxylic acids, Schiff bases including acyl phenols and iminoacyl groups.
- oxygen or nitrogen donor systems such as carboxylic acids, 1 ,3-dikctonates, hydroxy carboxylic acids, Schiff bases including acyl phenols and iminoacyl groups.
- luminescent lanthanide metal complexes require sensitizing group(s) which have the triplet excited energy level higher than the first excited state of the metal ion. Emission is from an f-f transition of the metal and so the emission colour is determined by the choice of the metal. The sharp emission is generally narrow, resulting in a pure colour emission useful for display applications.
- the d-block metals are particularly suitable for emission from triplet excited states. These metals form organometallic complexes with carbon or nitrogen donors such as porphyrin or bidentate ligands of formula (IV):
- Ar and Ar 5 may be the same or different and are independently selected from optionally substituted aryl or heteroaryl; X 1 and Y 1 may be the same or different and are independently selected from carbon or nitrogen; and Ar 4 and Ar may be fused together.
- Ligands wherein X 1 is carbon and Y 1 is nitrogen are particularly preferred.
- Each of Ar 4 and Ar 5 may carry one or more substituents. Two or more of these substituents may be linked to form a ring, for example an aromatic ring. Particularly preferred
- substituents include fluorine or trifluoromethyi which may be used to blue-shift the emission of the complex as disclosed in WO 02/45466, WO 02/44189, US 2002-117662 and US 2002- 182441 ; alkyl or alkoxy groups as disclosed in JP 2002-324679; carbazole which may be used to assist hole transport to the complex when used as an emissive material as disclosed in WO 02/81448; bromine, chlorine or iodine which can serve to functionalise the ligand for attachment of further groups as disclosed in WO 02/68435 and EP 1245659; and dendrons which may be used to obtain or enhance solution processability of the metal complex as disclosed in WO 02/66552.
- a light-emitting dendrimer typically comprises a light-emitting core bound to one or more dendrons, wherein each dendron comprises a branching point and two or more dendritic branches.
- the dendron is at least partially conjugated, and at least one of the core and dendritic branches comprises an aryl or heteroaryl group.
- ligands suitable for use with d-block elements include diketonates, in particular acetylacetonate (acac); triarylphosphines and pyridine, each of which may be substituted.
- Main group metal complexes show ligand based, or charge transfer emission.
- the emission colour is determined by the choice of ligand as well as the metal.
- Suitable ligands for di or trivalent metals include: oxinoids, e. g. with oxygen-nitrogen or oxygen-oxygen donating atoms, generally a ring nitrogen atom with a substituent oxygen atom, or a substituent nitrogen atom or oxygen atom with a substituent oxygen atom such as 8-hydroxyquinolate and
- hydroxyquinoxalinol-10-hydroxybenzo h
- quinolinato II
- benzazoles III
- sch iff bases azoindoles
- chromone derivatives 3-hydroxyflavone
- carboxylic acids such as salicylate amino carboxylates and ester carboxylates.
- Optional substituents include halogen, alkyl, alkoxy, haloalkyl, cyano, amino, amido, sulfonyl, carbonyl, aryl or heteroaryl on the (hetero) aromatic rings which may modify the emission colour.
- the polymer of the invention and the light-emitting dopant may be physically mixed.
- the light-emitting dopant may be chemically bound to the polymer.
- the light- emitting dopant may be chemically bound as a substituent attached to the polymer backbone, incorporated as a repeat unit in the polymer backbone or provided as an end-group of the polymer as disclosed in, for example, EP 1245659, WO 02/31896, WO 03/18653 and WO 03/22908.
- This binding may result in more efficient transfer of excitons from the host polymer to the light emitting dopant because it may provide intramolecular exciton transfer pathways unavailable to a corresponding mixed system.
- binding may be beneficial for processing reasons. For example, if the light emitting dopant has low solubility then binding it to a soluble polymer allows the light emitting dopant to be carried in solution by the charge transporting material, enabling device fabrication using solution processing techniques. Furthermore, binding the light emitting dopant to the polymer may prevent phase separation effects in solution-processed devices that may be detrimental to device performance.
- More than one light-emitting dopant may be used.
- red, green and blue light- emitting dopants may be used to obtain white light emission.
- the polymer of the invention may also emit light, in particular blue light, that may be combined with emission from one or more further dopants to achieve white light.
- a white light-emitting OLED may have a CIE x coordinate equivalent to that emitted by a black body at a temperature in the range of 2500-9000K, optionally in the range of 2700- 4500 , and a CIE y coordinate within 0.05, optionally within 0.025, of the CIE y co-ordinate of said light emitted by a black body.
- a blue light-emitter may have a photoluminescent spectrum with a peak at less than 480 nm, such as in the range of 400 nm up to less than 490 nm.
- a green light-emitter may have a photoluminescent spectrum with a peak in the range of 490-
- An red light-emitter may have a photoluminescent spectrum with a peak in the range of greater than 560 nm - 610 nm, optionally in the range 590-610 nm.
- the light-em Siting layer is not necessarily a polymer according to the invention.
- exemplary light-emitting materials include small molecule, polymeric and dendrimeric materials, and compositions thereof.
- Suitable light-emitting polymers for use in layer 3 include poly(arylene vinylenes) such as poly(p-phenylene vinylenes) and polyarylenes such as: polyfluorenes, particularly 2,7-Iinked 9,9 dialkyl polyfluorenes or 2,7-1 inked 9,9 diaryl polyfluorenes; polysptrofluorenes, particularly 2,7-linked poly ⁇ 9,9-spirofluorene; polyindenofluorenes, particularly 2,7-linked polyindenofluorenes; polyphenylenes, particularly alkyl or alkoxy substituted poly-l ,4-phenylene.
