WO2011136054A1 - Position detection device - Google Patents

Position detection device Download PDF

Info

Publication number
WO2011136054A1
WO2011136054A1 PCT/JP2011/059422 JP2011059422W WO2011136054A1 WO 2011136054 A1 WO2011136054 A1 WO 2011136054A1 JP 2011059422 W JP2011059422 W JP 2011059422W WO 2011136054 A1 WO2011136054 A1 WO 2011136054A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection elements
power supply
output terminal
moving direction
detection
Prior art date
Application number
PCT/JP2011/059422
Other languages
French (fr)
Japanese (ja)
Inventor
竜麿 堀
裕宜 横山
浩也 北川
Original Assignee
Tdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk株式会社 filed Critical Tdk株式会社
Priority to JP2012512773A priority Critical patent/JP5761181B2/en
Publication of WO2011136054A1 publication Critical patent/WO2011136054A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/245Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train
    • G01D5/2451Incremental encoders

Definitions

  • the present invention relates to a position detection device, and more particularly, to a detection element configured to generate a predetermined readout signal corresponding to a scale facing position when moving along a scale and a scale surface such as a magnetic scale or an optical scale.
  • the present invention relates to a position detection device to be used.
  • Some industrial equipment such as mounters include a position detection device that detects the position of an object using magnetism or a light beam in order to detect the position of the moving object.
  • FIG. 23A is a diagram showing a configuration of a position detection apparatus 10 of a type (magnetic type) that uses magnetism.
  • the position detection device 10 has a magnetic sensor 20 attached to a position detection target object (not shown) and a surface 30a extending in the moving direction of the object (hereinafter referred to as the x direction).
  • the surface 30a is provided with a magnetic scale 30 magnetized so that N poles and S poles appear alternately at equal intervals.
  • FIG. 23A also shows the strength of the magnetic field formed by the magnetic scale 30.
  • the strength of the magnetic field formed by the magnetic scale 30 is expressed as a sine wave having a wavelength of 2 ⁇ , where ⁇ is the width (length in the x direction) of each magnetic pole appearing on the surface 30a of the magnetic scale 30. Approximated.
  • the magnetic sensor 20 has four AMR (Anisotropic magnetoresistive) elements MRA to MRD, which are arranged at an interval of ⁇ / 4 along the x direction.
  • AMR Anaisotropic magnetoresistive
  • FIG. 23B is a diagram showing an electrical connection form of the AMR elements MRA to MRD.
  • the AMR element MRA and the AMR element MRC are half-bridge connected, and the AMR element MRB and the AMR element MRD are half-bridge connected.
  • There are two output signals from the magnetic sensor 20 one output signal Vsin is taken out from the connection point between the AMR element MRA and the AMR element MRC, and the other output signal Vcos is taken out from the connection point between the AMR element MRB and the AMR element MRD. .
  • An AMR element is an element whose resistance value changes depending on the strength of an applied magnetic field.
  • FIG. 23A also shows a change in the resistance value (read signal) of the AMR element when the AMR element moves in the x direction. As shown in the figure, the resistance value of the AMR element changes at a wavelength ⁇ that is half of the magnetic field formed by the magnetic scale 30.
  • FIG. 24 is a diagram showing changes in the resistance values R MRA to R MRD and the output signals Vsin and Vcos of the AMR elements MRA to MRD when the position detection target object moves in the x direction.
  • the resistance values R MRA to R MRD are shifted in phase by ⁇ / 4. This corresponds to the fact that the AMR elements MRA to MRD are arranged at intervals of ⁇ / 4 along the x direction.
  • the output signals Vsin and Vcos also change with the wavelength ⁇ , and their phases differ from each other by ⁇ / 4.
  • the output signals Vsin and Vcos are expressed by the following expressions (5) and (6), respectively.
  • the 0th-order term component of ⁇ is removed. Since the zero-order term component is known, it can be removed by subtraction processing. Note that it is not appropriate to use a filter to remove the 0th-order term component. This is because the position detection device needs to detect the position of a stationary object.
  • the position x of the object is obtained by the following equation (7) using the output signals Vsin and Vcos obtained as described above.
  • the read signal of the AMR element is a perfect sine wave, but it is not actually a perfect sine wave.
  • the read signals of the resistance values R MRA to R MRD are expressed by the following equations (8) to (11), respectively.
  • a 2, A 3, ⁇ is a constant.
  • the read signals of the resistance values R MRA to R MRD include harmonic components.
  • Patent Document 1 discloses a technique for removing odd-order harmonics.
  • the 0th-order component (DC component) of ⁇ remains in the output signals Vsin and Vcos.
  • the DC component can be removed by subtraction processing as described above, but can also be removed by using a full bridge connection. Therefore, the full bridge connection will be described below.
  • FIG. 25 is a diagram showing a specific connection form of the AMR elements MRA to MRD when a full bridge connection is applied to the magnetic sensor 20. As shown in the figure, when full bridge connection is performed, two sets of half bridges shown in FIG. 23B are prepared. The output from each set is input to the inverting input terminal and the non-inverting input terminal of the operational amplifier, respectively, and the output of the operational amplifier becomes the output signals Vsin and Vcos.
  • Vcc / 2 is removed from the output signals Vsin and Vcos. This indicates that the DC component is removed from the output signals Vsin and Vcos by performing the full bridge connection.
  • a detection element various elements other than the above-described AMR element are known.
  • a GMR (giant magnetomagnetoresistive) element can obtain a larger output than other detection elements. If a position detection device is configured using a GMR element, it is possible to obtain a larger output than when an AMR element is used.
  • the GMR element has a problem that its resistance value changes with the wavelength of the magnetic field formed by the magnetic scale 30 (twice that of the AMR element) at least as long as it is used in a normal manner. This means that a position detection apparatus using a GMR element can only obtain a resolution of 1/2 that of an apparatus using an AMR element. Thus, it is difficult to configure a position detection device using a GMR element, no matter how high the output is. Therefore, there is a need for a position detection device with higher resolution so that a GMR element can be used as the detection element.
  • a position detection device having higher resolution is required, the situation is the same in the type (optical type) position detection device using a light beam. That is, in the optical position detection device, a reflecting plate (optical scale) having a diffraction pattern formed on the surface is used instead of the magnetic scale, and the optical scale is irradiated with a light beam. An optical sensor is used instead of the magnetic sensor, and the optical sensor receives the light beam reflected by the optical scale. The amount of light received at this time is the same as the readout signal shown in equations (8) to (11), and the resolution decreases as the wavelength increases. Therefore, as for the optical position detection device, a position detection device having higher resolution is required as in the case of the position detection device using magnetism.
  • one of the objects of the present invention is to provide a position detection device having higher resolution.
  • a position detection device configured to have a scale having a first surface extending along a moving direction of an object to be position-detected, to be movable together with the object, and to the first.
  • a position acquisition means for acquiring the position of the position detection target object based on an output signal of the sensor, and the sensor is supplied with a first power supply potential.
  • a first power supply terminal, a second power supply terminal supplied with a second power supply potential different from the first power supply potential, first and second output terminals, and the first output terminal A first element connected between the first power supply terminal; a second element connected between the second power supply terminal and the first output terminal; and the second output.
  • a third terminal connected between the terminal and the first power supply terminal And a fourth element connected between the second power supply terminal and the second output terminal, wherein the first element includes the first output terminal and the first output terminal.
  • the third element includes a plurality of first detection elements connected in series between the power supply terminals and juxtaposed along the moving direction, and the third element includes the second output terminal and the first power supply.
  • a plurality of third detection elements connected in series with each other along the moving direction, and each of the first detection elements and each of the third detection elements is respectively When moving along the surface of 1 in the moving direction, it is configured to generate a predetermined readout signal corresponding to the position facing the scale, and the arrangement of the plurality of first detection elements in the moving direction is: At least the first-order component of the phase is removed from the voltage signal appearing at the first output terminal.
  • the arrangement of the plurality of third detection elements in the moving direction is determined so that at least a first-order component of a phase is removed from a voltage signal appearing at the second output terminal, and the position
  • the acquisition means calculates the position of the position detection target object based on a voltage signal appearing at the first output terminal and a voltage signal appearing at the second output terminal.
  • the second and higher harmonics become the fundamental wave. Therefore, it is possible to obtain a resolution that is at least twice that of the conventional position detection device.
  • “movement” means relative movement of the position detection target object and the scale. That is, for example, considering the ground surface as a reference, the scale may be fixed with respect to the ground surface, and the object may move with respect to the ground surface, or the object may be fixed with respect to the ground surface, and the scale may be It is also possible that both the object and the scale move in different directions with respect to the ground surface.
  • the power supply potential may be a constant voltage source potential or a constant current source potential.
  • the second element is connected in series between the second power supply terminal and the first output terminal, and a plurality of second elements arranged in parallel along the moving direction.
  • the fourth element includes a plurality of fourth detection elements connected in series between the second power supply terminal and the second output terminal and juxtaposed along the moving direction.
  • An arrangement of the plurality of second detection elements in the moving direction is determined such that at least a first-order component of a phase is removed from a voltage signal appearing at the first output terminal;
  • the arrangement of the fourth detection elements in the moving direction may be determined so that at least a first-order component of the phase is removed from the voltage signal appearing at the second output terminal. According to this, the temperature characteristics of the first to fourth elements can be made uniform.
  • the first element includes 2 n (n is a number selected from an arbitrary natural number) first detection elements, and the third element is 2
  • n 1
  • the 2 n first detection elements are each separated by ⁇ ⁇ / 2 from the first reference position in the movement direction.
  • n ⁇ 2 are arranged one by one at the first and second positions, respectively, 2 n separated from the first position by ⁇ ⁇ / 8... ⁇ ⁇ / 2 n + 1 in the moving direction.
  • -1 each at 1 position and 1 at 2 n-1 positions away from the second position by ⁇ ⁇ / 8 ... ⁇ ⁇ / 2 n + 1 in the moving direction, respectively.
  • a first predetermined distance Shifts each said 2 n pieces of the first detecting element in the direction of movement It may be placed in position. According to this, the second harmonic becomes the fundamental wave. Therefore, it is possible to obtain twice the resolution as compared with the conventional position detecting device.
  • the second element includes 2 n second detection elements
  • the fourth element includes 2 n fourth detection elements
  • n ⁇ 2 the reference positions are further separated from each other by ⁇ ⁇ / 2 in the moving direction, and when n ⁇ 2, respectively, ⁇ ⁇ / 8 in the moving direction from the third position.
  • the 2 n fourth detection elements are the 2 n second detection elements. Each may be arranged at a position shifted by a second predetermined distance in the moving direction. According to this, the temperature characteristics of the first to fourth elements can be made uniform.
  • the first element includes 2 n (n is a number selected from an arbitrary natural number) first detection elements, and the third element is 2 It is composed of n third detection elements, and the arrangement of the 2 n first detection elements in the moving direction is other than a 2 k order component (k is a number selected from an arbitrary natural number) It is determined that n components selected from power-of-two components of 2 and 2 k P-order components (P is a prime number of 3 or more) are removed, and the 2 n third detection elements are The 2 n first detection elements may be arranged at positions shifted by a first predetermined distance in the moving direction. According to this, higher harmonics than the fundamental wave can be appropriately removed.
  • the second element includes 2 n second detection elements
  • the fourth element includes 2 n fourth detection elements
  • the 2 The n second detection elements are arranged at positions where the 2 n first detection elements are shifted by a third predetermined distance in the movement direction
  • the 2 n fourth detection elements are:
  • Each of the 2 n second detection elements may be arranged at a position shifted by a second predetermined distance in the movement direction. According to this, the temperature characteristics of the first to fourth elements can be made uniform.
  • the second position is further separated from the first reference position by ⁇ / 2 in the moving direction, one at each of the fifth and sixth positions that are further separated by ⁇ ⁇ / 4 in the moving direction from the first position.
  • One in each of the seventh and eighth positions further away from the position in the moving direction by ⁇ ⁇ / 4, respectively, and when n ⁇ 3, the fifth position in the moving direction, respectively.
  • the second element includes 2 n second detection elements
  • the fourth element includes 2 n fourth detection elements
  • l is a number selected from an arbitrary odd number
  • One from each of the second reference position and each of the ninth and tenth positions further ⁇ ⁇ / 4 in the movement direction from the third position further + ⁇ / 2 in the movement direction from the reference position.
  • n ⁇ 3 one is arranged at each of the eleventh and twelfth positions separated by ⁇ ⁇ / 4 in the moving direction from the fourth position separated by ⁇ / 2 in the moving direction, respectively.
  • the scale is a magnetic scale magnetized so that N poles and S poles alternately appear along the moving direction on the first surface, and the detection element is magnetic. It may be a resistance element. According to this, in the position detection device using magnetism, it becomes possible to obtain a resolution more than twice that of the conventional one. Therefore, even if a GMR element that can obtain only half the resolution of the AMR element is used, a resolution equivalent to or higher than that of the conventional one can be obtained, so that the GMR element can be used as the detection element.
  • the scale is a magnetic scale magnetized so that N poles and S poles alternately appear along the moving direction on the first surface, and the detection element is magnetic.
  • Each of the second and fourth elements may be a resistance element configured so as not to be affected by a magnetic field formed by the magnetic scale.
  • the magnetoresistive element may be any one of a GMR element, an AMR element, and a TMR element.
  • the scale may be an optical scale having a diffraction pattern formed on the first surface, and the detection element may be a light detection element. According to this, in the optical position detection device, it becomes possible to obtain a resolution that is at least twice that of the conventional one.
  • each of the second and fourth elements may be a constant current source.
  • the first power supply potential may be a ground potential.
  • a position detection apparatus configured to be movable with a scale having a first surface extending along a moving direction of an object to be detected, and the first object.
  • a position acquisition means for acquiring the position of the position detection target object based on an output signal of the sensor, and the sensor is supplied with a first power supply potential.
  • a first power supply terminal, a second power supply terminal supplied with a second power supply potential different from the first power supply potential, first and second output terminals, and the first output terminal A first element connected between the first power supply terminal; a second element connected between the second power supply terminal and the first output terminal; and the second output.
  • a third element connected between the terminal and the first power supply terminal; A fourth element connected between the second power supply terminal and the second output terminal, wherein the first element includes the first output terminal, the first power supply terminal, And a plurality of first detection elements juxtaposed along the moving direction, and the third element includes a connection between the second output terminal and the first power supply terminal.
  • Each of the first detection elements and the third detection elements is connected to the first surface of the first surface.
  • a predetermined readout signal is generated according to the opposing position of the scale, and the arrangement of the plurality of first detection elements in the moving direction is the first 2 k order term component of at least phase of the voltage signal appearing at the output terminal and the 2 k + k + 1 ⁇ N order term component (the number k is chosen among any natural number, N are positive integers) rest, the first 2 from the voltage signal at least a phase appearing at the output terminal of the m-order term component and 2 m +2
  • An m + 1 ⁇ Nth order component (m is a positive integer smaller than k) is determined to be removed, and the arrangement of the plurality of third detection elements in the moving direction is a voltage signal appearing at the second output terminal.
  • the position acquisition means calculates the position of the object to be detected based on the voltage signal appearing at the first output terminal and the voltage signal appearing at the second output terminal. Characteristic To. According to this, the 2 k order harmonic becomes the fundamental wave. Therefore, it is possible to obtain a resolution of 2 k times as compared with the conventional position detecting device.
  • the arrangement of the plurality of first detection elements in the moving direction also removes the 2 k +2 k + 1 ⁇ Nth order component of the phase from the voltage signal appearing at the first output terminal.
  • the arrangement of the plurality of third detection elements in the moving direction is determined so that the 2 k +2 k + 1 ⁇ Nth-order component of the phase is also removed from the voltage signal appearing at the second output terminal. It is good as well. According to this, higher harmonics than the fundamental wave can be appropriately removed.
  • a position detection apparatus configured to have a scale having a first surface extending along a movement direction of an object to be position-detected, movable with the object, and the first And a position acquisition means for acquiring a position of the position detection target object based on an output signal of the sensor, and the sensor is supplied with a first power supply potential.
  • a first power supply terminal, a second power supply terminal to which a second power supply potential different from the first power supply potential is supplied, first to fourth output terminals, and the first output terminal And a first element connected between the first power supply terminal, a second element connected between the second power supply terminal and the first output terminal, and the second power supply terminal.
  • a first subtracting circuit that outputs a voltage signal obtained by subtracting a voltage signal appearing at, and a voltage signal obtained by subtracting the voltage signal appearing at the fourth output terminal from the voltage signal appearing at the second output terminal.
  • a second subtracting circuit for outputting wherein the first element includes the first output terminal and the first power supply terminal.
  • a plurality of first detection elements connected in series between each other and arranged in the movement direction, wherein the third element is between the second output terminal and the first power supply terminal. And a plurality of third detection elements juxtaposed along the moving direction, and the fifth element is interposed between the third output terminal and the first power supply terminal.
  • a plurality of fifth detection elements connected in series and juxtaposed along the moving direction, and the seventh element is connected in series between the fourth output terminal and the first power supply terminal.
  • a plurality of seventh detection elements connected and juxtaposed along the moving direction, each of the first detection elements, each of the third detection elements, each of the fifth detection elements, and Each seventh detection element moves in the moving direction along the first surface
  • An arrangement for generating a predetermined readout signal in accordance with the opposing position of the scale, the arrangement of the plurality of first detection elements in the movement direction and the arrangement of the plurality of fifth detection elements in the movement direction Is determined so that at least the first-order component of the phase is removed from the output signal of the first subtracting circuit, and the arrangement of the plurality of third detection elements in the moving direction and the plurality of seventh detection elements are determined.
  • the arrangement of the elements in the moving direction is determined so that at least the first-order component of the phase is removed from the output signal of the second subtraction circuit, and the position acquisition means includes the output signal of the first subtraction circuit, The position of the position detection object is calculated based on the output signal of the second subtracting circuit. According to this, in the case of performing a full bridge connection, it becomes possible to obtain a resolution that is at least twice that of a conventional position detection device.
  • the second element is connected in series between the second power supply terminal and the first output terminal, and a plurality of second elements arranged in parallel along the moving direction.
  • the fourth element includes a plurality of fourth detection elements connected in series between the second power supply terminal and the second output terminal and juxtaposed along the moving direction.
  • the sixth element comprises a plurality of sixth detection elements connected in series between the second power supply terminal and the third output terminal and juxtaposed along the moving direction.
  • the eighth element includes a plurality of eighth detection elements connected in series between the second power supply terminal and the fourth output terminal and juxtaposed along the moving direction.
  • the plurality of second detection elements in the moving direction and the plurality of second detection elements 6 is arranged so that at least a first-order component of the phase is removed from the output signal of the first subtraction circuit, and the plurality of fourth detection elements are arranged in the movement direction.
  • the arrangement and the arrangement of the plurality of eighth detection elements in the moving direction may be determined so that at least a first-order component of the phase is removed from the output signal of the second subtracting circuit. According to this, the temperature characteristics of the first to eighth elements can be made uniform.
  • the first element includes 2 n (n is a number selected from an arbitrary natural number) first detection elements
  • the third element is 2 n third detection elements
  • the fifth element includes 2 n fifth detection elements
  • the seventh element includes 2 n seventh detection elements.
  • the 2 n first detection elements are 1 at 2 n positions separated from each other by ⁇ ⁇ / 2 ⁇ ⁇ / 8... ⁇ ⁇ / 2 n + 1 in the movement direction from the first reference position.
  • the 2 n third detection elements are arranged in a moving direction from the first reference position in the moving direction (2i 2 ⁇ 1) ⁇ / 4 (i 2 is selected from an arbitrary integer) number) not a one to distant third respectively ⁇ ⁇ / 2 ⁇ ⁇ / 8 ⁇ ⁇ ⁇ / 2 n + 1 apart the 2 n position in the moving direction from a reference position
  • the 2 n pieces of the fifth detector element (number i 4 is selected from among any integer) the first from the reference position in the moving direction (2i 4 -1) ⁇ / 2 disposed from the fifth reference position apart one on each ⁇ ⁇ / 2 ⁇ ⁇ / 8 ⁇ ⁇ ⁇ / 2 n + 1 apart the 2 n position in the moving direction, wherein the 2 n 7
  • the detection element of (2i 6 ⁇ 1) ⁇ / 2 + (2i 2 ⁇ 1) ⁇ / 4 (where i 6 is a number selected from an arbitrary integer) is away from the first reference position in the
  • one may be arranged at 2 n positions that are separated from each other by ⁇ ⁇ / 2 ⁇ ⁇ / 8... ⁇ ⁇ / 2 n + 1 in the moving direction from the seventh reference position. According to this, in the case of performing a full bridge connection, it becomes possible to obtain twice the resolution as compared with the conventional position detection device.
  • the second element includes 2 n second detection elements
  • the fourth element includes 2 n fourth detection elements
  • 6 elements are composed of 2 n sixth detection elements
  • the eighth element is composed of 2 n eighth detection elements
  • the 2 n second detection elements are: ⁇ ⁇ from the first reference position in the moving direction from the second reference position that is (2i 1 ⁇ 1) ⁇ / 2 (i 1 is a number selected from any integer) in the moving direction from the first reference position.
  • ⁇ ⁇ / 2 n + 1 are arranged one by one at 2 n positions, and the 2 n eighth detection elements are moved from the first reference position to the moving direction by 2i 7 ⁇ / ⁇ ⁇ / 2 ⁇ ⁇ / 8... ⁇ in the moving direction from an eighth reference position separated by 2+ (2i 2 ⁇ 1) ⁇ / 4 (i 7 is a number selected from an arbitrary integer)
  • One piece may be arranged at 2 n positions that are separated by ⁇ / 2 n + 1 . According to this, the temperature characteristics of the first to eighth elements can be made uniform.
  • the first element includes 2 n (n is a number selected from an arbitrary natural number), and the third element is 2 n third detection elements, the fifth element includes 2 n fifth detection elements, and the seventh element includes 2 n seventh detection elements.
  • each element in the moving direction shift (number i 2 is to be selected from any integer) (2i 2 -1) ⁇ / 2 k + 1 Is disposed at a position, the 2 n pieces of the fifth detection element, wherein the 2 each n-number of the first detection element in the moving direction (2i 4 -1) ⁇ / 2 k (i 4 is an arbitrary integer arranged several) shifted by a position selected from among the detection elements of the 2 n pieces of seventh, respectively the 2 n pieces of the first detecting element in the moving direction (2i 6 -1) ⁇ / 2 k + (2i 2 ⁇ 1) ⁇ / 2 k + 1 (where i 6 is a number selected from an arbitrary integer) may be arranged at a shifted position. According to this, when full-bridge connection is performed, higher-order harmonics than the fundamental wave can be appropriately removed.
  • the second element includes 2 n second detection elements
  • the fourth element includes 2 n fourth detection elements
  • 6 elements are composed of 2 n sixth detection elements
  • the eighth element is composed of 2 n eighth detection elements
  • the 2 n second detection elements are:
  • Each of the 2 n first detection elements is arranged at a position shifted by (2i 1 ⁇ 1) ⁇ / 2 k (i 1 is a number selected from an arbitrary integer) in the movement direction
  • the n fourth detection elements are (2i 3 ⁇ 1) ⁇ / 2 k + (2i 2 ⁇ 1) ⁇ / 2 k + 1 (i 3 ) in the moving direction, respectively, with respect to the 2 n first detection elements.
  • the detection element of the 2 n pieces of the sixth, the 2 n pieces of 2i each first detection element in the movement direction 5 ⁇ / 2 k (i 5 is a number selected from among an arbitrary integer) are arranged in a position shifted, the detecting element of the 2 n pieces of eighth,
  • Each of the 2 n first detection elements is shifted by 2i 7 ⁇ / 2 k + (2i 2 ⁇ 1) ⁇ / 2 k + 1 (i 7 is a number selected from an arbitrary integer) in the moving direction. It is good also as arrange
  • the first element includes 2 n (n is a number selected from any two or more natural numbers) first detection elements
  • the third element Comprises 2 n third sensing elements
  • the fifth element comprises 2 n fifth sensing elements
  • the seventh element comprises 2 n seventh sensing elements.
  • the n third detection elements are (2i 2 ⁇ 1) ⁇ / 8 (where i 2 is a number selected from an arbitrary integer) in the moving direction with respect to each of the 2 n first detection elements.
  • the 2 n pieces of the fifth detection element respectively the 2 n pieces of the first detecting element in the direction of movement 2i 4 -1) ⁇ / 4 ( i 4 is disposed at a position shifted by several) chosen from any integer
  • the detection element of the 2 n pieces of seventh said the 2 n first
  • Each detection element is arranged at a position shifted in the moving direction by (2i 6 ⁇ 1) ⁇ / 4 + (2i 2 ⁇ 1) ⁇ / 8 (i 6 is a number selected from an arbitrary integer). Also good. According to this, when full-bridge connection is performed, it becomes possible to obtain a resolution four times that of a conventional position detection device.
  • the second element includes 2 n second detection elements
  • the fourth element includes 2 n fourth detection elements
  • 6 elements are composed of 2 n sixth detection elements
  • the eighth element is composed of 2 n eighth detection elements
  • the 2 n second detection elements are:
  • Each of the 2 n first detection elements is arranged at a position shifted by (2i 1 ⁇ 1) ⁇ / 4 (i 1 is a number selected from an arbitrary integer) in the movement direction, and the 2 n fourth detection element pieces, the two respective n first detector element in the moving direction (2i 3 -1) ⁇ / 4 + (2i 2 -1) ⁇ / 8 (i 3 is an arbitrary integer arranged several) shifted by a position selected from among the detection elements of the 2 n pieces of the sixth, the 2 n pieces of the first detection element 2i 5 ⁇ / 4 to respectively to the moving direction (i 5 is a number selected from among an arbitrary integer) are arranged in a position shifted, the detecting element of the 2 n pieces of the eighth
  • a position detection apparatus configured to have a scale having a first surface extending along a movement direction of an object to be position-detected, movable with the object, and the first And a position acquisition means for acquiring a position of the position detection target object based on an output signal of the sensor, and the sensor is supplied with a first power supply potential.
  • a first power supply terminal, a second power supply terminal to which a second power supply potential different from the first power supply potential is supplied, first to fourth output terminals, and the first output terminal And a first element connected between the first power supply terminal, a second element connected between the second power supply terminal and the first output terminal, and the second power supply terminal.
  • a third element connected between the output terminal and the first power supply terminal.
  • a first subtracting circuit for outputting a voltage signal obtained by subtracting the voltage signal, and a voltage signal obtained by subtracting the voltage signal appearing at the fourth output terminal from the voltage signal appearing at the second output terminal.
  • a second subtracting circuit wherein the first element is between the first output terminal and the first power supply terminal.
  • Each of the seven detection elements moves in the movement direction along the first surface, and A plurality of first detection elements arranged in the movement direction and the plurality of fifth detection elements arranged in the movement direction; , At least the 2 k order component of the phase and the 2 k +2 k + 1 ⁇ N order component (k is a number selected from an arbitrary natural number, N is a positive integer) remain in the output signal of the first subtraction circuit, It is determined that at least the 2 m order component and the 2 m +2 m + 1 ⁇ N order component (m is a positive integer smaller than k) of the phase are removed from the voltage signal appearing at the first output terminal.
  • the arrangement of the three detection elements in the movement direction and the arrangement of the plurality of seventh detection elements in the movement direction include at least a 2 k- order component of phase and 2 k +2 k + 1 in the output signal of the second subtraction circuit.
  • ⁇ Nth order component is Ri, from the voltage signal appearing at the second output terminal of at least 2 m order term component and 2 m +2 m + 1 ⁇ N order term component of the phase is determined to be removed, the position acquiring means of the first subtractor circuit
  • the position of the position detection target object is calculated based on the output signal and the output signal of the second subtracting circuit. According to this, in the case of performing a full bridge connection, it becomes possible to obtain a resolution of 2 k times as compared with the conventional position detection device.
  • the arrangement of the plurality of first detection elements in the movement direction and the arrangement of the plurality of fifth detection elements in the movement direction are determined from the output signal of the first subtraction circuit.
  • 2 k +2 k + 1 ⁇ Nth order component is also removed
  • the arrangement of the plurality of third detection elements in the movement direction and the arrangement of the plurality of seventh detection elements in the movement direction are: It may be determined so that the 2 k +2 k + 1 ⁇ N-order component of the phase is also removed from the output signal of the second subtracting circuit. According to this, when full-bridge connection is performed, higher-order harmonics than the fundamental wave can be appropriately removed.
  • the second and higher harmonics become the fundamental wave. Therefore, it is possible to obtain a resolution that is at least twice that of the conventional position detection device.
  • a GMR element that can obtain only half the resolution of an AMR element is used, it is possible to obtain a resolution equal to or higher than the conventional one. Therefore, a GMR element can be used as the detection element.
  • (A) is a figure which shows the structure of the position detection apparatus by the 1st Embodiment of this invention.
  • (B) is a figure which shows the electrical connection form of the 1st thru
  • (A) is a figure which shows arrangement
  • (B) is a figure which shows arrangement
  • (A) is a figure which shows the 1st modification of the position detection apparatus by the 1st Embodiment of this invention.
  • (B) is a figure which shows the 2nd modification of the position detection apparatus by the 1st Embodiment of this invention. It is a figure which shows the electrical connection form of the 1st thru
  • (A) is a figure which shows arrangement
  • (B) is a figure which shows arrangement
  • FIG. 1 It is a figure which shows arrangement
  • FIG. 1 It is a figure which shows arrangement
  • FIG. 1 It is a figure which shows arrangement
  • B is a figure which shows arrangement
  • (A) is a figure which shows the specific example of arrangement
  • positioning of the GMR element in the case of setting n 1 in the 4th Embodiment of this invention.
  • (B) is a figure which shows the specific example of arrangement
  • positioning of the GMR element in case n 2 in the 4th Embodiment of this invention. It is a figure which shows the modification of the position of the GMR element in the case of using a 4th harmonic as a fundamental wave. It is a figure which shows the modification of arrangement
  • (B) is a figure which shows the specific connection form of the AMR element by the background art of this invention. It is a figure which shows the change of the resistance value of each AMR element and the output signal of a magnetic sensor when the object of a position detection object moves to a x direction in the position detection apparatus by the background art of this invention. It is a figure which shows the specific connection form of each AMR element at the time of applying a full bridge connection to the magnetic sensor by the background art of this invention.
  • FIG. 1A is a diagram showing a configuration of the position detection apparatus 1 according to the first embodiment of the present invention.
  • the position detection device 1 is a magnetic position detection device, and extends in the x direction (moving direction of the object) with a magnetic sensor 2 attached to an object (not shown) as a position detection target, as shown in FIG.
  • a magnetic scale 3 having a surface 3a and magnetized so that N poles and S poles appear alternately along the x direction on the surface 3a; and an object of position detection based on an output signal of the magnetic sensor 2.
  • a position acquisition unit 9 position acquisition means for acquiring a position in the x direction.
  • FIG. 1A also shows the strength of the magnetic field formed by the magnetic scale 3.
  • the strength of the magnetic field formed by the magnetic scale 3 is expressed as a sine wave having a wavelength of 2 ⁇ , where ⁇ is the width (length in the x direction) of each magnetic pole appearing on the surface 3a of the magnetic scale 3. Approximated. That is, it is preferable that the magnetic scale 3 itself has periodicity with respect to the strength of the magnetic field.
  • the magnetic sensor 2 includes first to fourth elements 4 A to 4 D.
  • first to fourth elements 4 A to 4 D are drawn as if they are arranged in the x direction, but this drawing is for convenience, and the actual arrangement of the first to fourth elements 4 A to 4 D Is different. The actual arrangement will be described in detail later.
  • FIG. 1B is a diagram showing an electrical connection form of the first to fourth elements 4 A to 4 D.
  • the first to fourth elements 4 A to 4 D are each composed of two GMR elements.
  • the first element 4 A is composed by two GMR elements 5 A1, 5 A2 (two of the first detection element)
  • the second element 4 B is two GMR elements 5 B1 , 5 B2 (two second detection elements)
  • the third element 4 C is constituted by two GMR elements 5 C1 , 5 C2 (two third detection elements)
  • the GMR element is an element whose resistance value changes depending on the strength of the applied magnetic field.
  • the GMR element is placed so that the pin direction (P direction shown in FIG. 1A) is parallel to the normal direction of the surface 3a, so that the GMR element is along the surface 3a.
  • the resistance value changes according to the facing position of the magnetic scale 3.
  • the wavelength of the change in the resistance value (read signal) of the GMR element is 2 ⁇ as shown in FIG. This is twice that of the AMR element (see FIG. 23A).
  • the readout signal of the GMR element is shown using Fourier series expansion, the following equation (16) is obtained.
  • R is the resistance value of the GMR element
  • 2 ⁇ ⁇ x / 2 ⁇
  • a 0 , A 1 ,... are constants.
  • the Fourier series expansion of a periodic signal is the sum of a sine term and a cosine term as in the following equation (17).
  • the readout signal is expressed using only the sine term. This is because the read signal is an odd function.
  • the magnetic sensor 2 includes a power supply terminal 6 (first power supply terminal) to which a ground potential (first power supply potential) is supplied and a power supply potential Vcc (second power supply potential).
  • Power supply terminal 7 second power supply terminal
  • the GMR elements 5 A1 and 5 A2 are connected in series between the output terminal 8 a and the power supply terminal 6 in this order.
  • the GMR elements 5 B1 and 5 B2 are connected in series between the power supply terminal 7 and the output terminal 8 a in this order
  • the GMR elements 5 C1 and 5 C2 are connected in this order to the output terminal 8 b and the power supply terminal 6.
  • the GMR elements 5 D1 and 5 D2 are connected in series between the power supply terminal 7 and the output terminal 8 b in this order.
  • the voltage signal appearing at the output terminal 8a becomes one output signal Vsin of the magnetic sensor 2, and the voltage signal appearing at the output terminal 8b becomes the other output signal Vcos of the magnetic sensor 2.
  • the order of connection of the plurality of GMR elements constituting the element may be in any order.
  • the order of connection of the GMR elements 5 A1 and 5 A2 may be reversed.
  • the output signals Vsin and Vcos are expressed by the following equations (18) and (19), respectively.
  • R X x is A1, A2, etc.
  • the numerator of the output signal Vsin is a sum signal of the read signals of the GMR elements constituting the first element
  • the numerator of the output signal Vcos is the sum of the GMR elements constituting the third element. This is the sum signal of the read signals.
  • the denominator of the output signal Vsin is a sum signal of the read signals of the GMR elements constituting the first and second elements
  • the denominator of the output signal Vcos is the read of the GMR elements constituting the third and fourth elements. It becomes the sum signal of the signal.
  • each GMR element is such that when the output signals Vsin and Vcos are calculated, odd-order harmonics including the first-order component of ⁇ are removed, and second-order harmonics (second-order component of ⁇ ) are basically used. Decided to be a wave.
  • odd-order harmonics including the first-order component of ⁇
  • second-order harmonics second-order component of ⁇
  • FIG. 2A is a diagram showing the arrangement of the GMR elements 5 A1 and 5 A2 .
  • FIG. 2B is a diagram showing the arrangement of the GMR elements 5 B1 and 5 B2 .
  • the read signals of the GMR elements 5 A1 , 5 A2 , 5 B1 , and 5 B2 are expressed by the following equations (20) to (23), respectively.
  • Equation (18) Substituting Equations (20) to (23) into Equation (18), the output signal Vsin is obtained as in the following Equation (24).
  • odd-order harmonics including the first-order component of ⁇ disappear, and second-order harmonics (second-order component of ⁇ ) are fundamental. It has become a wave.
  • FIG. 3 is a diagram showing the arrangement of the GMR elements 5 C1 , 5 C2 , 5 D1 and 5 D2 .
  • the predetermined distance is not limited to + ⁇ / 4, and may be determined so that the phase of the output signal Vcos differs by an odd multiple of ⁇ / 2 compared to the phase of the output signal Vsin.
  • the predetermined distance (first predetermined distance) for the GMR elements 5 C1 and 5 C2 and the predetermined distance (second predetermined distance) for the GMR elements 5 D2 and 5 D2 may be different.
  • the read signals of the GMR elements 5 C1 , 5 C2 , 5 D1 , and 5 D2 are expressed as the following Expressions (25) to (28), respectively.
  • the position acquisition unit 9 uses the output signals Vsin and Vcos obtained as described above to calculate the position in the x direction of the object that is the position detection target. Specifically, the position x of the object is calculated by the following equation (30).
  • the position detection apparatus 1 realizes twice the resolution as compared with the conventional position detection apparatus. From another point of view, the same resolution as that obtained when the AMR elements shown in the equations (12) and (13) are used although the GMR elements are used. Therefore, according to the position detection device 1, it is possible to use a GMR element as a detection element for the position detection device.
  • FIG. 4A is a diagram illustrating a first modification of the position detection device 1 according to the first embodiment.
  • the second and fourth elements 4 B and 4 D are configured by resistance elements configured not to be affected by the magnetic field formed by the magnetic scale 3.
  • the “resistive element configured so as not to be affected by the magnetic field formed by the magnetic scale 3” may be a resistive element that does not have a magnetoresistive effect, or from a magnetic field formed by the magnetic scale 3. It may be a GMR element disposed at a magnetically shielded location.
  • the output signals Vsin and Vcos in this case are obtained as in the following equations (31) and (32), where R S is the resistance of the second and fourth elements 4 B and 4 D.
  • the first and third elements 4 A and 4 C and the second and fourth elements 4 B and 4 D are configured by GMR elements disposed at locations magnetically shielded from the magnetic field formed by the magnetic scale 3, the first and third elements
  • the temperature characteristics of the elements 4 A and 4 C and the second and fourth elements 4 B and 4 D can be made uniform.
  • the first and third elements 4 A and 4 D and the second and fourth elements 4 B and 4 D may not be configured as an integrated circuit. There is. Therefore, when it is necessary to make these into an integrated circuit and to make these temperature characteristics uniform, it is preferable to use the position detection device 1 according to the first embodiment.
  • FIG. 4B is a diagram illustrating a second modification of the position detection device 1 according to the first embodiment.
  • the second and fourth elements 4 B and 4 D are constituted by constant current sources.
  • the output signals Vsin and Vcos in this case are obtained as shown in the following equations (33) and (34), where I S is the current generated by the second and fourth elements 4 B and 4 D.
  • the odd-order harmonics including the first-order component of ⁇ disappear, and the second-order harmonics ( ⁇
  • the quadratic component is the fundamental wave. Therefore, it is possible to use a GMR element as a detection element for the position detection device. Moreover, if the wiring between elements becomes long, the wiring resistance may not be negligible. In such a case, it is preferable to use a constant current source.
  • FIG. 5 is a diagram showing an electrical connection form of the first to fourth elements 4 A to 4 D in the position detection apparatus 1 according to the second embodiment of the present invention.
  • the position detection apparatus 1 according to the present embodiment is different from the position detection apparatus 1 according to the first embodiment in that the first to fourth elements 4 A to 4 D are each composed of four GMR elements. The other points are common.
  • the position detection apparatus 1 according to the present embodiment will be described focusing on the differences.
  • the first element 4 A is composed of four GMR elements 5 A1 to 5 A4 (four first detection elements), and the second element 4 B Is constituted by four GMR elements 5 B1 to 5 B4 (four second detection elements), and the third element 4 C includes four GMR elements 5 C1 to 5 C4 (four third detection elements).
  • the fourth element 4 D is composed of four GMR elements 5 D1 to 5 D4 (four fourth detection elements).
  • GMR elements 5 A1 to 5 A4 are connected in series between output terminal 8a and power supply terminal 6 in this order, and GMR elements 5 B1 to 5 B4 are connected to power supply terminal 7 in this order.
  • the GMR elements 5 C1 to 5 C4 are connected in series between the output terminal 8a, the GMR elements 5 C1 to 5 C4 are connected in series between the output terminal 8 b and the power supply terminal 6, and the GMR elements 5 D1 to 5 D4 are connected in this order.
  • the power supply terminal 7 and the output terminal 8b are connected in series.
  • the output signals Vsin and Vcos are expressed by the following equations (35) and (36), respectively.
  • each GMR element is such that when the output signals Vsin and Vcos are calculated, the odd-order harmonics including the first-order component of ⁇ are removed, and the second-order harmonics (
  • the second-order term component of ⁇ is determined to be a fundamental wave.
  • it is determined so as to remove fourth-order harmonics (fourth-order component of ⁇ ).
  • FIG. 6A is a diagram showing the arrangement of GMR elements 5 A1 to 5 A4 .
  • FIG. 6B is a diagram showing the arrangement of the GMR elements 5 B1 to 5 B4 .
  • FIG. 7 is a diagram showing the arrangement of the GMR elements 5 C1 to 5 C4 and 5 D1 to 5 D4 .
  • this predetermined distance is not limited to + ⁇ / 4, and it may be determined so that the phase of the output signal Vcos differs from the phase of the output signal Vsin by an odd multiple of ⁇ / 2.
  • the predetermined distance (first predetermined distance) for GMR elements 5 C1 to 5 C4 and the predetermined distance (second predetermined distance) for GMR elements 5 D1 to 5 D4 may be different.
  • the position detection device 1 As understood from the equations (37) and (38), even in the output signals Vsin and Vcos according to the present embodiment, the odd-order harmonics including the first-order component of ⁇ disappear, and the second-order harmonics ( ⁇ Of the second-order term) is the fundamental wave. Therefore, the position detection device 1 according to the present embodiment also achieves twice the resolution as compared with the conventional position detection device. In addition, in the present embodiment, fourth-order harmonics (fourth-order component of ⁇ ) are also removed. Therefore, it is possible to obtain the position x more accurately than in the first embodiment.
  • FIGS. 8A and 8B are diagrams showing a modification of the position detection device 1 according to the second embodiment.
  • the first position P 1 is a position separated from the first reference position B 1 by + ⁇ / 2 + 2 ⁇ ⁇ i in the x direction
  • the second position P 2 is the first reference position B 1. It is a position away from 1 in the x direction by ⁇ / 2 + 2 ⁇ ⁇ i.
  • each GMR element is arranged in the x direction from the first position P 1 together, GMR elements one by one is disposed to two positions away respectively ⁇ [pi / 8 in x-direction from the second position P 2.
  • n in the case of 3, together with one by one from the first position P 1 to the four positions away respectively ⁇ ⁇ / 8 ⁇ ⁇ / 16 in the x-direction GMR element is disposed, a second position P One GMR element is also arranged at four positions spaced from each other by 2 in the x direction by ⁇ ⁇ / 8 ⁇ ⁇ / 16.
  • n 4
  • the one by one from the second position P 2 respectively ⁇ ⁇ / 8 ⁇ ⁇ / 16 ⁇ ⁇ / 32 distant eight positions in the x-direction GMR element is arranged.
  • odd-order harmonics including the first-order component of ⁇ disappear, and second-order harmonics ( ⁇ 2 Next-order component) can be used as the fundamental wave.
  • second-order harmonics ⁇ 2 Next-order component
  • one GMR element is placed at 2 n positions separated by ⁇ ⁇ / Y 1 ⁇ ⁇ / Y 2 ⁇ ⁇ / Y 3 ... ⁇ ⁇ / Y n in the x direction from the first reference position B 1.
  • Y 1 / second order, Y 2 / second order, Y 3 / second order,... Y n / second order waves are removed.
  • n 4 in FIG. 9
  • the position detection apparatus 1 according to the present embodiment is common to the position detection apparatus 1 according to the second embodiment in that the first to fourth elements 4 A to 4 D are each composed of four GMR elements. However, it differs from the position detection apparatus 1 according to the second embodiment in the physical arrangement of each GMR element. Specifically, the physical arrangement of each GMR element according to the present embodiment is such that when the output signals Vsin and Vcos are calculated, in addition to the odd-order harmonics including the first-order component of ⁇ , the second-order harmonics are included.
  • FIG. 10A is a diagram showing the arrangement of the GMR elements 5 A1 to 5 A4 in the position detection apparatus 1 according to the present embodiment.
  • FIG. 10B is a diagram showing the arrangement of the GMR elements 5 B1 to 5 B4 in the position detection device 1 according to the present embodiment.
  • the distance between the first reference position B 1 of the second reference position B 2 is generally an odd multiple of [pi / 2 k if the fundamental wave is 2 k harmonic .
  • the distance between the first reference position B 1 of the second reference position B 2 is an odd multiple of [pi / 2 there were.
  • the distance between the first reference position B 1 of the second reference position B 2 is an odd multiple of [pi / 4.
  • FIG. 11 is a diagram showing an arrangement of the GMR elements 5 C1 to 5 C4 and 5 D1 to 5 D4 in the position detection apparatus 1 according to the present embodiment.
  • this predetermined distance is not limited to + ⁇ / 8, and it may be determined so that the phase of the output signal Vcos differs by an odd multiple of ⁇ / 2 compared to the phase of the output signal Vsin.
  • the predetermined distance (first predetermined distance) for GMR elements 5 C1 to 5 C4 and the predetermined distance (second predetermined distance) for GMR elements 5 D1 to 5 D4 may be different.
  • the position detection device 1 in addition to the odd-order harmonics including the first-order component of ⁇ , the second-order harmonics ( ⁇ Of the second-order term) is also removed, and the fourth-order harmonic (fourth-order component of ⁇ ) is the fundamental wave. Therefore, the position detection device 1 according to the present embodiment achieves a resolution four times that of the conventional position detection device.
  • the first element 4 A is, 2 n pieces connected in series between the output terminal 8a and the power supply terminal 6 (n is an arbitrary natural number of 2 or more A description will be given assuming that the number of GMR elements is a number selected from among them.
  • the second element 4 B is the same by changing B 1 , P 1 , P 2 , and P 5 to P 8 to B 2 , P 3 , P 4 , and P 9 to P 12 in the following description. Generalization is applicable.
  • n ⁇ 3 is one by one from the position P 5 of the 5 to each ⁇ ⁇ / 16 ⁇ ⁇ ⁇ / 2 n + 1 apart 2 n-2 pieces of position in the x-direction GMR element is arranged, the sixth is arranged one not a GMR element one each ⁇ ⁇ / 16 ⁇ ⁇ ⁇ / 2 n + 1 apart 2 n-2 pieces of position from the position P 6 in the x direction, the position of the 7 One GMR element is arranged at each of 2 n ⁇ 2 positions ⁇ ⁇ / 16... ⁇ ⁇ / 2 n + 1 apart from P 7 in the x direction, and ⁇ 8 directions from the eighth position P 8 in the x direction.
  • ⁇ / 16... ⁇ ⁇ / 2 n + 1 GMR elements are arranged at 2 n ⁇ 2 positions apart from each other.
  • the second or fourth harmonic as the fundamental wave. Therefore, it is possible to obtain twice or four times the resolution as compared with the conventional position detecting device. From another point of view, even if a GMR element that can obtain only half the resolution of an AMR element is used, a resolution equivalent to or higher than that of the conventional one can be obtained, so that a GMR element can be used as a detection element. Become.
  • not only the second-order or fourth-order harmonics but also 2 k (k is a natural number) order harmonics can be the fundamental wave. Therefore, for example, by arranging the GMR element so that the 8th and 16th harmonics become the fundamental wave, higher resolution can be obtained.
  • harmonics other than the 2 k order cannot be fundamental waves. This is because the 2 k +2 k + 1 ⁇ Nth order component (N is an integer satisfying N ⁇ 0) is also removed by removing the 2 k order component.
  • N is an integer satisfying N ⁇ 0
  • Expression (41) represents the signal g ( ⁇ ) by a mathematical expression.
  • k 1 in the formula (42) is an integer.
  • may be determined so as to satisfy Equation (42).
  • Equation (43) can be rewritten as the following equation (44).
  • is determined from the equation (44) such that the m 0th- order term component is removed, in addition to the m 0th- order term component, the m Nth- order term component (N satisfies N ⁇ 0) expressed by the equation (45) (Integer) is also removed at the same time.
  • Table 1 specifically lists the order m N removed simultaneously for each value of m 0 .
  • is determined so that the first-order term component is removed, all odd-order term components are removed.
  • is determined such that the second-order term component is removed, the sixth-order term, the 10th-order term, the 14th-order term,... are removed. The same applies to the following.
  • the 2 k +2 k + 1 ⁇ Nth order component (N is an integer satisfying N ⁇ 0) is also removed by removing the 2 k order component.
  • the number represented by 2 k (1 + 2N) appearing in the equation (46) includes a total natural number less than 2 k + 1 .
  • the basic orders to be removed are 1, 4, 8, and the removed orders are 1, 3, 5, 7,..., 2N + 1 order, 4,12. , 20, 28,..., 8N + 4th order, 8, 24, 40, 56,.
  • the components to be removed are the following components: 1, 3, 4, 5, 7, 8, 9, 11,...
  • the 6th order component, the 10th order component and the like are not removed.
  • the orders to be removed are 1, 3, 5, 7,..., 2N + 1 order, 2, 6, 10, 14,..., 4N + second order, 8, 24, 40, 56,.
  • the removed components are 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 13,..., And the following components are not removed.
  • the “non-removable component” in question is, in short, the harmonic component that should be removed at the same time if the 2 k order used as the fundamental wave is removed, that is, the N k of the 2 k +2 k + 1 ⁇ Nth order component. ⁇ 1 part. Therefore, in order to appropriately remove the “component that is not removed”, the GMR element may be arranged so that the 2 k +2 k + 1 ⁇ Nth order component (N ⁇ 1) is removed.
  • N ⁇ 1 an example will be described.
  • FIG. 13 is a diagram showing a modification of the position of the GMR element in the case where the second harmonic is used as the fundamental wave.
  • n 3
  • a second position from P 2 one by one in four positions respectively ⁇ ⁇ / 8 ⁇ ⁇ / 12 apart in the x direction GMR element is arranged.
  • n a 4
  • GMR elements one by one is disposed to the second position P 2, respectively ⁇ ⁇ / 8 ⁇ ⁇ / 12 ⁇ ⁇ / 16 distant eight positions in the x-direction from.
  • n 4
  • 1, 3, 5, 7,..., 2N + 1 order 4, 12, 20, 28,..., 8N + 4th order, 6, 18, 30,.
  • the 8th, 24th, 40th, 56th,..., 16N + 8th order components are removed.
  • the arrangement sequence of GMR elements is ⁇ ⁇ / ⁇ (2 k +2 k + 1 ⁇ N) ⁇ 2 ⁇ .
  • An arrangement of ⁇ ⁇ / (2 k + 1 +2 k + 2 ⁇ N) may be added. By doing so, it becomes possible to suitably remove higher harmonics than the fundamental wave.
  • the basis is the arrangement capable of removing a power of two following components other than 2 k-order term component is there. 1 This is a plurality of positions away respectively ⁇ ⁇ / 2 1 ⁇ ⁇ ⁇ / 2 k ⁇ ⁇ / 2 k + 2 ⁇ ⁇ / 2 k + 3 ⁇ in the x direction from the first reference position B 1 This corresponds to arranging GMR elements one by one.
  • 2 k +2 k + 1 N is equal to 2 k (2N + 1). Therefore, if an arrangement capable of removing higher harmonics corresponding to odd multiples of the fundamental wave order 2 k is added to the basic arrangement, components other than the fundamental wave can be completely removed. However, in this arrangement, the removed orders may overlap, which is not efficient. For example, since 2 k ⁇ 9 can be written as 2 k ⁇ 3 ⁇ (2 ⁇ 1 + 1), it is automatically removed by an arrangement that removes the 2 k ⁇ 3 order harmonics.
  • An efficient arrangement that avoids such duplication is an arrangement that can remove higher-order harmonics corresponding to 2 k P (P is a prime number of 3 or more). In other words, if an arrangement capable of removing harmonics of the order corresponding to 2 kP is added to the basic arrangement, components other than the fundamental wave can be efficiently removed completely.
  • the number of GMR elements that can be arranged is limited. Therefore, if the first element 4 A is composed of 2 n GMR elements, a power-of-two component (2 0 , 2 1 ,..., 2 k ⁇ 1 , 2 other than the 2 k order component) k + 1 , 2 k + 2 , etc and 2 k P-order components (2 k ⁇ 3, 2 k ⁇ 5, 2 k ⁇ 7, 2 k ⁇ 11,...) An arrangement corresponding to the selected order may be adopted. In this selection, it is preferable to select a component having a large influence on the output signal.
  • the harmonic component having an even multiple of the fundamental wave order does not remain in the numerator of the output signal. Since such harmonic components have a small influence on the output signal, it is preferable not to select them and to preferentially select the harmonic components remaining in the molecule.
  • k 1, a power order component 2 other than the 2 k-order terms component 2 0, 2 2, 2 3, a., Tables in 2 k P
  • the resulting components are 2 1 ⁇ 3, 2 1 ⁇ 5, 2 1 ⁇ 7, 2 1 ⁇ 11,.
  • the even multiple of the order 2 of the fundamental wave is 4, 8, 12,.
  • the first element 4 A is moved in the x direction to + (2i 1 ⁇ 1) ⁇ / 2 k (i 1 is Arbitrary integer)
  • the second element 4 B is arranged at a shifted position, and the first element 4 A is shifted in the x direction by + (2i 2 ⁇ 1) ⁇ / 2 k + 1 + (i 2 is an arbitrary integer)
  • the third element 4 C is disposed at the position, and the fourth element 4 C is shifted to the position by shifting the third element 4 C by + (2i 3 ⁇ 1) ⁇ / 2 k (i 3 is an arbitrary integer) in the x direction.
  • D may be arranged.
  • FIG. 14A is a diagram showing a configuration of the position detection apparatus 1 according to the fourth embodiment of the present invention.
  • the position detection device 1 according to the present embodiment is different from the position detection device 1 according to the first embodiment in that the magnetic sensor 2 includes first to eighth elements 4 A to 4 H. .
  • the electrical connection form and physical arrangement of the first to eighth elements 4 A to 4 H will be described in detail.
  • FIG. 14B is a diagram showing an electrical connection form of the first to eighth elements 4 A to 4 H.
  • the first to eighth elements 4 A to 4 H are each composed of two GMR elements.
  • the first to fourth elements 4 A to 4 D are the same as those in the first embodiment.
  • the fifth element 4 E includes two GMR elements 5 E1 and 5 E2 (two fifth detection elements)
  • the sixth element 4 F includes two GMR elements 5 F1 and 5 F2
  • the seventh element 4 G is composed of two GMR elements 5 G1 and 5 G2 (two seventh detection elements)
  • the eighth element 4 H is It is constituted by two GMR elements 5 H1 and 5 H2 (two eighth detection elements).
  • the magnetic sensor 2 includes a power terminal 6 (first power terminal), a power terminal 7 (second power terminal), and output terminals 8a and 8b (first and second power terminals).
  • output terminals 8c and 8d third and fourth output terminals
  • subtractors 10 and 11 first and second subtraction circuits
  • the connections between the GMR elements 5 A1 , 5 A2 , 5 B1 , 5 B2 , 5 C1 , 5 C2 , 5 D1 , 5 D2 and the respective terminals are the same as in the first embodiment.
  • the GMR elements 5 E1 and 5 E2 are connected in series between the output terminal 8 c and the power supply terminal 6 in this order.
  • the GMR elements 5 F1 and 5 F2 are connected in series between the power supply terminal 7 and the output terminal 8 c in this order, and the GMR elements 5 G1 and 5 G2 are connected in this order to the output terminal 8 d and the power supply terminal 6.
  • the GMR elements 5 H1 and 5 H2 are connected in series between the power supply terminal 7 and the output terminal 8 d in this order.
  • the output terminal 8a is connected to the non-inverting input terminal of the subtractor 10
  • the output terminal 8b is connected to the non-inverting input terminal of the subtractor 11
  • the output terminal 8c is connected to the inverting input terminal of the subtractor 10
  • the output terminal 8d Is connected to the inverting input terminal of the subtractor 11.
  • the subtracter 10 outputs a voltage signal obtained by subtracting the voltage signal appearing at the output terminal 8c from the voltage signal appearing at the output terminal 8a, and this voltage signal becomes one output signal Vsin of the magnetic sensor 2.
  • the subtractor 11 outputs a voltage signal obtained by subtracting the voltage signal appearing at the output terminal 8d from the voltage signal appearing at the output terminal 8b, and this voltage signal becomes the other output signal Vcos of the magnetic sensor 2.
  • connection form is a full bridge connection similar to the connection form shown in FIG.
  • the arrangement of GMR elements for using a second harmonic as a fundamental wave in the case of performing full-bridge connection will be described as in the first embodiment.
  • the physical arrangement of each GMR element is such that when the output signals Vsin and Vcos are calculated, odd-order harmonics including the first-order component of ⁇ are removed, and second-order harmonics ( ⁇ Of the second-order term) is determined to be a fundamental wave.
  • the arrangement of the first to fourth elements 4 A to 4 D may be the same as the arrangement described in the first embodiment (the arrangement shown in FIGS. 2 and 3). That is, two GMR elements (GMR elements 5 A1 and 5 A2 ) constituting the first element 4 A are provided at two positions that are ⁇ ⁇ / 2 apart from the first reference position B 1 in the x direction. Just place them one by one.
  • One piece may be arranged at two positions separated by ⁇ ⁇ / 2 in the direction.
  • the GMR elements 5 C1 and 5 C2 constituting the third element 4 C may be arranged at positions where the GMR elements 5 A1 and 5 A2 are shifted by + (2i 2 ⁇ 1) ⁇ / 4 in the x direction.
  • the GMR elements 5 D1 and 5 D2 constituting the fourth element 4 D may be arranged at positions where the GMR elements 5 B1 and 5 B2 are shifted by + (2i 3 ⁇ 1) ⁇ / 2 in the x direction.
  • i 1 , i 2 , and i 3 are all numbers selected from arbitrary integers.
  • the intermediate position between the GMR element 5 C1 and the GMR element 5 C2 is referred to as “third reference position B 3 ”.
  • the third reference position B 3 is equal to B 1 + (2i 2 ⁇ 1) ⁇ / 4.
  • Two GMR elements (GMR elements 5 C1 and 5 C2 ) constituting the third element 4 C are arranged at two positions that are ⁇ ⁇ / 2 apart from the third reference position B 3 in the x direction. It will be arranged one by one.
  • An intermediate position between the GMR element 5 D1 and the GMR element 5 D2 is referred to as a “fourth reference position B 4 ”.
  • the fourth reference position B 4 becomes equal to B 1 + (2i 1 ⁇ 1) ⁇ / 2 + (2i 3 ⁇ 1) ⁇ / 2.
  • two GMR elements (GMR elements 5 D1 and 5 D2 ) constituting the fourth element 4 D are arranged at two positions that are ⁇ ⁇ / 2 apart from the fourth reference position B 4 in the x direction. It will be arranged one by one.
  • the fifth to eighth elements 4 E to 4 H may be arranged at positions shifted by a predetermined distance in the x direction from the first to fourth elements 4 A to 4 D , respectively. Specifically, if a position that is separated from the first reference position B 1 by + (2i 4 ⁇ 1) ⁇ / 2 in the x direction is a fifth reference position B 5 , the second element 4 E is formed. Two GMR elements (GMR elements 5 E1 and 5 E2 ) may be arranged one by one at two positions that are ⁇ ⁇ / 2 apart from the fifth reference position B 5 in the x direction.
  • two GMR elements may be arranged one by one at two positions spaced ⁇ ⁇ / 2 in the x direction from the sixth reference position B 6 .
  • an eighth element 4 H is configured by assuming that a position away from the first reference position B 1 by + 2i 7 ⁇ / 2 + (2i 2 ⁇ 1) ⁇ / 4 in the x direction is an eighth reference position B 8.
  • GMR elements 5 H1 and 5 H2 may be arranged one by one at two positions that are ⁇ ⁇ / 2 apart from the eighth reference position B 8 in the x direction.
  • i 4 to i 7 are all numbers selected from arbitrary integers.
  • Table 2 summarizes the arrangement of the first to eighth reference positions B 1 to B 8 starting from the first reference position B 1 .
  • the two GMR elements constituting each of the first to eighth elements 4 A to 4 H are placed at two positions ⁇ ⁇ / 2 away from the corresponding ones of the reference positions shown in the table in the x direction. By arranging them one by one, it becomes possible to use the second harmonic as the fundamental wave.
  • the second harmonic can be used as a fundamental wave. Further, since the full bridge connection is used, it is possible to obtain an output twice that of the case of the herb bridge connection, and furthermore, it is possible to remove the DC component from the output signals Vsin and Vcos.
  • the vertically long rectangles indicate individual GMR elements.
  • FIG. 15 (b), k 2 and shows a specific arrangement example of the GMR element when the elements 4 A ⁇ 4 H respective first to eighth constituted by two two GMR elements It is. Also in this figure, the vertically long rectangles indicate individual GMR elements.
  • the GMR elements can be arranged at different positions on the x-axis as shown in FIG.
  • the arrangement of the GMR element in the case of adopting the full bridge connection has been described.
  • an arrangement similar to the example shown in FIG. in this case, the first element 4 A arranged GMR element as shown in FIG. 12, further for the second to eighth element 4 B ⁇ 4 H, a first reference position B shown in FIG. 12 After replacing 1 with the reference positions B 2 to B 8 shown in Table 3, the GMR elements may be similarly arranged. This also makes it possible to use a 2 k- order harmonic as the fundamental wave.
  • the harmonics other than the 2 k order cannot be the fundamental wave, and the full bridge connection is the same as the half bridge connection. Therefore, it is sufficient to determine the arrangement of the GMR element for using the 2 kth order (k ⁇ 1) harmonic as the fundamental wave so that the 2 m order component (m is a positive integer smaller than k) is removed. .
  • the arrangement of GMR elements for appropriately removing higher-order harmonics than the fundamental wave may be the same as in the case of half-bridge connection. In other words, when the harmonic used as the fundamental wave is the 2 k order, if the GMR element is arranged so that the 2 k +2 k + 1 ⁇ Nth order component is removed, higher harmonics than the fundamental wave are also appropriately removed. It becomes possible.
  • each of the first to eighth elements 4 A to 4 H is configured by 2 n GMR elements, and a 2 k- order component (k is a number selected from an arbitrary natural number) as a fundamental wave.
  • a power-of-two order component other than the 2 k order component (2 0 , 2 1 ,..., 2 k ⁇ 1 , 2 k + 1 , 2 k + 2 ,.
  • 2 k P (P is a prime number greater than or equal to 3) (2 k ⁇ 3, 2 k ⁇ 5, 2 k ⁇ 7, 2 k ⁇ 11,...)
  • An arrangement corresponding to the selected order may be adopted by selecting the number.
  • the selection criteria may be the same as in the half-bridge connection.
  • the second to eighth elements 4 B to 4 H can be arranged in the same manner as the first element 4 A by using the reference positions shown in Table 3 instead of the first reference position B 1. Good.
  • the 2 k +2 k + 1 Nth order component is also removed by removing the 2 k order component, but the arrangement for removing these automatically removed components is arranged. That doesn't mean you can't.
  • the sixth-order term component is automatically removed.
  • FIG. I do not care.
  • the detection elements are arranged at different positions on the x-axis, but this is not always necessary.
  • the detection elements by arranging the detection elements side by side in the normal direction of the surface 3a, it is possible to obtain the same output as when the detection elements are arranged at different positions on the x-axis without impairing the phase relationship. Become.
  • the present invention is also applicable to the case where another type of magnetoresistive element such as an AMR element or a TMR (tunnel-magnetoresistive) element is used as the detection element. it can.
  • AMR element it is possible to obtain a higher resolution than that of a conventional position detection apparatus that similarly uses an AMR element.
  • the present invention can also be applied to the optical position detection device described above.
  • an optical scale having a diffraction pattern formed on the surface is used instead of the magnetic scale 3.
  • an optical sensor is used instead of the magnetic sensor 2, and the detection element is a photodetection element.
  • the optical sensor is moved along the surface of the optical scale, the amount of received light is the same signal as the GMR readout signal shown in equations (20) to (23).
  • even-order harmonics can be used as the fundamental wave in this signal. Therefore, even in an optical position detection device, it is possible to obtain a resolution that is at least twice that of the prior art.
  • FIG. 17 shows a modified example of the arrangement of the GMR elements shown in FIGS.
  • the physical arrangement order of the GMR elements is different from the example shown in FIGS. 2A and 2B, but the second harmonic is used as the fundamental wave.
  • the specific arrangement order may be determined in consideration of the ease of wiring.
  • the present invention provides an annular or curved scale (magnetic rotary encoder, optical rotary encoder). The same applies when used. That is, it can be applied to all measuring instruments having periodicity with respect to a certain physical property value.
  • FIGS. 18, 19, 20, and 21 show examples in which the same arrangement of GMR elements as in FIGS. 9, 12, 13, and 16 is applied to an annular encoder.
  • FIG. 22 shows an example in which the same arrangement of GMR elements as in FIGS. 15A and 15B is applied to an annular encoder. As shown in these drawings, the present invention is also applicable to an annular encoder.

