WO2011125880A1 - Lubricant composition for an internal combustion engine - Google Patents

Lubricant composition for an internal combustion engine Download PDF

Info

Publication number
WO2011125880A1
WO2011125880A1 PCT/JP2011/058292 JP2011058292W WO2011125880A1 WO 2011125880 A1 WO2011125880 A1 WO 2011125880A1 JP 2011058292 W JP2011058292 W JP 2011058292W WO 2011125880 A1 WO2011125880 A1 WO 2011125880A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
mass
less
internal combustion
lubricating oil
Prior art date
Application number
PCT/JP2011/058292
Other languages
French (fr)
Japanese (ja)
Inventor
一裕 手島
元治 石川
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to KR1020127028724A priority Critical patent/KR20130103651A/en
Priority to US13/639,048 priority patent/US9023191B2/en
Priority to JP2012509595A priority patent/JP6151914B2/en
Priority to EP11765780.9A priority patent/EP2554642A4/en
Publication of WO2011125880A1 publication Critical patent/WO2011125880A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M111/00Lubrication compositions characterised by the base-material being a mixture of two or more compounds covered by more than one of the main groups C10M101/00 - C10M109/00, each of these compounds being essential
    • C10M111/04Lubrication compositions characterised by the base-material being a mixture of two or more compounds covered by more than one of the main groups C10M101/00 - C10M109/00, each of these compounds being essential at least one of them being a macromolecular organic compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M101/00Lubricating compositions characterised by the base-material being a mineral or fatty oil
    • C10M101/02Petroleum fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M103/00Lubricating compositions characterised by the base-material being an inorganic material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M103/00Lubricating compositions characterised by the base-material being an inorganic material
    • C10M103/04Metals; Alloys
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/08Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/08Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen
    • C10M105/16Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen having hydroxy groups bound to a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/08Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen
    • C10M105/20Aldehydes; Ketones
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/08Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen
    • C10M105/22Carboxylic acids or their salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/08Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen
    • C10M105/32Esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/56Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing nitrogen
    • C10M105/68Amides; Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M107/00Lubricating compositions characterised by the base-material being a macromolecular compound
    • C10M107/02Hydrocarbon polymers; Hydrocarbon polymers modified by oxidation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/1006Petroleum or coal fractions, e.g. tars, solvents, bitumen used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/102Aliphatic fractions
    • C10M2203/1025Aliphatic fractions used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/028Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms
    • C10M2205/0285Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/08Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
    • C10M2209/084Acrylate; Methacrylate
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/02Viscosity; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/02Pour-point; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/08Resistance to extreme temperature
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/54Fuel economy
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/74Noack Volatility
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2070/00Specific manufacturing methods for lubricant compositions

Definitions

  • the present invention relates to a lubricating oil composition for an internal combustion engine.
  • coking In an internal combustion engine such as a gasoline engine or a diesel engine, carbon deposition called coking may occur inside the engine during use. When coking occurs, there is a possibility of causing various obstacles due to insufficient cooling inside the engine or obstruction of the flow of the lubricating oil itself. In particular, in an engine equipped with a turbo mechanism, coking that occurs in a turbo bearing portion, a housing, or an oil supply passage is a problem. In order to prevent the occurrence of coking, it is effective to use a low-evaporation lubricating oil.
  • An object of the present invention is to provide a lubricating oil composition for an internal combustion engine that is low in evaporation and also excellent in fuel efficiency.
  • the present invention provides the following lubricating oil composition for an internal combustion engine.
  • (1) (A) a poly ⁇ -olefin having a kinematic viscosity at 100 ° C. of 5.5 mm 2 / s or less, a CCS viscosity at ⁇ 35 ° C. of 3000 mPa ⁇ s or less, and NOACK of 12% by mass or less, and (B) viscosity
  • a lubricating oil composition for an internal combustion engine comprising a mineral oil having an index of 120 or more, wherein the blending amount of the component (A) is 10% by mass or more based on the total amount of the composition.
  • the kinematic viscosity at 100 ° C. of the base oil obtained by blending the component (A) and the component (B) is 4.35 mm 2 / s or less.
  • a lubricating oil composition for an internal combustion engine. (3) The above lubricating oil composition for internal combustion engines, wherein the composition has a NOACK of 13% by mass or less and a CCS viscosity at ⁇ 35 ° C. of 5500 mPa ⁇ s or less. Composition. (4) The above lubricating oil composition for internal combustion engines, wherein the blending amount of the component (B) is 50% by mass or more based on the total amount of the composition.
  • the lubricating oil composition for internal combustion engines wherein the component (A) is polymerized with a metallocene catalyst.
  • the component (A) is a poly ⁇ -olefin having at least one selected from ⁇ -olefins having 10 to 14 carbon atoms as a monomer.
  • a lubricating oil composition for an internal combustion engine (7) The lubricating oil composition for internal combustion engines, wherein the component (A) is a trimer.
  • the lubricating oil composition for an internal combustion engine of the present invention is blended with PAO having a specific property and mineral oil having a specific property, it has low evaporation properties and is also excellent in fuel efficiency. Therefore, the lubricating oil composition for internal combustion engines of the present invention is suitable for gasoline engines and diesel engines.
  • the lubricating oil composition for an internal combustion engine of the present invention has, as component (A), a kinematic viscosity at 100 ° C. of 5.5 mm 2 / s or less, a CCS viscosity at ⁇ 35 ° C. of 3000 mPa ⁇ s or less, and NOACK of 12% by mass or less. And a mineral oil having a viscosity index of 120 or more as a component (B). Details will be described below.
  • the component (A) in the present invention is poly ⁇ -olefin (PAO) which is a polymer (oligomer) of ⁇ -olefin.
  • PAO poly ⁇ -olefin
  • the kinematic viscosity at 100 ° C. of PAO as component (A) needs to be 5.5 mm 2 / s or less.
  • this kinematic viscosity is preferably 3 mm 2 / s or more from the viewpoint of lubricity.
  • the CCS viscosity at ⁇ 35 ° C. needs to be 3000 mPa ⁇ s or less.
  • NOACK is required to be 12% by mass or less from the viewpoint of low evaporation.
  • the number of carbon atoms of the ⁇ -olefin, which is a monomer for obtaining such PAO, is preferably from 6 to 20 from the viewpoint of low temperature properties such as viscosity index, pour point and low temperature viscosity, and evaporation, but from 8 to 16 Is more preferable, and 10 to 14 is particularly preferable.
  • the PAO is preferably an ⁇ -olefin trimer from the viewpoints of low evaporation, coking resistance and low fuel consumption, but in order to obtain the desired properties, the carbon number of the ⁇ -olefin and its blending ratio, The degree of polymerization can be adjusted.
  • a BF 3 catalyst As an ⁇ -olefin polymerization catalyst, a BF 3 catalyst, an AlCl 3 catalyst, a Ziegler type catalyst, a metallocene catalyst, or the like can be used.
  • BF 3 is used for a low viscosity PAO having a kinematic viscosity at 100 ° C. of less than 30 mm 2 / s.
  • AlCl 3 catalysts have been used for low-viscosity PAOs with a catalyst of 30 mm 2 / s or more, but BF 3 catalysts and metallocene catalysts are particularly preferred from the viewpoints of low evaporation, coking resistance, and low fuel consumption.
  • the BF 3 catalyst is used together with a promoter such as water, alcohol, ester, etc. Among them, alcohol, particularly 1-butanol, is preferable from the viewpoint of viscosity index, low temperature physical properties, and yield.
  • the metallocene catalyst examples include a catalyst containing a combination of a metallocene compound and a promoter.
  • a metallocene compound represented by the following general formula (1) is preferable.
  • R is a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms
  • M is a transition metal element of Group 4 of the periodic table
  • X is covalent bond or ionic bond It is a ligand.
  • R is preferably a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms.
  • M include titanium, zirconium, and hafnium. Among these, zirconium is preferable.
  • Specific examples of X include a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms (preferably 1 to 10), an alkoxy group having 1 to 20 carbon atoms (preferably 1 to 10), Amino group, phosphorus-containing hydrocarbon group having 1 to 20 carbon atoms (preferably 1 to 12) (for example, diphenylphosphine group), silicon-containing carbon atom having 1 to 20 carbon atoms (preferably 1 to 12 carbon atoms)
  • a hydrogen group for example, trimethylsilyl group
  • a group for example, trimethyl
  • Examples of the metallocene compound represented by the general formula (1) include bis (cyclopentadienyl) zirconium dichloride, bis (methylcyclopentadienyl) zirconium dichloride, bis (ethylcyclopentadienyl) zirconium dichloride, and bis.
  • methylaluminoxane is preferable.
  • limiting in particular as methylaluminoxane A conventionally well-known methylaluminoxane can be used, for example, the chain
  • p represents the degree of polymerization and is usually from 3 to 50, preferably from 7 to 40.
  • Examples of the method for producing methylaluminoxane include a method in which methylaluminum is brought into contact with a condensing agent such as water, but the means is not particularly limited, and the reaction may be carried out according to a known method.
  • the compounding ratio of the metallocene compound and methylaluminoxane is usually from 15 to 150, preferably from 20 to 120, more preferably from 25 to 100, as the methylaluminoxane / metallocene compound (molar ratio).
  • the blending ratio is 15 or more, catalytic activity is exhibited, and the yield of trimer or more suitable as a base oil for lubricating oil does not decrease due to the formation of ⁇ -olefin dimer.
  • the blending ratio is 150 or less, deashing and removal of the catalyst will not be incomplete.
  • metallocene catalysts other than the above include metallocene catalysts that use a metallocene compound having a crosslinking group.
  • a metallocene compound having two crosslinking groups is preferable, and a metallocene compound having meso symmetry is particularly preferable.
  • the metallocene catalyst using the metallocene compound having meso symmetry include (a) a metallocene compound represented by the following general formula (4) as a catalyst component, and (b) the catalyst (a) as a catalyst component.
  • Examples thereof include a compound (b-1) capable of forming an ionic complex by reacting with a component metallocene compound or a derivative thereof, and a metallocene catalyst containing at least one component (b-2) selected from aluminoxane. .
  • the compound represented by the general formula (4) is a mesosymmetric compound, and in the general formula (4), M represents a metal element from group 3 to group 10 of the periodic table.
  • X represents a ⁇ -binding ligand, and when there are a plurality of X, a plurality of X may be the same or different, Y represents a Lewis base, and when there are a plurality of Y, a plurality of Y are the same or different It may be.
  • A represents a hydrocarbon group having 1 to 20 carbon atoms, a halogen-containing hydrocarbon group having 1 to 20 carbon atoms, a silicon-containing group, a germanium-containing group, a tin-containing group, —O—, —CO—, —S—. , -SO 2 -, - Se - , - NR 1 -, - PR 1 -, - P (O) R 1 -, - BR 1 - and -AlR 1 - shows a bridging group selected from the two a They may be the same or different.
  • R 1 represents a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms or a halogen-containing hydrocarbon group having 1 to 20 carbon atoms.
  • q is an integer from 1 to 5 and represents [(valence of M) -2], and r represents an integer from 0 to 3.
  • E is a group represented by the following general formula (5) and the following general formula (6), and the two Es are the same.
  • the mesosymmetric compound refers to a transition metal compound in which two bridging groups bridge two Es in a bonding mode of (1,1 ′) (2,2 ′).
  • R 2 represents a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, a halogen-containing hydrocarbon group having 1 to 4 carbon atoms, silicon A group selected from the group consisting of a containing group and a heteroatom-containing group is shown. When several R ⁇ 2 > exists, they may mutually be same or different.
  • the bond indicated by the wavy line represents the bond with the bridging group A.
  • the crosslinkable group A in the general formula (4) is preferably a group represented by the following general formula (7).
  • B is a skeleton of a bridging group and represents a carbon atom, a silicon atom, a boron atom, a nitrogen atom, a germanium atom, a phosphorus atom, or an aluminum atom.
  • R 3 represents a hydrogen atom, a carbon atom, an oxygen atom, an aliphatic hydrocarbon group, an aromatic hydrocarbon group, an amine-containing group, or a halogen-containing group.
  • n is 1 or 2.
  • Examples of the metallocene compound represented by the general formula (4) include (1,1′-ethylene) (2,2′-ethylene) -bis (indenyl) zirconium dichloride, (1,1′-methylene) ( 2,2′-methylene) -bis (indenyl) zirconium dichloride, (1,1′-isopropylidene) (2,2′-isopropylidene) -bis (indenyl) zirconium dichloride, (1,1′-ethylene) ( 2,2′-ethylene) -bis (3-methylindenyl) zirconium dichloride, (1,1′-ethylene) (2,2′-ethylene) -bis (4,5-benzoindenyl) zirconium dichloride, ( 1,1′-ethylene) (2,2′-ethylene) -bis (4-isopropylindenyl) zirconium dichloride, (1,1′-ethylene (2,2'-ethylene) -bis (5,6-dimethylindenyl
  • the catalyst component (b-1) of the catalyst component (b) is any compound that can react with the metallocene compound of the catalyst component (a) to form an ionic complex. Although it can be used, what is represented by the following general formula (8) or the following general formula (9) can be preferably used. ([L 1 ⁇ R 4 ] k + ) a ([Z] ⁇ ) b (8) ([L 2 ] k + ) a ([Z] ⁇ ) b (9)
  • L 1 represents a Lewis base
  • L 2 represents M 2 , R 5 R 6 M 3 , R 7 3 C or R 8 M 3
  • [Z] ⁇ represents a non-coordinating anion [Z 1 ] ⁇ or [Z 2 ] ⁇ .
  • [Z 1 ] ⁇ is an anion in which a plurality of groups are bonded to the element, that is, [M 1 G 1 G 2 ... G f ] ⁇ (where M 1 is group 5 to group 15 of the periodic table).
  • G 1 to G f are each a hydrogen atom, a halogen atom, an alkyl group having 1 to 20 carbon atoms, or 2 to C atoms.
  • Two or more of the .G 1 illustrating a hydrocarbon group to G f may optionally form a ring .f is an integer of [(valence of central metal M 1) +1].), [Z 2] - is the reciprocal of the logarithm (pKa) is -10 or less Bronsted acid alone, or a combination of Bronsted acids and Lewis acids conjugate base of the acid dissociation constant or generally conjugate acid is defined as super acid, Indicates salt. In addition, a Lewis base may be coordinated.
  • R 4 represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an alkylaryl group or an arylalkyl group
  • R 5 and R 6 are each a cyclopentadienyl group.
  • R 7 represents an alkyl group having 1 to 20 carbon atoms, an aryl group, an alkylaryl group or an arylalkyl group.
  • R 8 represents a macrocyclic ligand such as tetraphenylporphyrin or phthalocyanine.
  • M 2 includes elements from Group 1 to Group 3 of the Periodic Table, Group 11 to Group 13 and Group 17 of the Periodic Table, and M 3 includes Groups 7 to 12 of the Periodic Table. Indicates elements up to group.
