WO2011139413A1 - Artifact reduction in method of iterative inversion of geophysical data - Google Patents
Artifact reduction in method of iterative inversion of geophysical data Download PDFInfo
- Publication number
- WO2011139413A1 WO2011139413A1 PCT/US2011/028345 US2011028345W WO2011139413A1 WO 2011139413 A1 WO2011139413 A1 WO 2011139413A1 US 2011028345 W US2011028345 W US 2011028345W WO 2011139413 A1 WO2011139413 A1 WO 2011139413A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- approximation
- model
- inversion
- iterative
- data
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 92
- 230000009467 reduction Effects 0.000 title description 3
- 230000000704 physical effect Effects 0.000 claims abstract description 27
- 230000008569 process Effects 0.000 claims description 19
- 238000004088 simulation Methods 0.000 claims description 17
- 238000004364 calculation method Methods 0.000 claims description 7
- 230000008859 change Effects 0.000 claims description 6
- 230000000694 effects Effects 0.000 claims description 5
- 230000001427 coherent effect Effects 0.000 abstract 1
- 238000005457 optimization Methods 0.000 description 9
- 230000006872 improvement Effects 0.000 description 4
- 230000002441 reversible effect Effects 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000007429 general method Methods 0.000 description 2
- 238000001615 p wave Methods 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000013213 extrapolation Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 238000002922 simulated annealing Methods 0.000 description 1
- 238000003325 tomography Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V11/00—Prospecting or detecting by methods combining techniques covered by two or more of main groups G01V1/00 - G01V9/00
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V20/00—Geomodelling in general
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T11/00—2D [Two Dimensional] image generation
- G06T11/003—Reconstruction from projections, e.g. tomography
- G06T11/006—Inverse problem, transformation from projection-space into object-space, e.g. transform methods, back-projection, algebraic methods
Definitions
- the invention relates generally to the field of geophysical prospecting, and more particularly to geophysical data processing. Specifically, the invention pertains to reducing artifacts in iterative inversion of data resulting from approximations made in the inversion.
- Geophysical inversion attempts to find a model of subsurface properties that optimally explains observed data and satisfies geological and geophysical constraints.
- geophysical inversion There are a large number of well known methods of geophysical inversion. These well known methods fall into one of two categories, iterative inversion and non-iterative inversion. The following are definitions of what is commonly meant by each of the two categories:
- Non-iterative inversion - inversion that is accomplished by assuming some simple background model and updating the model based on the input data. This method does not use the updated model as input to another step of inversion. For the case of seismic data these methods are commonly referred to as imaging, migration, diffraction tomography or Born inversion.
- Cost function optimization involves iterative minimization or maximization of the value, with respect to the model M, of a cost function S(M) which is a measure of the misfit between the calculated and observed data (this is also sometimes referred to as the objective function), where the calculated data is simulated with a computer using the current geophysical properties model and the physics governing propagation of the source signal in a medium represented by a given geophysical properties model.
- the simulation computations may be done by any of several numerical methods including but not limited to finite difference, finite element or ray tracing.
- Series methods involve inversion by iterative series solution of the scattering equation (Weglein [3]). The solution is written in series form, where each term in the series corresponds to higher orders of scattering. Iterations in this case correspond to adding a higher order term in the series to the solution.
- Cost function optimization methods are either local or global [4]. Global methods simply involve computing the cost function S(M) for a population of models ⁇ Mi, M.2, Mi, ... ⁇ and selecting a set of one or more models from that population that approximately minimize S(M). If further improvement is desired this new selected set of models can then be used as a basis to generate a new population of models that can be again tested relative to the cost function S(M). For global methods each model in the test population can be considered to be an iteration, or at a higher level each set of populations tested can be considered an iteration. Well known global inversion methods include Monte Carlo, simulated annealing, genetic and evolution algorithms. Local cost function optimization involves:
- a physical properties model gives one or more subsurface properties as a function of location in a region.
- Seismic wave velocity is one such physical property, but so are (for example) density, p-wave velocity, shear wave velocity, several anisotropy parameters, attenuation (q) parameters, porosity, permeability, and resistivity.
- the invention is a method for reducing artifacts in a subsurface physical property model caused by an approximation, other than source encoding, in an iterative, computerized geophysical data inversion process, said method comprising varying the approximation as the iterations progress.
- the invention is a computer-implemented method for inversion of measured geophysical data to determine a physical properties model for a subsurface region, comprising:
- one or more artifact types are identified in inversion results as being caused by the approximation, and the aspect of the approximation that is changed in some or all iteration cycles is selected for having an effect on artifacts of the one or more identified artifact types.
- the effect on artifacts may be such that artifacts from one approximation do not add constructively with artifacts from another iteration cycle that uses an approximation with a changed aspect.
- Fig. 1 is a flow chart showing basic steps in a general method disclosed herein;
- Fig. 2 is a flow chart showing basic steps in a particular embodiment of the method of Fig. 1 wherein the objective function is approximated by encoding and summing the sources;
- FIGs. 3-5 pertain to an example application of the invention embodiment of
- Fig. 2 [0015]
- Fig. 3 shows the seismic velocity model from which seismic data were computed for the example
- FIG. 4 shows inversion of data from the seismic velocity model in Fig. 3 using the inversion method summarized in Fig. 2;
- FIG. 5 shows inversion of data from the seismic velocity model in Fig. 3 using the inversion method summarized in Fig. 2 without the step in which the code used to encode the sources is changed between iterations;
- Fig. 6 is a flow chart showing basic steps in a particular embodiment of the method of Fig. 1 wherein the approximation is varying the size of the grid cells used in the numerical inversion so as to use a fine grid only where needed;
- Figs. 7-9 pertain to an example application of the invention embodiment of
- Fig. 7 is the seismic velocity model from which seismic data were computed for the example
- Fig. 8 shows an inversion of data from the seismic velocity model in Fig. 7 using the inversion method summarized in Fig. 6
- Fig. 9 is an inversion of data from the seismic velocity model in Fig. 7 using the inversion method summarized in Fig. 6 without the step in which the depth of the artificial reflection generator is changed between iterations;
- Fig. 10 is a flow chart showing basic steps in a particular embodiment of the method of Fig. 1, wherein the approximation is using only a subset of measured data;
- FIG. 11-13 pertain to an example application of the invention embodiment of
- Fig. 1 1 shows the seismic velocity model from which seismic data were computed for the example
- Fig. 12 shows an inversion of data from the seismic velocity model in Fig. 1 1 using the inversion method summarized in Fig. 10;
- Fig. 13 shows an inversion of data from the seismic velocity model in Fig. 1 1 using the inversion method summarized in Fig. 10 without the step in which the subset of measured data is changed randomly between iterations.
- Figs. 3-5, 7-9, and 11-13 are gray-scale conversions of color displays.
- the present invention is a method for reducing artifacts caused by the application of approximations during iterative inversion of geophysical data.
- Geophysical inversion attempts to find a model of subsurface properties that optimally explains observed geophysical data.
- the example of seismic data is used throughout to illustrate the inventive method, but the method may be advantageously applied to any method of geophysical prospecting and any type of geophysical data.
- the data inversion is most accurately performed using iterative methods. Unfortunately iterative inversion is often prohibitively expensive computationally. The majority of compute time in iterative inversion is spent performing expensive forward and/or reverse simulations of the geophysical data (here forward means forward in time and reverse means backward in time).
- the high cost of these simulations is partly due to the fact that each geophysical source in the input data must be computed in a separate computer run of the simulation software.
- the cost of simulation is proportional to the number of sources in the geophysical data, typically on the order of 1,000 to 10,000 sources for a geophysical survey.
- approximations are applied during the inversion to reduce the cost of inversion.
- These approximations result in errors, or artifacts, in the inverted model.
- This invention mitigates these artifacts by changing some aspect of the approximation between iterations of inversion so that the artifact during one iteration does not add constructively with the artifact in other iterations. Therefore the artifact is reduced in the inverted model.
- Approximations in the simulation e.g. low order approximations of derivatives used in the simulator or the size of the grid cells used in the calculation.
- Cost function optimization is performed by minimizing the value, with respect to a subsurface model M, of a cost function S(M) (sometimes referred to as an objective function), which is a measure of misfit between the observed (measured) geophysical data and corresponding data calculated by simulation of the assumed model.
- S(M) sometimes referred to as an objective function
- a simple cost function S often used in geophysical inversion is: (1) where
- M subsurface model
- g gather index (for point source data this would correspond to the individual sources)
- N g number of gathers
- r receiver index within gather
- N r number of receivers in a gather
- t time sample index within a data record
- N number of time samples
- eak calculated geophysical data from the model M
- y o b s measured geophysical data
- w g source signature for gather g, i.e. source signal without earth filtering effects.
- the gathers in Equation 1 can be any type of gather that can be simulated in one run of a forward modeling program.
- the gathers correspond to a seismic shot, although the shots can be more general than point sources [5].
- point sources the gather index g corresponds to the location of individual point sources.