- polymers as disclosed in, for example, Adv. Mater. 2000 12(23) 1737- 1750 and references therein.
- a conductive hole injection layer which may be formed from a conductive organic or inorganic material, may be provided between the anode 2 and the light-emitting layer 3 to assist hole injection from the anode into the layer or layers of semiconducting polymer.
- doped organic hole injection materials include optionally substituted, doped poly(ethylene dioxythiophene) (PEDT), in particular PEDT doped with a charge-balancing poiyacid such as polystyrene sulfonate (PSS) as disclosed in EP 0901 176 and EP 0947123, polyacry! ic acid or a fluorinated sulfonic acid, for example Nafion ⁇ >; polyaniline as
- conductive inorganic materials include transition metal oxides such as VOx, MoOx and RuOx as disclosed in Journal of Physics D: Applied Physics ( 1996), -29( 1 1), 2750-2753.
- a hole transporting layer may be provided between the anode and the light-emitting layer.
- an electron transporting layer may be provided between the cathode and the light- emitting layer.
- an electron blocking layer may be provided between the anode and the light- emitting layer and a hole blocking layer may be provided between the cathode and the light- emitting layer.
- Transporting and blocking layers may be used in combination. Depending on its HOMO and LUMO levels, a single layer may both transport one of holes and electrons and block the other of holes and electrons.
- a hole transporting layer located between anode 2 and light-emitting layer 3 preferably has a HOMO level of less than or equal to 5.8 eV ⁇ more preferably around 4.8-5.6 eV.
- HOMO levels may be measured by cyclic voltammetry, for example.
- an electron transporting layer located between light-emitting layer 3 and cathode 4 preferably has a LUMO level of around 3-2 eV, more preferably of around 3-2.5 eV
- a layer of a silicon monoxide or silicon dioxide or other thin dielectric layer having thickness in the range of 0,2-2nm is provided between light-emitting layer 3 and layer 4.
- a hole transporting layer may contain a polymer comprising hole transporting repeat units of formula (I); likewise, an electron transporting layer may contain a polymer comprising electron transporting repeat units of formula (1).
- the polymer is not present in a charge transporting layer then other materials with suitably high singlet or triplet level can be used in hole and / or electron transport layers.
- Particularly suitable are hole transport materials comprising a high singlet or triplet level backbone repeat unit, such as alkyl-substituted phenylene repeat units, in particular 2- and / or 5-alkyI substituted 1,4-phenylene repeat units, for example disclosed in Kreyenschmidt et al, Macromolecules 1998, 31, 1099-1103 and a hole transport unit, for example:
- the polymer may also contain one or more cross-linkable groups, for example benzocyclobutane groups or terminal olefins disclosed in, for example, WO 2005/049689 or oxetane groups.
- Cross-linkable groups may be bound to any of the repeat units of the polymer and more than one type of cross-linkable group may be present.
- Suitable small molecule electron transport materials are disclosed in Shirota and Kageyama, Chem. Rev. 2007, 107, 953- 1010 and references therein.
- Polymeric electron transport materials preferably comprise a high triplet level backbone monomer and electron transport unit as disclosed in, for example, US 2010/013377, for example:
- Cathode 4 is selected from materials that have a workfunctiort allowing injection of electrons into the electroluminescent layer. Other factors influence the selection of the cathode such as the possibility of adverse interactions between the cathode and the electroluminescent material.
- the cathode may consist of a single material such as a layer of aluminium.
- it may comprise a plurality of metals, for example a bilayer of a low
- workfunction material and a high workfunction material such as calcium and aluminium as disclosed in WO 98/10621; elemental barium as disclosed in WO 98/573 1 , Appl. Phys. Lett. 2002, 81(4), 634 and WO 02/84759; or a thin layer of metal compound, in particular an oxide or fluoride of an alkali or alkali earth metal, to assist electron injection, for example lithium fluoride as disclosed in WO 00/48258; barium fluoride as disclosed in Appl. Phys. Lett. 2001, 79(5), 2001; and barium oxide.
- the cathode preferably has a workfunction of less than 3.5 eV, more preferably less than 3.2 eV, most preferably less than 3 eV.
- Work functions of metals can be found in, for example, Michaelson, J. Appl. Phys. 48(11), 4729, 1977.
- the cathode may be opaque or transparent. Transparent cathodes are particularly useful
- a transparent cathode will comprise a layer of an electron injecting material that is
- the layer of electron injecting material is used in combination with a thicker layer of transparent conducting material such as indium tin oxide.
- a transparent cathode device need not have a transparent anode (unless, of course, a fully transparent device is desired), and so the transparent anode used for bottom-emitting devices may be replaced or supplemented with a layer of reflective material such as a layer of aluminium.
- transparent cathode devices are disclosed in, for example, GB 2348316.
- the substrate preferably has good barrier properties for prevention of ingress of moisture and oxygen into the device.
- the substrate is commonly glass, however alternative substrates may be used, in particular where flexibility of the device is desirable.
- the substrate may comprise a plastic as in US 6268695 which discloses a substrate of alternating plastic and barrier layers or a laminate of thin glass and plastic as disclosed in EP 0949850.
- the device is preferably encapsulated with an encapsulant (not shown) to prevent ingress of moisture and oxygen.
- Suitable encapsulants include a sheet of glass, films having suitable barrier properties such as silicon dioxide, silicon monoxide, silicon nitride or alternating stacks of polymer and dielectric as disclosed in, for example, WO 01/81649 or an airtight container as disclosed in, for example, WO 01/19142.
- a transparent encapsulating layer such as silicon monoxide or silicon dioxide may be deposited to micron levels of thickness, although in one preferred embodiment the thickness of such a layer is in the range of 20-300 nm.