Abstract

Disclosed is a position detection device with even higher resolution. In the position detection device (1), a first element (4A) is connected in series between a first output terminal (8a) and a first power supply terminal (6) and comprises 2n first detection elements disposed in apposition along the x-direction, a third element (4C) is connected in series between a second output terminal (8b) and the first power supply terminal (6) and comprises 2n first detection elements disposed in apposition along the x-direction, the arrangement of the 2n first detection elements in the x-direction is determined in a manner such that at least the linear phase term is removed from the combined signal of the respective read signals of said 2n first detection elements, and a position acquisition unit (9) calculates the position of an object that is the subject of position detection on the basis of the signal output from the first output terminal (8a) and the signal output from the second output terminal (8b).

Description

位置検出装置Position detection device
 本発明は位置検出装置に関し、特に磁気スケールや光学スケールなどのスケールと、スケールの表面に沿って移動する際、スケールの対向位置に応じた所定の読み出し信号を生成するよう構成された検出素子を用いる位置検出装置に関する。 The present invention relates to a position detection device, and more particularly, to a detection element configured to generate a predetermined readout signal corresponding to a scale facing position when moving along a scale and a scale surface such as a magnetic scale or an optical scale. The present invention relates to a position detection device to be used.
 マウンターなどの産業機器には、移動する物体の位置を検出するために、磁気や光ビームを利用して物体の位置検出を行う位置検出装置を備えるものがある。 Some industrial equipment such as mounters include a position detection device that detects the position of an object using magnetism or a light beam in order to detect the position of the moving object.
 図23(a)は、磁気を利用するタイプ(磁気式)の位置検出装置10の構成を示す図である。同図に示すように、位置検出装置10は、位置検出対象の物体(不図示)に貼付される磁気センサー20と、物体の移動方向(以下、x方向という。)に延伸する表面30aを有し、この表面30aにN極とS極とが等間隔で交互に現れるように着磁した磁気スケール30とを備えている。 FIG. 23A is a diagram showing a configuration of a position detection apparatus 10 of a type (magnetic type) that uses magnetism. As shown in the figure, the position detection device 10 has a magnetic sensor 20 attached to a position detection target object (not shown) and a surface 30a extending in the moving direction of the object (hereinafter referred to as the x direction). The surface 30a is provided with a magnetic scale 30 magnetized so that N poles and S poles appear alternately at equal intervals.
 図23(a)には、磁気スケール30によって形成される磁界の強さも示している。同図に示すように、磁気スケール30によって形成される磁界の強さは、磁気スケール30の表面30aに現れる各磁極の幅(x方向の長さ)をλとすると、波長2λのサイン波として近似される。 FIG. 23A also shows the strength of the magnetic field formed by the magnetic scale 30. As shown in the figure, the strength of the magnetic field formed by the magnetic scale 30 is expressed as a sine wave having a wavelength of 2λ, where λ is the width (length in the x direction) of each magnetic pole appearing on the surface 30a of the magnetic scale 30. Approximated.
 磁気センサー20は、図23(a)に示すように4つのAMR(Anisotropic magnetoresistive)素子MRA~MRDを有しており、これらはx方向に沿ってλ/4の間隔で配置されている。 As shown in FIG. 23A, the magnetic sensor 20 has four AMR (Anisotropic magnetoresistive) elements MRA to MRD, which are arranged at an interval of λ / 4 along the x direction.
 図23(b)は、AMR素子MRA~MRDの電気的な接続形態を示す図である。同図に示すように、磁気センサー20では、AMR素子MRAとAMR素子MRCとがハーフブリッジ接続され、AMR素子MRBとAMR素子MRDとがハーフブリッジ接続される。磁気センサー20の出力信号は2つあり、一方の出力信号VsinはAMR素子MRAとAMR素子MRCの接続点から取り出され、他方の出力信号VcosはAMR素子MRBとAMR素子MRDの接続点から取り出される。 FIG. 23B is a diagram showing an electrical connection form of the AMR elements MRA to MRD. As shown in the figure, in the magnetic sensor 20, the AMR element MRA and the AMR element MRC are half-bridge connected, and the AMR element MRB and the AMR element MRD are half-bridge connected. There are two output signals from the magnetic sensor 20, one output signal Vsin is taken out from the connection point between the AMR element MRA and the AMR element MRC, and the other output signal Vcos is taken out from the connection point between the AMR element MRB and the AMR element MRD. .
 AMR素子は、印加される磁界の強さによってその抵抗値が変化する素子である。図23(a)には、AMR素子がx方向に移動するときの、AMR素子の抵抗値の変化(読み出し信号)も示している。同図に示すように、AMR素子の抵抗値は、磁気スケール30によって形成される磁界の半分の波長λで変化する。 An AMR element is an element whose resistance value changes depending on the strength of an applied magnetic field. FIG. 23A also shows a change in the resistance value (read signal) of the AMR element when the AMR element moves in the x direction. As shown in the figure, the resistance value of the AMR element changes at a wavelength λ that is half of the magnetic field formed by the magnetic scale 30.
 図24は、位置検出対象の物体がx方向に移動するときの、AMR素子MRA~MRDの抵抗値RMRA~RMRD及び出力信号Vsin,Vcosの変化を示す図である。同図に示すように、抵抗値RMRA~RMRDの位相はπ/4ずつずれたものとなる。これは、AMR素子MRA~MRDがx方向に沿ってλ/4ずつ間隔を空けて配置されていることに対応するものである。また、出力信号Vsin,Vcosも波長λで変化し、その位相は互いにπ/4だけ異なるものとなる。 FIG. 24 is a diagram showing changes in the resistance values R MRA to R MRD and the output signals Vsin and Vcos of the AMR elements MRA to MRD when the position detection target object moves in the x direction. As shown in the figure, the resistance values R MRA to R MRD are shifted in phase by π / 4. This corresponds to the fact that the AMR elements MRA to MRD are arranged at intervals of λ / 4 along the x direction. Further, the output signals Vsin and Vcos also change with the wavelength λ, and their phases differ from each other by π / 4.
 AMR素子MRA~MRDの抵抗値RMRA~RMRDはそれぞれ、近似的に次の式(1)~式(4)のように表される。ただし、θ=2π・x/λであり、A及びAは定数である。 The resistance values R MRA to R MRD of the AMR elements MRA to MRD are approximately expressed as the following equations (1) to (4), respectively. However, θ = 2π · x / λ, and A 0 and A 1 are constants.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 式(1)~式(4)より、出力信号Vsin,Vcosはそれぞれ、次の式(5),式(6)で表される。ただし、式(5),式(6)では、θの0次項成分を除去している。0次項成分は既知であるので、減算処理により除去することが可能である。なお、0次項成分を取り除くためにフィルタを用いることは適切でない。位置検出装置は、静止している物体の位置も検出する必要があるためである。 From the expressions (1) to (4), the output signals Vsin and Vcos are expressed by the following expressions (5) and (6), respectively. However, in the equations (5) and (6), the 0th-order term component of θ is removed. Since the zero-order term component is known, it can be removed by subtraction processing. Note that it is not appropriate to use a filter to remove the 0th-order term component. This is because the position detection device needs to detect the position of a stationary object.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 物体の位置xは、以上のようにして得られる出力信号Vsin,Vcosを用いて、次の式(7)により求められる。 The position x of the object is obtained by the following equation (7) using the output signals Vsin and Vcos obtained as described above.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 ところで、式(1)~式(4)ではAMR素子の読み出し信号が完全な正弦波であるとしたが、実際には完全な正弦波となるわけではない。このことをフーリエ級数展開を用いて数式化すると、抵抗値RMRA~RMRDの読み出し信号はそれぞれ、次の式(8)~式(11)で表されることになる。ただし、A,A,・・・は定数である。これらの式から明らかなように、抵抗値RMRA~RMRDの読み出し信号には高調波成分が含まれる。 By the way, in the equations (1) to (4), it is assumed that the read signal of the AMR element is a perfect sine wave, but it is not actually a perfect sine wave. When this is expressed by using Fourier series expansion, the read signals of the resistance values R MRA to R MRD are expressed by the following equations (8) to (11), respectively. However, A 2, A 3, ··· is a constant. As is clear from these equations, the read signals of the resistance values R MRA to R MRD include harmonic components.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 高調波成分も考慮して出力信号Vsin,Vcosを求めると、それぞれ次の式(12),式(13)のようになる。 When the output signals Vsin and Vcos are obtained in consideration of harmonic components, the following equations (12) and (13) are obtained, respectively.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 式(12),式(13)から理解されるように、高調波成分は出力信号Vsin,Vcosにも残り、これは、式(7)により求められる位置xの誤差の原因となる。したがって、抵抗値RMRA~RMRDに現れる高調波成分は除去することが好ましい。この点、例えば特許文献1には、奇数次の高調波を除去するための技術が開示されている。 As understood from the equations (12) and (13), harmonic components remain in the output signals Vsin and Vcos, which causes an error in the position x obtained by the equation (7). Therefore, it is preferable to remove harmonic components appearing in the resistance values R MRA to R MRD . In this regard, for example, Patent Document 1 discloses a technique for removing odd-order harmonics.
 また、式(12),式(13)から理解されるように、出力信号Vsin,Vcosには、θの0次項成分(DC成分)も残存する。DC成分は、上述したように減算処理によって除去することもできるが、フルブリッジ接続を利用することによっても除去できる。そこで以下では、このフルブリッジ接続について説明する。 Also, as understood from the equations (12) and (13), the 0th-order component (DC component) of θ remains in the output signals Vsin and Vcos. The DC component can be removed by subtraction processing as described above, but can also be removed by using a full bridge connection. Therefore, the full bridge connection will be described below.
 図25は、磁気センサー20にフルブリッジ接続を適用した場合の、AMR素子MRA~MRDの具体的な接続形態を示す図である。同図に示すように、フルブリッジ接続を行う場合、図23(b)に示したハーフブリッジが2セットずつ用意される。各セットからの出力はそれぞれオペアンプの反転入力端子と非反転入力端子とに入力され、オペアンプの出力が出力信号Vsin,Vcosとなる。 FIG. 25 is a diagram showing a specific connection form of the AMR elements MRA to MRD when a full bridge connection is applied to the magnetic sensor 20. As shown in the figure, when full bridge connection is performed, two sets of half bridges shown in FIG. 23B are prepared. The output from each set is input to the inverting input terminal and the non-inverting input terminal of the operational amplifier, respectively, and the output of the operational amplifier becomes the output signals Vsin and Vcos.
 図25の例では、出力信号Vsin,Vcosはそれぞれ、次の式(14),式(15)で表される。 In the example of FIG. 25, the output signals Vsin and Vcos are expressed by the following equations (14) and (15), respectively.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 式(12),式(13)とを比較すると理解されるように、式(14),式(15)によれば、出力信号Vsin,VcosからVcc/2の項が除去されている。このことは、フルブリッジ接続を行うことによって、出力信号Vsin,VcosからDC成分が除去されたことを示している。 As understood from the comparison between the equations (12) and (13), according to the equations (14) and (15), the term Vcc / 2 is removed from the output signals Vsin and Vcos. This indicates that the DC component is removed from the output signals Vsin and Vcos by performing the full bridge connection.
特許第3118960号公報Japanese Patent No. 3118960
 ところで、検出素子としては、上述したAMR素子の他にも各種の素子が知られている。中でもGMR(giant magnetoresistive)素子は、他の検出素子に比べて大きな出力を得られることが知られている。GMR素子を用いて位置検出装置を構成すれば、AMR素子を用いる場合に比べて大きな出力を得ることが可能になる。 By the way, as a detection element, various elements other than the above-described AMR element are known. Among these, it is known that a GMR (giant magnetomagnetoresistive) element can obtain a larger output than other detection elements. If a position detection device is configured using a GMR element, it is possible to obtain a larger output than when an AMR element is used.
 しかしながら、GMR素子には、少なくとも通常の使い方をする限り、その抵抗値が、磁気スケール30によって形成される磁界の波長(AMR素子の2倍)で変化するという問題がある。このことは、GMR素子を用いる位置検出装置では、AMR素子を用いるものに比べて1/2の分解能しか得られないことを意味する。これでは、如何に高出力であっても、GMR素子を用いて位置検出装置を構成することは困難である。したがって、検出素子としてGMR素子を用いることができるよう、より高い分解能を有する位置検出装置が求められている。 However, the GMR element has a problem that its resistance value changes with the wavelength of the magnetic field formed by the magnetic scale 30 (twice that of the AMR element) at least as long as it is used in a normal manner. This means that a position detection apparatus using a GMR element can only obtain a resolution of 1/2 that of an apparatus using an AMR element. Thus, it is difficult to configure a position detection device using a GMR element, no matter how high the output is. Therefore, there is a need for a position detection device with higher resolution so that a GMR element can be used as the detection element.
 より高い分解能を有する位置検出装置が求められるという点では、光ビームを利用するタイプ(光学式)の位置検出装置においても事情は同様である。すなわち、光学式の位置検出装置では、磁気スケールに代えて表面に回折パターンが形成された反射板(光学スケール)が用いられ、この光学スケールに光ビームが照射される。そして、磁気センサーに代えて光センサーが用いられ、光センサーは、光学スケールで反射した光ビームを受光する。このときの受光量は、式(8)~式(11)に示した読み出し信号と同様の信号となり、その波長が長いほど分解能が低下する。したがって、光学式の位置検出装置についても、磁気を利用する位置検出装置と同じように、より高い分解能を有する位置検出装置が求められている。 In the point that a position detection device having higher resolution is required, the situation is the same in the type (optical type) position detection device using a light beam. That is, in the optical position detection device, a reflecting plate (optical scale) having a diffraction pattern formed on the surface is used instead of the magnetic scale, and the optical scale is irradiated with a light beam. An optical sensor is used instead of the magnetic sensor, and the optical sensor receives the light beam reflected by the optical scale. The amount of light received at this time is the same as the readout signal shown in equations (8) to (11), and the resolution decreases as the wavelength increases. Therefore, as for the optical position detection device, a position detection device having higher resolution is required as in the case of the position detection device using magnetism.
 したがって、本発明の目的の一つは、より高い分解能を有する位置検出装置を提供することにある。 Therefore, one of the objects of the present invention is to provide a position detection device having higher resolution.
 上記目的を達成するための本発明による位置検出装置は、位置検出対象の物体の移動方向に沿って延伸する第1の表面を有するスケールと、前記物体とともに移動可能に構成され、かつ前記第1の表面に対向して配置されたセンサーと、前記センサーの出力信号に基づいて前記位置検出対象の物体の位置を取得する位置取得手段とを備え、前記センサーは、第1の電源電位が供給される第1の電源端子と、前記第1の電源電位とは異なる第2の電源電位が供給される第2の電源端子と、第1及び第2の出力端子と、前記第1の出力端子と前記第1の電源端子との間に接続された第1の素子と、前記第2の電源端子と前記第1の出力端子との間に接続された第2の素子と、前記第2の出力端子と前記第1の電源端子との間に接続された第3の素子と、前記第2の電源端子と前記第2の出力端子との間に接続された第4の素子とを有し、前記第1の素子は、前記第1の出力端子と前記第1の電源端子との間に直列接続され、かつ前記移動方向に沿って並置された複数個の第1の検出素子からなり、前記第3の素子は、前記第2の出力端子と前記第1の電源端子との間に直列接続され、かつ前記移動方向に沿って並置された複数個の第3の検出素子からなり、前記各第1の検出素子及び前記各第3の検出素子はそれぞれ、前記第1の表面に沿って前記移動方向に移動する際、前記スケールの対向位置に応じた所定の読み出し信号を生成するよう構成され、前記複数個の第1の検出素子の前記移動方向の配置は、前記第1の出力端子に現れる電圧信号から少なくとも位相の1次項成分が除去されるよう決定され、前記複数個の第3の検出素子の前記移動方向の配置は、前記第2の出力端子に現れる電圧信号から少なくとも位相の1次項成分が除去されるよう決定され、前記位置取得手段は、前記第1の出力端子に現れる電圧信号と、前記第2の出力端子に現れる電圧信号とに基づいて前記位置検出対象の物体の位置を算出することを特徴とする。 In order to achieve the above object, a position detection device according to the present invention is configured to have a scale having a first surface extending along a moving direction of an object to be position-detected, to be movable together with the object, and to the first. And a position acquisition means for acquiring the position of the position detection target object based on an output signal of the sensor, and the sensor is supplied with a first power supply potential. A first power supply terminal, a second power supply terminal supplied with a second power supply potential different from the first power supply potential, first and second output terminals, and the first output terminal A first element connected between the first power supply terminal; a second element connected between the second power supply terminal and the first output terminal; and the second output. A third terminal connected between the terminal and the first power supply terminal And a fourth element connected between the second power supply terminal and the second output terminal, wherein the first element includes the first output terminal and the first output terminal. The third element includes a plurality of first detection elements connected in series between the power supply terminals and juxtaposed along the moving direction, and the third element includes the second output terminal and the first power supply. A plurality of third detection elements connected in series with each other along the moving direction, and each of the first detection elements and each of the third detection elements is respectively When moving along the surface of 1 in the moving direction, it is configured to generate a predetermined readout signal corresponding to the position facing the scale, and the arrangement of the plurality of first detection elements in the moving direction is: At least the first-order component of the phase is removed from the voltage signal appearing at the first output terminal. The arrangement of the plurality of third detection elements in the moving direction is determined so that at least a first-order component of a phase is removed from a voltage signal appearing at the second output terminal, and the position The acquisition means calculates the position of the position detection target object based on a voltage signal appearing at the first output terminal and a voltage signal appearing at the second output terminal.
 本発明によれば、2次以上の高調波が基本波となる。したがって、従来の位置検出装置に比べて2倍以上の分解能を得ることが可能になる。なお、本発明において「移動」とは、位置検出対象の物体とスケールの相対的な移動を意味する。すなわち、例えば地表面を基準として考えると、スケールが地表面に対して固定され、物体が地表面に対して移動することとしてもよいし、物体が地表面に対して固定され、スケールが地表面に対して移動することとしてもよいし、物体・スケールの双方が地表面に対して互いに異なる方向へ移動することとしてもよい。なお、電源電位は定電圧源の電位であってもよく、定電流源の電位であってもよい。 According to the present invention, the second and higher harmonics become the fundamental wave. Therefore, it is possible to obtain a resolution that is at least twice that of the conventional position detection device. In the present invention, “movement” means relative movement of the position detection target object and the scale. That is, for example, considering the ground surface as a reference, the scale may be fixed with respect to the ground surface, and the object may move with respect to the ground surface, or the object may be fixed with respect to the ground surface, and the scale may be It is also possible that both the object and the scale move in different directions with respect to the ground surface. Note that the power supply potential may be a constant voltage source potential or a constant current source potential.
 上記位置検出装置において、前記第2の素子は、前記第2の電源端子と前記第1の出力端子との間に直列接続され、かつ前記移動方向に沿って並置された複数個の第2の検出素子からなり、前記第4の素子は、前記第2の電源端子と前記第2の出力端子との間に直列接続され、かつ前記移動方向に沿って並置された複数個の第4の検出素子からなり、前記複数個の第2の検出素子の前記移動方向の配置は、前記第1の出力端子に現れる電圧信号から少なくとも位相の1次項成分が除去されるよう決定され、前記複数個の第4の検出素子の前記移動方向の配置は、前記第2の出力端子に現れる電圧信号から少なくとも位相の1次項成分が除去されるよう決定されることとしてもよい。これによれば、第1乃至第4の素子の温度特性を揃えることが可能になる。 In the position detection device, the second element is connected in series between the second power supply terminal and the first output terminal, and a plurality of second elements arranged in parallel along the moving direction. The fourth element includes a plurality of fourth detection elements connected in series between the second power supply terminal and the second output terminal and juxtaposed along the moving direction. An arrangement of the plurality of second detection elements in the moving direction is determined such that at least a first-order component of a phase is removed from a voltage signal appearing at the first output terminal; The arrangement of the fourth detection elements in the moving direction may be determined so that at least a first-order component of the phase is removed from the voltage signal appearing at the second output terminal. According to this, the temperature characteristics of the first to fourth elements can be made uniform.
 また、上記位置検出装置において、前記第1の素子は、2個(nは任意の自然数の中から選択される数)の前記第1の検出素子からなり、前記第3の素子は、2個の前記第3の検出素子からなり、前記2個の第1の検出素子は、n=1である場合には、第1の基準位置から前記移動方向にそれぞれ±π/2離れた第1及び第2の位置に1個ずつ配置され、n≧2である場合には、前記第1の位置から前記移動方向にそれぞれ±π/8・・・±π/2n+1離れた2n-1個の位置に1個ずつ、前記第2の位置から前記移動方向にそれぞれ±π/8・・・±π/2n+1離れた2n-1個の位置に1個ずつ、それぞれ配置され、前記2個の第3の検出素子は、前記2個の第1の検出素子それぞれを前記移動方向に第1の所定距離ずらした位置に配置されることとしてもよい。これによれば、2次の高調波が基本波となる。したがって、従来の位置検出装置に比べて2倍の分解能を得ることが可能になる。 In the position detection device, the first element includes 2 n (n is a number selected from an arbitrary natural number) first detection elements, and the third element is 2 When n = 1, the 2 n first detection elements are each separated by ± π / 2 from the first reference position in the movement direction. When n ≧ 2 are arranged one by one at the first and second positions, respectively, 2 n separated from the first position by ± π / 8... ± π / 2 n + 1 in the moving direction. -1 each at 1 position and 1 at 2 n-1 positions away from the second position by ± π / 8 ... ± π / 2 n + 1 in the moving direction, respectively. the 2 n pieces of the third detector element, a first predetermined distance Shifts each said 2 n pieces of the first detecting element in the direction of movement It may be placed in position. According to this, the second harmonic becomes the fundamental wave. Therefore, it is possible to obtain twice the resolution as compared with the conventional position detecting device.
 さらに、この位置検出装置において、前記第2の素子は、2個の前記第2の検出素子からなり、前記第4の素子は、2個の前記第4の検出素子からなり、前記2個の第2の検出素子は、n=1である場合には、前記第1の基準位置から前記移動方向にπl/2(lは任意の奇数から選択される数)離れた第2の基準位置からさらに前記移動方向にそれぞれ±π/2離れた第3及び第4の位置に配置され、n≧2である場合には、前記第3の位置から前記移動方向にそれぞれ±π/8・・・±π/2n+1離れた2n-1個の位置に1個ずつ、前記第4の位置から前記移動方向にそれぞれ±π/8・・・±π/2n+1離れた2n-1個の位置に1個ずつ、それぞれ配置され、前記2個の第4の検出素子は、前記2個の第2の検出素子それぞれを前記移動方向に第2の所定距離ずらした位置に配置されることとしてもよい。これによれば、第1乃至第4の素子の温度特性を揃えることが可能になる。 Furthermore, in this position detection apparatus, the second element includes 2 n second detection elements, the fourth element includes 2 n fourth detection elements, and the 2 When n = 1, the n second detection elements have a second distance of πl / 2 (where l is a number selected from an arbitrary odd number) away from the first reference position in the movement direction. When n ≧ 2, the reference positions are further separated from each other by ± π / 2 in the moving direction, and when n ≧ 2, respectively, ± π / 8 in the moving direction from the third position. ... 1 at 2 n-1 positions separated by ± π / 2 n + 1, and ± π / 8 at the moving direction from the fourth position, respectively, 2 n- separated by ± π / 2 n + 1. One piece is arranged at one position, and the 2 n fourth detection elements are the 2 n second detection elements. Each may be arranged at a position shifted by a second predetermined distance in the moving direction. According to this, the temperature characteristics of the first to fourth elements can be made uniform.
 また、上記位置検出装置において、前記第1の素子は、2個(nは任意の自然数の中から選択される数)の前記第1の検出素子からなり、前記第3の素子は、2個の前記第3の検出素子からなり、前記2個の第1の検出素子の前記移動方向の配置は、2次項成分(kは任意の自然数の中から選択される数)以外の2のべき乗次成分と、2P次成分(Pは3以上の素数)との中から選択されるn個の成分が除去されるよう決定され、前記2個の第3の検出素子は、前記2個の第1の検出素子それぞれを前記移動方向に第1の所定距離ずらした位置に配置されることとしてもよい。これによれば、基本波より高次の高調波を適切に除去することが可能になる。 In the position detection device, the first element includes 2 n (n is a number selected from an arbitrary natural number) first detection elements, and the third element is 2 It is composed of n third detection elements, and the arrangement of the 2 n first detection elements in the moving direction is other than a 2 k order component (k is a number selected from an arbitrary natural number) It is determined that n components selected from power-of-two components of 2 and 2 k P-order components (P is a prime number of 3 or more) are removed, and the 2 n third detection elements are The 2 n first detection elements may be arranged at positions shifted by a first predetermined distance in the moving direction. According to this, higher harmonics than the fundamental wave can be appropriately removed.
 さらに、この位置検出装置において、前記第2の素子は、2個の前記第2の検出素子からなり、前記第4の素子は、2個の前記第4の検出素子からなり、前記2個の第2の検出素子は、前記2個の第1の検出素子それぞれを前記移動方向に第3の所定距離ずらした位置に配置され、前記2個の第4の検出素子は、前記2個の第2の検出素子それぞれを前記移動方向に第2の所定距離ずらした位置に配置されることとしてもよい。これによれば、第1乃至第4の素子の温度特性を揃えることが可能になる。 Furthermore, in this position detection apparatus, the second element includes 2 n second detection elements, the fourth element includes 2 n fourth detection elements, and the 2 The n second detection elements are arranged at positions where the 2 n first detection elements are shifted by a third predetermined distance in the movement direction, and the 2 n fourth detection elements are: Each of the 2 n second detection elements may be arranged at a position shifted by a second predetermined distance in the movement direction. According to this, the temperature characteristics of the first to fourth elements can be made uniform.
 また、上記位置検出装置において、前記第1の素子は、2個(nは任意の2以上の自然数の中から選択される数)の前記第1の検出素子からなり、前記第3の素子は、2個の前記第3の検出素子からなり、前記2個の第1の検出素子は、n=2である場合には、第1の基準位置から前記移動方向に+π/2離れた第1の位置からさらに前記移動方向にそれぞれ±π/4離れた第5及び第6の位置に1個ずつ、前記第1の基準位置から前記移動方向に-π/2離れた第2の位置からさらに前記移動方向にそれぞれ±π/4離れた第7及び第8の位置に1個ずつ、それぞれ配置され、n≧3である場合には、前記第5の位置から前記移動方向にそれぞれ±π/16・・・±π/2n+1離れた2n-2個の位置に1個ずつ、前記第6の位置から前記移動方向にそれぞれ±π/16・・・±π/2n+1離れた2n-2個の位置に1個ずつ、前記第7の位置から前記移動方向にそれぞれ±π/16・・・±π/2n+1離れた2n-2個の位置に1個ずつ、前記第8の位置から前記移動方向にそれぞれ±π/16・・・±π/2n+1離れた2n-2個の位置に1個ずつ、それぞれ配置され、前記2個の第3の検出素子は、前記2個の第1の検出素子それぞれを前記移動方向に第1の所定距離ずらした位置に配置されることとしてもよい。これによれば、4次の高調波が基本波となる。したがって、従来の位置検出装置に比べて4倍の分解能を得ることが可能になる。 In the position detection apparatus, the first element includes 2 n (n is a number selected from any two or more natural numbers) first detection elements, and the third element Is composed of 2 n third detection elements, and the 2 n first detection elements are separated by + π / 2 from the first reference position in the moving direction when n = 2. The second position is further separated from the first reference position by −π / 2 in the moving direction, one at each of the fifth and sixth positions that are further separated by ± π / 4 in the moving direction from the first position. One in each of the seventh and eighth positions further away from the position in the moving direction by ± π / 4, respectively, and when n ≧ 3, the fifth position in the moving direction, respectively. ± π / 16... ± π / 2 n + 1 one by 2 n-2 positions apart from the sixth position The one on the moving direction, each ± π / 16 ··· ± π / 2 n + 1 apart 2 n-2 pieces of position, the seventh, respectively ± π / 16 ··· ± in the moving direction from the position of π / 2 n + 1 one by one to the distant 2 n-2 pieces of position, the eighth, respectively ± π / 16 ··· ± π / 2 n + 1 apart 2 n-2 pieces of position in the moving direction from the position of The 2 n third detection elements are arranged at positions shifted from the 2 n first detection elements by a first predetermined distance in the moving direction. It is good. According to this, the fourth harmonic becomes the fundamental wave. Accordingly, it is possible to obtain a resolution four times that of the conventional position detection device.
 さらに、この位置検出装置において、前記第2の素子は、2個の前記第2の検出素子からなり、前記第4の素子は、2個の前記第4の検出素子からなり、前記2個の第2の検出素子は、n=2である場合には、前記第1の基準位置から前記移動方向にπl/4(lは任意の奇数から選択される数)離れた第2の基準位置からさらに前記移動方向に+π/2離れた第3の位置からさらに前記移動方向にそれぞれ±π/4離れた第9及び第10の位置に1個ずつ、前記第2の基準位置から前記移動方向に-π/2離れた第4の位置からさらに前記移動方向にそれぞれ±π/4離れた第11及び第12の位置に1個ずつ、それぞれ配置され、n≧3である場合には、前記第9の位置から前記移動方向にそれぞれ±π/16・・・±π/2n+1離れた2n-2個の位置に1個ずつ、前記第10の位置から前記移動方向にそれぞれ±π/16・・・±π/2n+1離れた2n-2個の位置に1個ずつ、前記第11の位置から前記移動方向にそれぞれ±π/16・・・±π/2n+1離れた2n-2個の位置に1個ずつ、前記第12の位置から前記移動方向にそれぞれ±π/16・・・±π/2n+1離れた2n-2個の位置に1個ずつ、それぞれ配置され、前記2個の第4の検出素子は、前記2個の第2の検出素子それぞれを前記移動方向に第2の所定距離ずらした位置に配置されることとしてもよい。これによれば、第1乃至第4の素子の温度特性を揃えることが可能になる。 Furthermore, in this position detection apparatus, the second element includes 2 n second detection elements, the fourth element includes 2 n fourth detection elements, and the 2 In the case where n = 2, the n second detection elements are separated by πl / 4 (l is a number selected from an arbitrary odd number) in the movement direction from the first reference position. One from each of the second reference position and each of the ninth and tenth positions further ± π / 4 in the movement direction from the third position further + π / 2 in the movement direction from the reference position. In the case where n ≧ 3, one is arranged at each of the eleventh and twelfth positions separated by ± π / 4 in the moving direction from the fourth position separated by −π / 2 in the moving direction, respectively. , respectively in the moving direction from the position of the first 9 ± π / 16 ··· ± π / 2 n + 1 away One for 2 n-2 pieces of positions, one for the first 10 respectively ± π / 16 ··· ± π / 2 n + 1 apart 2 n-2 pieces of position in the moving direction from the position of, One at each of 2 n−2 positions ± π / 16... ± π / 2 n + 1 apart from the eleventh position in the moving direction and ± π from the twelfth position in the moving direction, respectively. / 16... ± π / 2 n + 1 one by one at 2 n−2 positions, and the 2 n fourth detection elements are the 2 n second detection elements. Each may be arranged at a position shifted by a second predetermined distance in the moving direction. According to this, the temperature characteristics of the first to fourth elements can be made uniform.
 また、上記各位置検出装置において、前記スケールは、前記第1の表面に前記移動方向に沿ってN極とS極とが交互に現れるように着磁した磁気スケールであり、前記検出素子は磁気抵抗素子であることとしてもよい。これによれば、磁気を利用する位置検出装置において、従来の2倍以上の分解能を得ることが可能になる。したがって、AMR素子の半分の分解能しか得られないGMR素子を用いても、従来と同等若しくはそれ以上の分解能を得ることができることになるので、検出素子としてGMR素子を用いることが可能になる。 In each of the position detection devices, the scale is a magnetic scale magnetized so that N poles and S poles alternately appear along the moving direction on the first surface, and the detection element is magnetic. It may be a resistance element. According to this, in the position detection device using magnetism, it becomes possible to obtain a resolution more than twice that of the conventional one. Therefore, even if a GMR element that can obtain only half the resolution of the AMR element is used, a resolution equivalent to or higher than that of the conventional one can be obtained, so that the GMR element can be used as the detection element.
 また、上記各位置検出装置において、前記スケールは、前記第1の表面に前記移動方向に沿ってN極とS極とが交互に現れるように着磁した磁気スケールであり、前記検出素子は磁気抵抗素子であり、前記第2及び第4の素子はそれぞれ、前記磁気スケールによって形成される磁界の影響を受けないよう構成された抵抗素子からなることとしてもよい。 In each of the position detection devices, the scale is a magnetic scale magnetized so that N poles and S poles alternately appear along the moving direction on the first surface, and the detection element is magnetic. Each of the second and fourth elements may be a resistance element configured so as not to be affected by a magnetic field formed by the magnetic scale.
 また、上記各位置検出装置において、前記磁気抵抗素子はGMR素子、AMR素子、又はTMR素子のいずれかであることとしてもよい。 Further, in each of the position detection devices described above, the magnetoresistive element may be any one of a GMR element, an AMR element, and a TMR element.
 また、上記各位置検出装置において、前記スケールは、前記第1の表面に回折パターンが形成された光学スケールであり、前記検出素子は光検出素子であることとしてもよい。これによれば、光学式の位置検出装置において、従来の2倍以上の分解能を得ることが可能になる。 In each of the position detection devices, the scale may be an optical scale having a diffraction pattern formed on the first surface, and the detection element may be a light detection element. According to this, in the optical position detection device, it becomes possible to obtain a resolution that is at least twice that of the conventional one.
 また、上記位置検出装置において、前記第2及び第4の素子はそれぞれ定電流源からなることとしてもよい。 In the position detection device, each of the second and fourth elements may be a constant current source.
 また、上記各位置検出装置において、前記第1の電源電位は接地電位であることとしてもよい。 In each of the position detection devices, the first power supply potential may be a ground potential.
