WO2011126811A2 - High level expression of recombinant toxin proteins - Google Patents
High level expression of recombinant toxin proteins Download PDFInfo
- Publication number
- WO2011126811A2 WO2011126811A2 PCT/US2011/030227 US2011030227W WO2011126811A2 WO 2011126811 A2 WO2011126811 A2 WO 2011126811A2 US 2011030227 W US2011030227 W US 2011030227W WO 2011126811 A2 WO2011126811 A2 WO 2011126811A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- expression
- protein
- toxin
- host cell
- recombinant
- Prior art date
Links
- 108700012359 toxins Proteins 0.000 title claims abstract description 151
- 230000014509 gene expression Effects 0.000 title claims description 220
- 108010049048 Cholera Toxin Proteins 0.000 claims abstract description 101
- 102000009016 Cholera Toxin Human genes 0.000 claims abstract description 99
- 108010071134 CRM197 (non-toxic variant of diphtheria toxin) Proteins 0.000 claims abstract description 93
- 108010081690 Pertussis Toxin Proteins 0.000 claims abstract description 72
- 108010053187 Diphtheria Toxin Proteins 0.000 claims abstract description 52
- 102000016607 Diphtheria Toxin Human genes 0.000 claims abstract description 49
- 238000004519 manufacturing process Methods 0.000 claims abstract description 29
- 206010008631 Cholera Diseases 0.000 claims abstract description 16
- 229930186900 holotoxin Natural products 0.000 claims abstract description 16
- 108090000623 proteins and genes Proteins 0.000 claims description 174
- 210000004027 cell Anatomy 0.000 claims description 164
- 102000004169 proteins and genes Human genes 0.000 claims description 149
- 238000000034 method Methods 0.000 claims description 105
- 230000028327 secretion Effects 0.000 claims description 89
- 241000589540 Pseudomonas fluorescens Species 0.000 claims description 68
- 230000002950 deficient Effects 0.000 claims description 42
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 claims description 41
- 229940059720 apra Drugs 0.000 claims description 41
- 230000000694 effects Effects 0.000 claims description 41
- 229940118376 tetanus toxin Drugs 0.000 claims description 33
- 101710082714 Exotoxin A Proteins 0.000 claims description 32
- 108091005804 Peptidases Proteins 0.000 claims description 32
- 108010055044 Tetanus Toxin Proteins 0.000 claims description 32
- 239000004365 Protease Substances 0.000 claims description 31
- 241000589516 Pseudomonas Species 0.000 claims description 31
- XFTWUNOVBCHBJR-UHFFFAOYSA-N Aspergillomarasmine A Chemical compound OC(=O)C(N)CNC(C(O)=O)CNC(C(O)=O)CC(O)=O XFTWUNOVBCHBJR-UHFFFAOYSA-N 0.000 claims description 26
- 241000193163 Clostridioides difficile Species 0.000 claims description 25
- 230000006698 induction Effects 0.000 claims description 24
- 108091026890 Coding region Proteins 0.000 claims description 23
- 239000002773 nucleotide Substances 0.000 claims description 23
- 125000003729 nucleotide group Chemical group 0.000 claims description 23
- 239000013604 expression vector Substances 0.000 claims description 21
- 238000003556 assay Methods 0.000 claims description 19
- 108010044241 tetanus toxin fragment C Proteins 0.000 claims description 18
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 claims description 14
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 claims description 14
- 101710182223 Toxin B Proteins 0.000 claims description 14
- 101000829489 Homo sapiens GrpE protein homolog 1, mitochondrial Proteins 0.000 claims description 11
- 102100023737 GrpE protein homolog 1, mitochondrial Human genes 0.000 claims description 10
- 210000001322 periplasm Anatomy 0.000 claims description 10
- 102200088010 rs63750664 Human genes 0.000 claims description 9
- 102000004447 HSP40 Heat-Shock Proteins Human genes 0.000 claims description 8
- 108010042283 HSP40 Heat-Shock Proteins Proteins 0.000 claims description 8
- 238000002835 absorbance Methods 0.000 claims description 6
- 238000012258 culturing Methods 0.000 claims description 6
- 230000003287 optical effect Effects 0.000 claims description 6
- -1 DnaK Proteins 0.000 claims description 5
- 238000012546 transfer Methods 0.000 claims description 5
- 108090000899 Serralysin Proteins 0.000 claims description 4
- 108010048032 cyclophilin B Proteins 0.000 claims description 4
- 238000001952 enzyme assay Methods 0.000 claims description 3
- 239000001963 growth medium Substances 0.000 claims description 3
- 238000001525 receptor binding assay Methods 0.000 claims description 3
- 238000010324 immunological assay Methods 0.000 claims description 2
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 claims description 2
- 230000001131 transforming effect Effects 0.000 claims description 2
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 claims 1
- 239000003053 toxin Substances 0.000 abstract description 45
- 231100000765 toxin Toxicity 0.000 abstract description 43
- 230000014616 translation Effects 0.000 abstract description 22
- 230000001580 bacterial effect Effects 0.000 abstract description 9
- 239000012634 fragment Substances 0.000 abstract description 9
- 108700033844 Pseudomonas aeruginosa toxA Proteins 0.000 abstract description 5
- 229960000814 tetanus toxoid Drugs 0.000 abstract 1
- 235000018102 proteins Nutrition 0.000 description 129
- 238000000855 fermentation Methods 0.000 description 54
- 230000004151 fermentation Effects 0.000 description 54
- 108091028043 Nucleic acid sequence Proteins 0.000 description 34
- 125000003275 alpha amino acid group Chemical group 0.000 description 32
- 230000001086 cytosolic effect Effects 0.000 description 32
- 102000035195 Peptidases Human genes 0.000 description 31
- 239000013612 plasmid Substances 0.000 description 27
- 238000001262 western blot Methods 0.000 description 25
- 108020004705 Codon Proteins 0.000 description 24
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 24
- 229960005486 vaccine Drugs 0.000 description 24
- 230000027455 binding Effects 0.000 description 21
- 201000005702 Pertussis Diseases 0.000 description 20
- 108090000765 processed proteins & peptides Proteins 0.000 description 20
- 150000003839 salts Chemical class 0.000 description 19
- 235000001014 amino acid Nutrition 0.000 description 18
- 238000004458 analytical method Methods 0.000 description 18
- 229910052500 inorganic mineral Inorganic materials 0.000 description 18
- 235000010755 mineral Nutrition 0.000 description 18
- 239000011707 mineral Substances 0.000 description 18
- 235000019419 proteases Nutrition 0.000 description 18
- 101100204301 Bacillus subtilis (strain 168) aprE gene Proteins 0.000 description 16
- 101150117169 aprA gene Proteins 0.000 description 16
- 229920001184 polypeptide Polymers 0.000 description 16
- 102000004196 processed proteins & peptides Human genes 0.000 description 16
- 108010006519 Molecular Chaperones Proteins 0.000 description 15
- 108010076504 Protein Sorting Signals Proteins 0.000 description 15
- 150000001413 amino acids Chemical group 0.000 description 15
- 239000002609 medium Substances 0.000 description 15
- 102000009062 ADP Ribose Transferases Human genes 0.000 description 14
- 108010049290 ADP Ribose Transferases Proteins 0.000 description 14
- 241000588724 Escherichia coli Species 0.000 description 14
- 101100487678 Escherichia coli (strain K12) yadV gene Proteins 0.000 description 14
- 241000192142 Proteobacteria Species 0.000 description 14
- 101150114495 ecpD gene Proteins 0.000 description 14
- 230000002829 reductive effect Effects 0.000 description 14
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 13
- 238000005119 centrifugation Methods 0.000 description 13
- 230000002255 enzymatic effect Effects 0.000 description 13
- 208000015181 infectious disease Diseases 0.000 description 13
- 239000012528 membrane Substances 0.000 description 13
- 238000013519 translation Methods 0.000 description 13
- 102100031334 Elongation factor 2 Human genes 0.000 description 12
- 108010077519 Peptide Elongation Factor 2 Proteins 0.000 description 12
- 238000001818 capillary gel electrophoresis Methods 0.000 description 12
- 230000036039 immunity Effects 0.000 description 12
- 150000007523 nucleic acids Chemical class 0.000 description 12
- 239000008188 pellet Substances 0.000 description 12
- 238000000746 purification Methods 0.000 description 12
- 102000005962 receptors Human genes 0.000 description 12
- 108020003175 receptors Proteins 0.000 description 12
- 238000012217 deletion Methods 0.000 description 11
- 230000037430 deletion Effects 0.000 description 11
- 150000002500 ions Chemical class 0.000 description 11
- 238000005457 optimization Methods 0.000 description 11
- 230000002018 overexpression Effects 0.000 description 11
- 230000001105 regulatory effect Effects 0.000 description 11
- 101100110385 Escherichia coli (strain K12) atpB gene Proteins 0.000 description 10
- 101100242758 Escherichia coli papD gene Proteins 0.000 description 10
- 102000004316 Oxidoreductases Human genes 0.000 description 10
- 108090000854 Oxidoreductases Proteins 0.000 description 10
- 101100029151 Pediococcus acidilactici pedD gene Proteins 0.000 description 10
- 238000010276 construction Methods 0.000 description 10
- 230000001939 inductive effect Effects 0.000 description 10
- 230000001254 nonsecretory effect Effects 0.000 description 10
- 230000005730 ADP ribosylation Effects 0.000 description 9
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 9
- 102000005431 Molecular Chaperones Human genes 0.000 description 9
- 102100040283 Peptidyl-prolyl cis-trans isomerase B Human genes 0.000 description 9
- 150000001875 compounds Chemical class 0.000 description 9
- 231100000252 nontoxic Toxicity 0.000 description 9
- 230000003000 nontoxic effect Effects 0.000 description 9
- 102000040430 polynucleotide Human genes 0.000 description 9
- 108091033319 polynucleotide Proteins 0.000 description 9
- 239000002157 polynucleotide Substances 0.000 description 9
- 238000013518 transcription Methods 0.000 description 9
- 230000035897 transcription Effects 0.000 description 9
- 108010027179 Tacrolimus Binding Proteins Proteins 0.000 description 8
- 102000018679 Tacrolimus Binding Proteins Human genes 0.000 description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 8
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 8
- BTCSSZJGUNDROE-UHFFFAOYSA-N gamma-aminobutyric acid Chemical compound NCCCC(O)=O BTCSSZJGUNDROE-UHFFFAOYSA-N 0.000 description 8
- 102000034356 gene-regulatory proteins Human genes 0.000 description 8
- 108091006104 gene-regulatory proteins Proteins 0.000 description 8
- 239000001301 oxygen Substances 0.000 description 8
- 229910052760 oxygen Inorganic materials 0.000 description 8
- 239000002953 phosphate buffered saline Substances 0.000 description 8
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 7
- 239000000427 antigen Substances 0.000 description 7
- 108091007433 antigens Proteins 0.000 description 7
- 102000036639 antigens Human genes 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 7
- 239000012636 effector Substances 0.000 description 7
- 238000011160 research Methods 0.000 description 7
- 239000006228 supernatant Substances 0.000 description 7
- 239000011701 zinc Substances 0.000 description 7
- 229910052725 zinc Inorganic materials 0.000 description 7
- 101150027801 CTA1 gene Proteins 0.000 description 6
- 101100273295 Candida albicans (strain SC5314 / ATCC MYA-2876) CAT1 gene Proteins 0.000 description 6
- 102000014914 Carrier Proteins Human genes 0.000 description 6
- 108010078791 Carrier Proteins Proteins 0.000 description 6
- 102000030782 GTP binding Human genes 0.000 description 6
- 108091000058 GTP-Binding Proteins 0.000 description 6
- 108010020062 Peptidylprolyl Isomerase Proteins 0.000 description 6
- 241000589517 Pseudomonas aeruginosa Species 0.000 description 6
- 108010005730 R-SNARE Proteins Proteins 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 6
- 101150054715 clpY gene Proteins 0.000 description 6
- 239000000284 extract Substances 0.000 description 6
- 101150115543 hslU gene Proteins 0.000 description 6
- 230000001537 neural effect Effects 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 238000011084 recovery Methods 0.000 description 6
- 230000007017 scission Effects 0.000 description 6
- 230000005945 translocation Effects 0.000 description 6
- DHUYKLYJBKXDBM-UHFFFAOYSA-N 5-aminooxysulfonyl-2,4-dichlorobenzoic acid Chemical compound NOS(=O)(=O)C1=CC(C(O)=O)=C(Cl)C=C1Cl DHUYKLYJBKXDBM-UHFFFAOYSA-N 0.000 description 5
- 102000007469 Actins Human genes 0.000 description 5
- 108010085238 Actins Proteins 0.000 description 5
- 108010060123 Conjugate Vaccines Proteins 0.000 description 5
- 206010012735 Diarrhoea Diseases 0.000 description 5
- 108091006027 G proteins Proteins 0.000 description 5
- 101000878213 Homo sapiens Inactive peptidyl-prolyl cis-trans isomerase FKBP6 Proteins 0.000 description 5
- 102100036984 Inactive peptidyl-prolyl cis-trans isomerase FKBP6 Human genes 0.000 description 5
- 102000006010 Protein Disulfide-Isomerase Human genes 0.000 description 5
- 238000013019 agitation Methods 0.000 description 5
- 229910021529 ammonia Inorganic materials 0.000 description 5
- 238000003776 cleavage reaction Methods 0.000 description 5
- 229940031670 conjugate vaccine Drugs 0.000 description 5
- 230000001419 dependent effect Effects 0.000 description 5
- 238000011161 development Methods 0.000 description 5
- 101150015101 dsbC gene Proteins 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- 239000013613 expression plasmid Substances 0.000 description 5
- 230000001976 improved effect Effects 0.000 description 5
- 239000000411 inducer Substances 0.000 description 5
- 210000004962 mammalian cell Anatomy 0.000 description 5
- 210000002569 neuron Anatomy 0.000 description 5
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 5
- 108020003519 protein disulfide isomerase Proteins 0.000 description 5
- 239000000523 sample Substances 0.000 description 5
- OGNSCSPNOLGXSM-UHFFFAOYSA-N (+/-)-DABA Natural products NCCC(N)C(O)=O OGNSCSPNOLGXSM-UHFFFAOYSA-N 0.000 description 4
- 241000894006 Bacteria Species 0.000 description 4
- 101100507655 Canis lupus familiaris HSPA1 gene Proteins 0.000 description 4
- 206010009657 Clostridium difficile colitis Diseases 0.000 description 4
- 241000186227 Corynebacterium diphtheriae Species 0.000 description 4
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 4
- 102000005593 Endopeptidases Human genes 0.000 description 4
- 108010059378 Endopeptidases Proteins 0.000 description 4
- 102000004190 Enzymes Human genes 0.000 description 4
- 108090000790 Enzymes Proteins 0.000 description 4
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 4
- 239000004471 Glycine Substances 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 102000004195 Isomerases Human genes 0.000 description 4
- 108090000769 Isomerases Proteins 0.000 description 4
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 4
- 102000005741 Metalloproteases Human genes 0.000 description 4
- 108010006035 Metalloproteases Proteins 0.000 description 4
- 108010001267 Protein Subunits Proteins 0.000 description 4
- 102000002067 Protein Subunits Human genes 0.000 description 4
- 208000003100 Pseudomembranous Enterocolitis Diseases 0.000 description 4
- 206010037128 Pseudomembranous colitis Diseases 0.000 description 4
- 241000947836 Pseudomonadaceae Species 0.000 description 4
- 101900161471 Pseudomonas aeruginosa Exotoxin A Proteins 0.000 description 4
- 102000005917 R-SNARE Proteins Human genes 0.000 description 4
- 201000001718 Roberts syndrome Diseases 0.000 description 4
- 208000012474 Roberts-SC phocomelia syndrome Diseases 0.000 description 4
- 102000002933 Thioredoxin Human genes 0.000 description 4
- ISAKRJDGNUQOIC-UHFFFAOYSA-N Uracil Chemical compound O=C1C=CNC(=O)N1 ISAKRJDGNUQOIC-UHFFFAOYSA-N 0.000 description 4
- 230000009471 action Effects 0.000 description 4
- 108060000200 adenylate cyclase Proteins 0.000 description 4
- 102000030621 adenylate cyclase Human genes 0.000 description 4
- 239000002671 adjuvant Substances 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 238000004113 cell culture Methods 0.000 description 4
- 230000001413 cellular effect Effects 0.000 description 4
- 101150093586 clpA gene Proteins 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 239000003814 drug Substances 0.000 description 4
- 229940088598 enzyme Drugs 0.000 description 4
- 229960003692 gamma aminobutyric acid Drugs 0.000 description 4
- 108010055409 ganglioside receptor Proteins 0.000 description 4
- 239000008103 glucose Substances 0.000 description 4
- 101150066555 lacZ gene Proteins 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 239000006166 lysate Substances 0.000 description 4
- 239000003550 marker Substances 0.000 description 4
- 230000035772 mutation Effects 0.000 description 4
- 102000039446 nucleic acids Human genes 0.000 description 4
- 108020004707 nucleic acids Proteins 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 230000001681 protective effect Effects 0.000 description 4
- 238000001243 protein synthesis Methods 0.000 description 4
- 101150116440 pyrF gene Proteins 0.000 description 4
- 238000005001 rutherford backscattering spectroscopy Methods 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 230000009885 systemic effect Effects 0.000 description 4
- 108060008226 thioredoxin Proteins 0.000 description 4
- 239000011573 trace mineral Substances 0.000 description 4
- 235000013619 trace mineral Nutrition 0.000 description 4
- 239000000304 virulence factor Substances 0.000 description 4
- 230000007923 virulence factor Effects 0.000 description 4
- 241000589154 Azotobacter group Species 0.000 description 3
- 241000588807 Bordetella Species 0.000 description 3
- 241000588832 Bordetella pertussis Species 0.000 description 3
- 241000283707 Capra Species 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 108700022831 Clostridium difficile toxB Proteins 0.000 description 3
- 241000193449 Clostridium tetani Species 0.000 description 3
- 108700010070 Codon Usage Proteins 0.000 description 3
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 3
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 3
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 3
- 108010063907 Glutathione Reductase Proteins 0.000 description 3
- 102100036442 Glutathione reductase, mitochondrial Human genes 0.000 description 3
- 101100278567 Lelliottia amnigena dsbL gene Proteins 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 241000699670 Mus sp. Species 0.000 description 3
- 241001135311 Pseudoalteromonas nigrifaciens Species 0.000 description 3
- 230000002378 acidificating effect Effects 0.000 description 3
- 244000052616 bacterial pathogen Species 0.000 description 3
- 239000000872 buffer Substances 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- 210000002421 cell wall Anatomy 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 101150096566 clpX gene Proteins 0.000 description 3
- 238000006731 degradation reaction Methods 0.000 description 3
- 238000010790 dilution Methods 0.000 description 3
- 239000012895 dilution Substances 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 3
- VHJLVAABSRFDPM-QWWZWVQMSA-N dithiothreitol Chemical compound SC[C@@H](O)[C@H](O)CS VHJLVAABSRFDPM-QWWZWVQMSA-N 0.000 description 3
- 101150115114 dnaJ gene Proteins 0.000 description 3
- 238000012377 drug delivery Methods 0.000 description 3
- 101150009558 dsbA gene Proteins 0.000 description 3
- 239000002095 exotoxin Substances 0.000 description 3
- 231100000776 exotoxin Toxicity 0.000 description 3
- 230000002209 hydrophobic effect Effects 0.000 description 3
- 230000002401 inhibitory effect Effects 0.000 description 3
- 230000000977 initiatory effect Effects 0.000 description 3
- 230000002934 lysing effect Effects 0.000 description 3
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L magnesium chloride Substances [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 3
- 238000001840 matrix-assisted laser desorption--ionisation time-of-flight mass spectrometry Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 108010044156 peptidyl-prolyl cis-trans isomerase b Proteins 0.000 description 3
- 235000019833 protease Nutrition 0.000 description 3
- 238000003259 recombinant expression Methods 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 230000019491 signal transduction Effects 0.000 description 3
- 238000000527 sonication Methods 0.000 description 3
- 241000894007 species Species 0.000 description 3
- 230000008685 targeting Effects 0.000 description 3
- 229940094937 thioredoxin Drugs 0.000 description 3
- 231100000033 toxigenic Toxicity 0.000 description 3
- 230000001551 toxigenic effect Effects 0.000 description 3
- 230000014621 translational initiation Effects 0.000 description 3
- 238000002255 vaccination Methods 0.000 description 3
- ZIWNJZLXPXFNGN-GXTQQWMXSA-N (z)-7-[(3r,4s)-3-[(e,3s)-3-hydroxyoct-1-enyl]-4-bicyclo[3.1.1]heptanyl]hept-5-enoic acid Chemical compound OC(=O)CCC\C=C/C[C@@H]1[C@@H](/C=C/[C@@H](O)CCCCC)CC2CC1C2 ZIWNJZLXPXFNGN-GXTQQWMXSA-N 0.000 description 2
- OTLLEIBWKHEHGU-UHFFFAOYSA-N 2-[5-[[5-(6-aminopurin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy]-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3,5-dihydroxy-4-phosphonooxyhexanedioic acid Chemical compound C1=NC=2C(N)=NC=NC=2N1C(C(C1O)O)OC1COC1C(CO)OC(OC(C(O)C(OP(O)(O)=O)C(O)C(O)=O)C(O)=O)C(O)C1O OTLLEIBWKHEHGU-UHFFFAOYSA-N 0.000 description 2
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 2
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 231100000699 Bacterial toxin Toxicity 0.000 description 2
- 239000002028 Biomass Substances 0.000 description 2
- 101150111062 C gene Proteins 0.000 description 2
- 101710117545 C protein Proteins 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- 241000193403 Clostridium Species 0.000 description 2
- 241000193155 Clostridium botulinum Species 0.000 description 2
- 241000193468 Clostridium perfringens Species 0.000 description 2
- 241000589518 Comamonas testosteroni Species 0.000 description 2
- 241000702141 Corynephage beta Species 0.000 description 2
- IVOMOUWHDPKRLL-KQYNXXCUSA-N Cyclic adenosine monophosphate Chemical compound C([C@H]1O2)OP(O)(=O)O[C@H]1[C@@H](O)[C@@H]2N1C(N=CN=C2N)=C2N=C1 IVOMOUWHDPKRLL-KQYNXXCUSA-N 0.000 description 2
- 108010068682 Cyclophilins Proteins 0.000 description 2
- 102000001493 Cyclophilins Human genes 0.000 description 2
- 108020004414 DNA Proteins 0.000 description 2
- 241001600125 Delftia acidovorans Species 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- 238000002965 ELISA Methods 0.000 description 2
- 108090000860 Endopeptidase Clp Proteins 0.000 description 2
- 108700028146 Genetic Enhancer Elements Proteins 0.000 description 2
- 108010058940 Glutamyl Aminopeptidase Proteins 0.000 description 2
- 102000006485 Glutamyl Aminopeptidase Human genes 0.000 description 2
- 102000017278 Glutaredoxin Human genes 0.000 description 2
- 108050005205 Glutaredoxin Proteins 0.000 description 2
- 102100034051 Heat shock protein HSP 90-alpha Human genes 0.000 description 2
- 102100039170 Heat shock protein beta-6 Human genes 0.000 description 2