- a getter material for absorption of any atmospheric moisture and / or oxygen that may permeate through the substrate or encapsulant may be disposed between the substrate and the encapsulant.
- Light-emitting layer 3, and / or charge-transporting layer(s), where present, may be deposited by any process, including vacuum evaporation and deposition from a solution in a solvent.
- suitable solvents for solution deposition include mono- or poly-alkyl, alkoxy and halobenzenes such as (oluene,xylene, anisole, chlorobenzene, dichlorobenzene and similar.
- Particularly preferred solution deposition techniques including printing and coating techniques, preferably spin-coating and inkjet printing.
- Spin-coating is particularly suitable for devices wherein patterning of the electroluminescent material is unnecessary - for example for lighting applications or simple monochrome segmented displays.
- a device may be inkjet printed by providing a patterned layer over the first electrode and defining wells for printing of one colour (in the case of a monochrome device) or multiple colours (in the case of a multicolour, in particular full colour device).
- the patterned layer is typically a layer of photoresist that is patterned to define wells as described in, for example, EP 0880303.
- the ink may be printed into channels defined within a patterned layer.
- the photoresist may be patterned to form channels which, unlike wells, extend over a plurality of pixels and which may be closed or open at the channel ends.
- solution deposition techniques include dip-coating, roll printing and screen printing.
- Monomer 1 can be synthesised via an alternative route:
- Monomer 2 was prepared according to the following method:
- the solid was further purified by column chromatography using 20% dichloromethane in hexane as the eluting solvent to give 15 g of product at 98% purity by HPLC. Repeated recrystallisation in w-butyl acetate ( 100 mL) increased purity to 99% by HPLC. Traces of n- butylacetate were removed by recrystallisation in 10:1 methanol/dichloromethane to give the product as a white solid in 20% yield (5.5 g, 99% purity by HPLC).
- ntermediate 8 To a stirred solution of 1 ,4-dibromobenzene (506.7 g, 2.15 mol) in tetrahydrofuran (3 L) was added dropwise a solution of n-butyllithium (2,5 M in hexane) at -78 °C under nitrogen. The resulting mixture was allowed to warm to room temperature overnight and quenched with water (300 mL). The crude reaction mixture was concentrated in vacuo to give a residue that was taken up in diethyl ether/water (3: 1, 400 mL).
- Monomer 4 could be prepared according to the following method
- Monomers were polymerised by Suzuki polymerisation according to the method described in WO 00/53656.
- Table 1 summarises compositions and molecular weight characteristics (GPC, relative to polystyrene standard).
- Samples were prepared by dissolving 2 mg of polymer in 6 ml GPC grade THF (stabilised with 250 ppm BHT). Injection volume was 200 ⁇ (injection loop), flowrate 1 ml/min, oven temperature 35°C. for separation 3 x 5 ⁇ Mixed B PLgel 300 by 7.5mm columns with 5 ⁇ Guard column were used. All GPC data quoted are relative to narrow polystyrene standards (used as received by Polymer Laboratories).
- Table 2 summarises PLQY data of a blend of emitter in polymer (5% w/w emitter).
- Emitter 1 Emitter 2 Emitter 2 has a deeper blue colour (i.e. shorter peak wavelength) than Emitter 1, as illustrated by the photolurninescence spectra of Figure 2, and accordingly has a higher T ; level than Emitter 1.
- Emitter 1 was used as received from American Dye Source Ltd..
- Emitter 2 was prepared as described in Shih-Chun Lo et al., Chem. Mater. 2006, 18, 5119-5129.
- films were spun from a suitable solvent (for example alkylbenzene, halobenzene, alkoxybenzene) on quartz disks to achieve transmittance values of 0.3-0.4. Measurements were performed under nitrogen in an integrating sphere connected to
- a device having the following structure was formed:
- ITO represents an indium-tin oxide anode
- HIL is a hole-injection layer formed from a hole injection material available from Flextronics, Inc
- HTL is a hole transport layer, for example those of Comparative Example 1 or a polymer of formula (I)
- EL is an light- emitting layer comprising a polymer as described in the polymer examples
- MF is a metal fluoride
- the bilayer of MF / Al forms a cathode for the device, A layer of silver may be formed over the bilayer.
- the hole injection layer was formed by spin-coating an aqueous formulation of a hole-injection material available from
- a hole transporting layer HTl or HT2 was formed to a thickness of 20 nm by spin-coating and crosslinked by heating.
- a light-emitting layer was formed by depositing a light-emitting formulation to a thickness of 75 nm by spin-coating from o-xylene solution.
- a cathode was formed by evaporation of a first layer of a metal fluoride to a thickness of about 2 nm, a second layer of aluminium to a thickness of about 200 nm and an optional third layer of silver.
- Table 3 summarises compositions and Table 4 molecular weight characteristics (GPC, relative to polystyrene standard ⁇ .
- Polymer 2 230,000 1 70,000 17,800 12.40
- Emitter 2 is a blue emitter
- Emitter 3 is a green emitter
- Emitter 4 is an orange-red emitter.
- a blue light-emitting OLED was fabricated as described in the General Device Process above.
- HT2 was used as the hole transport layer, and the light-emitting layer was formed from a blend of Polymer 2 and Emitter 2.
- Comparative Device 1 was formed in the same way except that Polymer 2 was replaced with the comparative polymer, Polymer 3.
- a blue light-emitting OLED was fabricated as described in the General Device Process above
- the hole transporting layer was formed by spin-coating inventive hole transporting polymer HT2.
- the composition of the emissive layer is shown in Table 7 below.