 また、本発明の他の一側面による位置検出装置は、位置検出対象の物体の移動方向に沿って延伸する第1の表面を有するスケールと、前記物体とともに移動可能に構成され、かつ前記第1の表面に対向して配置されたセンサーと、前記センサーの出力信号に基づいて前記位置検出対象の物体の位置を取得する位置取得手段とを備え、前記センサーは、第1の電源電位が供給される第1の電源端子と、前記第1の電源電位とは異なる第2の電源電位が供給される第2の電源端子と、第1及び第2の出力端子と、前記第1の出力端子と前記第1の電源端子との間に接続された第1の素子と、前記第2の電源端子と前記第1の出力端子との間に接続された第2の素子と、前記第2の出力端子と前記第1の電源端子との間に接続された第3の素子と、前記第2の電源端子と前記第2の出力端子との間に接続された第4の素子とを有し、前記第1の素子は、前記第1の出力端子と前記第1の電源端子との間に直列接続され、かつ前記移動方向に沿って並置された複数個の第1の検出素子からなり、前記第3の素子は、前記第2の出力端子と前記第1の電源端子との間に直列接続され、かつ前記移動方向に沿って並置された複数個の第3の検出素子からなり、前記各第1の検出素子及び前記各第3の検出素子はそれぞれ、前記第1の表面に沿って前記移動方向に移動する際、前記スケールの対向位置に応じた所定の読み出し信号を生成するよう構成され、前記複数個の第1の検出素子の前記移動方向の配置は、前記第1の出力端子に現れる電圧信号に少なくとも位相の2次項成分及び2+2k+1・N次項成分(kは任意の自然数の中から選択される数、Nは正の整数)が残り、前記第1の出力端子に現れる電圧信号から少なくとも位相の2次項成分及び2+2m+1・N次項成分(mはkより小さい正の整数)が除去されるよう決定され、前記複数個の第3の検出素子の前記移動方向の配置は、前記第2の出力端子に現れる電圧信号に少なくとも位相の2次項成分及び2+2k+1・N次項成分が残り、前記第2の出力端子に現れる電圧信号から少なくとも位相の2次項成分及び2+2m+1・N次項成分が除去されるよう決定され、前記位置取得手段は、前記第1の出力端子に現れる電圧信号と、前記第2の出力端子に現れる電圧信号とに基づいて前記位置検出対象の物体の位置を算出することを特徴とする。これによれば、2次の高調波が基本波となる。したがって、従来の位置検出装置に比べて2倍の分解能を得ることが可能になる。 According to another aspect of the present invention, there is provided a position detection apparatus configured to be movable with a scale having a first surface extending along a moving direction of an object to be detected, and the first object. And a position acquisition means for acquiring the position of the position detection target object based on an output signal of the sensor, and the sensor is supplied with a first power supply potential. A first power supply terminal, a second power supply terminal supplied with a second power supply potential different from the first power supply potential, first and second output terminals, and the first output terminal A first element connected between the first power supply terminal; a second element connected between the second power supply terminal and the first output terminal; and the second output. A third element connected between the terminal and the first power supply terminal; A fourth element connected between the second power supply terminal and the second output terminal, wherein the first element includes the first output terminal, the first power supply terminal, And a plurality of first detection elements juxtaposed along the moving direction, and the third element includes a connection between the second output terminal and the first power supply terminal. Each of the first detection elements and the third detection elements is connected to the first surface of the first surface. When moving in the moving direction along the scale, a predetermined readout signal is generated according to the opposing position of the scale, and the arrangement of the plurality of first detection elements in the moving direction is the first 2 k order term component of at least phase of the voltage signal appearing at the output terminal and the 2 k + k + 1 · N order term component (the number k is chosen among any natural number, N are positive integers) rest, the first 2 from the voltage signal at least a phase appearing at the output terminal of the m-order term component and 2 m +2 An m + 1 · Nth order component (m is a positive integer smaller than k) is determined to be removed, and the arrangement of the plurality of third detection elements in the moving direction is a voltage signal appearing at the second output terminal. At least the phase 2 k order component and the 2 k +2 k + 1 · N order term component remain, and at least the phase 2 m order component and 2 m +2 m + 1 · N order term component are removed from the voltage signal appearing at the second output terminal. The position acquisition means calculates the position of the object to be detected based on the voltage signal appearing at the first output terminal and the voltage signal appearing at the second output terminal. Characteristic To. According to this, the 2 k order harmonic becomes the fundamental wave. Therefore, it is possible to obtain a resolution of 2 k times as compared with the conventional position detecting device.
 また、上記位置検出装置において、前記複数個の第1の検出素子の前記移動方向の配置は、前記第1の出力端子に現れる電圧信号から位相の2+2k+1・N次項成分も除去されるよう決定され、前記複数個の第3の検出素子の前記移動方向の配置は、前記第2の出力端子に現れる電圧信号から位相の2+2k+1・N次項成分も除去されるよう決定されることとしてもよい。これによれば、基本波より高次の高調波を適切に除去することが可能になる。 In the position detection device, the arrangement of the plurality of first detection elements in the moving direction also removes the 2 k +2 k + 1 · Nth order component of the phase from the voltage signal appearing at the first output terminal. The arrangement of the plurality of third detection elements in the moving direction is determined so that the 2 k +2 k + 1 · Nth-order component of the phase is also removed from the voltage signal appearing at the second output terminal. It is good as well. According to this, higher harmonics than the fundamental wave can be appropriately removed.
 また、本発明のさらに他の一側面による位置検出装置は、位置検出対象の物体の移動方向に沿って延伸する第1の表面を有するスケールと、前記物体とともに移動可能に構成され、かつ前記第1の表面に対向して配置されたセンサーと、前記センサーの出力信号に基づいて前記位置検出対象の物体の位置を取得する位置取得手段とを備え、前記センサーは、第1の電源電位が供給される第1の電源端子と、前記第1の電源電位とは異なる第2の電源電位が供給される第2の電源端子と、第1乃至第4の出力端子と、前記第1の出力端子と前記第1の電源端子との間に接続された第1の素子と、前記第2の電源端子と前記第1の出力端子との間に接続された第2の素子と、前記第2の出力端子と前記第1の電源端子との間に接続された第3の素子と、前記第2の電源端子と前記第2の出力端子との間に接続された第4の素子と、前記第3の出力端子と前記第1の電源端子との間に接続された第5の素子と、前記第2の電源端子と前記第3の出力端子との間に接続された第6の素子と、前記第4の出力端子と前記第1の電源端子との間に接続された第7の素子と、前記第2の電源端子と前記第4の出力端子との間に接続された第8の素子と、前記第1の出力端子に現れる電圧信号から前記第3の出力端子に現れる電圧信号を減算してなる電圧信号を出力する第1の減算回路と、前記第2の出力端子に現れる電圧信号から前記第4の出力端子に現れる電圧信号を減算してなる電圧信号を出力する第2の減算回路とを有し、前記第1の素子は、前記第1の出力端子と前記第1の電源端子との間に直列接続され、かつ前記移動方向に沿って並置された複数個の第1の検出素子からなり、前記第3の素子は、前記第2の出力端子と前記第1の電源端子との間に直列接続され、かつ前記移動方向に沿って並置された複数個の第3の検出素子からなり、前記第5の素子は、前記第3の出力端子と前記第1の電源端子との間に直列接続され、かつ前記移動方向に沿って並置された複数個の第5の検出素子からなり、前記第7の素子は、前記第4の出力端子と前記第1の電源端子との間に直列接続され、かつ前記移動方向に沿って並置された複数個の第7の検出素子からなり、前記各第1の検出素子、前記各第3の検出素子、前記各第5の検出素子、及び前記各第7の検出素子はそれぞれ、前記第1の表面に沿って前記移動方向に移動する際、前記スケールの対向位置に応じた所定の読み出し信号を生成するよう構成され、前記複数個の第1の検出素子の前記移動方向の配置及び前記複数個の第5の検出素子の前記移動方向の配置は、前記第1の減算回路の出力信号から少なくとも位相の1次項成分が除去されるよう決定され、前記複数個の第3の検出素子の前記移動方向の配置及び前記複数個の第7の検出素子の前記移動方向の配置は、前記第2の減算回路の出力信号から少なくとも位相の1次項成分が除去されるよう決定され、前記位置取得手段は、前記第1の減算回路の出力信号と、前記第2の減算回路の出力信号とに基づいて前記位置検出対象の物体の位置を算出することを特徴とする。これによれば、フルブリッジ接続を行う場合において、従来の位置検出装置に比べて2倍以上の分解能を得ることが可能になる。 According to still another aspect of the present invention, there is provided a position detection apparatus configured to have a scale having a first surface extending along a movement direction of an object to be position-detected, movable with the object, and the first And a position acquisition means for acquiring a position of the position detection target object based on an output signal of the sensor, and the sensor is supplied with a first power supply potential. A first power supply terminal, a second power supply terminal to which a second power supply potential different from the first power supply potential is supplied, first to fourth output terminals, and the first output terminal And a first element connected between the first power supply terminal, a second element connected between the second power supply terminal and the first output terminal, and the second power supply terminal. A third connected between an output terminal and the first power supply terminal; And a fourth element connected between the second power supply terminal and the second output terminal, and a second element connected between the third output terminal and the first power supply terminal. 5 element, a sixth element connected between the second power supply terminal and the third output terminal, and a connection between the fourth output terminal and the first power supply terminal. The seventh output element, the eighth output element connected between the second power supply terminal and the fourth output terminal, and the third output terminal from the voltage signal appearing at the first output terminal. A first subtracting circuit that outputs a voltage signal obtained by subtracting a voltage signal appearing at, and a voltage signal obtained by subtracting the voltage signal appearing at the fourth output terminal from the voltage signal appearing at the second output terminal. A second subtracting circuit for outputting, wherein the first element includes the first output terminal and the first power supply terminal. A plurality of first detection elements connected in series between each other and arranged in the movement direction, wherein the third element is between the second output terminal and the first power supply terminal. And a plurality of third detection elements juxtaposed along the moving direction, and the fifth element is interposed between the third output terminal and the first power supply terminal. A plurality of fifth detection elements connected in series and juxtaposed along the moving direction, and the seventh element is connected in series between the fourth output terminal and the first power supply terminal. A plurality of seventh detection elements connected and juxtaposed along the moving direction, each of the first detection elements, each of the third detection elements, each of the fifth detection elements, and Each seventh detection element moves in the moving direction along the first surface, An arrangement for generating a predetermined readout signal in accordance with the opposing position of the scale, the arrangement of the plurality of first detection elements in the movement direction and the arrangement of the plurality of fifth detection elements in the movement direction Is determined so that at least the first-order component of the phase is removed from the output signal of the first subtracting circuit, and the arrangement of the plurality of third detection elements in the moving direction and the plurality of seventh detection elements are determined. The arrangement of the elements in the moving direction is determined so that at least the first-order component of the phase is removed from the output signal of the second subtraction circuit, and the position acquisition means includes the output signal of the first subtraction circuit, The position of the position detection object is calculated based on the output signal of the second subtracting circuit. According to this, in the case of performing a full bridge connection, it becomes possible to obtain a resolution that is at least twice that of a conventional position detection device.
 上記位置検出装置において、前記第2の素子は、前記第2の電源端子と前記第1の出力端子との間に直列接続され、かつ前記移動方向に沿って並置された複数個の第2の検出素子からなり、前記第4の素子は、前記第2の電源端子と前記第2の出力端子との間に直列接続され、かつ前記移動方向に沿って並置された複数個の第4の検出素子からなり、前記第6の素子は、前記第2の電源端子と前記第3の出力端子との間に直列接続され、かつ前記移動方向に沿って並置された複数個の第6の検出素子からなり、前記第8の素子は、前記第2の電源端子と前記第4の出力端子との間に直列接続され、かつ前記移動方向に沿って並置された複数個の第8の検出素子からなり、前記複数個の第2の検出素子の前記移動方向の配置及び前記複数個の第6の検出素子の前記移動方向の配置は、前記第1の減算回路の出力信号から少なくとも位相の1次項成分が除去されるよう決定され、前記複数個の第4の検出素子の前記移動方向の配置及び前記複数個の第8の検出素子の前記移動方向の配置は、前記第2の減算回路の出力信号から少なくとも位相の1次項成分が除去されるよう決定されることとしてもよい。これによれば、第1乃至第8の素子の温度特性を揃えることが可能になる。 In the position detection device, the second element is connected in series between the second power supply terminal and the first output terminal, and a plurality of second elements arranged in parallel along the moving direction. The fourth element includes a plurality of fourth detection elements connected in series between the second power supply terminal and the second output terminal and juxtaposed along the moving direction. The sixth element comprises a plurality of sixth detection elements connected in series between the second power supply terminal and the third output terminal and juxtaposed along the moving direction. The eighth element includes a plurality of eighth detection elements connected in series between the second power supply terminal and the fourth output terminal and juxtaposed along the moving direction. The plurality of second detection elements in the moving direction and the plurality of second detection elements 6 is arranged so that at least a first-order component of the phase is removed from the output signal of the first subtraction circuit, and the plurality of fourth detection elements are arranged in the movement direction. The arrangement and the arrangement of the plurality of eighth detection elements in the moving direction may be determined so that at least a first-order component of the phase is removed from the output signal of the second subtracting circuit. According to this, the temperature characteristics of the first to eighth elements can be made uniform.
 また、上記位置検出装置において、前記第1の素子は、2個(nは任意の自然数の中から選択される数)の前記第1の検出素子からなり、前記第3の素子は、2個の前記第3の検出素子からなり、前記第5の素子は、2個の前記第5の検出素子からなり、前記第7の素子は、2個の前記第7の検出素子からなり、前記2個の第1の検出素子は、第1の基準位置から前記移動方向にそれぞれ±π/2±π/8・・・±π/2n+1離れた2個の位置に1個ずつ配置され、前記2個の第3の検出素子は、前記第1の基準位置から前記移動方向に(2i-1)π/4(iは任意の整数の中から選択される数)離れた第3の基準位置から前記移動方向にそれぞれ±π/2±π/8・・・±π/2n+1離れた2個の位置に1個ずつ配置され、前記2個の第5の検出素子は、前記第1の基準位置から前記移動方向に(2i-1)π/2(iは任意の整数の中から選択される数)離れた第5の基準位置から前記移動方向にそれぞれ±π/2±π/8・・・±π/2n+1離れた2個の位置に1個ずつ配置され、前記2個の第7の検出素子は、前記第1の基準位置から前記移動方向に(2i-1)π/2+(2i-1)π/4(iは任意の整数の中から選択される数)離れた第7の基準位置から前記移動方向にそれぞれ±π/2±π/8・・・±π/2n+1離れた2個の位置に1個ずつ配置されることとしてもよい。これによれば、フルブリッジ接続を行う場合において、従来の位置検出装置に比べて2倍の分解能を得ることが可能になる。 In the position detection device, the first element includes 2 n (n is a number selected from an arbitrary natural number) first detection elements, and the third element is 2 n third detection elements, the fifth element includes 2 n fifth detection elements, and the seventh element includes 2 n seventh detection elements. Thus, the 2 n first detection elements are 1 at 2 n positions separated from each other by ± π / 2 ± π / 8... ± π / 2 n + 1 in the movement direction from the first reference position. The 2 n third detection elements are arranged in a moving direction from the first reference position in the moving direction (2i 2 −1) π / 4 (i 2 is selected from an arbitrary integer) number) not a one to distant third respectively ± π / 2 ± π / 8 ··· ± π / 2 n + 1 apart the 2 n position in the moving direction from a reference position Are arranged, the 2 n pieces of the fifth detector element (number i 4 is selected from among any integer) the first from the reference position in the moving direction (2i 4 -1) π / 2 disposed from the fifth reference position apart one on each ± π / 2 ± π / 8 ··· ± π / 2 n + 1 apart the 2 n position in the moving direction, wherein the 2 n 7 The detection element of (2i 6 −1) π / 2 + (2i 2 −1) π / 4 (where i 6 is a number selected from an arbitrary integer) is away from the first reference position in the movement direction. Alternatively, one may be arranged at 2 n positions that are separated from each other by ± π / 2 ± π / 8... ± π / 2 n + 1 in the moving direction from the seventh reference position. According to this, in the case of performing a full bridge connection, it becomes possible to obtain twice the resolution as compared with the conventional position detection device.
 さらに、この位置検出装置において、前記第2の素子は、2個の前記第2の検出素子からなり、前記第4の素子は、2個の前記第4の検出素子からなり、前記第6の素子は、2個の前記第6の検出素子からなり、前記第8の素子は、2個の前記第8の検出素子からなり、前記2個の第2の検出素子は、前記第1の基準位置から前記移動方向に(2i-1)π/2(iは任意の整数の中から選択される数)離れた第2の基準位置から前記移動方向にそれぞれ±π/2±π/8・・・±π/2n+1離れた2個の位置に1個ずつ配置され、前記2個の第4の検出素子は、前記第1の基準位置から前記移動方向に(2i-1)π/2+(2i-1)π/4(iは任意の整数の中から選択される数)離れた第4の基準位置から前記移動方向にそれぞれ±π/2±π/8・・・±π/2n+1離れた2個の位置に1個ずつ配置され、前記2個の第6の検出素子は、前記第1の基準位置から前記移動方向に2iπ/2(iは任意の整数の中から選択される数)離れた第6の基準位置から前記移動方向にそれぞれ±π/2±π/8・・・±π/2n+1離れた2個の位置に1個ずつ配置され、前記2個の第8の検出素子は、前記第1の基準位置から前記移動方向に2iπ/2+(2i-1)π/4(iは任意の整数の中から選択される数)離れた第8の基準位置から前記移動方向にそれぞれ±π/2±π/8・・・±π/2n+1離れた2個の位置に1個ずつ配置されることとしてもよい。これによれば、第1乃至第8の素子の温度特性を揃えることが可能になる。 Furthermore, in this position detection apparatus, the second element includes 2 n second detection elements, the fourth element includes 2 n fourth detection elements, 6 elements are composed of 2 n sixth detection elements, the eighth element is composed of 2 n eighth detection elements, and the 2 n second detection elements are: ± π from the first reference position in the moving direction from the second reference position that is (2i 1 −1) π / 2 (i 1 is a number selected from any integer) in the moving direction from the first reference position. / 2 ± π / 8, one on ··· ± π / 2 n + 1 apart the 2 n position is arranged, the 2 n pieces of the fourth detection element, the moving direction from the first reference position 4th reference position separated by (2i 3 -1) π / 2 + (2i 2 -1) π / 4 (i 3 is a number selected from any integer) Disposed placed et the one by one in the movement direction in each ± π / 2 ± π / 8 ··· ± π / 2 n + 1 apart the 2 n position, the detection element of the 2 n pieces of the sixth, the ± π / 2 ± π / in the moving direction from a sixth reference position that is 2i 5 π / 2 away from the first reference position in the moving direction (i 5 is a number selected from an arbitrary integer). 8... ± π / 2 n + 1 are arranged one by one at 2 n positions, and the 2 n eighth detection elements are moved from the first reference position to the moving direction by 2i 7 π / ± π / 2 ± π / 8... ± in the moving direction from an eighth reference position separated by 2+ (2i 2 −1) π / 4 (i 7 is a number selected from an arbitrary integer) One piece may be arranged at 2 n positions that are separated by π / 2 n + 1 . According to this, the temperature characteristics of the first to eighth elements can be made uniform.
 また、上記位置検出装置において、前記第1の素子は、2個(nは任意の自然数の中から選択される数)の前記第1の検出素子からなり、前記第3の素子は、2個の前記第3の検出素子からなり、前記第5の素子は、2個の前記第5の検出素子からなり、前記第7の素子は、2個の前記第7の検出素子からなり、前記2個の第1の検出素子の前記移動方向の配置は、2次項成分(kは任意の自然数の中から選択される数)以外の2のべき乗次成分と、2P次成分(Pは3以上の素数)との中から選択されるn個の成分が除去されるよう決定され、前記2個の第3の検出素子は、前記2個の第1の検出素子それぞれを前記移動方向に(2i-1)π/2k+1(iは任意の整数の中から選択される数)ずらした位置に配置され、前記2個の第5の検出素子は、前記2個の第1の検出素子それぞれを前記移動方向に(2i-1)π/2(iは任意の整数の中から選択される数)ずらした位置に配置され、前記2個の第7の検出素子は、前記2個の第1の検出素子それぞれを前記移動方向に(2i-1)π/2+(2i-1)π/2k+1(iは任意の整数の中から選択される数)ずらした位置に配置されることとしてもよい。これによれば、フルブリッジ接続を行う場合において、基本波より高次の高調波を適切に除去することが可能になる。 In the position detection apparatus, the first element includes 2 n (n is a number selected from an arbitrary natural number), and the third element is 2 n third detection elements, the fifth element includes 2 n fifth detection elements, and the seventh element includes 2 n seventh detection elements. becomes, wherein the arrangement of the moving direction of the 2 n first detection element, and 2 k-order terms component (k is a number chosen from among any natural number) power following components other than 2, 2 k P N components selected from the following components (P is a prime number of 3 or more) are determined to be removed, and the 2 n third detection elements are the 2 n first detection elements. each element in the moving direction shift (number i 2 is to be selected from any integer) (2i 2 -1) π / 2 k + 1 Is disposed at a position, the 2 n pieces of the fifth detection element, wherein the 2 each n-number of the first detection element in the moving direction (2i 4 -1) π / 2 k (i 4 is an arbitrary integer arranged several) shifted by a position selected from among the detection elements of the 2 n pieces of seventh, respectively the 2 n pieces of the first detecting element in the moving direction (2i 6 -1) π / 2 k + (2i 2 −1) π / 2 k + 1 (where i 6 is a number selected from an arbitrary integer) may be arranged at a shifted position. According to this, when full-bridge connection is performed, higher-order harmonics than the fundamental wave can be appropriately removed.
 さらに、この位置検出装置において、前記第2の素子は、2個の前記第2の検出素子からなり、前記第4の素子は、2個の前記第4の検出素子からなり、前記第6の素子は、2個の前記第6の検出素子からなり、前記第8の素子は、2個の前記第8の検出素子からなり、前記2個の第2の検出素子は、前記2個の第1の検出素子それぞれを前記移動方向に(2i-1)π/2(iは任意の整数の中から選択される数)ずらした位置に配置され、前記2個の第4の検出素子は、前記2個の第1の検出素子それぞれを前記移動方向に(2i-1)π/2+(2i-1)π/2k+1(iは任意の整数の中から選択される数)ずらした位置に配置され、前記2個の第6の検出素子は、前記2個の第1の検出素子それぞれを前記移動方向に2iπ/2(iは任意の整数の中から選択される数)ずらした位置に配置され、前記2個の第8の検出素子は、前記2個の第1の検出素子それぞれを前記移動方向に2iπ/2+(2i-1)π/2k+1(iは任意の整数の中から選択される数)ずらした位置に配置されることとしてもよい。これによれば、第1乃至第8の素子の温度特性を揃えることが可能になる。 Furthermore, in this position detection apparatus, the second element includes 2 n second detection elements, the fourth element includes 2 n fourth detection elements, 6 elements are composed of 2 n sixth detection elements, the eighth element is composed of 2 n eighth detection elements, and the 2 n second detection elements are: Each of the 2 n first detection elements is arranged at a position shifted by (2i 1 −1) π / 2 k (i 1 is a number selected from an arbitrary integer) in the movement direction, The n fourth detection elements are (2i 3 −1) π / 2 k + (2i 2 −1) π / 2 k + 1 (i 3 ) in the moving direction, respectively, with respect to the 2 n first detection elements. is disposed at a position shifted by several) chosen from any integer, the detection element of the 2 n pieces of the sixth, the 2 n pieces of 2i each first detection element in the movement direction 5 π / 2 k (i 5 is a number selected from among an arbitrary integer) are arranged in a position shifted, the detecting element of the 2 n pieces of eighth, Each of the 2 n first detection elements is shifted by 2i 7 π / 2 k + (2i 2 −1) π / 2 k + 1 (i 7 is a number selected from an arbitrary integer) in the moving direction. It is good also as arrange | positioning at a position. According to this, the temperature characteristics of the first to eighth elements can be made uniform.
 また、上記位置検出装置において、前記第1の素子は、2個(nは任意の2以上の自然数の中から選択される数)の前記第1の検出素子からなり、前記第3の素子は、2個の前記第3の検出素子からなり、前記第5の素子は、2個の前記第5の検出素子からなり、前記第7の素子は、2個の前記第7の検出素子からなり、前記2個の第1の検出素子は、n=2である場合には、第1の基準位置から前記移動方向に+π/2離れた第1の位置からさらに前記移動方向にそれぞれ±π/4離れた第5及び第6の位置に1個ずつ、前記第1の基準位置から前記移動方向に-π/2離れた第2の位置からさらに前記移動方向にそれぞれ±π/4離れた第7及び第8の位置に1個ずつ、それぞれ配置され、n≧3である場合には、前記第5の位置から前記移動方向にそれぞれ±π/16・・・±π/2n+1離れた2n-2個の位置に1個ずつ、前記第6の位置から前記移動方向にそれぞれ±π/16・・・±π/2n+1離れた2n-2個の位置に1個ずつ、前記第7の位置から前記移動方向にそれぞれ±π/16・・・±π/2n+1離れた2n-2個の位置に1個ずつ、前記第8の位置から前記移動方向にそれぞれ±π/16・・・±π/2n+1離れた2n-2個の位置に1個ずつ、それぞれ配置され、前記2個の第3の検出素子は、前記2個の第1の検出素子それぞれを前記移動方向に(2i-1)π/8(iは任意の整数の中から選択される数)ずらした位置に配置され、前記2個の第5の検出素子は、前記2個の第1の検出素子それぞれを前記移動方向に(2i-1)π/4(iは任意の整数の中から選択される数)ずらした位置に配置され、前記2個の第7の検出素子は、前記2個の第1の検出素子それぞれを前記移動方向に(2i-1)π/4+(2i-1)π/8(iは任意の整数の中から選択される数)ずらした位置に配置されることとしてもよい。これによれば、フルブリッジ接続を行う場合において、従来の位置検出装置に比べて4倍の分解能を得ることが可能になる。 In the position detection apparatus, the first element includes 2 n (n is a number selected from any two or more natural numbers) first detection elements, and the third element Comprises 2 n third sensing elements, the fifth element comprises 2 n fifth sensing elements, and the seventh element comprises 2 n seventh sensing elements. consists detection element, wherein the 2 n first detection element, n = a if 2, further wherein the direction of movement from a first position in which the moving direction to the + [pi / 2 away from the first reference position One at each of the fifth and sixth positions separated by ± π / 4 respectively, and from the second position separated by −π / 2 from the first reference position in the moving direction and further by ± π in the moving direction, respectively. / 4, respectively, at 7th and 8th positions separated from each other, and when n ≧ 3, One on placed et the respective ± π / 16 ··· ± π / 2 n + 1 apart 2 n-2 pieces of position in the moving direction, the sixth respectively ± π / 16 ·· from the position in the moving direction of the · ± π / 2 n + 1 one by one to the distant 2 n-2 pieces of position, the first 7 2 n-2 pieces which each distant ± π / 16 ··· ± π / 2 n + 1 in the moving direction from the position of One at each position, one at each of 2 n−2 positions ± π / 16... ± π / 2 n + 1 apart from the eighth position in the moving direction, respectively. The n third detection elements are (2i 2 −1) π / 8 (where i 2 is a number selected from an arbitrary integer) in the moving direction with respect to each of the 2 n first detection elements. It arranged staggered position, the 2 n pieces of the fifth detection element, respectively the 2 n pieces of the first detecting element in the direction of movement 2i 4 -1) π / 4 ( i 4 is disposed at a position shifted by several) chosen from any integer, the detection element of the 2 n pieces of seventh, said the 2 n first Each detection element is arranged at a position shifted in the moving direction by (2i 6 −1) π / 4 + (2i 2 −1) π / 8 (i 6 is a number selected from an arbitrary integer). Also good. According to this, when full-bridge connection is performed, it becomes possible to obtain a resolution four times that of a conventional position detection device.
 さらに、この位置検出装置において、前記第2の素子は、2個の前記第2の検出素子からなり、前記第4の素子は、2個の前記第4の検出素子からなり、前記第6の素子は、2個の前記第6の検出素子からなり、前記第8の素子は、2個の前記第8の検出素子からなり、前記2個の第2の検出素子は、前記2個の第1の検出素子それぞれを前記移動方向に(2i-1)π/4(iは任意の整数の中から選択される数)ずらした位置に配置され、前記2個の第4の検出素子は、前記2個の第1の検出素子それぞれを前記移動方向に(2i-1)π/4+(2i-1)π/8(iは任意の整数の中から選択される数)ずらした位置に配置され、前記2個の第6の検出素子は、前記2個の第1の検出素子それぞれを前記移動方向に2iπ/4(iは任意の整数の中から選択される数)ずらした位置に配置され、前記2個の第8の検出素子は、前記2個の第1の検出素子それぞれを前記移動方向に2iπ/4+(2i-1)π/8(iは任意の整数の中から選択される数)ずらした位置に配置されることとしてもよい。これによれば、第1乃至第8の素子の温度特性を揃えることが可能になる。 Furthermore, in this position detection apparatus, the second element includes 2 n second detection elements, the fourth element includes 2 n fourth detection elements, 6 elements are composed of 2 n sixth detection elements, the eighth element is composed of 2 n eighth detection elements, and the 2 n second detection elements are: Each of the 2 n first detection elements is arranged at a position shifted by (2i 1 −1) π / 4 (i 1 is a number selected from an arbitrary integer) in the movement direction, and the 2 n fourth detection element pieces, the two respective n first detector element in the moving direction (2i 3 -1) π / 4 + (2i 2 -1) π / 8 (i 3 is an arbitrary integer arranged several) shifted by a position selected from among the detection elements of the 2 n pieces of the sixth, the 2 n pieces of the first detection element 2i 5 π / 4 to respectively to the moving direction (i 5 is a number selected from among an arbitrary integer) are arranged in a position shifted, the detecting element of the 2 n pieces of the eighth, the 2 n Each of the first detection elements is arranged at a position shifted by 2i 7 π / 4 + (2i 2 −1) π / 8 (i 7 is a number selected from an arbitrary integer) in the moving direction. It is good. According to this, the temperature characteristics of the first to eighth elements can be made uniform.
 また、本発明のさらに他の一側面による位置検出装置は、位置検出対象の物体の移動方向に沿って延伸する第1の表面を有するスケールと、前記物体とともに移動可能に構成され、かつ前記第1の表面に対向して配置されたセンサーと、前記センサーの出力信号に基づいて前記位置検出対象の物体の位置を取得する位置取得手段とを備え、前記センサーは、第1の電源電位が供給される第1の電源端子と、前記第1の電源電位とは異なる第2の電源電位が供給される第2の電源端子と、第1乃至第4の出力端子と、前記第1の出力端子と前記第1の電源端子との間に接続された第1の素子と、前記第2の電源端子と前記第1の出力端子との間に接続された第2の素子と、前記第2の出力端子と前記第1の電源端子との間に接続された第3の素子と、前記第2の電源端子と前記第2の出力端子との間に接続された第4の素子と、前記第3の出力端子と前記第1の電源端子との間に接続された第5の素子と、前記第2の電源端子と前記第3の出力端子との間に接続された第6の素子と、前記第4の出力端子と前記第1の電源端子との間に接続された第7の素子と、前記第2の電源端子と前記第4の出力端子との間に接続された第8の素子と前記第1の出力端子に現れる電圧信号から前記第3の出力端子に現れる電圧信号を減算してなる電圧信号を出力する第1の減算回路と、前記第2の出力端子に現れる電圧信号から前記第4の出力端子に現れる電圧信号を減算してなる電圧信号を出力する第2の減算回路とを有し、前記第1の素子は、前記第1の出力端子と前記第1の電源端子との間に直列接続され、かつ前記移動方向に沿って並置された複数個の第1の検出素子からなり、前記第3の素子は、前記第2の出力端子と前記第1の電源端子との間に直列接続され、かつ前記移動方向に沿って並置された複数個の第3の検出素子からなり、前記第5の素子は、前記第3の出力端子と前記第1の電源端子との間に直列接続され、かつ前記移動方向に沿って並置された複数個の第5の検出素子からなり、前記第7の素子は、前記第4の出力端子と前記第1の電源端子との間に直列接続され、かつ前記移動方向に沿って並置された複数個の第7の検出素子からなり、前記各第1の検出素子、前記各第3の検出素子、前記各第5の検出素子、及び前記各第7の検出素子はそれぞれ、前記第1の表面に沿って前記移動方向に移動する際、前記スケールの対向位置に応じた所定の読み出し信号を生成するよう構成され、前記複数個の第1の検出素子の前記移動方向の配置及び前記複数個の第5の検出素子の前記移動方向の配置は、前記第1の減算回路の出力信号に少なくとも位相の2次項成分及び2+2k+1・N次項成分(kは任意の自然数の中から選択される数、Nは正の整数)が残り、前記第1の出力端子に現れる電圧信号から少なくとも位相の2次項成分及び2+2m+1・N次項成分(mはkより小さい正の整数)が除去されるよう決定され、前記複数個の第3の検出素子の前記移動方向の配置及び前記複数個の第7の検出素子の前記移動方向の配置は、前記第2の減算回路の出力信号に少なくとも位相の2次項成分及び2+2k+1・N次項成分が残り、前記第2の出力端子に現れる電圧信号から少なくとも位相の2次項成分及び2+2m+1・N次項成分が除去されるよう決定され、前記位置取得手段は、前記第1の減算回路の出力信号と、前記第2の減算回路の出力信号とに基づいて前記位置検出対象の物体の位置を算出することを特徴とする。これによれば、フルブリッジ接続を行う場合において、従来の位置検出装置に比べて2倍の分解能を得ることが可能になる。 According to still another aspect of the present invention, there is provided a position detection apparatus configured to have a scale having a first surface extending along a movement direction of an object to be position-detected, movable with the object, and the first And a position acquisition means for acquiring a position of the position detection target object based on an output signal of the sensor, and the sensor is supplied with a first power supply potential. A first power supply terminal, a second power supply terminal to which a second power supply potential different from the first power supply potential is supplied, first to fourth output terminals, and the first output terminal And a first element connected between the first power supply terminal, a second element connected between the second power supply terminal and the first output terminal, and the second power supply terminal. A third element connected between the output terminal and the first power supply terminal. A fourth element connected between the second power supply terminal and the second output terminal, and a fifth element connected between the third output terminal and the first power supply terminal. A sixth element connected between the second power terminal and the third output terminal, and a fourth power terminal connected between the fourth output terminal and the first power terminal. Appears at the third output terminal from a voltage signal appearing at the seventh element, the eighth element connected between the second power supply terminal and the fourth output terminal, and the first output terminal A first subtracting circuit for outputting a voltage signal obtained by subtracting the voltage signal, and a voltage signal obtained by subtracting the voltage signal appearing at the fourth output terminal from the voltage signal appearing at the second output terminal. A second subtracting circuit, wherein the first element is between the first output terminal and the first power supply terminal. A plurality of first detection elements connected in series and juxtaposed along the moving direction, wherein the third element is connected in series between the second output terminal and the first power supply terminal. A plurality of third detection elements connected and juxtaposed along the moving direction, wherein the fifth element is connected in series between the third output terminal and the first power supply terminal; And a plurality of fifth detection elements juxtaposed along the moving direction, wherein the seventh element is connected in series between the fourth output terminal and the first power supply terminal. And a plurality of seventh detection elements juxtaposed along the moving direction, the first detection elements, the third detection elements, the fifth detection elements, and the first detection elements. Each of the seven detection elements moves in the movement direction along the first surface, and A plurality of first detection elements arranged in the movement direction and the plurality of fifth detection elements arranged in the movement direction; , At least the 2 k order component of the phase and the 2 k +2 k + 1 · N order component (k is a number selected from an arbitrary natural number, N is a positive integer) remain in the output signal of the first subtraction circuit, It is determined that at least the 2 m order component and the 2 m +2 m + 1 · N order component (m is a positive integer smaller than k) of the phase are removed from the voltage signal appearing at the first output terminal. The arrangement of the three detection elements in the movement direction and the arrangement of the plurality of seventh detection elements in the movement direction include at least a 2 k- order component of phase and 2 k +2 k + 1 in the output signal of the second subtraction circuit.・ Nth order component is Ri, from the voltage signal appearing at the second output terminal of at least 2 m order term component and 2 m +2 m + 1 · N order term component of the phase is determined to be removed, the position acquiring means of the first subtractor circuit The position of the position detection target object is calculated based on the output signal and the output signal of the second subtracting circuit. According to this, in the case of performing a full bridge connection, it becomes possible to obtain a resolution of 2 k times as compared with the conventional position detection device.