- g would correspond to different plane wave propagation directions.
- This generalized source data, ⁇ ⁇ ⁇ can either be acquired in the field or can be synthesized from data acquired using point sources.
- the calculated data y/ ca i c on the other hand can usually be computed directly by using a generalized source function when forward modeling (e.g. for seismic data, forward modeling typically means solution of the anisotropic visco-elastic wave propagation equation or some approximation thereof).
- forward modeling typically means solution of the anisotropic visco-elastic wave propagation equation or some approximation thereof.
- the computation time needed for a generalized source is roughly equal to the computation time needed for a point source.
- the model M is a model of one or more physical properties of the subsurface region.
- Seismic wave velocity is one such physical property, but so are (for example) p-wave velocity, shear wave velocity, several anisotropy parameters, attenuation (q) parameters, porosity, and permeability.
- the model M might represent a single physical property or it might contain many different parameters depending upon the level of sophistication of the inversion. Typically, a subsurface region is subdivided into discrete cells, each cell being characterized by a single value of each parameter. [0034]
- One major problem with iterative inversion is that computing y/ ca i c takes a large amount of computer time, and therefore computation of the cost function, S, is very time consuming. Furthermore, in a typical inversion project this cost function must be computed for many different models M.
- Iterative Series Inversion Besides cost function optimization, geophysical inversion can also be implemented using iterative series methods.
- a common method for doing this is to iterate the Lippmann-Schwinger equation [3].
- the Lippmann-Schwinger equation describes scattering of waves in a medium represented by a physical properties model of interest as a perturbation of a simpler model.
- the equation is the basis for a series expansion that is used to determine scattering of waves from the model of interest, with the advantage that the series only requires calculations to be performed in the simpler model.
- This series can also be inverted to form an iterative series that allows the determination of the model of interest, from the measured data and again only requiring calculations to be performed in the simpler model.
- Equation 4 is solved iteratively for V by first expanding it in a series
- Equation 6 V (1) + V (2) + V ( ) + ⁇ ⁇ ⁇ (6)
- Equation 6 Equation 5
- V (1) G 0 1 (G - G 0 )G 0 1 (10) V from Equation 10 is then substituted into Equation 8 and this equation is solved for V to yield:
- Equation 10 involves a sum over sources and frequency which can be written out explicitly as:
- Equation 10 when implemented in the frequency domain can be interpreted as follows: (1) Downward extrapolate through the reference model the source signature for each source (the Go 1 term), (2) For each source, downward extrapolate the receivers of the residual data through the reference model (the Go ⁇ G ⁇ -Go,) term), (3) multiply these two fields then sum over all sources and frequencies.
- the downward extrapolations in this recipe can be carried out using geophysical simulation software, for example using finite differences.
- step 110 an approximation is selected that will improve some aspect of the inversion process.
- the improvement may be in the form of a speedup rather than increased accuracy. Examples of such approximations include use of an approximate objective function or use of an approximation in the simulation software. These approximations will often be chosen to reduce the computational cost of inversion. However, rather than a computational speed-up, the improvement may instead work an accuracy trade- off, i.e. accept more inaccuracy in one aspect of the computation in return for more accuracy in some other aspect.
- step 140 an update to an assumed physical properties model 120 is generated based on the measured data 130.
- step 140 the approximation chosen in 110 is used to perform the update computations.
- the "update computations" as that term is used herein include, without limitation, computing the objective (cost) function, the objective function gradient, and all forward modeling required to accomplish the preceding.
- Step 140 produces an updated physical properties model 150, which should be closer to the actual subsurface properties than were those of the assumed physical properties model 120.
- this updated physical properties model 150 would be further improved by feeding it and the measured data 130 back into the update method in step 140 to produce a further improved physical properties model.
- This conventional iterative inversion method has the disadvantage that any artifacts in the inversion that result from the approximation chosen in step 110 will likely reinforce constructively in the inversion and contaminate the final inverted result.
- step 160 interposes step 160 in which some aspect of the approximation chosen in step 110 is changed in a manner such that the artifact caused by the approximation will change and therefore not be reinforced by the iterations of step 140.
- the artifact resulting from the approximation chosen in step 110 will be mitigated.
- step 110 i.e. of approximations that might advantageously be used in data inversion, and that are suitable (step 160) for application of the present invention.
- the first column of the table lists approximations that could be used with this invention.
- the second column lists the artifact associated with each approximation.
- the last column lists a feature of the approximation that could be varied between iterations to cause a change in the artifact between iterations that will cause it to add incoherently to the final inverted model and thus be mitigated.
- an accuracy tradeoff involves sacrificing accuracy in one aspect of the method in return for increased accuracy in another aspect.
- Figures 2-5 represent a synthetic example of performing inversion using an approximation to the objective function in which the seismic sources in the measured data are encoded then summed; see U.S. Application Publication No. 2010-0018718 by Jerome Krebs et al. This approximation speeds up the inversion, because the encoded objective function can be evaluated using one run of the simulation software rather than running it once for each source as is the case for conventional inversion.
- Figure 2 is a self-explanatory flow chart that focuses Fig. 1 on this particular embodiment, with step 210 showing the encoding approximation.
- the geophysical properties model in this example is just a model of the acoustic wave velocity.
- Figure 3 shows the base velocity model, i.e., the "unknown" model that will be inverted for and which was used to generate the data to be inverted). for this example. The shading indicates the velocity at each depth and lateral location, as indicated by the "color” bar to the right.
- Figure 4 shows the inversion resulting from application of this invention as summarized by the flow chart in Fig. 2.
- the sources are encoded by randomly multiplying them by either plus or minus one.
- the encoding of the sources is changed, in step 260, by changing the random number seed used to generate the codes used to encode the sources. Note the good match to the base model shown in Fig. 3.
- Figure 5 shows the result of applying the inversion method outlined in the flowchart in Fig. 2, but eliminating the inventive feature of step 260. Note the inversion in Fig. 5 is dominated by crosstalk noise (the speckled appearance of the inversion), whereas this crosstalk noise artifact is largely invisible in the inversion resulting from the present invention (Fig. 4).
- Figures 6-9 illustrate a synthetic example of performing inversion using an approximation to the simulator that generates an artificial reflection.
- An example of such an approximation is using a finite difference simulator such that the size of the cells in the grid are changed with depth from the surface. This approximation speeds up the inversion, because the grid in the simulator could be adjusted to optimize it in a depth varying manner. Typically smaller grid cells are required for the shallow portion of a finite difference simulator than are required deeper in the model.
- the artifact generated by this approximation is an artificial reflection at the boundaries between changes in the grid cell size.
- FIG. 6 is a flow chart for the embodiment of the present invention illustrated in this example.
- a variable grid simulator was not actually used to generate the artificial reflector. Instead (step 610) an artificial reflection is generated by placing a fictitious discontinuity in the density model at 500 meters depth.
- This discontinuous density model was used by the simulator for model updating, but a constant density model was used to generate the measured data (630 in Fig. 6).
- Inversion is then performed in a manner such that only the velocity model is updated (640), so that the fictitious density discontinuity remains throughout the iterations of inversion.
- the geophysical properties model in this example is just a model (620) of the acoustic wave velocity.
- Figure 7 shows the base velocity model (the model that will be inverted for and which was used to generate the data to be inverted) for this example. The shading indicates the velocity at each depth.
- Figure 8 shows the inversion resulting from application of the present invention as summarized by the flow chart of Fig. 6.
- the depth of the fictitious density contrast is randomly changed using a normal distribution centered on 500 meters and with a variance of 100 meters. Note the good match to the base model shown in Fig. 7.
- Figs. 7-9 and 11-13 velocity is plotted as a dimensionless relative velocity equal to the inverted velocity divided by an initial velocity, the latter being the starting guess for what the velocity model is expected to be.
- Figure 9 shows the result of applying the inversion method outlined in the flowchart of Fig. 6, but eliminating the inventive feature that is step 660. It may be noted that the inversion in Fig. 9 has a clearly visible artificial reflection 910 at 500 meters depth, whereas this artificial reflection is largely invisible in the inversion that used the present inventive method (Fig. 8).
- Test Example 3 Random subsets of measured data
- Figures 10-13 represent a synthetic example of performing inversion using an approximation to the measured data.
- An example of such an approximation is using a subset of the measured data (1010 in Fig. 10). This approximation reduces the amount of measured data, which speeds up the inversion, because the computational time of the inversion is directly proportional to the number of measured data. In a typical inversion, all of the measured data are needed to maintain a high horizontal resolution, and thus in typical practice this approximation is not used.
- the artifact generated by this approximation is footprints in the inverted models caused by sparse source positions and degradation of the horizontal resolution.
- Figure 10 is a flow chart that focuses the steps of Fig. 1 on the embodiment of the invention used in this example.
- a subset of the measured data (1030 in Fig. 10) is used in the inversion, e.g. a subset of 5 data among 50 measured data.
- the geophysical properties model in this example is just a model of the acoustic wave velocity.