- a Comparative Device 2 was formed in the same way, except that polymer HT2 was replaced with comparative polymer HTL
- PVK and ETL1 are as illustrated below:
- PVK Sigma-Aldrich, Mw 1,734,000
- the operating voltage of devices comprising Polymer 2 is significantly lower compared to the prior art , resulting in a significant increase in lumen per watt efficiency.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Optics & Photonics (AREA)
- Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Electroluminescent Light Sources (AREA)
- Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
Abstract
Description
Claims
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE112011101651T DE112011101651T5 (en) | 2010-05-14 | 2011-05-12 | Organic light emitting polymer and device |
JP2013509610A JP5847805B2 (en) | 2010-05-14 | 2011-05-12 | Organic light emitting polymers and devices |
US13/698,047 US8981354B2 (en) | 2010-05-14 | 2011-05-12 | Organic light-emitting polymer and device |
CN201180031620.6A CN102947962B (en) | 2010-05-14 | 2011-05-12 | Organic luminescence polymer and device |
GB1222188.3A GB2493892B (en) | 2010-05-14 | 2011-05-12 | Monomers for forming light-emitting or charge-transporting polymers |
KR1020127032554A KR101916473B1 (en) | 2010-05-14 | 2011-05-12 | Organic light-emitting polymer and device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB1008095.0A GB2484253B (en) | 2010-05-14 | 2010-05-14 | Organic light-emitting composition and device |
GB1008095.0 | 2010-05-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011141714A1 true WO2011141714A1 (en) | 2011-11-17 |
Family
ID=42334788
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/GB2011/000737 WO2011141714A1 (en) | 2010-05-14 | 2011-05-12 | Organic light-emitting polymer and device |
Country Status (8)
Country | Link |
---|---|
US (1) | US8981354B2 (en) |
JP (1) | JP5847805B2 (en) |
KR (1) | KR101916473B1 (en) |
CN (1) | CN102947962B (en) |
DE (1) | DE112011101651T5 (en) |
GB (2) | GB2484253B (en) |
TW (1) | TWI529192B (en) |
WO (1) | WO2011141714A1 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2554548A1 (en) * | 2011-08-01 | 2013-02-06 | Universal Display Corporation | Materials for organic light emitting diode |
WO2013093400A1 (en) * | 2011-12-23 | 2013-06-27 | Cambridge Display Technology Limited | Light emitting composition and device |
EP2738195A1 (en) | 2012-11-30 | 2014-06-04 | Cambridge Display Technology Limited | Polymer and organic electronic device |
US20140151659A1 (en) * | 2012-11-30 | 2014-06-05 | Sumitomo Chemical Company Limited | Light-emitting compound |
JP2014148663A (en) * | 2012-12-21 | 2014-08-21 | Cambridge Display Technology Ltd | Polymer and organic light-emitting device |
US20150102330A1 (en) * | 2013-10-14 | 2015-04-16 | Sumitomo Chemical Co. Limited | Composition and device |
US9929359B2 (en) | 2013-07-17 | 2018-03-27 | Sumitomo Chemical Company, Limited | Composition and light emitting device using the same |
US10141514B2 (en) | 2014-04-18 | 2018-11-27 | Sumitomo Chemical Company, Limited | Composition and light emitting device using the same |
US10497885B2 (en) | 2015-04-24 | 2019-12-03 | Sumitomo Chemical Company, Limited | Light emitting device and composition used for this light emitting device |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3187522B1 (en) * | 2014-08-28 | 2019-12-04 | Sumitomo Chemical Company Limited | Polymer compound and light-emitting element using same |
CN104600203B (en) | 2014-12-26 | 2017-02-22 | 合肥京东方光电科技有限公司 | Luminous layer and preparation method thereof, organic electroluminescent device and display device |
JP2016143878A (en) * | 2015-02-05 | 2016-08-08 | 三星電子株式会社Samsung Electronics Co.,Ltd. | Organic electroluminescent element material |
TWI761406B (en) | 2016-12-22 | 2022-04-21 | 德商麥克專利有限公司 | Materials for electronic devices |
TWI786143B (en) | 2017-07-03 | 2022-12-11 | 德商麥克專利有限公司 | Organic electroluminescent device and method for producing the same |
KR102139406B1 (en) * | 2017-07-03 | 2020-07-29 | 주식회사 엘지화학 | Continuous production method of haloaryl based compounds |
JP7169126B2 (en) | 2018-08-30 | 2022-11-10 | エルジー ディスプレイ カンパニー リミテッド | Coating type organic electroluminescence device |
TWI704312B (en) | 2019-12-09 | 2020-09-11 | 宏碁股份有限公司 | Cable buckle |
CN113121579B (en) * | 2021-04-19 | 2023-06-06 | 河北松辰医药科技有限公司 | Synthesis method of 3- (6-phenylhexyl) phenylboronic acid and derivative thereof |
Citations (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4539507A (en) | 1983-03-25 | 1985-09-03 | Eastman Kodak Company | Organic electroluminescent devices having improved power conversion efficiencies |
WO1990013148A1 (en) | 1989-04-20 | 1990-11-01 | Cambridge Research And Innovation Limited | Electroluminescent devices |
US5150006A (en) | 1991-08-01 | 1992-09-22 | Eastman Kodak Company | Blue emitting internal junction organic electroluminescent device (II) |
US5432014A (en) | 1991-11-28 | 1995-07-11 | Sanyo Electric Co., Ltd. | Organic electroluminescent element and a method for producing the same |