- 108010093488 His-His-His-His-His-His Proteins 0.000 description 2
- 101001016865 Homo sapiens Heat shock protein HSP 90-alpha Proteins 0.000 description 2
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 2
- 108010004098 Leucyl aminopeptidase Proteins 0.000 description 2
- 102000002704 Leucyl aminopeptidase Human genes 0.000 description 2
- 241001478324 Liberibacter Species 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- 241000579835 Merops Species 0.000 description 2
- 101710181812 Methionine aminopeptidase Proteins 0.000 description 2
- 241000589330 Methylococcaceae Species 0.000 description 2
- 101000833110 Mus musculus ADP-ribosylhydrolase ARH3 Proteins 0.000 description 2
- 101710138657 Neurotoxin Proteins 0.000 description 2
- DFPAKSUCGFBDDF-UHFFFAOYSA-N Nicotinamide Chemical compound NC(=O)C1=CC=CN=C1 DFPAKSUCGFBDDF-UHFFFAOYSA-N 0.000 description 2
- 101100278084 Nostoc sp. (strain PCC 7120 / SAG 25.82 / UTEX 2576) dnaK1 gene Proteins 0.000 description 2
- 241000283973 Oryctolagus cuniculus Species 0.000 description 2
- 101150056612 PPIA gene Proteins 0.000 description 2
- 108090000526 Papain Proteins 0.000 description 2
- 108010037490 Peptidyl-Prolyl Cis-Trans Isomerase NIMA-Interacting 4 Proteins 0.000 description 2
- 239000001888 Peptone Substances 0.000 description 2
- 108010080698 Peptones Proteins 0.000 description 2
- 241000157890 Pseudoalteromonas piscicida Species 0.000 description 2
- 241001248479 Pseudomonadales Species 0.000 description 2
- 241000218935 Pseudomonas azotoformans Species 0.000 description 2
- 241000620655 Pseudomonas brenneri Species 0.000 description 2
- 241000180027 Pseudomonas cedrina Species 0.000 description 2
- 241000218936 Pseudomonas corrugata Species 0.000 description 2
- 241000429405 Pseudomonas extremorientalis Species 0.000 description 2
- 241001312498 Pseudomonas gessardii Species 0.000 description 2
- 241001277052 Pseudomonas libanensis Species 0.000 description 2
- 241001277679 Pseudomonas mandelii Species 0.000 description 2
- 241000589537 Pseudomonas marginalis Species 0.000 description 2
- 241001312486 Pseudomonas migulae Species 0.000 description 2
- 241000204709 Pseudomonas mucidolens Species 0.000 description 2
- 241000204735 Pseudomonas nitroreducens Species 0.000 description 2
- 241001291513 Pseudomonas orientalis Species 0.000 description 2
- 241001291486 Pseudomonas rhodesiae Species 0.000 description 2
- 241000218902 Pseudomonas synxantha Species 0.000 description 2
- 241001148199 Pseudomonas tolaasii Species 0.000 description 2
- 241001291485 Pseudomonas veronii Species 0.000 description 2
- 206010037211 Psychomotor hyperactivity Diseases 0.000 description 2
- 102000009661 Repressor Proteins Human genes 0.000 description 2
- 241001633102 Rhizobiaceae Species 0.000 description 2
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 2
- 241000293871 Salmonella enterica subsp. enterica serovar Typhi Species 0.000 description 2
- 241000863432 Shewanella putrefaciens Species 0.000 description 2
- 102000008063 Small Heat-Shock Proteins Human genes 0.000 description 2
- 108010088928 Small Heat-Shock Proteins Proteins 0.000 description 2
- 208000005392 Spasm Diseases 0.000 description 2
- 241000191967 Staphylococcus aureus Species 0.000 description 2
- 101100502843 Streptomyces anulatus fkbP gene Proteins 0.000 description 2
- 102000002215 Synaptobrevin Human genes 0.000 description 2
- 101100117145 Synechocystis sp. (strain PCC 6803 / Kazusa) dnaK2 gene Proteins 0.000 description 2
- HSCJRCZFDFQWRP-JZMIEXBBSA-N UDP-alpha-D-glucose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1OP(O)(=O)OP(O)(=O)OC[C@@H]1[C@@H](O)[C@@H](O)[C@H](N2C(NC(=O)C=C2)=O)O1 HSCJRCZFDFQWRP-JZMIEXBBSA-N 0.000 description 2
- IVOMOUWHDPKRLL-UHFFFAOYSA-N UNPD107823 Natural products O1C2COP(O)(=O)OC2C(O)C1N1C(N=CN=C2N)=C2N=C1 IVOMOUWHDPKRLL-UHFFFAOYSA-N 0.000 description 2
- HSCJRCZFDFQWRP-UHFFFAOYSA-N Uridindiphosphoglukose Natural products OC1C(O)C(O)C(CO)OC1OP(O)(=O)OP(O)(=O)OCC1C(O)C(O)C(N2C(NC(=O)C=C2)=O)O1 HSCJRCZFDFQWRP-UHFFFAOYSA-N 0.000 description 2
- 241000607626 Vibrio cholerae Species 0.000 description 2
- 108030004686 Xaa-Pro aminopeptidases Proteins 0.000 description 2
- 239000000556 agonist Substances 0.000 description 2
- 239000005557 antagonist Substances 0.000 description 2
- 239000000688 bacterial toxin Substances 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- 229960000074 biopharmaceutical Drugs 0.000 description 2
- 230000006037 cell lysis Effects 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 231100001102 clostridial toxin Toxicity 0.000 description 2
- 101150017872 clpQ gene Proteins 0.000 description 2
- 230000008602 contraction Effects 0.000 description 2
- 230000000875 corresponding effect Effects 0.000 description 2
- 229940095074 cyclic amp Drugs 0.000 description 2
- 230000009089 cytolysis Effects 0.000 description 2
- 210000000805 cytoplasm Anatomy 0.000 description 2
- 210000000172 cytosol Anatomy 0.000 description 2
- 230000001472 cytotoxic effect Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000000593 degrading effect Effects 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- 101150052825 dnaK gene Proteins 0.000 description 2
- 101150026863 dsbG gene Proteins 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 229940126576 edible vaccine Drugs 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 238000010195 expression analysis Methods 0.000 description 2
- 101150100467 fklB gene Proteins 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 108020001507 fusion proteins Proteins 0.000 description 2
- 230000002068 genetic effect Effects 0.000 description 2
- WHUUTDBJXJRKMK-VKHMYHEASA-L glutamate group Chemical group N[C@@H](CCC(=O)[O-])C(=O)[O-] WHUUTDBJXJRKMK-VKHMYHEASA-L 0.000 description 2
- 235000013922 glutamic acid Nutrition 0.000 description 2
- 239000004220 glutamic acid Substances 0.000 description 2
- RWSXRVCMGQZWBV-WDSKDSINSA-N glutathione Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@@H](CS)C(=O)NCC(O)=O RWSXRVCMGQZWBV-WDSKDSINSA-N 0.000 description 2
- UYTPUPDQBNUYGX-UHFFFAOYSA-N guanine Chemical compound O=C1NC(N)=NC2=C1N=CN2 UYTPUPDQBNUYGX-UHFFFAOYSA-N 0.000 description 2
- 108091006093 heterotrimeric G proteins Proteins 0.000 description 2
- 102000034345 heterotrimeric G proteins Human genes 0.000 description 2
- 101150055178 hslV gene Proteins 0.000 description 2
- 230000001900 immune effect Effects 0.000 description 2
- 230000028993 immune response Effects 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 229910001629 magnesium chloride Inorganic materials 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 108020004999 messenger RNA Proteins 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229930182817 methionine Natural products 0.000 description 2
- 230000000813 microbial effect Effects 0.000 description 2
- 239000006151 minimal media Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 210000003205 muscle Anatomy 0.000 description 2
- 239000002581 neurotoxin Substances 0.000 description 2
- 231100000618 neurotoxin Toxicity 0.000 description 2
- 239000002858 neurotransmitter agent Substances 0.000 description 2
- 229960005030 other vaccine in atc Drugs 0.000 description 2
- 235000019834 papain Nutrition 0.000 description 2
- 229940055729 papain Drugs 0.000 description 2
- 235000019319 peptone Nutrition 0.000 description 2
- 229920000136 polysorbate Polymers 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- LWIHDJKSTIGBAC-UHFFFAOYSA-K potassium phosphate Substances [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 2
- 101150105899 ppiB gene Proteins 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000000159 protein binding assay Methods 0.000 description 2
- 230000012846 protein folding Effects 0.000 description 2
- 239000000700 radioactive tracer Substances 0.000 description 2
- 230000011514 reflex Effects 0.000 description 2
- 210000002345 respiratory system Anatomy 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- 230000001953 sensory effect Effects 0.000 description 2
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 2
- 230000000638 stimulation Effects 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 230000002103 transcriptional effect Effects 0.000 description 2
- 108010087967 type I signal peptidase Proteins 0.000 description 2
- 229940035893 uracil Drugs 0.000 description 2
- 239000012646 vaccine adjuvant Substances 0.000 description 2
- 229940124931 vaccine adjuvant Drugs 0.000 description 2
- 238000005303 weighing Methods 0.000 description 2
- PCTMTFRHKVHKIS-BMFZQQSSSA-N (1s,3r,4e,6e,8e,10e,12e,14e,16e,18s,19r,20r,21s,25r,27r,30r,31r,33s,35r,37s,38r)-3-[(2r,3s,4s,5s,6r)-4-amino-3,5-dihydroxy-6-methyloxan-2-yl]oxy-19,25,27,30,31,33,35,37-octahydroxy-18,20,21-trimethyl-23-oxo-22,39-dioxabicyclo[33.3.1]nonatriaconta-4,6,8,10 Chemical compound C1C=C2C[C@@H](OS(O)(=O)=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2.O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1/C=C/C=C/C=C/C=C/C=C/C=C/C=C/[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 PCTMTFRHKVHKIS-BMFZQQSSSA-N 0.000 description 1
- UGBOUVVZXRMJNM-FUGGEZGHSA-N (2r,3r)-3-[[(2s)-2-amino-6-[[(1s)-5-[(4-amino-4-oxobutanoyl)amino]-8-hydroxy-9-oxo-1,2,3,4-tetrahydropyrimido[1,2-a]quinoline-1-carbonyl]amino]hexanoyl]amino]-2-hydroxy-4-[[(2s)-1-[[(2r,3r)-3-hydroxy-1-[[(2s)-1-[[(3r)-1-hydroxy-2-oxopiperidin-3-yl]amino]- Chemical compound O=C([C@H](C)NC(=O)[C@H](NC(=O)[C@H](C)NC(=O)[C@H](NC(=O)[C@@H](N)CCCCNC(=O)[C@H]1N2C3=CC(=O)C(O)=CC3=CC(NC(=O)CCC(N)=O)=C2NCC1)[C@@H](O)C(O)=O)[C@H](O)C)N[C@@H]1CCCN(O)C1=O UGBOUVVZXRMJNM-FUGGEZGHSA-N 0.000 description 1
- 102100024341 10 kDa heat shock protein, mitochondrial Human genes 0.000 description 1
- VBNGJYNPUFWTKX-UHFFFAOYSA-N 10,10-diamino-1,6-dioxacyclotridecane-2,5,7,13-tetrone Chemical compound NC1(CCC(=O)OC(CCC(=O)OC(CC1)=O)=O)N VBNGJYNPUFWTKX-UHFFFAOYSA-N 0.000 description 1
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 1
- WTLKTXIHIHFSGU-UHFFFAOYSA-N 2-nitrosoguanidine Chemical compound NC(N)=NN=O WTLKTXIHIHFSGU-UHFFFAOYSA-N 0.000 description 1
- 101710187319 33 kDa chaperonin Proteins 0.000 description 1
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 1
- 101710154868 60 kDa heat shock protein, mitochondrial Proteins 0.000 description 1
- SRNWOUGRCWSEMX-KEOHHSTQSA-N ADP-beta-D-ribose Chemical group C([C@H]1O[C@H]([C@@H]([C@@H]1O)O)N1C=2N=CN=C(C=2N=C1)N)OP(O)(=O)OP(O)(=O)OC[C@H]1O[C@@H](O)[C@H](O)[C@@H]1O SRNWOUGRCWSEMX-KEOHHSTQSA-N 0.000 description 1
- 102100023818 ADP-ribosylation factor 3 Human genes 0.000 description 1
- 102000011251 ATP-dependent Clp protease proteolytic subunit Human genes 0.000 description 1
- 108050001496 ATP-dependent Clp protease proteolytic subunit Proteins 0.000 description 1
- 241000589220 Acetobacter Species 0.000 description 1
- 241001478307 Acidomonas Species 0.000 description 1
- 241000726119 Acidovorax Species 0.000 description 1
- 229930024421 Adenine Natural products 0.000 description 1
- GFFGJBXGBJISGV-UHFFFAOYSA-N Adenine Chemical compound NC1=NC=NC2=C1N=CN2 GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 description 1
- 108090000531 Amidohydrolases Proteins 0.000 description 1
- 102000004092 Amidohydrolases Human genes 0.000 description 1
- 241001430273 Aminobacter Species 0.000 description 1
- 108030000961 Aminopeptidase Y Proteins 0.000 description 1
- 108090000915 Aminopeptidases Proteins 0.000 description 1
- 102000004400 Aminopeptidases Human genes 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- 241000244188 Ascaris suum Species 0.000 description 1
- 208000032116 Autoimmune Experimental Encephalomyelitis Diseases 0.000 description 1
- 208000023275 Autoimmune disease Diseases 0.000 description 1
- 241000040854 Azorhizophilus Species 0.000 description 1
- 241000193830 Bacillus <bacterium> Species 0.000 description 1
- 241000193755 Bacillus cereus Species 0.000 description 1
- 241000194107 Bacillus megaterium Species 0.000 description 1
- 235000014469 Bacillus subtilis Nutrition 0.000 description 1
- 241001626906 Blastomonas Species 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- 101100439426 Bradyrhizobium diazoefficiens (strain JCM 10833 / BCRC 13528 / IAM 13628 / NBRC 14792 / USDA 110) groEL4 gene Proteins 0.000 description 1
- 241000131407 Brevundimonas Species 0.000 description 1
- 241001453380 Burkholderia Species 0.000 description 1
- 108091028026 C-DNA Proteins 0.000 description 1
- 108010034055 CRM45 fragment of diphtheria toxin Proteins 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 241000700198 Cavia Species 0.000 description 1
- 241000863387 Cellvibrio Species 0.000 description 1
- 241000010977 Cellvibrio japonicus Species 0.000 description 1
- 101710163597 Chaperone protein DnaJ Proteins 0.000 description 1
- 101710113978 Chaperone protein HtpG Proteins 0.000 description 1
- 108010059013 Chaperonin 10 Proteins 0.000 description 1
- 102000003813 Cis-trans-isomerases Human genes 0.000 description 1
- 108090000175 Cis-trans-isomerases Proteins 0.000 description 1
- 241001112695 Clostridiales Species 0.000 description 1
- 108010021408 Clostridium perfringens iota toxin Proteins 0.000 description 1
- 108010060434 Co-Repressor Proteins Proteins 0.000 description 1
- 102000008169 Co-Repressor Proteins Human genes 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 101710203877 Curved DNA-binding protein Proteins 0.000 description 1
- 241001670044 Curvibacter lanceolatus Species 0.000 description 1
- 108010072220 Cyclophilin A Proteins 0.000 description 1
- 108010071840 Cytosol nonspecific dipeptidase Proteins 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- 230000006820 DNA synthesis Effects 0.000 description 1
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 1
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 1
- 101100166331 Dictyostelium discoideum cbpP gene Proteins 0.000 description 1
- 101100015982 Dictyostelium discoideum gcsA gene Proteins 0.000 description 1
- 101710106383 Disulfide bond formation protein B Proteins 0.000 description 1
- 108091066263 DnaJ family Proteins 0.000 description 1
- 102000039201 DnaJ family Human genes 0.000 description 1
- 241001528534 Ensifer Species 0.000 description 1
- 101000925662 Enterobacteria phage PRD1 Endolysin Proteins 0.000 description 1
- 101710146739 Enterotoxin Proteins 0.000 description 1
- 241000283074 Equus asinus Species 0.000 description 1
- 101000985745 Escherichia coli (strain K12) 33 kDa chaperonin Proteins 0.000 description 1
- 101000684052 Escherichia coli (strain K12) Protein-export protein SecB Proteins 0.000 description 1
- 101100505031 Escherichia coli (strain K12) gltF gene Proteins 0.000 description 1
- 101710103508 FK506-binding protein Proteins 0.000 description 1
- 101710104425 FK506-binding protein 2 Proteins 0.000 description 1
- 101710104423 FK506-binding protein 3 Proteins 0.000 description 1
- 101710104333 FK506-binding protein 4 Proteins 0.000 description 1
- 101710104342 FK506-binding protein 5 Proteins 0.000 description 1
- 101710149710 FKBP-type 16 kDa peptidyl-prolyl cis-trans isomerase Proteins 0.000 description 1
- 101710121306 FKBP-type 22 kDa peptidyl-prolyl cis-trans isomerase Proteins 0.000 description 1
- 101710180800 FKBP-type peptidyl-prolyl cis-trans isomerase FkpA Proteins 0.000 description 1
- 241001008372 Ferna Species 0.000 description 1
- 102000000340 Glucosyltransferases Human genes 0.000 description 1
- 108010055629 Glucosyltransferases Proteins 0.000 description 1
- 102000004263 Glutamate-Cysteine Ligase Human genes 0.000 description 1
- 108010081687 Glutamate-cysteine ligase Proteins 0.000 description 1
- 108010024636 Glutathione Proteins 0.000 description 1
- 108010070675 Glutathione transferase Proteins 0.000 description 1
- 108700035897 Haemophilus influenzae HibTITER Proteins 0.000 description 1
- 241001670062 Halomonas utahensis Species 0.000 description 1
- 101710100489 Heat shock protein beta-6 Proteins 0.000 description 1
- 102000002812 Heat-Shock Proteins Human genes 0.000 description 1
- 108010004889 Heat-Shock Proteins Proteins 0.000 description 1
- 102100029100 Hematopoietic prostaglandin D synthase Human genes 0.000 description 1
- 241001660422 Herbaspirillum huttiense Species 0.000 description 1
- 108050003783 Histidinol-phosphate aminotransferase Proteins 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101000684275 Homo sapiens ADP-ribosylation factor 3 Proteins 0.000 description 1
- 101000603877 Homo sapiens Nuclear receptor subfamily 1 group I member 2 Proteins 0.000 description 1
- 101001098560 Homo sapiens Proteinase-activated receptor 2 Proteins 0.000 description 1
- 101001130437 Homo sapiens Ras-related protein Rap-2b Proteins 0.000 description 1
- 101000713170 Homo sapiens Solute carrier family 52, riboflavin transporter, member 1 Proteins 0.000 description 1
- 241000216643 Hydrogenophaga Species 0.000 description 1
- 241000282596 Hylobatidae Species 0.000 description 1
- 108010044467 Isoenzymes Proteins 0.000 description 1
- 241001148466 Janthinobacterium lividum Species 0.000 description 1
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 1
- CWNDERHTHMWBSI-YFKPBYRVSA-N L-histidinol phosphate Chemical compound OP(=O)(O)OC[C@@H](N)CC1=CNC=N1 CWNDERHTHMWBSI-YFKPBYRVSA-N 0.000 description 1
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 1
- 108010054278 Lac Repressors Proteins 0.000 description 1
- 101710104030 Long-type peptidyl-prolyl cis-trans isomerase Proteins 0.000 description 1
- 241000193386 Lysinibacillus sphaericus Species 0.000 description 1
- 241001670047 Malikia spinosa Species 0.000 description 1
- 229910021380 Manganese Chloride Inorganic materials 0.000 description 1
- GLFNIEUTAYBVOC-UHFFFAOYSA-L Manganese chloride Chemical compound Cl[Mn]Cl GLFNIEUTAYBVOC-UHFFFAOYSA-L 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 108010052285 Membrane Proteins Proteins 0.000 description 1
- 229940124951 Menveo Drugs 0.000 description 1
- 102000003843 Metalloendopeptidases Human genes 0.000 description 1
- 108090000131 Metalloendopeptidases Proteins 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 241000589350 Methylobacter Species 0.000 description 1
- 241001264650 Methylocaldum Species 0.000 description 1
- 241001533203 Methylomicrobium Species 0.000 description 1
- 241000321843 Methylosarcina Species 0.000 description 1
- 241000530467 Methylosphaera Species 0.000 description 1
- 231100000757 Microbial toxin Toxicity 0.000 description 1
- 241001670070 Microbulbifer elongatus Species 0.000 description 1
- 108050004278 Mosquitocidal toxin Proteins 0.000 description 1
- 101100172084 Mycobacterium tuberculosis (strain ATCC 25618 / H37Rv) egtA gene Proteins 0.000 description 1
- GXCLVBGFBYZDAG-UHFFFAOYSA-N N-[2-(1H-indol-3-yl)ethyl]-N-methylprop-2-en-1-amine Chemical compound CN(CCC1=CNC2=C1C=CC=C2)CC=C GXCLVBGFBYZDAG-UHFFFAOYSA-N 0.000 description 1
- 241000588652 Neisseria gonorrhoeae Species 0.000 description 1
- 241000588650 Neisseria meningitidis Species 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 108020004485 Nonsense Codon Proteins 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 108010000240 O-sialoglycoprotein endopeptidase Proteins 0.000 description 1
- 241000625726 Oceanimonas Species 0.000 description 1
- 241000293010 Oligella Species 0.000 description 1
- 108700026244 Open Reading Frames Proteins 0.000 description 1
- 101710114693 Outer membrane protein MIP Proteins 0.000 description 1
- 102100032341 PCNA-interacting partner Human genes 0.000 description 1
- 101710196737 PCNA-interacting partner Proteins 0.000 description 1
- 101710116692 Peptidyl-prolyl cis-trans isomerase Proteins 0.000 description 1
- 102100026131 Peptidyl-prolyl cis-trans isomerase A-like 4D Human genes 0.000 description 1
- 101710111764 Peptidyl-prolyl cis-trans isomerase FKBP10 Proteins 0.000 description 1
- 101710111749 Peptidyl-prolyl cis-trans isomerase FKBP11 Proteins 0.000 description 1
- 101710111747 Peptidyl-prolyl cis-trans isomerase FKBP12 Proteins 0.000 description 1
- 101710111757 Peptidyl-prolyl cis-trans isomerase FKBP14 Proteins 0.000 description 1
- 101710111682 Peptidyl-prolyl cis-trans isomerase FKBP1A Proteins 0.000 description 1
- 101710111689 Peptidyl-prolyl cis-trans isomerase FKBP1B Proteins 0.000 description 1
- 101710147154 Peptidyl-prolyl cis-trans isomerase FKBP2 Proteins 0.000 description 1
- 101710147149 Peptidyl-prolyl cis-trans isomerase FKBP3 Proteins 0.000 description 1
- 101710147152 Peptidyl-prolyl cis-trans isomerase FKBP4 Proteins 0.000 description 1
- 102100037026 Peptidyl-prolyl cis-trans isomerase FKBP5 Human genes 0.000 description 1
- 101710147150 Peptidyl-prolyl cis-trans isomerase FKBP5 Proteins 0.000 description 1
- 101710147138 Peptidyl-prolyl cis-trans isomerase FKBP7 Proteins 0.000 description 1
- 101710147137 Peptidyl-prolyl cis-trans isomerase FKBP8 Proteins 0.000 description 1
- 101710147136 Peptidyl-prolyl cis-trans isomerase FKBP9 Proteins 0.000 description 1
- 101710174853 Peptidyl-prolyl cis-trans isomerase Mip Proteins 0.000 description 1
- 101710200991 Peptidyl-prolyl cis-trans isomerase, rhodopsin-specific isozyme Proteins 0.000 description 1
- 101710092145 Peptidyl-prolyl cis-trans isomerase-like 1 Proteins 0.000 description 1
- 101710092146 Peptidyl-prolyl cis-trans isomerase-like 2 Proteins 0.000 description 1
- 101710092148 Peptidyl-prolyl cis-trans isomerase-like 3 Proteins 0.000 description 1
- 101710092149 Peptidyl-prolyl cis-trans isomerase-like 4 Proteins 0.000 description 1
- 102000003992 Peroxidases Human genes 0.000 description 1
- 241001670033 Phaseolibacter flectens Species 0.000 description 1
- 206010035664 Pneumonia Diseases 0.000 description 1
- 101710113444 Probable parvulin-type peptidyl-prolyl cis-trans isomerase Proteins 0.000 description 1
- 101710090737 Probable peptidyl-prolyl cis-trans isomerase Proteins 0.000 description 1
- 102100037775 Probable tRNA N6-adenosine threonylcarbamoyltransferase Human genes 0.000 description 1
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 1
- 101710166686 Protease HtpX Proteins 0.000 description 1
- 101710156612 Protein translocase subunit SecF Proteins 0.000 description 1
- 241000590028 Pseudoalteromonas haloplanktis Species 0.000 description 1
- 208000032536 Pseudomonas Infections Diseases 0.000 description 1
- 241000028636 Pseudomonas abietaniphila Species 0.000 description 1
- 241000204715 Pseudomonas agarici Species 0.000 description 1
- 241000168225 Pseudomonas alcaligenes Species 0.000 description 1
- 241001459308 Pseudomonas alcaliphila Species 0.000 description 1
- 241001522136 Pseudomonas alginovora Species 0.000 description 1
- 241000218934 Pseudomonas amygdali Species 0.000 description 1
- 241001325442 Pseudomonas andersonii Species 0.000 description 1
- 241000520869 Pseudomonas anguilliseptica Species 0.000 description 1
- 241000520871 Pseudomonas asplenii Species 0.000 description 1
- 241000202216 Pseudomonas avellanae Species 0.000 description 1
- 241001279845 Pseudomonas balearica Species 0.000 description 1