 上記位置検出装置において、前記複数個の第1の検出素子の前記移動方向の配置及び前記複数個の第5の検出素子の前記移動方向の配置は、前記第1の減算回路の出力信号から位相の2+2k+1・N次項成分も除去されるよう決定され、前記複数個の第3の検出素子の前記移動方向の配置及び前記複数個の第7の検出素子の前記移動方向の配置は、前記第2の減算回路の出力信号から位相の2+2k+1・N次項成分も除去されるよう決定されることとしてもよい。これによれば、フルブリッジ接続を行う場合において、基本波より高次の高調波を適切に除去することが可能になる。 In the position detection device, the arrangement of the plurality of first detection elements in the movement direction and the arrangement of the plurality of fifth detection elements in the movement direction are determined from the output signal of the first subtraction circuit. 2 k +2 k + 1 · Nth order component is also removed, and the arrangement of the plurality of third detection elements in the movement direction and the arrangement of the plurality of seventh detection elements in the movement direction are: It may be determined so that the 2 k +2 k + 1 · N-order component of the phase is also removed from the output signal of the second subtracting circuit. According to this, when full-bridge connection is performed, higher-order harmonics than the fundamental wave can be appropriately removed.
 本発明によれば、2次以上の高調波が基本波となる。したがって、従来の位置検出装置に比べて2倍以上の分解能を得ることが可能になる。また、本発明を磁気を利用する位置検出装置に適用した場合には、AMR素子の半分の分解能しか得られないGMR素子を用いても、従来と同等若しくはそれ以上の分解能を得ることができることになるので、検出素子としてGMR素子を用いることが可能になる。 According to the present invention, the second and higher harmonics become the fundamental wave. Therefore, it is possible to obtain a resolution that is at least twice that of the conventional position detection device. In addition, when the present invention is applied to a position detection device using magnetism, even if a GMR element that can obtain only half the resolution of an AMR element is used, it is possible to obtain a resolution equal to or higher than the conventional one. Therefore, a GMR element can be used as the detection element.
(a)は、本発明の第1の実施の形態による位置検出装置の構成を示す図である。(b)は、本発明の第1の実施の形態による第1乃至第4の素子の電気的な接続形態を示す図である。(A) is a figure which shows the structure of the position detection apparatus by the 1st Embodiment of this invention. (B) is a figure which shows the electrical connection form of the 1st thru | or 4th element by the 1st Embodiment of this invention. (a)は、本発明の第1の実施の形態による第1の素子を構成するGMR素子の配置を示す図である。(b)は、本発明の第1の実施の形態による第2の素子を構成するGMR素子の配置を示す図である。(A) is a figure which shows arrangement | positioning of the GMR element which comprises the 1st element by the 1st Embodiment of this invention. (B) is a figure which shows arrangement | positioning of the GMR element which comprises the 2nd element by the 1st Embodiment of this invention. 本発明の第1の実施の形態による第3及び第4の素子を構成するGMR素子の配置を示す図である。It is a figure which shows arrangement | positioning of the GMR element which comprises the 3rd and 4th element by the 1st Embodiment of this invention. (a)は、本発明の第1の実施の形態による位置検出装置の第1の変形例を示す図である。(b)は、本発明の第1の実施の形態による位置検出装置の第2の変形例を示す図である。(A) is a figure which shows the 1st modification of the position detection apparatus by the 1st Embodiment of this invention. (B) is a figure which shows the 2nd modification of the position detection apparatus by the 1st Embodiment of this invention. 本発明の第2の実施の形態による位置検出装置における第1乃至第4の素子の電気的な接続形態を示す図である。It is a figure which shows the electrical connection form of the 1st thru | or 4th element in the position detection apparatus by the 2nd Embodiment of this invention. (a)は、本発明の第2の実施の形態による第1の素子を構成するGMR素子の配置を示す図である。(b)は、本発明の第2の実施の形態による第2の素子を構成するGMR素子の配置を示す図である。(A) is a figure which shows arrangement | positioning of the GMR element which comprises the 1st element by the 2nd Embodiment of this invention. (B) is a figure which shows arrangement | positioning of the GMR element which comprises the 2nd element by the 2nd Embodiment of this invention. 本発明の第2の実施の形態による第3及び第4の素子を構成するGMR素子の配置を示す図である。It is a figure which shows arrangement | positioning of the GMR element which comprises the 3rd and 4th element by the 2nd Embodiment of this invention. (a)(b)は、本発明の第2の実施の形態による位置検出装置の変形例を示す図である。(A) and (b) are figures which show the modification of the position detection apparatus by the 2nd Embodiment of this invention. 2次の高調波を基本波として用いる場合のGMR素子の位置を示す図である。It is a figure which shows the position of the GMR element in the case of using a secondary harmonic as a fundamental wave. (a)は、本発明の第3の実施の形態による位置検出装置において第1の素子を構成するGMR素子の配置を示す図である。(b)は、本発明の第3の実施の形態による位置検出装置において第2の素子を構成するGMR素子の配置を示す図である。(A) is a figure which shows arrangement | positioning of the GMR element which comprises a 1st element in the position detection apparatus by the 3rd Embodiment of this invention. (B) is a figure which shows arrangement | positioning of the GMR element which comprises a 2nd element in the position detection apparatus by the 3rd Embodiment of this invention. 本発明の第3の実施の形態による位置検出装置において第3及び第4の素子を構成するGMR素子の配置を示す図である。It is a figure which shows arrangement | positioning of the GMR element which comprises the 3rd and 4th element in the position detection apparatus by the 3rd Embodiment of this invention. 4次の高調波を基本波として用いる場合のGMR素子の位置を示す図である。It is a figure which shows the position of the GMR element in the case of using a 4th harmonic as a fundamental wave. 2次の高調波を基本波として用いる場合のGMR素子の位置の変形例を示す図である。It is a figure which shows the modification of the position of the GMR element in the case of using a secondary harmonic as a fundamental wave. (a)は、本発明の第4の実施の形態による位置検出装置の構成を示す図である。(b)は、本発明の第4の実施の形態による第1乃至第8の素子の電気的な接続形態を示す図である。(A) is a figure which shows the structure of the position detection apparatus by the 4th Embodiment of this invention. (B) is a figure which shows the electrical connection form of the 1st thru | or 8th element by the 4th Embodiment of this invention. (a)は、本発明の第4の実施の形態においてn=1とした場合のGMR素子の具体的な配置例を示す図である。(b)は、本発明の第4の実施の形態においてn=2とした場合のGMR素子の具体的な配置例を示す図である。(A) is a figure which shows the specific example of arrangement | positioning of the GMR element in the case of setting n = 1 in the 4th Embodiment of this invention. (B) is a figure which shows the specific example of arrangement | positioning of the GMR element in case n = 2 in the 4th Embodiment of this invention. 4次の高調波を基本波として用いる場合のGMR素子の位置の変形例を示す図である。It is a figure which shows the modification of the position of the GMR element in the case of using a 4th harmonic as a fundamental wave. 図2(a)(b)に示したGMR素子の配置の変形例を示す図である。It is a figure which shows the modification of arrangement | positioning of the GMR element shown to Fig.2 (a) (b). 図9と同様のGMR素子の配置を、環状のエンコーダに適用した例を示す図である。It is a figure which shows the example which applied the arrangement | positioning of the GMR element similar to FIG. 9 to the cyclic | annular encoder. 図12と同様のGMR素子の配置を、環状のエンコーダに適用した例を示す図である。It is a figure which shows the example which applied arrangement | positioning of the GMR element similar to FIG. 12 to the cyclic | annular encoder. 図13と同様のGMR素子の配置を、環状のエンコーダに適用した例を示す図である。It is a figure which shows the example which applied the arrangement | positioning of the GMR element similar to FIG. 13 to the cyclic | annular encoder. 図16と同様のGMR素子の配置を、環状のエンコーダに適用した例を示す図である。It is a figure which shows the example which applied the arrangement | positioning of the GMR element similar to FIG. 16 to the cyclic | annular encoder. 図15(a)(b)のそれぞれと同様のGMR素子の配置を、環状のエンコーダに適用した例を示す図である。It is a figure which shows the example which applied the arrangement | positioning of the GMR element similar to each of Fig.15 (a) (b) to the cyclic | annular encoder. (a)は、本発明の背景技術による位置検出装置の構成を示す図である。(b)は、本発明の背景技術によるAMR素子の具体的な接続形態を示す図である。(A) is a figure which shows the structure of the position detection apparatus by the background art of this invention. (B) is a figure which shows the specific connection form of the AMR element by the background art of this invention. 本発明の背景技術による位置検出装置において位置検出対象の物体がx方向に移動するときの、各AMR素子の抵抗値及び磁気センサーの出力信号の変化を示す図である。It is a figure which shows the change of the resistance value of each AMR element and the output signal of a magnetic sensor when the object of a position detection object moves to a x direction in the position detection apparatus by the background art of this invention. 本発明の背景技術による磁気センサーにフルブリッジ接続を適用した場合の、各AMR素子の具体的な接続形態を示す図である。It is a figure which shows the specific connection form of each AMR element at the time of applying a full bridge connection to the magnetic sensor by the background art of this invention.
 以下、添付図面を参照しながら、本発明の好ましい実施の形態について詳細に説明する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
 図1(a)は、本発明の第1の実施の形態による位置検出装置1の構成を示す図である。位置検出装置1は磁気式の位置検出装置であり、同図に示すように、位置検出対象の物体(不図示)に貼付される磁気センサー2と、x方向(物体の移動方向)に延伸する表面3aを有し、この表面3aにx方向に沿ってN極とS極とが交互に現れるように着磁した磁気スケール3と、磁気センサー2の出力信号に基づいて位置検出対象の物体のx方向の位置を取得する位置取得部9(位置取得手段)とを備えている。 FIG. 1A is a diagram showing a configuration of the position detection apparatus 1 according to the first embodiment of the present invention. The position detection device 1 is a magnetic position detection device, and extends in the x direction (moving direction of the object) with a magnetic sensor 2 attached to an object (not shown) as a position detection target, as shown in FIG. A magnetic scale 3 having a surface 3a and magnetized so that N poles and S poles appear alternately along the x direction on the surface 3a; and an object of position detection based on an output signal of the magnetic sensor 2. and a position acquisition unit 9 (position acquisition means) for acquiring a position in the x direction.
 図1(a)には、磁気スケール3によって形成される磁界の強さも示している。同図に示すように、磁気スケール3によって形成される磁界の強さは、磁気スケール3の表面3aに現れる各磁極の幅(x方向の長さ)をλとすると、波長2λのサイン波として近似される。つまり、磁気スケール3自体が磁界の強さに関し周期性を有していることが好ましい。 FIG. 1A also shows the strength of the magnetic field formed by the magnetic scale 3. As shown in the figure, the strength of the magnetic field formed by the magnetic scale 3 is expressed as a sine wave having a wavelength of 2λ, where λ is the width (length in the x direction) of each magnetic pole appearing on the surface 3a of the magnetic scale 3. Approximated. That is, it is preferable that the magnetic scale 3 itself has periodicity with respect to the strength of the magnetic field.
 磁気センサー2は、第1乃至第4の素子4~4を有している。図1(a)では、これらがx方向に並んでいるかのように描いているが、この描画は便宜的なものであり、実際の第1乃至第4の素子4~4の配置とは異なっている。実際の配置については後に詳述する。 The magnetic sensor 2 includes first to fourth elements 4 A to 4 D. In FIG. 1 (a), these are drawn as if they are arranged in the x direction, but this drawing is for convenience, and the actual arrangement of the first to fourth elements 4 A to 4 D Is different. The actual arrangement will be described in detail later.
 図1(b)は、第1乃至第4の素子4~4の電気的な接続形態を示す図である。同図に示すように、本実施の形態では、第1乃至第4の素子4~4はそれぞれ2個のGMR素子によって構成される。具体的には、第1の素子4は2個のGMR素子5A1,5A2(2個の第1の検出素子)によって構成され、第2の素子4は2個のGMR素子5B1,5B2(2個の第2の検出素子)によって構成され、第3の素子4は2個のGMR素子5C1,5C2(2個の第3の検出素子)によって構成され、第4の素子4は2個のGMR素子5D1,5D2(2個の第4の検出素子)によって構成される。 FIG. 1B is a diagram showing an electrical connection form of the first to fourth elements 4 A to 4 D. As shown in the figure, in the present embodiment, the first to fourth elements 4 A to 4 D are each composed of two GMR elements. Specifically, the first element 4 A is composed by two GMR elements 5 A1, 5 A2 (two of the first detection element), the second element 4 B is two GMR elements 5 B1 , 5 B2 (two second detection elements), and the third element 4 C is constituted by two GMR elements 5 C1 , 5 C2 (two third detection elements), element 4 D of constituted by two GMR elements 5 D1, 5 D2 (2 pieces of fourth detection elements).
 GMR素子は、AMR素子と同様に、印加される磁界の強さによってその抵抗値が変化する素子である。通常の使い方では、GMR素子は、ピン方向(図1(a)に示したP方向)が表面3aの法線方向と平行になるよう設置され、そうすることによって、GMR素子が表面3aに沿ってx方向に移動する際、その抵抗値は磁気スケール3の対向位置に応じて変化することになる。GMR素子がx方向に移動するときの、GMR素子の抵抗値の変化(読み出し信号)の波長は、図1(a)に示すように2λとなる。これは、AMR素子の2倍である(図23(a)参照)。GMR素子の読み出し信号をフーリエ級数展開を用いて示すと、次の式(16)のようになる。ただし、RはGMR素子の抵抗値、φ=2π・x/2λであり、A,A,・・・は定数である。 Similar to the AMR element, the GMR element is an element whose resistance value changes depending on the strength of the applied magnetic field. In normal usage, the GMR element is placed so that the pin direction (P direction shown in FIG. 1A) is parallel to the normal direction of the surface 3a, so that the GMR element is along the surface 3a. When moving in the x direction, the resistance value changes according to the facing position of the magnetic scale 3. When the GMR element moves in the x direction, the wavelength of the change in the resistance value (read signal) of the GMR element is 2λ as shown in FIG. This is twice that of the AMR element (see FIG. 23A). When the readout signal of the GMR element is shown using Fourier series expansion, the following equation (16) is obtained. Where R is the resistance value of the GMR element, φ = 2π · x / 2λ, and A 0 , A 1 ,... Are constants.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 ここで、一般的には、周期的な信号のフーリエ級数展開は次の式(17)のように正弦項と余弦項の合計となる。これに対し、式(16)及び後述の各式では、正弦項のみを用いて読み出し信号を表している。これは、読み出し信号が奇関数であることによる。 Here, in general, the Fourier series expansion of a periodic signal is the sum of a sine term and a cosine term as in the following equation (17). On the other hand, in the equation (16) and each equation described later, the readout signal is expressed using only the sine term. This is because the read signal is an odd function.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 図1(b)に示すように、磁気センサー2は、接地電位(第1の電源電位)が供給される電源端子6(第1の電源端子)と、電源電位Vcc(第2の電源電位)が供給される電源端子7(第2の電源端子)と、2つの出力端子8a,8b(第1及び第2の出力端子)とを有している。GMR素子5A1,5A2は、この順で出力端子8aと電源端子6との間に直列接続される。同様に、GMR素子5B1,5B2は、この順で電源端子7と出力端子8aとの間に直列接続され、GMR素子5C1,5C2は、この順で出力端子8bと電源端子6との間に直列接続され、GMR素子5D1,5D2は、この順で電源端子7と出力端子8bとの間に直列接続される。出力端子8aに現れる電圧信号は磁気センサー2の一方の出力信号Vsinとなり、出力端子8bに現れる電圧信号は磁気センサー2の他方の出力信号Vcosとなる。なお、素子を構成する複数のGMR素子の接続の順番は順不同で構わない。例えば、GMR素子5A1,5A2の接続の順番は逆であってもよい。 As shown in FIG. 1B, the magnetic sensor 2 includes a power supply terminal 6 (first power supply terminal) to which a ground potential (first power supply potential) is supplied and a power supply potential Vcc (second power supply potential). Power supply terminal 7 (second power supply terminal) and two output terminals 8a and 8b (first and second output terminals). The GMR elements 5 A1 and 5 A2 are connected in series between the output terminal 8 a and the power supply terminal 6 in this order. Similarly, the GMR elements 5 B1 and 5 B2 are connected in series between the power supply terminal 7 and the output terminal 8 a in this order, and the GMR elements 5 C1 and 5 C2 are connected in this order to the output terminal 8 b and the power supply terminal 6. The GMR elements 5 D1 and 5 D2 are connected in series between the power supply terminal 7 and the output terminal 8 b in this order. The voltage signal appearing at the output terminal 8a becomes one output signal Vsin of the magnetic sensor 2, and the voltage signal appearing at the output terminal 8b becomes the other output signal Vcos of the magnetic sensor 2. Note that the order of connection of the plurality of GMR elements constituting the element may be in any order. For example, the order of connection of the GMR elements 5 A1 and 5 A2 may be reversed.
 以上の構成により、出力信号Vsin,Vcosはそれぞれ、次の式(18),式(19)で表される。ただし、R(xはA1,A2など)は、GMR素子5の抵抗値である。これらの式に示されるように、出力信号Vsinの分子は、第1の素子を構成するGMR素子の読み出し信号の合算信号となり、出力信号Vcosの分子は、第3の素子を構成するGMR素子の読み出し信号の合算信号となる。また、出力信号Vsinの分母は、第1及び第2の素子を構成するGMR素子の読み出し信号の合算信号となり、出力信号Vcosの分母は、第3及び第4の素子を構成するGMR素子の読み出し信号の合算信号となる。 With the above configuration, the output signals Vsin and Vcos are expressed by the following equations (18) and (19), respectively. However, R X (x is A1, A2, etc.) is the resistance value of the GMR element 5 X. As shown in these equations, the numerator of the output signal Vsin is a sum signal of the read signals of the GMR elements constituting the first element, and the numerator of the output signal Vcos is the sum of the GMR elements constituting the third element. This is the sum signal of the read signals. The denominator of the output signal Vsin is a sum signal of the read signals of the GMR elements constituting the first and second elements, and the denominator of the output signal Vcos is the read of the GMR elements constituting the third and fourth elements. It becomes the sum signal of the signal.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 各GMR素子の物理的な配置は、出力信号Vsin,Vcosを算出する際、φの1次項成分を含む奇数次の高調波が除去され、2次の高調波(φの2次項成分)が基本波となるように決定される。以下、各GMR素子の具体的な配置について説明する。 The physical arrangement of each GMR element is such that when the output signals Vsin and Vcos are calculated, odd-order harmonics including the first-order component of φ are removed, and second-order harmonics (second-order component of φ) are basically used. Decided to be a wave. Hereinafter, a specific arrangement of each GMR element will be described.
 図2(a)は、GMR素子5A1,5A2の配置を示す図である。同図に示すように、GMR素子5A1は、x=Bの位置を基準位置(第1の基準位置)とすると、そこからx方向に+π/2(=+λ/2)離れた第1の位置P(=B+λ/2)に配置される。また、GMR素子5A2は、第1の基準位置Bからx方向に-π/2(=-λ/2)離れた第2の位置P(=B-λ/2)に配置される。 FIG. 2A is a diagram showing the arrangement of the GMR elements 5 A1 and 5 A2 . As shown in the figure, when the position of x = B 1 is set as a reference position (first reference position), the GMR element 5 A1 is separated from the first by + π / 2 (= + λ / 2) in the x direction. Is located at position P 1 (= B 1 + λ / 2). The GMR element 5 A2 is disposed at a second position P 2 (= B 1 -λ / 2) that is −π / 2 (= −λ / 2) away from the first reference position B 1 in the x direction. The
 図2(b)は、GMR素子5B1,5B2の配置を示す図である。同図に示すように、GMR素子5B1は、x=Bの位置を基準位置(第2の基準位置)とし、そこからx方向に+π/2(=+λ/2)離れた第3の位置P(=B+λ/2)に配置される。なお、第2の基準位置Bは、ここでは第1の基準位置Bからx方向に+π/2(=+λ/2)(第3の所定距離)離れた位置に設定される。GMR素子5B2は、第2の基準位置Bからx方向に-π/2(=-λ/2)離れた第4の位置P(=B-λ/2)に配置される。 FIG. 2B is a diagram showing the arrangement of the GMR elements 5 B1 and 5 B2 . As shown in the figure, the GMR element 5 B1 uses the position of x = B 2 as a reference position (second reference position), and is separated from the third position by + π / 2 (= + λ / 2) in the x direction. It is disposed at a position P 3 (= B 2 + λ / 2). The second reference position B 2 is here set to the first reference from the position B 1 in the x-direction + π / 2 (= + λ / 2) ( third predetermined distance) away. The GMR element 5 B2 is disposed at a fourth position P 4 (= B 2 −λ / 2) that is separated from the second reference position B 2 by −π / 2 (= −λ / 2) in the x direction.
 各GMR素子を以上のように配置した結果、GMR素子5A1,5A2,5B1,5B2の読み出し信号はそれぞれ、次の式(20)~式(23)のように表される。 As a result of arranging each GMR element as described above, the read signals of the GMR elements 5 A1 , 5 A2 , 5 B1 , and 5 B2 are expressed by the following equations (20) to (23), respectively.
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 式(18)に式(20)~式(23)を代入すると、出力信号Vsinが次の式(24)のように求められる。 Substituting Equations (20) to (23) into Equation (18), the output signal Vsin is obtained as in the following Equation (24).
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 式(24)から理解されるように、本実施の形態による出力信号Vsinでは、φの1次項成分を含む奇数次の高調波が消え、2次の高調波(φの2次項成分)が基本波となっている。 As understood from the equation (24), in the output signal Vsin according to the present embodiment, odd-order harmonics including the first-order component of φ disappear, and second-order harmonics (second-order component of φ) are fundamental. It has become a wave.
 図3は、GMR素子5C1,5C2,5D1,5D2の配置を示す図である。同図に示すように、GMR素子5C1,5C2,5D2,5D2は、GMR素子5A1,5A2,5B1,5B2それぞれをx方向に所定距離+λ/4(=+π/4)だけずらした位置に配置される。なお、この所定距離は+λ/4に限られるものではなく、出力信号Vcosの位相が、出力信号Vsinの位相に比べてπ/2の奇数倍だけ異なることとなるように決定すればよい。また、GMR素子5C1,5C2についての所定距離(第1の所定距離)とGMR素子5D2,5D2についての所定距離(第2の所定距離)とが異なっていてもよい。これにより、GMR素子5C1,5C2,5D1,5D2の読み出し信号はそれぞれ、次の式(25)~式(28)のように表される。 FIG. 3 is a diagram showing the arrangement of the GMR elements 5 C1 , 5 C2 , 5 D1 and 5 D2 . As shown in the figure, the GMR elements 5 C1 , 5 C2 , 5 D2 , and 5 D2 are respectively connected to the GMR elements 5 A1 , 5 A2 , 5 B1 , and 5 B2 by a predetermined distance + λ / 4 (= + π / 4) in the x direction. ). The predetermined distance is not limited to + λ / 4, and may be determined so that the phase of the output signal Vcos differs by an odd multiple of π / 2 compared to the phase of the output signal Vsin. Further, the predetermined distance (first predetermined distance) for the GMR elements 5 C1 and 5 C2 and the predetermined distance (second predetermined distance) for the GMR elements 5 D2 and 5 D2 may be different. As a result, the read signals of the GMR elements 5 C1 , 5 C2 , 5 D1 , and 5 D2 are expressed as the following Expressions (25) to (28), respectively.
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 式(19)に式(25)~式(28)を代入すると、出力信号Vcosが次の式(29)のように求められる。 Substituting Expressions (25) to (28) into Expression (19), the output signal Vcos is obtained as in the following Expression (29).
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
 式(29)から理解されるように、出力信号Vcosにおいても、φの1次項成分を含む奇数次の高調波が消え、2次の高調波(φの2次項成分)が基本波となっている。 As understood from the equation (29), even in the output signal Vcos, the odd-order harmonics including the first-order component of φ disappear, and the second-order harmonic (second-order component of φ) becomes the fundamental wave. Yes.
 位置取得部9は、以上のようにして求められる出力信号Vsin,Vcosを用いて、位置検出対象である物体のx方向の位置を算出する。具体的には、次の式(30)により物体の位置xを算出する。 The position acquisition unit 9 uses the output signals Vsin and Vcos obtained as described above to calculate the position in the x direction of the object that is the position detection target. Specifically, the position x of the object is calculated by the following equation (30).
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
 以上説明したように、本実施の形態による位置検出装置1では、2次の高調波が基本波となる。したがって、本実施の形態による位置検出装置1では、従来の位置検出装置に比べて2倍の分解能が実現されている。別の見方をすれば、GMR素子を用いているにも関わらず、式(12)や式(13)に示したAMR素子を用いる場合と同等の分解能が得られている。したがって、位置検出装置1によれば、位置検出装置用の検出素子としてGMR素子を用いることが可能になっている。 As described above, in the position detection apparatus 1 according to the present embodiment, the second harmonic becomes the fundamental wave. Therefore, the position detection apparatus 1 according to the present embodiment realizes twice the resolution as compared with the conventional position detection apparatus. From another point of view, the same resolution as that obtained when the AMR elements shown in the equations (12) and (13) are used although the GMR elements are used. Therefore, according to the position detection device 1, it is possible to use a GMR element as a detection element for the position detection device.
 図4(a)は、第1の実施の形態による位置検出装置1の第1の変形例を示す図である。本変形例では、同図に示すように、第2及び第4の素子4,4が、磁気スケール3によって形成される磁界の影響を受けないよう構成された抵抗素子によって構成される。なお、「磁気スケール3によって形成される磁界の影響を受けないよう構成された抵抗素子」とは、磁気抵抗効果を有しない抵抗素子であってもよいし、磁気スケール3によって形成される磁界から磁気的に遮蔽された場所に配置されたGMR素子であってもよい。この場合の出力信号Vsin,Vcosは、第2及び第4の素子4,4の抵抗をRとすると、次の式(31),式(32)のように求められる。 FIG. 4A is a diagram illustrating a first modification of the position detection device 1 according to the first embodiment. In the present modification, as shown in the figure, the second and fourth elements 4 B and 4 D are configured by resistance elements configured not to be affected by the magnetic field formed by the magnetic scale 3. The “resistive element configured so as not to be affected by the magnetic field formed by the magnetic scale 3” may be a resistive element that does not have a magnetoresistive effect, or from a magnetic field formed by the magnetic scale 3. It may be a GMR element disposed at a magnetically shielded location. The output signals Vsin and Vcos in this case are obtained as in the following equations (31) and (32), where R S is the resistance of the second and fourth elements 4 B and 4 D.
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
 式(31),式(32)から理解されるように、本変形例による出力信号Vsin,Vcosでも、φの1次項成分を含む奇数次の高調波が消え、2次の高調波(φの2次項成分)が基本波となっている。したがって、位置検出装置用の検出素子としてGMR素子を用いることが可能になっている。 As understood from the equations (31) and (32), even in the output signals Vsin and Vcos according to this modification, the odd-order harmonics including the first-order component of φ disappear, and the second-order harmonics (φ The quadratic component is the fundamental wave. Therefore, it is possible to use a GMR element as a detection element for the position detection device.
 また、第2及び第4の素子4,4を、磁気スケール3によって形成される磁界から磁気的に遮蔽された場所に配置されたGMR素子によって構成した場合には、第1及び第3の素子4,4と第2及び第4の素子4,4とで温度特性を揃えることが可能になる。ただし一方で、磁気的に遮蔽する必要があることから、第1及び第3の素子4,4と第2及び第4の素子4,4とを一体の回路として構成できない可能性がある。したがって、これらを一体の回路とする必要があり、かつこれらの温度特性を揃える必要がある場合には、第1の実施の形態による位置検出装置1を用いることが好ましい。 In the case where the second and fourth elements 4 B and 4 D are configured by GMR elements disposed at locations magnetically shielded from the magnetic field formed by the magnetic scale 3, the first and third elements The temperature characteristics of the elements 4 A and 4 C and the second and fourth elements 4 B and 4 D can be made uniform. However, since it is necessary to shield magnetically, the first and third elements 4 A and 4 D and the second and fourth elements 4 B and 4 D may not be configured as an integrated circuit. There is. Therefore, when it is necessary to make these into an integrated circuit and to make these temperature characteristics uniform, it is preferable to use the position detection device 1 according to the first embodiment.
 図4(b)は、第1の実施の形態による位置検出装置1の第2の変形例を示す図である。本変形例では、同図に示すように、第2及び第4の素子4,4が、定電流源によって構成される。この場合の出力信号Vsin,Vcosは、第2及び第4の素子4,4によって生成される電流をIとすると、次の式(33),式(34)のように求められる。 FIG. 4B is a diagram illustrating a second modification of the position detection device 1 according to the first embodiment. In the present modification, as shown in the figure, the second and fourth elements 4 B and 4 D are constituted by constant current sources. The output signals Vsin and Vcos in this case are obtained as shown in the following equations (33) and (34), where I S is the current generated by the second and fourth elements 4 B and 4 D.
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000016
 式(33),式(34)から理解されるように、本変形例による出力信号Vsin,Vcosでも、φの1次項成分を含む奇数次の高調波が消え、2次の高調波(φの2次項成分)が基本波となっている。したがって、位置検出装置用の検出素子としてGMR素子を用いることが可能になっている。また、素子間の配線が長くなると、配線抵抗が無視できなくなることがある。このような場合、定電流源を使用することが好ましい。 As understood from the equations (33) and (34), even in the output signals Vsin and Vcos according to this modification, the odd-order harmonics including the first-order component of φ disappear, and the second-order harmonics (φ The quadratic component is the fundamental wave. Therefore, it is possible to use a GMR element as a detection element for the position detection device. Moreover, if the wiring between elements becomes long, the wiring resistance may not be negligible. In such a case, it is preferable to use a constant current source.
 図5は、本発明の第2の実施の形態による位置検出装置1における第1乃至第4の素子4~4の電気的な接続形態を示す図である。本実施の形態による位置検出装置1は、第1乃至第4の素子4~4がそれぞれ4個のGMR素子によって構成される点で第1の実施の形態による位置検出装置1と相違し、それ以外の点では共通している。以下では、相違点を中心に、本実施の形態による位置検出装置1について説明する。 FIG. 5 is a diagram showing an electrical connection form of the first to fourth elements 4 A to 4 D in the position detection apparatus 1 according to the second embodiment of the present invention. The position detection apparatus 1 according to the present embodiment is different from the position detection apparatus 1 according to the first embodiment in that the first to fourth elements 4 A to 4 D are each composed of four GMR elements. The other points are common. Hereinafter, the position detection apparatus 1 according to the present embodiment will be described focusing on the differences.
 図5に示すように、本実施の形態では、第1の素子4は4個のGMR素子5A1~5A4(4個の第1の検出素子)によって構成され、第2の素子4は4個のGMR素子5B1~5B4(4個の第2の検出素子)によって構成され、第3の素子4は4個のGMR素子5C1~5C4(4個の第3の検出素子)によって構成され、第4の素子4は4個のGMR素子5D1~5D4(4個の第4の検出素子)によって構成される。 As shown in FIG. 5, in the present embodiment, the first element 4 A is composed of four GMR elements 5 A1 to 5 A4 (four first detection elements), and the second element 4 B Is constituted by four GMR elements 5 B1 to 5 B4 (four second detection elements), and the third element 4 C includes four GMR elements 5 C1 to 5 C4 (four third detection elements). The fourth element 4 D is composed of four GMR elements 5 D1 to 5 D4 (four fourth detection elements).
 図5に示すように、GMR素子5A1~5A4は、この順で出力端子8aと電源端子6との間に直列接続され、GMR素子5B1~5B4は、この順で電源端子7と出力端子8aとの間に直列接続され、GMR素子5C1~5C4は、この順で出力端子8bと電源端子6との間に直列接続され、GMR素子5D1~5D4は、この順で電源端子7と出力端子8bとの間に直列接続される。以上の接続により、出力信号Vsin,Vcosはそれぞれ、次の式(35),式(36)で表される。 As shown in FIG. 5, GMR elements 5 A1 to 5 A4 are connected in series between output terminal 8a and power supply terminal 6 in this order, and GMR elements 5 B1 to 5 B4 are connected to power supply terminal 7 in this order. The GMR elements 5 C1 to 5 C4 are connected in series between the output terminal 8a, the GMR elements 5 C1 to 5 C4 are connected in series between the output terminal 8 b and the power supply terminal 6, and the GMR elements 5 D1 to 5 D4 are connected in this order. The power supply terminal 7 and the output terminal 8b are connected in series. With the above connection, the output signals Vsin and Vcos are expressed by the following equations (35) and (36), respectively.
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000017
 各GMR素子の物理的な配置は、第1の実施の形態同様、出力信号Vsin,Vcosを算出する際、φの1次項成分を含む奇数次の高調波が除去され、2次の高調波(φの2次項成分)が基本波となるように決定される。加えて本実施の形態では、4次の高調波(φの4次項成分)も除去されるように決定される。以下、各GMR素子の具体的な配置について説明する。 As with the first embodiment, the physical arrangement of each GMR element is such that when the output signals Vsin and Vcos are calculated, the odd-order harmonics including the first-order component of φ are removed, and the second-order harmonics ( The second-order term component of φ is determined to be a fundamental wave. In addition, in the present embodiment, it is determined so as to remove fourth-order harmonics (fourth-order component of φ). Hereinafter, a specific arrangement of each GMR element will be described.
 図6(a)は、GMR素子5A1~5A4の配置を示す図である。同図に示すように、GMR素子5A1は、上述した第2の位置P(=B-λ/2)からx方向に+π/8(=+λ/8)離れた位置(=B-3λ/8)に配置される。また、GMR素子5A2は、第2の位置Pからx方向に-π/8(=-λ/8)離れた位置(=B-5λ/8)に配置される。また、GMR素子5A3は、上述した第1の位置P(=B+λ/2)からx方向に+π/8(=+λ/8)離れた位置(=B+5λ/8)に配置される。また、GMR素子5A4は、第1の位置Pからx方向に-π/8(=-λ/8)離れた位置(=B+3λ/8)に配置される。 FIG. 6A is a diagram showing the arrangement of GMR elements 5 A1 to 5 A4 . As shown in the figure, the GMR element 5 A1 is located at a position (= B 1 ) away from the second position P 2 (= B 1 −λ / 2) described above by + π / 8 (= + λ / 8) in the x direction. -3λ / 8). The GMR element 5 A2 is disposed at a position (= B 1 -5λ / 8) that is separated from the second position P 2 by −π / 8 (= −λ / 8) in the x direction. The GMR element 5 A3 is disposed at a position (= B 1 + 5λ / 8) that is separated from the first position P 1 (= B 1 + λ / 2) by + π / 8 (= + λ / 8) in the x direction. Is done. Further, the GMR element 5 A4 is disposed at a position (= B 1 + 3λ / 8) that is separated from the first position P 1 by −π / 8 (= −λ / 8) in the x direction.
 次に、図6(b)は、GMR素子5B1~5B4の配置を示す図である。同図に示すように、GMR素子5B1は、上述した第3の位置P(=B+λ/2)からx方向に+π/8(=+λ/8)離れた位置(=B+5λ/8)に配置される。また、GMR素子5B2は、第3の位置Pからx方向に-π/8(=-λ/8)離れた位置(=B+3λ/8)に配置される。また、GMR素子5B3は、上述した第4の位置P(=B-λ/2)からx方向に+π/8(=+λ/8)離れた位置(=B-3λ/8)に配置される。また、GMR素子5B4は、第4の位置Pからx方向に-π/8(=-λ/8)離れた位置(=B-5λ/8)に配置される。 Next, FIG. 6B is a diagram showing the arrangement of the GMR elements 5 B1 to 5 B4 . As shown in the figure, the GMR element 5 B1 is located at a position (= B 2 + 5λ) that is separated from the above-described third position P 3 (= B 1 + λ / 2) by + π / 8 (= + λ / 8) in the x direction. / 8). The GMR element 5 B2 is disposed at a position (= B 2 + 3λ / 8) that is separated from the third position P 3 by −π / 8 (= −λ / 8) in the x direction. Further, the GMR element 5 B3 is located at a position (= B 2 −3λ / 8) that is separated from the above-described fourth position P 4 (= B 2 −λ / 2) by + π / 8 (= + λ / 8) in the x direction. Placed in. The GMR element 5 B4 is disposed at a position (= B 2 −5λ / 8) that is separated from the fourth position P 4 by −π / 8 (= −λ / 8) in the x direction.