  • L 1 examples include ammonia, methylamine, aniline, dimethylamine, diethylamine, N-methylaniline, diphenylamine, N, N-dimethylaniline, trimethylamine, triethylamine, tri-n-butylamine, methyldiphenylamine, Amines such as pyridine, p-bromo-N, N-dimethylaniline, p-nitro-N, N-dimethylaniline; phosphines such as triethylphosphine, triphenylphosphine, diphenylphosphine; thioethers such as tetrahydrothiophene; Examples include esters such as ethyl acid; nitriles such as acetonitrile and benzonitrile.
  • R 4 include hydrogen, methyl group, ethyl group, benzyl group, and trityl group.
  • R 5 and R 6 include cyclopentadienyl group, methylcyclopentadienyl group, Examples thereof include an ethylcyclopentadienyl group and a pentamethylcyclopentadienyl group.
  • R 7 include phenyl group, p-tolyl group, p-methoxyphenyl group and the like, and specific examples of R 8 include tetraphenylporphyrin, phthalocyanine, allyl, methallyl and the like.
  • M 2 include Li, Na, K, Ag, Cu, Br, I, and the like.
  • M 3 include Mn, Fe, Co, Ni, Zn, and the like.
  • [Z 1 ] ⁇ that is, [M 1 G 1 G 2 ... G f ]
  • specific examples of M 1 include B, Al, Si, P, As, Sb, etc., preferably B and Al.
  • G 1 and G 2 to G f include a dimethylamino group and a diethylamino group as a dialkylamino group; a methoxy group, an ethoxy group, an n-butoxy group, a phenoxy group and the like as an alkoxy group or an aryloxy group.
  • Hydrocarbon groups such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, n-octyl, n-eicosyl, phenyl, p-tolyl, benzyl, 4- t-butylphenyl group, 3,5-dimethylphenyl group, etc .; halogen, fluorine, chlorine, bromine, iodine, etc .; heteroatom-containing hydrocarbon group, p-fluorophenyl group, 3,5-difluorophenyl group, pentachlorophenyl Group, 3,4,5-trifluorophenyl group, pentafluorophenyl group, 3, - bis (trifluoromethyl) phenyl group, bis (trimethylsilyl) such as a methyl group; pentamethyl antimony group as organic metalloid group, trimethylsilyl group, trimethylgermyl group, diphenylarsine
  • non-coordinating anions that is, Bronsted acids having a pKa of ⁇ 10 or less or conjugate bases [Z 2 ] — in combination with Bronsted acids and Lewis acids
  • trifluoromethanesulfonic acid anions CF 3 SO 3 ) ⁇
  • bis (trifluoromethanesulfonyl) methyl anion bis (trifluoromethanesulfonyl) benzyl anion, bis (trifluoromethanesulfonyl) amide
  • perchlorate anion (ClO 4 ) ⁇ trifluoroacetate anion (CF 3 CO 2 ) ⁇
  • Hexafluoroantimony anion SBF 6 ) ⁇
  • fluorosulfonate anion FSO 3 ) ⁇
  • chlorosulfonate anion ClSO 3 ) ⁇
  • fluorosulfonate anion / 5-antimony fluoride FSO 3 / S
  • An ionic compound that reacts with the transition metal compound of the catalyst component (a) to form an ionic complex is tetrakis (pentafluorophenylboric acid) N, N -Dimethylanilinium, triethylammonium tetraphenylborate, tri-n-butylammonium tetraphenylborate, trimethylammonium tetraphenylborate, tetraethylammonium tetraphenylborate, methyl (tri-n-butyl) ammonium tetraphenylborate, benzyltetraphenylborate (Tri-n-butyl) ammonium, dimethyldiphenylammonium tetraphenylborate, triphenyl (methyl) ammonium tetraphenylborate, trimethylanilinium tetraphenylborate, methyl
  • examples of the aluminoxane as the catalyst component (b-2) include a chain aluminoxane represented by the following general formula (10) and a cyclic aluminoxane represented by the following general formula (11).
  • R 9 is a hydrocarbon group having 1 to 20 carbon atoms, preferably 1 to 12 alkyl group, alkenyl group, aryl group, arylalkyl group or the like, or Represents a halogen atom, and w represents an average degree of polymerization, and is usually an integer of 2 to 50, preferably an integer of 2 to 40.
  • Each R 9 may be the same or different.
  • Examples of the method for producing the aluminoxane include a method in which an alkylaluminum is brought into contact with a condensing agent such as water, but the means is not particularly limited and may be reacted according to a known method.
  • a method in which an organoaluminum compound is dissolved in an organic solvent and contacting it with water (2) a method in which an organoaluminum compound is initially added during polymerization, and water is added later, (3) metal There are a method of reacting crystallization water contained in a salt or the like, water adsorbed on an inorganic or organic substance with an organoaluminum compound, and (4) a method of reacting a tetraalkyldialuminoxane with a trialkylaluminum and further reacting with water.
  • the aluminoxane may be insoluble in toluene. These aluminoxanes may be used alone or in combination of two or more.
  • the use ratio of the above-mentioned (a) catalyst component and (b) catalyst component is from 10: 1 to 1: 100 in molar ratio when (b-1) catalyst component is used as (b) catalyst component.
  • the range of 2: 1 to 1:10 is more preferable. If it deviates from the above range, the catalyst cost per unit mass polymer increases, which is not practical.
  • the molar ratio is preferably in the range of 1: 1 to 1: 1000000, and more preferably in the range of 1:10 to 1: 10000. When deviating from this range, the catalyst cost per unit mass polymer becomes high, which is not practical.
  • the (b) catalyst component the (b-1) catalyst component and the (b-2) catalyst component may be used alone or in combination of two or more.
  • an ⁇ -olefin having 10 to 14 carbon atoms is preferred as a monomer for producing PAO (hereinafter also referred to as “mPAO”) using a metallocene catalyst.
  • mPAO PAO
  • a linear ⁇ -olefin is preferable.
  • Specific examples include 1-decene, 1-dodecene, 1-tetradecene, and the like. Of these, 1-decene is particularly preferred.
  • the blending ratio of the metallocene compound represented by the general formula (1) or the general formula (4) and the ⁇ -olefin [metallocene compound (mmol) / ⁇ -olefin (L)] is usually 0.01 to 0.4. Up to, preferably from 0.05 to 0.3, more preferably from 0.1 to 0.2. Sufficient catalytic activity is obtained when the blending ratio is 0.01 or more, whereas when it is 0.4 or less, the yield of oligomers of trimer or more suitable as a base oil of the lubricating oil is improved, There is no incomplete removal of the catalyst.
  • the polymerization of the ⁇ -olefin is preferably performed in the presence of hydrogen.
  • the amount of hydrogen added is usually from 0.1 kPa to 50 kPa, preferably from 0.5 kPa to 30 kPa, and more preferably from 1 kPa to 10 kPa.
  • the amount of hydrogen added is 0.1 kPa or more, sufficient catalytic activity can be obtained.
  • it is 50 kPa or less, the production of a raw material ⁇ -olefin saturated product can be reduced, and the desired yield of mPAO is obtained. Will improve.
  • the polymerization of the ⁇ -olefin is not limited in the reaction method, and may be performed in the absence of a solvent or in a solvent, and any method may be used.
  • a reaction solvent for example, aromatic hydrocarbons such as benzene, toluene, xylene and ethylbenzene, alicyclic hydrocarbons such as cyclopentane, cyclohexane and methylcyclohexane, and aliphatic hydrocarbons such as pentane, hexane, heptane and octane Halogenated hydrocarbons such as chloroform and dichloromethane.
  • the temperature of the polymerization reaction is usually 0 ° C.
  • the mPAO obtained by the above method may be further treated.
  • hydrogenation may be performed in order to improve thermal stability or oxidation stability.
  • the temperature of the hydrogenation treatment is usually 50 ° C. or more and 300 ° C. or less, preferably 60 ° C. or more and 250 ° C. or less, more preferably 70 ° C. or more and 200 ° C. or less
  • the hydrogen pressure is usually 0.1 MPa or more and 10 MPa or less.
  • it is 0.5 MPa or more and 2 MPa or less, More preferably, it is 0.7 MPa or more and 1.5 MPa or less.
  • a general hydrogenation catalyst containing Pd, Ni, or the like can be used.
  • the temperature in distillation is usually 200 ° C. or more and 300 ° C. or less, preferably 220 ° C. or more and 280 ° C. or less, more preferably 230 ° C. or more and 270 ° C. or less, and the pressure is usually 0.1 Pa or more and 15 Pa or less, preferably Is 0.4 Pa or more and 7 Pa or less, more preferably 0.6 Pa or more and 4 Pa or less.
  • the mPAO obtained by the above method, mPAO after hydrogenation treatment or distillation has about 1 short chain branch per molecule (usually 0.6 or more and 1.2 or less, preferably 0.7). It is 1.1 or less, more preferably 0.8 or more and 1.0 or less.
  • a methyl group, an ethyl group, and a propyl group are referred to as short-chain branches.
  • the short chain branch is mainly a methyl group, and the proportion of the methyl group is usually 80 mol% or more, preferably 85 mol% or more, more preferably 90 mol% or more.
  • the blending amount of the component (A) needs to be 10% by mass or more based on the total amount of the composition. If the amount is less than 10% by mass, the object of the present invention cannot be sufficiently achieved. Further, from the viewpoint of low evaporation, the amount of component (A) is preferably 15% by mass or more, and more preferably 20% by mass or more. However, it is preferably 80% by mass or less from the viewpoint of the solubility of the additive and the compatibility with the seal rubber.
  • the component (B) in the present invention is a mineral oil having a viscosity index of 120 or more.
  • mineral oil for example, Group III hydrorefined mineral oil in the API classification is suitable.
  • the component (B) is blended with the component (A), thereby imparting appropriate lubricity to the composition and contributing to improvement in fuel economy.
  • blending (B) component the solubility of the additive generally used for internal combustion engines improves, and it contributes also greatly to fuel-saving property as a result. Therefore, the component (B) is preferably blended in an amount of 50% by mass or more, more preferably 60% by mass or more based on the total amount of the composition.
  • kinematic viscosity at 100 ° C. in the mixed base oil by blending the above components (A) and component (B) is less than 4.35mm 2 / s, 4.2mm 2 / s
  • the following is more preferable.
  • the mixed base oil has a 100 ° C. kinematic viscosity of 4.35 mm 2 / s or less, it contributes to an improvement in fuel economy.
  • the 100 ° C. kinematic viscosity of the mixed base oil is preferably 3.0 mm 2 / s or more from the viewpoint of evaporability.
  • This composition contains the above-mentioned mixed base oil as a main component, but the NOACK of the composition is preferably 13% by mass or less, and the CCS viscosity at ⁇ 35 ° C. is preferably 5500 mPa ⁇ s or less.
  • NOACK and the CCS viscosity at ⁇ 35 ° C. are in this range, both low evaporability and low-temperature fluidity (fuel economy) are excellent, which is suitable as a lubricating oil for internal combustion engines.
  • a viscosity index improver such as a pour point depressant, a cleaning dispersant, an antioxidant, as necessary, as long as the object of the present invention is not impaired.
  • An antiwear agent / extreme pressure agent, a friction reducing agent, a metal deactivator, a rust inhibitor, a surfactant / demulsifier, an antifoaming agent, and the like can be appropriately blended.
  • the viscosity index improver examples include polymethacrylate, dispersed polymethacrylate, olefin copolymer (for example, ethylene-propylene copolymer), dispersed olefin copolymer, styrene copolymer (for example, Styrene-diene copolymer, styrene-isoprene copolymer, etc.).
  • the blending amount of the viscosity index improver is preferably 0.5% by mass or more and 15% by mass or less, more preferably 1% by mass or more and 10% by mass or less based on the total amount of the lubricating oil composition from the viewpoint of the blending effect.
  • pour point depressant examples include polymethacrylate having a weight average molecular weight of about 5000 to 50,000.
  • the blending amount of the pour point depressant is preferably 0.1% by mass or more and 2% by mass or less, more preferably 0.1% by mass or more and 1% by mass or less, based on the total amount of the lubricating oil composition, from the viewpoint of the blending effect. is there.
  • an ashless dispersant and a metal-based cleaning agent can be used.
  • the ashless dispersant any ashless dispersant used in lubricating oils can be used.
  • a monotype succinimide compound represented by the following general formula (II) or a general formula (III) The bis-type succinimide compound represented is mentioned.
  • R 11 , R 13 and R 14 are each an alkenyl group or alkyl group having a number average molecular weight of 500 to 4,000, and R 13 and R 14 are the same or different. May be.
  • the number average molecular weight of R 11 , R 13 and R 14 is preferably from 1,000 to 4,000.
  • R 12 , R 15 and R 16 are each an alkylene group having 2 to 5 carbon atoms, R 15 and R 16 may be the same or different, and r represents an integer of 1 to 10, s represents 0 or an integer from 1 to 10.
  • the r is preferably 2 to 5, more preferably 3 to 4.
  • s is preferably 1 to 4, more preferably 2 or 3. If it is in the said range, it is preferable at the point of the cleanability and the solubility with respect to a base oil.
  • alkenyl group examples include a polybutenyl group, a polyisobutenyl group, and an ethylene-propylene copolymer, and the alkyl group is a hydrogenated form thereof.
  • suitable alkenyl groups include polybutenyl or polyisobutenyl groups.
  • the polybutenyl group can be obtained by polymerizing a mixture of 1-butene and isobutene or high-purity isobutene.
  • a representative example of a suitable alkyl group is a hydrogenated polybutenyl group or polyisobutenyl group.
  • the above alkenyl or alkyl succinimide compound is usually prepared by reacting an alkenyl succinic anhydride obtained by reaction of polyolefin with maleic anhydride, or an alkyl succinic anhydride obtained by hydrogenating it with a polyamine. Can be manufactured.
  • the mono-type succinimide compound and the bis-type succinimide compound described above can be produced by changing the reaction ratio of alkenyl succinic anhydride or alkyl succinic anhydride and polyamine.
  • the olefin monomer forming the polyolefin one or more of ⁇ -olefins having 2 to 8 carbon atoms can be mixed and used, but a mixture of isobutene and butene-1 is preferably used. be able to.
  • Polyamines include ethylenediamine, propylenediamine, butylenediamine, pentylenediamine, and other single diamines, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, di (methylethylene) triamine, dibutylenetriamine, and butylenetetramine.
  • polyalkylene polyamines such as pentapentylenehexamine and piperazine derivatives such as aminoethylpiperazine.
  • boron derivatives thereof and those modified with organic acids may be used.