- 241001660019 Pseudomonas borealis Species 0.000 description 1
- 241000226031 Pseudomonas brassicacearum Species 0.000 description 1
- 241000204712 Pseudomonas caricapapayae Species 0.000 description 1
- 241001646398 Pseudomonas chlororaphis Species 0.000 description 1
- 241001670013 Pseudomonas chlororaphis subsp. aurantiaca Species 0.000 description 1
- 241001508466 Pseudomonas cichorii Species 0.000 description 1
- 241000520873 Pseudomonas citronellolis Species 0.000 description 1
- 241000647960 Pseudomonas coronafaciens pv. coronafaciens Species 0.000 description 1
- 241000168053 Pseudomonas denitrificans (nomen rejiciendum) Species 0.000 description 1
- 241000946440 Pseudomonas diterpeniphila Species 0.000 description 1
- 241000520898 Pseudomonas ficuserectae Species 0.000 description 1
- 241001148192 Pseudomonas flavescens Species 0.000 description 1
- 241000960597 Pseudomonas fluorescens group Species 0.000 description 1
- 241000589538 Pseudomonas fragi Species 0.000 description 1
- 241001497665 Pseudomonas frederiksbergensis Species 0.000 description 1
- 241000490004 Pseudomonas fuscovaginae Species 0.000 description 1
- 241000231049 Pseudomonas gingeri Species 0.000 description 1
- 241000042121 Pseudomonas graminis Species 0.000 description 1
- 241000620589 Pseudomonas grimontii Species 0.000 description 1
- 241000520899 Pseudomonas halodenitrificans Species 0.000 description 1
- 241001531427 Pseudomonas hydrogenovora Species 0.000 description 1
- 241001300822 Pseudomonas jessenii Species 0.000 description 1
- 241000913726 Pseudomonas kilonensis Species 0.000 description 1
- 241000357050 Pseudomonas lini Species 0.000 description 1
- 241001670039 Pseudomonas lundensis Species 0.000 description 1
- 241000218905 Pseudomonas luteola Species 0.000 description 1
- 241000145542 Pseudomonas marginata Species 0.000 description 1
- 241001670064 Pseudomonas meliae Species 0.000 description 1
- 241000589755 Pseudomonas mendocina Species 0.000 description 1
- 241001291501 Pseudomonas monteilii Species 0.000 description 1
- 241001312420 Pseudomonas mosselii Species 0.000 description 1
- 241000589781 Pseudomonas oleovorans Species 0.000 description 1
- 241000218904 Pseudomonas oryzihabitans Species 0.000 description 1
- 241001670066 Pseudomonas pertucinogena Species 0.000 description 1
- 241001223182 Pseudomonas plecoglossicida Species 0.000 description 1
- 241000589630 Pseudomonas pseudoalcaligenes Species 0.000 description 1
- 241000530526 Pseudomonas psychrophila Species 0.000 description 1
- 241000589776 Pseudomonas putida Species 0.000 description 1
- 241000231045 Pseudomonas reactans Species 0.000 description 1
- 241000520900 Pseudomonas resinovorans Species 0.000 description 1
- 241000218901 Pseudomonas straminea Species 0.000 description 1
- 241000589614 Pseudomonas stutzeri Species 0.000 description 1
- 241000589615 Pseudomonas syringae Species 0.000 description 1
- 241000218903 Pseudomonas taetrolens Species 0.000 description 1
- 241000039935 Pseudomonas thermotolerans Species 0.000 description 1
- 241001669634 Pseudomonas thivervalensis Species 0.000 description 1
- 241000369631 Pseudomonas vancouverensis Species 0.000 description 1
- 241001464820 Pseudomonas viridiflava Species 0.000 description 1
- 241000039948 Pseudomonas xiamenensis Species 0.000 description 1
- 101710180958 Putative aminoacrylate hydrolase RutD Proteins 0.000 description 1
- 101710133309 Putative peptidyl-prolyl cis-trans isomerase Proteins 0.000 description 1
- 241000232299 Ralstonia Species 0.000 description 1
- 108020004511 Recombinant DNA Proteins 0.000 description 1
- 108091007187 Reductases Proteins 0.000 description 1
- 108010034634 Repressor Proteins Proteins 0.000 description 1
- 101001038216 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) Probable glutathione-independent glyoxalase HSP33 Proteins 0.000 description 1
- 241000607142 Salmonella Species 0.000 description 1
- 241000242680 Schistosoma mansoni Species 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- 101710084578 Short neurotoxin 1 Proteins 0.000 description 1
- 101710124237 Short-type peptidyl-prolyl cis-trans isomerase Proteins 0.000 description 1
- 239000000589 Siderophore Substances 0.000 description 1
- 241001135312 Sinorhizobium Species 0.000 description 1
- 102100036863 Solute carrier family 52, riboflavin transporter, member 1 Human genes 0.000 description 1
- 241000736131 Sphingomonas Species 0.000 description 1
- 108091081024 Start codon Proteins 0.000 description 1
- 108030001747 Ste24 endopeptidases Proteins 0.000 description 1
- 241000122971 Stenotrophomonas Species 0.000 description 1
- 241001670040 Stenotrophomonas pictorum Species 0.000 description 1
- 241000193998 Streptococcus pneumoniae Species 0.000 description 1
- 208000003028 Stuttering Diseases 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 101100167697 Synechococcus elongatus (strain PCC 7942 / FACHB-805) cmpA gene Proteins 0.000 description 1
- 108010008038 Synthetic Vaccines Proteins 0.000 description 1
- 241000206217 Teredinibacter Species 0.000 description 1
- 206010043376 Tetanus Diseases 0.000 description 1
- 208000003217 Tetany Diseases 0.000 description 1
- 241001670068 Thauera butanivorans Species 0.000 description 1
- 101710167005 Thiol:disulfide interchange protein DsbD Proteins 0.000 description 1
- 101710182532 Toxin a Proteins 0.000 description 1
- 102000010912 Transferrin-Binding Proteins Human genes 0.000 description 1
- 108010062476 Transferrin-Binding Proteins Proteins 0.000 description 1
- 108700019146 Transgenes Proteins 0.000 description 1
- 108060008539 Transglutaminase Proteins 0.000 description 1
- 101710154918 Trigger factor Proteins 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 241000209140 Triticum Species 0.000 description 1
- 235000021307 Triticum Nutrition 0.000 description 1
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 1
- 108091023045 Untranslated Region Proteins 0.000 description 1
- 206010047700 Vomiting Diseases 0.000 description 1
- 102100039662 Xaa-Pro dipeptidase Human genes 0.000 description 1
- 241000589634 Xanthomonas Species 0.000 description 1
- OKSSKVHGKYJNLL-LJRZAWCWSA-N [(3as,4r,9s,10as)-2,6-diamino-10,10-dihydroxy-9-sulfooxy-3a,4,8,9-tetrahydro-1h-pyrrolo[1,2-c]purin-4-yl]methoxycarbonylsulfamic acid Chemical compound OS(=O)(=O)NC(=O)OC[C@@H]1N=C(N)N2C[C@H](OS(O)(=O)=O)C(O)(O)[C@@]22N=C(N)N[C@H]21 OKSSKVHGKYJNLL-LJRZAWCWSA-N 0.000 description 1
- 241001147796 [Clostridium] spiroforme Species 0.000 description 1
- 241001670042 [Pseudomonas] boreopolis Species 0.000 description 1
- 241001670036 [Pseudomonas] cissicola Species 0.000 description 1
- 241001670030 [Pseudomonas] geniculata Species 0.000 description 1
- 241001670027 [Pseudomonas] hibiscicola Species 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 108091006088 activator proteins Proteins 0.000 description 1
- 229960000643 adenine Drugs 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 229940024606 amino acid Drugs 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 239000003957 anion exchange resin Substances 0.000 description 1
- RWZYAGGXGHYGMB-UHFFFAOYSA-N anthranilic acid Chemical compound NC1=CC=CC=C1C(O)=O RWZYAGGXGHYGMB-UHFFFAOYSA-N 0.000 description 1
- 230000002141 anti-parasite Effects 0.000 description 1
- 230000002096 anti-tetanic effect Effects 0.000 description 1
- 239000003096 antiparasitic agent Substances 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 230000001363 autoimmune Effects 0.000 description 1
- 201000004982 autoimmune uveitis Diseases 0.000 description 1
- 230000037429 base substitution Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- OWMVSZAMULFTJU-UHFFFAOYSA-N bis-tris Chemical compound OCCN(CCO)C(CO)(CO)CO OWMVSZAMULFTJU-UHFFFAOYSA-N 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000010504 bond cleavage reaction Methods 0.000 description 1
- 238000006664 bond formation reaction Methods 0.000 description 1
- 239000008366 buffered solution Substances 0.000 description 1
- 210000004899 c-terminal region Anatomy 0.000 description 1
- 108091006374 cAMP receptor proteins Proteins 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 229940041514 candida albicans extract Drugs 0.000 description 1
- 239000005018 casein Substances 0.000 description 1
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 1
- 235000021240 caseins Nutrition 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 101150033736 cbpA gene Proteins 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 230000036978 cell physiology Effects 0.000 description 1
- 230000001876 chaperonelike Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 230000002759 chromosomal effect Effects 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 101150036359 clpB gene Proteins 0.000 description 1
- 101150074451 clpP gene Proteins 0.000 description 1
- 101150043719 clpP1 gene Proteins 0.000 description 1
- 101150102296 clpP2 gene Proteins 0.000 description 1
- 230000001332 colony forming effect Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000001268 conjugating effect Effects 0.000 description 1
- 239000013068 control sample Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 101150065227 ctx gene Proteins 0.000 description 1
- 238000012786 cultivation procedure Methods 0.000 description 1
- 239000012228 culture supernatant Substances 0.000 description 1
- 231100000433 cytotoxic Toxicity 0.000 description 1
- 101150000582 dapE gene Proteins 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001784 detoxification Methods 0.000 description 1
- 238000002405 diagnostic procedure Methods 0.000 description 1
- AIUDWMLXCFRVDR-UHFFFAOYSA-N dimethyl 2-(3-ethyl-3-methylpentyl)propanedioate Chemical class CCC(C)(CC)CCC(C(=O)OC)C(=O)OC AIUDWMLXCFRVDR-UHFFFAOYSA-N 0.000 description 1
- 206010013023 diphtheria Diseases 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 101150071678 dsbB gene Proteins 0.000 description 1
- 101150078200 dsbD gene Proteins 0.000 description 1
- 230000001516 effect on protein Effects 0.000 description 1
- 201000002491 encephalomyelitis Diseases 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 239000000147 enterotoxin Substances 0.000 description 1
- 231100000655 enterotoxin Toxicity 0.000 description 1
- 108010075387 exoenzyme S Proteins 0.000 description 1
- 208000012997 experimental autoimmune encephalomyelitis Diseases 0.000 description 1
- 210000001723 extracellular space Anatomy 0.000 description 1
- 102000034287 fluorescent proteins Human genes 0.000 description 1
- 108091006047 fluorescent proteins Proteins 0.000 description 1
- 231100000221 frame shift mutation induction Toxicity 0.000 description 1
- 230000037433 frameshift Effects 0.000 description 1
- 102000037865 fusion proteins Human genes 0.000 description 1
- 108010062699 gamma-Glutamyl Hydrolase Proteins 0.000 description 1
- 238000012224 gene deletion Methods 0.000 description 1
- 239000006481 glucose medium Substances 0.000 description 1
- 229930195712 glutamate Natural products 0.000 description 1
- 229960003180 glutathione Drugs 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 101150077981 groEL gene Proteins 0.000 description 1
- 101150006844 groES gene Proteins 0.000 description 1
- 101150019860 gshA gene Proteins 0.000 description 1
- 229960004443 hemophilus influenzae b vaccines Drugs 0.000 description 1
- 101150037745 hscA gene Proteins 0.000 description 1
- 101150100320 hscB gene Proteins 0.000 description 1
- 101150099805 htpG gene Proteins 0.000 description 1
- 101150112675 htpX gene Proteins 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 101150022325 ibpA gene Proteins 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 230000005847 immunogenicity Effects 0.000 description 1
- 230000002637 immunotoxin Effects 0.000 description 1
- 239000002596 immunotoxin Substances 0.000 description 1
- 231100000608 immunotoxin Toxicity 0.000 description 1
- 229940051026 immunotoxin Drugs 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000000749 insecticidal effect Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000035987 intoxication Effects 0.000 description 1
- 231100000566 intoxication Toxicity 0.000 description 1
- 208000037909 invasive meningococcal disease Diseases 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 231100000518 lethal Toxicity 0.000 description 1
- 230000001665 lethal effect Effects 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- 201000004792 malaria Diseases 0.000 description 1
- 229940124735 malaria vaccine Drugs 0.000 description 1
- 239000011565 manganese chloride Substances 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 230000003990 molecular pathway Effects 0.000 description 1
- 230000016379 mucosal immune response Effects 0.000 description 1
- 238000002703 mutagenesis Methods 0.000 description 1
- 231100000350 mutagenesis Toxicity 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 229960003966 nicotinamide Drugs 0.000 description 1
- 235000005152 nicotinamide Nutrition 0.000 description 1
- 239000011570 nicotinamide Substances 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000037434 nonsense mutation Effects 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 201000005737 orchitis Diseases 0.000 description 1
- 125000001477 organic nitrogen group Chemical group 0.000 description 1
- 239000006174 pH buffer Substances 0.000 description 1
- 238000012510 peptide mapping method Methods 0.000 description 1
- 125000001151 peptidyl group Chemical group 0.000 description 1
- 229940066779 peptones Drugs 0.000 description 1
- 108040007629 peroxidase activity proteins Proteins 0.000 description 1
- 230000027086 plasmid maintenance Effects 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 229940031937 polysaccharide vaccine Drugs 0.000 description 1
- 235000011009 potassium phosphates Nutrition 0.000 description 1
- 108010066823 proline dipeptidase Proteins 0.000 description 1
- 230000004952 protein activity Effects 0.000 description 1
- 230000017854 proteolysis Effects 0.000 description 1
- 230000002797 proteolythic effect Effects 0.000 description 1
- 230000006337 proteolytic cleavage Effects 0.000 description 1
- 108010042415 pseudobactin Proteins 0.000 description 1
- ZGDFFAWCXJUFOX-UHFFFAOYSA-N pseudobactin Natural products CC(O)C(NC(=O)C(C)NC(=O)C(NC(=O)C(N)CCCCNC(=O)C1CCNC2N1c3cc(O)c(O)cc3C=C2NC(=O)CCC(=O)N)C(O)C(=O)O)C(=O)NC(C)C(=O)NC4CCCN(O)C4=O ZGDFFAWCXJUFOX-UHFFFAOYSA-N 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 229940124551 recombinant vaccine Drugs 0.000 description 1
- 210000001995 reticulocyte Anatomy 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 101150116624 rotA gene Proteins 0.000 description 1
- 239000012146 running buffer Substances 0.000 description 1
- 101150048412 secB gene Proteins 0.000 description 1
- 238000011218 seed culture Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000012772 sequence design Methods 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 238000002741 site-directed mutagenesis Methods 0.000 description 1
- 101150025578 slyD gene Proteins 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 229940031000 streptococcus pneumoniae Drugs 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 231100000563 toxic property Toxicity 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 108091006106 transcriptional activators Proteins 0.000 description 1
- 102000003601 transglutaminase Human genes 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- 101150118060 trxA gene Proteins 0.000 description 1
- 101150112435 trxC gene Proteins 0.000 description 1
- 239000012137 tryptone Substances 0.000 description 1
- 241001515965 unidentified phage Species 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 239000013598 vector Substances 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 230000008673 vomiting Effects 0.000 description 1
- 239000012138 yeast extract Substances 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/1048—Glycosyltransferases (2.4)
- C12N9/1051—Hexosyltransferases (2.4.1)
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/195—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
- C07K14/21—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Pseudomonadaceae (F)
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/195—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
- C07K14/235—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Bordetella (G)
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/195—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
- C07K14/28—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Vibrionaceae (F)
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/195—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
- C07K14/34—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Corynebacterium (G)
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K19/00—Hybrid peptides, i.e. peptides covalently bound to nucleic acids, or non-covalently bound protein-protein complexes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/74—Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
- C12N15/78—Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Pseudomonas
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/1048—Glycosyltransferases (2.4)
- C12N9/1077—Pentosyltransferases (2.4.2)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P21/00—Preparation of peptides or proteins
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P21/00—Preparation of peptides or proteins
- C12P21/02—Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/573—Immunoassay; Biospecific binding assay; Materials therefor for enzymes or isoenzymes
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/01—Fusion polypeptide containing a localisation/targetting motif
- C07K2319/036—Fusion polypeptide containing a localisation/targetting motif targeting to the medium outside of the cell, e.g. type III secretion
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y204/00—Glycosyltransferases (2.4)
- C12Y204/01—Hexosyltransferases (2.4.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y204/00—Glycosyltransferases (2.4)
- C12Y204/02—Pentosyltransferases (2.4.2)
- C12Y204/02036—NAD(+)--diphthamide ADP-ribosyltransferase (2.4.2.36)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y304/00—Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
- C12Y304/24—Metalloendopeptidases (3.4.24)
- C12Y304/24068—Tentoxilysin (3.4.24.68), i.e. tetanus neurotoxin
Definitions
- Microbial toxin proteins are used in medicine, as immunogens for vaccination against the toxin-producing microbe and as carrier proteins and adjuvants for other vaccines, and in scientific research as tools for studying molecular pathways.
- Diphtheria toxin is a proteinaceous toxin that is synthesized and secreted by toxigenic strains of Corynebacterium diphtheriae. Toxigenic strains contain a bacteriophage lysogen carrying the toxin gene. DT is synthesized as a 535-amino-acid polypeptide, which undergoes proteolysis to form the mature toxin.
- the mature toxin comprises two subunits, A and B, joined by a disulfide bridge.
- the B subunit formed from the C-terminal portion of intact DT, enables binding and entry of DT through the cell membrane and into the cytoplasm.
- the enzymatic A subunit formed from the N terminal portion of intact DT, catalyzes ADP ribosylation of Elongation Factor 2 (EF-2).
- EF-2 Elongation Factor 2
- Diphtheria toxin is highly cytotoxic; a single molecule can be lethal to a cell, and a dose of 10 ng/kg can kill animals and humans.
- CRM197 protein is a nontoxic, immunologically cross-reacting form of DT. It has been studied for its potential use as a DT booster or vaccine antigen.
- CRM 197 is produced by C. diphtheriae that has been infected by the nontoxigenic phage ⁇ 197 ⁇ " created by
- the CRM197 protein has the same molecular weight as DT but differs by a single base change (guanine to adenine) in the A subunit. This single base change results in an amino acid substitution (glutamic acid for glycine) and eliminates the toxic properties of DT.
- Vaccines include: Menveo ® (Novartis Vaccines and Diagnostics), a vaccine indicated for preventing invasive meningococcal disease caused by Neisseria meningitidis subgroups A, C, Y, and W-135; Menjugate (Novartis Vaccines), a
- CRM197 has potential use as a boosting antigen for C. diphtheria vaccination and is being investigated as a carrier protein for use in other vaccines.
- CRM197 has been expressed in, e.g., C.
- a single dose of the Prevnar conjugate vaccine contains about 20 ⁇ g of CRM197. Therefore, a method for economically producing CRM 197 at levels of about 1 g/L or more would greatly facilitate vaccine research and manufacture.
- CTX Cholera Toxin
- CTX is an oligomeric complex made up of six protein subunits: a single copy of the Cholera toxin A subunit (CTA), and five copies of the Cholera Toxin B subunit (CTB).
- CTA Cholera toxin A subunit
- CTB Cholera Toxin B subunit
- the A subunit has an Al portion, CTA1, a globular enzyme that ADP-ribosylates G proteins, and an A2 chain, CTA2, that forms an extended alpha helix which sits snugly in the central pore of the B subunit ring.
- This ring binds to GMl ganglioside receptors on the host cell surface, resulting in internalization of the entire complex. Once internalized, the CTA1 chain is released by reduction of a disulfide bridge. CTA1 is then activated and catalyzes ADP ribosylation of adenylate cyclase. The resulting increase in adenylate cyclase activity increases cyclic AMP synthesis, which causes massive fluid and electrolyte efflux and results in diarrhea.
- CTB The B subunit of CTX, though relatively harmless, retains its ability to bind to the GMl ganglioside receptor. CTB therefore finds use in facilitating mucosal uptake of chemically or genetically conjugated foreign antigens. It has been demonstrated to induce both mucosal and systemic immunity, and is a candidate for use in edible vaccine production. Because of its binding preference, CTB also finds use as a neuronal tracer.
- Pertussis toxin is an exotoxin and virulence factor produced by Bordetella pertussis, a bacterial pathogen of the human respiratory tract that causes the disease whooping cough.
- the pertussis holotoxin is a multi-subunit complex with an AB 5 structure.
- SI enzymatically active A subunit
- B oligomer S2, S3, two copies of S4, and S5
- the five subunits of the toxin are expressed from the Pertussis Toxoid operon.
- Nontoxic variants of Pertussis toxin have been explored for use in protective vaccines and as a vaccine adjuvant. There is also a need for Pertussis toxin protein to use in research, e.g., for studies of G protein signaling pathways.
- Tetanus Toxin produced by Clostridium tetani, is a neurotoxin having a molecular weight of 150kDa. It is made up of two parts: a lOOkDa heavy or B-chain and a 50kDa light or A- chain. The chains are connected by a disulfide bond. The B-chain binds to
- VAMP vesicle-associated membrane protein
- GABA gamma-aminobutyric acid
- glycine by degrading the protein synaptobrevin.