- Figure 1 1 is the base velocity model (the model that will be inverted for and which was used to generate the data to be inverted) for this example. The shading indicates the velocity at each depth.
- Figure 12 is the inversion resulting from application of this invention as summarized by the flow chart in Fig. 10.
- step 1060 a subset of the measured data is randomly selected as inversion iteration increases. This results in a different subset of the data being used in each iteration cycle.
- Figure 12 shows a good match to the base model shown in Fig. 1 1 using ten percent of the measured data.
- Figure 13 shows the results of applying the inversion method outlined in the flowchart in Fig. 6, but eliminating the inventive, artifact-reducing step 1060. It may be noted that the inversion in Fig. 13 has artificial footprints at deeper parts below 2000 meters and short wavelength noises in the overall inverted model, whereas this footprint noises are mitigated in the inversion using the presnt inventive method (Fig. 12), and the short wavelength noises are invisible. [0051] It should be understood that the flow charts of Figs. 2, 6 and 10 represent examples of specific embodiments of the invention that is described more generally in Fig. 1.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geophysics (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Acoustics & Sound (AREA)
- Environmental & Geological Engineering (AREA)
- Geology (AREA)
- Remote Sensing (AREA)
- Computer Hardware Design (AREA)
- Geometry (AREA)
- General Engineering & Computer Science (AREA)
- Evolutionary Computation (AREA)
- Algebra (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Mathematical Physics (AREA)
- Pure & Applied Mathematics (AREA)
- Geophysics And Detection Of Objects (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Error Detection And Correction (AREA)
Abstract
Description
Claims
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201180022962.1A CN102892972B (en) | 2010-05-07 | 2011-03-14 | Artefact in the iterative inversion of geophysical data is reduced |
RU2012152638/28A RU2573174C2 (en) | 2010-05-07 | 2011-03-14 | Artefact reduction in iterative inversion of geophysical data |
EP11777738.3A EP2567063B1 (en) | 2010-05-07 | 2011-03-14 | Artifact reduction in method of iterative inversion of geophysical data |
AU2011248989A AU2011248989B2 (en) | 2010-05-07 | 2011-03-14 | Artifact reduction in method of iterative inversion of geophysical data |
KR1020127031840A KR101948509B1 (en) | 2010-05-07 | 2011-03-14 | Artifact reduction in iterative inversion of geophysical data |
SG2012073284A SG184803A1 (en) | 2010-05-07 | 2011-03-14 | Artifact reduction in method of iterative inversion of geophysical data |
CA2795340A CA2795340C (en) | 2010-05-07 | 2011-03-14 | Artifact reduction in iterative inversion of geophysical data |
BR112012025185A BR112012025185A2 (en) | 2010-05-07 | 2011-03-14 | artifact reduction in the iterative inversion method of geophysical data |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US33246310P | 2010-05-07 | 2010-05-07 | |
US61/332,463 | 2010-05-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011139413A1 true WO2011139413A1 (en) | 2011-11-10 |
Family
ID=44902509
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2011/028345 WO2011139413A1 (en) | 2010-05-07 | 2011-03-14 | Artifact reduction in method of iterative inversion of geophysical data |
Country Status (11)
Country | Link |
---|---|
US (3) | US8694299B2 (en) |
EP (1) | EP2567063B1 (en) |
KR (1) | KR101948509B1 (en) |
CN (1) | CN102892972B (en) |
AU (1) | AU2011248989B2 (en) |
BR (1) | BR112012025185A2 (en) |
CA (1) | CA2795340C (en) |
MY (1) | MY162803A (en) |
RU (1) | RU2573174C2 (en) |
SG (1) | SG184803A1 (en) |
WO (1) | WO2011139413A1 (en) |
Families Citing this family (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003218986A (en) * | 2002-01-18 | 2003-07-31 | Gvc Corp | Method for warning abnormal connection in bluetooth device capable of setting |
BR112012009154A2 (en) * | 2009-10-23 | 2016-08-16 | Exxonmobil Upstream Res Co | method for improving a geological model of a subsurface region, computer program product, and method for controlling hydrocarbons in a subsurface region |
US8694299B2 (en) | 2010-05-07 | 2014-04-08 | Exxonmobil Upstream Research Company | Artifact reduction in iterative inversion of geophysical data |
US8385151B2 (en) * | 2010-06-24 | 2013-02-26 | Chevron U.S.A. Inc. | Reverse time migration with absorbing and random boundaries |
AU2010257409B2 (en) * | 2010-12-23 | 2013-01-31 | Canon Kabushiki Kaisha | Temporal-correlation-based mode connection |
RU2577387C2 (en) | 2011-03-30 | 2016-03-20 | Эксонмобил Апстрим Рисерч Компани | Convergence rate of full wavefield inversion using spectral shaping |
US9176930B2 (en) * | 2011-11-29 | 2015-11-03 | Exxonmobil Upstream Research Company | Methods for approximating hessian times vector operation in full wavefield inversion |
US9964653B2 (en) * | 2011-12-21 | 2018-05-08 | Technoimaging, Llc | Method of terrain correction for potential field geophysical survey data |
MY170622A (en) | 2012-03-08 | 2019-08-21 | Exxonmobil Upstream Res Co | Orthogonal source and receiver encoding |
EP2926170A4 (en) | 2012-11-28 | 2016-07-13 | Exxonmobil Upstream Res Co | Reflection seismic data q tomography |
GB2510872A (en) * | 2013-02-15 | 2014-08-20 | Total Sa | Method of modelling a subsurface volume |
GB2510873A (en) | 2013-02-15 | 2014-08-20 | Total Sa | Method of modelling a subsurface volume |
US10591638B2 (en) * | 2013-03-06 | 2020-03-17 | Exxonmobil Upstream Research Company | Inversion of geophysical data on computer system having parallel processors |
US9702993B2 (en) | 2013-05-24 | 2017-07-11 | Exxonmobil Upstream Research Company | Multi-parameter inversion through offset dependent elastic FWI |
US10459117B2 (en) | 2013-06-03 | 2019-10-29 | Exxonmobil Upstream Research Company | Extended subspace method for cross-talk mitigation in multi-parameter inversion |
US9702998B2 (en) | 2013-07-08 | 2017-07-11 | Exxonmobil Upstream Research Company | Full-wavefield inversion of primaries and multiples in marine environment |
BR112015030104A2 (en) | 2013-08-23 | 2017-07-25 | Exxonmobil Upstream Res Co | simultaneous acquisition during both seismic acquisition and seismic inversion |
US10036818B2 (en) | 2013-09-06 | 2018-07-31 | Exxonmobil Upstream Research Company | Accelerating full wavefield inversion with nonstationary point-spread functions |
US10036826B2 (en) * | 2014-03-05 | 2018-07-31 | Schlumberger Technology Corporation | Inversion techniques for real-time well placement and reservoir characterization |
US9910189B2 (en) * | 2014-04-09 | 2018-03-06 | Exxonmobil Upstream Research Company | Method for fast line search in frequency domain FWI |
EP3140675A1 (en) | 2014-05-09 | 2017-03-15 | Exxonmobil Upstream Research Company | Efficient line search methods for multi-parameter full wavefield inversion |
US10185046B2 (en) | 2014-06-09 | 2019-01-22 | Exxonmobil Upstream Research Company | Method for temporal dispersion correction for seismic simulation, RTM and FWI |
WO2015199800A1 (en) | 2014-06-17 | 2015-12-30 | Exxonmobil Upstream Research Company | Fast viscoacoustic and viscoelastic full-wavefield inversion |
US10838092B2 (en) | 2014-07-24 | 2020-11-17 | Exxonmobil Upstream Research Company | Estimating multiple subsurface parameters by cascaded inversion of wavefield components |
US10422899B2 (en) | 2014-07-30 | 2019-09-24 | Exxonmobil Upstream Research Company | Harmonic encoding for FWI |
US10386511B2 (en) | 2014-10-03 | 2019-08-20 | Exxonmobil Upstream Research Company | Seismic survey design using full wavefield inversion |
MY182815A (en) | 2014-10-20 | 2021-02-05 | Exxonmobil Upstream Res Co | Velocity tomography using property scans |
US11163092B2 (en) | 2014-12-18 | 2021-11-02 | Exxonmobil Upstream Research Company | Scalable scheduling of parallel iterative seismic jobs |