  • the boron derivative of the alkenyl or alkyl succinimide compound those produced by a conventional method can be used. For example, after reacting the above polyolefin with maleic anhydride to form an alkenyl succinic anhydride, the polyamine and boron oxide, boron halide, boric acid, boric anhydride, boric acid ester, and boric acid It is obtained by reacting with an intermediate obtained by reacting a boron compound such as an ammonium salt and imidizing.
  • a boron compound such as an ammonium salt and imidizing.
  • the blending amount of the monotype succinimide compound represented by the above formula (II) or the bis type succinimide compound represented by the above formula (III) is 0.5% based on the total amount of the lubricating oil composition.
  • the content is preferably from 15% by mass to 15% by mass, and more preferably from 1% by mass to 10% by mass. If the blending amount is less than 0.5% by mass, the effect is hardly exhibited, and if it exceeds 15% by mass, an effect commensurate with the blending amount cannot be obtained.
  • a succinimide compound may be used alone or in combination of two or more as long as it contains the specified amount.
  • any alkaline earth metal detergent used for lubricating oils can be used, for example, alkaline earth metal sulfonates, alkaline earth metal phenates, alkaline earth metal salicylates, and the like. And a mixture of two or more selected from.
  • Alkaline earth metal sulfonates include alkaline earth metal salts of alkyl aromatic sulfonic acids, particularly magnesium salts, obtained by sulfonating alkyl aromatic compounds having a molecular weight of 300 to 1,500, preferably 400 to 700. And / or calcium salts and the like, among which calcium salts are preferably used.
  • alkaline earth metal phenates include alkylphenols, alkylphenol sulfides, alkaline earth metal salts of Mannich reactants of alkylphenols, particularly magnesium salts and calcium salts, among which calcium salts are particularly preferably used.
  • alkaline earth metal salicylates include alkaline earth metal salts of alkyl salicylic acid, particularly magnesium salts and calcium salts, among which calcium salts are preferably used.
  • the alkyl group constituting the alkaline earth metal detergent is preferably an alkyl group having 4 to 30 carbon atoms, more preferably a linear or branched alkyl group having 6 to 18 carbon atoms, It may be a branch. These may also be primary alkyl groups, secondary alkyl groups or tertiary alkyl groups.
  • the alkaline earth metal sulfonate, alkaline earth metal phenate and alkaline earth metal salicylate the above alkyl aromatic sulfonic acid, alkylphenol, alkylphenol sulfide, Mannich reaction product of alkylphenol, alkylsalicylic acid, etc.
  • alkaline earth metal bases such as alkaline earth metal oxides and hydroxides of calcium, or once replaced with alkaline earth metal salts such as sodium salts and potassium salts, etc.
  • alkaline earth metal bases such as alkaline earth metal oxides and hydroxides of calcium, or once replaced with alkaline earth metal salts such as sodium salts and potassium salts, etc.
  • the above neutral salts, basic salts, overbased salts, and mixtures thereof can be used, and in particular, one of overbased salicylates, overbased phenates, and overbased sulfonates. Mixing the above with neutral sulfonate is preferable in terms of cleanliness and wear resistance.
  • the total base number of the metal detergent is preferably 10 mgKOH / g or more and 500 mgKOH / g or less, more preferably 15 mgKOH / g or more and 450 mgKOH / g or less.
  • the total base number referred to here is JIS K 2501 “Petroleum products and lubricants—Test method for neutralization number”. Means the total base number by potentiometric titration method (base number / perchloric acid method) measured according to the above.
  • the metal detergent is not particularly limited in its metal ratio, and can be used by mixing one or more of 20 or less, preferably the metal ratio is 3 or less, more preferably 1.5 or less, In particular, it is particularly preferable to use a metal-based detergent of 1.2 or less as an essential component because it is excellent in oxidation stability, base number maintenance, high-temperature cleanability, and the like.
  • the metal ratio here is expressed by the valence of the metal element in the metal-based detergent ⁇ the metal element content (mol%) / the soap group content (mol%).
  • the metal elements are calcium, magnesium, and the like.
  • the soap group means a sulfonic acid group, a phenol group, a salicylic acid group, and the like.
  • the metal detergent is generally marketed in a state diluted with a light lubricating base oil or the like, and preferably has a metal content of 1% by mass to 20% by mass, preferably 2% by mass to 16% by mass. Those up to are more preferred.
  • the compounding amount of the metal detergent is preferably 0.01% by mass or more and 20% by mass or less, more preferably 0.1% by mass or more and 10% by mass or less, based on the total amount of the composition. If the blending amount is less than 0.01% by mass, the effect is hardly exhibited, and even if it exceeds 20% by mass, an effect commensurate with the addition cannot be obtained. Moreover, as long as a metal type detergent contains said prescribed amount, you may use it individually or in combination of 2 or more types.
  • antioxidants examples include phenol-based antioxidants, amine-based antioxidants, molybdenum amine complex-based antioxidants, and sulfur-based antioxidants.
  • phenolic antioxidant examples include 4,4′-methylenebis (2,6-di-t-butylphenol); 4,4′-bis (2,6-di-t-butylphenol); 4,4 ′ -Bis (2-methyl-6-t-butylphenol); 2,2'-methylenebis (4-ethyl-6-t-butylphenol); 2,2'-methylenebis (4-methyl-6-t-butylphenol); 4,4′-butylidenebis (3-methyl-6-tert-butylphenol); 4,4′-isopropylidenebis (2,6-di-tert-butylphenol); 2,2′-methylenebis (4-methyl-6) -Nonylphenol); 2,2'-isobutylidenebis (4,6-dimethylphenol); 2,2'-methylenebis (4-methyl-6-cyclohex
  • amine antioxidant examples include monooctyl diphenylamine; monoalkyl diphenylamines such as monononyl diphenylamine; 4,4′-dibutyldiphenylamine; 4,4′-dipentyldiphenylamine; 4,4′-dihexyldiphenylamine; 4,4′-diheptyldiphenylamine; 4,4′-dioctyldiphenylamine; dialkyldiphenylamines such as 4,4′-dinonyldiphenylamine, tetrabutyldiphenylamine; tetrahexyldiphenylamine; tetraoctyldiphenylamine; polyalkyl such as tetranonyldiphenylamine Diphenylamine type and naphthylamine type, specifically ⁇ -naphthylamine; phenyl- ⁇ -naphthylamine; and butylphenyl
  • a hexavalent molybdenum compound specifically, a product obtained by reacting at least one of molybdenum trioxide and molybdic acid with an amine compound, for example, JP-A-2003-252887
  • the compound obtained by the production method described in 1. can be used. Although it does not restrict
  • alkyl group having 1 to 30 carbon atoms such as methylamine, ethylamine, dimethylamine, diethylamine, methylethylamine, methylpropylamine and the like (these alkyl groups may be linear or branched).
  • alkanol groups may be linear or branched; methylenediamine, ethylenediamine, propylene Amines and alkylenediamines having 1-30 carbon atoms such as butylenediamine; polyamines such as diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine; undecyldiethylamine, undecyldiethanolamine, dodecyldipropanolamine , Oleyldiethanolamine, oleylpropylenediamine, stearyltetraethylenepentamine and the like monoamines, diamines, polyamines having an alkyl or alkenyl group having 8 to 20 carbon atoms, and heterocyclic compounds such as imidazoline; alkylenes of these compounds Examples thereof include oxide adducts; and mixtures thereof. Examples thereof include a sulfur-containing molybdenum complex of succinimide described in JP-B-3-22438 and JP-A
  • sulfur-based antioxidants include phenothiazine, pentaerythritol-tetrakis- (3-laurylthiopropionate), didodecyl sulfide, dioctadecyl sulfide, didodecylthiodipropionate, dioctadecylthiodipropionate, dimyristyl.
  • examples thereof include thiodipropionate, dodecyl octadecyl thiodipropionate, and 2-mercaptobenzimidazole.
  • the blending amount of these antioxidants is preferably 0.1% by mass or more and 5% by mass or less, more preferably 0.1% by mass or more and 3% by mass or less, based on the total amount of the composition.
  • Antiwear or extreme pressure agents include zinc dithiophosphate, zinc phosphate, zinc dithiocarbamate, disulfides, sulfurized olefins, sulfurized fats and oils, sulfurized esters, thiocarbonates, thiocarbamates, polysulfides, etc. Containing compounds; phosphorous esters, phosphate esters, phosphonate esters, and phosphorus-containing compounds such as amine salts or metal salts thereof; thiophosphite esters, thiophosphate esters, thiophosphonate esters, And sulfur and phosphorus containing antiwear agents such as amine salts or metal salts thereof.
  • a preferable blending amount of the antiwear agent or extreme pressure agent is in the range of 0.1% by mass or more and 20% by mass or less based on the total amount of the composition.
  • a zinc-containing compound it is preferably 600 ppm by mass or less, more preferably 500 ppm by mass or less, and still more preferably 400 ppm by mass or less in terms of zinc (based on the total amount of the composition).
  • 500 mass ppm or less is preferable in phosphorus conversion (composition whole quantity basis), More preferably, it is 400 mass ppm or less, More preferably, it is 300 mass ppm or less.
  • the blending amount of zinc is 600 mass ppm or less and the blending amount of phosphorus is 500 mass ppm or less, there is a problem that even if this composition is used, the basic compound is consumed and the oil renewal period becomes extremely short. Does not occur.
  • any compound generally used as a friction reducing agent for lubricating oils can be used.
  • it has at least one alkyl group or alkenyl group having 6 to 30 carbon atoms in the molecule.
  • Ashless friction reducing agents such as fatty acid esters, fatty acid amides, fatty acids, aliphatic alcohols, aliphatic amines, and aliphatic ethers.
  • the blending amount of the friction reducing agent is preferably 0.01% by mass or more and 2% by mass or less, more preferably 0.01% by mass or more and 1% by mass or less, based on the total amount of the composition.
  • the metal deactivator examples include benzotriazole, tolyltriazole, thiadiazole, and imidazole compounds.
  • the compounding amount of the metal deactivator is preferably 0.01% by mass or more and 3% by mass or less, more preferably 0.01% by mass or more and 1% by mass or less, based on the total amount of the composition.
  • rust preventive agent examples include petroleum sulfonate, alkylbenzene sulfonate, dinonylnaphthalene sulfonate, alkenyl succinate, and polyhydric alcohol ester.
  • the blending amount of these rust preventives is preferably 0.01% by weight or more and 1% by weight or less, more preferably 0.05% by weight or more and 0.5% by weight, based on the total amount of the lubricating oil composition, from the viewpoint of blending effects. It is as follows.
  • the surfactant or demulsifier examples include polyalkylene glycol nonionic surfactants such as polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether and polyoxyethylene alkyl naphthyl ether.
  • the blending amount of the surfactant or the demulsifier is preferably 0.01% by mass or more and 3% by mass or less, more preferably 0.01% by mass or more and 1% by mass or less, based on the total amount of the composition.
  • antifoaming agent examples include silicone oil, fluorosilicone oil, and fluoroalkyl ether, and 0.005% by mass or more and 0.5% by mass on the basis of the total amount of the composition from the viewpoint of balance of defoaming effect and economy. % Or less, more preferably 0.01% by mass or more and 0.2% by mass or less.
  • the driving torque value compared to the reference oil was used as the torque improvement rate, and the motoring characteristics (fuel economy) were evaluated according to the following criteria.
  • reaction product is subjected to simple distillation, and a fraction at a pressure of 530 Pa in the range of a distillation temperature from 240 ° C. to 270 ° C. (1-decene trimer hydrogenated product) ).
  • Example oils 1 to 3 A lubricating oil composition (sample oil) having the composition shown in Table 1 was prepared using the following PAO, mineral oil, and additives. The properties of each sample oil and various performances are also shown in Table 1.
  • PAO-1 manufactured by INEOS, Durasyn 125 (kinematic viscosity at 100 ° C .; 5.196 mm 2 / s, NOACK; 5.5% by mass, CCS viscosity ( ⁇ 35 ° C.); 2490 mPa ⁇ s, viscosity index; 143)
  • PAO-2 manufactured by INEOS, Durasyn 145 (kinematic viscosity at 100 ° C .; 5.194 mm 2 / s, NOACK; 5.1% by mass, CCS viscosity ( ⁇ 35 ° C.); 2570 mPa ⁇ s, viscosity index; 145)
  • PAO-3 mPAO obtained in the above production example (kinematic viscosity at 100 ° C .; 3.458 mm 2 / s, NOACK; 11.1% by mass, CCS viscosity ( ⁇ 35 ° C.); 800 mPa ⁇ s, viscosity index; 127)
  • PAO-4 manufactured by INEOS, Durasyn 164 (kinematic viscosity at 100 ° C .; 3.893 mm 2 / s, NOACK; 14.0% by mass, CCS viscosity ( ⁇ 35 ° C.); 1330 mPa ⁇ s, viscosity index; 120)
  • PAO-5 manufactured by INEOS, Durasyn 166 (kinematic viscosity at 100 ° C .; 5.824 mm 2 / s, NOACK; 6.0 mass%, CCS viscosity ( ⁇ 35 ° C.); 3950 mPa ⁇ s, viscosity index; 178)
  • Mineral oil-1 hydrorefined mineral oil (kinematic viscosity at 100 ° C .; 4.121 mm 2 / s, NOACK; 14.1% by mass, CCS viscosity ( ⁇ 35 ° C.); 1870 mPa ⁇ s, viscosity index; 122)
  • Mineral oil-2 hydro
  • Additive package Infineum P6000 manufactured by Infineum Viscosity index improver: polymethacrylate (mass average molecular weight 230,000, resin content 45% by mass (the compounding amount in Table 1 is the total amount including the resin content))
  • Pour point depressant polyalkyl methacrylate (mass average molecular weight 6,000)

Abstract

The disclosed lubricant composition for an internal combustion engine comprises: (A) a polyalphaolefin that has a kinetic viscosity at 100°C of at most 5.5 mm²/s, a CCS viscosity at −35°C of at most 3,000 mPa∙s, and a NOACK of at most 12 mass%; and (B) a mineral oil with a viscosity index of at least 120. Component (A) constitutes at least 10% of the entire composition by mass.

Description

内燃機関用潤滑油組成物Lubricating oil composition for internal combustion engines
 本発明は、内燃機関用潤滑油組成物に関する。 The present invention relates to a lubricating oil composition for an internal combustion engine.
 ガソリンエンジンやディーゼルエンジンのような内燃機関では、使用中にエンジン内部にコーキングと呼ばれるカーボンの生成堆積が起こることがある。コーキングが発生するとエンジン内部の冷却が不十分となったり、潤滑油そのものの流れが阻害されたりしてさまざまな障害をもたらす恐れがある。特に、ターボ機構を備えたエンジンでは、ターボ軸受部やハウジング内あるいは給油路などで発生するコーキングが問題となっている。
 コーキングの発生を防止するには、蒸発性の低い潤滑油を使用することが効果的である。低蒸発性の内燃機関用潤滑油としては、API分類におけるグループIIあるいはグループIIIの基油と低粘度のPAOとのブレンドを含む組成物が提案されている(特許文献1、2参照)。
In an internal combustion engine such as a gasoline engine or a diesel engine, carbon deposition called coking may occur inside the engine during use. When coking occurs, there is a possibility of causing various obstacles due to insufficient cooling inside the engine or obstruction of the flow of the lubricating oil itself. In particular, in an engine equipped with a turbo mechanism, coking that occurs in a turbo bearing portion, a housing, or an oil supply passage is a problem.