- the consequence of this is dangerous overactivity in the muscles from the smallest stimulus—the failure of inhibition of motor reflexes by sensory stimulation.
- Tetanus Toxin Fragment C is a 50 kD polypeptide generated by protease cleavage (e.g., with papain) of Tetanus toxin, or through recombinant expression of the fragment. It corresponds to the 451 amino acids at the C-terminus (amino acid positions 865-1315).
- Fragment C has been shown to be non-toxic. Because it binds to neurons with high
- TTC finds use as a targeting molecule for neuronal drug delivery or for research purposes.
- TTC protein is also potentially useful as a vaccine carrier protein and for use in a vaccine to protect against C tetani infection.
- Clostridium difficile Toxin B (TcdB) is a virulence factor produced by Clostridium difficile, which causes hospital acquired diarrhea and pseudomembranous colitis.
- TcdB and a second large clostridial toxin, TcdA, are involved in the development of pseudomembranous colitis.
- TcdB is a glucosylating toxin of about 270 kD, and can be divided into enzymatic,
- TcdB translocation and receptor binding domains.
- the first 546 amino acids of TcdB contain the enzymatic region, which is followed by a putative translocation and receptor-binding domain.
- TcdB has potential use as a protective vaccine for C difficile infection, as well as in diagnostic tests and their development.
- Exotoxin A (ETA or PE) of Pseudomonas aeruginosa is a Type II ADPRT. Like its family members Diphtheria toxin and Cholera Toxin, it inhibits protein synthesis by the ADP- ribosylation of cellular elongation factor 2. P. aeruginosa Exotoxin A exists as a monomer, consisting of a single polypeptide chain of 613 amino acids (66Kd). [0019] ETA is potentially useful as a vaccine conjugate. Nontoxic mutants of ETA have been studied as vaccine conjugates for vaccinations that protect against Staphylococcus aureus, malaria, and Salmonella Typhi.
- the toxin proteins are recovered in active form only at very low concentration due to degradation, improper folding, or both, depending on the specific characteristics, e.g., size and secondary structure, of the toxin. Therefore, methods for producing large amounts of these toxins, in soluble and/or active form, and at low cost is needed.
- the present invention relates to a method for producing a recombinant toxin protein in a Pseudomonad host cell, said method comprising: ligating into an expression vector a nucleotide sequence encoding a toxin protein; transforming the Pseudomonas host cell with the expression vector; and culturing the transformed Pseudomonas host cell in a culture media suitable for the expression of the recombinant toxin protein; wherein the recombinant toxin protein is CRM197, Diphtheria Toxin, Cholera holotoxin, Cholera Toxin B, Pertussis toxin, Tetanus Toxin Fragment C, C. difficile Toxin B, or P. aeruginosa Exotoxin A.
- the recombinant toxin protein is Cholera Toxin B, Cholera holotoxin,
- the recombinant toxin protein is Cholera Toxin B, Cholera holotoxin,
- the recombinant toxin protein is CRM 197, Diphtheria Toxin, Cholera holotoxin, Cholera Toxin B, Pertussis toxin, Tetanus Toxin Fragment C, or C. difficile
- the recombinant protein is produced at a yield of soluble and/or active toxin protein of about 0.2 grams per liter to about 12 grams per liter.
- the yield of soluble and/or active toxin protein is about 0.2 g/L, about 0.3 g/L, about 0.4 g/L, about 0.5 g/L, about 0.6 g/L, about 0.7 g/L, about 0.8 g/L, about 0.9 g/L, about 1 g/L, about 1.5 g/L, about 2 g/L, about 2.5 g/L, about 3 g/L, about 3.5 g/L, about 4 g/L, about 4.5 g/L, about 5 g/L, about 5.5 g/L, about 6 g/L, about 6.5 g/L, about 7 g/L, about 7.5 g/L, about 8 g/L, about 8.5 g/L, about 9 g/
- the nucleotide sequence encoding the toxin protein is fused to a secretion signal coding sequence that when expressed directs transfer of the toxin protein to the periplasm.
- the host cell is defective in the expression of at least one protease or the host cell overexpresses at least one folding modulator, or a combination thereof.
- the recombinant toxin protein is CRM 197 and the host cell is defective in the expression of HslU, HslV, Prcl, DegPl, DegP2, and AprA.
- the recombinant toxin protein is fused to a secretion leader that is Azu, IbpS31 A, CupA2, PbpA20V, or Pbp.
- the recombinant toxin protein is CRM 197 and the host cell is defective in the expression of HslU and HslV, or Prcl, or DegPl, or DegP2, or AprA.
- the recombinant toxin protein is CRM 197 and the host cell is defective in the expression of Serralysin, HslU, HslV, Prcl, DegPl, DegP2, or AprA, or the host cell overexpresses DsbA, DsbB, DsbC, and DsbD. In embodiments, the host cell overexpresses DsbA, DsbB, DsbC, and DsbD, and the recombinant toxin protein is fused to the secretion leader Azu.
- the host cell is defective in the expression of Serralysin, and the recombinant toxin protein is fused to the secretion leader Pbp or Azu. In embodiments, the host cell is defective in the expression of HslU and HslV, and the recombinant toxin protein is fused to the secretion leader Pbp or Azu.
- the recombinant toxin protein is CRM 197, the host cell is wild-type and wherein the recombinant toxin protein is fused to the secretion leader Pbp or Azu. In embodiments, the recombinant toxin protein is CRM 197 and the recombinant toxin protein is fused to the secretion leader Azu, Pbp, IbpS31A, CupA2, or PbpA20V.
- the recombinant toxin protein is Cholera Toxin B and the host cell is defective in the expression of Lon, La, and AprA, or the host cell is defective in the expression of HslU, HslV, Prcl, DegPl, DegP2, and AprA. In related embodiments, the host cell is defective in the expression of Lon, La, and AprA and wherein the recombinant toxin protein is fused to the secretion leader Pbp A20V.
- the recombinant toxin protein is Pertussis toxin SI E129A R9K and the host cell is defective in the expression of: Lon, La, and AprA; GrpE, DnaK, and DnaJ; HtpX; RXF01590; or ppiB (RXF05345).
- the recombinant toxin protein is fused to its native secretion leader.
- the recombinant toxin protein is Tetanus Toxin C and the host cell is defective in the expression of HslU, HslV, Prcl, DegPl, DegP2, and AprA.
- the recombinant toxin protein is fused to the secretion leader DsbC, Pbp A20V, or CupA2.
- the recombinant toxin protein is Tetanus Toxin C and the host cell is defective in the expression of Lon, La, and AprA.
- the recombinant toxin protein is fused to the secretion leader DsbA.
- the recombinant toxin protein is Tetanus Toxin C and the host cell is defective in the expression of GrpE, DnaK, and DnaJ.
- the recombinant toxin protein is fused to the secretion leader NikA.
- the recombinant toxin protein is C. difficile Toxin B and the host cell is defective in the expression of: HtpX; DegPl ; HslU, HslV, Prcl and Prc2; or Lon and
- DegP2 or the host cell is both defective in the expression of Lon, Prcl, DegP2, AprA and overexpresses DegP2 S219A.
- the activity of the recombinant toxin protein is measured in an activity assay, wherein about 40% to about 100% of the soluble toxin protein produced is determined to be active.
- the activity assay is an immunological assay, a receptor-binding assay, or an enzyme assay.
- the expression vector comprises a lac derivative promoter operatively linked to the protein coding sequence, and wherein the culturing comprises induction of the promoter using IPTG at a concentration of about 0.02 to about 1.0 mM, the cell density at induction is an optical density of about 40 to about 200 absorbance units (AU), the pH of the culture is from about 6 to about 7.5, and the growth temperature is about 20 to about 35 °C.
- the host cell is a Pseudomonas cell. In related embodiments, the host cell is Pseudomonas fluorescens.
- the nucleotide sequence has been optimized for expression in the Pseudomonad host cell. In related embodiments, the nucleotide sequence has been optimized for expression in the Pseudomonas host cell. In other related embodiments, the nucleotide sequence has been optimized for expression in the Pseudomonas fluorescens host cell.
- the Pertussis toxin is wild-type or SI E129A R9K.
- the P. aeruginosa Exotoxin A is wild-type, CRM66, or rEPA.
- the expression vector further comprises a tag sequence adjacent to the coding sequence for the secretion signal. In embodiments, the expression vector further comprises a tag sequence adjacent to the coding sequence for the toxin protein.
- the present invention also provides a recombinant toxin protein produced according to the methods described herein.
- the recombinant toxin protein is CRM 197, Diphtheria Toxin, Cholera holotoxin, Cholera Toxin B, Pertussis Toxin, Tetanus Toxin fragment C, C. difficile Toxin B, or P. aeruginosa Exotoxin A.
- the Exotoxin A is wild-type, CRM66, or rEPA.
- the recombinant toxin protein is produced in a strain of P. fluorescens identified herein as producing a high yield of the toxin or producing high quality toxin.
- the recombinant toxin protein is produced in a strain of P. fluorescens described herein as producing the highest yield of the toxin protein. In other embodiments, the recombinant toxin protein is produced in a strain described herein as one used for fermentation production of the toxin.
- FIG. 1 High Throughput Expression Analysis of Cholera Toxin B.
- Cholera Toxin B protein expressed using the DNA sequence shown in SEQ ID NO: 23 was analyzed using capillary gel electrophoresis (SDS-CGE). Soluble fractions from 40 cholera toxin- expression strains tested are shown in a gel-like image generated from the SDS-CGE data. Strain names as described in Table 11 are listed above each lane. Induced CTB migrated as a single band at ⁇ 11.5 kDa on SDS-CGE (arrow at left). Molecular weight markers in first and last lanes are 16, 20, 29, 48, 69 and 119 kDa.
- FIG. 4 DNA Sequence of the Pertussis Toxoid.
- the Pertussis toxin SI R9K E129A DNA sequence with translation is shown (SEQ ID NO:24). The sequence is derived from Genebank entry Ml 3223. Subunits S1-S5 and signal sequences are indicated above the sequences. The R9K and E129A mutations in SI are underlined. Encoded proteins are disclosed as SEQ ID NOS 25, 26, 28, 29, and 27, respectively, in order of appearance.
- FIG. Amino Acid Sequences of Pertussis Toxoid Subunits. Secretion signals are underlined.
- FIG. Western blot analysis of Pertussis Toxoid expression samples. Strain names are listed above each lane. Induced Ptx migrated as multiple bands range from 11 to 26 kDa (SI : 26.1 Kda, S2: 20.9 Kda, S3: 21.8KDa, S4 (2x): 12KDa, S5: 11 KDa) A. Reduced samples. B. Non-reduced samples.
- Lane 1 - molecular weight markers (10, 15, 20, 25, 37, 50, 75, 100, 150, 250 kDa); Lane 2 - Null; Lane 3 - strain 321 ; Lane 4 - strain 322; Lane 5 - strain 323; Lane 6 - strain 324; Lane 7 - strain 325; Lane 8 - strain 326; Lane 9 - strain 327; Lane 10 - strain 328.
- FIG. 7 Tetanus Toxin C Fragment Expression. Tetanus Toxin C Fragment expressed in P. fluorescens was analyzed using capillary gel electrophoresis (SDS-CGE). Soluble fractions from 40 tetanus toxin-expression strains tested are shown in a gel-like image generated from the SDS-CGE data. Strain names as described in Table 15 are listed above each lane. Induced Tetanus Toxin C Fragment migrated as a single band at -51.6 kDa on SDS-CGE (arrow at left). Molecular weight markers in first and last lanes are 16, 20, 29,
- SDS-CGE capillary gel electrophoresis
- Induced TcdB migrated as a single band at ⁇ 300 kDa on SDS-CGE (arrow at left).
- Molecular weight markers in first and last lanes are 16, 20, 29, 48, 69 and 119 kDa.
- FIG. 9 Exotoxin A Amino Acid Sequence. The amino acid sequence of P. aeruginosa Exotoxin A is shown (SEQ ID NO:34). Three Exotoxin A proteins are indicated by the drawing: wild-type, CRM66, and rEPA. In variant CRM66, His 426 (bold, underlined text) is replaced by a Tyr as indicated above the sequence. In rEPA, Glu 553 (bold, underlined text) is deleted as indicated above the sequence.
- Figure 10 Soluble Tetanus Toxin C and Cholera Toxin B Production in P. fluorescens Fermentation Cultures. SDS-CGE Analysis. Lane 1 - 16, 20, 29, 48, 69 and 119 kDa molecular weight markers. Lanes 2 and 4 - pre -induction samples and lanes 3 and 5 post- induction samples, respectively, of PS538-088 U5 and U6 fermentations expressing Cholera Toxin B, indicated by arrow at right.
- Fermentation Cultures A. SDS-CGE Analysis. Lane 1 - 16, 20, 29, 48, 69 and 119 kDa molecular markers. Lanes 2, 3 and 4 are post-induction samples of PS538-529 Ul PS538- 546 U5 and PS538-547 U7 fermentations, respectively, expressing Tetanus Toxin Fragment C, indicated by arrow at right.
- MW Molecular weight (MW) standards are shown on the left of the blot and Tetanus Toxin C reference standard (Std; List Biological, Cat# 193) is shown on the right. Blots were probed with Polyclonal Anti-Tetanus Toxin C Fragment, derived in Rabbit (Abeam, Cat#: ab34890) followed by Anti-Rabbit IgG
- Lane 1 Fermentation Cultures. Lane 1 - 16, 20, 29, 48, 69 and 119 kDa molecular weight markers. The marker sizes are also indicated in their respective positions at the right, based on migration in Lane 1. Lanes 2, 3 and 4 are post-induction samples of PS538-671 U5 and U6, and PS538-674 U7 fermentations, respectively, expressing C. difficile B Toxin Protein, indicated by arrow at right.
- FIG. 13 DNA Sequence of Wild- Type Pertussis Toxoid.
- the wild-type Pertussis toxin DNA sequence with translation is shown (SEQ ID NO: 35).
- the sequence is from Genebank entry M13223.
- Subunits S1-S5 and signal sequences are indicated above the sequences.
- the encoded proteins are disclosed as SEQ ID NOS 41-45, respectively, in order of appearance.
- FIG. 14 Amino Acid and DNA Sequence of Cholera Holotoxin.
- A CTA amino acid sequence (SEQ ID NO: 38), with secretion leader (underlined) (AE003852; Protein ID AAF94614.1).
- B CTB amino acid sequence (SEQ ID NO: 39), with secretion leader (underlined) (GenBank AE003852; Protein ID AAF94613.1).
- C CTX DNA sequence (SEQ ID NO:40) indicating the A and B subunits, with translation shown (Genbank AE003852). The encoded proteins are disclosed as SEQ ID NOS 38 and 39, respectively, in order of appearance.
- Soluble rEPA expression levels as determined by SDS-CGE analysis of strains (PS538- 1633, PS538-1640 and PS538-1670) in their respective fermentations (ul, u2, u3, u6, u7 and u8), are plotted against post-induction times.
- Figure 17 Western Blot of Soluble rEPA Production in P. fluorescens Fermentation
- Soluble rEPA expressed in fermentation cultures of P. fluorescens were analyzed using Western blot analysis. Soluble fractions from fermentations of expression strains PS538-1633 (ul), PS538-1640 (u3 and u5) and PS538-1670 (u6 and u8) at 0 and 24 hours post-induction are shown in a Western blot analysis using an antibody specific for P.
- Mw molecular weight standards
- std rEPA standard.
- FIG. SDS-CGE Gel-like Image of Soluble CRM197 Production in P. fluorescens Fermentation Cultures.
- CRM197 expressed in fermentation cultures of P. fluorescens was analyzed using capillary gel electrophoresis (SDS-CGE). Soluble fractions from various fermentations of expression strains PS538-772 (ul and u2), PS538-776 (u3 and u5) and PS538-782 (u6 and u7) at various times post-induction (0, 16, 21 and 23 hours) tested are shown in a gel-like image generated from the SDS-CGE data.
- Mw molecular weight standards (16, 20, 29, 48, 68, and 119 kilodaltons).
- Soluble CRM197 expression levels as determined by SDS-CGE from the different strains (PS538-772, PS538-776 and PS538-782) in their respective fermentations (ul, u2, u3, u6 and u7) are plotted against post-induction times.
- ADP-ribosylating toxins facilitate scission of the N-glycosyl bond between
- ADPRTs are classified into four families based on their respective targets. Type I ADPRTs target heteromeric GTP-binding proteins. They include Cholera Toxin (CTX), Pertussis toxin (PTX), and Escherichia coli heat-labile enterotoxin (LT). Type II ADPRTs
- Type III ADPRTs ⁇ Clostridium botulinum C3 exoenzyme) ADP-ribosylate small GTP-binding proteins.
- Type IV ADPRTs ADP-ribosylate actin. These actin-specific ADPRTs include a family of binary toxins comprising C. botulinum C2 toxin, C. perfringens v-toxin, C.
- Typical actin-specific ADPRTs possess two similar domains: the C domain, which is essential for catalytic activity; and the N domain, which is important for the interaction with the binding and translocation subunit.
- SpvB from Salmonella and the type III ADPRT C3 have only one ADP-ribosyltransferase domain and lack the N-terminal adaptor domain.
- the EXE motif including two key glutamate residues, is present at the catalytic center.
- the former glutamate of the EXE motif is thought to be a key residue for ADP-ribosyltransferase, which is deprotonated from Arg-177 in actin.
- the latter glutamate forms a hydrogen bond with the 0'2 on N-ribose, which is thought to stabilize the oxocarbenium cation.
- ADPRTs are further described by Barth, et al., 2004, "Binary Bacterial Toxins:
- a recombinant toxin protein selected from a group including ADPRTs is produced.
- the group of ADPRTs consists of CTX (CTA and/or CTB), PTX, DT (CRM197 and/or WT), and Pseudomonas Exotoxin A.
- the group of ADPRTs consists of CTX(CTA and/or CTB), PTX, and Pseudomonas Exotoxin A.
- a recombinant toxin protein selected from a group including Type I ADPRTs is produced.
- the group of Type I ADPRTs consists of CTX (CTA and/or CTB), and PTX.
- a recombinant toxin protein selected from a group including Type II ADPRTs is produced.
- the group of Type II ADPRTs consists of DT (CRM 197 and/or WT), and Pseudomonas Exotoxin A.
- a recombinant toxin protein selected from a group including Type IV ADPRTs is produced.
- the Type IV ADPRT is TcdB.
- Cross-reacting material 197 is a Diphtheria toxin (DT) variant produced from a DT gene having a missense mutation.
- DT is an ADP-ribosylating toxin;
- CRM 197 lacks the ADP-ribosyltransferase (ADPRT) activity of DT, and is thus nontoxic.
- the gene for CRM 197 has a single base substitution, resulting in the incorporation of glutamic acid instead of glycine at residue 52. (See, e.g., Bishai, et al., 1987, "High-Level Expression of a Proteolytically Sensitive Diphtheria toxin Fragment in Escherichia coli " J. Bact.
- CRM 197 protein may be prepared at low levels by methods known in the art or by
- C. diphtheriae or other microorganisms The naturally occurring, or wild- type, Diphtheria toxin may be obtained from toxin producing strains available from a variety of public sources including the American Type Culture Collection.
- a plasmid system for producing CRM197 protein in C. diphtheriae is described by, e.g., U.S. Pat. No. 5,614, 382, "Plasmid for Production of CRM Protein and Diphtheria toxin," incorporated herein by reference in its entirety.
- the nucleotide sequence may be prepared using the techniques of recombinant DNA
- CRM 197 or DT are produced using any of the host strains described herein in Example 1 , in combination with any of the expression vectors (plasmids) described in Example 1.
- the nucleic acid sequence is optimized for expression in the Pseudomonad host cell.
- the expression vectors used contain constructs expressing any of the secretion leaders described in Table 8 and Table 3 fused to the recombinant CRM 197 or DT protein.
- the native secretion leader is used.
- the CRM 197 or DT protein is expressed with a tag, e.g., a purification tag.
- the methods of the invention are used to produce CRM197 or DT at a yield of about 0.5 g/L to at least about 12 g/L.
- Cholera toxin produced by Vibrio cholera, is also an ADP-ribosylating toxin.
- the Cholera toxin (CTX) is an oligomeric complex made up of six protein subunits: a single copy of the Cholera toxin A subunit (CTA), and five copies of the Cholera toxin B subunit (CTB).
- CTA Cholera toxin A subunit
- CTB Cholera toxin B subunit
- the A subunit has an Al portion, CTA1, a globular enzyme that ADP-ribosylates G proteins, and an A2 chain, CTA2, that forms an extended alpha helix which sits snugly in the central pore of the B subunit ring.
- This ring binds to GMl ganglioside receptors on the host cell surface, resulting in internalization of the entire complex.
- the CTA1 chain is released by reduction of a disulfide bridge.
- CTA1 is then activated and catalyzes ADP ribosylation of adenylate cyclase.
- the resulting increase in adenylate cyclase activity increases cyclic AMP synthesis, which causes massive fluid and electrolyte efflux and results in diarrhea.
- CTB The B subunit of CTX, though relatively harmless, retains its ability to bind to the GMl ganglioside receptor. CTB therefore finds use in facilitating mucosal uptake of chemically or genetically conjugated foreign antigens. It has been demonstrated to induce both mucosal and systemic immunity, and is a candidate for use in edible vaccine production. Because of its binding preference, CTB also finds use as a neuronal tracer.
- CTB or CTX is produced using any of the host strains described herein in Example 1 , in combination with any of the expression vectors described in Example 3.
- the nucleic acid sequence is optimized for expression in the Pseudomonad host cell.
- the expression vectors used contain constructs expressing any of the secretion leaders described in Table 8 and Table 3 fused to the recombinant CTB or CTX protein.
- the native secretion leader is used.
- the CTB or CTX protein is expressed with a tag, e.g., a purification tag.
- the methods of the invention are used to produce CTB or CTX at a yield of about 0.2 g/L to at least about 5 g/L.
- Pertussis toxin is an exotoxin and virulence factor produced by Bordetella pertussis, a
- the pertussis holotoxin is a multi-subunit complex with an AB 5 structure.
- SI enzymatically active A subunit
- B oligomer S2, S3, 2 copies of S4, and S5
- SI is proteolytically processed after cell entry.
- Pertussis toxin protein produced using the methods of the present invention is contemplated for use in a vaccine to protect against pertussis.
- Pertussis toxin has also been tested as a vaccine adjuvant, e.g., as described by Roberts, et al., 1995, "A Mutant Pertussis Toxin Molecule That Lacks ADP-Ribosyltransferase Activity, PT-9K/129G, Is an Effective Mucosal Adjuvant for Intranasally Delivered Proteins," Infection and Immunity 63(6):2100-2108, incorporated herein by reference.
- Pertussis toxin is also useful for research purposes, e.g., for studies of G protein signaling pathways (e.g., McCoy, et al., 2010, "PARI and PAR2 couple to overlapping and distinct sets of G proteins and linked signaling pathways to differentially regulate cell physiology," Molecular Pharmacology Fast Forward MOL 62018, incorporated herein by reference) and as an adjuvant to enhance induction of autoimmune diseases, e.g., experimental autoimmune encephalomyelitis (EAE), experimental autoimmune orchitis, experimental autoimmune uveitis, etc.
- EAE experimental autoimmune encephalomyelitis
- EAE experimental autoimmune orchitis
- experimental autoimmune uveitis etc.