US5723873A (en) | 1994-03-03 | 1998-03-03 | Yang; Yang | Bilayer composite electrodes for diodes |
WO1998010621A1 (en) | 1996-09-04 | 1998-03-12 | Cambridge Display Technology Limited | Organic light-emitting devices with improved cathode |
US5798170A (en) | 1996-02-29 | 1998-08-25 | Uniax Corporation | Long operating life for polymer light-emitting diodes |
EP0880303A1 (en) | 1996-11-25 | 1998-11-25 | Seiko Epson Corporation | Method of producing organic el elements, organic el elements and organic el display device |
WO1998057381A1 (en) | 1997-06-10 | 1998-12-17 | Uniax Corporation | Ultra-thin layer alkaline earth metals as stable electron-injecting cathodes for polymer light emitting diodes |
EP0901176A2 (en) | 1997-08-29 | 1999-03-10 | Cambridge Display Technology Limited | Electroluminescent device |
EP0947123A1 (en) | 1996-07-29 | 1999-10-06 | Cambridge Display Technology Limited | Electroluminescent devices with electrode protection |
EP0949850A1 (en) | 1998-04-02 | 1999-10-13 | Cambridge Display Technology Limited | Flexible substrates for organic device |
WO1999054385A1 (en) | 1998-04-21 | 1999-10-28 | The Dow Chemical Company | Fluorene-containing polymers and electroluminescent devices therefrom |
US6083634A (en) | 1994-09-12 | 2000-07-04 | Motorola, Inc. | Organometallic complexes for use in light emitting devices |
WO2000048258A1 (en) | 1999-02-12 | 2000-08-17 | Cambridge Display Technology Ltd. | Opto-electrical devices |
WO2000053656A1 (en) | 1999-03-05 | 2000-09-14 | Cambridge Display Technology Limited | Polymer preparation |
GB2348316A (en) | 1999-03-26 | 2000-09-27 | Cambridge Display Tech Ltd | Organic opto-electronic device |
WO2001019142A1 (en) | 1999-09-03 | 2001-03-15 | Uniax Corporation | Encapsulation of organic electronic devices |
US6268072B1 (en) * | 1999-10-01 | 2001-07-31 | Eastman Kodak Company | Electroluminescent devices having phenylanthracene-based polymers |
US6268695B1 (en) | 1998-12-16 | 2001-07-31 | Battelle Memorial Institute | Environmental barrier material for organic light emitting device and method of making |
WO2001081649A1 (en) | 2000-04-20 | 2001-11-01 | Battelle Memorial Institute | Barrier coating |
WO2002031896A2 (en) | 2000-10-10 | 2002-04-18 | E.I. Du Pont De Nemours And Company | Polymers having attached luminescent metal complexes and devices made with such polymers |
WO2002044189A1 (en) | 2000-11-30 | 2002-06-06 | Canon Kabushiki Kaisha | Luminescent element and display |
WO2002045466A1 (en) | 2000-11-30 | 2002-06-06 | Canon Kabushiki Kaisha | Luminescent element and display |
WO2002066552A1 (en) | 2001-02-20 | 2002-08-29 | Isis Innovation Limited | Metal-containing dendrimers |
US20020117662A1 (en) | 2000-12-25 | 2002-08-29 | Fuji Photo Film Co., Ltd. | Novel indole derivative, material for light-emitting device and light-emitting device using the same |
WO2002068435A1 (en) | 2001-02-24 | 2002-09-06 | Covion Organic Semiconductors Gmbh | Rhodium and iridium complexes |
EP1245659A1 (en) | 2001-03-27 | 2002-10-02 | Sumitomo Chemical Company, Limited | Polymeric light emitting substance and polymer light emitting device using the same |
WO2002081448A1 (en) | 2001-04-05 | 2002-10-17 | Sankyo Company, Limited | Benzamidine derivative |
WO2002084759A1 (en) | 2001-04-17 | 2002-10-24 | Koninklijke Philips Electronics N.V. | Led comprising a conductive transparent polymer layer with low sulfate and high metal ion content |
JP2002324679A (en) | 2001-04-26 | 2002-11-08 | Honda Motor Co Ltd | Organic electroluminescent element |
US20020182441A1 (en) | 2000-08-11 | 2002-12-05 | Trustee Of Princeton University | Organometallic compounds and emission-shifting organic electrophosphorescence |
WO2003018653A1 (en) | 2001-08-31 | 2003-03-06 | Nippon Hoso Kyokai | Phosphor light-emitting compound, phosphor light-emitting composition, and organic light emitting element |
WO2003022908A1 (en) | 2001-09-04 | 2003-03-20 | Canon Kabushiki Kaisha | High-molecular compounds and organic luminescent devices |
WO2005013386A2 (en) * | 2003-08-01 | 2005-02-10 | Cdt Oxford Limited | Copolymers for electroluminescent devices comprising charge transporting units, metal complexes as phosphorescent units and/or aliphatic units |
WO2005049689A2 (en) | 2003-11-17 | 2005-06-02 | Sumitomo Chemical Company, Limited | Crosslinkable substituted fluorene compounds and conjugated oligomers or polymers based thereon |
US20050187411A1 (en) | 2004-02-19 | 2005-08-25 | Norman Herron | Compositions comprising novel compounds and electronic devices made with such compositions |
CN1743406A (en) * | 2005-09-29 | 2006-03-08 | 天津理工大学 | Polyarylether non conjugated electroluminescent mater containing oxadiazole units |
WO2006043681A1 (en) * | 2004-10-18 | 2006-04-27 | Seiko Epson Corporation | Composition for conductive materials, conductive material, conductive layer, electronic device, and electronic equipment |
TWI265968B (en) * | 2004-08-27 | 2006-11-11 | Univ Nat Sun Yat Sen | Non-fully conjugated graft polymer and a mono-layer electroluminescence film of adjustable emission color using the same |