US9784865B2 (en) | 2015-01-28 | 2017-10-10 | Chevron U.S.A. Inc. | System and method for estimating lateral positioning uncertainties of a seismic image |
US10520618B2 (en) * | 2015-02-04 | 2019-12-31 | ExxohnMobil Upstream Research Company | Poynting vector minimal reflection boundary conditions |
FR3032532B1 (en) * | 2015-02-05 | 2020-02-28 | Services Petroliers Schlumberger | DERIVATION OF SEISMIC ATTRIBUTES FROM A GEOLOGICAL AGE PROPERTY RELATIVE FROM A VOLUME-BASED MODEL |
WO2016130208A1 (en) | 2015-02-13 | 2016-08-18 | Exxonmobil Upstream Research Company | Efficient and stable absorbing boundary condition in finite-difference calculations |
CN107407736B (en) | 2015-02-17 | 2019-11-12 | 埃克森美孚上游研究公司 | Generate the multistage full wave field inversion processing of the data set without multiple wave |
WO2016195774A1 (en) | 2015-06-04 | 2016-12-08 | Exxonmobil Upstream Research Company | Method for generating multiple free seismic images |
US10838093B2 (en) | 2015-07-02 | 2020-11-17 | Exxonmobil Upstream Research Company | Krylov-space-based quasi-newton preconditioner for full-wavefield inversion |
US10768322B2 (en) * | 2015-08-27 | 2020-09-08 | Pgs Geophysical As | Analogous processing of modeled and measured marine survey data |
BR112018003117A2 (en) | 2015-10-02 | 2018-09-25 | Exxonmobil Upstream Res Co | compensated full wave field inversion in q |
BR112018004435A2 (en) | 2015-10-15 | 2018-09-25 | Exxonmobil Upstream Res Co | amplitude-preserving fwi model domain angle stacks |
US10768324B2 (en) | 2016-05-19 | 2020-09-08 | Exxonmobil Upstream Research Company | Method to predict pore pressure and seal integrity using full wavefield inversion |
WO2018031113A1 (en) * | 2016-08-12 | 2018-02-15 | Exxonmobil Upstream Research Company | Tomographically enhanced full wavefield inversion |
US10788597B2 (en) * | 2017-12-11 | 2020-09-29 | Saudi Arabian Oil Company | Generating a reflectivity model of subsurface structures |
US10782430B2 (en) * | 2018-01-12 | 2020-09-22 | Cgg Services Sas | Method for seismic exploration using a multiple-inclusive source wavelet |
US11320557B2 (en) | 2020-03-30 | 2022-05-03 | Saudi Arabian Oil Company | Post-stack time domain image with broadened spectrum |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6549854B1 (en) * | 1999-02-12 | 2003-04-15 | Schlumberger Technology Corporation | Uncertainty constrained subsurface modeling |
US6944546B2 (en) * | 2003-10-01 | 2005-09-13 | Halliburton Energy Services, Inc. | Method and apparatus for inversion processing of well logging data in a selected pattern space |
US20070203673A1 (en) * | 2005-11-04 | 2007-08-30 | Sherrill Francis G | 3d pre-stack full waveform inversion |
WO2009117174A1 (en) * | 2008-03-21 | 2009-09-24 | Exxonmobil Upstream Research Company | An efficient method for inversion of geophysical data |
US20090248308A1 (en) * | 2008-03-28 | 2009-10-01 | Martin Luling | Simultaneous inversion of induction data for dielectric permittivity and electric conductivity |
US20100018718A1 (en) * | 2006-09-28 | 2010-01-28 | Krebs Jerome R | Iterative inversion of data from simultaneous geophysical sources |
Family Cites Families (217)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3812457A (en) | 1969-11-17 | 1974-05-21 | Shell Oil Co | Seismic exploration method |
US3864667A (en) | 1970-09-11 | 1975-02-04 | Continental Oil Co | Apparatus for surface wave parameter determination |
US3984805A (en) | 1973-10-18 | 1976-10-05 | Daniel Silverman | Parallel operation of seismic vibrators without phase control |
US4168485A (en) | 1974-08-12 | 1979-09-18 | Continental Oil Company | Simultaneous use of pseudo-random control signals in vibrational exploration methods |
US4545039A (en) | 1982-09-09 | 1985-10-01 | Western Geophysical Co. Of America | Methods for seismic exploration |
US4675851A (en) | 1982-09-09 | 1987-06-23 | Western Geophysical Co. | Method for seismic exploration |
US4575830A (en) | 1982-10-15 | 1986-03-11 | Schlumberger Technology Corporation | Indirect shearwave determination |
US4594662A (en) | 1982-11-12 | 1986-06-10 | Schlumberger Technology Corporation | Diffraction tomography systems and methods with fixed detector arrays |
US4562540A (en) | 1982-11-12 | 1985-12-31 | Schlumberger Technology Corporation | Diffraction tomography system and methods |
JPS59189278A (en) | 1983-03-23 | 1984-10-26 | 橋本電機工業株式会社 | Wicket type plate drier |
FR2543306B1 (en) | 1983-03-23 | 1985-07-26 | Elf Aquitaine | METHOD AND DEVICE FOR OPTIMIZING SEISMIC DATA |
JPS606032A (en) | 1983-06-22 | 1985-01-12 | Honda Motor Co Ltd | Control method of operating condition of internal- combustion engine |
US4924390A (en) | 1985-03-04 | 1990-05-08 | Conoco, Inc. | Method for determination of earth stratum elastic parameters using seismic energy |
US4715020A (en) | 1986-10-29 | 1987-12-22 | Western Atlas International, Inc. | Simultaneous performance of multiple seismic vibratory surveys |
FR2589587B1 (en) | 1985-10-30 | 1988-02-05 | Inst Francais Du Petrole | MARINE SEISMIC PROSPECTION METHOD USING A CODE VIBRATORY SIGNAL AND DEVICE FOR IMPLEMENTING SAME |
US4707812A (en) | 1985-12-09 | 1987-11-17 | Atlantic Richfield Company | Method of suppressing vibration seismic signal correlation noise |
US4823326A (en) | 1986-07-21 | 1989-04-18 | The Standard Oil Company | Seismic data acquisition technique having superposed signals |
US4686654A (en) | 1986-07-31 | 1987-08-11 | Western Geophysical Company Of America | Method for generating orthogonal sweep signals |
US4766574A (en) | 1987-03-31 | 1988-08-23 | Amoco Corporation | Method for depth imaging multicomponent seismic data |
US4953657A (en) | 1987-11-30 | 1990-09-04 | Halliburton Geophysical Services, Inc. | Time delay source coding |
US4969129A (en) | 1989-09-20 | 1990-11-06 | Texaco Inc. | Coding seismic sources |
US4982374A (en) | 1989-10-23 | 1991-01-01 | Halliburton Geophysical Services, Inc. | Method of source coding and harmonic cancellation for vibrational geophysical survey sources |
US5012193A (en) * | 1989-11-01 | 1991-04-30 | Schlumberger Technology Corp. | Method and apparatus for filtering data signals produced by exploration of earth formations |
GB9011836D0 (en) | 1990-05-25 | 1990-07-18 | Mason Iain M | Seismic surveying |
US5469062A (en) | 1994-03-11 | 1995-11-21 | Baker Hughes, Inc. | Multiple depths and frequencies for simultaneous inversion of electromagnetic borehole measurements |
GB2322704B (en) | 1994-07-07 | 1998-12-09 | Geco As | Method of Processing seismic data |
US5583825A (en) | 1994-09-02 | 1996-12-10 | Exxon Production Research Company | Method for deriving reservoir lithology and fluid content from pre-stack inversion of seismic data |
US5586082A (en) * | 1995-03-02 | 1996-12-17 | The Trustees Of Columbia University In The City Of New York | Method for identifying subsurface fluid migration and drainage pathways in and among oil and gas reservoirs using 3-D and 4-D seismic imaging |
AU697195B2 (en) | 1995-04-18 | 1998-10-01 | Schlumberger Seismic Holdings Limited | Uniform subsurface coverage at steep dips |
US5924049A (en) | 1995-04-18 | 1999-07-13 | Western Atlas International, Inc. | Methods for acquiring and processing seismic data |
US5719821A (en) | 1995-09-29 | 1998-02-17 | Atlantic Richfield Company | Method and apparatus for source separation of seismic vibratory signals |
US5721710A (en) | 1995-09-29 | 1998-02-24 | Atlantic Richfield Company | High fidelity vibratory source seismic method with source separation |
US5822269A (en) | 1995-11-13 | 1998-10-13 | Mobil Oil Corporation | Method for separation of a plurality of vibratory seismic energy source signals |
US5790473A (en) | 1995-11-13 | 1998-08-04 | Mobil Oil Corporation | High fidelity vibratory source seismic method for use in vertical seismic profile data gathering with a plurality of vibratory seismic energy sources |
US5715213A (en) | 1995-11-13 | 1998-02-03 | Mobil Oil Corporation | High fidelity vibratory source seismic method using a plurality of vibrator sources |