- Pertussis Toxin or PTX refers to Pertussis Toxin mutant SI R9K E129A or the wild-type protein. Wild-type Pertussis toxin and Pertussis toxin mutant SI R9K E129A are described by, e.g.,: Roberts, et al., 1995 (cited above); U.S. Pat. No. 7,427,404 and U.S. Pat. No. 7,666,436, both titled, "Pertussis Toxin Mutants, Bordetella Strains Capable of Producing Such Mutants and Their Use in the Development of Antipertussis Vaccines;" U.S. Pat. No. 5,935,580, "Recombinant Mutants for Inducing Specific Immune Responses;” U.S. Pat. No. 7,169,399, "Non-Toxic Double Mutant Forms of Pertussis Toxin as
- Pertussis toxin mutant SI E129A or wild-type Pertussis toxin is produced using any of the host strains described herein in Example 1 , 5 and 7.
- the expression vectors used contain constructs expressing any of the secretion leaders described in Table 8 and Table 3 fused to the recombinant PTX protein.
- the native secretion leader is used.
- any or all of the subunit encoding sequences are optimized for expression in the Pseudomonad host selected, as described elsewhere herein.
- the subunits are expressed from two or more constructs, for example, by subcloning the individual sequences according to methods well-known in the art.
- the PTX protein is expressed with a tag, e.g., a purification tag.
- the methods of the invention are used to produce PTX or each individual subunit of PTX at a yield of about 0.2 g/L to at least about 5 g/L.
- Tetanus Toxin produced by Clostridium tetani, is a neurotoxin having a molecular weight of 150kDa. It is made up of two parts: a lOOkDa heavy or B-chain and a 50kDa light or A- chain. The chains are connected by a disulfide bond. The B-chain binds to
- VAMP vesicle-associated membrane protein
- Tetanus Toxin Fragment C is a 50 kD polypeptide generated by protease cleavage (e.g., with papain) of Tetanus toxin, or through recombinant expression of the fragment.
- Fragment C corresponds to the 451 amino acids at the C-terminus (amino acid positions 865-1315).
- Recombinant expression of Fragment C is disclosed in, e.g., U. S. Patent No. 5,443,966, "Expression of Tetanus Toxin Fragment C," WO/2005/000346, "Carrier Proteins for Vaccines,” and 6,010,871, “Modification of Peptide and Protein,” all incorporated herein by reference in their entirety.
- Fragment C has been shown to be non-toxic and capable of stimulating a protective immune response in mice and guinea pigs.
- U.S. Pat. No. 5,443,966 describes the sequence of Tetanus Toxin and production of Fragment C in E. coli. Expression of recombinant TTC in yeast has been described, e.g., in U. S. Pat. No. 5,571,694, "Expression of Tetanus Toxin Fragment C in Yeast," incorporated herein by reference in its entirety.
- TTC because it binds to neurons with high specificity and affinity, TTC finds use as a targeting molecule for neuronal drug delivery or for research purposes. Such use is described by, e.g., Townsend, et al., 2007, “Tetanus toxin C fragment conjugated nanoparticles for targeted drug delivery to neurons," Biomaterials 28(34):5176-5184, incorporated herein by reference.
- TTC protein is also potentially useful as a vaccine carrier protein, as described in, e.g.,
- TTC is produced using any of the host strains described herein in Example 1 , in combination with any of the expression vectors described in Example 8.
- the nucleic acid sequence is optimized for expression in the Pseudomonad host cell.
- the expression vectors used have constructs expressing any of the secretion leaders described in Table 8 and Table 3 fused to the recombinant TTC protein.
- the TTC protein is expressed with a tag, e.g., a purification tag.
- the native secretion leader is used.
- the methods of the invention are used to produce TTC at a yield of about 0.5 g/L to at least about 12 g/L.
- Clostridium difficile Toxin B (TcdB) is a virulence factor produced by Clostridium difficile, which causes hospital acquired diarrhea and pseudomembranous colitis.
- TcdB and a second large clostridial toxin, TcdA, are involved in the development of pseudomembranous colitis.
- TcdB a glucosylating toxin of about 270 kD
- TcdB a glucosylating toxin of about 270 kD
- the first 546 amino acids of TcdB contain the enzymatic region, which is followed by a putative translocation and receptor-binding domain.
- Enzymatic activity has been reported to require the amino-terminal 546 residues, as amino or carboxy-terminal deletions of this fragment decrease activity.
- tryptophan 102 has been shown to be essential for UDP-glucose binding.
- a conserved DXD motif within LCTs is essential for LCT glucosyltransferase activity.
- TcdB The structure of TcdB and its expression and potential use as a protective vaccine for C. difficile infection are discussed in, e.g.: U.S. Pat. No. 7,226,597, "Mutants of Clostridium Difficile Toxin B and Methods of Use;” Jank, et al., 2008, “Structure and mode of action of clostridial glucosylating toxins: the ABCD model," Trends in Microbiology 16(5):222-229; Sullivan, et al., 1982, “Purification and Characterization of Toxins A and B of Clostridium difficile ⁇ Infection and Immunity 35(3): 1032-1040; and Yang, et al., 2008, "Expression of recombinant Clostridium difficile toxin A and B in Bacillus megaterium," BMC
- TcdB is produced using any of the host strains described herein in Examples 1, 5 and 7.
- the nucleic acid sequence is optimized for expression in the Pseudomonad host cell.
- the expression vectors used contain constructs expressing any of the secretion leaders described in Table 8 and Table 3 fused to the recombinant TcdB protein.
- the native secretion leader is used.
- the TcdB protein is expressed with a tag, e.g., a purification tag.
- the methods of the invention are used to produce TcdB at a yield of about 0.5 g/L to at least about 10 g/L.
- Exotoxin A (ETA or PE) of Pseudomonas aeruginosa is a Type II ADPRT. It is one
- the protein exists as a monomer, consisting of a single polypeptide chain of 613 amino acids (66Kd).
- the x-ray crystallographic structure of exotoxin A determined to 3.0-A resolution, shows an amino-terminal domain, composed primarily of antiparallel beta-structure and comprising approximately half of the molecule; a middle domain composed of alpha-helices; and a carboxyl-terminal domain comprising
- the carboxyl-terminal domain is the ADP- ribosyltransferase of the toxin.
- the other two domains are presumably involved in cell receptor binding and membrane translocation.
- the toxin binds to cells through a specific receptor on the cell surface, then the toxin- receptor complex is internalized into the cell. Finally, ETA is transferred to the cytosol where it enzymatically inhibits protein synthesis. The transfer process is believed to occur from an acidic compartment, since cellular intoxication is prevented by weak bases such as NH 4 + , which raises the pH in acidic vesicles.
- Exotoxin A mutant rEPA as a vaccine conjugate is described by, e.g.: Fattom, et al., 1993, "Laboratory and Clinical Evaluation of Conjugate Vaccines Composed of
- Pseudomonas aeruginosa Exotoxin A as used herein refers to Pseudomonas aeruginosa
- Exotoxin A mutant CRM66, deletion rEPA, or the wild-type protein is produced using any of the host strains described herein in Examples 1 , 5 and 7, and using expression vectors having constructs expressing any of the secretion leaders described in Table 8 and Table 3 fused to the recombinant Exotoxin A protein.
- the nucleic acid sequence is optimized for expression in the Pseudomonad host cell.
- the native secretion leader is used.
- the ETA protein is expressed with a tag, e.g., a purification tag.
- the methods of the invention are used to produce Exotoxin A at a yield of about 0.5 g/L to at least about 12 g/L.
- any of the nucleic acid sequences of the toxins described herein for production using the methods of the invention can be optimized for expression in the Pseudomonad host cell selected. As described elsewhere herein, there are multiple options for optimization of any given sequence. Any of the options as described are contemplated for use in optimizing the sequences of the toxins produced using the methods of the present invention.
- the optimized sequences provided herein are non-limiting examples of optimized sequences useful in the methods of the present invention.
- optimization steps may improve the ability of the host to produce the foreign protein.
- Protein expression is governed by a host of factors including those that affect transcription, mRNA processing, and stability and initiation of translation.
- the polynucleotide optimization steps may include steps to improve the ability of the host to produce the foreign protein as well as steps to assist the researcher in efficiently designing expression constructs.
- Optimization strategies may include, for example, the modification of translation initiation regions, alteration of mRNA structural elements, and the use of different codon biases.
- optimization can thus address any of a number of sequence features of the heterologous gene.
- a rare codon-induced translational pause can result in reduced heterologous protein expression.
- a rare codon-induced translational pause includes the presence of codons in the polynucleotide of interest that are rarely used in the host organism may have a negative effect on protein translation due to their scarcity in the available tRNA pool.
- One method of improving optimal translation in the host organism includes performing codon optimization which can result in rare host codons being removed from the synthetic polynucleotide sequence.
- Alternate translational initiation also can result in reduced heterologous protein expression.
- Alternate translational initiation can include a synthetic polynucleotide sequence inadvertently containing motifs capable of functioning as a ribosome binding site (RBS). These sites can result in initiating translation of a truncated protein from a gene -internal site.
- RBS ribosome binding site
- Repeat-induced polymerase slippage involves nucleotide sequence repeats that have been shown to cause slippage or stuttering of DNA polymerase which can result in frameshift mutations. Such repeats can also cause slippage of RNA polymerase. In an organism with a high G+C content bias, there can be a higher degree of repeats composed of G or C nucleotide repeats. Therefore, one method of reducing the possibility of inducing RNA polymerase slippage, includes altering extended repeats of G or C nucleotides.
- Interfering secondary structures also can result in reduced heterologous protein expression.
- Secondary structures can sequester the RBS sequence or initiation codon and have been correlated to a reduction in protein expression. Stemloop structures can also be involved in transcriptional pausing and attenuation.
- An optimized polynucleotide sequence can contain minimal secondary structures in the RBS and gene coding regions of the nucleotide sequence to allow for improved transcription and translation.
- Another feature that can effect heterologous protein expression is the presence of restriction sites. By removing restriction sites that could interfere with subsequent sub-cloning of transcription units into host expression vectors a polynucleotide sequence can be optimized.
- the optimization process can begin by identifying the desired amino acid
- a candidate polynucleotide or DNA sequence can be designed from the amino acid sequence.
- the frequency of codon usage can be compared to the codon usage of the host expression organism and rare host codons can be removed from the synthetic sequence.
- the synthetic candidate DNA sequence can be modified in order to remove undesirable enzyme restriction sites and add or remove any desired signal sequences, linkers or untranslated regions.
- the synthetic DNA sequence can be analyzed for the presence of secondary structure that may interfere with the translation process, such as G/C repeats and stem-loop structures.
- the optimized sequence design can be checked to verify that the sequence correctly encodes the desired amino acid sequence.
- the candidate DNA sequence can be synthesized using DNA synthesis techniques, such as those known in the art.
- the general codon usage in a host organism such as P. fluorescens
- a host organism such as P. fluorescens
- the percentage and distribution of codons that rarely would be considered as preferred for a particular amino acid in the host expression system can be evaluated. Values of 5% and 10% usage can be used as cutoff values for the determination of rare codons.
- the codons listed in Table 2 have a calculated occurrence of less than 5% in the P. fluorescens MB214 genome and would be generally avoided in an optimized gene expressed in a P. fluorescens host.
- the present invention contemplates the use of any coding sequence for the toxins produced, including any sequence that has been optimized for expression in the Pseudomonas host cell being used. Sequences contemplated for use can be optimized to any degree as desired, including, but not limited to, optimization to eliminate: codons occurring at less than 5% in the Pseudomonas host cell, codons occurring at less than 10% in the Pseudomonas host cell, a rare codon-induced translational pause, a putative internal RBS sequence, an extended repeat of G or C nucleotides, an interfering secondary structure, a restriction site, or combinations thereof.
- heterologous proteins including useful regulatory sequences (e.g., promoters, secretion leaders, and ribosome binding sites), in Pseudomonas host cells, as well as host cells useful in the methods of the present invention, are described, e.g., in U.S. Pat. App. Pub. No. 2008/0269070 and U.S. Pat. App. Ser. No. 12/610,207, both titled "Method for Rapidly Screening Microbial Hosts to Identify Certain Strains with Improved Yield and/or Quality in the Expression of Heterologous Proteins," U.S. Pat. App. Pub. No.
- a sequence encoding a secretion leader is fused to the sequence encoding the toxin protein.
- the secretion leader is a periplasmic secretion leader.
- the secretion leader is the native secretion leader.
- the secretion leader is Azu, IbpS31A, CupA2, or PbpA20V. In other embodiments, the secretion leader is Azu, IbpS31A, CupA2, PbpA20V, or Pbp.
- Native CRM197 is transported from C. diptheriae to the extracellular space via a secretion leader that is cleaved, leaving an amino terminal sequence of GADD (SEQ ID NO: 21). In order to preserve the natural amino terminus of CRM 197 following expression in P.
- the protein is targeted to the periplasmic space.
- the promoters used in accordance with the present invention may be constitutive promoters or regulated promoters.
- useful regulated promoters include those of the family derived from the lac promoter (i.e. the lacZ promoter), especially the tac and trc promoters described in U.S. Pat. No. 4,551 ,433 to DeBoer, as well as Ptacl 6, Ptacl 7, PtacII, PlacUV5, and the T71ac promoter.
- the promoter is not derived from the host cell organism.
- the promoter is derived from an E. coli organism.
- inducible promoter sequences can be used to regulate expression of the toxins in accordance with the methods of the invention.
- inducible promoters useful in the methods of the present invention include those of the family derived from the lac promoter (i.e. the lacZ promoter), especially the tac and trc promoters described in U.S. Pat. No. 4,551 ,433 to DeBoer, as well as Ptacl 6, Ptacl 7, PtacII, PlacUV5, and the T71ac promoter.
- the promoter is not derived from the host cell organism.
- the promoter is derived from an E. coli organism.
- non-lac -type promoters useful in expression systems according to the present invention include, e.g., those listed in Table 4.
- a promoter having the nucleotide sequence of a promoter native to the selected bacterial host cell also may be used to control expression of the transgene encoding the target polypeptide, e.g, a Pseudomonas anthranilate or benzoate operon promoter (Pant, Pben).
- Tandem promoters may also be used in which more than one promoter is covalently attached to another, whether the same or different in sequence, e.g., a Pant-Pben tandem promoter (interpromoter hybrid) or a Plac- Plac tandem promoter, or whether derived from the same or different organisms.
- Regulated promoters utilize promoter regulatory proteins in order to control transcription of the gene of which the promoter is a part. Where a regulated promoter is used herein, a corresponding promoter regulatory protein will also be part of an expression system according to the present invention.
- promoter regulatory proteins include: activator proteins, e.g., E. coli catabolite activator protein, MalT protein; AraC family transcriptional activators; repressor proteins, e.g., E. coli Lacl proteins; and dual-function regulatory proteins, e.g., E. coli NagC protein. Many regulated-promoter/promoter- regulatory-protein pairs are known in the art.
- the expression construct for the target protein(s) and the heterologous protein of interest are under the control of the same regulatory element.
- Promoter regulatory proteins interact with an effector compound, i.e., a compound that reversibly or irreversibly associates with the regulatory protein so as to enable the protein to either release or bind to at least one DNA transcription regulatory region of the gene that is under the control of the promoter, thereby permitting or blocking the action of a transcriptase enzyme in initiating transcription of the gene.
- Effector compounds are classified as either inducers or co-repressors, and these compounds include native effector compounds and gratuitous inducer compounds.
- Many regulated-promoter/promoter- regulatory-protein/effector-compound trios are known in the art.
- an effector compound can be used throughout the cell culture or fermentation, in a preferred embodiment in which a regulated promoter is used, after growth of a desired quantity or density of host cell biomass, an appropriate effector compound is added to the culture to directly or indirectly result in expression of the desired gene(s) encoding the protein or polypeptide of interest.
- a lacl gene can also be present in the system.
- the lacl gene which is normally a constitutive ly expressed gene, encodes the Lac repressor protein Lacl protein, which binds to the lac operator of lac family promoters.
- the lacl gene can also be included and expressed in the expression system.
- Promoter systems useful in Pseudomonas are described in the literature, e.g., in U.S. Pat.
- soluble proteins are present in either the cytoplasm or periplasm of the cell during production.
- Secretion leaders useful for targeting proteins are described elsewhere herein, and in U.S. Pat. App. Pub. No. 2008/0193974, U.S. Pat. App. Pub. No.
- transcriptional enhancer sequences include, but are not limited to, transcriptional enhancer sequences
- translational enhancer sequences other promoters, activators, translational start and stop signals, transcription terminators, cistronic regulators, polycistronic regulators, tag sequences, such as nucleotide sequence "tags” and “tag” polypeptide coding sequences, which facilitates identification, separation, purification, and/or isolation of an expressed polypeptide.
- the expression vector further comprises a tag sequence adjacent to the coding sequence for the secretion signal or to the coding sequence for the protein or polypeptide of interest.
- this tag sequence allows for purification of the protein.
- the tag sequence can be an affinity tag, such as a hexa-histidine affinity tag (SEQ ID NO: 46).
- the affinity tag can be a glutathione-S-transferase molecule.
- the tag can also be a fluorescent molecule, such as YFP or GFP, or analogs of such fluorescent proteins.
- the tag can also be a portion of an antibody molecule, or a known antigen or ligand for a known binding partner useful for purification.
- Useful RBSs can be obtained from any of the species useful as host cells in expression systems according to, e.g., U.S. Pat. App. Pub. No. 2008/0269070 and U.S. Pat. App. Ser. No. 12/610,207. Many specific and a variety of consensus RBSs are known, e.g., those described in and referenced by D.
- Bacterial hosts including Pseudomonads, and closely related bacterial organisms are
- the Pseudomonad host cell is Pseudomonas fluorescens.
- the host cell can also be an E. coli cell.
- Host cells and constructs useful in practicing the methods of the invention can be identified or made using reagents and methods known in the art and described in the literature, e.g., in U.S. Pat. App. Pub. No. 2009/0325230, "Protein Expression Systems," incorporated herein by reference in its entirety.
- This publication describes production of a recombinant polypeptide by introduction of a nucleic acid construct into an auxotrophic Pseudomonas fluorescens host cell comprising a chromosomal lacl gene insert.
- the nucleic acid construct comprises a nucleotide sequence encoding the recombinant polypeptide operably linked to a promoter capable of directing expression of the nucleic acid in the host cell, and also comprises a nucleotide sequence encoding an auxotrophic selection marker.
- the auxotrophic selection marker is a polypeptide that restores prototrophy to the auxotrophic host cell.
- the cell is auxotrophic for proline, uracil, or combinations thereof.
- the host cell is derived from MB101 (ATCC deposit PTA-7841). U. S. Pat. App. Pub. No.
- Biotechnol. Progress 21(2): 343-8 both incorporated herein by reference in their entirety, describe a production host strain auxotrophic for uracil that was constructed by deleting the pyrF gene in strain MB 101.
- the pyrF gene was cloned from strain MB214 (ATCC deposit PTA-7840) to generate a plasmid that can complement the pyrF deletion to restore prototropy.
- a dual pyrF-proC dual auxotrophic selection marker system in a P. fluorescens host cell is used.
- a PyrF production host strain as described can be used as the background for introducing other desired genomic changes, including those described herein as useful in practicing the methods of the invention.
- the host cell is of the order Pseudomonadales. Where the host cell is of the order Pseudomonadales, it may be a member of the family Pseudomonadaceae, including the genus Pseudomonas.
- Gamma Proteobacterial hosts include members of the species Escherichia coli and members of the species Pseudomonas fluorescens.
- Pseudomonas organisms may also be useful. Pseudomonads and closely related
- Gram-negative Proteobacteria Subgroup 1 which include the group of Proteobacteria belonging to the families and/or genera described as "Gram-Negative Aerobic Rods and Cocci” by R. E. Buchanan and N.E. Gibbons (eds.), Bergey's Manual of Determinative Bacteriology, pp. 217-289 (8th ed., 1974) (The Williams & Wilkins Co., Baltimore, Md., USA) (hereinafter "Bergey (1974)"). Table 5 presents these families and genera of organisms. Table 5. Families and Genera Listed in the Part, "Gram-Negative Aerobic Rods and Cocci" (Bergey, 1974)
- Pseudomonas and closely related bacteria are generally part of the group defined as "Gram(- ) Proteobacteria Subgroup 1 " or "Gram-Negative Aerobic Rods and Cocci” (Buchanan and Gibbons (eds.) (1974) Bergey's Manual of Determinative Bacteriology, pp. 217-289).
- Pseudomonas host strains are described in the literature, e.g., in U.S. Pat. App. Pub. No. 2006/0040352, cited above.
- Gram-negative Proteobacteria Subgroup 1 also includes Proteobacteria that would be classified in this heading according to the criteria used in the classification.
- the heading also includes groups that were previously classified in this section but are no longer, such as the genera Acidovorax, Brevundimonas, Burkholderia, Hydrogenophaga, Oceanimonas, Ralstonia, and Stenotrophomonas , the genus Sphingomonas (and the genus Blastomonas, derived therefrom), which was created by regrouping organisms belonging to (and previously called species of) the genus Xanthomonas, the genus Acidomonas, which was created by regrouping organisms belonging to the genus Acetobacter as defined in Bergey (1974).
- hosts can include cells from the genus Pseudomonas, Pseudomonas enalia (ATCC 14393), Pseudomonas nigrifaciensi (ATCC 19375), and Pseudomonas putrefaciens (ATCC 8071), which have been reclassified respectively as Alteromonas haloplanktis, Alteromonas nigrifaciens , and Alteromonas putrefaciens .
- Pseudomonas Pseudomonas enalia
- Pseudomonas nigrifaciensi ATCC 19375)
- Pseudomonas putrefaciens ATCC 8071
- Pseudomonas acidovorans (ATCC 15668) and Pseudomonas testosteroni (ATCC 11996) have since been reclassified as Comamonas acidovorans and Comamonas testosteroni, respectively; and Pseudomonas nigrifaciens (ATCC 19375) and Pseudomonas piscicida (ATCC 15057) have been reclassified respectively as Pseudoalteromonas nigrifaciens and Pseudoalteromonas piscicida.
- Azotobacteraceae (now often called by the synonym, the "Azotobacter group" of
- Proteobacteria Subgroup 1 include: 1) Azotobacter group bacteria of the genus
- Azorhizophilus 2) Pseudomonadaceae family bacteria of the genera Cellvibrio, Oligella, and Teredinibacter; 3) Rhizobiaceae family bacteria of the genera Chelatobacter, Ensifer, Liberibacter (also called “Candidate Liberibacter"), and Sinorhizobium; and 4)
- Methylomicrobium, Methylosarcina, and Methylosphaera are examples of Methylomicrobium, Methylosarcina, and Methylosphaera.
- the host cell can be selected from "Gram-negative Proteobacteria Subgroup 16.”