WO2008025997A1 (en) | 2006-08-31 | 2008-03-06 | Cdt Oxford Limited | Compounds for use in opto-electrical devices |
GB2456298A (en) * | 2008-01-07 | 2009-07-15 | Anthony Ian Newman | Electroluminescent materials comprising oxidation resistant fluorenes |
GB2463077A (en) * | 2008-09-02 | 2010-03-03 | Cambridge Display Tech Ltd | Electroluminescent copolymer |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5306716A (en) | 1992-03-20 | 1994-04-26 | Merck & Co., Inc. | Methods of achieving antileukemia activity using 16-membered-macrolide-type compounds |
WO1996020253A1 (en) * | 1994-12-28 | 1996-07-04 | Cambridge Display Technology Ltd. | Polymers for use in optical devices |
JP3876872B2 (en) * | 2002-10-15 | 2007-02-07 | ソニーケミカル&インフォメーションデバイス株式会社 | Electroluminescent polymer, bisfluorenylsilane compound and organic EL device |
JP4089472B2 (en) * | 2003-03-10 | 2008-05-28 | 東洋インキ製造株式会社 | Organic electroluminescent element material and organic electroluminescent element using the same |
EP1464691B1 (en) * | 2003-03-26 | 2013-10-02 | Konica Minolta Holdings, Inc. | Organic electroluminescent element, illuminator, and display |
GB0318018D0 (en) * | 2003-08-01 | 2003-09-03 | Cdt Oxford Ltd | Electroluminescent device |
JP2005225933A (en) * | 2004-02-12 | 2005-08-25 | Shiseido Co Ltd | Poly(tris-1,3,5(4-phenyl-1-thio)benzene) and manufacturing method therefor |
GB0423528D0 (en) * | 2004-10-22 | 2004-11-24 | Cambridge Display Tech Ltd | Monomer for making a crosslinked polymer |
GB0526185D0 (en) * | 2005-12-22 | 2006-02-01 | Cambridge Display Tech Ltd | Electronic device |
TWI362409B (en) * | 2007-09-06 | 2012-04-21 | Show An Chen | Electroluminescent conjugated polymers grafted with charge transporting moieties having graded ionization potential or electrophilic property and their application in light-emitting diodes |
GB0814161D0 (en) * | 2008-08-01 | 2008-09-10 | Cambridge Display Tech Ltd | Blue-light emitting material |
DE102009023154A1 (en) * | 2009-05-29 | 2011-06-16 | Merck Patent Gmbh | A composition comprising at least one emitter compound and at least one polymer having conjugation-interrupting units |
-
2010
- 2010-05-14 GB GB1008095.0A patent/GB2484253B/en not_active Expired - Fee Related
-
2011
- 2011-05-12 GB GB1222188.3A patent/GB2493892B/en not_active Expired - Fee Related
- 2011-05-12 WO PCT/GB2011/000737 patent/WO2011141714A1/en active Application Filing
- 2011-05-12 US US13/698,047 patent/US8981354B2/en active Active
- 2011-05-12 DE DE112011101651T patent/DE112011101651T5/en active Pending
- 2011-05-12 CN CN201180031620.6A patent/CN102947962B/en active Active
- 2011-05-12 KR KR1020127032554A patent/KR101916473B1/en active IP Right Grant
- 2011-05-12 JP JP2013509610A patent/JP5847805B2/en active Active
- 2011-05-16 TW TW100117093A patent/TWI529192B/en active
Patent Citations (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4539507A (en) | 1983-03-25 | 1985-09-03 | Eastman Kodak Company | Organic electroluminescent devices having improved power conversion efficiencies |
WO1990013148A1 (en) | 1989-04-20 | 1990-11-01 | Cambridge Research And Innovation Limited | Electroluminescent devices |
US5150006A (en) | 1991-08-01 | 1992-09-22 | Eastman Kodak Company | Blue emitting internal junction organic electroluminescent device (II) |
US5432014A (en) | 1991-11-28 | 1995-07-11 | Sanyo Electric Co., Ltd. | Organic electroluminescent element and a method for producing the same |
US5723873A (en) | 1994-03-03 | 1998-03-03 | Yang; Yang | Bilayer composite electrodes for diodes |
US6083634A (en) | 1994-09-12 | 2000-07-04 | Motorola, Inc. | Organometallic complexes for use in light emitting devices |
US5798170A (en) | 1996-02-29 | 1998-08-25 | Uniax Corporation | Long operating life for polymer light-emitting diodes |
EP0947123A1 (en) | 1996-07-29 | 1999-10-06 | Cambridge Display Technology Limited | Electroluminescent devices with electrode protection |
WO1998010621A1 (en) | 1996-09-04 | 1998-03-12 | Cambridge Display Technology Limited | Organic light-emitting devices with improved cathode |
EP0880303A1 (en) | 1996-11-25 | 1998-11-25 | Seiko Epson Corporation | Method of producing organic el elements, organic el elements and organic el display device |
WO1998057381A1 (en) | 1997-06-10 | 1998-12-17 | Uniax Corporation | Ultra-thin layer alkaline earth metals as stable electron-injecting cathodes for polymer light emitting diodes |
EP0901176A2 (en) | 1997-08-29 | 1999-03-10 | Cambridge Display Technology Limited | Electroluminescent device |
EP0949850A1 (en) | 1998-04-02 | 1999-10-13 | Cambridge Display Technology Limited | Flexible substrates for organic device |
WO1999054385A1 (en) | 1998-04-21 | 1999-10-28 | The Dow Chemical Company | Fluorene-containing polymers and electroluminescent devices therefrom |
US6268695B1 (en) | 1998-12-16 | 2001-07-31 | Battelle Memorial Institute | Environmental barrier material for organic light emitting device and method of making |
WO2000048258A1 (en) | 1999-02-12 | 2000-08-17 | Cambridge Display Technology Ltd. | Opto-electrical devices |