US5838634A (en) | 1996-04-04 | 1998-11-17 | Exxon Production Research Company | Method of generating 3-D geologic models incorporating geologic and geophysical constraints |
US5798982A (en) | 1996-04-29 | 1998-08-25 | The Trustees Of Columbia University In The City Of New York | Method for inverting reflection trace data from 3-D and 4-D seismic surveys and identifying subsurface fluid and pathways in and among hydrocarbon reservoirs based on impedance models |
GB9612471D0 (en) | 1996-06-14 | 1996-08-14 | Geco As | Method and apparatus for multiple seismic vibratory surveys |
US5878372A (en) | 1997-03-04 | 1999-03-02 | Western Atlas International, Inc. | Method for simultaneous inversion processing of well log data using a plurality of earth models |
US5999489A (en) | 1997-03-21 | 1999-12-07 | Tomoseis Inc. | High vertical resolution crosswell seismic imaging |
US6014342A (en) | 1997-03-21 | 2000-01-11 | Tomo Seis, Inc. | Method of evaluating a subsurface region using gather sensitive data discrimination |
US5920828A (en) | 1997-06-02 | 1999-07-06 | Baker Hughes Incorporated | Quality control seismic data processing system |
US5920838A (en) | 1997-06-02 | 1999-07-06 | Carnegie Mellon University | Reading and pronunciation tutor |
FR2765692B1 (en) | 1997-07-04 | 1999-09-10 | Inst Francais Du Petrole | METHOD FOR 3D MODELING THE IMPEDANCE OF A HETEROGENEOUS MEDIUM |
GB2329043B (en) * | 1997-09-05 | 2000-04-26 | Geco As | Method of determining the response caused by model alterations in seismic simulations |
US5999488A (en) | 1998-04-27 | 1999-12-07 | Phillips Petroleum Company | Method and apparatus for migration by finite differences |
US6219621B1 (en) | 1998-06-30 | 2001-04-17 | Exxonmobil Upstream Research Co. | Sparse hyperbolic inversion of seismic data |
US6067340A (en) * | 1998-07-06 | 2000-05-23 | Eppstein; Margaret J. | Three-dimensional stochastic tomography with upscaling |
US6388947B1 (en) | 1998-09-14 | 2002-05-14 | Tomoseis, Inc. | Multi-crosswell profile 3D imaging and method |
FR2784195B1 (en) | 1998-10-01 | 2000-11-17 | Inst Francais Du Petrole | METHOD FOR PERFORMING IN 3D BEFORE SUMMATION, A MIGRATION OF SEISMIC DATA |
US6574564B2 (en) | 1998-10-01 | 2003-06-03 | Institut Francais Du Petrole | 3D prestack seismic data migration method |
US6225803B1 (en) | 1998-10-29 | 2001-05-01 | Baker Hughes Incorporated | NMR log processing using wavelet filter and iterative inversion |
US6021094A (en) | 1998-12-03 | 2000-02-01 | Sandia Corporation | Method of migrating seismic records |
US6754588B2 (en) | 1999-01-29 | 2004-06-22 | Platte River Associates, Inc. | Method of predicting three-dimensional stratigraphy using inverse optimization techniques |
US6246963B1 (en) * | 1999-01-29 | 2001-06-12 | Timothy A. Cross | Method for predicting stratigraphy |
US6058073A (en) | 1999-03-30 | 2000-05-02 | Atlantic Richfield Company | Elastic impedance estimation for inversion of far offset seismic sections |
MXPA01009829A (en) * | 1999-04-02 | 2003-07-21 | Conoco Inc | A method for gravity and magnetic data inversion using vector and tensor data with seismic imaging and geopressure prediction for oil, gas and mineral exploration and production. |
FR2792419B1 (en) | 1999-04-16 | 2001-09-07 | Inst Francais Du Petrole | METHOD FOR OBTAINING AN OPTIMAL MODEL OF A PHYSICAL CHARACTERISTICS IN A HETEROGENEOUS ENVIRONMENT, SUCH AS THE BASEMENT |
GB9927395D0 (en) | 1999-05-19 | 2000-01-19 | Schlumberger Holdings | Improved seismic data acquisition method |
US6327537B1 (en) | 1999-07-19 | 2001-12-04 | Luc T. Ikelle | Multi-shooting approach to seismic modeling and acquisition |
FR2798197B1 (en) | 1999-09-02 | 2001-10-05 | Inst Francais Du Petrole | METHOD FOR FORMING A MODEL OF A GEOLOGICAL FORMATION, CONSTRAINED BY DYNAMIC AND STATIC DATA |
EP1094338B1 (en) | 1999-10-22 | 2006-08-23 | Jason Geosystems B.V. | Method of estimating elastic parameters and rock composition of underground formations using seismic data |
FR2800473B1 (en) | 1999-10-29 | 2001-11-30 | Inst Francais Du Petrole | METHOD FOR 2D OR 3D MODELING A HETEROGENEOUS MEDIUM SUCH AS THE BASEMENT DESCRIBED BY SEVERAL PHYSICAL PARAMETERS |
US6480790B1 (en) | 1999-10-29 | 2002-11-12 | Exxonmobil Upstream Research Company | Process for constructing three-dimensional geologic models having adjustable geologic interfaces |
DE19954866A1 (en) | 1999-11-15 | 2001-05-31 | Infineon Technologies Ag | Process for treating a surface of an SiC semiconductor body produced by epitaxy and Schottky contact produced thereafter |
EP1254383B1 (en) | 2000-01-21 | 2005-08-24 | Schlumberger Holdings Limited | System and method for seismic wavefield separation |
AU774883B2 (en) | 2000-01-21 | 2004-07-08 | Schlumberger Holdings Limited | System and method for estimating seismic material properties |
US6826486B1 (en) | 2000-02-11 | 2004-11-30 | Schlumberger Technology Corporation | Methods and apparatus for predicting pore and fracture pressures of a subsurface formation |
FR2805051B1 (en) | 2000-02-14 | 2002-12-06 | Geophysique Cie Gle | METHOD OF SEISMIC MONITORING OF AN UNDERGROUND AREA BY SIMULTANEOUS USE OF MULTIPLE VIBROISISMIC SOURCES |
GB2359363B (en) | 2000-02-15 | 2002-04-03 | Geco Prakla | Processing simultaneous vibratory seismic data |
GB0003571D0 (en) * | 2000-02-17 | 2000-04-05 | Secr Defence Brit | Signal processing technique |
US6687659B1 (en) * | 2000-03-24 | 2004-02-03 | Conocophillips Company | Method and apparatus for absorbing boundary conditions in numerical finite-difference acoustic applications |
US6317695B1 (en) | 2000-03-30 | 2001-11-13 | Nutec Sciences, Inc. | Seismic data processing method |
CA2426160A1 (en) | 2000-10-17 | 2002-04-25 | David Lee Nyland | Method of using cascaded sweeps for source coding and harmonic cancellation |
WO2002047011A1 (en) | 2000-12-08 | 2002-06-13 | Ortoleva Peter J | Methods for modeling multi-dimensional domains using information theory to resolve gaps in data and in theories |
FR2818753B1 (en) | 2000-12-21 | 2003-03-21 | Inst Francais Du Petrole | METHOD AND DEVICE FOR SEISMIC PROSPECTION BY SIMULTANEOUS EMISSION OF SEISMISK SIGNALS OBTAINED BY CODING A SIGNAL BY RANDOM PSEUDO SEQUENCES |
FR2821677B1 (en) | 2001-03-05 | 2004-04-30 | Geophysique Cie Gle | IMPROVEMENTS TO TOMOGRAPHIC INVERSION PROCESSES OF POINTED EVENTS ON MIGREE SEISMIC DATA |
US6751558B2 (en) | 2001-03-13 | 2004-06-15 | Conoco Inc. | Method and process for prediction of subsurface fluid and rock pressures in the earth |
US6927698B2 (en) | 2001-08-27 | 2005-08-09 | Larry G. Stolarczyk | Shuttle-in receiver for radio-imaging underground geologic structures |
US6545944B2 (en) | 2001-05-30 | 2003-04-08 | Westerngeco L.L.C. | Method for acquiring and processing of data from two or more simultaneously fired sources |
US6882958B2 (en) | 2001-06-28 | 2005-04-19 | National Instruments Corporation | System and method for curve fitting using randomized techniques |
GB2379013B (en) | 2001-08-07 | 2005-04-20 | Abb Offshore Systems Ltd | Microseismic signal processing |
US6593746B2 (en) | 2001-08-27 | 2003-07-15 | Larry G. Stolarczyk | Method and system for radio-imaging underground geologic structures |
US7672824B2 (en) | 2001-12-10 | 2010-03-02 | Westerngeco L.L.C. | Method for shallow water flow detection |
US7069149B2 (en) | 2001-12-14 | 2006-06-27 | Chevron U.S.A. Inc. | Process for interpreting faults from a fault-enhanced 3-dimensional seismic attribute volume |
US7330799B2 (en) | 2001-12-21 | 2008-02-12 | Société de commercialisation des produits de la recherche appliquée-Socpra Sciences et Génie s.e.c. | Method and algorithm for using surface waves |
US6842701B2 (en) | 2002-02-25 | 2005-01-11 | Westerngeco L.L.C. | Method of noise removal for cascaded sweep data |
GB2387226C (en) | 2002-04-06 | 2008-05-12 | Westerngeco Ltd | A method of seismic surveying |