- "Gram- negative Proteobacteria Subgroup 16” is defined as the group of Proteobacteria of the following Pseudomonas species (with the ATCC or other deposit numbers of exemplary strain(s) shown in parenthesis): Pseudomonas abietaniphila (ATCC 700689); Pseudomonas aeruginosa (ATCC 10145); Pseudomonas alcaligenes (ATCC 14909); Pseudomonas anguilliseptica (ATCC 33660); Pseudomonas citronellolis (ATCC 13674); Pseudomonas flavescens (ATCC 51555); Pseudomonas mendocina (ATCC 25411); Pseudomonas nitroreducens (ATCC 33634); Pse
- Pseudomonas alcaliphila Pseudomonas alginovora; Pseudomonas andersonii;
- Pseudomonas asplenii ATCC 23835
- Pseudomonas azelaica ATCC 27162
- Pseudomonas beyerinckii (ATCC 19372); Pseudomonas borealis; Pseudomonas boreopolis (ATCC 33662); Pseudomonas brassicacearum; Pseudomonas butanovora (ATCC 43655); Pseudomonas cellulosa (ATCC 55703); Pseudomonas aurantiaca (ATCC 33663);
- Pseudomonas chlororaphis ATCC 9446, ATCC 13985, ATCC 17418, ATCC 17461); Pseudomonas fragi (ATCC 4973); Pseudomonas lundensis (ATCC 49968); Pseudomonas taetrolens (ATCC 4683); Pseudomonas cissicola (ATCC 33616); Pseudomonas coronafaciens; Pseudomonas diterpeniphila; Pseudomonas elongata (ATCC 10144);
- Pseudomonasflectens (ATCC 12775); Pseudomonas azotoformans; Pseudomonas brenneri; Pseudomonas cedrella; Pseudomonas corrugata (ATCC 29736); Pseudomonas extremorientalis; Pseudomonas fluorescens (ATCC 35858); Pseudomonas gessardii;
- Pseudomonas libanensis Pseudomonas mandelii (ATCC 700871); Pseudomonas marginalis (ATCC 10844); Pseudomonas migulae; Pseudomonas mucidolens (ATCC 4685); Pseudomonas orientalis; Pseudomonas rhodesiae; Pseudomonas synxantha (ATCC 9890); Pseudomonas tolaasii (ATCC 33618); Pseudomonas veronii (ATCC 700474);
- Pseudomonas marginata ATCC 25417
- Pseudomonas mephitica ATCC 33665
- Pseudomonas denitrificans (ATCC 19244); Pseudomonas pertucinogena (ATCC 190); Pseudomonas pictorum (ATCC 23328); Pseudomonas psychrophila; Pseudomonas filva (ATCC 31418); Pseudomonas monteilii (ATCC 700476); Pseudomonas mosselii;
- Pseudomonas putida ATCC 12633
- Pseudomonas reactans Pseudomonas spinosa
- Pseudomonas balearica Pseudomonas luteola
- Pseudomonas stutzeri ATCC 17588
- Pseudomonas amygdali ATCC 33614
- Pseudomonas avellanae ATCC 700331; Pseudomonas caricapapayae (ATCC 33615); Pseudomonas cichorii (ATCC 10857); Pseudomonas ficuserectae (ATCC 35104);
- Pseudomonas fuscovaginae Pseudomonas meliae (ATCC 33050); Pseudomonas syringae (ATCC 19310); Pseudomonas viridiflava (ATCC 13223); Pseudomonas
- thermocarboxydovorans ATCC 35961; Pseudomonas thermotolerans; Pseudomonas thivervalensis; Pseudomonas vancouverensis (ATCC 700688); Pseudomonas
- the host cell is
- the host cell can also be selected from "Gram-negative Proteobacteria Subgroup 17."
- "Gram-negative Proteobacteria Subgroup 17” is defined as the group of Proteobacteria known in the art as the "fluorescent Pseudomonads" including those belonging, e.g., to the following Pseudomonas species: Pseudomonas azotoformans; Pseudomonas brenneri;
- Pseudomonas cedrella Pseudomonas corrugata; Pseudomonas extremorientalis;
- Pseudomonas fluorescens Pseudomonas gessardii; Pseudomonas libanensis; Pseudomonas mandelii; Pseudomonas marginalis; Pseudomonas migulae; Pseudomonas mucidolens; Pseudomonas orientalis; Pseudomonas rhodesiae; Pseudomonas synxantha; Pseudomonas tolaasii; and Pseudomonas veronii.
- the Pseudomonas host cell is defective in the expression of HslU, HslV, Prcl, DegPl, DegP2, AprA, or a combination thereof.
- the host cell is defective in proteases HslU, HslV, Prcl, DegPl, DegP2, and AprA, and overexpresses DegP2 S219A.
- An example of such a strain is disclosed herein as Host Strain 2. These proteases are known in the art and described in, e.g., U. S. Pat. App. Pub. No.
- AprA an extracellular serralysin-type metalloprotease metalloproteinase, is described by, e.g., Maunsell, et al., 2006, "Complex regulation of AprA metalloprotease in Pseudomonas fluorescens Ml 14: evidence for the involvement of iron, the ECF sigma factor, PbrA and pseudobactin Ml 14 siderophore, Microbiology 152(Pt l):29-42, incorporated herein by reference, and in U.S. Patent App. Pub. Nos. 2008/0193974 and 2010/0048864.
- the Pseudomonas host cell overexpresses DsbA, DsbB, DsbC, and DsbD.
- DsbA, B, C, and D are disulfide bond isomerases, described, e.g., in U.S. Pat. App. Pub. No. 2008/0269070 and U.S. Pat. App. Ser. No. 12/610,207.
- the Pseudomonas host cell is wild-type, i.e., having no protease expression defects and not overexpressing any folding modulator.
- a host cell that is defective in the expression of a protease can have any modification that results in a decrease in the normal activity or expression level of that protease relative to a wild-type host. For example, a missense or nonsense mutation can lead to expression of protein that not active, and a gene deletion can result in no protein expression at all. A change in the upstream regulatory region of the gene can result in reduced or no protein expression. Other gene defects can affect translation of the protein.
- the expression of a protease can also be defective if the activity of a protein needed for processing the protease is defective.
- proteases and folding modulators useful in the methods of the present
- RXF numbers refer to the open reading frame. (See, e.g., U.S. Pat. App. Pub. No. 2008/0269070 and U.S. Pat. App. Ser. No. 12/610,207.)
- RXF09831.2 N-acyl-L-amino acid Signal peptide
- RXF04047.2 caax amino terminal protease Cytoplasmic
- proteases can have both protease and chaperone-like activity. When these proteases are negatively affecting protein yield and/or quality it can be useful to delete them, and they can be overexpressed when their chaperone activity may positively affect protein yield and/or quality.
- proteases include, but are not limited to: Hspl00(Clp/Hsl) family members RXF04587.1 (clpA), RXF08347.1, RXF04654.2 (clpX), RXF04663.1,
- aminohydrolase aminohydrolase
- Metallopeptidase M24 family members RXF04693.1 (methionine ammopeptidase) and RXF03364.1 (methionine ammopeptidase); and Serine Peptidase S26 signal peptidase I family member RXF01181.1 (signal peptidase).
- PA3126 Acts as a holder for GroESL folding
- a high throughput screen can be conducted to determine optimal conditions for expressing a soluble recombinant toxin protein.
- the conditions that be varied in the screen include, for example, the host cell, genetic background of the host cell (e.g., deletions of different proteases), type of promoter in an expression construct, type of secretion leader fused to the sequence encoding the recombinant protein, growth temperature, OD at induction when an inducible promoter is used, concentration of IPTG used for induction when a lacZ promoter is used, duration of protein induction, growth temperature following addition of an inducing agent to a culture, rate of agitation of culture, method of selection for plasmid maintenance, volume of culture in a vessel, and method of cell lysing.
- a library (or “array") of host strains is provided, wherein each strain (or “population of host cells") in the library has been genetically modified to modulate the expression of one or more target genes in the host cell.
- An “optimal host strain” or “optimal expression system” can be identified or selected based on the quantity, quality, and/or location of the expressed protein of interest compared to other populations of phenotypically distinct host cells in the array.
- an optimal host strain is the strain that produces the polypeptide of interest according to a desired specification.
- the specification includes the quality and/or quantity of protein, e.g., whether the protein is sequestered or secreted, and in what quantities, whether the protein is properly or desirably processed and/or folded, and the like.
- improved or desirable quality can be production of toxin protein with high fidelity cleavage of the secretion leader and low levels of degradation.
- the optimal host strain or optimal expression system produces a yield, characterized by the amount or quantity of soluble heterologous protein, the amount or quantity of recoverable heterologous protein, the amount or quantity of properly processed heterologous protein, the amount or quantity of properly folded heterologous protein, the amount or quantity of active heterologous protein, and/or the total amount or quantity of heterologous protein, of a certain absolute level or a certain level relative to that produced by an indicator strain, i.e., a strain used for comparison.
- fermentation format For example, batch, fed-batch, semi-continuous, and continuous fermentation modes may be employed herein.
- the fermentation medium may be selected from among rich media,
- minimal media, and mineral salts media In other embodiments either a minimal medium or a mineral salts medium is selected. In certain embodiments, a mineral salts medium is selected.
- Mineral salts media consists of mineral salts and a carbon source such as, e.g., glucose, sucrose, or glycerol.
- a carbon source such as, e.g., glucose, sucrose, or glycerol.
- mineral salts media include, e.g., M9 medium,
- the mineral salts used to make mineral salts media include those selected from among, e.g., potassium phosphates, ammonium sulfate or chloride, magnesium sulfate or chloride, and trace minerals such as calcium chloride, borate, and sulfates of iron, copper, manganese, and zinc.
- no organic nitrogen source such as peptone, tryptone, amino acids, or a yeast extract, is included in a mineral salts medium.
- an inorganic nitrogen source is used and this may be selected from among, e.g., ammonium salts, aqueous ammonia, and gaseous ammonia.
- a mineral salts medium will typically contain glucose or glycerol as the carbon source.
- minimal media can also contain mineral salts and a carbon source, but can be supplemented with, e.g., low levels of amino acids, vitamins, peptones, or other ingredients, though these are added at very minimal levels.
- Media can be prepared using the methods described in the art, e.g., in U.S. Pat. App. Pub. No. 2006/0040352, referenced and incorporated by reference above.
- production can be achieved in bioreactor cultures.
- Cultures can be grown in, e.g., up to 2 liter bioreactors containing a mineral salts medium, and maintained at 32 °C and pH 6.5 through the addition of ammonia.
- Dissolved oxygen can be maintained in excess through increases in agitation and flow of sparged air and oxygen into the fermentor.
- Glycerol can be delivered to the culture throughout the fermentation to maintain excess levels. In embodiments, these conditions are maintained until a target culture cell density, e.g., optical density at 575nm (A 575 ), for induction is reached, at which time IPTG is added to initiate the target protein production.
- a 575 optical density at 575nm
- cell density at induction can be varied from A 575 of 40 to 200 absorbance units (AU).
- IPTG concentrations can be varied in the range from 0.02 to 1.0 mM, pH from 6 to 7.5, and temperature from 20 to 35 °C.
- the culture from each bioreactor can be harvested by centrifugation and the cell pellet frozen at - 80 °C. Samples can then be analyzed, e.g., by SDS-CGE, for product formation.
- Fermentation may be performed at any scale.
- the expression systems according to the present invention are useful for recombinant protein expression at any scale.
- microliter-scale, milliliter scale, centiliter scale, and deciliter scale fermentation volumes may be used, and 1 Liter scale and larger fermentation volumes can be used.
- the fermentation volume is at or above about 1 Liter. In embodiments, the fermentation volume is about 1 liter to about 100 liters. In embodiments, the fermentation volume is about 1 liter, about 2 liters, about 3 liters, about 4 liters, about 5 liters, about 6 liters, about 7 liters, about 8 liters, about 9 liters, or about 10 liters.
- the fermentation volume is about 1 liter to about 5 liters, about 1 liter to about 10 liters, about 1 liter to about 25 liters, about 1 liter to about 50 liters, about 1 liter to about 75 liters, about 10 liters to about 25 liters, about 25 liters to about 50 liters, or about 50 liters to about 100 liters
- the fermentation volume is at or above 5 Liters, 10 Liters, 15 Liters, 20 Liters, 25 Liters, 50 Liters, 75 Liters, 100 Liters, 200 Liters, 500 Liters, 1,000 Liters, 2,000 Liters, 5,000 Liters, 10,000 Liters, or 50,000 Liters.
- Growth conditions useful in the methods of the provided invention can comprise a
- expression can be induced by adding IPTG to a culture at a final concentration of about 0.01 mM to about 1.0 mM.
- the pH of the culture can be maintained using pH buffers and methods known to those of skill in the art. Control of pH during culturing also can be achieved using aqueous ammonia. In embodiments, the pH of the culture is about 5.7 to about 8.8.
- the pH is about 5.7, 5.8, 5.9, 6.0, 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, 6.9, 7.0, 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, 7.8, 7.9, 8.0, 8.1, 8.2, 8.3, 8.4, 8.5, 8.6, 8.7, or 8.8
- the pH is about 5.7 to 5.9, 5.8 to 6.0, 5.9 to 6.1, 6.0 to 6.2, 6.1 to 6.3, 6.2 to 6.5, 6.4 to 6.7, 6.5 to 6.8, 6.6 to 6.9, 6.7 to 7.0, 6.8 to 7.1, 6.9 to 7.2, 7.0 to 7.3, 7.1 to 7.4, 7.2 to 7.5, 7.3 to 7.6, 7.4 to 7.7, 7.5 to 7.8, 7.6 to 7.9, 7.7 to 8.0, 7.8 to 8.1, 7.9 to 8.2, 8.0 to 8.3, 8.1 to 8.4, 8.2 to 8.5, 8.3 to 8.6, 8.4
- the growth temperature is maintained at about 4° C to about 42° C.
- the growth temperature is about 4° C, about 5° C, about 6° C, about 7° C, about 8° C, about 9° C, about 10° C, about 11° C, about 12° C, about 13° C, about 14° C, about 15° C, about 16° C, about 17° C, about 18° C, about 19° C, about 20° C, about 21° C, about 22° C, about 23° C, about 24° C, about 25° C, about 26° C, about 27° C, about 28° C, about 29° C, about 30° C, about 31° C, about 32° C, about 33° C, about 34° C, about 35° C, about 36° C, about 37° C, about 38° C, about 39° C, about 40° C, about 41° C, or about 42° C.
- the growth temperature is maintained at about 25° C to about 27° C, about 25° C to about 28° C, about 25° C to about 29° C, about 25° C to about 30° C, about 25° C to about 31° C, about 25° C to about 32° C, about 25° C to about 33° C, about 26° C to about 28° C, about 26° C to about 29° C, about 26° C to about 30° C, about 26° C to about 31° C, about 26° C to about 32° C, about 27° C to about 29° C, about 27° C to about 30° C, about 27° C to about 31° C, about 27° C to about 32° C, about 26° C to about 33° C, about 28° C to about 30° C, about 28° C to about 31° C, about 28° C to about 32° C, about 29° C to about 31° C, about 29° C to about 32° C, about 29° C to about 33° C, about 30° C to about 32° C, about 30° C, about 30°
- the temperature is changed during culturing.
- the temperature is maintained at about 30°C before an agent to induce expression from the construct, e.g., IPTG, is added to the culture. After adding the induction agent, the temperature is reduced to about 25 °C.
- an agent to induce expression from the construct e.g., IPTG
- inducible promoters can be used in the expression construct to control expression of the recombinant toxin protein, e.g., a lac promoter.
- the effector compound is an inducer, such as a gratuitous inducer like IPTG (isopropyl- -D-l- thiogalactopyranoside, also called “isopropylthiogalactoside”).
- a lac promoter derivative is used, and recombinant protein expression is induced by the addition of IPTG to a final concentration of about 0.01 mM to about 1.0 mM, when the cell density has reached a level identified by an OD575 of about 80 to about 160.
- the OD575 at the time of culture induction for the recombinant protein can be about 80, about 90, about 100, about 110, about 120, about 130, about 140, about 150, about 160, about 170 about 180.
- the OD575 is about 80 to about 100, about 100 to about 120, about 120 to about 140, about 140 to about 160.
- the OD575 is about 80 to about 120, about 100 to about 140, or about 120 to about 160. In other embodiments, the OD575 is about 80 to about 140, or about 100 to 160.
- the cell density can be measured by other methods and expressed in other units, e.g., in cells per unit volume. For example, an OD575 of about 80 to about 160 of a Pseudomonas fluorescens culture is equivalent to approximately 8 x 1010 to about 1.6 x 1011 colony forming units per mL or 35 to 70 g/L dry cell weight.
- the cell density at the time of culture induction is equivalent to the cell density as specified herein by the absorbance at OD575, regardless of the method used for determining cell density or the units of measurement.
- One of skill in the art will know how to make the appropriate conversion for any cell culture.
- the final IPTG concentration of the culture is about 0.01 mM, about 0.02 mM, about 0.03 mM, about 0.04 mM, about 0.05 mM, about 0.06 mM, about 0.07 mM, about 0.08 mM, about 0.09 mM, about 0.1 mM, about 0.2 mM, about 0.3 mM, about 0.4 mM, about 0.5 mM, about 0.6 mM, about 0.7 mM, about 0.8 mM, about 0.9 mM, or about 1 mM.
- the final IPTG concentration of the culture is about 0.08 mM to about 0.1 mM, about .1 mM to about 0.2 mM, about .2 mM to about 0.3 mM, about .3 mM to about 0.4 mM, about .2 mM to about 0.4 mM, about 0.08 to about 0.2mM, or about 0.1 to 1 mM.
- the promoter is a constitutive promoter.
- cultures can be grown for a period of time, for example about 24 hours, during which time the recombinant protein is expressed.
- a culture can be grown for about 1 hr, about 2 hr, about 3 hr, about 4 hr, about 5 hr, about 6 hr, about 7 hr, about 8 hr, about 9 hr, about 10 hr, about 11 hr, about 12 hr, about 13 hr, about 14 hr, about 15 hr, about 16 hr, about 17 hr, about 18 hr, about 19 hr, about 20 hr, about 21 hr, about 22 hr, about 23 hr, about 24 hr, about 36 hr, or about 48 hr.
- the culture can be grown for about 1 to 48 hrs, about 1 to 24 hrs, about 10 to 24 hrs, about 15 to 24 hrs, or about 20 to 24 hrs.
- Cell cultures can be concentrated by centrifugation, and the culture pellet resuspended in a buffer or solution appropriate for the subsequent lysis procedure.
- cells are disrupted using equipment for high pressure mechanical cell disruption (which are available commercially, e.g., Microfluidics Microfluidizer, Constant Cell Disruptor, Niro-Soavi homogenizer or APV-Gaulin homogenizer).
- Cells expressing the recombinant protein can be disrupted, for example, using sonication. Any appropriate method known in the art for lysing cells can be used to release the soluble fraction.
- chemical and/or enzymatic cell lysis reagents such as cell-wall lytic enzyme and EDTA, can be used. Use of frozen or previously stored cultures is also contemplated in the methods of the invention.
- Cultures can be OD-normalized prior to lysis.
- cells can be normalized to an OD600 of about 10, about 11, about 12, about 13, about 14, about 15, about 16, about 17, about 18, about 19, or about 20.
- Centrifugation can be performed using any appropriate equipment and method.
- Centrifugation of cell culture or lysate for the purposes of separating a soluble fraction from an insoluble fraction is well-known in the art.
- lysed cells can be centrifuged at 20,800 x g for 20 minutes (at 4° C), and the supernatants removed using manual or automated liquid handling.
- the pellet (insoluble) fraction is resuspended in a buffered solution, e.g., phosphate buffered saline (PBS), pH 7.4.
- Resuspension can be carried out using, e.g., equipment such as impellers connected to an overhead mixer, magnetic stir-bars, rocking shakers, etc.
- soluble fraction i.e., the soluble supernatant obtained after centrifugation of a lysate
- an “insoluble fraction” i.e., the pellet obtained after centrifugation of a lysate
- Protein yield in any purification fraction as described herein can be determined by methods known to those of skill in the art, for example, by capillary gel electrophoresis (CGE), and Western blot analysis.
- Activity assays as described herein and known in the art, also can provide information regarding protein yield. In embodiments, these or any other methods known in the art are used to evaluate proper processing of a protein, e.g., proper secretion leader cleavage.
- Useful measures of protein yield include, e.g., the amount of recombinant protein per
- the measure of protein yield as described herein is based on the amount of soluble protein or the amount of active protein, or both, obtained.
- the methods of the present invention can be used to obtain a soluble and/or active and/or properly processed (e.g., having the secretion leader cleaved properly) recombinant toxin protein or subunit protein yield of about 0.2 grams per liter to about 12 grams per liter. In embodiments, the yield is about 0.5 grams per liter to about 12 grams per liter.
- the recombinant protein or subunit protein yield is about 0.2 g/L, about 0.3 g/L, about 0.4 g/L, about 0.5 g/L, about 0.6 g/L, about 0.7 g/L, about 0.8 g/L, about 0.9 g/L, about 1 g/L, about 1.5 g/L, about 2 g/L, about 2.5 g/L, about 3 g/L, about 3.5 g/L, about 4 g/L, about 4.5 g/L, about 5 g/L, about 5.5 g/L, about 6 g/L, about 6.5 g/L, about 7 g/L, about 7.5 g/L, about 8 g/L, about 8.5 g/L, about 9 g/L, about 9.5 g/L, about 10 g/L, about 10.5 g/L, about 1 1 g/L, about 12 g/L, about 0.2 g/L to about
- the amount of recombinant toxin protein or subunit protein produced is about 1% to 75% of the total cell protein. In certain embodiments, the amount of toxin protein or subunit protein produced is about 1%, about 2%, about 3%, about 4%, about 5 %, about 10%, about 15 %, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 1% to about 5%>, about 1%> to about 10%>, about 1%> to about 20%>, about 1%> to about 30%>, about 1% to about 40%, about 1% to about 50%, about 1% to about 60%, about 1% to about 75%, about 2% to about 5%>, about 2%> to about 10%>, about 2%> to about 20%>, about 2%> to about 30%, about 2% to about 40%, about 2% to about 50%, about 2% to about 60%, about 2% to about 75%),
- multiple proteins are produced from the same host cell.
- all five subunits of Pertussis toxin are made from the same host cell grown in a single culture.
- the concentration, % total cell protein, or activity observed is that for each individual toxin subunit or for all the subunits taken together. That is, in embodiments, the methods of the invention are used to obtain a yield of the SI, S2, S3, S4, or S5 subunit of Pertussis toxin protein of about 1 gram per liter to about 12 grams per liter.
- the amount of SI, S2, S3, S4, or S5 subunit protein produced is 1%> to 75%> of the total cell protein.
- the methods of the invention are used to obtain a yield of SI, S2, S3, S4, and S5 subunit protein of about 1 gram per liter to about 12 grams per liter.
- the amount of SI, S2, S3, S4, and S5 subunit protein produced is 1%> to 75%> of the total cell protein.
- the amount of each subunit obtained, in grams per liter or % total cell protein is approximately the same.
- solubility of a protein typically relates to the folding of a protein; insolubility indicates that hydrophobic amino acid residues are improperly located on the outside of the folded protein.
- Protein activity which can be evaluated using methods, e.g., those described below, is another indicator of proper protein conformation.
- Soluble, active, or both or “soluble and/or active,” as used herein, refers to protein that is determined to be soluble, active, or both soluble and active, by methods known to those of skill in the art and described herein.
- the "activity" of a given protein can include binding activity, e.g., that represented by binding to a receptor, a specific antibody, or to another known substrate, or by enzymatic activity if relevant. Activity levels can be described, e.g., in absolute terms or in relative terms, as when compared with the activity of a standard or control sample, or any sample used as a reference.
- Activity assays include immunological or antibody binding assays, e.g., Western Blot analysis and ELISA, as well as receptor binding assays, e.g., CRM197 can be evaluated by Diptheria toxin receptor (proHB-EGF) binding assay. Antibodies useful in these assays are commercially available. Activity assays also include enzyme activity assays. Wild-type DT can be assayed immunologically and also by ADP-ribosylation activity, using methods known in the art and described elsewhere herein for P. aeruginosa Exotoxin A.
- TcdB activity can be evaluated by Western Blot or other detection analysis, as described in the art. Enzymatic activity can be assayed, e.g., using glucosylhydrolase/glucosylation assay methods described in the art, for example in U. S. Pat. No. 7,226,597, incorporated herein by reference in its entirety.