WO2000053656A1 (en) | 1999-03-05 | 2000-09-14 | Cambridge Display Technology Limited | Polymer preparation |
GB2348316A (en) | 1999-03-26 | 2000-09-27 | Cambridge Display Tech Ltd | Organic opto-electronic device |
WO2001019142A1 (en) | 1999-09-03 | 2001-03-15 | Uniax Corporation | Encapsulation of organic electronic devices |
US6268072B1 (en) * | 1999-10-01 | 2001-07-31 | Eastman Kodak Company | Electroluminescent devices having phenylanthracene-based polymers |
WO2001081649A1 (en) | 2000-04-20 | 2001-11-01 | Battelle Memorial Institute | Barrier coating |
US20020182441A1 (en) | 2000-08-11 | 2002-12-05 | Trustee Of Princeton University | Organometallic compounds and emission-shifting organic electrophosphorescence |
WO2002031896A2 (en) | 2000-10-10 | 2002-04-18 | E.I. Du Pont De Nemours And Company | Polymers having attached luminescent metal complexes and devices made with such polymers |
WO2002044189A1 (en) | 2000-11-30 | 2002-06-06 | Canon Kabushiki Kaisha | Luminescent element and display |
WO2002045466A1 (en) | 2000-11-30 | 2002-06-06 | Canon Kabushiki Kaisha | Luminescent element and display |
US20020117662A1 (en) | 2000-12-25 | 2002-08-29 | Fuji Photo Film Co., Ltd. | Novel indole derivative, material for light-emitting device and light-emitting device using the same |
WO2002066552A1 (en) | 2001-02-20 | 2002-08-29 | Isis Innovation Limited | Metal-containing dendrimers |
WO2002068435A1 (en) | 2001-02-24 | 2002-09-06 | Covion Organic Semiconductors Gmbh | Rhodium and iridium complexes |
EP1245659A1 (en) | 2001-03-27 | 2002-10-02 | Sumitomo Chemical Company, Limited | Polymeric light emitting substance and polymer light emitting device using the same |
WO2002081448A1 (en) | 2001-04-05 | 2002-10-17 | Sankyo Company, Limited | Benzamidine derivative |
WO2002084759A1 (en) | 2001-04-17 | 2002-10-24 | Koninklijke Philips Electronics N.V. | Led comprising a conductive transparent polymer layer with low sulfate and high metal ion content |
JP2002324679A (en) | 2001-04-26 | 2002-11-08 | Honda Motor Co Ltd | Organic electroluminescent element |
WO2003018653A1 (en) | 2001-08-31 | 2003-03-06 | Nippon Hoso Kyokai | Phosphor light-emitting compound, phosphor light-emitting composition, and organic light emitting element |
WO2003022908A1 (en) | 2001-09-04 | 2003-03-20 | Canon Kabushiki Kaisha | High-molecular compounds and organic luminescent devices |
WO2005013386A2 (en) * | 2003-08-01 | 2005-02-10 | Cdt Oxford Limited | Copolymers for electroluminescent devices comprising charge transporting units, metal complexes as phosphorescent units and/or aliphatic units |
WO2005049689A2 (en) | 2003-11-17 | 2005-06-02 | Sumitomo Chemical Company, Limited | Crosslinkable substituted fluorene compounds and conjugated oligomers or polymers based thereon |
US20050187411A1 (en) | 2004-02-19 | 2005-08-25 | Norman Herron | Compositions comprising novel compounds and electronic devices made with such compositions |
TWI265968B (en) * | 2004-08-27 | 2006-11-11 | Univ Nat Sun Yat Sen | Non-fully conjugated graft polymer and a mono-layer electroluminescence film of adjustable emission color using the same |
WO2006043681A1 (en) * | 2004-10-18 | 2006-04-27 | Seiko Epson Corporation | Composition for conductive materials, conductive material, conductive layer, electronic device, and electronic equipment |
CN1743406A (en) * | 2005-09-29 | 2006-03-08 | 天津理工大学 | Polyarylether non conjugated electroluminescent mater containing oxadiazole units |
WO2008025997A1 (en) | 2006-08-31 | 2008-03-06 | Cdt Oxford Limited | Compounds for use in opto-electrical devices |
US20100013377A1 (en) | 2006-08-31 | 2010-01-21 | Cdt Oxford Limited | Compounds for use in Opto-Electrical Devices |
GB2456298A (en) * | 2008-01-07 | 2009-07-15 | Anthony Ian Newman | Electroluminescent materials comprising oxidation resistant fluorenes |
GB2463077A (en) * | 2008-09-02 | 2010-03-03 | Cambridge Display Tech Ltd | Electroluminescent copolymer |
Non-Patent Citations (10)
Title |
---|
ADV. MATER., vol. 12, no. 23, 2000, pages 1737 - 1750 |
APPL. PHYS. LETT., vol. 79, no. 5, 2001 |
APPL. PHYS. LETT., vol. 81, no. 4, 2002, pages 634 |
JOURNAL OF PHYSICS D: APPLIED PHYSICS, vol. 29, no. 11, 1996, pages 2750 - 2753 |
KREYENSCHMIDT ET AL., MACROMOLECULES, vol. 31, 1998, pages 1099 - 1103 |
MACROMOL. SYM., vol. 125, 1997, pages 1 - 48 |
MICHAELSON, J. APPL. PHYS., vol. 48, no. 11, 1977, pages 4729 |
SHIH-CHUN LO ET AL., CHEM. MATER., vol. 18, 2006, pages 5119 - 5129 |
SHIROTA, KAGEYAMA, CHEM. REV., vol. 107, 2007, pages 953 - 1010 |
T. YAMAMOTO: "Electrically Conducting And Thermally Stable ? - Conjugated Poly(arylene)s Prepared by Organometallic Processes", PROGRESS IN POLYMER SCIENCE, vol. 17, 1993, pages 1153 - 1205 |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013056880A (en) * | 2011-08-01 | 2013-03-28 | Universal Display Corp | Materials for organic light-emitting diode |
EP2554548A1 (en) * | 2011-08-01 | 2013-02-06 | Universal Display Corporation | Materials for organic light emitting diode |