 次に、図7は、GMR素子5C1~5C4,5D1~5D4の配置を示す図である。同図に示すように、GMR素子5C1~5C4,5D1~5D4は、GMR素子5A1~5A4,5B1~5B4それぞれをx方向に所定距離+λ/4(=+π/4)だけずらした位置に配置される。ここでも、この所定距離は+λ/4に限られるものではなく、出力信号Vcosの位相が、出力信号Vsinの位相に比べてπ/2の奇数倍だけ異なることとなるように決定すればよい。また、GMR素子5C1~5C4についての所定距離(第1の所定距離)とGMR素子5D1~5D4についての所定距離(第2の所定距離)とが異なっていてもよい。 Next, FIG. 7 is a diagram showing the arrangement of the GMR elements 5 C1 to 5 C4 and 5 D1 to 5 D4 . As shown in the figure, the GMR elements 5 C1 to 5 C4 , 5 D1 to 5 D4 are respectively connected to the GMR elements 5 A1 to 5 A4 and 5 B1 to 5 B4 by a predetermined distance + λ / 4 (= + π / 4) in the x direction. ). Again, this predetermined distance is not limited to + λ / 4, and it may be determined so that the phase of the output signal Vcos differs from the phase of the output signal Vsin by an odd multiple of π / 2. Further, the predetermined distance (first predetermined distance) for GMR elements 5 C1 to 5 C4 and the predetermined distance (second predetermined distance) for GMR elements 5 D1 to 5 D4 may be different.
 以上説明した配置に基づいて各GMR素子の読み出し信号を算出し、式(35),式(36)に代入することによって出力信号Vsin,Vcosを求めると、出力信号Vsin,Vcosは次の式(37),式(38)のように求められる。 When the read signals of the respective GMR elements are calculated based on the above-described arrangement and are substituted into the equations (35) and (36) to obtain the output signals Vsin and Vcos, the output signals Vsin and Vcos are expressed by the following equations ( 37) and equation (38).
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000018
 式(37),式(38)から理解されるように、本実施の形態による出力信号Vsin,Vcosでも、φの1次項成分を含む奇数次の高調波が消え、2次の高調波(φの2次項成分)が基本波となっている。したがって、本実施の形態による位置検出装置1でも、従来の位置検出装置に比べて2倍の分解能が実現されている。加えて、本実施の形態では4次の高調波(φの4次項成分)も除去されている。したがって、第1の実施の形態に比べ、より精度よく位置xを求めることが可能になっている。 As understood from the equations (37) and (38), even in the output signals Vsin and Vcos according to the present embodiment, the odd-order harmonics including the first-order component of φ disappear, and the second-order harmonics (φ Of the second-order term) is the fundamental wave. Therefore, the position detection device 1 according to the present embodiment also achieves twice the resolution as compared with the conventional position detection device. In addition, in the present embodiment, fourth-order harmonics (fourth-order component of φ) are also removed. Therefore, it is possible to obtain the position x more accurately than in the first embodiment.
 図8(a)(b)は、第2の実施の形態による位置検出装置1の変形例を示す図である。本変形例は、第2の基準位置Bを、第1の基準位置Bからx方向に+3π/2(=+3λ/2)離れた位置に設定している点で、第2の実施の形態と異なっている。本変形例によっても、第2の実施の形態と同様の効果が得られる。 FIGS. 8A and 8B are diagrams showing a modification of the position detection device 1 according to the second embodiment. This modification, the second reference position B 2, in the x-direction from the first reference position B 1 + 3π / 2 (= + 3λ / 2) in that set to a position apart, the second embodiment It is different from the form. Also by this modification, the same effect as the second embodiment is obtained.
 このように、第1の基準位置Bと第2の基準位置Bの間の距離は必ずしもπ/2(=λ/2)でなければならないわけではなく、lπ/2(lは奇数)であればよい。 Thus, not the distance between the first reference position B 1 of the second reference position B 2 must always π / 2 (= λ / 2 ), lπ / 2 (l is an odd number) If it is.
 ここで、2次の高調波を基本波として用いる場合のGMR素子の配置について、一般化した説明を行う。以下の説明では第1の素子4に着目し、この第1の素子4が、出力端子8aと電源端子6の間に直列接続された2個(nは任意の自然数の中から選択される数)のGMR素子からなるものとして説明する。第2の素子4については、以下の説明においてB,P,PをそれぞれB,P,Pに変更することで、同じ一般化を適用可能である。 Here, a generalized description will be given of the arrangement of the GMR element in the case where the second harmonic is used as the fundamental wave. In the following description focuses on the first element 4 A, select the first element 4 A is, 2 n pieces (n connected in series between the output terminal 8a and the power supply terminal 6 from among any natural number The number of GMR elements will be described. The same generalization can be applied to the second element 4 B by changing B 1 , P 1 , and P 2 to B 2 , P 3 , and P 4 in the following description.
 図9は、n=1~4のそれぞれの場合について、GMR素子の位置を示す図である。同図に示すように、まずn=1の場合(第1の素子4が2個のGMR素子からなる場合)、2個のGMR素子は、第1の基準位置Bからx方向にそれぞれ±π/2離れた第1及び第2の位置P,Pに、1個ずつ配置される。 FIG. 9 is a diagram showing the position of the GMR element in each case of n = 1 to 4. As shown in the drawing, first the case of n = 1 (if the first element 4 A is composed of two GMR element), the two GMR elements, respectively, from the first reference position B 1 in the x-direction to ± [pi / 2 apart first and second positions P 1, P 2, are arranged one by one.
 なお、本発明において、例えば「Xから±X±X±X離れた8個の位置」(X~Xはx軸上の位置)という表現を用いる場合、X+X+X+X+2π・i、X+X+X-X+2π・i、X+X-X+X+2π・i、X+X-X-X+2π・i、X-X+X+X+2π・i、X-X+X-X+2π・i、X-X-X+X+2π・i、及びX-X-X-X+2π・iの8個の位置を意味することとする。ただし、iは任意の整数であり、検出素子ごとに異なる値であってもよい。2π・iを加算しているのは、ある位置と、そこから2π・i離れた位置とで、GMR素子の出力は同じになるからである。これは、GMR素子の出力信号の波形が、磁界の周期に依存した波形となることによる。以上の定義によれば、第1の位置Pは、第1の基準位置Bからx方向に+π/2+2π・i離れた位置となり、第2の位置Pは、第1の基準位置Bからx方向に-π/2+2π・i離れた位置となる。 In the present invention, for example, when using the expression “eight positions apart from X 1 by ± X 2 ± X 3 ± X 4 ” (X 1 to X 4 are positions on the x axis), X 1 + X 2 + X 3 + X 4 + 2π · i, X 1 + X 2 + X 3 −X 4 + 2π · i, X 1 + X 2 −X 3 + X 4 + 2π · i, X 1 + X 2 −X 3 −X 4 + 2π · i, X 1 -X 2 + X 3 + X 4 + 2π · i, X 1 -X 2 + X 3 -X 4 + 2π · i, X 1 -X 2 -X 3 + X 4 + 2π · i, and X 1 -X 2 -X 3 -X It means 8 positions of 4 + 2π · i. However, i is an arbitrary integer and may be a different value for each detection element. The reason why 2π · i is added is that the output of the GMR element is the same at a certain position and a position away from 2π · i. This is because the waveform of the output signal of the GMR element becomes a waveform depending on the period of the magnetic field. According to the above definition, the first position P 1 is a position separated from the first reference position B 1 by + π / 2 + 2π · i in the x direction, and the second position P 2 is the first reference position B 1. It is a position away from 1 in the x direction by −π / 2 + 2π · i.
 次にn≧2である場合には、第1の位置Pからx方向にそれぞれ±π/8・・・±π/2n+1離れた2n-1個の位置に1個ずつGMR素子が配置されるとともに、第2の位置Pからx方向にそれぞれ±π/8・・・±π/2n+1離れた2n-1個の位置にも1個ずつGMR素子が配置される。 Then in the case of n ≧ 2, the one at first respective ± [pi / 8 from the position P 1 in the x direction ··· ± π / 2 n + 1 apart 2 n-1 positions GMR element together they are placed, one by one to the second, respectively ± [pi / 8 from the position P 2 in the x direction ··· ± π / 2 n + 1 apart 2 n-1 positions GMR elements are arranged.
 nの値ごとに再度説明すると、n=2の場合には、第1の位置Pからx方向にそれぞれ±π/8離れた2個の位置(より一般的に言えば、第1の位置Pからx方向にπ/8+2π・i離れた位置と、第1の位置Pからx方向に-π/8+2π・i離れた位置。以下同様。)に1個ずつGMR素子が配置されるとともに、第2の位置Pからx方向にそれぞれ±π/8離れた2個の位置にも1個ずつGMR素子が配置される。n=3の場合には、第1の位置Pからx方向にそれぞれ±π/8±π/16離れた4個の位置に1個ずつGMR素子が配置されるとともに、第2の位置Pからx方向にそれぞれ±π/8±π/16離れた4個の位置にも1個ずつGMR素子が配置される。n=4の場合には、第1の位置Pからx方向にそれぞれ±π/8±π/16±π/32離れた8個の位置に1個ずつGMR素子が配置されるとともに、第2の位置Pからx方向にそれぞれ±π/8±π/16±π/32離れた8個の位置にも1個ずつGMR素子が配置される。 When again it is described for each value of n, when n = 2, speaking from a first position P 1, respectively ± [pi / 8 distant two positions (more generally in the x-direction, a first position a position apart in the x-direction π / 8 + 2π · i from P 1, -π / 8 + 2π · i away. the same applies hereinafter. 1 to) each GMR element is arranged in the x direction from the first position P 1 together, GMR elements one by one is disposed to two positions away respectively ± [pi / 8 in x-direction from the second position P 2. n = in the case of 3, together with one by one from the first position P 1 to the four positions away respectively ± π / 8 ± π / 16 in the x-direction GMR element is disposed, a second position P One GMR element is also arranged at four positions spaced from each other by 2 in the x direction by ± π / 8 ± π / 16. In the case of n = 4, together with the one by one from the first position P 1 to the respective ± π / 8 ± π / 16 ± π / 32 distant eight positions in the x-direction GMR element is disposed, the one by one from the second position P 2, respectively ± π / 8 ± π / 16 ± π / 32 distant eight positions in the x-direction GMR element is arranged.
 以上のような配置を採用することにより、第1及び第2の実施の形態で説明したように、φの1次項成分を含む奇数次の高調波が消え、2次の高調波(φの2次項成分)を基本波として用いることが可能になる。また、n≧2の場合には4次の高調波が、n≧3の場合には8次の高調波が、n≧4の場合には16次の高調波がそれぞれさらに除去されることとなり、nが大きいほど、より精度よく位置xを求めることが可能になる。 By adopting the above arrangement, as described in the first and second embodiments, odd-order harmonics including the first-order component of φ disappear, and second-order harmonics (φ2 Next-order component) can be used as the fundamental wave. Further, when n ≧ 2, the 4th harmonic is further removed, when n ≧ 3, the 8th harmonic is further removed, and when n ≧ 4, the 16th harmonic is further removed. , N is larger, the position x can be obtained more accurately.
 なお、GMR素子の配置と除去される高調波の間には、一般的には次のような関係がある。すなわち、第1の基準位置Bからx方向に±π/Y±π/Y±π/Y・・・±π/Y離れた2個の位置に1個ずつGMR素子を配置した場合、Y/2次、Y/2次、Y/2次、・・・Y/2次の波が除去される。例えば図9のn=4の場合であれば、Y=2、Y=8、Y=16、Y=32であるので、2/2=1次、8/2=4次、16/2=8次、32/2=16次の各波が除去されることになる。 In general, the following relationship exists between the arrangement of the GMR element and the harmonics to be removed. That is, one GMR element is placed at 2 n positions separated by ± π / Y 1 ± π / Y 2 ± π / Y 3 ... ± π / Y n in the x direction from the first reference position B 1. When arranged, Y 1 / second order, Y 2 / second order, Y 3 / second order,... Y n / second order waves are removed. For example, in the case of n = 4 in FIG. 9, Y 1 = 2, Y 2 = 8, Y 3 = 16, and Y 4 = 32, so 2/2 = 1 order, 8/2 = 4 order, The waves of 16/2 = 8th order and 32/2 = 16th order are removed.
 次に、本発明の第3の実施の形態による位置検出装置1について説明する。本実施の形態による位置検出装置1は、第1乃至第4の素子4~4がそれぞれ4個のGMR素子によって構成される点で第2の実施の形態による位置検出装置1と共通しているが、各GMR素子の物理的な配置の点で、第2の実施の形態による位置検出装置1と相違している。具体的には、本実施の形態による各GMR素子の物理的な配置は、出力信号Vsin,Vcosを算出する際、φの1次項成分を含む奇数次の高調波に加えて2次の高調波(φの2次項成分)も除去され、4次の高調波(φの4次項成分)が基本波となるように決定される。以下では、相違点を中心に、本実施の形態による位置検出装置1について説明する。 Next, a position detection apparatus 1 according to a third embodiment of the present invention will be described. The position detection apparatus 1 according to the present embodiment is common to the position detection apparatus 1 according to the second embodiment in that the first to fourth elements 4 A to 4 D are each composed of four GMR elements. However, it differs from the position detection apparatus 1 according to the second embodiment in the physical arrangement of each GMR element. Specifically, the physical arrangement of each GMR element according to the present embodiment is such that when the output signals Vsin and Vcos are calculated, in addition to the odd-order harmonics including the first-order component of φ, the second-order harmonics are included. (Second-order component of φ) is also removed, and the fourth-order harmonic (fourth-order component of φ) is determined to be a fundamental wave. Hereinafter, the position detection apparatus 1 according to the present embodiment will be described focusing on the differences.
 図10(a)は、本実施の形態による位置検出装置1におけるGMR素子5A1~5A4の配置を示す図である。同図に示すように、本実施の形態でのGMR素子5A1は、上述した第1の位置P(=B+λ/2)からx方向に+π/4(=+λ/4)離れた第5の位置P(=B+3λ/4)に配置される。また、GMR素子5A2は、第1の位置Pからx方向に-π/4(=-λ/4)離れた第6の位置P(=B+λ/4)に配置される。また、GMR素子5A3は、上述した第2の位置P(=B-λ/2)からx方向に+π/4(=+λ/4)離れた第7の位置P(=B-λ/4)に配置される。また、GMR素子5A4は、第2の位置Pからx方向に-π/4(=-λ/4)離れた第8の位置P(=B-3λ/4)に配置される。 FIG. 10A is a diagram showing the arrangement of the GMR elements 5 A1 to 5 A4 in the position detection apparatus 1 according to the present embodiment. As shown in the figure, the GMR element 5 A1 in the present embodiment is separated from the above-described first position P 1 (= B 1 + λ / 2) by + π / 4 (= + λ / 4) in the x direction. It is arranged at the fifth position P 5 (= B 1 + 3λ / 4). The GMR element 5 A2 is disposed at a sixth position P 6 (= B 1 + λ / 4) that is separated from the first position P 1 by −π / 4 (= −λ / 4) in the x direction. Further, the GMR element 5 A3 has a seventh position P 7 (= B 1 ) that is separated from the second position P 2 (= B 1 -λ / 2) by + π / 4 (= + λ / 4) in the x direction. -Λ / 4). Further, the GMR element 5 A4 is arranged at an eighth position P 8 (= B 1 -3λ / 4) that is separated from the second position P 2 by −π / 4 (= −λ / 4) in the x direction. .
 図10(b)は、本実施の形態による位置検出装置1におけるGMR素子5B1~5B4の配置を示す図である。同図に示すように、本実施の形態では、第2の基準位置Bは第1の基準位置Bからx方向に+π/4(=+λ/4)離れた位置に設定される。 FIG. 10B is a diagram showing the arrangement of the GMR elements 5 B1 to 5 B4 in the position detection device 1 according to the present embodiment. As shown in the figure, in this embodiment, the second reference position B 2 is set to the first from the reference position B 1 in the x-direction + π / 4 (= + λ / 4) away.
 なお、第1の基準位置Bと第2の基準位置Bの間の距離は、一般的には、基本波が2次の高調波である場合にπ/2の奇数倍となる。第1及び第2の実施の形態では、基本波が2次の高調波であったため、第1の基準位置Bと第2の基準位置Bの間の距離はπ/2の奇数倍であった。これに対し、本実施の形態では、基本波の次数が4であるため、第1の基準位置Bと第2の基準位置Bの間の距離はπ/4の奇数倍となる。 The distance between the first reference position B 1 of the second reference position B 2 is generally an odd multiple of [pi / 2 k if the fundamental wave is 2 k harmonic . In the first and second embodiments, since the fundamental wave is 2 harmonic, the distance between the first reference position B 1 of the second reference position B 2 is an odd multiple of [pi / 2 there were. In contrast, in the present embodiment, since the order of the fundamental wave is 4, the distance between the first reference position B 1 of the second reference position B 2 is an odd multiple of [pi / 4.
 さて、GMR素子5B4は、第3の位置P(=B+λ/2)からx方向に+π/4(=+λ/4)離れた第9の位置P(=B+3λ/4)に配置される。また、GMR素子5B3は、第3の位置Pからx方向に-π/4(=-λ/4)離れた第10の位置P10(=B+λ/4)に配置される。また、GMR素子5B2は、第4の位置P(=B-λ/2)からx方向に+π/4(=+λ/4)離れた第11の位置P11(=B-λ/4)に配置される。また、GMR素子5B1は、第4の位置Pからx方向に-π/4(=-λ/4)離れた第12の位置P12(=B-3λ/4)に配置される。 The GMR element 5 B4 has a ninth position P 9 (= B 2 + 3λ / 4) that is separated from the third position P 3 (= B 2 + λ / 2) by + π / 4 (= + λ / 4) in the x direction. ). The GMR element 5 B3 is disposed at a tenth position P 10 (= B 2 + λ / 4) that is separated from the third position P 3 by −π / 4 (= −λ / 4) in the x direction. Further, the GMR element 5 B2 has an eleventh position P 11 (= B 2 −λ) that is separated from the fourth position P 4 (= B 2 −λ / 2) by + π / 4 (= + λ / 4) in the x direction. / 4). Further, the GMR element 5 B1 is disposed at a twelfth position P 12 (= B 2 -3λ / 4) which is separated from the fourth position P 4 by −π / 4 (= −λ / 4) in the x direction. .
 図11は、本実施の形態による位置検出装置1におけるGMR素子5C1~5C4,5D1~5D4の配置を示す図である。同図に示すように、GMR素子5C1~5C4,5D1~5D4は、GMR素子5A1~5A4,5B1~5B4それぞれをx方向に所定距離+λ/8(=+π/8)だけずらした位置に配置される。ここでも、この所定距離は+λ/8に限られるものではなく、出力信号Vcosの位相が、出力信号Vsinの位相に比べてπ/2の奇数倍だけ異なることとなるように決定すればよい。また、GMR素子5C1~5C4についての所定距離(第1の所定距離)とGMR素子5D1~5D4についての所定距離(第2の所定距離)とが異なっていてもよい。 FIG. 11 is a diagram showing an arrangement of the GMR elements 5 C1 to 5 C4 and 5 D1 to 5 D4 in the position detection apparatus 1 according to the present embodiment. As shown in the figure, the GMR elements 5 C1 to 5 C4 , 5 D1 to 5 D4 are respectively connected to the GMR elements 5 A1 to 5 A4 and 5 B1 to 5 B4 by a predetermined distance + λ / 8 (= + π / 8) in the x direction. ). Again, this predetermined distance is not limited to + λ / 8, and it may be determined so that the phase of the output signal Vcos differs by an odd multiple of π / 2 compared to the phase of the output signal Vsin. Further, the predetermined distance (first predetermined distance) for GMR elements 5 C1 to 5 C4 and the predetermined distance (second predetermined distance) for GMR elements 5 D1 to 5 D4 may be different.
 以上説明した配置に基づいて各GMR素子の読み出し信号を算出し、式(35),式(36)に代入することによって出力信号Vsin,Vcosを求めると、出力信号Vsin,Vcosは次の式(39),式(40)のように求められる。 When the read signals of the respective GMR elements are calculated based on the above-described arrangement and are substituted into the equations (35) and (36) to obtain the output signals Vsin and Vcos, the output signals Vsin and Vcos are expressed by the following equations ( 39) and Equation (40).
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000019
 式(39),式(40)から理解されるように、本実施の形態による出力信号Vsin,Vcosでは、φの1次項成分を含む奇数次の高調波に加えて2次の高調波(φの2次項成分)も除去され、4次の高調波(φの4次項成分)が基本波となっている。したがって、本実施の形態による位置検出装置1では、従来の位置検出装置に比べて4倍の分解能が実現されている。 As understood from the equations (39) and (40), in the output signals Vsin and Vcos according to the present embodiment, in addition to the odd-order harmonics including the first-order component of φ, the second-order harmonics (φ Of the second-order term) is also removed, and the fourth-order harmonic (fourth-order component of φ) is the fundamental wave. Therefore, the position detection device 1 according to the present embodiment achieves a resolution four times that of the conventional position detection device.
 ここで、4次の高調波を基本波として用いる場合のGMR素子の配置について、一般化した説明を行う。以下の説明では第1の素子4に着目し、この第1の素子4が、出力端子8aと電源端子6の間に直列接続された2個(nは2以上の任意の自然数の中から選択される数)のGMR素子からなるものとして説明する。第2の素子4については、以下の説明においてB,P,P,P~PをそれぞれB,P,P,P~P12に変更することで、同じ一般化を適用可能である。 Here, a general description will be given of the arrangement of the GMR elements in the case where the fourth harmonic is used as the fundamental wave. In the following description focuses on the first element 4 A, the first element 4 A is, 2 n pieces connected in series between the output terminal 8a and the power supply terminal 6 (n is an arbitrary natural number of 2 or more A description will be given assuming that the number of GMR elements is a number selected from among them. The second element 4 B is the same by changing B 1 , P 1 , P 2 , and P 5 to P 8 to B 2 , P 3 , P 4 , and P 9 to P 12 in the following description. Generalization is applicable.
 図12は、n=2~4のそれぞれの場合について、GMR素子の位置を示す図である。同図に示すように、まずn=2の場合(第1の素子4が4個のGMR素子からなる場合)、4個のGMR素子は、第1の基準位置Bからx方向にそれぞれ±π/2離れた第1及び第2の位置P1,P2からさらに±π/4離れた第5乃至第8の位置P~Pに、1個ずつ配置される。 FIG. 12 is a diagram showing the position of the GMR element in each case of n = 2-4. As shown in the drawing, first the case of n = 2 (if the first element 4 A is composed of four GMR elements), four GMR elements, respectively, from the first reference position B 1 in the x-direction One by one is arranged at the fifth to eighth positions P 5 to P 8 further separated by ± π / 4 from the first and second positions P1, P2 separated by ± π / 2.
 次にn≧3である場合には、第5の位置Pからx方向にそれぞれ±π/16・・・±π/2n+1離れた2n-2個の位置に1個ずつGMR素子が配置され、第6の位置Pからx方向にそれぞれ±π/16・・・±π/2n+1離れた2n-2個の位置に1個ずGMR素子がつ配置され、第7の位置Pからx方向にそれぞれ±π/16・・・±π/2n+1離れた2n-2個の位置に1個ずつGMR素子が配置され、第8の位置Pからx方向にそれぞれ±π/16・・・±π/2n+1離れた2n-2個の位置に1個ずつGMR素子が配置される。 Then in the case of n ≧ 3 is one by one from the position P 5 of the 5 to each ± π / 16 ··· ± π / 2 n + 1 apart 2 n-2 pieces of position in the x-direction GMR element is arranged, the sixth is arranged one not a GMR element one each ± π / 16 ··· ± π / 2 n + 1 apart 2 n-2 pieces of position from the position P 6 in the x direction, the position of the 7 One GMR element is arranged at each of 2 n−2 positions ± π / 16... ± π / 2 n + 1 apart from P 7 in the x direction, and ± 8 directions from the eighth position P 8 in the x direction. π / 16... ± π / 2 n + 1 GMR elements are arranged at 2 n−2 positions apart from each other.
 以上のような配置を採用することにより、第3の実施の形態で説明したように、φの1次項成分を含む奇数次の高調波に加えて2次の高調波(φの2次項成分)も除去され、4次の高調波(φの4次項成分)を基本波として用いることが可能になる。また、n≧3の場合には8次の高調波が、n≧4の場合には16次の高調波がそれぞれさらに除去される。n=4の場合について上述した変数Y,Y,・・・を用いて説明すると、Y=2、Y=4、Y=16、Y=32であるので、2/2=1次、4/2=2次、16/2=8次、32/2=16次が除去されることになる。したがって、nが大きいほど、より精度よく位置xを求めることが可能になる。 By adopting the above arrangement, as described in the third embodiment, in addition to odd-order harmonics including the first-order component of φ, second-order harmonics (second-order component of φ) And the fourth-order harmonic (fourth-order component of φ) can be used as the fundamental wave. Further, when n ≧ 3, the 8th harmonic is further removed, and when n ≧ 4, the 16th harmonic is further removed. n = variable Y 1 described above for the case of 4, Y 2, will be described with reference to ..., because it is Y 1 = 2, Y 2 = 4, Y 3 = 16, Y 4 = 32, 2/2 = 1st order, 4/2 = 2nd order, 16/2 = 8th order, and 32/2 = 16th order. Therefore, the position x can be obtained more accurately as n increases.
 以上説明したように、本発明によれば、2次又は4次の高調波を基本波として用いることが可能になる。したがって、従来の位置検出装置に比べて2倍又は4倍の分解能を得ることが可能になっている。別の見方をすれば、AMR素子の半分の分解能しか得られないGMR素子を用いても、従来と同等若しくはそれ以上の分解能を得ることができるので、検出素子としてGMR素子を用いることが可能になる。 As described above, according to the present invention, it is possible to use the second or fourth harmonic as the fundamental wave. Therefore, it is possible to obtain twice or four times the resolution as compared with the conventional position detecting device. From another point of view, even if a GMR element that can obtain only half the resolution of an AMR element is used, a resolution equivalent to or higher than that of the conventional one can be obtained, so that a GMR element can be used as a detection element. Become.
 なお、本発明では、2次又は4次の高調波だけでなく、2(kは自然数)次の高調波が基本波となり得る。したがって、例えば8次や16次の高調波が基本波となるようGMR素子を配置することにより、より高い分解能を得ることが可能になる。 In the present invention, not only the second-order or fourth-order harmonics but also 2 k (k is a natural number) order harmonics can be the fundamental wave. Therefore, for example, by arranging the GMR element so that the 8th and 16th harmonics become the fundamental wave, higher resolution can be obtained.
 一方で、2次以外の高調波は基本波とはなり得ない。これは、2次項成分を除去することで、2+2k+1・N次項成分(NはN≧0を満たす整数)も除去されてしまうためである。以下、この点について詳しく説明する。 On the other hand, harmonics other than the 2 k order cannot be fundamental waves. This is because the 2 k +2 k + 1 · Nth order component (N is an integer satisfying N ≧ 0) is also removed by removing the 2 k order component. Hereinafter, this point will be described in detail.
 高調波の除去は要するに、元の信号の位相をプラスの方向とマイナスの方向に所定量ずつずらしてなる2つの信号を足し合わせることによって実現される。つまり、上述した式(17)に示したf(φ)においてφにオフセット±ρを乗せたものを足し合わせてなるg(φ)=f(φ+ρ)+f(φ-ρ)は、f(φ)からρに応じた高調波が除去された信号となる。 In short, the removal of harmonics is realized by adding two signals that are shifted by a predetermined amount in the positive and negative phases of the original signal. That is, g (φ) = f (φ + ρ) + f (φ−ρ) obtained by adding the offset ± ρ added to φ in f (φ) shown in the above equation (17) is f (φ ) From which harmonics corresponding to ρ are removed.
 式(41)は、信号g(φ)を数式で表したものである。式(41)によれば、ある次数m(mは自然数)が式(42)の関係を満たす場合、φのm次項成分が信号g(φ)から除去される。cos(mρ)=0となるからである。ただし、式(42)中のkは整数である。逆に言えば、m次項成分を除去したい場合、式(42)を満たすようにρを決定すればよい。 Expression (41) represents the signal g (φ) by a mathematical expression. According to the equation (41), when a certain order m 0 (m 0 is a natural number) satisfies the relationship of the equation (42), the m 0th- order term component of φ is removed from the signal g (φ). This is because cos (m 0 ρ) = 0. However, k 1 in the formula (42) is an integer. Conversely, if it is desired to remove the m 0th- order term component, ρ may be determined so as to satisfy Equation (42).
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000020
 ここで、式(42)を満たすようにρを決定した場合、cos(xρ)=0を満たすx(xは自然数)はmだけとはならない。具体的には、式(43)を満たすxはすべてcos(xρ)=0を満たすことになる。ただし、式(43)中のkは整数である。 Here, when ρ is determined so as to satisfy Expression (42), x satisfying cos (xρ) = 0 (x is a natural number) is not only m 0 . Specifically, all x satisfying the equation (43) satisfy cos (xρ) = 0. However, k 2 in the formula (43) is an integer.
Figure JPOXMLDOC01-appb-M000021
Figure JPOXMLDOC01-appb-M000021
 k=0とすると、式(43)は、次の式(44)のように書き直せる。式(44)から、m次項成分が除去されるようにρを決定した場合、m次項成分の他に、式(45)で表されるm次項成分(NはN≧0を満たす整数)も同時に除去されることになる。 If k 1 = 0, the equation (43) can be rewritten as the following equation (44). When ρ is determined from the equation (44) such that the m 0th- order term component is removed, in addition to the m 0th- order term component, the m Nth- order term component (N satisfies N ≧ 0) expressed by the equation (45) (Integer) is also removed at the same time.
Figure JPOXMLDOC01-appb-M000022
Figure JPOXMLDOC01-appb-M000022
 次の表1は、mの値ごとに、同時に除去される次数mを具体的に列挙したものである。この表に示されるように、1次項成分が除去されるようにρを決定した場合、すべての奇数次項成分が除去される。また、2次項成分が除去されるようにρを決定した場合、6次項、10次項、14次項、・・・の各成分が除去される。以下も同様である。 The following Table 1 specifically lists the order m N removed simultaneously for each value of m 0 . As shown in this table, when ρ is determined so that the first-order term component is removed, all odd-order term components are removed. Further, when ρ is determined such that the second-order term component is removed, the sixth-order term, the 10th-order term, the 14th-order term,... Are removed. The same applies to the following.
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
 同時に除去される一連の次数のうち最も小さい次数を基本次数と呼ぶことにすると、基本次数は1,2,4,・・・,2(kはk≧0を満たす整数)となる。したがって、式(45)より、2を基本次数とする場合に同時に除去される次数は、一般的に次の式(46)で表されることになる。 If the smallest order among the series of orders removed at the same time is called a basic order, the basic orders are 1, 2, 4,..., 2 k (k is an integer satisfying k ≧ 0). Therefore, from equation (45), the order removed simultaneously when 2 k is the basic order is generally expressed by the following equation (46).
Figure JPOXMLDOC01-appb-M000024
Figure JPOXMLDOC01-appb-M000024
 このように、本発明によれば、2次項成分を除去することで2+2k+1・N次項成分(NはN≧0を満たす整数)も除去される。 As described above, according to the present invention, the 2 k +2 k + 1 · Nth order component (N is an integer satisfying N ≧ 0) is also removed by removing the 2 k order component.
 ここで、式(46)に現れる2(1+2N)で表される数には、2k+1未満の全自然数が含まれる。これは、全ての自然数は偶数の素数(2)と奇数の素数の積で示され、(1+2N)は全奇数(奇数の素数の積)を示し、2は偶数の素数の積を示すことによる。したがって、2次項成分(0≦k≦n)を最初に除去する配置をとれば、2n+1次項成分が基本波となる。 Here, the number represented by 2 k (1 + 2N) appearing in the equation (46) includes a total natural number less than 2 k + 1 . This means that all natural numbers are represented by products of even prime numbers (2) and odd prime numbers, (1 + 2N) represents all odd numbers (product of odd prime numbers), and 2 k represents products of even prime numbers. by. Therefore, if the arrangement is such that the 2 k order term component (0 ≦ k ≦ n) is removed first, the 2 n + 1 order term component becomes the fundamental wave.
 逆の観点から見ると、例えば4次の高調波を基本波として用いるためには1次項成分と2次項成分を除去すれば足り、3次項成分についてはわざわざ除去する必要がないと言える。つまり、2次(k≧1)の高調波を基本波とするためのGMR素子の配置は、2次項成分(mはkより小さい正の整数)が除去されるように決定すれば足りる。上述した図9や図12に示した例は、本発明のこのような性質を利用したものである。 From the opposite viewpoint, it can be said that, for example, in order to use a fourth-order harmonic as a fundamental wave, it is sufficient to remove the first-order component and the second-order term component, and it is not necessary to remove the third-order term component. In other words, the arrangement of the GMR element to the fundamental harmonic of the 2 k order (k ≧ 1) is, 2 m-order terms component (m is smaller than k positive integer) sufficient to determine as is removed . The examples shown in FIG. 9 and FIG. 12 described above utilize such properties of the present invention.
 ただし、2次項成分(mはkより小さい正の整数)を除去するだけでは、基本波より高次の高調波の除去の観点から、問題となる場合もある。以下、詳しく説明する。 However, removing only the 2 m order component (m is a positive integer smaller than k) may cause a problem from the viewpoint of removing higher harmonics than the fundamental wave. This will be described in detail below.
 例えば図9のn=3の例では、除去対象の基本次数が1,4,8になるので、除去される次数は、1,3,5,7,・・・,2N+1次、4,12,20,28,・・・,8N+4次、8,24,40,56,・・・,16N+8次の各成分となる。結局、除去される成分は1,3,4,5,7,8,9,11,12・・・次の各成分となり、6次項成分や10次項成分等が除去されないことになる。また、図12のn=3の例では、除去対象の基本次数が1,2,8になるので、除去される次数は、1,3,5,7,・・・,2N+1次、2,6,10,14,・・・,4N+2次,8,24,40,56,・・・,16N+8次の各成分となる。結局、除去される成分は1,2,3,5,6,7,8,9,10,11,13,・・・次の各成分となり、12次項成分等が除去されない。 For example, in the example of n = 3 in FIG. 9, the basic orders to be removed are 1, 4, 8, and the removed orders are 1, 3, 5, 7,..., 2N + 1 order, 4,12. , 20, 28,..., 8N + 4th order, 8, 24, 40, 56,. Eventually, the components to be removed are the following components: 1, 3, 4, 5, 7, 8, 9, 11,... The 6th order component, the 10th order component and the like are not removed. In the example of n = 3 in FIG. 12, since the basic orders to be removed are 1, 2, 8, the orders to be removed are 1, 3, 5, 7,..., 2N + 1 order, 2, 6, 10, 14,..., 4N + second order, 8, 24, 40, 56,. Eventually, the removed components are 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 13,..., And the following components are not removed.
 ここで問題としている「除去されない成分」は、要するに、基本波として用いる2次が除去されていれば同時に除去されるはずの高調波の成分、すなわち2+2k+1・N次項成分のうちN≧1の部分である。したがって、上記「除去されない成分」を適切に除去するためには、2+2k+1・N次項成分(N≧1)が除去されるよう、GMR素子を配置すればよい。以下、例を挙げて説明する。 The “non-removable component” in question is, in short, the harmonic component that should be removed at the same time if the 2 k order used as the fundamental wave is removed, that is, the N k of the 2 k +2 k + 1 · Nth order component. ≧ 1 part. Therefore, in order to appropriately remove the “component that is not removed”, the GMR element may be arranged so that the 2 k +2 k + 1 · Nth order component (N ≧ 1) is removed. Hereinafter, an example will be described.
 図13は、2次の高調波を基本波として用いる場合のGMR素子の位置の変形例を示す図である。同図と図9とを比較すると理解されるように、n=1,2の場合のGMR素子は図9の例と同一である。 FIG. 13 is a diagram showing a modification of the position of the GMR element in the case where the second harmonic is used as the fundamental wave. As understood from a comparison between FIG. 9 and FIG. 9, the GMR element in the case of n = 1, 2 is the same as the example of FIG.
 一方、n=3である場合、第1の位置Pからx方向にそれぞれ±π/8±π/12離れた4個の位置に1個ずつGMR素子が配置されるとともに、第2の位置Pからx方向にそれぞれ±π/8±π/12離れた4個の位置にも1個ずつGMR素子が配置される。また、n=4である場合、第1の位置Pからx方向にそれぞれ±π/8±π/12±π/16離れた8個の位置に1個ずつGMR素子が配置されるとともに、第2の位置Pからx方向にそれぞれ±π/8±π/12±π/16離れた8個の位置にも1個ずつGMR素子が配置される。 On the other hand, When n = 3, with one by one from the first position P 1 to the four positions respectively ± π / 8 ± π / 12 apart in the x direction GMR element is disposed, a second position from P 2 one by one in four positions respectively ± π / 8 ± π / 12 apart in the x direction GMR element is arranged. Also, when n = a 4, together with the one by one from the first position P 1 to 8 positions away respectively ± π / 8 ± π / 12 ± π / 16 in the x-direction GMR element is disposed, GMR elements one by one is disposed to the second position P 2, respectively ± π / 8 ± π / 12 ± π / 16 distant eight positions in the x-direction from.
 要するに、図13では、図9の例と比較して2+21+1・1=6次項成分を除去するための配置(±π/12)が挿入された形となっている。この配置は式(45)でm=6とした場合に相当するので、6次項成分の他に18,30,・・・,12N+6次の各成分も除去される。したがって、例えばn=3の場合には1,3,5,7,・・・,2N+1次、4,12,20,28,・・・,8N+4次、6,18,30,・・・,12N+6次の各成分が除去されることとなる。まとめると、1,3,4,5,6,7,・・・次の各成分が除去されることになり、6次項成分も除去されていることが理解される。 In short, in FIG. 13, an arrangement (± π / 12) for removing the 2 1 +2 1 + 1 · 1 = 6th order component is inserted as compared with the example of FIG. Since this arrangement corresponds to the case where m 0 = 6 in the equation (45), the 18th, 30th,..., 12N + 6th order components are also removed in addition to the 6th order term component. Therefore, for example, when n = 3, 1, 3, 5, 7,..., 2N + 1 order, 4, 12, 20, 28,..., 8N + 4th order, 6, 18, 30,. Each component of 12N + 6th order is removed. In summary, it is understood that the following components are removed, and that the sixth-order component is also removed.