FR2839368B1 (en) | 2002-05-06 | 2004-10-01 | Total Fina Elf S A | METHOD OF DECIMATING SEISMIC TRACES PILOTED BY THE SEISMIC PATH |
WO2004003594A1 (en) * | 2002-06-28 | 2004-01-08 | Gedex Inc. | System and method for surveying underground density distributions |
US6832159B2 (en) | 2002-07-11 | 2004-12-14 | Schlumberger Technology Corporation | Intelligent diagnosis of environmental influence on well logs with model-based inversion |
US6906981B2 (en) | 2002-07-17 | 2005-06-14 | Pgs Americas, Inc. | Method and system for acquiring marine seismic data using multiple seismic sources |
FR2843202B1 (en) | 2002-08-05 | 2004-09-10 | Inst Francais Du Petrole | METHOD FOR FORMING A REPRESENTATIVE MODEL OF THE DISTRIBUTION OF A PHYSICAL QUANTITY IN AN UNDERGROUND AREA, FREE OF THE EFFECT OF CORRECTED NOISES BINDING EXPLORATION DATA |
US6832155B2 (en) | 2002-09-23 | 2004-12-14 | Itt Manufacturing Enterprises, Inc. | Methods and apparatus for determining phase ambiguities in ranging and navigation systems |
AU2003279870A1 (en) | 2002-10-04 | 2004-05-04 | Paradigm Geophysical Corporation | Method and system for limited frequency seismic imaging |
GB2396448B (en) | 2002-12-21 | 2005-03-02 | Schlumberger Holdings | System and method for representing and processing and modeling subterranean surfaces |
US7027927B2 (en) | 2002-12-23 | 2006-04-11 | Schlumberger Technology Corporation | Methods for determining formation and borehole parameters using fresnel volume tomography |
US6735527B1 (en) | 2003-02-26 | 2004-05-11 | Landmark Graphics Corporation | 3-D prestack/poststack multiple prediction |
US6999880B2 (en) | 2003-03-18 | 2006-02-14 | The Regents Of The University Of California | Source-independent full waveform inversion of seismic data |
WO2004095072A2 (en) | 2003-03-27 | 2004-11-04 | Exxonmobil Upstream Research Company | Method to convert seismic traces into petrophysical property logs |
EA007911B1 (en) | 2003-04-01 | 2007-02-27 | Эксонмобил Апстрим Рисерч Компани | Shaped high frequency vibratory source |
US7072767B2 (en) | 2003-04-01 | 2006-07-04 | Conocophillips Company | Simultaneous inversion for source wavelet and AVO parameters from prestack seismic data |
NO322089B1 (en) | 2003-04-09 | 2006-08-14 | Norsar V Daglig Leder | Procedure for simulating local preamp deep-migrated seismic images |
GB2400438B (en) | 2003-04-11 | 2005-06-01 | Westerngeco Ltd | Determination of waveguide parameters |
US6970397B2 (en) | 2003-07-09 | 2005-11-29 | Gas Technology Institute | Determination of fluid properties of earth formations using stochastic inversion |
US6882938B2 (en) | 2003-07-30 | 2005-04-19 | Pgs Americas, Inc. | Method for separating seismic signals from two or more distinct sources |
GB2405473B (en) | 2003-08-23 | 2005-10-05 | Westerngeco Ltd | Multiple attenuation method |
US6901333B2 (en) | 2003-10-27 | 2005-05-31 | Fugro N.V. | Method and device for the generation and application of anisotropic elastic parameters |
US7046581B2 (en) | 2003-12-01 | 2006-05-16 | Shell Oil Company | Well-to-well tomography |
US20050128874A1 (en) | 2003-12-15 | 2005-06-16 | Chevron U.S.A. Inc. | Methods for acquiring and processing seismic data from quasi-simultaneously activated translating energy sources |
US7359283B2 (en) | 2004-03-03 | 2008-04-15 | Pgs Americas, Inc. | System for combining signals of pressure sensors and particle motion sensors in marine seismic streamers |
US7791980B2 (en) | 2004-05-21 | 2010-09-07 | Westerngeco L.L.C. | Interpolation and extrapolation method for seismic recordings |
FR2872584B1 (en) | 2004-06-30 | 2006-08-11 | Inst Francais Du Petrole | METHOD FOR SIMULATING THE SEDIMENT DEPOSITION IN A BASIN RESPECTING THE SEDIMENT SEQUENCE THICKNESS |
EP1617309B1 (en) | 2004-07-15 | 2011-01-12 | Fujitsu Limited | Simulation technique with local grid refinement |
US7646924B2 (en) | 2004-08-09 | 2010-01-12 | David Leigh Donoho | Method and apparatus for compressed sensing |
US7480206B2 (en) | 2004-09-13 | 2009-01-20 | Chevron U.S.A. Inc. | Methods for earth modeling and seismic imaging using interactive and selective updating |
FR2876458B1 (en) | 2004-10-08 | 2007-01-19 | Geophysique Cie Gle | IMPROVEMENT TO SEISMIC TREATMENTS FOR THE SUPPRESSION OF MULTIPLE REFLECTIONS |
GB2422433B (en) | 2004-12-21 | 2008-03-19 | Sondex Wireline Ltd | Method and apparatus for determining the permeability of earth formations |
US7373251B2 (en) | 2004-12-22 | 2008-05-13 | Marathon Oil Company | Method for predicting quantitative values of a rock or fluid property in a reservoir using seismic data |
US7230879B2 (en) | 2005-02-12 | 2007-06-12 | Chevron U.S.A. Inc. | Method and apparatus for true relative amplitude correction of seismic data for normal moveout stretch effects |
US7584056B2 (en) | 2005-02-22 | 2009-09-01 | Paradigm Geophysical Ltd. | Multiple suppression in angle domain time and depth migration |
US7840625B2 (en) | 2005-04-07 | 2010-11-23 | California Institute Of Technology | Methods for performing fast discrete curvelet transforms of data |
US7271747B2 (en) | 2005-05-10 | 2007-09-18 | Rice University | Method and apparatus for distributed compressed sensing |
US7405997B2 (en) | 2005-08-11 | 2008-07-29 | Conocophillips Company | Method of accounting for wavelet stretch in seismic data |
WO2007046711A1 (en) | 2005-10-18 | 2007-04-26 | Sinvent As | Geological response data imaging with stream processors |
FR2895091B1 (en) | 2005-12-21 | 2008-02-22 | Inst Francais Du Petrole | METHOD FOR UPDATING A GEOLOGICAL MODEL WITH SEISMIC DATA |
GB2436626B (en) | 2006-03-28 | 2008-08-06 | Westerngeco Seismic Holdings | Method of evaluating the interaction between a wavefield and a solid body |
US7620534B2 (en) | 2006-04-28 | 2009-11-17 | Saudi Aramco | Sound enabling computerized system for real time reservoir model calibration using field surveillance data |
US20070274155A1 (en) | 2006-05-25 | 2007-11-29 | Ikelle Luc T | Coding and Decoding: Seismic Data Modeling, Acquisition and Processing |
US7725266B2 (en) | 2006-05-31 | 2010-05-25 | Bp Corporation North America Inc. | System and method for 3D frequency domain waveform inversion based on 3D time-domain forward modeling |
BRPI0714028A2 (en) * | 2006-07-07 | 2012-12-18 | Exxonmobil Upstream Res Co | methods for refining a physical property and producing hydrocarbons from an underground region |
US7599798B2 (en) | 2006-09-11 | 2009-10-06 | Westerngeco L.L.C. | Migrating composite seismic response data to produce a representation of a seismic volume |
RU2008151147A (en) | 2006-12-07 | 2010-06-27 | Каусел Оф Сайнтифик Энд Индастриал Рисерч (In) | METHOD FOR CALCULATING AN EXACT PULSE RESPONSE OF A PLANE ACOUSTIC REFLECTOR FOR A POINT ACOUSTIC SOURCE AT ZERO DISPLACEMENT |
WO2008087505A2 (en) | 2007-01-20 | 2008-07-24 | Spectraseis Ag | Time reverse reservoir localization |
EP2128778A4 (en) * | 2007-03-19 | 2011-07-06 | Fujitsu Ltd | Simulation control program, recording medium, simulator and simulation control method |
US8248886B2 (en) | 2007-04-10 | 2012-08-21 | Exxonmobil Upstream Research Company | Separation and noise removal for multiple vibratory source seismic data |
US7640110B2 (en) * | 2007-04-27 | 2009-12-29 | Schlumberger Technology Corporation | Pixel based inversion method for surface electromagnetic measurement |
US20080279434A1 (en) * | 2007-05-11 | 2008-11-13 | William Cassill | Method and system for automated modeling |
US7715986B2 (en) | 2007-05-22 | 2010-05-11 | Chevron U.S.A. Inc. | Method for identifying and removing multiples for imaging with beams |
US7974824B2 (en) * | 2007-06-29 | 2011-07-05 | Westerngeco L. L. C. | Seismic inversion of data containing surface-related multiples |
JP2009063942A (en) | 2007-09-10 | 2009-03-26 | Sumitomo Electric Ind Ltd | Far-infrared camera lens, lens unit, and imaging apparatus |
US20090070042A1 (en) | 2007-09-11 | 2009-03-12 | Richard Birchwood | Joint inversion of borehole acoustic radial profiles for in situ stresses as well as third-order nonlinear dynamic moduli, linear dynamic elastic moduli, and static elastic moduli in an isotropically stressed reference state |