CN104011173A (en) * | 2011-12-23 | 2014-08-27 | 剑桥显示技术有限公司 | Light Emitting Composition And Device |
WO2013093400A1 (en) * | 2011-12-23 | 2013-06-27 | Cambridge Display Technology Limited | Light emitting composition and device |
WO2013093490A1 (en) * | 2011-12-23 | 2013-06-27 | Cambridge Display Technology Limited | Polymer, polymer composition and organic light-emitting device |
US10158077B2 (en) | 2011-12-23 | 2018-12-18 | Cambridge Display Technology Limited | Light emitting composition and device |
CN104011173B (en) * | 2011-12-23 | 2017-01-18 | 剑桥显示技术有限公司 | Light Emitting Composition And Device |
JP2015508428A (en) * | 2011-12-23 | 2015-03-19 | ケンブリッジ ディスプレイ テクノロジー リミテッド | Luminescent composition and device |
GB2511238A (en) * | 2011-12-23 | 2014-08-27 | Cambridge Display Tech Ltd | Polymer, Polymer composition and organic light-emitting device |
US20140151659A1 (en) * | 2012-11-30 | 2014-06-05 | Sumitomo Chemical Company Limited | Light-emitting compound |
JP2014111765A (en) * | 2012-11-30 | 2014-06-19 | Cambridge Display Technology Ltd | Polymer and organic electronic device |
CN103848978A (en) * | 2012-11-30 | 2014-06-11 | 剑桥显示技术有限公司 | Polymer and organic electronic device |
US9812644B2 (en) | 2012-11-30 | 2017-11-07 | Cambridge Display Technology Limited | Composition containing dopant and co-polymers having non-conjugated spacer units and its use in OLED devices |
CN103848978B (en) * | 2012-11-30 | 2018-01-12 | 剑桥显示技术有限公司 | polymer and organic electronic device |
EP2738195A1 (en) | 2012-11-30 | 2014-06-04 | Cambridge Display Technology Limited | Polymer and organic electronic device |
JP2014148663A (en) * | 2012-12-21 | 2014-08-21 | Cambridge Display Technology Ltd | Polymer and organic light-emitting device |
US9929359B2 (en) | 2013-07-17 | 2018-03-27 | Sumitomo Chemical Company, Limited | Composition and light emitting device using the same |
US20150102330A1 (en) * | 2013-10-14 | 2015-04-16 | Sumitomo Chemical Co. Limited | Composition and device |
US10141514B2 (en) | 2014-04-18 | 2018-11-27 | Sumitomo Chemical Company, Limited | Composition and light emitting device using the same |
US10497885B2 (en) | 2015-04-24 | 2019-12-03 | Sumitomo Chemical Company, Limited | Light emitting device and composition used for this light emitting device |
Also Published As
Publication number | Publication date |
---|---|
KR101916473B1 (en) | 2018-11-07 |
GB201008095D0 (en) | 2010-06-30 |
GB201222188D0 (en) | 2013-01-23 |
JP2013528232A (en) | 2013-07-08 |
US8981354B2 (en) | 2015-03-17 |
US20130146852A1 (en) | 2013-06-13 |
CN102947962A (en) | 2013-02-27 |
GB2484253A (en) | 2012-04-11 |
JP5847805B2 (en) | 2016-01-27 |
KR20130083385A (en) | 2013-07-22 |
CN102947962B (en) | 2015-09-30 |
TWI529192B (en) | 2016-04-11 |
GB2493892B (en) | 2016-05-11 |
GB2484253B (en) | 2013-09-11 |
TW201206985A (en) | 2012-02-16 |
DE112011101651T5 (en) | 2013-03-21 |
GB2493892A (en) | 2013-02-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8981354B2 (en) | Organic light-emitting polymer and device | |
EP3211056B1 (en) | Compounds for use in opto-electrical devices | |
EP2630675B1 (en) | Organic light-emitting device and method | |
EP1969027B1 (en) | Arylamine polymer | |
EP2804927B1 (en) | Monomers, polymers and organic electronic devices | |
EP2738195B1 (en) | Polymer and organic electronic device | |
WO2013005026A2 (en) | Polymers, monomers and methods of forming polymers | |
US9676900B2 (en) | Fluorene containing copolymer used in light emitting devices | |
WO2013093490A1 (en) | Polymer, polymer composition and organic light-emitting device | |
EP3295495B1 (en) | Light-emitting compound | |
WO2011141709A1 (en) | Polymer, polymer composition and organic light-emitting device | |
WO2010013006A2 (en) | Blue-light emitting material | |
WO2013114118A2 (en) | Polymer | |
US9735370B2 (en) | Compound, device and method of making same | |
WO2012153083A1 (en) | Light emitting material, composition and device | |
US10290810B2 (en) | Polymer and organic electronic device | |
WO2010013002A1 (en) | Organic light-emitting materials and devices | |
WO2016132112A1 (en) | Compound, composition and organic light-emitting device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180031620.6 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11726466 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013509610 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1120111016514 Country of ref document: DE Ref document number: 112011101651 Country of ref document: DE |
|
ENP | Entry into the national phase |
Ref document number: 1222188 Country of ref document: GB Kind code of ref document: A Free format text: PCT FILING DATE = 20110512 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1222188.3 Country of ref document: GB |
|
ENP | Entry into the national phase |
Ref document number: 20127032554 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13698047 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11726466 Country of ref document: EP Kind code of ref document: A1 |