 また、n=4の場合には1,3,5,7,・・・,2N+1次、4,12,20,28,・・・,8N+4次、6,18,30,・・・,12N+6次、8,24,40,56,・・・,16N+8次の各成分が除去されることとなる。まとめると、1,3,4,5,6,7,8,・・・次の各成分が除去されることになり、n=3の場合と同様に6次項成分も除去されていることが理解される。 When n = 4, 1, 3, 5, 7,..., 2N + 1 order, 4, 12, 20, 28,..., 8N + 4th order, 6, 18, 30,. Next, the 8th, 24th, 40th, 56th,..., 16N + 8th order components are removed. In summary, 1, 3, 4, 5, 6, 7, 8,... Are removed, and the sixth-order component is also removed as in the case of n = 3. Understood.
 以上はk=1である場合にN=1の高調波を除去する例であるが、k≧2又はN≧1の場合についても同様である。具体的には、変数Y,Y,・・・を用いて上述した説明の内容から明らかなように、GMR素子の配置系列に±π/{(2+2k+1・N)×2}=±π/(2k+1+2k+2・N)という配置を追加すればよい。こうすることで、基本波より高次の高調波を好適に除去することが可能になる。 The above is an example of removing harmonics of N = 1 when k = 1, but the same applies to the case of k ≧ 2 or N ≧ 1. Specifically, as is apparent from the above description using the variables Y 1 , Y 2 ,..., The arrangement sequence of GMR elements is ± π / {(2 k +2 k + 1 · N) × 2}. An arrangement of = ± π / (2 k + 1 +2 k + 2 · N) may be added. By doing so, it becomes possible to suitably remove higher harmonics than the fundamental wave.
 なお、基本波以外の成分を実質的に完全に除去するには、次のようにすればよい。基本波として2次項成分(kは任意の自然数の中から選択される数)を残すものとすると、まず基本となるのは、2次項成分以外の2のべき乗次成分を除去できる配置である。これは、第1の基準位置Bからx方向にそれぞれ±π/2・・・±π/2±π/2k+2±π/2k+3・・・離れた複数個の位置に1個ずつGMR素子を配置することに相当する。しかし、この配置では、2次項成分を除去するとすれば自動的に除去される成分、すなわち2+2k+1N次項成分(N≧1)が除去されない(式(46)参照)ので、実際には、さらに2+2k+1N次項成分(N≧1)を除去できる配置を採用する必要がある。 In order to remove components other than the fundamental wave substantially completely, the following may be performed. When (the k number selected from among any natural number) 2 k-order term component as the fundamental wave is assumed to leave, firstly The basis is the arrangement capable of removing a power of two following components other than 2 k-order term component is there. 1 This is a plurality of positions away respectively ± π / 2 1 ··· ± π / 2 k ± π / 2 k + 2 ± π / 2 k + 3 ··· in the x direction from the first reference position B 1 This corresponds to arranging GMR elements one by one. However, in this arrangement, if the 2 k order term component is removed, the component that is automatically removed, that is, 2 k +2 k + 1 N order term component (N ≧ 1) is not removed (see Equation (46)). Needs to employ an arrangement that can remove the 2 k +2 k + 1 Nth-order component (N ≧ 1).
 ここで、2+2k+1Nは2(2N+1)に等しい。したがって、上記基本の配置に、基本波の次数2の奇数倍に相当する次数の高調波を除去できる配置を追加すれば、基本波以外の成分を完全に除去できることになる。ただし、この配置では除去される次数が重複する場合があり、効率がよくない。例えば、2・9は2・3・(2・1+1)と書けるので、2・3次の高調波を除去する配置によって自動的に除去される。このような重複を避けた効率のよい配置は、2P(Pは3以上の素数)に相当する次数の高調波を除去できる配置となる。つまり、上記基本の配置に、2Pに相当する次数の高調波を除去できる配置を追加すれば、効率よく、基本波以外の成分を完全に除去できる。 Here, 2 k +2 k + 1 N is equal to 2 k (2N + 1). Therefore, if an arrangement capable of removing higher harmonics corresponding to odd multiples of the fundamental wave order 2 k is added to the basic arrangement, components other than the fundamental wave can be completely removed. However, in this arrangement, the removed orders may overlap, which is not efficient. For example, since 2 k · 9 can be written as 2 k · 3 · (2 · 1 + 1), it is automatically removed by an arrangement that removes the 2 k · 3 order harmonics. An efficient arrangement that avoids such duplication is an arrangement that can remove higher-order harmonics corresponding to 2 k P (P is a prime number of 3 or more). In other words, if an arrangement capable of removing harmonics of the order corresponding to 2 kP is added to the basic arrangement, components other than the fundamental wave can be efficiently removed completely.
 現実的には、配置できるGMR素子の個数には限りがある。そこで、2個のGMR素子によって第1の素子4を構成するものとすると、2次項成分以外の2のべき乗次成分(2,2,・・・,2k-1,2k+1,2k+2,・・・)と、2P次成分(2・3,2・5,2・7,2・11,・・・)との中から任意のn個を選択し、選択した次数に対応する配置を採用すればよい。この選択に際しては、出力信号に与える影響の大きい成分を選択することが好ましい。すなわち、式(24)や式(29)に示したように、基本波の次数の偶数倍の次数を有する高調波成分は、出力信号の分子には残らない。このような高調波成分は出力信号に与える影響が小さいので選択せず、分子に残る高調波成分を優先的に選択することが好ましい。具体的な例を挙げて説明すると、例えばk=1であれば、2次項成分以外の2のべき乗次成分は2,2,2,・・・であり、2Pで表される成分は2・3,2・5,2・7,2・11,・・・となる。そして、基本波の次数2の偶数倍は、4,8,12,・・・となる。したがって、例えばk=1,n=5とするならば、1,6,10,14,22の各次数を選択し、これらに対応する配置、すなわち第1の基準位置Bからx方向にそれぞれ±π/2±π/12±π/20±π/28±π/44離れた位置に1個ずつ、2個のGMR素子を配置することが好ましい。 In reality, the number of GMR elements that can be arranged is limited. Therefore, if the first element 4 A is composed of 2 n GMR elements, a power-of-two component (2 0 , 2 1 ,..., 2 k−1 , 2 other than the 2 k order component) k + 1 , 2 k + 2 ,...) and 2 k P-order components (2 k · 3, 2 k · 5, 2 k · 7, 2 k · 11,...) An arrangement corresponding to the selected order may be adopted. In this selection, it is preferable to select a component having a large influence on the output signal. That is, as shown in the equations (24) and (29), the harmonic component having an even multiple of the fundamental wave order does not remain in the numerator of the output signal. Since such harmonic components have a small influence on the output signal, it is preferable not to select them and to preferentially select the harmonic components remaining in the molecule. To explain with a specific example, for example, if k = 1, a power order component 2 other than the 2 k-order terms component 2 0, 2 2, 2 3, a., Tables in 2 k P The resulting components are 2 1 · 3, 2 1 · 5, 2 1 · 7, 2 1 · 11,. And the even multiple of the order 2 of the fundamental wave is 4, 8, 12,. Thus, for example, if the k = 1, n = 5, select each order of 1,6,10,14,22, arranged corresponding to these, i.e. respectively in the x direction from the first reference position B 1 one for ± π / 2 ± π / 12 ± π / 20 ± π / 28 ± π / 44 away, it is preferable to dispose two five GMR element.
 第2乃至第4の素子4~4については、後述する表3にも示すように、第1の素子4をx方向に+(2i-1)π/2(iは任意の整数)ずらした位置に第2の素子4を配置し、第1の素子4をx方向に+(2i-1)π/2k+1+(iは任意の整数)ずらした位置に第3の素子4を配置し、第3の素子4をx方向に+(2i-1)π/2(iは任意の整数)ずらした位置に第4の素子4を配置すればよい。以上の配置を採用することで、nの値を十分に大きな値とすることにより、基本波以外の成分を実質的に完全に除去することが可能になる。 For the second to fourth elements 4 B to 4 D , as shown in Table 3 to be described later, the first element 4 A is moved in the x direction to + (2i 1 −1) π / 2 k (i 1 is Arbitrary integer) The second element 4 B is arranged at a shifted position, and the first element 4 A is shifted in the x direction by + (2i 2 −1) π / 2 k + 1 + (i 2 is an arbitrary integer) The third element 4 C is disposed at the position, and the fourth element 4 C is shifted to the position by shifting the third element 4 C by + (2i 3 −1) π / 2 k (i 3 is an arbitrary integer) in the x direction. D may be arranged. By adopting the above arrangement, it is possible to substantially completely remove components other than the fundamental wave by making the value of n sufficiently large.
 図14(a)は、本発明の第4の実施の形態による位置検出装置1の構成を示す図である。本実施の形態による位置検出装置1は、磁気センサー2が第1乃至第8の素子4~4を有している点で、第1の実施の形態による位置検出装置1と異なっている。以下、第1乃至第8の素子4~4の電気的な接続形態及び物理的な配置について、詳しく説明する。 FIG. 14A is a diagram showing a configuration of the position detection apparatus 1 according to the fourth embodiment of the present invention. The position detection device 1 according to the present embodiment is different from the position detection device 1 according to the first embodiment in that the magnetic sensor 2 includes first to eighth elements 4 A to 4 H. . Hereinafter, the electrical connection form and physical arrangement of the first to eighth elements 4 A to 4 H will be described in detail.
 図14(b)は、第1乃至第8の素子4~4の電気的な接続形態を示す図である。同図に示すように、本実施の形態では、第1乃至第8の素子4~4はそれぞれ2個のGMR素子によって構成される。具体的には、第1乃至第4の素子4~4については、第1の実施の形態と同様である。第5の素子4は2個のGMR素子5E1,5E2(2個の第5の検出素子)によって構成され、第6の素子4は2個のGMR素子5F1,5F2(2個の第6の検出素子)によって構成され、第7の素子4は2個のGMR素子5G1,5G2(2個の第7の検出素子)によって構成され、第8の素子4は2個のGMR素子5H1,5H2(2個の第8の検出素子)によって構成される。 FIG. 14B is a diagram showing an electrical connection form of the first to eighth elements 4 A to 4 H. As shown in the figure, in the present embodiment, the first to eighth elements 4 A to 4 H are each composed of two GMR elements. Specifically, the first to fourth elements 4 A to 4 D are the same as those in the first embodiment. The fifth element 4 E includes two GMR elements 5 E1 and 5 E2 (two fifth detection elements), and the sixth element 4 F includes two GMR elements 5 F1 and 5 F2 (2 And the seventh element 4 G is composed of two GMR elements 5 G1 and 5 G2 (two seventh detection elements), and the eighth element 4 H is It is constituted by two GMR elements 5 H1 and 5 H2 (two eighth detection elements).
 また、磁気センサー2は、第1の実施の形態と同様、電源端子6(第1の電源端子)、電源端子7(第2の電源端子)、出力端子8a,8b(第1及び第2の出力端子)を有する他、出力端子8c,8d(第3及び第4の出力端子)と、減算器10,11(第1及び第2の減算回路)とをさらに有している。GMR素子5A1,5A2,5B1,5B2,5C1,5C2,5D1,5D2と各端子との接続は、第1の実施の形態と同様である。一方、GMR素子5E1,5E2は、この順で出力端子8cと電源端子6との間に直列接続される。同様に、GMR素子5F1,5F2は、この順で電源端子7と出力端子8cとの間に直列接続され、GMR素子5G1,5G2は、この順で出力端子8dと電源端子6との間に直列接続され、GMR素子5H1,5H2は、この順で電源端子7と出力端子8dとの間に直列接続される。出力端子8aは減算器10の非反転入力端子に接続され、出力端子8bは減算器11の非反転入力端子に接続され、出力端子8cは減算器10の反転入力端子に接続され、出力端子8dは減算器11の反転入力端子に接続される。減算器10からは、出力端子8aに現れる電圧信号から出力端子8cに現れる電圧信号を減算してなる電圧信号が出力され、この電圧信号は磁気センサー2の一方の出力信号Vsinとなる。また、減算器11からは、出力端子8bに現れる電圧信号から出力端子8dに現れる電圧信号を減算してなる電圧信号が出力され、この電圧信号は磁気センサー2の他方の出力信号Vcosとなる。 Similarly to the first embodiment, the magnetic sensor 2 includes a power terminal 6 (first power terminal), a power terminal 7 (second power terminal), and output terminals 8a and 8b (first and second power terminals). In addition to having an output terminal), output terminals 8c and 8d (third and fourth output terminals) and subtractors 10 and 11 (first and second subtraction circuits) are further provided. The connections between the GMR elements 5 A1 , 5 A2 , 5 B1 , 5 B2 , 5 C1 , 5 C2 , 5 D1 , 5 D2 and the respective terminals are the same as in the first embodiment. On the other hand, the GMR elements 5 E1 and 5 E2 are connected in series between the output terminal 8 c and the power supply terminal 6 in this order. Similarly, the GMR elements 5 F1 and 5 F2 are connected in series between the power supply terminal 7 and the output terminal 8 c in this order, and the GMR elements 5 G1 and 5 G2 are connected in this order to the output terminal 8 d and the power supply terminal 6. The GMR elements 5 H1 and 5 H2 are connected in series between the power supply terminal 7 and the output terminal 8 d in this order. The output terminal 8a is connected to the non-inverting input terminal of the subtractor 10, the output terminal 8b is connected to the non-inverting input terminal of the subtractor 11, the output terminal 8c is connected to the inverting input terminal of the subtractor 10, and the output terminal 8d. Is connected to the inverting input terminal of the subtractor 11. The subtracter 10 outputs a voltage signal obtained by subtracting the voltage signal appearing at the output terminal 8c from the voltage signal appearing at the output terminal 8a, and this voltage signal becomes one output signal Vsin of the magnetic sensor 2. The subtractor 11 outputs a voltage signal obtained by subtracting the voltage signal appearing at the output terminal 8d from the voltage signal appearing at the output terminal 8b, and this voltage signal becomes the other output signal Vcos of the magnetic sensor 2.
 以上のような接続形態は、要するに、図25に示した接続形態と同様のフルブリッジ接続である。本実施の形態では、フルブリッジ接続を行う場合において、第1の実施の形態と同様に2次の高調波を基本波として用いるためのGMR素子の配置について説明する。 In short, the above connection form is a full bridge connection similar to the connection form shown in FIG. In the present embodiment, the arrangement of GMR elements for using a second harmonic as a fundamental wave in the case of performing full-bridge connection will be described as in the first embodiment.
 各GMR素子の物理的な配置は、ハーフブリッジの場合と同様、出力信号Vsin,Vcosを算出する際、φの1次項成分を含む奇数次の高調波が除去され、2次の高調波(φの2次項成分)が基本波となるように決定される。具体的には、まず第1乃至第4の素子4~4の配置は、第1の実施の形態で説明した配置(図2,図3に示した配置)と同様でよい。すなわち、第1の素子4を構成する2つのGMR素子(GMR素子5A1,5A2)は、第1の基準位置Bからx方向に±π/2離れた2つの位置に、1個ずつ配置すればよい。また、第2の素子4を構成する2つのGMR素子(GMR素子5B1,5B2)は、第2の基準位置B(=B+(2i-1)π/2)からx方向に±π/2離れた2つの位置に、1個ずつ配置すればよい。第3の素子4を構成するGMR素子5C1,5C2は、GMR素子5A1,5A2それぞれをx方向に+(2i-1)π/4だけずらした位置に配置すればよい。第4の素子4を構成するGMR素子5D1,5D2は、GMR素子5B1,5B2それぞれをx方向に+(2i-1)π/2だけずらした位置に配置すればよい。ただし、i,i,iはいずれも任意の整数の中から選択される数である。 As in the case of the half bridge, the physical arrangement of each GMR element is such that when the output signals Vsin and Vcos are calculated, odd-order harmonics including the first-order component of φ are removed, and second-order harmonics (φ Of the second-order term) is determined to be a fundamental wave. Specifically, first, the arrangement of the first to fourth elements 4 A to 4 D may be the same as the arrangement described in the first embodiment (the arrangement shown in FIGS. 2 and 3). That is, two GMR elements (GMR elements 5 A1 and 5 A2 ) constituting the first element 4 A are provided at two positions that are ± π / 2 apart from the first reference position B 1 in the x direction. Just place them one by one. In addition, the two GMR elements (GMR elements 5 B1 and 5 B2 ) constituting the second element 4 B are connected to the second reference position B 2 (= B 1 + (2i 1 −1) π / 2) x One piece may be arranged at two positions separated by ± π / 2 in the direction. The GMR elements 5 C1 and 5 C2 constituting the third element 4 C may be arranged at positions where the GMR elements 5 A1 and 5 A2 are shifted by + (2i 2 −1) π / 4 in the x direction. The GMR elements 5 D1 and 5 D2 constituting the fourth element 4 D may be arranged at positions where the GMR elements 5 B1 and 5 B2 are shifted by + (2i 3 −1) π / 2 in the x direction. However, i 1 , i 2 , and i 3 are all numbers selected from arbitrary integers.
 以下の説明では、GMR素子5C1とGMR素子5C2の中間位置を「第3の基準位置B」と称する。これによれば、第3の基準位置BはB+(2i-1)π/4に等しくなる。そして、第3の素子4を構成する2つのGMR素子(GMR素子5C1,5C2)は、第3の基準位置Bからx方向に±π/2離れた2つの位置に、1個ずつ配置されることとなる。また、GMR素子5D1とGMR素子5D2の中間位置を「第4の基準位置B」と称する。これによれば、第4の基準位置BはB+(2i-1)π/2+(2i-1)π/2に等しくなる。そして、第4の素子4を構成する2つのGMR素子(GMR素子5D1,5D2)は、第4の基準位置Bからx方向に±π/2離れた2つの位置に、1個ずつ配置されることとなる。 In the following description, the intermediate position between the GMR element 5 C1 and the GMR element 5 C2 is referred to as “third reference position B 3 ”. According to this, the third reference position B 3 is equal to B 1 + (2i 2 −1) π / 4. Two GMR elements (GMR elements 5 C1 and 5 C2 ) constituting the third element 4 C are arranged at two positions that are ± π / 2 apart from the third reference position B 3 in the x direction. It will be arranged one by one. An intermediate position between the GMR element 5 D1 and the GMR element 5 D2 is referred to as a “fourth reference position B 4 ”. According to this, the fourth reference position B 4 becomes equal to B 1 + (2i 1 −1) π / 2 + (2i 3 −1) π / 2. Then, two GMR elements (GMR elements 5 D1 and 5 D2 ) constituting the fourth element 4 D are arranged at two positions that are ± π / 2 apart from the fourth reference position B 4 in the x direction. It will be arranged one by one.
 第5乃至第8の素子4~4はそれぞれ、第1乃至第4の素子4~4をx方向に所定距離ずらしたところに配置すればよい。具体的には、第1の基準位置Bからx方向に+(2i-1)π/2離れた位置を第5の基準位置Bとすると、第5の素子4を構成する2つのGMR素子(GMR素子5E1,5E2)は、この第5の基準位置Bからx方向に±π/2離れた2つの位置に、1個ずつ配置すればよい。また、第1の基準位置Bからx方向に+2iπ/2離れた位置を第6の基準位置Bとすると、第6の素子4を構成する2つのGMR素子(GMR素子5F1,5F2)は、この第6の基準位置Bからx方向に±π/2離れた2つの位置に、1個ずつ配置すればよい。同様に、第1の基準位置Bからx方向に+(2i-1)π/2+(2i-1)π/4離れた位置を第7の基準位置Bとすると、第7の素子4を構成する2つのGMR素子(GMR素子5G1,5G2)は、この第7の基準位置Bからx方向に±π/2離れた2つの位置に、1個ずつ配置すればよい。また、第1の基準位置Bからx方向に+2iπ/2+(2i-1)π/4離れた位置を第8の基準位置Bとすると、第8の素子4を構成する2つのGMR素子(GMR素子5H1,5H2)は、この第8の基準位置Bからx方向に±π/2離れた2つの位置に、1個ずつ配置すればよい。ただし、i~iはいずれも任意の整数の中から選択される数である。 The fifth to eighth elements 4 E to 4 H may be arranged at positions shifted by a predetermined distance in the x direction from the first to fourth elements 4 A to 4 D , respectively. Specifically, if a position that is separated from the first reference position B 1 by + (2i 4 −1) π / 2 in the x direction is a fifth reference position B 5 , the second element 4 E is formed. Two GMR elements (GMR elements 5 E1 and 5 E2 ) may be arranged one by one at two positions that are ± π / 2 apart from the fifth reference position B 5 in the x direction. Further, when the first reference position B 1 position in the x-direction + 2i 5 [pi / 2 away from the reference position B 6 of the sixth, two GMR elements (GMR element 5 F1 constituting the element 4 F sixth , 5 F2 ) may be arranged one by one at two positions spaced ± π / 2 in the x direction from the sixth reference position B 6 . Similarly, when the first reference from the position B 1 in the x-direction + (2i 6 -1) π / 2 + (2i 2 -1) π / 4 distant position seventh reference position B 7, the seventh If two GMR elements (GMR elements 5 G1 and 5 G2 ) constituting the element 4 G are arranged one by one at two positions that are ± π / 2 apart from the seventh reference position B 7 in the x direction. Good. Further, an eighth element 4 H is configured by assuming that a position away from the first reference position B 1 by + 2i 7 π / 2 + (2i 2 −1) π / 4 in the x direction is an eighth reference position B 8. Two GMR elements (GMR elements 5 H1 and 5 H2 ) may be arranged one by one at two positions that are ± π / 2 apart from the eighth reference position B 8 in the x direction. However, i 4 to i 7 are all numbers selected from arbitrary integers.
 表2は、第1乃至第8の基準位置B~Bの配置について、第1の基準位置Bを起点としてまとめたものである。第1乃至第8の素子4~4それぞれを構成する2つのGMR素子を、同表に示す各基準位置のうちの対応するものからx方向に±π/2離れた2つの位置に1個ずつ配置することで、2次の高調波を基本波とすることが可能になる。 Table 2 summarizes the arrangement of the first to eighth reference positions B 1 to B 8 starting from the first reference position B 1 . The two GMR elements constituting each of the first to eighth elements 4 A to 4 H are placed at two positions ± π / 2 away from the corresponding ones of the reference positions shown in the table in the x direction. By arranging them one by one, it becomes possible to use the second harmonic as the fundamental wave.
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
 本実施の形態による位置検出装置1によれば、2次の高調波を基本波とすることが可能になる。また、フルブリッジ接続を用いるので、ハーブブリッジ接続の場合に比べて2倍の出力を得ることができ、さらに、出力信号Vsin,VcosからDC成分を除去することが実現される。 According to the position detection device 1 according to the present embodiment, the second harmonic can be used as a fundamental wave. Further, since the full bridge connection is used, it is possible to obtain an output twice that of the case of the herb bridge connection, and furthermore, it is possible to remove the DC component from the output signals Vsin and Vcos.
 なお、上記第4の実施の形態では2次の高調波を基本波とする例について説明したが、上述したハーフブリッジ接続の場合と同様、フルブリッジ接続を行う場合においても、より高次の高調波を基本波とすることが可能である。表3は、2次の高調波を基本波とする場合の、第1乃至第8の基準位置B~Bの配置をまとめたものである。 In the fourth embodiment, an example in which the second harmonic is a fundamental wave has been described. However, as in the case of the half-bridge connection described above, a higher-order harmonic is also obtained in a full-bridge connection. A wave can be a fundamental wave. Table 3, in the case of the 2 k harmonic and fundamental wave, summarizes the arrangement of the reference position B 1 ~ B 8 of the first to eighth.
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000026
 表3においてkに1を代入すると、表2に示した配置と同一の配置が得られる。第1乃至第8の素子4~4それぞれを構成する2個のGMR素子の配置は、上述したように、対応する基準位置から±π/2離れた2つの位置に1個ずつとすればよい。 If 1 is substituted for k in Table 3, the same arrangement as shown in Table 2 is obtained. As described above, the arrangement of the two GMR elements constituting each of the first to eighth elements 4 A to 4 H is set to one at two positions that are ± π / 2 apart from the corresponding reference position. That's fine.
 図15(a)は、k=1であり、かつ第1乃至第8の素子4~4それぞれを2個のGMR素子により構成した場合のGMR素子の具体的な配置例を示す図である。同図において、縦長の四角形は個々のGMR素子を示している。同図の例では、i=3,i=2,i=3,i=1,i=3,i=1,i=3としている。i~iの値をこのように設定することで、同図に示すように、各GMR素子をx軸上で互いに異なる位置に配置することが可能になる。 FIG. 15A is a diagram showing a specific arrangement example of the GMR elements when k = 1 and each of the first to eighth elements 4 A to 4 H is constituted by two GMR elements. is there. In the same figure, the vertically long rectangles indicate individual GMR elements. In the example of the figure, i 1 = 3, i 2 = 2, i 3 = 3, i 4 = 1, i 5 = 3, i 6 = 1, and i 7 = 3. By setting the values of i 1 to i 7 in this way, the GMR elements can be arranged at different positions on the x-axis as shown in FIG.
 k≧2である場合には、第1乃至第8の素子4~4それぞれを構成する2個のGMR素子を、対応する基準位置から±π/Y±π/Y±π/Y・・・±π/Y離れた2個の位置に1個ずつ配置すればよい。変数Y,Y,・・・の具体的な値は、例えば図9に示したn=4の場合と同様に2次の高調波を基本波として用い、1次、4次、8次、16次の各波を除去したい場合には、Y=2、Y=8、Y=16、Y=32とすればよい。また、例えば図13に示したn=4の場合と同様に2次の高調波を基本波として用い、1次、4次、6次、8次の各波を除去したい場合には、Y=2、Y=8、Y=12、Y=16とすればよい。 When k ≧ 2, 2 n GMR elements constituting each of the first to eighth elements 4 A to 4 H are moved ± π / Y 1 ± π / Y 2 ± π from the corresponding reference position. / Y 3 in ··· ± π / Y n distant 2 n pieces of position may be arranged one by one. The specific values of the variables Y 1 , Y 2 ,... Use the second harmonic as the fundamental wave as in the case of n = 4 shown in FIG. When it is desired to remove the 16th order waves, Y 1 = 2 and Y 2 = 8, Y 3 = 16, and Y 4 = 32 may be set. For example, as in the case of n = 4 shown in FIG. 13, the second harmonic is used as the fundamental wave, and when it is desired to remove the first, fourth, sixth, and eighth waves, Y 1 = 2; Y 2 = 8; Y 3 = 12; Y 4 = 16.
 図15(b)は、k=2であり、かつ第1乃至第8の素子4~4それぞれを2個のGMR素子により構成した場合のGMR素子の具体的な配置例を示す図である。同図においても、縦長の四角形は個々のGMR素子を示している。同図の例は、4次の高調波を基本波として用いる場合(Y=2、Y=4)の例であり、i=5,i=2,i=5,i=1,i=5,i=1,i=5としている。i~iの値をこのように設定することで、同図に示すように、各GMR素子をx軸上で互いに異なる位置に配置することが可能になる。 FIG. 15 (b), k = 2, and shows a specific arrangement example of the GMR element when the elements 4 A ~ 4 H respective first to eighth constituted by two two GMR elements It is. Also in this figure, the vertically long rectangles indicate individual GMR elements. The example in the figure is an example in the case where the fourth harmonic is used as a fundamental wave (Y 1 = 2 and Y 2 = 4), i 1 = 5, i 2 = 2, i 3 = 5, i 4 = 1, i 5 = 5, i 6 = 1, i 7 = 5. By setting the values of i 1 to i 7 in this way, the GMR elements can be arranged at different positions on the x-axis as shown in FIG.
 以上、フルブリッジ接続を採用する場合のGMR素子の配置について説明したが、上記の配置以外の配置を採用することも、もちろん可能である。具体的な例としては、図12に示した例と同様な配置が挙げられる。この場合、第1の素子4について図12に示したようにGMR素子を配置し、さらに第2乃至第8の素子4~4についても、図12に示した第1の基準位置Bを表3に示した各基準位置B~Bにより置き換えたうえで、同様にGMR素子を配置すればよい。これによっても、2次の高調波を基本波として用いることが可能になる。 As described above, the arrangement of the GMR element in the case of adopting the full bridge connection has been described. Of course, it is also possible to adopt an arrangement other than the above arrangement. As a specific example, an arrangement similar to the example shown in FIG. In this case, the first element 4 A arranged GMR element as shown in FIG. 12, further for the second to eighth element 4 B ~ 4 H, a first reference position B shown in FIG. 12 After replacing 1 with the reference positions B 2 to B 8 shown in Table 3, the GMR elements may be similarly arranged. This also makes it possible to use a 2 k- order harmonic as the fundamental wave.
 なお、2次以外の高調波が基本波とはなり得ない点は、フルブリッジ接続においてもハーフブリッジ接続と同様である。したがって、2次(k≧1)の高調波を基本波とするためのGMR素子の配置は、2次項成分(mはkより小さい正の整数)が除去されるように決定すれば足りる。加えて、基本波より高次の高調波を適切に除去するためのGMR素子の配置は、ハーフブリッジ接続の場合と同様でよい。つまり、基本波として用いる高調波が2次である場合に、2+2k+1・N次項成分が除去されるようGMR素子を配置すれば、基本波より高次の高調波も適切に除去することが可能になる。 Note that the harmonics other than the 2 k order cannot be the fundamental wave, and the full bridge connection is the same as the half bridge connection. Therefore, it is sufficient to determine the arrangement of the GMR element for using the 2 kth order (k ≧ 1) harmonic as the fundamental wave so that the 2 m order component (m is a positive integer smaller than k) is removed. . In addition, the arrangement of GMR elements for appropriately removing higher-order harmonics than the fundamental wave may be the same as in the case of half-bridge connection. In other words, when the harmonic used as the fundamental wave is the 2 k order, if the GMR element is arranged so that the 2 k +2 k + 1 · Nth order component is removed, higher harmonics than the fundamental wave are also appropriately removed. It becomes possible.
 フルブリッジ接続を行う場合において基本波以外の成分を実質的に完全に除去するための配置は、上述したハーフブリッジ接続の場合と同様である。すなわち、第1乃至第8の素子4~4のそれぞれを2個のGMR素子によって構成し、かつ基本波として2次項成分(kは任意の自然数の中から選択される数)を残す場合、まず第1の素子4については、2次項成分以外の2のべき乗次成分(2,2,・・・,2k-1,2k+1,2k+2,・・・)と、2P(Pは3以上の素数)で表される成分(2・3,2・5,2・7,2・11,・・・)との中から任意のn個を選択し、選択した次数に対応する配置を採用すればよい。選択基準は、ハーフブリッジ接続の場合と同様でよい。そして、第2乃至第8の素子4~4については、第1の基準位置Bに代えて表3に示した基準位置を用いて、第1の素子4と同様に配置すればよい。以上の配置を採用することで、nの値を十分に大きな値とすることにより、基本波以外の成分を実質的に完全に除去することが可能になる。 In the case of performing the full bridge connection, the arrangement for removing the components other than the fundamental wave substantially completely is the same as in the case of the half bridge connection described above. That is, each of the first to eighth elements 4 A to 4 H is configured by 2 n GMR elements, and a 2 k- order component (k is a number selected from an arbitrary natural number) as a fundamental wave. In the case of leaving, first, for the first element 4 A , a power-of-two order component other than the 2 k order component (2 0 , 2 1 ,..., 2 k−1 , 2 k + 1 , 2 k + 2 ,. And 2 k P (P is a prime number greater than or equal to 3) (2 k · 3, 2 k · 5, 2 k · 7, 2 k · 11,...) An arrangement corresponding to the selected order may be adopted by selecting the number. The selection criteria may be the same as in the half-bridge connection. The second to eighth elements 4 B to 4 H can be arranged in the same manner as the first element 4 A by using the reference positions shown in Table 3 instead of the first reference position B 1. Good. By adopting the above arrangement, it is possible to substantially completely remove components other than the fundamental wave by making the value of n sufficiently large.
 以上、本発明の好ましい実施の形態について説明したが、本発明はこうした実施の形態に何等限定されるものではなく、本発明が、その要旨を逸脱しない範囲において、種々なる態様で実施され得ることは勿論である。 As mentioned above, although preferable embodiment of this invention was described, this invention is not limited to such embodiment at all, and this invention can be implemented in various aspects in the range which does not deviate from the summary. Of course.
 例えば、上述したように、本発明によれば、2次項成分を除去することで2+2k+1N次項成分も除去されるが、これら自動的に除去される成分を除去するための配置をしてはいけないというわけではない。例えば、図12に示す例では2次項成分を除去しているため6次項成分は自動的に除去されるが、図16に示すように、ことさらに6次項成分を除去する配置を採用しても構わない。 For example, as described above, according to the present invention, the 2 k +2 k + 1 Nth order component is also removed by removing the 2 k order component, but the arrangement for removing these automatically removed components is arranged. That doesn't mean you can't. For example, in the example shown in FIG. 12, since the second-order term component is removed, the sixth-order term component is automatically removed. However, as shown in FIG. I do not care.
 また、例えば図15(a)(b)の例では、各検出素子をx軸上で互いに異なる位置に配置したが、必ずしもこのようにしなければならないわけではない。例えば、検出素子を表面3aの法線方向に並べて配置することで、位相関係を損なうことなく、各検出素子をx軸上で互いに異なる位置に配置した場合と同様の出力を得ることが可能になる。 Further, for example, in the example of FIGS. 15A and 15B, the detection elements are arranged at different positions on the x-axis, but this is not always necessary. For example, by arranging the detection elements side by side in the normal direction of the surface 3a, it is possible to obtain the same output as when the detection elements are arranged at different positions on the x-axis without impairing the phase relationship. Become.
 また、上記各実施の形態では検出素子としてGMR素子を用いる例を説明したが、本発明はAMR素子やTMR(tunnel magnetoresistive)素子など他の種類の磁気抵抗素子を検出素子として用いる場合にも適用できる。AMR素子を用いる場合には、同じくAMR素子を用いる従来の位置検出装置に比べて高い分解能を得ることが可能になる。 In each of the above-described embodiments, the example in which the GMR element is used as the detection element has been described. However, the present invention is also applicable to the case where another type of magnetoresistive element such as an AMR element or a TMR (tunnel-magnetoresistive) element is used as the detection element. it can. When an AMR element is used, it is possible to obtain a higher resolution than that of a conventional position detection apparatus that similarly uses an AMR element.
 また、本発明は、上述した光学式の位置検出装置にも適用できる。この場合、磁気スケール3に代えて表面に回折パターンが形成された光学スケールを用いる。また、磁気センサー2に代えて光センサーを用い、検出素子は光検出素子となる。光センサーを光学スケールの表面に沿って移動させた場合、その受光量は、式(20)~式(23)に示したGMR読み出し信号と同様の信号となる。本発明によれば、この信号において偶数次の高調波を基本波とすることができるので、光学式の位置検出装置においても、従来の2倍以上の分解能を得ることが可能になる。 The present invention can also be applied to the optical position detection device described above. In this case, an optical scale having a diffraction pattern formed on the surface is used instead of the magnetic scale 3. Further, an optical sensor is used instead of the magnetic sensor 2, and the detection element is a photodetection element. When the optical sensor is moved along the surface of the optical scale, the amount of received light is the same signal as the GMR readout signal shown in equations (20) to (23). According to the present invention, even-order harmonics can be used as the fundamental wave in this signal. Therefore, even in an optical position detection device, it is possible to obtain a resolution that is at least twice that of the prior art.
 また、上記各実施の形態においては、説明の分かりやすさを優先してGMR素子の電気的な接続順と物理的な配置順とを対応付けて説明したが、これらは本来対応付ける必要がないものである。例えば、図17には、図2(a)(b)に示したGMR素子の配置の変形例を示している。同図に示す例では、各GMR素子の物理的な配置順が図2(a)(b)に示した例とは異なっているが、2次の高調波を基本波とするという、図2(a)(b)に示した例と同一の効果を得ることが可能である。具体的にどのような配置順を採用するかについては、配線の容易さなどを考慮して決定すればよい。 In each of the above embodiments, the GMR element electrical connection order and the physical arrangement order are associated with each other with priority given to ease of explanation, but these do not need to be associated with each other. It is. For example, FIG. 17 shows a modified example of the arrangement of the GMR elements shown in FIGS. In the example shown in FIG. 2, the physical arrangement order of the GMR elements is different from the example shown in FIGS. 2A and 2B, but the second harmonic is used as the fundamental wave. (A) The same effect as the example shown in (b) can be obtained. The specific arrangement order may be determined in consideration of the ease of wiring.
 また、本発明は、図1(a)に示したような直線状のスケール(磁気リニアスケール、光学式リニアスケール)の他、環状や曲線状のスケール(磁気ロータリーエンコーダ、光学式ロータリーエンコーダ)を用いる場合にも同様に適用可能である。つまり、ある物性値に対し周期性を有する測定機器全般に適用可能である。 In addition to the linear scale (magnetic linear scale, optical linear scale) as shown in FIG. 1 (a), the present invention provides an annular or curved scale (magnetic rotary encoder, optical rotary encoder). The same applies when used. That is, it can be applied to all measuring instruments having periodicity with respect to a certain physical property value.
 図18、図19、図20、図21はそれぞれ、図9、図12、図13、図16と同様のGMR素子の配置を、環状のエンコーダに適用した例を示している。また、図22には、図15(a)(b)のそれぞれと同様のGMR素子の配置を、環状のエンコーダに適用した例を示している。これらの図に示すように、本発明は、環状のエンコーダにも適用可能である。 FIGS. 18, 19, 20, and 21 show examples in which the same arrangement of GMR elements as in FIGS. 9, 12, 13, and 16 is applied to an annular encoder. FIG. 22 shows an example in which the same arrangement of GMR elements as in FIGS. 15A and 15B is applied to an annular encoder. As shown in these drawings, the present invention is also applicable to an annular encoder.
1     位置検出装置
2     磁気センサー
3     磁気スケール
~4  第1~第8の素子
A1-5A4,5B1-5B4,5C1-5C4,5D1-5D4,5E1-5E4,5F1-5F4,5G1-5G4,5H1-5H4 GMR素子
6     第1の電源端子
7     第2の電源端子
8a~8d 第1~第4の出力端子
9     位置取得部
~B  第1~第8の基準位置
~P12 第1~第12の位置
1 position detecting device 2 magnetic sensor 3 magnetic scale 4 A-4 H first to eighth element 5 A1 -5 A4, 5 B1 -5 B4, 5 C1 -5 C4, 5 D1 -5 D4, 5 E1 -5 E4 , 5 F1 -5 F4 , 5 G1 -5 G4 , 5 H1 -5 H4 GMR element 6 First power supply terminal 7 Second power supply terminals 8a to 8d First to fourth output terminals 9 Position acquisition unit B 1 B 8 1st to 8th reference positions P 1 to P 12 1st to 12th positions