In order to prevent the occurrence of coking, it is effective to use a low-evaporation lubricating oil. As a low-evaporation lubricating oil for an internal combustion engine, a composition containing a blend of a base oil of Group II or Group III and a low-viscosity PAO in the API classification has been proposed (see Patent Documents 1 and 2).
特表2008-533274号公報Special table 2008-533274 特表2009-510214号公報Special table 2009-510214
 一方、内燃機関用潤滑油には省燃費性も重要であるが、低蒸発性の潤滑油は一般に粘度が高くなり、省燃費性が悪化するおそれがある。特許文献1や特許文献2に記載された潤滑油組成物についても、低蒸発性と省燃費性とのバランスに関しては必ずしも十分ではない。 On the other hand, fuel efficiency is also important for lubricating oil for internal combustion engines, but low-evaporation lubricating oil generally has a high viscosity, which may deteriorate fuel efficiency. The lubricating oil compositions described in Patent Document 1 and Patent Document 2 are not necessarily sufficient with respect to the balance between low evaporation and fuel economy.
 本発明は、低蒸発性であって同時に省燃費性にも優れる内燃機関用潤滑油組成物を提供することを目的とする。 An object of the present invention is to provide a lubricating oil composition for an internal combustion engine that is low in evaporation and also excellent in fuel efficiency.
 前記課題を解決すべく、本発明は、以下のような内燃機関用潤滑油組成物を提供するものである。
(1)(A)100℃における動粘度が5.5mm/s以下、-35℃におけるCCS粘度が3000mPa・s以下、NOACKが12質量%以下であるポリα-オレフィンと、(B)粘度指数が120以上である鉱油とを配合してなり、組成物全量基準で、前記(A)成分の配合量が10質量%以上であることを特徴とする内燃機関用潤滑油組成物。
(2)上述の内燃機関用潤滑油組成物において、前記(A)成分と(B)成分とを配合してなる基油の100℃における動粘度が4.35mm/s以下であることを特徴とする内燃機関用潤滑油組成物。
(3)上述の内燃機関用潤滑油組成物において、該組成物のNOACKが13質量%以下であり、-35℃におけるCCS粘度が5500mPa・s以下であることを特徴とする内燃機関用潤滑油組成物。
(4)上述の内燃機関用潤滑油組成物において、前記(B)成分の配合量が組成物全量基準で50質量%以上であることを特徴とする内燃機関用潤滑油組成物。
(5)上述の内燃機関用潤滑油組成物において、前記(A)成分がメタロセン触媒により重合してなることを特徴とする内燃機関用潤滑油組成物。
(6)上述の内燃機関用潤滑油組成物において、前記(A)成分が炭素数10から14までのα-オレフィンから選ばれた少なくともいずれかをモノマーとするポリα-オレフィンであることを特徴とする内燃機関用潤滑油組成物。
(7)上述の内燃機関用潤滑油組成物において、前記(A)成分が3量体であることを特徴とする内燃機関用潤滑油組成物。
In order to solve the above problems, the present invention provides the following lubricating oil composition for an internal combustion engine.
(1) (A) a polyα-olefin having a kinematic viscosity at 100 ° C. of 5.5 mm 2 / s or less, a CCS viscosity at −35 ° C. of 3000 mPa · s or less, and NOACK of 12% by mass or less, and (B) viscosity A lubricating oil composition for an internal combustion engine, comprising a mineral oil having an index of 120 or more, wherein the blending amount of the component (A) is 10% by mass or more based on the total amount of the composition.
(2) In the lubricating oil composition for an internal combustion engine described above, the kinematic viscosity at 100 ° C. of the base oil obtained by blending the component (A) and the component (B) is 4.35 mm 2 / s or less. A lubricating oil composition for an internal combustion engine.
(3) The above lubricating oil composition for internal combustion engines, wherein the composition has a NOACK of 13% by mass or less and a CCS viscosity at −35 ° C. of 5500 mPa · s or less. Composition.
(4) The above lubricating oil composition for internal combustion engines, wherein the blending amount of the component (B) is 50% by mass or more based on the total amount of the composition.
(5) The lubricating oil composition for internal combustion engines, wherein the component (A) is polymerized with a metallocene catalyst.
(6) In the above-described lubricating oil composition for an internal combustion engine, the component (A) is a poly α-olefin having at least one selected from α-olefins having 10 to 14 carbon atoms as a monomer. A lubricating oil composition for an internal combustion engine.
(7) The lubricating oil composition for internal combustion engines, wherein the component (A) is a trimer.
 本発明の内燃機関用潤滑油組成物は、特定の性状を有するPAOと特定の性状を有する鉱油が配合されているので、低蒸発性であって、さらに省燃費性にも優れている。それ故、本発明の内燃機関用潤滑油組成物は、ガソリンエンジンやディーゼルエンジンに対して好適である。 Since the lubricating oil composition for an internal combustion engine of the present invention is blended with PAO having a specific property and mineral oil having a specific property, it has low evaporation properties and is also excellent in fuel efficiency. Therefore, the lubricating oil composition for internal combustion engines of the present invention is suitable for gasoline engines and diesel engines.
 本発明の内燃機関用潤滑油組成物は、(A)成分として、100℃における動粘度が5.5mm/s以下、-35℃におけるCCS粘度が3000mPa・s以下、NOACKが12質量%以下であるポリα-オレフィンと、(B)成分として、粘度指数が120以上である鉱油とを配合したものである。以下、詳細に説明する。 The lubricating oil composition for an internal combustion engine of the present invention has, as component (A), a kinematic viscosity at 100 ° C. of 5.5 mm 2 / s or less, a CCS viscosity at −35 ° C. of 3000 mPa · s or less, and NOACK of 12% by mass or less. And a mineral oil having a viscosity index of 120 or more as a component (B). Details will be described below.
(A)成分:
 本発明における(A)成分は、α-オレフィンの重合体(オリゴマー)であるポリα-オレフィン(PAO)である。
 省燃費性の観点より、(A)成分であるPAOの100℃における動粘度は、5.5mm/s以下であることが必要である。ただし、この動粘度は、潤滑性の観点より3mm/s以上であることが好ましい。また、-35℃におけるCCS粘度は、3000mPa・s以下であることが必要である。さらに、低蒸発性の観点より、NOACKが12質量%以下であることも必要である。
 このようなPAOを得るためのモノマーであるα-オレフィンの炭素数としては、粘度指数、流動点及び低温粘度等の低温物性、蒸発性の観点より6から20までが好ましいが、8から16までがより好ましく、特に10から14までがさらに好ましい。また、PAOとしては、低蒸発性、耐コーキング性および低燃費性の観点よりα-オレフィンの3量体が好ましいが、目的とする性状にするため、α-オレフィンの炭素数とその配合比、重合度を調節することができる。
 α-オレフィンの重合触媒としては、BF触媒、AlCl触媒、チーグラー型触媒、メタロセン触媒などが使用可能であり、従来、100℃動粘度が30mm/s未満の低粘度PAOにはBF触媒が、30mm/s以上の低粘度PAOにはAlCl触媒が使用されてきたが、低蒸発性、耐コーキング性および低燃費性の観点より特にBF触媒、メタロセン触媒が好ましい。
 BF触媒は、水、アルコール、エステルなどのプロモーターとともに使用されるが、このうち、粘度指数、低温物性、収率の点より、アルコール特に1-ブタノールが好ましい。
(A) component:
The component (A) in the present invention is poly α-olefin (PAO) which is a polymer (oligomer) of α-olefin.
From the viewpoint of fuel economy, the kinematic viscosity at 100 ° C. of PAO as component (A) needs to be 5.5 mm 2 / s or less. However, this kinematic viscosity is preferably 3 mm 2 / s or more from the viewpoint of lubricity. Further, the CCS viscosity at −35 ° C. needs to be 3000 mPa · s or less. Further, NOACK is required to be 12% by mass or less from the viewpoint of low evaporation.
The number of carbon atoms of the α-olefin, which is a monomer for obtaining such PAO, is preferably from 6 to 20 from the viewpoint of low temperature properties such as viscosity index, pour point and low temperature viscosity, and evaporation, but from 8 to 16 Is more preferable, and 10 to 14 is particularly preferable. The PAO is preferably an α-olefin trimer from the viewpoints of low evaporation, coking resistance and low fuel consumption, but in order to obtain the desired properties, the carbon number of the α-olefin and its blending ratio, The degree of polymerization can be adjusted.
As an α-olefin polymerization catalyst, a BF 3 catalyst, an AlCl 3 catalyst, a Ziegler type catalyst, a metallocene catalyst, or the like can be used. Conventionally, BF 3 is used for a low viscosity PAO having a kinematic viscosity at 100 ° C. of less than 30 mm 2 / s. AlCl 3 catalysts have been used for low-viscosity PAOs with a catalyst of 30 mm 2 / s or more, but BF 3 catalysts and metallocene catalysts are particularly preferred from the viewpoints of low evaporation, coking resistance, and low fuel consumption.
The BF 3 catalyst is used together with a promoter such as water, alcohol, ester, etc. Among them, alcohol, particularly 1-butanol, is preferable from the viewpoint of viscosity index, low temperature physical properties, and yield.
 上記メタロセン触媒としては、メタロセン化合物および助触媒の組み合わせを含む触媒が挙げられる。メタロセン化合物としては、下記一般式(1)で示されるメタロセン化合物が好ましい。
(RCMX   (1)
 前記一般式(1)中、Rは水素原子または炭素数1から10までの炭化水素基であり、Mは周期律表第4族の遷移金属元素であり、Xは共有結合性またはイオン結合性の配位子である。
Examples of the metallocene catalyst include a catalyst containing a combination of a metallocene compound and a promoter. As the metallocene compound, a metallocene compound represented by the following general formula (1) is preferable.
(RC 5 H 4 ) 2 MX 2 (1)
In the general formula (1), R is a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms, M is a transition metal element of Group 4 of the periodic table, and X is covalent bond or ionic bond It is a ligand.
 前記一般式(1)において、Rは水素原子または炭素数1から4までの炭化水素基が好ましい。Mの具体例としては、チタニウム、ジルコニウム、ハフニウムを挙げられ、これらの中でジルコニウムが好ましい。Xの具体例としては、水素原子、ハロゲン原子、炭素数1から20まで(好ましくは1から10まで)の炭化水素基、炭素数1から20まで(好ましくは1から10まで)のアルコキシ基、アミノ基、炭素数1から20まで(好ましくは1から12まで)のリン含有炭化水素基(例えば、ジフェニルホスフィン基など)、炭素数1から20まで(好ましくは1から12まで)の珪素含有炭化水素基(例えば、トリメチルシリル基など)、炭素数1から20まで(好ましくは1から12まで)の炭化水素基あるいはハロゲンを含有するホウ素化合物(例えば、B(C、BFなど)を挙げられ、これらの中でも、水素原子、ハロゲン原子、炭化水素基およびアルコキシ基からなる群から選ばれる基が好ましい。 In the general formula (1), R is preferably a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms. Specific examples of M include titanium, zirconium, and hafnium. Among these, zirconium is preferable. Specific examples of X include a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms (preferably 1 to 10), an alkoxy group having 1 to 20 carbon atoms (preferably 1 to 10), Amino group, phosphorus-containing hydrocarbon group having 1 to 20 carbon atoms (preferably 1 to 12) (for example, diphenylphosphine group), silicon-containing carbon atom having 1 to 20 carbon atoms (preferably 1 to 12 carbon atoms) A hydrogen group (for example, trimethylsilyl group), a hydrocarbon group having 1 to 20 carbon atoms (preferably 1 to 12) or a boron compound containing halogen (for example, B (C 6 H 5 ) 4 , BF 4, etc. Among these, a group selected from the group consisting of a hydrogen atom, a halogen atom, a hydrocarbon group, and an alkoxy group is preferable.
 前記一般式(1)で表されるメタロセン化合物としては、例えば、ビス(シクロペンタジエニル)ジルコニウムジクロリド、ビス(メチルシクロペンタジエニル)ジルコニウムジクロリド、ビス(エチルシクロペンタジエニル)ジルコニウムジクロリド、ビス(iso-プロピルシクロペンタジエニル)ジルコニウムジクロリド、ビス(n-プロピルシクロペンタジエニル)ジルコニウムジクロリド、ビス(n-ブチルシクロペンタジエニル)ジルコニウムジクロリド、ビス(t-ブチルシクロペンタジエニル)ジルコニウムジクロリド、ビス(テキシルシクロペンタジエニル)ジルコニウムジクロリド、ビス(トリメチルシリルシクロペンタジエニル)ジルコニウムジクロリド、ビス(トリメチルシリルメチルシクロペンタジエニル)ジルコニウムジクロリド、ビス(シクロペンタジエニル)ジルコニウムクロロヒドリド、ビス(シクロペンタジエニル)メチルジルコニウムクロリド、ビス(シクロペンタジエニル)エチルジルコニウムクロリド、ビス(シクロペンタジエニル)メトキシジルコニウムクロリド、ビス(シクロペンタジエニル)フェニルジルコニウムクロリド、ビス(シクロペンタジエニル)ジメチルジルコニウム、ビス(シクロペンタジエニル)ジフェニルジルコニウム、ビス(シクロペンタジエニル)ジネオペンチルジルコニウム、ビス(シクロペンタジエニル)ジヒドロジルコニウム、ビス(シクロペンタジエニル)ジメトキシジルコニウム、さらには、上記に記載の化合物において、これらの化合物の塩素原子を臭素原子、ヨウ素原子、水素原子、メチル基、フェニル基などに置き換えたもの、また、上記化合物の中心金属のジルコニウムをチタニウム、ハフニウムに置き換えたものを挙げられる。 Examples of the metallocene compound represented by the general formula (1) include bis (cyclopentadienyl) zirconium dichloride, bis (methylcyclopentadienyl) zirconium dichloride, bis (ethylcyclopentadienyl) zirconium dichloride, and bis. (Iso-propylcyclopentadienyl) zirconium dichloride, bis (n-propylcyclopentadienyl) zirconium dichloride, bis (n-butylcyclopentadienyl) zirconium dichloride, bis (t-butylcyclopentadienyl) zirconium dichloride , Bis (texylcyclopentadienyl) zirconium dichloride, bis (trimethylsilylcyclopentadienyl) zirconium dichloride, bis (trimethylsilylmethylcyclopentadienyl) di Conium dichloride, bis (cyclopentadienyl) zirconium chlorohydride, bis (cyclopentadienyl) methylzirconium chloride, bis (cyclopentadienyl) ethylzirconium chloride, bis (cyclopentadienyl) methoxyzirconium chloride, bis ( Cyclopentadienyl) phenylzirconium chloride, bis (cyclopentadienyl) dimethylzirconium, bis (cyclopentadienyl) diphenylzirconium, bis (cyclopentadienyl) dineopentylzirconium, bis (cyclopentadienyl) dihydrozirconium , Bis (cyclopentadienyl) dimethoxyzirconium, and further, in the compounds described above, the chlorine atom of these compounds is bromine atom, iodine atom, hydrogen atom, Group, those replaced with a phenyl group, also include those obtained by replacing the zirconium metal centers of the compounds titanium, hafnium.