US20090083006A1 (en) * | 2007-09-20 | 2009-03-26 | Randall Mackie | Methods and apparatus for three-dimensional inversion of electromagnetic data |
CA2706297A1 (en) | 2007-11-19 | 2009-05-28 | Steklov Mathematical Institute Ras | Method and system for evaluating the characteristic properties of two contacting media and of the interface between them based on mixed surface waves propagating along the interface |
US7732381B2 (en) | 2007-11-30 | 2010-06-08 | Schlumberger Technology Corporation | Conductive cement formulation and application for use in wells |
US20090164186A1 (en) | 2007-12-20 | 2009-06-25 | Bhp Billiton Innovation Pty Ltd. | Method for determining improved estimates of properties of a model |
CN101910871A (en) | 2008-01-08 | 2010-12-08 | 埃克森美孚上游研究公司 | Spectral shaping inversion and migration of seismic data |
US8577660B2 (en) | 2008-01-23 | 2013-11-05 | Schlumberger Technology Corporation | Three-dimensional mechanical earth modeling |
US8451684B2 (en) | 2008-03-28 | 2013-05-28 | Exxonmobil Upstream Research Company | Surface wave mitigation in spatially inhomogeneous media |
US8275592B2 (en) | 2008-04-07 | 2012-09-25 | Westerngeco L.L.C. | Joint inversion of time domain controlled source electromagnetic (TD-CSEM) data and further data |
US8494777B2 (en) | 2008-04-09 | 2013-07-23 | Schlumberger Technology Corporation | Continuous microseismic mapping for real-time 3D event detection and location |
US8345510B2 (en) | 2008-06-02 | 2013-01-01 | Pgs Geophysical As | Method for aquiring and processing marine seismic data to extract and constructively use the up-going and down-going wave-fields emitted by the source(s) |
US8239181B2 (en) * | 2008-07-23 | 2012-08-07 | Exxonmobil Upstream Research Company | Inversion of CSEM data with measurement system signature suppression |
WO2010019070A1 (en) | 2008-08-14 | 2010-02-18 | Schlumberger Canada Limited | Method and a system for monitoring a logging tool position in a borehole |
US8559270B2 (en) | 2008-08-15 | 2013-10-15 | Bp Corporation North America Inc. | Method for separating independent simultaneous sources |
WO2010019957A1 (en) | 2008-08-15 | 2010-02-18 | Bp Corporation North America Inc. | Method for separating independent simultaneous sources |
US20100054082A1 (en) | 2008-08-29 | 2010-03-04 | Acceleware Corp. | Reverse-time depth migration with reduced memory requirements |
US8296069B2 (en) | 2008-10-06 | 2012-10-23 | Bp Corporation North America Inc. | Pseudo-analytical method for the solution of wave equations |
US7616523B1 (en) | 2008-10-22 | 2009-11-10 | Pgs Geophysical As | Method for combining pressure and motion seismic signals from streamers where sensors are not at a common depth |
US9213119B2 (en) | 2008-10-29 | 2015-12-15 | Conocophillips Company | Marine seismic acquisition |
US20100118651A1 (en) | 2008-11-10 | 2010-05-13 | Chevron U.S.A. Inc. | Method for generation of images related to a subsurface region of interest |
US20100142316A1 (en) | 2008-12-07 | 2010-06-10 | Henk Keers | Using waveform inversion to determine properties of a subsurface medium |
WO2010080366A1 (en) * | 2009-01-09 | 2010-07-15 | Exxonmobil Upstream Research Company | Hydrocarbon detection with passive seismic data |
US8095345B2 (en) | 2009-01-20 | 2012-01-10 | Chevron U.S.A. Inc | Stochastic inversion of geophysical data for estimating earth model parameters |
US8369184B2 (en) | 2009-01-26 | 2013-02-05 | Shotspotter, Inc. | Systems and methods with improved three-dimensional source location processing including constraint of location solutions to a two-dimensional plane |
US9052410B2 (en) | 2009-02-12 | 2015-06-09 | Conocophillips Company | Multiple seismic signal inversion |
WO2010095859A2 (en) | 2009-02-17 | 2010-08-26 | Shin Changsoo | Apparatus and method for imaging subsurface structure |
US8352190B2 (en) | 2009-02-20 | 2013-01-08 | Exxonmobil Upstream Research Company | Method for analyzing multiple geophysical data sets |
US9110191B2 (en) | 2009-03-30 | 2015-08-18 | Westerngeco L.L.C. | Multiple attenuation for ocean-bottom seismic data |
US8547794B2 (en) | 2009-04-16 | 2013-10-01 | Baker Hughes Incorporated | Extending the coverage of VSP/CDP imaging by using first-order downgoing multiples |
US9075163B2 (en) | 2009-04-17 | 2015-07-07 | Westerngeco L.L.C. | Interferometric seismic data processing |
US8176284B2 (en) | 2009-08-11 | 2012-05-08 | Texas Memory Systems, Inc. | FLASH-based memory system with variable length page stripes including data protection information |
US20110044127A1 (en) | 2009-08-19 | 2011-02-24 | Clement Kostov | Removing free-surface effects from seismic data acquired in a towed survey |
US8923093B2 (en) | 2009-08-25 | 2014-12-30 | Westerngeco L.L.C. | Determining the quality of a seismic inversion |
AU2010292176B2 (en) | 2009-09-09 | 2015-03-12 | Conocophillips Company | Dip guided full waveform inversion |
US9360583B2 (en) | 2009-10-01 | 2016-06-07 | Halliburton Energy Services, Inc. | Apparatus and methods of locating downhole anomalies |
US9244181B2 (en) | 2009-10-19 | 2016-01-26 | Westerngeco L.L.C. | Full-waveform inversion in the traveltime domain |
WO2011071812A2 (en) | 2009-12-07 | 2011-06-16 | Geco Technology B.V. | Simultaneous joint inversion of surface wave and refraction data |
FR2955396B1 (en) | 2010-01-15 | 2013-03-01 | Cggveritas Services Sa | DEVICE FOR PROCESSING SEISMIC MARINE DATA |
WO2011091216A2 (en) | 2010-01-22 | 2011-07-28 | Schlumberger Canada Limited | Real-time formation anisotropy and dip evaluation using tri-axial induction measurements |
WO2011091367A1 (en) | 2010-01-25 | 2011-07-28 | CGGVeritas Services (U.S.) Inc. | Methods and systems for estimating stress using seismic data |
US8265875B2 (en) | 2010-01-29 | 2012-09-11 | Westerngeco L.L.C. | Interpolation of periodic data |
AU2010344186B2 (en) | 2010-01-29 | 2016-04-14 | Exxonmobil Upstream Research Company | Temporary field storage of gas to optimize field development |
US8537638B2 (en) | 2010-02-10 | 2013-09-17 | Exxonmobil Upstream Research Company | Methods for subsurface parameter estimation in full wavefield inversion and reverse-time migration |
WO2011109410A2 (en) * | 2010-03-01 | 2011-09-09 | Bp Corporation North America Inc. | System and method for local attribute matching in seismic processing |
US8792303B2 (en) | 2010-03-12 | 2014-07-29 | CGGVeritas Services (U.S.) Inc. | Methods and systems for performing azimuthal simultaneous elastic inversion |
US8680865B2 (en) | 2010-03-19 | 2014-03-25 | Schlumberger Technology Corporation | Single well reservoir imaging apparatus and methods |
US20110235464A1 (en) | 2010-03-24 | 2011-09-29 | John Brittan | Method of imaging the earth's subsurface during marine seismic data acquisition |
US8223587B2 (en) | 2010-03-29 | 2012-07-17 | Exxonmobil Upstream Research Company | Full wavefield inversion using time varying filters |
US9176244B2 (en) | 2010-03-31 | 2015-11-03 | Schlumberger Technology Corporation | Data set inversion using source-receiver compression |
KR101167715B1 (en) | 2010-04-30 | 2012-07-20 | 서울대학교산학협력단 | Apparatus and method for seismic imaging using waveform inversion solved by Conjugate Gradient Least Square Method |
US8576663B2 (en) | 2010-04-30 | 2013-11-05 | Schlumberger Technology Corporation | Multicomponent seismic inversion of VSP data |
US8694299B2 (en) | 2010-05-07 | 2014-04-08 | Exxonmobil Upstream Research Company | Artifact reduction in iterative inversion of geophysical data |
US8756042B2 (en) | 2010-05-19 | 2014-06-17 | Exxonmobile Upstream Research Company | Method and system for checkpointing during simulations |
KR20130100927A (en) | 2010-06-15 | 2013-09-12 | 덴끼 가가꾸 고교 가부시키가이샤 | Method for manufacturing a light-transmitting rigid-substrate laminate |
US20110320180A1 (en) | 2010-06-29 | 2011-12-29 | Al-Saleh Saleh M | Migration Velocity Analysis of Seismic Data Using Common Image Cube and Green's Functions |