Claims (26)

  1.  位置検出対象の物体の移動方向に沿って延伸する第1の表面を有するスケールと、
     前記物体とともに移動可能に構成され、かつ前記第1の表面に対向して配置されたセンサーと、
     前記センサーの出力信号に基づいて前記位置検出対象の物体の位置を取得する位置取得手段とを備え、
     前記センサーは、
     第1の電源電位が供給される第1の電源端子と、
     前記第1の電源電位とは異なる第2の電源電位が供給される第2の電源端子と、
     第1及び第2の出力端子と、
     前記第1の出力端子と前記第1の電源端子との間に接続された第1の素子と、
     前記第2の電源端子と前記第1の出力端子との間に接続された第2の素子と、
     前記第2の出力端子と前記第1の電源端子との間に接続された第3の素子と、
     前記第2の電源端子と前記第2の出力端子との間に接続された第4の素子とを有し、
     前記第1の素子は、前記第1の出力端子と前記第1の電源端子との間に直列接続され、かつ前記移動方向に沿って並置された複数個の第1の検出素子からなり、
     前記第3の素子は、前記第2の出力端子と前記第1の電源端子との間に直列接続され、かつ前記移動方向に沿って並置された複数個の第3の検出素子からなり、
     前記各第1の検出素子及び前記各第3の検出素子はそれぞれ、前記第1の表面に沿って前記移動方向に移動する際、前記スケールの対向位置に応じた所定の読み出し信号を生成するよう構成され、
     前記複数個の第1の検出素子の前記移動方向の配置は、前記第1の出力端子に現れる電圧信号から少なくとも位相の1次項成分が除去されるよう決定され、
     前記複数個の第3の検出素子の前記移動方向の配置は、前記第2の出力端子に現れる電圧信号から少なくとも位相の1次項成分が除去されるよう決定され、
     前記位置取得手段は、前記第1の出力端子に現れる電圧信号と、前記第2の出力端子に現れる電圧信号とに基づいて前記位置検出対象の物体の位置を算出する
     ことを特徴とする位置検出装置。
    A scale having a first surface extending along a moving direction of the object to be detected;
    A sensor configured to be movable with the object and disposed opposite the first surface;
    Position acquisition means for acquiring the position of the position detection target object based on an output signal of the sensor;
    The sensor is
    A first power supply terminal to which a first power supply potential is supplied;
    A second power supply terminal to which a second power supply potential different from the first power supply potential is supplied;
    First and second output terminals;
    A first element connected between the first output terminal and the first power supply terminal;
    A second element connected between the second power supply terminal and the first output terminal;
    A third element connected between the second output terminal and the first power supply terminal;
    A fourth element connected between the second power supply terminal and the second output terminal;
    The first element comprises a plurality of first detection elements connected in series between the first output terminal and the first power supply terminal and juxtaposed along the moving direction,
    The third element includes a plurality of third detection elements connected in series between the second output terminal and the first power supply terminal and juxtaposed along the moving direction.
    Each of the first detection elements and each of the third detection elements generates a predetermined readout signal corresponding to the facing position of the scale when moving in the movement direction along the first surface. Configured,
    The arrangement of the plurality of first detection elements in the moving direction is determined so that at least a first-order component of a phase is removed from a voltage signal appearing at the first output terminal,
    The arrangement of the plurality of third detection elements in the moving direction is determined so that at least a first-order component of a phase is removed from a voltage signal appearing at the second output terminal,
    The position acquisition means calculates the position of the object to be detected based on a voltage signal appearing at the first output terminal and a voltage signal appearing at the second output terminal. apparatus.
  2.  前記第2の素子は、前記第2の電源端子と前記第1の出力端子との間に直列接続され、かつ前記移動方向に沿って並置された複数個の第2の検出素子からなり、
     前記第4の素子は、前記第2の電源端子と前記第2の出力端子との間に直列接続され、かつ前記移動方向に沿って並置された複数個の第4の検出素子からなり、
     前記複数個の第2の検出素子の前記移動方向の配置は、前記第1の出力端子に現れる電圧信号から少なくとも位相の1次項成分が除去されるよう決定され、
     前記複数個の第4の検出素子の前記移動方向の配置は、前記第2の出力端子に現れる電圧信号から少なくとも位相の1次項成分が除去されるよう決定される
     ことを特徴とする請求項1に記載の位置検出装置。
    The second element includes a plurality of second detection elements connected in series between the second power supply terminal and the first output terminal and juxtaposed along the moving direction.
    The fourth element includes a plurality of fourth detection elements connected in series between the second power supply terminal and the second output terminal and juxtaposed along the moving direction.
    The arrangement of the plurality of second detection elements in the moving direction is determined so that at least a first-order component of a phase is removed from a voltage signal appearing at the first output terminal,
    The arrangement of the plurality of fourth detection elements in the moving direction is determined so that at least a first-order component of a phase is removed from a voltage signal appearing at the second output terminal. The position detection apparatus described in 1.
  3.  前記第1の素子は、2個(nは任意の自然数の中から選択される数)の前記第1の検出素子からなり、
     前記第3の素子は、2個の前記第3の検出素子からなり、
     前記2個の第1の検出素子は、
     n=1である場合には、第1の基準位置から前記移動方向にそれぞれ±π/2離れた第1及び第2の位置に1個ずつ配置され、
     n≧2である場合には、前記第1の位置から前記移動方向にそれぞれ±π/8・・・±π/2n+1離れた2n-1個の位置に1個ずつ、前記第2の位置から前記移動方向にそれぞれ±π/8・・・±π/2n+1離れた2n-1個の位置に1個ずつ、それぞれ配置され、
     前記2個の第3の検出素子は、前記2個の第1の検出素子それぞれを前記移動方向に第1の所定距離ずらした位置に配置される
     ことを特徴とする請求項2に記載の位置検出装置。
    The first element is composed of 2 n first detection elements (n is a number selected from an arbitrary natural number),
    The third element is composed of 2 n third detection elements,
    The 2 n first detection elements are:
    When n = 1, one is disposed at each of the first and second positions separated by ± π / 2 in the moving direction from the first reference position,
    If n ≧ 2, the second position is one at each of 2 n−1 positions separated by ± π / 8... ± π / 2 n + 1 in the moving direction from the first position. One at each of 2 n−1 positions separated from each other by ± π / 8... ± π / 2 n + 1 in the moving direction.
    3. The 2 n third detection elements are arranged at positions shifted from the 2 n first detection elements by a first predetermined distance in the movement direction, respectively. Position detector.
  4.  前記第2の素子は、2個の前記第2の検出素子からなり、
     前記第4の素子は、2個の前記第4の検出素子からなり、
     前記2個の第2の検出素子は、
     n=1である場合には、前記第1の基準位置から前記移動方向にπl/2(lは任意の奇数から選択される数)離れた第2の基準位置からさらに前記移動方向にそれぞれ±π/2離れた第3及び第4の位置に配置され、
     n≧2である場合には、前記第3の位置から前記移動方向にそれぞれ±π/8・・・±π/2n+1離れた2n-1個の位置に1個ずつ、前記第4の位置から前記移動方向にそれぞれ±π/8・・・±π/2n+1離れた2n-1個の位置に1個ずつ、それぞれ配置され、
     前記2個の第4の検出素子は、前記2個の第2の検出素子それぞれを前記移動方向に第2の所定距離ずらした位置に配置される
     ことを特徴とする請求項3に記載の位置検出装置。
    The second element is composed of 2 n second detection elements,
    The fourth element includes 2 n fourth detection elements,
    The 2 n second detection elements are:
    When n = 1, ± 1/2 in the movement direction from the first reference position (where l is a number selected from an arbitrary odd number) is further ±± in the movement direction, respectively. arranged at third and fourth positions separated by π / 2,
    When n ≧ 2, one in each of the 2 n−1 positions that are separated from each other by ± π / 8... ± π / 2 n + 1 in the moving direction from the third position. One at each of 2 n−1 positions separated from each other by ± π / 8... ± π / 2 n + 1 in the moving direction.
    The 2n fourth detection elements are arranged at positions shifted from the 2n second detection elements by a second predetermined distance in the moving direction. Position detector.
  5.  前記第1の素子は、2個(nは任意の自然数の中から選択される数)の前記第1の検出素子からなり、
     前記第3の素子は、2個の前記第3の検出素子からなり、
     前記2個の第1の検出素子の前記移動方向の配置は、2次項成分(kは任意の自然数の中から選択される数)以外の2のべき乗次成分と、2P次成分(Pは3以上の素数)との中から選択されるn個の成分が除去されるよう決定され、
     前記2個の第3の検出素子は、前記2個の第1の検出素子それぞれを前記移動方向に第1の所定距離ずらした位置に配置される
     ことを特徴とする請求項2に記載の位置検出装置。
    The first element is composed of 2 n first detection elements (n is a number selected from an arbitrary natural number),
    The third element is composed of 2 n third detection elements,
    The arrangement of the 2 n first detection elements in the movement direction is a power-of-two order component other than a 2 k order component (k is a number selected from an arbitrary natural number) and a 2 k P order component. (P is a prime number greater than or equal to 3) and n components selected from among them are determined to be removed,
    3. The 2 n third detection elements are arranged at positions shifted from the 2 n first detection elements by a first predetermined distance in the movement direction, respectively. Position detector.
  6.  前記第2の素子は、2個の前記第2の検出素子からなり、
     前記第4の素子は、2個の前記第4の検出素子からなり、
     前記2個の第2の検出素子は、前記2個の第1の検出素子それぞれを前記移動方向に第3の所定距離ずらした位置に配置され、
     前記2個の第4の検出素子は、前記2個の第2の検出素子それぞれを前記移動方向に第2の所定距離ずらした位置に配置される
     ことを特徴とする請求項5に記載の位置検出装置。
    The second element is composed of 2 n second detection elements,
    The fourth element includes 2 n fourth detection elements,
    The 2 n second detection elements are arranged at positions shifted from the 2 n first detection elements by a third predetermined distance in the movement direction, respectively.
    The said 2n 4th detection element is arrange | positioned in the position which shifted each said 2n 2nd detection element by the 2nd predetermined distance to the said movement direction. Position detector.
  7.  前記第1の素子は、2個(nは任意の2以上の自然数の中から選択される数)の前記第1の検出素子からなり、
     前記第3の素子は、2個の前記第3の検出素子からなり、
     前記2個の第1の検出素子は、
     n=2である場合には、第1の基準位置から前記移動方向に+π/2離れた第1の位置からさらに前記移動方向にそれぞれ±π/4離れた第5及び第6の位置に1個ずつ、前記第1の基準位置から前記移動方向に-π/2離れた第2の位置からさらに前記移動方向にそれぞれ±π/4離れた第7及び第8の位置に1個ずつ、それぞれ配置され、
     n≧3である場合には、前記第5の位置から前記移動方向にそれぞれ±π/16・・・±π/2n+1離れた2n-2個の位置に1個ずつ、前記第6の位置から前記移動方向にそれぞれ±π/16・・・±π/2n+1離れた2n-2個の位置に1個ずつ、前記第7の位置から前記移動方向にそれぞれ±π/16・・・±π/2n+1離れた2n-2個の位置に1個ずつ、前記第8の位置から前記移動方向にそれぞれ±π/16・・・±π/2n+1離れた2n-2個の位置に1個ずつ、それぞれ配置され、
     前記2個の第3の検出素子は、前記2個の第1の検出素子それぞれを前記移動方向に第1の所定距離ずらした位置に配置される
     ことを特徴とする請求項2に記載の位置検出装置。
    The first element includes 2 n (n is a number selected from any two or more natural numbers) of the first detection elements,
    The third element is composed of 2 n third detection elements,
    The 2 n first detection elements are:
    When n = 2, 1 is set to 5th and 6th positions that are further separated by ± π / 4 in the movement direction from the first position that is + π / 2 away from the first reference position in the movement direction. One by one from the second position, which is -π / 2 away from the first reference position in the movement direction, to the seventh and eighth positions, which are further separated by ± π / 4 in the movement direction, respectively. Arranged,
    When n ≧ 3, each of the sixth positions is one in 2 n−2 positions that are separated by ± π / 16... ± π / 2 n + 1 in the moving direction from the fifth position. one by one from the position in each of ± π / 16 ··· ± π / 2 n + 1 apart 2 n-2 pieces of position in the moving direction, the seventh, respectively ± π / 16 ·· from the position in the moving direction of the one by one · ± a [pi / 2 n + 1 apart 2 n-2 pieces of position, 2 n-2 pieces that each ± π / 16 ··· ± π / 2 n + 1 apart in the moving direction from the position of the eighth One at each position,
    3. The 2 n third detection elements are arranged at positions shifted from the 2 n first detection elements by a first predetermined distance in the movement direction, respectively. Position detector.
  8.  前記第2の素子は、2個の前記第2の検出素子からなり、
     前記第4の素子は、2個の前記第4の検出素子からなり、
     前記2個の第2の検出素子は、
     n=2である場合には、前記第1の基準位置から前記移動方向にπl/4(lは任意の奇数から選択される数)離れた第2の基準位置からさらに前記移動方向に+π/2離れた第3の位置からさらに前記移動方向にそれぞれ±π/4離れた第9及び第10の位置に1個ずつ、前記第2の基準位置から前記移動方向に-π/2離れた第4の位置からさらに前記移動方向にそれぞれ±π/4離れた第11及び第12の位置に1個ずつ、それぞれ配置され、
     n≧3である場合には、前記第9の位置から前記移動方向にそれぞれ±π/16・・・±π/2n+1離れた2n-2個の位置に1個ずつ、前記第10の位置から前記移動方向にそれぞれ±π/16・・・±π/2n+1離れた2n-2個の位置に1個ずつ、前記第11の位置から前記移動方向にそれぞれ±π/16・・・±π/2n+1離れた2n-2個の位置に1個ずつ、前記第12の位置から前記移動方向にそれぞれ±π/16・・・±π/2n+1離れた2n-2個の位置に1個ずつ、それぞれ配置され、
     前記2個の第4の検出素子は、前記2個の第2の検出素子それぞれを前記移動方向に第2の所定距離ずらした位置に配置される
     ことを特徴とする請求項7に記載の位置検出装置。
    The second element is composed of 2 n second detection elements,
    The fourth element includes 2 n fourth detection elements,
    The 2 n second detection elements are:
    When n = 2, + π // 4 further in the movement direction from a second reference position that is πl / 4 away from the first reference position in the movement direction (l is a number selected from an arbitrary odd number). A third position separated from the second reference position by −π / 2 from the second reference position, one at each of the ninth and tenth positions separated by ± π / 4 in the movement direction from the third position separated by two. One at each of the eleventh and twelfth positions, which are further separated from each other by ± π / 4 in the moving direction from the position of 4, respectively.
    If n ≧ 3, the tenth position is one at each of 2 n−2 positions that are ± π / 16... ± π / 2 n + 1 apart from the ninth position in the moving direction. one by one from the position in each of ± π / 16 ··· ± π / 2 n + 1 apart 2 n-2 pieces of position in the moving direction, the second 11, respectively ± π / 16 ·· from the position in the moving direction of the one by one · ± a [pi / 2 n + 1 apart 2 n-2 pieces of position, 2 n-2 pieces that each ± π / 16 ··· ± π / 2 n + 1 apart in the moving direction from the position of the first 12 One at each position,
    The 2 n fourth detection elements are arranged at positions shifted from the 2 n second detection elements by a second predetermined distance in the movement direction, respectively. Position detector.
  9.  前記スケールは、前記第1の表面に前記移動方向に沿ってN極とS極とが交互に現れるように着磁した磁気スケールであり、
     前記検出素子は磁気抵抗素子である
     ことを特徴とする請求項1乃至8のいずれか一項に記載の位置検出装置。
    The scale is a magnetic scale magnetized so that N poles and S poles appear alternately along the moving direction on the first surface,
    The position detection device according to any one of claims 1 to 8, wherein the detection element is a magnetoresistive element.
  10.  前記スケールは、前記第1の表面に前記移動方向に沿ってN極とS極とが交互に現れるように着磁した磁気スケールであり、
     前記検出素子は磁気抵抗素子であり、
     前記第2及び第4の素子はそれぞれ、前記磁気スケールによって形成される磁界の影響を受けないよう構成された抵抗素子からなる
     ことを特徴とする請求項1に記載の位置検出装置。
    The scale is a magnetic scale magnetized so that N poles and S poles appear alternately along the moving direction on the first surface,
    The detection element is a magnetoresistive element;
    The position detection apparatus according to claim 1, wherein each of the second and fourth elements includes a resistance element configured not to be affected by a magnetic field formed by the magnetic scale.
  11.  前記磁気抵抗素子はGMR素子、AMR素子、又はTMR素子のいずれかである
     ことを特徴とする請求項9又は10に記載の位置検出装置。
    The position detection device according to claim 9 or 10, wherein the magnetoresistive element is any one of a GMR element, an AMR element, and a TMR element.
  12.  前記スケールは、前記第1の表面に回折パターンが形成された光学スケールであり、
     前記検出素子は光検出素子である
     ことを特徴とする請求項1乃至8のいずれか一項に記載の位置検出装置。
    The scale is an optical scale having a diffraction pattern formed on the first surface;
    The position detection device according to any one of claims 1 to 8, wherein the detection element is a light detection element.
  13.  前記第2及び第4の素子はそれぞれ定電流源からなる
     ことを特徴とする請求項1に記載の位置検出装置。
    The position detection apparatus according to claim 1, wherein each of the second and fourth elements includes a constant current source.
  14.  前記第1の電源電位は接地電位である
     ことを特徴とする請求項1乃至13のいずれか一項に記載の位置検出装置。
    The position detection apparatus according to any one of claims 1 to 13, wherein the first power supply potential is a ground potential.
  15.  位置検出対象の物体の移動方向に沿って延伸する第1の表面を有するスケールと、
     前記物体とともに移動可能に構成され、かつ前記第1の表面に対向して配置されたセンサーと、
     前記センサーの出力信号に基づいて前記位置検出対象の物体の位置を取得する位置取得手段とを備え、
     前記センサーは、
     第1の電源電位が供給される第1の電源端子と、
     前記第1の電源電位とは異なる第2の電源電位が供給される第2の電源端子と、
     第1及び第2の出力端子と、
     前記第1の出力端子と前記第1の電源端子との間に接続された第1の素子と、
     前記第2の電源端子と前記第1の出力端子との間に接続された第2の素子と、
     前記第2の出力端子と前記第1の電源端子との間に接続された第3の素子と、
     前記第2の電源端子と前記第2の出力端子との間に接続された第4の素子とを有し、
     前記第1の素子は、前記第1の出力端子と前記第1の電源端子との間に直列接続され、かつ前記移動方向に沿って並置された複数個の第1の検出素子からなり、
     前記第3の素子は、前記第2の出力端子と前記第1の電源端子との間に直列接続され、かつ前記移動方向に沿って並置された複数個の第3の検出素子からなり、
     前記各第1の検出素子及び前記各第3の検出素子はそれぞれ、前記第1の表面に沿って前記移動方向に移動する際、前記スケールの対向位置に応じた所定の読み出し信号を生成するよう構成され、
     前記複数個の第1の検出素子の前記移動方向の配置は、前記第1の出力端子に現れる電圧信号に少なくとも位相の2次項成分及び2+2k+1・N次項成分(kは任意の自然数の中から選択される数、Nは正の整数)が残り、前記第1の出力端子に現れる電圧信号から少なくとも位相の2次項成分及び2+2m+1・N次項成分(mはkより小さい正の整数)が除去されるよう決定され、
     前記複数個の第3の検出素子の前記移動方向の配置は、前記第2の出力端子に現れる電圧信号に少なくとも位相の2次項成分及び2+2k+1・N次項成分が残り、前記第2の出力端子に現れる電圧信号から少なくとも位相の2次項成分及び2+2m+1・N次項成分が除去されるよう決定され、
     前記位置取得手段は、前記第1の出力端子に現れる電圧信号と、前記第2の出力端子に現れる電圧信号とに基づいて前記位置検出対象の物体の位置を算出する
     ことを特徴とする位置検出装置。
    A scale having a first surface extending along a moving direction of the object to be detected;
    A sensor configured to be movable with the object and disposed opposite the first surface;
    Position acquisition means for acquiring the position of the position detection target object based on an output signal of the sensor;
    The sensor is
    A first power supply terminal to which a first power supply potential is supplied;
    A second power supply terminal to which a second power supply potential different from the first power supply potential is supplied;
    First and second output terminals;
    A first element connected between the first output terminal and the first power supply terminal;
    A second element connected between the second power supply terminal and the first output terminal;
    A third element connected between the second output terminal and the first power supply terminal;
    A fourth element connected between the second power supply terminal and the second output terminal;
    The first element comprises a plurality of first detection elements connected in series between the first output terminal and the first power supply terminal and juxtaposed along the moving direction,
    The third element includes a plurality of third detection elements connected in series between the second output terminal and the first power supply terminal and juxtaposed along the moving direction.
    Each of the first detection elements and each of the third detection elements generates a predetermined readout signal corresponding to the facing position of the scale when moving in the movement direction along the first surface. Configured,
    The arrangement of the plurality of first detection elements in the moving direction is such that a voltage signal appearing at the first output terminal includes at least a 2 k- order component and a 2 k +2 k + 1 · N-order component (k is an arbitrary natural number). A number selected from the above, N is a positive integer), and at least the 2 m order component of the phase and the 2 m +2 m + 1 · N order term component (m is smaller than k) from the voltage signal appearing at the first output terminal Positive integer) is removed,
    The arrangement of the plurality of third detection elements in the movement direction is such that at least a 2 k order component and a 2 k +2 k + 1 · N order component of the phase remain in the voltage signal appearing at the second output terminal. Is determined so that at least the 2 m order component and the 2 m +2 m + 1 · N order component of the phase are removed from the voltage signal appearing at the output terminal of
    The position acquisition means calculates the position of the object to be detected based on a voltage signal appearing at the first output terminal and a voltage signal appearing at the second output terminal. apparatus.
  16.  前記複数個の第1の検出素子の前記移動方向の配置は、前記第1の出力端子に現れる電圧信号から位相の2+2k+1・N次項成分も除去されるよう決定され、
     前記複数個の第3の検出素子の前記移動方向の配置は、前記第2の出力端子に現れる電圧信号から位相の2+2k+1・N次項成分も除去されるよう決定される
     ことを特徴とする請求項15に記載の位置検出装置。
    The arrangement of the plurality of first detection elements in the moving direction is determined so that the 2 k +2 k + 1 · N-order component of the phase is also removed from the voltage signal appearing at the first output terminal,
    The arrangement of the plurality of third detection elements in the moving direction is determined so that a 2 k +2 k + 1 · N-th order component of a phase is also removed from a voltage signal appearing at the second output terminal. The position detection device according to claim 15.
  17.  位置検出対象の物体の移動方向に沿って延伸する第1の表面を有するスケールと、
     前記物体とともに移動可能に構成され、かつ前記第1の表面に対向して配置されたセンサーと、
     前記センサーの出力信号に基づいて前記位置検出対象の物体の位置を取得する位置取得手段とを備え、
     前記センサーは、
     第1の電源電位が供給される第1の電源端子と、
     前記第1の電源電位とは異なる第2の電源電位が供給される第2の電源端子と、
     第1乃至第4の出力端子と、
     前記第1の出力端子と前記第1の電源端子との間に接続された第1の素子と、
     前記第2の電源端子と前記第1の出力端子との間に接続された第2の素子と、
     前記第2の出力端子と前記第1の電源端子との間に接続された第3の素子と、
     前記第2の電源端子と前記第2の出力端子との間に接続された第4の素子と、
     前記第3の出力端子と前記第1の電源端子との間に接続された第5の素子と、
     前記第2の電源端子と前記第3の出力端子との間に接続された第6の素子と、
     前記第4の出力端子と前記第1の電源端子との間に接続された第7の素子と、
     前記第2の電源端子と前記第4の出力端子との間に接続された第8の素子と、
     前記第1の出力端子に現れる電圧信号から前記第3の出力端子に現れる電圧信号を減算してなる電圧信号を出力する第1の減算回路と、
     前記第2の出力端子に現れる電圧信号から前記第4の出力端子に現れる電圧信号を減算してなる電圧信号を出力する第2の減算回路とを有し、
     前記第1の素子は、前記第1の出力端子と前記第1の電源端子との間に直列接続され、かつ前記移動方向に沿って並置された複数個の第1の検出素子からなり、
     前記第3の素子は、前記第2の出力端子と前記第1の電源端子との間に直列接続され、かつ前記移動方向に沿って並置された複数個の第3の検出素子からなり、
     前記第5の素子は、前記第3の出力端子と前記第1の電源端子との間に直列接続され、かつ前記移動方向に沿って並置された複数個の第5の検出素子からなり、
     前記第7の素子は、前記第4の出力端子と前記第1の電源端子との間に直列接続され、かつ前記移動方向に沿って並置された複数個の第7の検出素子からなり、
     前記各第1の検出素子、前記各第3の検出素子、前記各第5の検出素子、及び前記各第7の検出素子はそれぞれ、前記第1の表面に沿って前記移動方向に移動する際、前記スケールの対向位置に応じた所定の読み出し信号を生成するよう構成され、
     前記複数個の第1の検出素子の前記移動方向の配置及び前記複数個の第5の検出素子の前記移動方向の配置は、前記第1の減算回路の出力信号から少なくとも位相の1次項成分が除去されるよう決定され、
     前記複数個の第3の検出素子の前記移動方向の配置及び前記複数個の第7の検出素子の前記移動方向の配置は、前記第2の減算回路の出力信号から少なくとも位相の1次項成分が除去されるよう決定され、
     前記位置取得手段は、前記第1の減算回路の出力信号と、前記第2の減算回路の出力信号とに基づいて前記位置検出対象の物体の位置を算出する
     ことを特徴とする位置検出装置。
    A scale having a first surface extending along a moving direction of the object to be detected;
    A sensor configured to be movable with the object and disposed opposite the first surface;
    Position acquisition means for acquiring the position of the position detection target object based on an output signal of the sensor;
    The sensor is
    A first power supply terminal to which a first power supply potential is supplied;
    A second power supply terminal to which a second power supply potential different from the first power supply potential is supplied;
    First to fourth output terminals;
    A first element connected between the first output terminal and the first power supply terminal;
    A second element connected between the second power supply terminal and the first output terminal;
    A third element connected between the second output terminal and the first power supply terminal;
    A fourth element connected between the second power supply terminal and the second output terminal;
    A fifth element connected between the third output terminal and the first power supply terminal;
    A sixth element connected between the second power supply terminal and the third output terminal;
    A seventh element connected between the fourth output terminal and the first power supply terminal;
    An eighth element connected between the second power supply terminal and the fourth output terminal;
    A first subtraction circuit that outputs a voltage signal obtained by subtracting a voltage signal appearing at the third output terminal from a voltage signal appearing at the first output terminal;
    A second subtracting circuit that outputs a voltage signal obtained by subtracting a voltage signal appearing at the fourth output terminal from a voltage signal appearing at the second output terminal;
    The first element comprises a plurality of first detection elements connected in series between the first output terminal and the first power supply terminal and juxtaposed along the moving direction,
    The third element includes a plurality of third detection elements connected in series between the second output terminal and the first power supply terminal and juxtaposed along the moving direction.
    The fifth element includes a plurality of fifth detection elements connected in series between the third output terminal and the first power supply terminal and juxtaposed along the moving direction,
    The seventh element includes a plurality of seventh detection elements connected in series between the fourth output terminal and the first power supply terminal and juxtaposed along the moving direction,
    Each of the first detection elements, the third detection elements, the fifth detection elements, and the seventh detection elements move in the movement direction along the first surface. , Configured to generate a predetermined readout signal according to the opposing position of the scale,
    The arrangement of the plurality of first detection elements in the movement direction and the arrangement of the plurality of fifth detection elements in the movement direction are such that at least a first-order component of the phase from the output signal of the first subtraction circuit Decided to be removed,
    The arrangement of the plurality of third detection elements in the movement direction and the arrangement of the plurality of seventh detection elements in the movement direction are such that at least a first-order component of the phase from the output signal of the second subtraction circuit Decided to be removed,
    The position acquisition device calculates the position of the object to be detected based on an output signal of the first subtraction circuit and an output signal of the second subtraction circuit.
  18.  前記第2の素子は、前記第2の電源端子と前記第1の出力端子との間に直列接続され、かつ前記移動方向に沿って並置された複数個の第2の検出素子からなり、
     前記第4の素子は、前記第2の電源端子と前記第2の出力端子との間に直列接続され、かつ前記移動方向に沿って並置された複数個の第4の検出素子からなり、
     前記第6の素子は、前記第2の電源端子と前記第3の出力端子との間に直列接続され、かつ前記移動方向に沿って並置された複数個の第6の検出素子からなり、
     前記第8の素子は、前記第2の電源端子と前記第4の出力端子との間に直列接続され、かつ前記移動方向に沿って並置された複数個の第8の検出素子からなり、
     前記複数個の第2の検出素子の前記移動方向の配置及び前記複数個の第6の検出素子の前記移動方向の配置は、前記第1の減算回路の出力信号から少なくとも位相の1次項成分が除去されるよう決定され、
     前記複数個の第4の検出素子の前記移動方向の配置及び前記複数個の第8の検出素子の前記移動方向の配置は、前記第2の減算回路の出力信号から少なくとも位相の1次項成分が除去されるよう決定される
     ことを特徴とする請求項17に記載の位置検出装置。
    The second element includes a plurality of second detection elements connected in series between the second power supply terminal and the first output terminal and juxtaposed along the moving direction.
    The fourth element includes a plurality of fourth detection elements connected in series between the second power supply terminal and the second output terminal and juxtaposed along the moving direction.
    The sixth element includes a plurality of sixth detection elements connected in series between the second power supply terminal and the third output terminal, and juxtaposed along the movement direction,
    The eighth element includes a plurality of eighth detection elements connected in series between the second power supply terminal and the fourth output terminal and juxtaposed along the movement direction,
    The arrangement of the plurality of second detection elements in the movement direction and the arrangement of the plurality of sixth detection elements in the movement direction are such that at least the first-order component of the phase from the output signal of the first subtraction circuit. Decided to be removed,
    The arrangement of the plurality of fourth detection elements in the movement direction and the arrangement of the plurality of eighth detection elements in the movement direction are such that at least the first-order component of the phase is derived from the output signal of the second subtraction circuit. The position detection device according to claim 17, wherein the position detection device is determined to be removed.
  19.  前記第1の素子は、2個(nは任意の自然数の中から選択される数)の前記第1の検出素子からなり、
     前記第3の素子は、2個の前記第3の検出素子からなり、
     前記第5の素子は、2個の前記第5の検出素子からなり、
     前記第7の素子は、2個の前記第7の検出素子からなり、
     前記2個の第1の検出素子は、第1の基準位置から前記移動方向にそれぞれ±π/2±π/8・・・±π/2n+1離れた2個の位置に1個ずつ配置され、
     前記2個の第3の検出素子は、前記第1の基準位置から前記移動方向に(2i-1)π/4(iは任意の整数の中から選択される数)離れた第3の基準位置から前記移動方向にそれぞれ±π/2±π/8・・・±π/2n+1離れた2個の位置に1個ずつ配置され、
     前記2個の第5の検出素子は、前記第1の基準位置から前記移動方向に(2i-1)π/2(iは任意の整数の中から選択される数)離れた第5の基準位置から前記移動方向にそれぞれ±π/2±π/8・・・±π/2n+1離れた2個の位置に1個ずつ配置され、
     前記2個の第7の検出素子は、前記第1の基準位置から前記移動方向に(2i-1)π/2+(2i-1)π/4(iは任意の整数の中から選択される数)離れた第7の基準位置から前記移動方向にそれぞれ±π/2±π/8・・・±π/2n+1離れた2個の位置に1個ずつ配置される
     ことを特徴とする請求項18に記載の位置検出装置。
    The first element is composed of 2 n first detection elements (n is a number selected from an arbitrary natural number),
    The third element is composed of 2 n third detection elements,
    The fifth element includes 2 n of the fifth detection elements,
    The seventh element is composed of 2 n seventh detection elements,
    The 2 n first detection elements are arranged one by one at 2 n positions separated from each other by ± π / 2 ± π / 8... ± π / 2 n + 1 in the movement direction from the first reference position. Arranged,
    The 2 n third detection elements are spaced apart from the first reference position in the movement direction by (2i 2 −1) π / 4 (where i 2 is a number selected from an arbitrary integer). One at each of 2 n positions apart from each other by ± π / 2 ± π / 8... ± π / 2 n + 1 in the moving direction from the three reference positions;
    The 2 n fifth detection elements are spaced apart from the first reference position in the movement direction by (2i 4 −1) π / 2 (i 4 is a number selected from an arbitrary integer). 1 is arranged at 2 n positions apart from each other by ± π / 2 ± π / 8... ± π / 2 n + 1 in the moving direction from 5 reference positions,
    The 2 n seventh detection elements are (2i 6 −1) π / 2 + (2i 2 −1) π / 4 (i 6 is an arbitrary integer in the moving direction from the first reference position. be arranged from the seventh reference position apart a few) selected one for each ± π / 2 ± π / 8 ··· ± π / 2 n + 1 apart the 2 n position in the moving direction from The position detection device according to claim 18.
  20.  前記第2の素子は、2個の前記第2の検出素子からなり、
     前記第4の素子は、2個の前記第4の検出素子からなり、
     前記第6の素子は、2個の前記第6の検出素子からなり、
     前記第8の素子は、2個の前記第8の検出素子からなり、
     前記2個の第2の検出素子は、前記第1の基準位置から前記移動方向に(2i-1)π/2(iは任意の整数の中から選択される数)離れた第2の基準位置から前記移動方向にそれぞれ±π/2±π/8・・・±π/2n+1離れた2個の位置に1個ずつ配置され、
     前記2個の第4の検出素子は、前記第1の基準位置から前記移動方向に(2i-1)π/2+(2i-1)π/4(iは任意の整数の中から選択される数)離れた第4の基準位置から前記移動方向にそれぞれ±π/2±π/8・・・±π/2n+1離れた2個の位置に1個ずつ配置され、
     前記2個の第6の検出素子は、前記第1の基準位置から前記移動方向に2iπ/2(iは任意の整数の中から選択される数)離れた第6の基準位置から前記移動方向にそれぞれ±π/2±π/8・・・±π/2n+1離れた2個の位置に1個ずつ配置され、
     前記2個の第8の検出素子は、前記第1の基準位置から前記移動方向に2iπ/2+(2i-1)π/4(iは任意の整数の中から選択される数)離れた第8の基準位置から前記移動方向にそれぞれ±π/2±π/8・・・±π/2n+1離れた2個の位置に1個ずつ配置される
     ことを特徴とする請求項19に記載の位置検出装置。
    The second element is composed of 2 n second detection elements,
    The fourth element includes 2 n fourth detection elements,
    The sixth element is composed of 2 n sixth detection elements,
    The eighth element includes 2 n of the eighth detection elements,
    The 2 n second detection elements are spaced apart from the first reference position in the movement direction by (2i 1 −1) π / 2 (where i 1 is a number selected from an arbitrary integer). One at each of 2 n positions separated from each other by ± π / 2 ± π / 8... ± π / 2 n + 1 in the moving direction from the two reference positions,
    The 2 n fourth detection elements are (2i 3 −1) π / 2 + (2i 2 −1) π / 4 (i 3 is an arbitrary integer in the moving direction from the first reference position. is arranged from the fourth reference position apart a few) selected one for each ± π / 2 ± π / 8 ··· ± π / 2 n + 1 apart the 2 n position in the moving direction from,
    The 2 n sixth detection elements are arranged at a sixth reference position that is 2i 5 π / 2 away from the first reference position in the movement direction (i 5 is a number selected from an arbitrary integer). Are arranged one by one at 2 n positions apart from each other by ± π / 2 ± π / 8... ± π / 2 n + 1 in the moving direction.
    The 2 n eighth detection elements are selected from 2i 7 π / 2 + (2i 2 −1) π / 4 (i 7 is an arbitrary integer) in the movement direction from the first reference position. characterized in that it is arranged number) from a distant eighth reference position, one for each ± π / 2 ± π / 8 ··· ± π / 2 n + 1 apart the 2 n position in the moving direction The position detection device according to claim 19.
  21.  前記第1の素子は、2個(nは任意の自然数の中から選択される数)の前記第1の検出素子からなり、
     前記第3の素子は、2個の前記第3の検出素子からなり、
     前記第5の素子は、2個の前記第5の検出素子からなり、
     前記第7の素子は、2個の前記第7の検出素子からなり、
     前記2個の第1の検出素子の前記移動方向の配置は、2次項成分(kは任意の自然数の中から選択される数)以外の2のべき乗次成分と、2P次成分(Pは3以上の素数)との中から選択されるn個の成分が除去されるよう決定され、
     前記2個の第3の検出素子は、前記2個の第1の検出素子それぞれを前記移動方向に(2i-1)π/2k+1(iは任意の整数の中から選択される数)ずらした位置に配置され、
     前記2個の第5の検出素子は、前記2個の第1の検出素子それぞれを前記移動方向に(2i-1)π/2(iは任意の整数の中から選択される数)ずらした位置に配置され、
     前記2個の第7の検出素子は、前記2個の第1の検出素子それぞれを前記移動方向に(2i-1)π/2+(2i-1)π/2k+1(iは任意の整数の中から選択される数)ずらした位置に配置される
     ことを特徴とする請求項18に記載の位置検出装置。
    The first element is composed of 2 n first detection elements (n is a number selected from an arbitrary natural number),
    The third element is composed of 2 n third detection elements,
    The fifth element includes 2 n of the fifth detection elements,
    The seventh element is composed of 2 n seventh detection elements,
    The arrangement of the 2 n first detection elements in the movement direction is a power-of-two order component other than a 2 k order component (k is a number selected from an arbitrary natural number) and a 2 k P order component. (P is a prime number greater than or equal to 3) and n components selected from among them are determined to be removed,
    The 2 n third detection elements are (2i 2 −1) π / 2 k + 1 (i 2 is selected from arbitrary integers) in the movement direction with respect to each of the 2 n first detection elements. Are arranged at a shifted position,
    The 2 n fifth detection elements are each selected from (2i 4 −1) π / 2 k (i 4 is an arbitrary integer) in the moving direction with respect to each of the 2 n first detection elements. Are arranged at a shifted position,
    Detecting element of the 2 n pieces of seventh, the two respective n first detector element in the moving direction (2i 6 -1) π / 2 k + (2i 2 -1) π / 2 k + 1 ( The position detection device according to claim 18, wherein i 6 is arranged at a position shifted by a number selected from an arbitrary integer.
  22.  前記第2の素子は、2個の前記第2の検出素子からなり、
     前記第4の素子は、2個の前記第4の検出素子からなり、
     前記第6の素子は、2個の前記第6の検出素子からなり、
     前記第8の素子は、2個の前記第8の検出素子からなり、
     前記2個の第2の検出素子は、前記2個の第1の検出素子それぞれを前記移動方向に(2i-1)π/2(iは任意の整数の中から選択される数)ずらした位置に配置され、
     前記2個の第4の検出素子は、前記2個の第1の検出素子それぞれを前記移動方向に(2i-1)π/2+(2i-1)π/2k+1(iは任意の整数の中から選択される数)ずらした位置に配置され、
     前記2個の第6の検出素子は、前記2個の第1の検出素子それぞれを前記移動方向に2iπ/2(iは任意の整数の中から選択される数)ずらした位置に配置され、
     前記2個の第8の検出素子は、前記2個の第1の検出素子それぞれを前記移動方向に2iπ/2+(2i-1)π/2k+1(iは任意の整数の中から選択される数)ずらした位置に配置される
     ことを特徴とする請求項21に記載の位置検出装置。
    The second element is composed of 2 n second detection elements,
    The fourth element includes 2 n fourth detection elements,
    The sixth element is composed of 2 n sixth detection elements,
    The eighth element includes 2 n of the eighth detection elements,
    The 2 n pieces of the second detection element, wherein the 2 each n-number of the first detection element in the moving direction (2i 1 -1) π / 2 k (i 1 is selected from any integer Are arranged at a shifted position,
    The 2 n pieces of the fourth detection element, wherein the 2 each n-number of the first detection element in the moving direction (2i 3 -1) π / 2 k + (2i 2 -1) π / 2 k + 1 ( i 3 is arranged at a position shifted by a number selected from an arbitrary integer)
    The 2 n sixth detection elements shift the 2 n first detection elements by 2i 5 π / 2 k in the moving direction (where i 5 is a number selected from an arbitrary integer). Placed at
    The 2 n eighth detection elements are arranged so that each of the 2 n first detection elements is 2i 7 π / 2 k + (2i 2 −1) π / 2 k + 1 (i 7 is arbitrary) in the moving direction. The position detection device according to claim 21, wherein the position detection device is arranged at a shifted position.
  23.  前記第1の素子は、2個(nは任意の2以上の自然数の中から選択される数)の前記第1の検出素子からなり、
     前記第3の素子は、2個の前記第3の検出素子からなり、
     前記第5の素子は、2個の前記第5の検出素子からなり、
     前記第7の素子は、2個の前記第7の検出素子からなり、
     前記2個の第1の検出素子は、
     n=2である場合には、第1の基準位置から前記移動方向に+π/2離れた第1の位置からさらに前記移動方向にそれぞれ±π/4離れた第5及び第6の位置に1個ずつ、前記第1の基準位置から前記移動方向に-π/2離れた第2の位置からさらに前記移動方向にそれぞれ±π/4離れた第7及び第8の位置に1個ずつ、それぞれ配置され、
     n≧3である場合には、前記第5の位置から前記移動方向にそれぞれ±π/16・・・±π/2n+1離れた2n-2個の位置に1個ずつ、前記第6の位置から前記移動方向にそれぞれ±π/16・・・±π/2n+1離れた2n-2個の位置に1個ずつ、前記第7の位置から前記移動方向にそれぞれ±π/16・・・±π/2n+1離れた2n-2個の位置に1個ずつ、前記第8の位置から前記移動方向にそれぞれ±π/16・・・±π/2n+1離れた2n-2個の位置に1個ずつ、それぞれ配置され、
     前記2個の第3の検出素子は、前記2個の第1の検出素子それぞれを前記移動方向に(2i-1)π/8(iは任意の整数の中から選択される数)ずらした位置に配置され、
     前記2個の第5の検出素子は、前記2個の第1の検出素子それぞれを前記移動方向に(2i-1)π/4(iは任意の整数の中から選択される数)ずらした位置に配置され、
     前記2個の第7の検出素子は、前記2個の第1の検出素子それぞれを前記移動方向に(2i-1)π/4+(2i-1)π/8(iは任意の整数の中から選択される数)ずらした位置に配置される
     ことを特徴とする請求項18に記載の位置検出装置。
    The first element includes 2 n (n is a number selected from any two or more natural numbers) of the first detection elements,
    The third element is composed of 2 n third detection elements,
    The fifth element includes 2 n of the fifth detection elements,
    The seventh element is composed of 2 n seventh detection elements,
    The 2 n first detection elements are:
    When n = 2, 1 is set to 5th and 6th positions that are further separated by ± π / 4 in the movement direction from the first position that is + π / 2 away from the first reference position in the movement direction. One by one from the second position, which is -π / 2 away from the first reference position in the movement direction, to the seventh and eighth positions, which are further separated by ± π / 4 in the movement direction, respectively. Arranged,
    When n ≧ 3, each of the sixth positions is one in 2 n−2 positions that are separated by ± π / 16... ± π / 2 n + 1 in the moving direction from the fifth position. one by one from the position in each of ± π / 16 ··· ± π / 2 n + 1 apart 2 n-2 pieces of position in the moving direction, the seventh, respectively ± π / 16 ·· from the position in the moving direction of the one by one · ± a [pi / 2 n + 1 apart 2 n-2 pieces of position, 2 n-2 pieces that each ± π / 16 ··· ± π / 2 n + 1 apart in the moving direction from the position of the eighth One at each position,
    The 2 n third detection elements are each selected from (2i 2 −1) π / 8 (i 2 is an arbitrary integer) in the movement direction for each of the 2 n first detection elements. Number)
    The 2 n fifth detection elements are each selected from (2i 4 −1) π / 4 (i 4 is an arbitrary integer) in the moving direction for each of the 2 n first detection elements. Number)
    The 2 n seventh detection elements are arranged so that each of the 2 n first detection elements is (2i 6 −1) π / 4 + (2i 2 −1) π / 8 (i 6 The position detection device according to claim 18, wherein the position detection device is arranged at a position shifted by a number selected from an arbitrary integer.
  24.  前記第2の素子は、2個の前記第2の検出素子からなり、
     前記第4の素子は、2個の前記第4の検出素子からなり、
     前記第6の素子は、2個の前記第6の検出素子からなり、
     前記第8の素子は、2個の前記第8の検出素子からなり、
     前記2個の第2の検出素子は、前記2個の第1の検出素子それぞれを前記移動方向に(2i-1)π/4(iは任意の整数の中から選択される数)ずらした位置に配置され、
     前記2個の第4の検出素子は、前記2個の第1の検出素子それぞれを前記移動方向に(2i-1)π/4+(2i-1)π/8(iは任意の整数の中から選択される数)ずらした位置に配置され、
     前記2個の第6の検出素子は、前記2個の第1の検出素子それぞれを前記移動方向に2iπ/4(iは任意の整数の中から選択される数)ずらした位置に配置され、
     前記2個の第8の検出素子は、前記2個の第1の検出素子それぞれを前記移動方向に2iπ/4+(2i-1)π/8(iは任意の整数の中から選択される数)ずらした位置に配置される
     ことを特徴とする請求項23に記載の位置検出装置。
    The second element is composed of 2 n second detection elements,
    The fourth element includes 2 n fourth detection elements,
    The sixth element is composed of 2 n sixth detection elements,
    The eighth element includes 2 n of the eighth detection elements,
    The 2 n second detection elements are each selected from (2i 1 −1) π / 4 (i 1 is an arbitrary integer) in the movement direction for each of the 2 n first detection elements. Number)
    The 2 n fourth detection elements move (2i 3 −1) π / 4 + (2i 2 −1) π / 8 (i 3 in the moving direction) to each of the 2 n first detection elements. A number selected from an arbitrary integer)
    The 2 n sixth detection elements are shifted from the 2 n first detection elements by 2i 5 π / 4 (i 5 is a number selected from an arbitrary integer) in the movement direction. Placed in position,
    The 2 n eighth detection elements are arranged so that each of the 2 n first detection elements is 2i 7 π / 4 + (2i 2 −1) π / 8 (i 7 is an arbitrary integer) in the moving direction. The position detection device according to claim 23, wherein the position detection device is arranged at a position shifted by a number selected from among the positions.
  25.  位置検出対象の物体の移動方向に沿って延伸する第1の表面を有するスケールと、
     前記物体とともに移動可能に構成され、かつ前記第1の表面に対向して配置されたセンサーと、
     前記センサーの出力信号に基づいて前記位置検出対象の物体の位置を取得する位置取得手段とを備え、
     前記センサーは、
     第1の電源電位が供給される第1の電源端子と、
     前記第1の電源電位とは異なる第2の電源電位が供給される第2の電源端子と、
     第1乃至第4の出力端子と、
     前記第1の出力端子と前記第1の電源端子との間に接続された第1の素子と、
     前記第2の電源端子と前記第1の出力端子との間に接続された第2の素子と、
     前記第2の出力端子と前記第1の電源端子との間に接続された第3の素子と、
     前記第2の電源端子と前記第2の出力端子との間に接続された第4の素子と、
     前記第3の出力端子と前記第1の電源端子との間に接続された第5の素子と、
     前記第2の電源端子と前記第3の出力端子との間に接続された第6の素子と、
     前記第4の出力端子と前記第1の電源端子との間に接続された第7の素子と、
     前記第2の電源端子と前記第4の出力端子との間に接続された第8の素子と
     前記第1の出力端子に現れる電圧信号から前記第3の出力端子に現れる電圧信号を減算してなる電圧信号を出力する第1の減算回路と、
     前記第2の出力端子に現れる電圧信号から前記第4の出力端子に現れる電圧信号を減算してなる電圧信号を出力する第2の減算回路とを有し、
     前記第1の素子は、前記第1の出力端子と前記第1の電源端子との間に直列接続され、かつ前記移動方向に沿って並置された複数個の第1の検出素子からなり、
     前記第3の素子は、前記第2の出力端子と前記第1の電源端子との間に直列接続され、かつ前記移動方向に沿って並置された複数個の第3の検出素子からなり、
     前記第5の素子は、前記第3の出力端子と前記第1の電源端子との間に直列接続され、かつ前記移動方向に沿って並置された複数個の第5の検出素子からなり、
     前記第7の素子は、前記第4の出力端子と前記第1の電源端子との間に直列接続され、かつ前記移動方向に沿って並置された複数個の第7の検出素子からなり、
     前記各第1の検出素子、前記各第3の検出素子、前記各第5の検出素子、及び前記各第7の検出素子はそれぞれ、前記第1の表面に沿って前記移動方向に移動する際、前記スケールの対向位置に応じた所定の読み出し信号を生成するよう構成され、
     前記複数個の第1の検出素子の前記移動方向の配置及び前記複数個の第5の検出素子の前記移動方向の配置は、前記第1の減算回路の出力信号に少なくとも位相の2次項成分及び2+2k+1・N次項成分(kは任意の自然数の中から選択される数、Nは正の整数)が残り、前記第1の出力端子に現れる電圧信号から少なくとも位相の2次項成分及び2+2m+1・N次項成分(mはkより小さい正の整数)が除去されるよう決定され、
     前記複数個の第3の検出素子の前記移動方向の配置及び前記複数個の第7の検出素子の前記移動方向の配置は、前記第2の減算回路の出力信号に少なくとも位相の2次項成分及び2+2k+1・N次項成分が残り、前記第2の出力端子に現れる電圧信号から少なくとも位相の2次項成分及び2+2m+1・N次項成分が除去されるよう決定され、
     前記位置取得手段は、前記第1の減算回路の出力信号と、前記第2の減算回路の出力信号とに基づいて前記位置検出対象の物体の位置を算出する
     ことを特徴とする位置検出装置。
    A scale having a first surface extending along a moving direction of the object to be detected;
    A sensor configured to be movable with the object and disposed opposite the first surface;
    Position acquisition means for acquiring the position of the position detection target object based on an output signal of the sensor;
    The sensor is
    A first power supply terminal to which a first power supply potential is supplied;
    A second power supply terminal to which a second power supply potential different from the first power supply potential is supplied;
    First to fourth output terminals;
    A first element connected between the first output terminal and the first power supply terminal;
    A second element connected between the second power supply terminal and the first output terminal;
    A third element connected between the second output terminal and the first power supply terminal;
    A fourth element connected between the second power supply terminal and the second output terminal;
    A fifth element connected between the third output terminal and the first power supply terminal;
    A sixth element connected between the second power supply terminal and the third output terminal;
    A seventh element connected between the fourth output terminal and the first power supply terminal;
    An eighth element connected between the second power supply terminal and the fourth output terminal; and a voltage signal appearing at the third output terminal is subtracted from a voltage signal appearing at the first output terminal. A first subtraction circuit that outputs a voltage signal
    A second subtracting circuit that outputs a voltage signal obtained by subtracting a voltage signal appearing at the fourth output terminal from a voltage signal appearing at the second output terminal;
    The first element comprises a plurality of first detection elements connected in series between the first output terminal and the first power supply terminal and juxtaposed along the moving direction,
    The third element includes a plurality of third detection elements connected in series between the second output terminal and the first power supply terminal and juxtaposed along the moving direction.
    The fifth element comprises a plurality of fifth detection elements connected in series between the third output terminal and the first power supply terminal and juxtaposed along the moving direction,
    The seventh element includes a plurality of seventh detection elements connected in series between the fourth output terminal and the first power supply terminal and juxtaposed along the moving direction,
    Each of the first detection elements, the third detection elements, the fifth detection elements, and the seventh detection elements move in the movement direction along the first surface. , Configured to generate a predetermined readout signal according to the opposing position of the scale,
    The arrangement of the plurality of first detection elements in the movement direction and the arrangement of the plurality of fifth detection elements in the movement direction are such that an output signal of the first subtraction circuit has at least a 2 k- order component of phase. And 2 k +2 k + 1 · Nth-order term component (k is a number selected from an arbitrary natural number, N is a positive integer), and at least the 2 mth- order component of the phase from the voltage signal appearing at the first output terminal And 2 m +2 m + 1 · Nth order component (m is a positive integer smaller than k) is determined to be removed,
    The arrangement of the plurality of third detection elements in the movement direction and the arrangement of the plurality of seventh detection elements in the movement direction are such that an output signal of the second subtraction circuit includes at least a 2 k- order component of phase. and the balance 2 k +2 k + 1 · N order term component, 2 m order term component and 2 m +2 m + 1 · N order term component of at least a phase from the voltage signal appearing at the second output terminal is determined to be removed,
    The position acquisition device calculates the position of the object to be detected based on an output signal of the first subtraction circuit and an output signal of the second subtraction circuit.
  26.  前記複数個の第1の検出素子の前記移動方向の配置及び前記複数個の第5の検出素子の前記移動方向の配置は、前記第1の減算回路の出力信号から位相の2+2k+1・N次項成分も除去されるよう決定され、
     前記複数個の第3の検出素子の前記移動方向の配置及び前記複数個の第7の検出素子の前記移動方向の配置は、前記第2の減算回路の出力信号から位相の2+2k+1・N次項成分も除去されるよう決定される
     ことを特徴とする請求項25に記載の位置検出装置。
    The arrangement of the plurality of first detection elements in the movement direction and the arrangement of the plurality of fifth detection elements in the movement direction are determined from the output signal of the first subtraction circuit by a phase of 2 k +2 k + 1 · The Nth order component is also determined to be removed,
    The arrangement of the plurality of third detection elements in the movement direction and the arrangement of the plurality of seventh detection elements in the movement direction are determined from the output signal of the second subtraction circuit by a phase of 2 k +2 k + 1 · The position detection device according to claim 25, wherein the position detection device is determined so as to remove the N-th order component.
PCT/JP2011/059422 2010-04-26 2011-04-15 Position detection device WO2011136054A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012512773A JP5761181B2 (en) 2010-04-26 2011-04-15 Position detection device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-101482 2010-04-26
JP2010101482 2010-04-26