 前記助触媒としては、メチルアルミノキサンが好ましい。メチルアルミノキサンとしては特に制限はなく従来公知のメチルアルミノキサンを使用することができ、例えば、下記一般式(2)で表される鎖状のメチルアルミノキサン、下記一般式(3)で表される環状のメチルアルミノキサンが挙げられる。 As the promoter, methylaluminoxane is preferable. There is no restriction | limiting in particular as methylaluminoxane, A conventionally well-known methylaluminoxane can be used, For example, the chain | strand-shaped methylaluminoxane represented by following General formula (2), The cyclic | annular form represented by following General formula (3) And methylaluminoxane.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 前記一般式(2)および前記一般式(3)において、pは重合度を表し、通常3から50までであり、好ましくは7から40までである。 In the general formula (2) and the general formula (3), p represents the degree of polymerization and is usually from 3 to 50, preferably from 7 to 40.
 メチルアルミノキサンの製造法としては、メチルアルミニウムと水などの縮合剤とを接触させる方法が挙げられるが、その手段については特に限定はなく、公知の方法に準じて反応させればよい。 Examples of the method for producing methylaluminoxane include a method in which methylaluminum is brought into contact with a condensing agent such as water, but the means is not particularly limited, and the reaction may be carried out according to a known method.
 メタロセン化合物とメチルアルミノキサンの配合割合は、メチルアルミノキサン/メタロセン化合物(モル比)が、通常15から150までであり、好ましくは20から120までであり、より好ましくは25から100までである。前記配合割合が15以上であれば、触媒活性は発現され、また、α-オレフィンの二量体が生成により、潤滑油の基油として適する3量体以上の収率が低下することはない。一方、前記配合割合が150以下であれば、触媒の脱灰除去が不完全になることはない。 The compounding ratio of the metallocene compound and methylaluminoxane is usually from 15 to 150, preferably from 20 to 120, more preferably from 25 to 100, as the methylaluminoxane / metallocene compound (molar ratio). When the blending ratio is 15 or more, catalytic activity is exhibited, and the yield of trimer or more suitable as a base oil for lubricating oil does not decrease due to the formation of α-olefin dimer. On the other hand, if the blending ratio is 150 or less, deashing and removal of the catalyst will not be incomplete.
 前記以外のメタロセン触媒としては、例えば架橋基を有するメタロセン化合物を使用するメタロセン触媒が挙げられる。このようなメタロセン化合物としては2つの架橋基を有するメタロセン化合物が好ましく、特にメソ対称性を有するメタロセン化合物が好ましい。このメソ対称性を有するメタロセン化合物を使用するメタロセン触媒としては、例えば、(a)触媒成分として下記一般式(4)で表されるメタロセン化合物、並びに、(b)触媒成分として前記(a)触媒成分のメタロセン化合物またはその派生物と反応してイオン性の錯体を形成しうる化合物(b-1)、および、アルミノキサンから選ばれる少なくとも一種の成分(b-2)を含有するメタロセン触媒が挙げられる。 Examples of metallocene catalysts other than the above include metallocene catalysts that use a metallocene compound having a crosslinking group. As such a metallocene compound, a metallocene compound having two crosslinking groups is preferable, and a metallocene compound having meso symmetry is particularly preferable. Examples of the metallocene catalyst using the metallocene compound having meso symmetry include (a) a metallocene compound represented by the following general formula (4) as a catalyst component, and (b) the catalyst (a) as a catalyst component. Examples thereof include a compound (b-1) capable of forming an ionic complex by reacting with a component metallocene compound or a derivative thereof, and a metallocene catalyst containing at least one component (b-2) selected from aluminoxane. .
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 前記一般式(4)で表される化合物はメソ対称型の化合物であって、前記一般式(4)中、Mは周期律表第3族から第10族までの金属元素を示す。Xはσ結合性の配位子を示し、Xが複数ある場合、複数のXは同じでも異なっていてもよく、Yはルイス塩基を示し、Yが複数ある場合、複数のYは同じでも異なっていてもよい。Aは、炭素数1から20までの炭化水素基、炭素数1から20までのハロゲン含有炭化水素基、珪素含有基、ゲルマニウム含有基、スズ含有基、-O-、-CO-、-S-、-SO2-、-Se-、-NR1-、-PR1-、-P(O)R-、-BR1-および-AlR-から選ばれる架橋基を示し、2つのAは同一であっても異なっていてもよい。R1は水素原子、ハロゲン原子、炭素数1から20までの炭化水素基または炭素数1から20までのハロゲン含有炭化水素基を示す。qは1から5までの整数で[(Mの原子価)-2]を示し、rは0から3までの整数を示す。Eは、下記一般式(5)、下記一般式(6)で表される基であって、2つのEは同一である。
 なお、前記メソ対称型の化合物とは、2つの架橋基が(1,1’)(2,2’)の結合様式で、2つのEを架橋する遷移金属化合物のことをいう。
The compound represented by the general formula (4) is a mesosymmetric compound, and in the general formula (4), M represents a metal element from group 3 to group 10 of the periodic table. X represents a σ-binding ligand, and when there are a plurality of X, a plurality of X may be the same or different, Y represents a Lewis base, and when there are a plurality of Y, a plurality of Y are the same or different It may be. A represents a hydrocarbon group having 1 to 20 carbon atoms, a halogen-containing hydrocarbon group having 1 to 20 carbon atoms, a silicon-containing group, a germanium-containing group, a tin-containing group, —O—, —CO—, —S—. , -SO 2 -, - Se - , - NR 1 -, - PR 1 -, - P (O) R 1 -, - BR 1 - and -AlR 1 - shows a bridging group selected from the two a They may be the same or different. R 1 represents a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms or a halogen-containing hydrocarbon group having 1 to 20 carbon atoms. q is an integer from 1 to 5 and represents [(valence of M) -2], and r represents an integer from 0 to 3. E is a group represented by the following general formula (5) and the following general formula (6), and the two Es are the same.
The mesosymmetric compound refers to a transition metal compound in which two bridging groups bridge two Es in a bonding mode of (1,1 ′) (2,2 ′).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 前記一般式(5)および前記一般式(6)中、Rは、水素原子、ハロゲン原子、炭素数1から20までの炭化水素基、炭素数1から4までのハロゲン含有炭化水素基、珪素含有基およびヘテロ原子含有基からなる群から選ばれる基を示す。複数のRが存在する場合、それらは互いに同一であっても異なっていてもよい。波線で示される結合は架橋基Aとの結合を表す。 In the general formula (5) and the general formula (6), R 2 represents a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, a halogen-containing hydrocarbon group having 1 to 4 carbon atoms, silicon A group selected from the group consisting of a containing group and a heteroatom-containing group is shown. When several R < 2 > exists, they may mutually be same or different. The bond indicated by the wavy line represents the bond with the bridging group A.
 前記一般式(4)における架橋基Aとしては、下記一般式(7)で表される基であることが好ましい。 The crosslinkable group A in the general formula (4) is preferably a group represented by the following general formula (7).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 前記一般式(7)において、Bは、架橋基の骨格であり、炭素原子、ケイ素原子、ホウ素原子、窒素原子、ゲルマニウム原子、リン原子、またはアルミニウム原子を表す。Rは、水素原子、炭素原子、酸素原子、脂肪族炭化水素基、芳香族炭化水素基、アミン含有基、またはハロゲン含有基を表す。nは1または2である。 In the general formula (7), B is a skeleton of a bridging group and represents a carbon atom, a silicon atom, a boron atom, a nitrogen atom, a germanium atom, a phosphorus atom, or an aluminum atom. R 3 represents a hydrogen atom, a carbon atom, an oxygen atom, an aliphatic hydrocarbon group, an aromatic hydrocarbon group, an amine-containing group, or a halogen-containing group. n is 1 or 2.
 前記一般式(4)で表されるメタロセン化合物としては、例えば、(1,1’-エチレン)(2,2’-エチレン)-ビス(インデニル)ジルコニウムジクロリド、(1,1’-メチレン)(2,2’-メチレン)-ビス(インデニル)ジルコニウムジクロリド、(1,1’-イソプロピリデン)(2,2’-イソプロピリデン)-ビス(インデニル)ジルコニウムジクロリド、(1,1’-エチレン)(2,2’-エチレン)-ビス(3-メチルインデニル)ジルコニウムジクロリド、(1,1’-エチレン)(2,2’-エチレン)-ビス(4,5-ベンゾインデニル)ジルコニウムジクロリド、(1,1’-エチレン)(2,2’-エチレン)-ビス(4-イソプロピルインデニル)ジルコニウムジクロリド、(1,1’-エチレン)(2,2’-エチレン)-ビス(5,6-ジメチルインデニル)ジルコニウムジクロリド、(1,1’-エチレン)(2,2’-エチレン)-ビス(4,7-ジイソプロピルインデニル)ジルコニウムジクロリド、(1,1’-エチレン)(2,2’-エチレン)-ビス(4-フェニルインデニル)ジルコニウムジクロリド、(1,1’-エチレン)(2,2’-エチレン)-ビス(3-メチル-4-イソプロピルインデニル)ジルコニウムジクロリド、(1,1’-エチレン)(2,2’-エチレン)-ビス(5,6-ベンゾインデニル)ジルコニウムジクロリド、(1,1’-ジメチルシリレン)(2,2’-ジメチルシリレン)ビス(シクロペンタジエニル)ジルコニウムジクロリド、(1,1’-ジメチルシリレン)(2,2’-ジメチルシリレン)ビス(インデニル)ジルコニウムジクロリド、(1,1’-ジメチルシリレン)(2,2’-ジメチルシリレン)ビス(3-メチルインデニル)ジルコニウムジクロリド、(1,1’-ジメチルシリレン)(2,2’-ジメチルシリレン)ビス(3-n-ブチルインデニル)ジルコニウムジクロリド、(1,1’-ジメチルシリレン)(2,2’-ジメチルシリレン)ビス(3-i-プロピルインデニル)ジルコニウムジクロリド、(1,1’-ジメチルシリレン)(2,2’-ジメチルシリレン)ビス(3-トリメチルシリルメチルインデニル)ジルコニウムジクロリド、(1,1’-ジメチルシリレン)(2,2’-ジメチルシリレン)ビス(3-フェニルインデニル)ジルコニウムジクロリド、(1,1’-ジメチルシリレン)(2,2’-ジメチルシリレン)ビス(4,5-ベンゾインデニル)ジルコニウムジクロリド、(1,1’-ジメチルシリレン)(2,2’-ジメチルシリレン)ビス(4-イソプロピルインデニル)ジルコニウムジクロリド、(1,1’-ジメチルシリレン)(2,2’-ジメチルシリレン)ビス(5,6-ジメチルインデニル)ジルコニウムジクロリド、(1,1’-ジメチルシリレン)(2,2’-ジメチルシリレン)ビス(4,7-ジ-i-プロピルインデニル)ジルコニウムジクロリド、(1,1’-ジメチルシリレン)(2,2’-ジメチルシリレン)ビス(4-フェニルインデニル)ジルコニウムジクロリド、(1,1’-ジメチルシリレン)(2,2’-ジメチルシリレン)ビス(3-メチル-4-i-プロピルインデニル)ジルコニウムジクロリド、(1,1’-ジメチルシリレン)(2,2’-ジメチルシリレン)ビス(5,6-ベンゾインデニル)ジルコニウムジクロリドなど、およびこれらの化合物におけるジルコニウムをチタンまたはハフニウムに置換したものを挙げられる。もちろんこれらに限定されるものではない。 Examples of the metallocene compound represented by the general formula (4) include (1,1′-ethylene) (2,2′-ethylene) -bis (indenyl) zirconium dichloride, (1,1′-methylene) ( 2,2′-methylene) -bis (indenyl) zirconium dichloride, (1,1′-isopropylidene) (2,2′-isopropylidene) -bis (indenyl) zirconium dichloride, (1,1′-ethylene) ( 2,2′-ethylene) -bis (3-methylindenyl) zirconium dichloride, (1,1′-ethylene) (2,2′-ethylene) -bis (4,5-benzoindenyl) zirconium dichloride, ( 1,1′-ethylene) (2,2′-ethylene) -bis (4-isopropylindenyl) zirconium dichloride, (1,1′-ethylene (2,2'-ethylene) -bis (5,6-dimethylindenyl) zirconium dichloride, (1,1'-ethylene) (2,2'-ethylene) -bis (4,7-diisopropylindenyl) zirconium Dichloride, (1,1′-ethylene) (2,2′-ethylene) -bis (4-phenylindenyl) zirconium dichloride, (1,1′-ethylene) (2,2′-ethylene) -bis (3 -Methyl-4-isopropylindenyl) zirconium dichloride, (1,1'-ethylene) (2,2'-ethylene) -bis (5,6-benzoindenyl) zirconium dichloride, (1,1'-dimethylsilylene) ) (2,2′-dimethylsilylene) bis (cyclopentadienyl) zirconium dichloride, (1,1′-dimethylsilylene) (2,2′- Methylsilylene) bis (indenyl) zirconium dichloride, (1,1′-dimethylsilylene) (2,2′-dimethylsilylene) bis (3-methylindenyl) zirconium dichloride, (1,1′-dimethylsilylene) (2 , 2'-dimethylsilylene) bis (3-n-butylindenyl) zirconium dichloride, (1,1'-dimethylsilylene) (2,2'-dimethylsilylene) bis (3-i-propylindenyl) zirconium dichloride , (1,1'-dimethylsilylene) (2,2'-dimethylsilylene) bis (3-trimethylsilylmethylindenyl) zirconium dichloride, (1,1'-dimethylsilylene) (2,2'-dimethylsilylene) bis (3-Phenylindenyl) zirconium dichloride, (1,1'-dimethyl) Silylene) (2,2'-dimethylsilylene) bis (4,5-benzoindenyl) zirconium dichloride, (1,1'-dimethylsilylene) (2,2'-dimethylsilylene) bis (4-isopropylindenyl) Zirconium dichloride, (1,1'-dimethylsilylene) (2,2'-dimethylsilylene) bis (5,6-dimethylindenyl) zirconium dichloride, (1,1'-dimethylsilylene) (2,2'-dimethyl Silylene) bis (4,7-di-i-propylindenyl) zirconium dichloride, (1,1′-dimethylsilylene) (2,2′-dimethylsilylene) bis (4-phenylindenyl) zirconium dichloride, (1 , 1'-dimethylsilylene) (2,2'-dimethylsilylene) bis (3-methyl-4-i-propyl) Ndenyl) zirconium dichloride, (1,1′-dimethylsilylene) (2,2′-dimethylsilylene) bis (5,6-benzoindenyl) zirconium dichloride, and the like, and zirconium in these compounds substituted with titanium or hafnium You can list things. Of course, it is not limited to these.