- glucosylation reactions can be carried out in a reaction mix containing 50 mM n-2hydroxyethylpiperazine-n'-2-ethane sulfonic acid, 100 mM KC1, 1 mM MnCl 2 , 1 mM MgCl 2 , 100 ⁇ gram/ml BSA, 0.2 mM GDP, 40 ⁇ [ 14 0] ⁇ - glucose (303 Ci/mol; ICN Pharmaceuticals), 100 ⁇ UDP-glucose and 3 pmol of TcdB or 10 pmol of each fusion protein.
- the assay is allowed to incubate overnight at 37° C and the cleaved glucose is separated using AG1-X2 anion exchange resin and counted in a liquid scintillation counter.
- P. aeruginosa Exotoxin A activity can be evaluated using immunological methods, e.g.,
- ETA is an ADP-ribosylating toxin, it can be assayed for ADP- ribosylation activity, e.g., as described in U.S. Pat. No. 4,892,827, incorporated herein by reference.
- rabbit reticulocyte preparations or wheat germ extracts enriched with elongation factor 2 (EF-2) are used as a source of EF-2.
- Assays 500 ⁇ total volume) contain about 10 pmole of EF-2, 37 pmole of 14 C-NAD (0.06 ⁇ ), 0.25 to 1.25 ⁇ g of ETA and buffer (40 mM DTT, 1 mM EDTA, and 50 mM Tris, pH 8.1).
- Activity is measured as pmoles of NAD transferred to EF-2 in 30 minutes.
- concentrations of PE is established and used to determine the activity of PE in extracts from E. coli. After incubation for 30 minutes at 37° C, 0.5 ml 12% TCA is added to each assay mixture. The assay mixtures are then set in an ice bath for 15 minutes, followed by centrifugation at 4° C, 3,000 x g for 10 minutes. The pellet is washed with 1 ml 6% TCA and centrifuged as above. The pellet is then measured for 14 C radioactivity in a liquid scintillation counter as the index of the ADP-ribosylation activity.
- a measure of activity can represent, e.g., antibody or receptor binding capacity, substrate binding capacity (as to a column material), or enzyme activity.
- activity is represented by the % active recombinant toxin protein in the extract supernatant as compared with the total amount assayed. This is based on the amount of recombinant toxin protein determined to be active by the assay relative to the total amount of recombinant toxin protein used in the assay. In other embodiments, activity is represented by the % activity level of the protein compared to a standard, e.g., native protein. This is based on the amount of active recombinant toxin protein in supernatant extract sample relative to the amount of active protein in a standard sample (where the same amount of protein from each sample is used in assay).
- about 40% to about 100% of the toxin protein or subunit is determined to be active. In embodiments, about 40%, about 50%, about 60%, about 70%, about 80%, about 90%), or about 100% of the recombinant toxin protein or protein subunit is determined to be active.
- about 75% to about 100% of the recombinant toxin protein or protein subunit is determined to be active. In embodiments, about 75% to about 80%, about 75% to about 85%, about 75% to about 90%, about 75% to about 95%, about 80% to about 85%, about 80% to about 90%, about 80% to about 95%, about 80% to about 100%, about 85% to about 90%, about 85% to about 95%, about 85% to about 100%, about 90% to about 95%, about 90%) to about 100%, or about 95% to about 100% of the recombinant toxin protein or subunit is determined to be active.
- a protein can analyzed by peptide mass fingerprint using MALDI-TOF mass spectrometry, N-terminal sequencing analysis, or peptide mapping.
- CRM197 expression strains were constructed and the amount of soluble CRM197 protein produced in the strains was analyzed using capillary gel electrophoresis (SDS-CGE). Based on the resulting data, certain strains were selected for use in large-scale expression.
- SDS-CGE capillary gel electrophoresis
- the CRM197 coding sequence was constructed using P. fluorescens preferred codons to encode the CRM197 amino acid sequence.
- SEQ ID NO: 1 shows the amino acid sequence encoded by the expressed synthetic optimized CRM197 gene
- SEQ ID NO: 2 shows the DNA sequence of the expressed synthetic optimized CRM197 gene.
- Constructs containing the ten secretion leaders fused to the recombinant CRM197 coding sequence were tested in P. fluorescens hosts. Four hosts, listed in Table 9, were tested with each expression plasmid. Host cells were electroporated with the indicated plasmids, resuspended in HTP growth medium with trace minerals and 5% glycerol and then transferred to 96-well deep well plate with 400 ⁇ M9 salts 1% glucose medium and trace elements. The 96-well plates were incubated at 30°C with shaking for 48 hours. Ten microliters of each of the forty seed cultures were transferred into triplicate 96-well deep-well plates, each well containing 500 ⁇ of HTP medium supplemented with trace elements and 5% glycerol, and incubated as before for 24 hours.
- Isopropyl-P-D-l -thiogalactopyranoside (IPTG) was added to each well to a final concentration of 0.3 mM to induce the expression of target proteins.
- Soluble and insoluble cellular fractions were prepared by sonication of the normalized cultures followed by centrifugation. Frozen, normalized culture broth (400 ⁇ .) was thawed and sonicated for 3.5 minutes. The lysates were centrifuged at 20,800x g for 20 minutes (4°C) and the supernatants removed using manual or automated liquid handling (soluble fraction). The pellets (insoluble fraction) were frozen and then thawed for re -centrifugation at 20,080 x g for 20 minutes at 4 C, to remove residual supernatant. The pellets were then resuspended in 400 ⁇ ⁇ of IX phosphate buffered saline (PBS), pH 7.4.
- PBS IX phosphate buffered saline
- PS538-772, PS538-773, PS538-776, PS538-778, PS538-782 were selected for evaluation in large-scale fermentation.
- Recombinant CRM197 protein was produced in Pseudomonas fluorescens strains PS538- 772, PS538-776, and PS538-782 in 2 liter fermentors. Cultures were grown in 2 liter fermentors containing a mineral salts medium as described herein and also by, e.g.,
- Sequence ID NO: 22 shows the amino acid sequence encoded by the expressed synthetic Cholera Toxin B gene and SEQ ID NO: 23 shows the DNA sequence of the expressed synthetic optimized Cholera Toxin B gene.
- fluorescens secretion leader coding sequences used with CRM 197 were constructed.
- the secretion leaders were included to target the protein to the periplasm for recovery in the properly folded and active form.
- the construct was expressed in eight P. fluorescens hosts, shown in Table 13. Host cells were electroporated with p538-081 , and grown and induced in 96-well format as described above for CRM 197 high throughput expression. Samples were prepared and analyzed by SDS-CGE as described above for the CRM197 high throughput expression samples.
- mo u ators are overexpresse .
- Soluble fractions from the eight cultures described above were analyzed by Western blot to evaluate Pertussis Toxoid expression. Twenty microliters of the soluble fractions (2X diluted, reduced and non-reduced) were run on Bio-Rad 12% Bis-Tris Gel in IX Bio Rad MES running buffer. For reduced Western analysis, IX XT reducing agent was added. Proteins were transferred from SDS-PAGE at 100V for 60 minutes onto a 0.2 ⁇ nitrocellulose membrane (Bio Rad, 162 0232) using IX NuPAGE Transfer Buffer
- the blots were washed three times with PBS-Tween for 5 minutes each, and were then incubated in more diluent containing a 1 :5,000 dilution of anti-Mouse IgG-Peroxidase derived in goat (Sigma, Cat#A4416) at room temperature for 1 hour.
- the blots were washed three times with PBS-Tween (Sigma, P3563) for 5 minutes each, before color development using Immunopure Metal Enhanced DAB substrate (Pierce, 34065). Multiple subunits were detected by the anti-S 1 and anti-S4 antibodies under both reducing and non reducing conditions ( Figure 6).
- Recombinant Pertussis toxin protein is produced in Pseudomonas fluorescens Pfenex Expression TechnologyTM strains PS538-321, PS538-324, PS538-325, PS538-326, and PS538-328.
- the selected strain is grown in 2 liter fermentors, induced with IPTG, and samples prepared for analysis, as described above for CTB large-scale expression. The samples are analyzed by SDS-CGE, for product formation and their activity analyzed by Western Blot.
- the construct is expressed in the P. fluorescens hosts shown in Table 14. Each strain listed that does not have an overexpression plasmid is tested a) as described (having no overexpression plasmid); b) including a GrpE DnaKJ overexpression plasmid, and c) including a DsbABCD overexpression plasmid. Host cells are electroporated with the PTX WT expression plasmid, and grown and induced in 96-well format as described above for PTX SI R9K E129A high-throughput expression. Samples are prepared and analyzed by SDS-CGE also as described above.
- Hypersecretion strains also known as hyper- vesiculating strains, are described, e.g., in WO2010/008764, "Pseudomonas Fluorescens Strains for Production of Extracellular Recombinant Protein," incorporated herein by reference in its entirety.
- Tetanus Toxin C coding sequence was constructed using P. fluorescens preferred codons to encode the Tetanus Toxin C amino acid sequence.
- SEQ ID NO: 30 shows the amino acid sequence encoded by the expressed synthetic Tetanus Toxin C gene
- SEQ ID NO: 31 shows the DNA sequence of the expressed synthetic optimized Tetanus Toxin C gene.
- fluorescens secretion leader coding sequences used with CRM 197 were constructed.
- the secretion leaders were included to target the protein to the periplasm for recovery in the properly folded and active form.
- FIG. 7 Representative gel-like images showing the results of the reducing SDS-CGE analysis of the soluble fraction from each strain are shown in Figure 7.
- Table 15 shows the mean soluble Tetanus Toxin C yield and standard deviation of 3 replicates for each of the Tetanus Toxin C-expression strains constructed. Tetanus Toxin C fragment appeared to be expressed well in most strains tested, with highest yields ranging up to 600mg/L in the hslUV prcl degPl degP2 aprA deletion/ DegP2 S219A overexpression expression host.
- Strains PS538-529, PS538-538, PS538-544, PS538-546, PS538-547, PS538-548, PS538-558, PS538-565 and PS538-568 were selected for further evaluation.
- Tetanus Toxin C protein was produced in Pseudomonas fluorescens Pfenex Expression TechnologyTM strains PS538-529, PS538-538, PS538-544, PS538-546, PS538- 547, PS538-548, PS538-558, PS538-565 and PS538-568.
- the selected strains were grown in 2 liter fermentors containing a mineral salts medium as described above for CRM197.
- the TcdB coding sequence was constructed using P. fluorescens preferred codons to encode the TcdB amino acid sequence.
- SEQ ID NO: 32 shows the amino acid sequence encoded by the expressed synthetic TcdB gene and SEQ ID NO: 33 shows the DNA sequence of the expressed synthetic optimized TcdB gene.
- Plasmids carrying the optimized TcdB sequence were tested in the P. fluorescens hosts having genotypes listed in Table 17. Host cells were electroporated with the cytoplasmic expression plasmid p538-211 , and grown and induced in 96-well format as described above for the CRM197 high throughput expression. Samples were prepared and analyzed by SDS-CGE as described above for the CRM197 high throughput expression samples.
- PS538-674 were selected for further evaluation.
- Recombinant C. difficile toxin B protein was produced in Pseudomonas fluorescens Pfenex Expression TechnologyTM strain PS538-654, PS538-659, PS538-669, PS538-671, and PS538-674.
- the selected strains were grown in 2 liter fermentors, induced with IPTG, and samples prepared for analysis, as described above for CTB large-scale expression.
- the P. aeruginosa Exotoxin A mutant rEPA coding sequence was constructed using P. fluorescens preferred codons to encode the rEPA amino acid sequence.
- Figure 13 shows the amino acid and DNA sequences of the expressed synthetic rEPA gene.
- Host cells were electroporated with the indicated plasmids, and grown and induced in 96- well format as described above for the CRM 197 high throughput expression. Samples were prepared and analyzed by SDS-CGE as described above for the CRM197 high throughput expression samples. The highest yields ranged from 1.6 to 2.2g/L of soluble Exotoxin A protein. Table 21 shows the soluble rEPA yield for each of the expression strains selected for further testing.
- PS538-1643 7 p538-243 Ibp-s31a NQ
- PS538-1644 7 p538-244 TolB NQ
- Example 13 Large-scale Expression of a Recombinant Pseudomonas aeruginosa Exotoxin A Protein
- Cultures were grown in 2 liter fermentors containing a mineral salts medium as described herein and also by, e.g., Riesenberg, D., et al., 1991, and maintained at 32 °C and pH 6.5 through the addition of ammonia. Dissolved oxygen was maintained in excess through increases in agitation and flow of sparged air and oxygen into the fermentor. Glycerol is delivered to the culture throughout the fermentation to maintain excess levels. These conditions were maintained until a target culture cell density (optical density at 575nm (A575)) for induction is reached, at which time IPTG was added to initiate rEPAproduction. Cell density at induction can be varied from A575 of 40 to 200 absorbance units (AU).
- AU absorbance units
- IPTG concentrations can be varied in the range from 0.02 to 0.4 mM. pH from 6 to 7.5 and temperature 20 to 35 °C. After 16-24 hours, the culture from each bioreactor was harvested by centrifugation and the cell pellet frozen at -80 °C. Samples were analyzed by SDS-CGE for product formation.
- Example 14 High Throughput Expression of a Recombinant Wild- Type Diphtheria Toxin Protein
- a Diphtheria Toxin coding sequence is constructed using P. fluorescens preferred codons to encode the wild-type Diphtheria Toxin amino acid sequence.
- SEQ ID NO: 36 shows the amino acid sequence of the expressed synthetic Diphtheria Toxin gene and SEQ ID NO: 37 shows the DNA sequence of the expressed synthetic optimized Diphtheria Toxin gene.
- Plasmids carrying the optimized sequences encoding Diphtheria Toxin, fused to the ten P. fluorescens secretion leader coding sequences used with CRM 197 (shown in Table 8) are constructed.
- the secretion leader coding sequences are included to target the protein to the periplasm for recovery in the properly folded and active form.
- Example 15 Large-scale Expression of a Recombinant Wild- Type Diphtheria Toxin Protein
- Recombinant Wild-Type Diphtheria Toxin protein is produced in selected Pseudomonas fluorescens Pfenex Expression TechnologyTM strains.
- the selected strains are grown in 2 liter fermentors, induced with IPTG, and samples prepared for analysis, as described above for CRM197 large-scale expression. The samples are analyzed by SDS-CGE.
- the CTX coding sequence is constructed using P. fluorescens preferred codons to encode the CTX amino acid sequence.
- the coding sequence is based on the amino acid and DNA sequences of the CTX gene shown in Figure 14.
- Plasmids carrying the optimized CTX sequence, fused to the ten P. fluorescens secretion leader coding sequences used with CRM197 are constructed.
- the secretion leaders are included to target the protein to the periplasm for recovery in the properly folded and active form.
- Recombinant Cholera Holotoxin protein is produced in selected Pseudomonas fluorescens Pfenex Expression TechnologyTM strains.
- the selected strains are grown in 2 liter fermentors, induced with IPTG, and samples prepared for analysis, as described above for CRM197 large-scale expression.
- the samples are analyzed by SDS-CGE.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Microbiology (AREA)
- Medicinal Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Gastroenterology & Hepatology (AREA)
- Physics & Mathematics (AREA)
- Plant Pathology (AREA)
- Immunology (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Urology & Nephrology (AREA)
- Hematology (AREA)
- Analytical Chemistry (AREA)
- Food Science & Technology (AREA)
- Pathology (AREA)
- General Physics & Mathematics (AREA)
- Cell Biology (AREA)
- Peptides Or Proteins (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Abstract
Description
Claims
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NZ602958A NZ602958A (en) | 2010-03-30 | 2011-03-28 | High level expression of recombinant toxin proteins |
BR112012024898A BR112012024898A2 (en) | 2010-03-30 | 2011-03-28 | high level expression of recombinant toxin proteins |
KR1020127027780A KR20130072201A (en) | 2010-03-30 | 2011-03-28 | High level expression of recombinant toxin proteins |
AU2011238711A AU2011238711B2 (en) | 2010-03-30 | 2011-03-28 | High level expression of recombinant toxin proteins |
CA2793978A CA2793978C (en) | 2010-03-30 | 2011-03-28 | High level expression of recombinant toxin proteins |
CN201180018149.7A CN102869778B (en) | 2010-03-30 | 2011-03-28 | High level expression of recombinant toxin proteins |
MX2012011103A MX343356B (en) | 2010-03-30 | 2011-03-28 | High level expression of recombinant toxin proteins. |
EP11766437.5A EP2553102B1 (en) | 2010-03-30 | 2011-03-28 | High level expression of recombinant toxin proteins |
JP2013502705A JP5839411B2 (en) | 2010-03-30 | 2011-03-28 | High level expression of recombinant toxin protein |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US31915210P | 2010-03-30 | 2010-03-30 | |
US61/319,152 | 2010-03-30 | ||
USPCT/US2010/030573 | 2010-04-09 | ||
PCT/US2010/030573 WO2011123139A1 (en) | 2010-03-30 | 2010-04-09 | High level expression of recombinant crm197 |
US32523510P | 2010-04-16 | 2010-04-16 | |
US61/325,235 | 2010-04-16 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2011126811A2 true WO2011126811A2 (en) | 2011-10-13 |
WO2011126811A3 WO2011126811A3 (en) | 2012-03-08 |
Family
ID=44763483
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2011/030227 WO2011126811A2 (en) | 2010-03-30 | 2011-03-28 | High level expression of recombinant toxin proteins |
Country Status (11)
Country | Link |
---|---|
US (3) | US8530171B2 (en) |
EP (1) | EP2553102B1 (en) |
JP (1) | JP5839411B2 (en) |
KR (1) | KR20130072201A (en) |
CN (1) | CN102869778B (en) |
AU (1) | AU2011238711B2 (en) |
BR (1) | BR112012024898A2 (en) |
CA (1) | CA2793978C (en) |
MX (1) | MX343356B (en) |
NZ (1) | NZ602958A (en) |
WO (1) | WO2011126811A2 (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015117093A1 (en) | 2014-01-31 | 2015-08-06 | Fina Biosolutions, Llc | Expression and purification of crm197 and related proteins |
US20150291940A1 (en) * | 2012-10-21 | 2015-10-15 | Pfizer Inc. | Compositions and methods relating to a mutant clostridium difficile toxin |
US9321834B2 (en) | 2013-12-05 | 2016-04-26 | Leidos, Inc. | Anti-malarial compositions |
US9694063B2 (en) | 2011-12-08 | 2017-07-04 | Glaxosmithkline Biologicals Sa | Clostridium difficile toxin-based vaccine |
WO2019083795A1 (en) | 2017-10-27 | 2019-05-02 | Pfenex Inc. | Bacterial leader sequences for periplasmic protein expression |
US10774117B2 (en) | 2011-04-22 | 2020-09-15 | Wyeth Llc | Compositions relating to a mutant clostridium difficile toxin and methods thereof |
US11060123B2 (en) | 2014-01-31 | 2021-07-13 | Fina Biosolutions, Llc | Production of soluble recombinant protein without n-terminal methionine |
US11377661B2 (en) | 2017-10-27 | 2022-07-05 | Pfenex Inc. | Method for production of recombinant Erwinia asparaginase |
WO2022180265A2 (en) | 2021-02-26 | 2022-09-01 | Xpress Biologics | Method for producing a periplasmic form of the protein crm197 |
US20220378894A1 (en) * | 2019-09-20 | 2022-12-01 | Griffith University | Protein particles comprising a diphtheria toxin cross reacting material (crm) amino acid sequence and uses thereof |
EP3480209B1 (en) | 2009-10-08 | 2023-11-29 | GlaxoSmithKline Biologicals S.A. | Expression system |
US12104161B2 (en) | 2014-01-31 | 2024-10-01 | Fina Biosolutions Llc | Production of soluble recombinant proteins without N-terminal methionine in E-coli |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7527797B1 (en) * | 2000-09-01 | 2009-05-05 | The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services | Vibrio cholerae 0139 conjugate vaccines |
NZ602958A (en) | 2010-03-30 | 2014-07-25 | Pfenex Inc | High level expression of recombinant toxin proteins |
US9169304B2 (en) | 2012-05-01 | 2015-10-27 | Pfenex Inc. | Process for purifying recombinant Plasmodium falciparum circumsporozoite protein |
US10722569B2 (en) * | 2012-07-05 | 2020-07-28 | Children's Medical Center Corporation | Bacterial biofilm matrix as a platform for protein delivery |
CN104140972B (en) * | 2013-05-07 | 2018-01-23 | 上海惠盾生物技术有限公司 | The preparation method of diphtheria toxin muton CRM 197 |
US10597664B2 (en) * | 2014-01-31 | 2020-03-24 | Fina Biosolutions, Llc | Expression and purification of CRM proteins and related proteins, and protein domains |
AU2015348922B2 (en) | 2014-11-20 | 2020-01-23 | Biological E Limited | Codon optimized polynucleotide for high level expression of CRM197 |
US11371011B2 (en) | 2016-04-06 | 2022-06-28 | Plant Health Care, Inc. | Beneficial microbes for delivery of effector peptides or proteins and use thereof |
WO2017219004A2 (en) | 2016-06-17 | 2017-12-21 | Children's Medical Center Corporation | Biofilm matrix-boosted vaccine |
RU2636346C1 (en) * | 2016-07-01 | 2017-11-22 | Федеральное бюджетное учреждение науки Государственный научный центр прикладной микробиологии и биотехнологии (ФБУН ГНЦ ПМБ) | Method for obtaining of recombinant exoprotein of a pseudomonas aeruginosa |
KR101908590B1 (en) | 2017-02-01 | 2018-10-16 | (주)포바이오코리아 | Expression and purification method of soluble crm197 proteins |
EP3444269A1 (en) | 2017-08-17 | 2019-02-20 | National Research Council of Canada | Systems and methods for the production of diphtheria toxin polypeptides |