Publications (1)

Publication Number Publication Date
WO2011136054A1 true WO2011136054A1 (en) 2011-11-03

Family

ID=44861362

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/059422 WO2011136054A1 (en) 2010-04-26 2011-04-15 Position detection device

Country Status (2)

Country Link
JP (1) JP5761181B2 (en)
WO (1) WO2011136054A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150253162A1 (en) * 2014-03-10 2015-09-10 Dmg Mori Seiki Co., Ltd. Position detecting device
JP2017032394A (en) * 2015-07-31 2017-02-09 Tdk株式会社 Angle sensor correction device and correction method and angle sensor
JP2017173326A (en) * 2016-03-23 2017-09-28 アナログ・デヴァイシズ・グローバル Offset compensation for magnetic field detector
US10739165B2 (en) 2017-07-05 2020-08-11 Analog Devices Global Magnetic field sensor
EP3907477A1 (en) * 2020-05-06 2021-11-10 Dr. Johannes Heidenhain GmbH Magnetic position measuring device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021125964A1 (en) 2021-10-06 2023-04-06 Infineon Technologies Ag A position sensor system, an optical lens system and a display

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3118960B2 (en) * 1992-06-15 2000-12-18 ソニー株式会社 Magnetic sensor
WO2008130002A1 (en) * 2007-04-20 2008-10-30 Mitsubishi Electric Corporation Magnetic rotating angle detector

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3118960B2 (en) * 1992-06-15 2000-12-18 ソニー株式会社 Magnetic sensor
WO2008130002A1 (en) * 2007-04-20 2008-10-30 Mitsubishi Electric Corporation Magnetic rotating angle detector

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10024691B2 (en) 2014-03-10 2018-07-17 Dmg Mori Seiki Co., Ltd. Position detecting device
US9733317B2 (en) * 2014-03-10 2017-08-15 Dmg Mori Seiki Co., Ltd. Position detecting device
US20150253162A1 (en) * 2014-03-10 2015-09-10 Dmg Mori Seiki Co., Ltd. Position detecting device
US10048093B2 (en) 2014-03-10 2018-08-14 Dmg Mori Seiki Co., Ltd. Position detecting device
JP2017032394A (en) * 2015-07-31 2017-02-09 Tdk株式会社 Angle sensor correction device and correction method and angle sensor
CN106403805A (en) * 2015-07-31 2017-02-15 Tdk株式会社 Correction apparatus and method for angle sensor, and angle sensor
US10254135B2 (en) 2015-07-31 2019-04-09 Tdk Corporation Correction apparatus and method for angle sensor, and angle sensor
JP2017173326A (en) * 2016-03-23 2017-09-28 アナログ・デヴァイシズ・グローバル Offset compensation for magnetic field detector
CN107229023A (en) * 2016-03-23 2017-10-03 亚德诺半导体集团 The migration of magnetic field detector
JP2017173325A (en) * 2016-03-23 2017-09-28 アナログ・デヴァイシズ・グローバル Magnetic field detector
DE102017106322B4 (en) * 2016-03-23 2020-01-30 Analog Devices Global magnetic field detector
US11187763B2 (en) 2016-03-23 2021-11-30 Analog Devices International Unlimited Company Offset compensation for magnetic field detector
US11294003B2 (en) 2016-03-23 2022-04-05 Analog Devices International Unlimited Company Magnetic field detector
US10739165B2 (en) 2017-07-05 2020-08-11 Analog Devices Global Magnetic field sensor
EP3907477A1 (en) * 2020-05-06 2021-11-10 Dr. Johannes Heidenhain GmbH Magnetic position measuring device
US11408756B2 (en) 2020-05-06 2022-08-09 Dr. Johannes Heidenhain Gmbh Magnetic position measuring device

Also Published As

Publication number Publication date
JP5761181B2 (en) 2015-08-12
JPWO2011136054A1 (en) 2013-07-18

Similar Documents

Publication Publication Date Title
JP5761181B2 (en) Position detection device
KR101078078B1 (en) Magnetic rotational-angle detector
JP6032924B2 (en) Encoder
JP5562077B2 (en) Optical encoder, encoder, interference measurement device, measurement method
JP2018151181A (en) Magnetic position detecting device
JP2017167141A (en) Electromagnetic induction type absolute type position encoder
JP5706440B2 (en) Rotation angle detector
JP5762567B2 (en) Rotation angle detector
JP2008076199A (en) Encoder
WO2015087725A1 (en) Magnetic sensor device and magnetic encoder device
US5748373A (en) Scale and encoder including differently spaced pattern lines
EP0157034B1 (en) Detector head
JP3245610B2 (en) Device for filtering odd-order harmonic signal components
JP5870554B2 (en) Encoder
JP2005214920A (en) Magnetic sensor
JP2004309366A (en) Position detecting device
JP2021177164A (en) Magnetic encoder
JP2013101023A (en) Position detector and driver
JP3184419B2 (en) Optical grating and encoder
JP5687083B2 (en) Magnetic sensor and linear encoder
JP6421046B2 (en) Current measuring device
JPH10122808A (en) Magnetic sensor
JP6121657B2 (en) Differential magnetic field applying apparatus and differential magnetic field applying method
JP2014062751A (en) Magnetic position detector
JP2023056239A (en) Displacement detection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11774838

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012512773

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11774838

Country of ref document: EP

Kind code of ref document: A1