 前記(b)触媒成分のうちの(b-1)触媒成分としては、前記(a)触媒成分のメタロセン化合物と反応して、イオン性の錯体を形成しうる化合物であれば、いずれのものでも使用できるが、下記一般式(8)または下記一般式(9)で表されるものを好適に使用することができる。
([L-Rk+([Z]    (8)
([Lk+([Z]       (9)
The catalyst component (b-1) of the catalyst component (b) is any compound that can react with the metallocene compound of the catalyst component (a) to form an ionic complex. Although it can be used, what is represented by the following general formula (8) or the following general formula (9) can be preferably used.
([L 1 −R 4 ] k + ) a ([Z] ) b (8)
([L 2 ] k + ) a ([Z] ) b (9)
 前記一般式(8)および前記一般式(9)中、Lはルイス塩基、LはM、R、R CまたはRを示す。[Z]は、非配位性アニオン[Zまたは[Zを示す。ここで[Zは複数の基が元素に結合したアニオン、即ち[M・・・G(ここで、Mは周期律表第5族から第15族までの元素、好ましくは周期律表第13族から第15族までの元素を示す。GからGまではそれぞれ水素原子、ハロゲン原子、炭素数1から20までのアルキル基、炭素数2から40までのジアルキルアミノ基、炭素数1から20までのアルコキシ基、炭素数6から20までのアリール基、炭素数6から20までのアリールオキシ基、炭素数7から40までのアルキルアリール基、炭素数7から40までのアリールアルキル基、炭素数1から20までのハロゲン置換炭化水素基、炭素数1から20までのアシルオキシ基、有機メタロイド基、または炭素数2から20までのヘテロ原子含有炭化水素基を示す。GからGまでのうち2つ以上が環を形成していてもよい。fは[(中心金属Mの原子価)+1]の整数を示す。)、[Zは、酸解離定数の逆数の対数(pKa)が-10以下のブレンステッド酸単独またはブレンステッド酸およびルイス酸の組み合わせの共役塩基、あるいは一般的に超強酸と定義される酸の共役塩を示す。また、ルイス塩基が配位していてもよい。また、Rは水素原子、炭素数1から20までのアルキル基、炭素数6から20までのアリール基、アルキルアリール基またはアリールアルキル基を示し、RおよびRはそれぞれシクロペンタジエニル基、置換シクロペンタジエニル、インデニル基またはフルオレニル基、Rは炭素数1から20までのアルキル基、アリール基、アルキルアリール基またはアリールアルキル基を示す。Rはテトラフェニルポルフィリン、フタロシアニンなどの大環状配位子を示す。kは[L-R],[L]のイオン価数で1から3までの整数、aは1以上の整数、b=(k×a)である。Mは、周期律表第1族から第3族まで、第11族から第13族まで、および第17族の元素を含むものであり、Mは、周期律表第7族から第12族までの元素を示す。 In the general formula (8) and the general formula (9), L 1 represents a Lewis base, L 2 represents M 2 , R 5 R 6 M 3 , R 7 3 C or R 8 M 3 . [Z] represents a non-coordinating anion [Z 1 ] or [Z 2 ] . Here, [Z 1 ] is an anion in which a plurality of groups are bonded to the element, that is, [M 1 G 1 G 2 ... G f ] (where M 1 is group 5 to group 15 of the periodic table). Elements, from Group 13 to Group 15 of the periodic table, G 1 to G f are each a hydrogen atom, a halogen atom, an alkyl group having 1 to 20 carbon atoms, or 2 to C atoms. 40 dialkylamino groups, alkoxy groups having 1 to 20 carbon atoms, aryl groups having 6 to 20 carbon atoms, aryloxy groups having 6 to 20 carbon atoms, alkylaryl groups having 7 to 40 carbon atoms, carbon An arylalkyl group having 7 to 40 carbon atoms, a halogen-substituted hydrocarbon group having 1 to 20 carbon atoms, an acyloxy group having 1 to 20 carbon atoms, an organic metalloid group, or a heteroatom having 2 to 20 carbon atoms. Two or more of the .G 1 illustrating a hydrocarbon group to G f may optionally form a ring .f is an integer of [(valence of central metal M 1) +1].), [Z 2] - is the reciprocal of the logarithm (pKa) is -10 or less Bronsted acid alone, or a combination of Bronsted acids and Lewis acids conjugate base of the acid dissociation constant or generally conjugate acid is defined as super acid, Indicates salt. In addition, a Lewis base may be coordinated. R 4 represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an alkylaryl group or an arylalkyl group, and R 5 and R 6 are each a cyclopentadienyl group. , Substituted cyclopentadienyl, indenyl group or fluorenyl group, R 7 represents an alkyl group having 1 to 20 carbon atoms, an aryl group, an alkylaryl group or an arylalkyl group. R 8 represents a macrocyclic ligand such as tetraphenylporphyrin or phthalocyanine. k is an ionic valence of [L 1 −R 4 ], [L 2 ], an integer from 1 to 3, a is an integer of 1 or more, and b = (k × a). M 2 includes elements from Group 1 to Group 3 of the Periodic Table, Group 11 to Group 13 and Group 17 of the Periodic Table, and M 3 includes Groups 7 to 12 of the Periodic Table. Indicates elements up to group.
 ここで、Lの具体例としては、アンモニア、メチルアミン、アニリン、ジメチルアミン、ジエチルアミン、N-メチルアニリン、ジフェニルアミン、N,N-ジメチルアニリン、トリメチルアミン、トリエチルアミン、トリ-n-ブチルアミン、メチルジフェニルアミン、ピリジン、p-ブロモ-N,N-ジメチルアニリン、p-ニトロ-N,N-ジメチルアニリンなどのアミン類;トリエチルホスフィン、トリフェニルホスフィン、ジフェニルホスフィンなどのホスフィン類;テトラヒドロチオフェンなどのチオエーテル類;安息香酸エチルなどのエステル類;アセトニトリル、ベンゾニトリルなどのニトリル類などを挙げられる。
 Rの具体例としては、水素、メチル基、エチル基、ベンジル基、トリチル基などを挙げられ、R、Rの具体例としては、シクロペンタジエニル基、メチルシクロペンタジエニル基、エチルシクロペンタジエニル基、ペンタメチルシクロペンタジエニル基などを挙げられる。Rの具体例としては、フェニル基、p-トリル基、p-メトキシフェニル基などを挙げられ、Rの具体例としてはテトラフェニルポルフィリン、フタロシアニン、アリル、メタリルなどを挙げられる。また、Mの具体例としては、Li、Na、K、Ag、Cu、Br、Iなどを挙げられ、Mの具体例としては、Mn、Fe、Co、Ni、Znなどを挙げられる。また、[Z、即ち[M・・・G]において、Mの具体例としてはB、Al、Si、P、As、Sbなど、好ましくはBおよびAlが挙げられる。また、GおよびGからGまでの具体例としては、ジアルキルアミノ基としてジメチルアミノ基、ジエチルアミノ基など;アルコキシ基若しくはアリールオキシ基としてメトキシ基、エトキシ基、n-ブトキシ基、フェノキシ基など;炭化水素基としてメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、n-オクチル基、n-エイコシル基、フェニル基、p-トリル基、ベンジル基、4-t-ブチルフェニル基、3,5-ジメチルフェニル基など;ハロゲン原子としてフッ素、塩素、臭素、ヨウ素など;ヘテロ原子含有炭化水素基としてp-フルオロフェニル基、3,5-ジフルオロフェニル基、ペンタクロロフェニル基、3,4,5-トリフルオロフェニル基、ペンタフルオロフェニル基、3,5-ビス(トリフルオロメチル)フェニル基、ビス(トリメチルシリル)メチル基など;有機メタロイド基としてペンタメチルアンチモン基、トリメチルシリル基、トリメチルゲルミル基、ジフェニルアルシン基、ジシクロヘキシルアンチモン基、ジフェニル硼素などが挙げられる。
Here, specific examples of L 1 include ammonia, methylamine, aniline, dimethylamine, diethylamine, N-methylaniline, diphenylamine, N, N-dimethylaniline, trimethylamine, triethylamine, tri-n-butylamine, methyldiphenylamine, Amines such as pyridine, p-bromo-N, N-dimethylaniline, p-nitro-N, N-dimethylaniline; phosphines such as triethylphosphine, triphenylphosphine, diphenylphosphine; thioethers such as tetrahydrothiophene; Examples include esters such as ethyl acid; nitriles such as acetonitrile and benzonitrile.
Specific examples of R 4 include hydrogen, methyl group, ethyl group, benzyl group, and trityl group. Specific examples of R 5 and R 6 include cyclopentadienyl group, methylcyclopentadienyl group, Examples thereof include an ethylcyclopentadienyl group and a pentamethylcyclopentadienyl group. Specific examples of R 7 include phenyl group, p-tolyl group, p-methoxyphenyl group and the like, and specific examples of R 8 include tetraphenylporphyrin, phthalocyanine, allyl, methallyl and the like. Specific examples of M 2 include Li, Na, K, Ag, Cu, Br, I, and the like. Specific examples of M 3 include Mn, Fe, Co, Ni, Zn, and the like. In [Z 1 ] , that is, [M 1 G 1 G 2 ... G f ], specific examples of M 1 include B, Al, Si, P, As, Sb, etc., preferably B and Al. Can be mentioned. Specific examples of G 1 and G 2 to G f include a dimethylamino group and a diethylamino group as a dialkylamino group; a methoxy group, an ethoxy group, an n-butoxy group, a phenoxy group and the like as an alkoxy group or an aryloxy group. Hydrocarbon groups such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, n-octyl, n-eicosyl, phenyl, p-tolyl, benzyl, 4- t-butylphenyl group, 3,5-dimethylphenyl group, etc .; halogen, fluorine, chlorine, bromine, iodine, etc .; heteroatom-containing hydrocarbon group, p-fluorophenyl group, 3,5-difluorophenyl group, pentachlorophenyl Group, 3,4,5-trifluorophenyl group, pentafluorophenyl group, 3, - bis (trifluoromethyl) phenyl group, bis (trimethylsilyl) such as a methyl group; pentamethyl antimony group as organic metalloid group, trimethylsilyl group, trimethylgermyl group, diphenylarsine group, dicyclohexyl antimony group, such as diphenyl boron and the like.
 非配位性のアニオン、すなわちpKaが-10以下のブレンステッド酸単独またはブレンステッド酸およびルイス酸の組み合わせの共役塩基[Zの具体例としては、トリフルオロメタンスルホン酸アニオン(CFSO、ビス(トリフルオロメタンスルホニル)メチルアニオン、ビス(トリフルオロメタンスルホニル)ベンジルアニオン、ビス(トリフルオロメタンスルホニル)アミド、過塩素酸アニオン(ClO、トリフルオロ酢酸アニオン(CFCO、ヘキサフルオロアンチモンアニオン(SbF、フルオロスルホン酸アニオン(FSO、クロロスルホン酸アニオン(ClSO、フルオロスルホン酸アニオン/5-フッ化アンチモン(FSO/SbF、フルオロスルホン酸アニオン/5-フッ化砒素(FSO/AsF、トリフルオロメタンスルホン酸/5-フッ化アンチモン(CFSO/SbFなどを挙げられる。 Specific examples of non-coordinating anions, that is, Bronsted acids having a pKa of −10 or less or conjugate bases [Z 2 ] — in combination with Bronsted acids and Lewis acids include trifluoromethanesulfonic acid anions (CF 3 SO 3 ) , bis (trifluoromethanesulfonyl) methyl anion, bis (trifluoromethanesulfonyl) benzyl anion, bis (trifluoromethanesulfonyl) amide, perchlorate anion (ClO 4 ) , trifluoroacetate anion (CF 3 CO 2 ) , Hexafluoroantimony anion (SbF 6 ) , fluorosulfonate anion (FSO 3 ) , chlorosulfonate anion (ClSO 3 ) , fluorosulfonate anion / 5-antimony fluoride (FSO 3 / SbF 5 ) , Fluorosulfonate anion / 5-arsenic fluoride (FSO 3 / AsF 5 ) , trifluoromethanesulfonic acid / 5-antimony fluoride (CF 3 SO 3 / SbF 5 ) − and the like.