SG11202003614WA (en) | 2017-10-27 | 2020-05-28 | Pfenex Inc | Method for production of recombinant e. coli asparaginase |
CN112513066A (en) * | 2018-01-19 | 2021-03-16 | 台湾浩鼎生技股份有限公司 | CRM197 protein expression |
US10829731B2 (en) * | 2018-01-25 | 2020-11-10 | Alliance For Sustainable Energy, Llc | Biocatalysts for conversion of thermochemical waste streams |
KR102475419B1 (en) * | 2018-07-16 | 2022-12-07 | 주식회사 유바이오로직스 | Corynebacterium expressing high level of crm197 |
AU2019397511A1 (en) | 2018-12-13 | 2021-07-22 | Huyabio International, Llc | Sulcardine administration for treatment of acute atrial fibrillation |
BR112022006851A2 (en) * | 2019-10-14 | 2022-07-05 | Syngenta Crop Protection Ag | INSECTICIDE PROTEINS |
WO2022211829A1 (en) | 2021-03-30 | 2022-10-06 | Jazz Pharmaceuticals Ireland Ltd. | Dosing of recombinant l-asparaginase |
CN113201473B (en) * | 2021-04-22 | 2022-06-07 | 广东省科学院微生物研究所(广东省微生物分析检测中心) | Application of citronellol in preparation of preparation for promoting pseudomonas aeruginosa virulence gene toxA expression |
WO2024211833A2 (en) | 2023-04-05 | 2024-10-10 | Primrose Bio, Inc. | Methods and compositions for nucleic acid synthesis |
Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4551433A (en) | 1981-05-18 | 1985-11-05 | Genentech, Inc. | Microbial hybrid promoters |
EP0207459A2 (en) | 1985-07-05 | 1987-01-07 | F. Hoffmann-La Roche Ag | New gram-positive expression control sequences |
US4695455A (en) | 1985-01-22 | 1987-09-22 | Mycogen Corporation | Cellular encapsulation of pesticides produced by expression of heterologous genes |
US4755465A (en) | 1983-04-25 | 1988-07-05 | Genentech, Inc. | Secretion of correctly processed human growth hormone in E. coli and Pseudomonas |
US4861595A (en) | 1985-06-28 | 1989-08-29 | Mycogen Corporation | Cellular encapsulation of biologicals for animal and human use |
US5055294A (en) | 1988-03-03 | 1991-10-08 | Mycogen Corporation | Chimeric bacillus thuringiensis crystal protein gene comprising hd-73 and berliner 1715 toxin genes, transformed and expressed in pseudomonas fluorescens |
US5128130A (en) | 1988-01-22 | 1992-07-07 | Mycogen Corporation | Hybrid Bacillus thuringiensis gene, plasmid and transformed Pseudomonas fluorescens |
US5169760A (en) | 1989-07-27 | 1992-12-08 | Mycogen Corporation | Method, vectors, and host cells for the control of expression of heterologous genes from lac operated promoters |
US5281532A (en) | 1983-07-27 | 1994-01-25 | Mycogen Corporation | Pseudomas hosts transformed with bacillus endotoxin genes |
US5614382A (en) | 1993-03-05 | 1997-03-25 | American Cyanamid Company | Plasmid for production of CRM protein and diphtheria toxin |
WO2005069913A2 (en) | 2004-01-16 | 2005-08-04 | Dow Global Technologies Inc. | Expression of mammalian proteins in pseudomonas fluorescens |
US20060008877A1 (en) | 2003-11-21 | 2006-01-12 | Dow Global Technologies Inc. | Expression systems with sec-system secretion |
US20060040352A1 (en) | 2002-10-08 | 2006-02-23 | Retallack Diane M | Expression of mammalian proteins in Pseudomonas fluorescens |
US20060110747A1 (en) | 2004-07-26 | 2006-05-25 | Dow Global Technologies Inc. | Process for improved protein expression by strain engineering |
US20070292918A1 (en) | 2006-05-30 | 2007-12-20 | Stelman Steven J | Codon optimization method |
WO2008094986A2 (en) | 2007-01-31 | 2008-08-07 | Dow Global Technologies, Inc. | Bacterial leader sequences for increased expression |
US20080269070A1 (en) | 2007-04-27 | 2008-10-30 | Dow Global Technologies, Inc. | Method for rapidly screening microbial hosts to identify certain strains with improved yield and/or quality in the expression of heterologous proteins |
US20090325230A1 (en) | 2003-11-19 | 2009-12-31 | Dow Global Technologies Inc. | Protein expression systems |
Family Cites Families (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH660375A5 (en) | 1983-02-08 | 1987-04-15 | Sclavo Spa | PROCEDURE FOR THE PRODUCTION OF PROPHINES RELATED TO DIPHTERIC TOXIN. |
US4830962A (en) * | 1984-02-09 | 1989-05-16 | Cetus Corporation | Recombinant diphtheria toxin fragments |
US4709017A (en) | 1985-06-07 | 1987-11-24 | President And Fellows Of Harvard College | Modified toxic vaccines |
CA1340373C (en) | 1986-01-28 | 1999-02-02 | Rino Rappuoli | Cloning and sequencing of the dna fragment which codes for the five subunits of the pertussis toxin, a hybrid plasmid containing the dna fragment and micro-organisms transformed by the hybrid plasmid and capable of expressing all or some of the subunits of the pertussis toxin |
US4892827A (en) | 1986-09-24 | 1990-01-09 | The United States Of America As Represented By The Department Of Health And Human Services | Recombinant pseudomonas exotoxins: construction of an active immunotoxin with low side effects |
KR0168039B1 (en) | 1987-09-04 | 1999-01-15 | 로버트 디. 웨스트 | Recombinant dna derived bordetella toxin subunit analogs |
US5792458A (en) | 1987-10-05 | 1998-08-11 | The United States Of America As Represented By The Department Of Health And Human Services | Mutant diphtheria toxin conjugates |
GB8727489D0 (en) | 1987-11-24 | 1987-12-23 | Connaught Lab | Detoxification of pertussis toxin |
US6043057A (en) | 1988-09-16 | 2000-03-28 | Vitec Aktiebolag | Recombinant systems for expression of the cholera B-sub-unit with the aid of foreign promoters and/or leader peptides |
WO1990009444A1 (en) * | 1989-02-10 | 1990-08-23 | Genesit Oy | A method for producing pertussis toxin subunits |
US7232671B2 (en) | 1989-02-15 | 2007-06-19 | The United States Of America As Represented By The Secretary, Department Of Health And Human Services | Pertussis toxin gene: cloning and expression of protective antigen |
ES2078258T3 (en) | 1989-04-28 | 1995-12-16 | Sclavo Spa | PERTUSSIC TOXIN MUTANTS, BORDETELLA STRAINS ABLE TO PRODUCE SUCH MUTANTS AND THEIR USE IN THE DEVELOPMENT OF ANTIPERTUSSIC VACCINES. |
GB8914122D0 (en) | 1989-06-20 | 1989-08-09 | Wellcome Found | Polypeptide expression |
US5834246A (en) | 1989-09-18 | 1998-11-10 | Vitec Aktiebolag | Recombinant systems for expression of cholera B-subunit with the aid of foreign promoters and/or leader peptides |
DE69002817T2 (en) | 1989-11-28 | 1993-12-09 | Wellcome Found | Vaccine. |
US5935580A (en) | 1992-04-21 | 1999-08-10 | Institut Pasteur | Recombinant mutants for inducing specific immune responses |
DK0725653T3 (en) | 1993-10-05 | 2004-10-11 | Celltech Pharmaceuticals Ltd | vaccine preparations |
WO1996010089A1 (en) | 1994-09-29 | 1996-04-04 | Ajinomoto Co., Inc. | Modification of peptide and protein |
US5932714A (en) | 1995-02-23 | 1999-08-03 | Connaught Laboratories Limited | Expression of gene products from genetically manipulated strains of Bordetella |
US5919463A (en) | 1995-07-07 | 1999-07-06 | Oravax, Inc. | Clostridium difficle toxins as mucosal adjuvants |
NZ312502A (en) | 1995-07-07 | 1999-03-29 | Oravax Inc | Clostridium difficile toxins as mucosal adjuvants |
GB9904582D0 (en) | 1999-02-26 | 1999-04-21 | Nycomed Imaging As | Process |
US6733760B1 (en) | 1999-04-09 | 2004-05-11 | Techlab, Inc. | Recombinant toxin A/toxin B vaccine against Clostridium difficile |
AU2002213681A1 (en) | 2000-11-09 | 2002-05-21 | The University Of Queensland | Bacterial expression systems |
WO2004041857A2 (en) | 2002-06-17 | 2004-05-21 | Ballard Jimmy D | Mutant of clostridium difficile toxin b and methods of use |
AU2003268484A1 (en) | 2002-09-06 | 2004-03-29 | The General Hospital Corporation | Delivery of therapeutics to the brain and spinal cord |
JP4764820B2 (en) | 2003-06-23 | 2011-09-07 | バクスター・インターナショナル・インコーポレイテッド | Vaccine carrier protein |
KR20060127857A (en) | 2003-10-29 | 2006-12-13 | 알투스 파마슈티컬스 인코포레이티드 | Non-pancreatic proteases for controlling plasma cholecystokinin(cck) concentration and for treating pain |
KR20060133994A (en) | 2003-12-12 | 2006-12-27 | 사노피 파스퇴르 리미티드 | Production of diphtheria toxin |
DE102005002978B4 (en) * | 2005-01-21 | 2013-04-25 | Merz Pharma Gmbh & Co. Kgaa | Recombinant expression of proteins in a disulfide-bonded, two-chain form |
CN101500581B (en) | 2006-06-08 | 2013-10-30 | 科内尔研究基金会 | Codon-optimized DNA molecules encoding receptor binding domains of clostridium difficile toxins A and B, and methods of use thereof |
US9580719B2 (en) | 2007-04-27 | 2017-02-28 | Pfenex, Inc. | Method for rapidly screening microbial hosts to identify certain strains with improved yield and/or quality in the expression of heterologous proteins |
WO2010008764A1 (en) * | 2008-06-23 | 2010-01-21 | Dow Global Technologies Inc. | Pseudomonas fluorescens strains for production of extracellular recombinant protein |
GB0917647D0 (en) * | 2009-10-08 | 2009-11-25 | Glaxosmithkline Biolog Sa | Expression system |
NZ602958A (en) | 2010-03-30 | 2014-07-25 | Pfenex Inc | High level expression of recombinant toxin proteins |
-
2011
- 2011-03-28 NZ NZ602958A patent/NZ602958A/en unknown
- 2011-03-28 BR BR112012024898A patent/BR112012024898A2/en not_active Application Discontinuation
- 2011-03-28 MX MX2012011103A patent/MX343356B/en active IP Right Grant
- 2011-03-28 EP EP11766437.5A patent/EP2553102B1/en active Active
- 2011-03-28 KR KR1020127027780A patent/KR20130072201A/en not_active Application Discontinuation
- 2011-03-28 WO PCT/US2011/030227 patent/WO2011126811A2/en active Application Filing
- 2011-03-28 US US13/073,955 patent/US8530171B2/en active Active
- 2011-03-28 AU AU2011238711A patent/AU2011238711B2/en active Active
- 2011-03-28 JP JP2013502705A patent/JP5839411B2/en active Active
- 2011-03-28 CA CA2793978A patent/CA2793978C/en active Active
- 2011-03-28 CN CN201180018149.7A patent/CN102869778B/en active Active
-
2013
- 2013-07-26 US US13/952,484 patent/US8906636B2/en active Active
-
2014
- 2014-11-03 US US14/531,833 patent/US20150361405A1/en not_active Abandoned
Patent Citations (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4551433A (en) | 1981-05-18 | 1985-11-05 | Genentech, Inc. | Microbial hybrid promoters |
US4755465A (en) | 1983-04-25 | 1988-07-05 | Genentech, Inc. | Secretion of correctly processed human growth hormone in E. coli and Pseudomonas |
US5281532A (en) | 1983-07-27 | 1994-01-25 | Mycogen Corporation | Pseudomas hosts transformed with bacillus endotoxin genes |
US4695455A (en) | 1985-01-22 | 1987-09-22 | Mycogen Corporation | Cellular encapsulation of pesticides produced by expression of heterologous genes |
US4861595A (en) | 1985-06-28 | 1989-08-29 | Mycogen Corporation | Cellular encapsulation of biologicals for animal and human use |
EP0207459A2 (en) | 1985-07-05 | 1987-01-07 | F. Hoffmann-La Roche Ag | New gram-positive expression control sequences |
US5128130A (en) | 1988-01-22 | 1992-07-07 | Mycogen Corporation | Hybrid Bacillus thuringiensis gene, plasmid and transformed Pseudomonas fluorescens |
US5055294A (en) | 1988-03-03 | 1991-10-08 | Mycogen Corporation | Chimeric bacillus thuringiensis crystal protein gene comprising hd-73 and berliner 1715 toxin genes, transformed and expressed in pseudomonas fluorescens |
US5169760A (en) | 1989-07-27 | 1992-12-08 | Mycogen Corporation | Method, vectors, and host cells for the control of expression of heterologous genes from lac operated promoters |
US5614382A (en) | 1993-03-05 | 1997-03-25 | American Cyanamid Company | Plasmid for production of CRM protein and diphtheria toxin |
US20060040352A1 (en) | 2002-10-08 | 2006-02-23 | Retallack Diane M | Expression of mammalian proteins in Pseudomonas fluorescens |
US20090325230A1 (en) | 2003-11-19 | 2009-12-31 | Dow Global Technologies Inc. | Protein expression systems |
US20060008877A1 (en) | 2003-11-21 | 2006-01-12 | Dow Global Technologies Inc. | Expression systems with sec-system secretion |
WO2005069913A2 (en) | 2004-01-16 | 2005-08-04 | Dow Global Technologies Inc. | Expression of mammalian proteins in pseudomonas fluorescens |
US20060110747A1 (en) | 2004-07-26 | 2006-05-25 | Dow Global Technologies Inc. | Process for improved protein expression by strain engineering |
US20070292918A1 (en) | 2006-05-30 | 2007-12-20 | Stelman Steven J | Codon optimization method |
WO2008094986A2 (en) | 2007-01-31 | 2008-08-07 | Dow Global Technologies, Inc. | Bacterial leader sequences for increased expression |
US20080193974A1 (en) | 2007-01-31 | 2008-08-14 | Dow Global Technologies, Inc. | Bacterial leader sequences for increased expression |
US20100048864A1 (en) | 2007-01-31 | 2010-02-25 | Dow Global Technologies Inc. | Bacterial leader sequences for increased expression |
US20080269070A1 (en) | 2007-04-27 | 2008-10-30 | Dow Global Technologies, Inc. | Method for rapidly screening microbial hosts to identify certain strains with improved yield and/or quality in the expression of heterologous proteins |
Non-Patent Citations (27)
Title |
---|
"Auxotrophic markers pyrF and proC can replace antibiotic markers on protein production plasmids in high-cell-density Pseudomonasfluorescens fermentation", BIOTECHNOL. PROGRESS, vol. 21, no. 2, pages 343 - 8 |
B D DAVIS; E S MINGIOLI, J. BACT., vol. 60, 1950, pages 17 - 28 |
B. E. SUZEK ET AL., BIOINFORMATICS, vol. 17, no. 12, December 2001 (2001-12-01), pages 1123 - 30 |
BARTH ET AL.: "Binary Bacterial Toxins: Biochemistry, Biology, and Application of Common Clostridium and Bacillus Proteins", MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, vol. 68, no. 3, 2004, pages 373 - 402, XP055116878, DOI: doi:10.1128/MMBR.68.3.373-402.2004 |
BISHAI ET AL., J BACTERIOL., vol. 169, no. 11, 1987, pages 5140 - 5151 |
BISHAI ET AL.: "High-Level Expression of a Proteolytically Sensitive Diphtheria toxin Fragment in Escherichia coli", J. BACT., vol. 169, no. 11, 1987, pages 5140 - 51 |
BUCHANAN AND GIBBONS: "Bergey's Manual of Determinative Bacteriology", 1974, article "Gram(-) Proteobacteria Subgroup 1'' or ''Gram-Negative Aerobic Rods and Cocci", pages: 217 - 289 |
D. FRISHMAN ET AL., GENE, vol. 234, no. 2, 8 July 1999 (1999-07-08), pages 257 - 65 |
GIANNINI ET AL.: "The Amino-Acid Sequence of Two Non-Toxic Mutants of Diphtheria toxin: CRM45 and CRM197", NUCLEIC ACIDS RESEARCH, vol. 12, no. 10, 1984, pages 4063 - 9 |
GREENFIELD ET AL.: "Nucleotide Sequence of the Structural Gene for Diphtheria toxin Carried by Corynebacteriophage 18", PROC NAT ACAD SCI, vol. 80, 1993, pages 6953 - 7 |
H. SCHWEIZER, CURRENT OPINION IN BIOTECHNOLOGY, vol. 12, 2001, pages 439 - 445 |
J. SANCHEZ-ROMERO; V. DE LORENZO: "Manual of Industrial Microbiology and Biotechnology", 1999, ASM PRESS, pages: 460 - 74 |
KULICH ET AL.: "Expression of Recombinant Exoenzyme S of Pseudomonas aeruginosa", INFECTION AND IMMUNITY, vol. 63, no. 1, 1995, pages 1 - 8 |
MAUNSELL ET AL.: "Complex regulation of AprA metalloprotease in Pseudomonasfluorescens M 114: evidence for the involvement of iron, the ECF sigma factor, PbrA and pseudobactin M114 siderophore", MICROBIOLOGY, vol. 152, 2006, pages 29 - 42 |
MUELLER-DIECKMANN ET AL.: "Structure of mouse ADP-ribosylhydrolase 3 (mARH3", ACTA CRYST, vol. F64, pages 156 - 162 |
O. IKEHATA ET AL., EUR. J. BIOCHEM., vol. 181, no. 3, 1989, pages 563 - 70 |
POPOFF ET AL.: "Actin-specific ADP-ribosyltransferase produced by a Clostridium difficile strain", INFECTION AND IMMUNITY, vol. 56, no. 9, 1988, pages 2299 - 2306 |
R. E. BUCHANAN AND N.E. GIBBONS: "Bergey's Manual of Determinative Bacteriology", 1974, THE WILLIAMS & WILKINS CO., article "Gram-Negative Aerobic Rods and Cocci", pages: 217 - 289 |
R. SLATER; R. WILLIAMS: "Molecular Biology and Biotechnology", 2000, THE ROYAL SOCIETY OF CHEMISTRY, pages: 125 - 54 |
RIESENBERG, D ET AL.: "High cell density cultivation of Escherichia coli at controlled specific growth rate", J. BIOTECHNOL., vol. 20, no. 1, 1991, pages 17 - 27, XP023939064, DOI: doi:10.1016/0168-1656(91)90032-Q |
SAKURAI ET AL.: "Clostridium perfringens Iota-Toxin: Structure and Function", TOXINS, vol. 1, 2009, pages 208 - 228 |
SAMBROOK ET AL.: "Molecular Cloning, a Laboratory Manual", 1989, COLD SPRING HARBOR LABORATORY PRESS |
SCHIRMER ET AL.: "The ADP-ribosylating Mosquitocidal Toxin from Bacillus sphaericus", THE JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 277, no. 14, 2002, pages 11941 - 11948 |
See also references of EP2553102A4 |
SEKURA ET AL., J. BIOLOGICAL CHEMISTRY, vol. 258, 1983, pages 14647 |
TSUGE ET AL.: "Structural basis of actin recognition and arginine ADP-ribosylation by Clostridium perfringens -toxin", PNAS, vol. 105, no. 21, 2008, pages 7399 - 7404 |
ZHOU ET AL., JOURNAL OF TNGJI MEDICAL UNIVERSITY, vol. 19, no. 4, 1999, pages 253 - 256 |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3480209B1 (en) | 2009-10-08 | 2023-11-29 | GlaxoSmithKline Biologicals S.A. | Expression system |
US11535652B2 (en) | 2011-04-22 | 2022-12-27 | Wyeth Llc | Compositions relating to a mutant clostridium difficile toxin and methods thereof |
US10774117B2 (en) | 2011-04-22 | 2020-09-15 | Wyeth Llc | Compositions relating to a mutant clostridium difficile toxin and methods thereof |
US9694063B2 (en) | 2011-12-08 | 2017-07-04 | Glaxosmithkline Biologicals Sa | Clostridium difficile toxin-based vaccine |
US10787652B2 (en) * | 2012-10-21 | 2020-09-29 | Pfizer Inc. | Compositions and methods relating to a mutant clostridium difficile toxin |
US20150291940A1 (en) * | 2012-10-21 | 2015-10-15 | Pfizer Inc. | Compositions and methods relating to a mutant clostridium difficile toxin |
US11952597B2 (en) | 2012-10-21 | 2024-04-09 | Pfizer Inc. | Compositions and methods relating to a mutant Clostridium difficile toxin |
US11208633B2 (en) | 2012-10-21 | 2021-12-28 | Pfizer Inc. | Compositions and methods relating to a mutant Clostridium difficile toxin |
US10982198B2 (en) | 2012-10-21 | 2021-04-20 | Pfizer Inc. | Compositions and methods relating to a mutant Clostridium difficile toxin |
US10160802B2 (en) | 2013-12-05 | 2018-12-25 | Leidos, Inc. | Anti-malarial compositions |
US10501534B2 (en) | 2013-12-05 | 2019-12-10 | Leidos, Inc. | Anti-malarial compositions |
US9321834B2 (en) | 2013-12-05 | 2016-04-26 | Leidos, Inc. | Anti-malarial compositions |
WO2015117093A1 (en) | 2014-01-31 | 2015-08-06 | Fina Biosolutions, Llc | Expression and purification of crm197 and related proteins |
US11060123B2 (en) | 2014-01-31 | 2021-07-13 | Fina Biosolutions, Llc | Production of soluble recombinant protein without n-terminal methionine |
US12104161B2 (en) | 2014-01-31 | 2024-10-01 | Fina Biosolutions Llc | Production of soluble recombinant proteins without N-terminal methionine in E-coli |
US10093704B2 (en) | 2014-01-31 | 2018-10-09 | Fina Biosolutions, Llc | Expression and purification of CRM197 and related proteins |
WO2019083795A1 (en) | 2017-10-27 | 2019-05-02 | Pfenex Inc. | Bacterial leader sequences for periplasmic protein expression |
US11377661B2 (en) | 2017-10-27 | 2022-07-05 | Pfenex Inc. | Method for production of recombinant Erwinia asparaginase |
EP3700915A4 (en) * | 2017-10-27 | 2021-07-28 | Pfenex Inc. | Bacterial leader sequences for periplasmic protein expression |
US20220378894A1 (en) * | 2019-09-20 | 2022-12-01 | Griffith University | Protein particles comprising a diphtheria toxin cross reacting material (crm) amino acid sequence and uses thereof |
WO2022180265A3 (en) * | 2021-02-26 | 2022-10-20 | Xpress Biologics | Method for producing a periplasmic form of the protein crm197 |
BE1029145B1 (en) * | 2021-02-26 | 2022-09-27 | Curavac Europe | METHOD FOR PRODUCING A PERIPLASMIC FORM OF THE PROTEIN CRM197 |
WO2022180265A2 (en) | 2021-02-26 | 2022-09-01 | Xpress Biologics | Method for producing a periplasmic form of the protein crm197 |
Also Published As
Publication number | Publication date |
---|---|
EP2553102B1 (en) | 2015-12-09 |
MX343356B (en) | 2016-11-03 |
CN102869778A (en) | 2013-01-09 |
EP2553102A4 (en) | 2013-10-23 |
JP2013529064A (en) | 2013-07-18 |
US8530171B2 (en) | 2013-09-10 |
AU2011238711A1 (en) | 2012-11-08 |
JP5839411B2 (en) | 2016-01-06 |
WO2011126811A3 (en) | 2012-03-08 |
US20140051093A1 (en) | 2014-02-20 |
AU2011238711B2 (en) | 2015-06-18 |
US20150361405A1 (en) | 2015-12-17 |
BR112012024898A2 (en) | 2015-10-06 |
CA2793978A1 (en) | 2011-10-13 |
CN102869778B (en) | 2015-05-20 |
US8906636B2 (en) | 2014-12-09 |
US20110287443A1 (en) | 2011-11-24 |
NZ602958A (en) | 2014-07-25 |
CA2793978C (en) | 2021-08-03 |
MX2012011103A (en) | 2015-05-15 |
EP2553102A2 (en) | 2013-02-06 |
KR20130072201A (en) | 2013-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8906636B2 (en) | High level expression of recombinant toxin proteins | |
AU2010201410B2 (en) | High level expression of recombinant CRM197 | |
AU2018354067B2 (en) | Method for production of recombinant Erwinia asparaginase | |
AU2018354068B2 (en) | Method for production of recombinant E. coli asparaginase | |
US20230100757A1 (en) | Bacterial hosts for recombinant protein expression | |
BRAUN et al. | Genetics, and Membrane Topology |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180018149.7 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11766437 Country of ref document: EP Kind code of ref document: A2 |
|
ENP | Entry into the national phase |
Ref document number: 2793978 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2012/011103 Country of ref document: MX |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013502705 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 8913/DELNP/2012 Country of ref document: IN |
|
ENP | Entry into the national phase |
Ref document number: 20127027780 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011766437 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2011238711 Country of ref document: AU Date of ref document: 20110328 Kind code of ref document: A |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112012024898 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112012024898 Country of ref document: BR Kind code of ref document: A2 Effective date: 20120928 |