US8612188B2 (en) | 2010-07-12 | 2013-12-17 | The University Of Manchester | Wave modelling |
WO2012024025A1 (en) | 2010-08-16 | 2012-02-23 | Exxonmobil Upstream Research Company | Reducing the dimensionality of the joint inversion problem |
US20120051176A1 (en) | 2010-08-31 | 2012-03-01 | Chevron U.S.A. Inc. | Reverse time migration back-scattering noise removal using decomposed wavefield directivity |
AU2011305861B2 (en) | 2010-09-20 | 2013-09-12 | Chevron U.S.A. Inc. | System and method for generating images of subsurface structures |
US8437998B2 (en) | 2010-09-27 | 2013-05-07 | Exxonmobil Upstream Research Company | Hybrid method for full waveform inversion using simultaneous and sequential source method |
EP2622457A4 (en) | 2010-09-27 | 2018-02-21 | Exxonmobil Upstream Research Company | Simultaneous source encoding and source separation as a practical solution for full wavefield inversion |
GB2497055A (en) | 2010-09-28 | 2013-05-29 | Shell Int Research | Earth model estimation through an acoustic full waveform inversion of seismic data |
CN103238158B (en) | 2010-12-01 | 2016-08-17 | 埃克森美孚上游研究公司 | Utilize the marine streamer data source inverting simultaneously that mutually related objects function is carried out |
US9134442B2 (en) | 2010-12-16 | 2015-09-15 | Bp Corporation North America Inc. | Seismic acquisition using narrowband seismic sources |
US9702994B2 (en) | 2011-02-18 | 2017-07-11 | Westerngeco L.L.C. | Waveform inversion by multiple shot-encoding for non-fixed spread geometries |
RU2577387C2 (en) | 2011-03-30 | 2016-03-20 | Эксонмобил Апстрим Рисерч Компани | Convergence rate of full wavefield inversion using spectral shaping |
US20120275267A1 (en) | 2011-04-26 | 2012-11-01 | Ramesh Neelamani | Seismic Data Processing |
CA2833968C (en) | 2011-05-13 | 2017-12-12 | Saudi Arabian Oil Company | Coupled time-distance dependent swept frequency source acquisition design and data de-noising |
US20120316790A1 (en) | 2011-06-08 | 2012-12-13 | Chevron U.S.A. Inc. | System and method for data inversion with phase extrapolation |
US9075159B2 (en) | 2011-06-08 | 2015-07-07 | Chevron U.S.A., Inc. | System and method for seismic data inversion |
US20120316844A1 (en) | 2011-06-08 | 2012-12-13 | Chevron U.S.A. Inc. | System and method for data inversion with phase unwrapping |
US20120316791A1 (en) | 2011-06-08 | 2012-12-13 | Chevron U.S.A. Inc. | System and method for seismic data inversion by non-linear model update |
US9176930B2 (en) | 2011-11-29 | 2015-11-03 | Exxonmobil Upstream Research Company | Methods for approximating hessian times vector operation in full wavefield inversion |
MY170622A (en) | 2012-03-08 | 2019-08-21 | Exxonmobil Upstream Res Co | Orthogonal source and receiver encoding |
US9435905B2 (en) | 2012-04-19 | 2016-09-06 | Cgg Services Sa | Premigration deghosting of seismic data with a bootstrap technique |
US9541661B2 (en) | 2012-04-19 | 2017-01-10 | Cgg Services Sa | Device and method for deghosting variable depth streamer data |
-
2011
- 2011-03-10 US US13/045,215 patent/US8694299B2/en active Active
- 2011-03-14 BR BR112012025185A patent/BR112012025185A2/en not_active Application Discontinuation
- 2011-03-14 CA CA2795340A patent/CA2795340C/en not_active Expired - Fee Related
- 2011-03-14 SG SG2012073284A patent/SG184803A1/en unknown
- 2011-03-14 RU RU2012152638/28A patent/RU2573174C2/en not_active IP Right Cessation
- 2011-03-14 CN CN201180022962.1A patent/CN102892972B/en not_active Expired - Fee Related
- 2011-03-14 AU AU2011248989A patent/AU2011248989B2/en not_active Ceased
- 2011-03-14 WO PCT/US2011/028345 patent/WO2011139413A1/en active Application Filing
- 2011-03-14 KR KR1020127031840A patent/KR101948509B1/en active IP Right Grant
- 2011-03-14 MY MYPI2012004520A patent/MY162803A/en unknown
- 2011-03-14 EP EP11777738.3A patent/EP2567063B1/en active Active
-
2014
- 2014-02-27 US US14/192,497 patent/US8880384B2/en active Active
- 2014-09-12 US US14/484,603 patent/US10002211B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6549854B1 (en) * | 1999-02-12 | 2003-04-15 | Schlumberger Technology Corporation | Uncertainty constrained subsurface modeling |
US6944546B2 (en) * | 2003-10-01 | 2005-09-13 | Halliburton Energy Services, Inc. | Method and apparatus for inversion processing of well logging data in a selected pattern space |
US20070203673A1 (en) * | 2005-11-04 | 2007-08-30 | Sherrill Francis G | 3d pre-stack full waveform inversion |
US20100018718A1 (en) * | 2006-09-28 | 2010-01-28 | Krebs Jerome R | Iterative inversion of data from simultaneous geophysical sources |
WO2009117174A1 (en) * | 2008-03-21 | 2009-09-24 | Exxonmobil Upstream Research Company | An efficient method for inversion of geophysical data |
US20090248308A1 (en) * | 2008-03-28 | 2009-10-01 | Martin Luling | Simultaneous inversion of induction data for dielectric permittivity and electric conductivity |
Also Published As
Publication number | Publication date |
---|---|
EP2567063A4 (en) | 2017-05-03 |
CA2795340A1 (en) | 2011-11-10 |
US20110276320A1 (en) | 2011-11-10 |
CA2795340C (en) | 2016-04-19 |
BR112012025185A2 (en) | 2016-06-21 |
RU2573174C2 (en) | 2016-01-20 |
EP2567063B1 (en) | 2020-07-08 |
US20140379315A1 (en) | 2014-12-25 |
SG184803A1 (en) | 2012-11-29 |
US10002211B2 (en) | 2018-06-19 |
KR101948509B1 (en) | 2019-02-18 |
US8694299B2 (en) | 2014-04-08 |
US8880384B2 (en) | 2014-11-04 |
AU2011248989B2 (en) | 2016-04-21 |
EP2567063A1 (en) | 2013-03-13 |
AU2011248989A1 (en) | 2012-11-22 |
CN102892972A (en) | 2013-01-23 |
KR20130060231A (en) | 2013-06-07 |
CN102892972B (en) | 2017-06-09 |
MY162803A (en) | 2017-07-14 |
RU2012152638A (en) | 2014-06-20 |
US20140180656A1 (en) | 2014-06-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2795340C (en) | Artifact reduction in iterative inversion of geophysical data | |
Chen et al. | Elastic least-squares reverse time migration via linearized elastic full-waveform inversion with pseudo-Hessian preconditioning | |
CA2664352C (en) | Iterative inversion of data from simultaneous geophysical sources | |
RU2613216C2 (en) | Hessian multiplication on vector approximation methods in wave field full inversion | |
CA2711126C (en) | An efficient method for inversion of geophysical data | |
Hu et al. | Simultaneous multifrequency inversion of full-waveform seismic data | |
US20130258810A1 (en) | Method and System for Tomographic Inversion | |
Huang et al. | Bayesian full-waveform inversion in anisotropic elastic media using the iterated extended Kalman filter | |
Tavakoli F et al. | An iterative factored eikonal solver for TTI media | |
Baker et al. | A full waveform tomography algorithm for teleseismic body and surface waves in 2.5 dimensions | |
Huang et al. | Data-assimilated time-lapse visco-acoustic full-waveform inversion: Theory and application for injected CO2 plume monitoring | |
Class et al. | Patent application title: Full Waveform Inversion Using Perfectly Reflectionless Subgridding Inventors: Wenyi Hu (Katy, TX, US) Anatoly Baumstein (Houston, TX, US) Anatoly Baumstein (Houston, TX, US) John E. Anderson (Houston, TX, US) John E. Anderson (Houston, TX, US) Carey M. Marcinkovich (The Woodlands, TX, US) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180022962.1 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11777738 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2795340 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2011248989 Country of ref document: AU Date of ref document: 20110314 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011777738 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20127031840 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2012152638 Country of ref document: RU Kind code of ref document: A |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112012025185 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112012025185 Country of ref document: BR Kind code of ref document: A2 Effective date: 20121002 |