 前記(a)触媒成分の遷移金属化合物と反応してイオン性の錯体を形成するイオン性化合物、すなわち前記(b-1)触媒成分の具体例としては、テトラキス(ペンタフルオロフェニル硼酸)N,N-ジメチルアニリニウム、テトラフェニル硼酸トリエチルアンモニウム、テトラフェニル硼酸トリ-n-ブチルアンモニウム、テトラフェニル硼酸トリメチルアンモニウム、テトラフェニル硼酸テトラエチルアンモニウム、テトラフェニル硼酸メチル(トリ-n-ブチル)アンモニウム、テトラフェニル硼酸ベンジル(トリ-n-ブチル)アンモニウム、テトラフェニル硼酸ジメチルジフェニルアンモニウム、テトラフェニル硼酸トリフェニル(メチル)アンモニウム、テトラフェニル硼酸トリメチルアニリニウム、テトラフェニル硼酸メチルピリジニウム、テトラフェニル硼酸ベンジルピリジニウム、テトラフェニル硼酸メチル(2-シアノピリジニウム)、テトラキス(ペンタフルオロフェニル)硼酸トリエチルアンモニウム、テトラキス(ペンタフルオロフェニル)硼酸トリ-n-ブチルアンモニウム、テトラキス(ペンタフルオロフェニル)硼酸トリフェニルアンモニウム、テトラキス(ペンタフルオロフェニル)硼酸テトラ-n-ブチルアンモニウム、テトラキス(ペンタフルオロフェニル)硼酸テトラエチルアンモニウム、テトラキス(ペンタフルオロフェニル)硼酸ベンジル(トリ-n-ブチル)アンモニウム、テトラキス(ペンタフルオロフェニル)硼酸メチルジフェニルアンモニウム、テトラキス(ペンタフルオロフェニル)硼酸トリフェニル(メチル)アンモニウム、テトラキス(ペンタフルオロフェニル)硼酸メチルアニリニウム、テトラキス(ペンタフルオロフェニル)硼酸ジメチルアニリニウム、テトラキス(ペンタフルオロフェニル)硼酸トリメチルアニリニウム、テトラキス(ペンタフルオロフェニル)硼酸メチルピリジニウム、テトラキス(ペンタフルオロフェニル)硼酸ベンジルピリジニウム、テトラキス(ペンタフルオロフェニル)硼酸メチル(2-シアノピリジニウム)、テトラキス(ペンタフルオロフェニル)硼酸ベンジル(2-シアノピリジニウム)、テトラキス(ペンタフルオロフェニル)硼酸メチル(4-シアノピリジニウム)、テトラキス(ペンタフルオロフェニル)硼酸トリフェニルホスホニウム、テトラキス[ビス(3,5-ジトリフルオロメチル)フェニル]硼酸ジメチルアニリニウム、テトラフェニル硼酸フェロセニウム、テトラフェニル硼酸銀、テトラフェニル硼酸トリチル、テトラフェニル硼酸テトラフェニルポルフィリンマンガン、テトラキス(ペンタフルオロフェニル)硼酸フェロセニウム、テトラキス(ペンタフルオロフェニル)硼酸(1,1’-ジメチルフェロセニウム)、テトラキス(ペンタフルオロフェニル)硼酸デカメチルフェロセニウム、テトラキス(ペンタフルオロフェニル)硼酸銀、テトラキス(ペンタフルオロフェニル)硼酸トリチル、テトラキス(ペンタフルオロフェニル)硼酸リチウム、テトラキス(ペンタフルオロフェニル)硼酸ナトリウム、テトラキス(ペンタフルオロフェニル)硼酸テトラフェニルポルフィリンマンガン、テトラフルオロ硼酸銀、ヘキサフルオロ燐酸銀、ヘキサフルオロ砒素酸銀、過塩素酸銀、トリフルオロ酢酸銀、トリフルオロメタンスルホン酸銀などを挙げられる。これらの(B-1)触媒成分は一種を単独で用いてもよく、または二種以上を組み合わせて用いてもよい。 An ionic compound that reacts with the transition metal compound of the catalyst component (a) to form an ionic complex, that is, a specific example of the catalyst component (b-1) is tetrakis (pentafluorophenylboric acid) N, N -Dimethylanilinium, triethylammonium tetraphenylborate, tri-n-butylammonium tetraphenylborate, trimethylammonium tetraphenylborate, tetraethylammonium tetraphenylborate, methyl (tri-n-butyl) ammonium tetraphenylborate, benzyltetraphenylborate (Tri-n-butyl) ammonium, dimethyldiphenylammonium tetraphenylborate, triphenyl (methyl) ammonium tetraphenylborate, trimethylanilinium tetraphenylborate, methyl tetraphenylborate Pyridinium, benzylpyridinium tetraphenylborate, methyl tetraphenylborate (2-cyanopyridinium), triethylammonium tetrakis (pentafluorophenyl) borate, tri-n-butylammonium tetrakis (pentafluorophenyl) borate, tetrakis (pentafluorophenyl) boric acid Triphenylammonium, tetrakis (pentafluorophenyl) borate tetra-n-butylammonium, tetrakis (pentafluorophenyl) tetraethylammonium borate, tetrakis (pentafluorophenyl) benzyl benzyl (tri-n-butyl) borate, tetrakis (pentafluorophenyl) ) Methyldiphenylammonium borate, tetrakis (pentafluorophenyl) triphenyl (methyl) ammonium borate , Tetrakis (pentafluorophenyl) methylanilinium borate, tetrakis (pentafluorophenyl) dimethylanilinium borate, trimethylanilinium tetrakis (pentafluorophenyl) borate, methylpyridinium tetrakis (pentafluorophenyl) borate, tetrakis (pentafluorophenyl) ) Benzylpyridinium borate, methyl tetrakis (pentafluorophenyl) borate (2-cyanopyridinium), benzyltetrakis (pentafluorophenyl) benzyl borate (2-cyanopyridinium), methyl tetrakis (pentafluorophenyl) borate (4-cyanopyridinium), Tetrakis (pentafluorophenyl) borate triphenylphosphonium, tetrakis [bis (3,5-ditrifluoromethyl) phenyl] borate Dimethylanilinium, ferrocenium tetraphenylborate, silver tetraphenylborate, trityl tetraphenylborate, tetraphenylporphyrin manganese tetraphenylborate, ferrocenium tetrakis (pentafluorophenyl) borate, tetrakis (pentafluorophenyl) boric acid (1,1′-dimethyl) Ferrocenium), tetrakis (pentafluorophenyl) decamethylferrocenium borate, silver tetrakis (pentafluorophenyl) borate, trityl tetrakis (pentafluorophenyl) borate, tetrakis (pentafluorophenyl) lithium borate, tetrakis (pentafluorophenyl) ) Sodium borate, tetrakis (pentafluorophenyl) borate tetraphenylporphyrin manganese, silver tetrafluoroborate, hexafluro Phosphate silver hexafluoroarsenate, silver perchlorate, silver trifluoroacetate, and the like of silver trifluoromethanesulfonate. These (B-1) catalyst components may be used singly or in combination of two or more.
 一方、前記(b-2)触媒成分のアルミノキサンとしては、例えば、下記一般式(10)で表される鎖状アルミノキサン、下記一般式(11)で表される環状アルミノキサンを挙げられる。 On the other hand, examples of the aluminoxane as the catalyst component (b-2) include a chain aluminoxane represented by the following general formula (10) and a cyclic aluminoxane represented by the following general formula (11).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 前記一般式(10)および前記一般式(11)において、R9は炭素数1から20まで、好ましくは1から12までのアルキル基、アルケニル基、アリール基、アリールアルキル基などの炭化水素基あるいはハロゲン原子を示し、wは平均重合度を示し、通常2から50までの整数であり、好ましくは2から40までの整数である。なお、各R9は同じでも異なっていてもよい。 In the general formula (10) and the general formula (11), R 9 is a hydrocarbon group having 1 to 20 carbon atoms, preferably 1 to 12 alkyl group, alkenyl group, aryl group, arylalkyl group or the like, or Represents a halogen atom, and w represents an average degree of polymerization, and is usually an integer of 2 to 50, preferably an integer of 2 to 40. Each R 9 may be the same or different.
 前記アルミノキサンの製造法としては、アルキルアルミニウムと水などの縮合剤とを接触させる方法が挙げられるが、その手段については特に限定はなく、公知の方法に準じて反応させればよい。
 例えば、(1)有機アルミニウム化合物を有機溶剤に溶解しておき、これを水と接触させる方法、(2)重合時に当初有機アルミニウム化合物を加えておき、後に水を添加する方法、(3)金属塩などに含有されている結晶水、無機物や有機物への吸着水を有機アルミニウム化合物と反応させる方法、(4)テトラアルキルジアルミノキサンにトリアルキルアルミニウムを反応させ、さらに水を反応させる方法などがある。なお、アルミノキサンとしては、トルエン不溶性のものであってもよい。これらのアルミノキサンは1種用いてもよく、2種以上を組み合わせて用いてもよい。
Examples of the method for producing the aluminoxane include a method in which an alkylaluminum is brought into contact with a condensing agent such as water, but the means is not particularly limited and may be reacted according to a known method.
For example, (1) a method in which an organoaluminum compound is dissolved in an organic solvent and contacting it with water, (2) a method in which an organoaluminum compound is initially added during polymerization, and water is added later, (3) metal There are a method of reacting crystallization water contained in a salt or the like, water adsorbed on an inorganic or organic substance with an organoaluminum compound, and (4) a method of reacting a tetraalkyldialuminoxane with a trialkylaluminum and further reacting with water. . The aluminoxane may be insoluble in toluene. These aluminoxanes may be used alone or in combination of two or more.
 前記した(a)触媒成分と(b)触媒成分との使用割合は、(b)触媒成分として(b-1)触媒成分を用いた場合には、モル比で10:1から1:100までの範囲が好ましく、2:1から1:10までの範囲がより好ましい。前記範囲を逸脱すると、単位質量ポリマーあたりの触媒コストが高くなり、実用的でない。また、前記した(b-2)触媒成分を用いた場合には、モル比で1:1から1:1000000までの範囲が好ましく、1:10から1:10000までの範囲がより好ましい。この範囲を逸脱する場合は単位質量ポリマーあたりの触媒コストが高くなり、実用的でない。また、前記(b)触媒成分としては(b-1)触媒成分および(b-2)触媒成分を単独または2種以上組み合わせて用いることもできる。 The use ratio of the above-mentioned (a) catalyst component and (b) catalyst component is from 10: 1 to 1: 100 in molar ratio when (b-1) catalyst component is used as (b) catalyst component. The range of 2: 1 to 1:10 is more preferable. If it deviates from the above range, the catalyst cost per unit mass polymer increases, which is not practical. When the above-mentioned (b-2) catalyst component is used, the molar ratio is preferably in the range of 1: 1 to 1: 1000000, and more preferably in the range of 1:10 to 1: 10000. When deviating from this range, the catalyst cost per unit mass polymer becomes high, which is not practical. Further, as the (b) catalyst component, the (b-1) catalyst component and the (b-2) catalyst component may be used alone or in combination of two or more.
 本発明においては、メタロセン触媒によりPAO(以下、「mPAO」ともいう。)を製造するためのモノマーとしては、炭素数10から14までのα-オレフィンが好ましい。また、粘度指数と低温物性の点から、直鎖のα-オレフィンが好ましい。具体例としては、1-デセン、1-ドデセン、および1-テトラデセンなどが挙げられる。これらの中で、1-デセンが特に好ましい。 In the present invention, an α-olefin having 10 to 14 carbon atoms is preferred as a monomer for producing PAO (hereinafter also referred to as “mPAO”) using a metallocene catalyst. From the viewpoint of viscosity index and low-temperature physical properties, a linear α-olefin is preferable. Specific examples include 1-decene, 1-dodecene, 1-tetradecene, and the like. Of these, 1-decene is particularly preferred.
 前記一般式(1)または前記一般式(4)で表されるメタロセン化合物とα-オレフィンの配合割合[メタロセン化合物(mmol)/α-オレフィン(L)]は、通常0.01から0.4までであり、好ましくは0.05から0.3までであり、より好ましくは0.1から0.2までである。前記配合割合が0.01以上であることで十分な触媒活性が得られ、一方、0.4以下であると、潤滑油の基油として適する3量体以上のオリゴマーの収率が向上し、触媒の脱灰除去が不完全になることがない。 The blending ratio of the metallocene compound represented by the general formula (1) or the general formula (4) and the α-olefin [metallocene compound (mmol) / α-olefin (L)] is usually 0.01 to 0.4. Up to, preferably from 0.05 to 0.3, more preferably from 0.1 to 0.2. Sufficient catalytic activity is obtained when the blending ratio is 0.01 or more, whereas when it is 0.4 or less, the yield of oligomers of trimer or more suitable as a base oil of the lubricating oil is improved, There is no incomplete removal of the catalyst.
 前記α-オレフィンの重合は、水素存在下で行うことが好ましい。水素の添加量は、通常0.1kPa以上50kPa以下であり、好ましくは0.5kPa以上30kPa以下であり、より好ましくは1kPa以上10kPa以下である。水素の添加量が0.1kPa以上であることで十分な触媒活性が得られ、一方、50kPa以下であると、原料α-オレフィンの飽和体の生成を低減化でき、目的とするmPAOの収率が向上する。 The polymerization of the α-olefin is preferably performed in the presence of hydrogen. The amount of hydrogen added is usually from 0.1 kPa to 50 kPa, preferably from 0.5 kPa to 30 kPa, and more preferably from 1 kPa to 10 kPa. When the amount of hydrogen added is 0.1 kPa or more, sufficient catalytic activity can be obtained. On the other hand, when it is 50 kPa or less, the production of a raw material α-olefin saturated product can be reduced, and the desired yield of mPAO is obtained. Will improve.
 前記α-オレフィンの重合は、反応方法には制限はなく、溶媒の不存在下に行なってもよく、溶媒中で行ってもよく、いずれの方法を用いてもよい。反応溶媒を用いる場合、例えば、ベンゼン,トルエン,キシレン,エチルベンゼンなどの芳香族炭化水素、シクロペンタン,シクロヘキサン,メチルシクロヘキサンなどの脂環式炭化水素、ペンタン,ヘキサン,ヘプタン,オクタンなどの脂肪族炭化水素、クロロホルム,ジクロロメタンなどのハロゲン化炭化水素などが挙げられる。重合反応の温度は通常0℃以上100℃以下であり、好ましくは20℃以上80℃以下であり、より好ましくは30℃以上70℃以下である。前記範囲であることで、十分な触媒活性が得られ、また潤滑油の基油として適する3量体以上のオリゴマーの収率が向上する。前記方法で重合を行うことで3量体以上の選択率が50%以上のmPAOを製造することができる。 The polymerization of the α-olefin is not limited in the reaction method, and may be performed in the absence of a solvent or in a solvent, and any method may be used. When using a reaction solvent, for example, aromatic hydrocarbons such as benzene, toluene, xylene and ethylbenzene, alicyclic hydrocarbons such as cyclopentane, cyclohexane and methylcyclohexane, and aliphatic hydrocarbons such as pentane, hexane, heptane and octane Halogenated hydrocarbons such as chloroform and dichloromethane. The temperature of the polymerization reaction is usually 0 ° C. or higher and 100 ° C. or lower, preferably 20 ° C. or higher and 80 ° C. or lower, more preferably 30 ° C. or higher and 70 ° C. or lower. By being the said range, sufficient catalyst activity is obtained and the yield of the oligomer more than a trimer suitable as a base oil of lubricating oil improves. By carrying out the polymerization by the above method, mPAO having a trimer or higher selectivity of 50% or higher can be produced.
 目的に応じて、前記の方法で得られたmPAOにさらに処理を加えてもよく、例えば、熱安定性や酸化安定性を向上させる場合には水素化処理を行えば良い。また、所望の特性を有する潤滑油基油を得る場合には、蒸留を行えば良い。前記水素化処理の温度は通常50℃以上300℃以下であり、好ましくは60℃以上250℃以下であり、より好ましくは70℃以上200℃以下であり、水素圧は通常0.1MPa以上10MPa以下であり、好ましくは0.5MPa以上2MPa以下であり、より好ましくは0.7MPa以上1.5MPa以下である。水素化処理においては、PdやNiなどを含む一般的な水添触媒を用いることができる。蒸留における温度は通常200℃以上300℃以下であり、好ましくは220℃以上280℃以下であり、より好ましくは230℃以上270℃以下であり、圧力は通常0.1Pa以上15Pa以下であり、好ましくは0.4Pa以上7Pa以下であり、より好ましくは0.6Pa以上4Pa以下である。 Depending on the purpose, the mPAO obtained by the above method may be further treated. For example, in order to improve thermal stability or oxidation stability, hydrogenation may be performed. Moreover, what is necessary is just to distill, when obtaining the lubricating base oil which has a desired characteristic. The temperature of the hydrogenation treatment is usually 50 ° C. or more and 300 ° C. or less, preferably 60 ° C. or more and 250 ° C. or less, more preferably 70 ° C. or more and 200 ° C. or less, and the hydrogen pressure is usually 0.1 MPa or more and 10 MPa or less. Preferably, it is 0.5 MPa or more and 2 MPa or less, More preferably, it is 0.7 MPa or more and 1.5 MPa or less. In the hydrogenation treatment, a general hydrogenation catalyst containing Pd, Ni, or the like can be used. The temperature in distillation is usually 200 ° C. or more and 300 ° C. or less, preferably 220 ° C. or more and 280 ° C. or less, more preferably 230 ° C. or more and 270 ° C. or less, and the pressure is usually 0.1 Pa or more and 15 Pa or less, preferably Is 0.4 Pa or more and 7 Pa or less, more preferably 0.6 Pa or more and 4 Pa or less.
 前記の方法で得られたmPAOや水素化処理や蒸留後のmPAOは、短鎖分岐が1分子あたり約1個(通常0.6個以上1.2個以下であり、好ましくは0.7個以上1.1個以下であり、より好ましくは0.8個以上1.0個以下である)有する(なお、本明細書において、メチル基、エチル基およびプロピル基を短鎖分岐と称する。)。さらに、当該短鎖分岐は主にメチル基であり、メチル基の割合は通常80モル%以上、好ましくは85モル%以上、より好ましくは90モル%以上である。 The mPAO obtained by the above method, mPAO after hydrogenation treatment or distillation has about 1 short chain branch per molecule (usually 0.6 or more and 1.2 or less, preferably 0.7). It is 1.1 or less, more preferably 0.8 or more and 1.0 or less. (In this specification, a methyl group, an ethyl group, and a propyl group are referred to as short-chain branches.) . Further, the short chain branch is mainly a methyl group, and the proportion of the methyl group is usually 80 mol% or more, preferably 85 mol% or more, more preferably 90 mol% or more.
 本組成物において、前記(A)成分の配合量は、組成物全量基準で、10質量%以上であることが必要である。前記配合量が10質量%未満では、本発明の目的を十分に達成することができない。また、低蒸発性であることの観点からは、(A)成分の配合量は、15質量%以上であることが好ましく、20質量%以上であることがより好ましい。ただし、添加剤の溶解性及びシールゴム適合性の観点より80質量%以下であることが好ましい。 In the present composition, the blending amount of the component (A) needs to be 10% by mass or more based on the total amount of the composition. If the amount is less than 10% by mass, the object of the present invention cannot be sufficiently achieved. Further, from the viewpoint of low evaporation, the amount of component (A) is preferably 15% by mass or more, and more preferably 20% by mass or more. However, it is preferably 80% by mass or less from the viewpoint of the solubility of the additive and the compatibility with the seal rubber.
(B)成分:
 本発明における(B)成分は、粘度指数120以上の鉱油である。このような鉱油としては、例えば、API分類におけるグループIIIの水素化精製鉱油が好適である。
 (B)成分は、(A)成分とともに配合されることにより、適度な潤滑性を組成物に与え、省燃費性の向上に寄与する。
 また、(B)成分を配合することにより、内燃機関用として汎用される添加剤の溶解性が向上し、結果的に省燃費性にも大きく寄与する。
 それ故、(B)成分は、組成物全量基準で50質量%以上配合されることが好ましく、60質量%以上配合されることがより好ましい。
(B) component:
The component (B) in the present invention is a mineral oil having a viscosity index of 120 or more. As such mineral oil, for example, Group III hydrorefined mineral oil in the API classification is suitable.
The component (B) is blended with the component (A), thereby imparting appropriate lubricity to the composition and contributing to improvement in fuel economy.
Moreover, by mix | blending (B) component, the solubility of the additive generally used for internal combustion engines improves, and it contributes also greatly to fuel-saving property as a result.
Therefore, the component (B) is preferably blended in an amount of 50% by mass or more, more preferably 60% by mass or more based on the total amount of the composition.
 本発明では、上述の(A)成分と(B)成分とを配合してなる混合基油の100℃における動粘度が4.35mm/s以下であることが好ましく、4.2mm/s以下であることがより好ましい。
 この混合基油の100℃動粘度が4.35mm/s以下であると、省燃費性の向上に寄与する。ただし、蒸発性の観点より混合基油の100℃動粘度は、3.0mm/s以上であることが好ましい。
In the present invention, it is preferable that kinematic viscosity at 100 ° C. in the mixed base oil by blending the above components (A) and component (B) is less than 4.35mm 2 / s, 4.2mm 2 / s The following is more preferable.
When the mixed base oil has a 100 ° C. kinematic viscosity of 4.35 mm 2 / s or less, it contributes to an improvement in fuel economy. However, the 100 ° C. kinematic viscosity of the mixed base oil is preferably 3.0 mm 2 / s or more from the viewpoint of evaporability.
 本組成物は、上述した混合基油を主成分とするが、本組成物のNOACKが13質量%以下であり、-35℃におけるCCS粘度が5500mPa・s以下であることが好ましい。NOACKと-35℃におけるCCS粘度がこの範囲であると、低蒸発性と低温における流動性(省燃費性)の双方に優れるので、内燃機関用の潤滑油として好適である。 This composition contains the above-mentioned mixed base oil as a main component, but the NOACK of the composition is preferably 13% by mass or less, and the CCS viscosity at −35 ° C. is preferably 5500 mPa · s or less. When NOACK and the CCS viscosity at −35 ° C. are in this range, both low evaporability and low-temperature fluidity (fuel economy) are excellent, which is suitable as a lubricating oil for internal combustion engines.
 本発明の潤滑油組成物には、本発明の目的が損なわれない範囲で、必要に応じて他の添加剤、例えば、粘度指数向上剤、流動点降下剤、清浄分散剤、酸化防止剤、耐摩耗剤・極圧剤、摩擦低減剤、金属不活性剤、防錆剤、界面活性剤・抗乳化剤、および消泡剤などを適宜配合することができる。 In the lubricating oil composition of the present invention, other additives such as a viscosity index improver, a pour point depressant, a cleaning dispersant, an antioxidant, as necessary, as long as the object of the present invention is not impaired. An antiwear agent / extreme pressure agent, a friction reducing agent, a metal deactivator, a rust inhibitor, a surfactant / demulsifier, an antifoaming agent, and the like can be appropriately blended.
 粘度指数向上剤としては、例えば、ポリメタクリレート、分散型ポリメタクリレート、オレフィン系共重合体(例えば、エチレン-プロピレン共重合体など)、分散型オレフィン系共重合体、スチレン系共重合体(例えば、スチレン-ジエン共重合体、スチレン-イソプレン共重合体など)などが挙げられる。粘度指数向上剤の配合量は、配合効果の点から、潤滑油組成物全量基準で、0.5質量%以上15質量%以下が好ましく、より好ましくは1質量%以上10質量%以下である。 Examples of the viscosity index improver include polymethacrylate, dispersed polymethacrylate, olefin copolymer (for example, ethylene-propylene copolymer), dispersed olefin copolymer, styrene copolymer (for example, Styrene-diene copolymer, styrene-isoprene copolymer, etc.). The blending amount of the viscosity index improver is preferably 0.5% by mass or more and 15% by mass or less, more preferably 1% by mass or more and 10% by mass or less based on the total amount of the lubricating oil composition from the viewpoint of the blending effect.
 流動点降下剤としては、例えば、重量平均分子量が5000から50,000まで程度のポリメタクリレートなどが挙げられる。
 流動点降下剤の配合量は、配合効果の点から、潤滑油組成物全量基準で、0.1質量%以上2質量%以下が好ましく、より好ましくは0.1質量%以上1質量%以下である。
Examples of the pour point depressant include polymethacrylate having a weight average molecular weight of about 5000 to 50,000.
The blending amount of the pour point depressant is preferably 0.1% by mass or more and 2% by mass or less, more preferably 0.1% by mass or more and 1% by mass or less, based on the total amount of the lubricating oil composition, from the viewpoint of the blending effect. is there.
 清浄分散剤としては、無灰分散剤、金属系清浄剤を用いることができる。
 無灰分散剤としては、潤滑油に用いられる任意の無灰分散剤を用いることができるが、例えば、下記一般式(II)で表されるモノタイプのコハク酸イミド化合物、または一般式(III)で表されるビスタイプのコハク酸イミド化合物が挙げられる。
As the cleaning and dispersing agent, an ashless dispersant and a metal-based cleaning agent can be used.
As the ashless dispersant, any ashless dispersant used in lubricating oils can be used. For example, a monotype succinimide compound represented by the following general formula (II) or a general formula (III) The bis-type succinimide compound represented is mentioned.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 上記式(II)、(III)において、R11、R13およびR14は、それぞれ、数平均分子量500から4,000までのアルケニル基若しくはアルキル基で、R13およびR14は同一でも異なっていてもよい。R11、R13およびR14の数平均分子量は、好ましくは1,000から4,000までである。また、R12、R15およびR16は、それぞれ、炭素数2から5までのアルキレン基で、R15およびR16は同一でも異なっていてもよく、rは1から10までの整数を示し、sは0または1から10までの整数を示す。
 上記R11、R13およびR14の数平均分子量が500未満であると、基油への溶解性が低下し、4,000を超えると、清浄性が低下し、目的の性能が得られないおそれがある。
 また、上記rは、好ましくは2から5まで、より好ましくは3から4までである。
 rが1未満であると、清浄性が悪化し、rが11以上であると、基油に対する溶解性が悪くなる。
 上記式(III)において、sは好ましくは1から4まで、より好ましくは2か3である。
 上記範囲内であれば、清浄性および基油に対する溶解性の点で好ましい。
 アルケニル基としては、ポリブテニル基、ポリイソブテニル基、エチレン-プロピレン共重合体を挙げることができ、アルキル基としてはこれらを水添したものである。
 好適なアルケニル基の代表例としては、ポリブテニル基またはポリイソブテニル基が挙げられる。ポリブテニル基は、1-ブテンとイソブテンの混合物あるいは高純度のイソブテンを重合させたものとして得られる。また、好適なアルキル基の代表例としては、ポリブテニル基またはポリイソブテニル基を水添したものである。
In the above formulas (II) and (III), R 11 , R 13 and R 14 are each an alkenyl group or alkyl group having a number average molecular weight of 500 to 4,000, and R 13 and R 14 are the same or different. May be. The number average molecular weight of R 11 , R 13 and R 14 is preferably from 1,000 to 4,000. R 12 , R 15 and R 16 are each an alkylene group having 2 to 5 carbon atoms, R 15 and R 16 may be the same or different, and r represents an integer of 1 to 10, s represents 0 or an integer from 1 to 10.
When the number average molecular weight of R 11 , R 13 and R 14 is less than 500, the solubility in the base oil decreases, and when it exceeds 4,000, the cleanliness decreases and the target performance cannot be obtained. There is a fear.
The r is preferably 2 to 5, more preferably 3 to 4.
When r is less than 1, the cleanliness is deteriorated, and when r is 11 or more, the solubility in the base oil is deteriorated.
In the above formula (III), s is preferably 1 to 4, more preferably 2 or 3.
If it is in the said range, it is preferable at the point of the cleanability and the solubility with respect to a base oil.
Examples of the alkenyl group include a polybutenyl group, a polyisobutenyl group, and an ethylene-propylene copolymer, and the alkyl group is a hydrogenated form thereof.
Representative examples of suitable alkenyl groups include polybutenyl or polyisobutenyl groups. The polybutenyl group can be obtained by polymerizing a mixture of 1-butene and isobutene or high-purity isobutene. A representative example of a suitable alkyl group is a hydrogenated polybutenyl group or polyisobutenyl group.
 上記のアルケニル若しくはアルキルコハク酸イミド化合物は、通常、ポリオレフィンと無水マレイン酸との反応で得られるアルケニルコハク酸無水物、またはそれを水添して得られるアルキルコハク酸無水物を、ポリアミンと反応させることによって製造することができる。
 上記のモノタイプのコハク酸イミド化合物およびビスタイプのコハク酸イミド化合物は、アルケニルコハク酸無水物若しくはアルキルコハク酸無水物とポリアミンとの反応比率を変えることによって製造することができる。
 上記ポリオレフィンを形成するオレフィン単量体としては、炭素数2から8までのα-オレフィンの1種または2種以上を混合して用いることができるが、イソブテンとブテン-1の混合物を好適に用いることができる。
The above alkenyl or alkyl succinimide compound is usually prepared by reacting an alkenyl succinic anhydride obtained by reaction of polyolefin with maleic anhydride, or an alkyl succinic anhydride obtained by hydrogenating it with a polyamine. Can be manufactured.
The mono-type succinimide compound and the bis-type succinimide compound described above can be produced by changing the reaction ratio of alkenyl succinic anhydride or alkyl succinic anhydride and polyamine.
As the olefin monomer forming the polyolefin, one or more of α-olefins having 2 to 8 carbon atoms can be mixed and used, but a mixture of isobutene and butene-1 is preferably used. be able to.
 ポリアミンとしては、エチレンジアミン、プロピレンジアミン、ブチレンジアミン、ペンチレンジアミン等の単一ジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン、ジ(メチルエチレン)トリアミン、ジブチレントリアミン、トリブチレンテトラミン、ペンタペンチレンヘキサミン等のポリアルキレンポリアミン、アミノエチルピペラジン等のピペラジン誘導体を挙げることができる。 Polyamines include ethylenediamine, propylenediamine, butylenediamine, pentylenediamine, and other single diamines, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, di (methylethylene) triamine, dibutylenetriamine, and butylenetetramine. And polyalkylene polyamines such as pentapentylenehexamine and piperazine derivatives such as aminoethylpiperazine.
 また、上記のアルケニル若しくはアルキルコハク酸イミド化合物の他に、そのホウ素誘導体、およびこれらを有機酸で変性したものの少なくともいずれかを用いてもよい。
 アルケニル若しくはアルキルコハク酸イミド化合物のホウ素誘導体は、常法により製造したものを使用することができる。
 例えば、上記のポリオレフィンを無水マレイン酸と反応させてアルケニルコハク酸無水物とした後、更に上記のポリアミンと酸化ホウ素、ハロゲン化ホウ素、ホウ酸、ホウ酸無水物、ホウ酸エステル、およびホウ素酸のアンモニウム塩等のホウ素化合物を反応させて得られる中間体と反応させてイミド化させることによって得られる。
 このホウ素誘導体中のホウ素含有量には、特に制限はないが、好ましいホウ素含有量は、0.05質量%以上5質量%以下、より好ましくは0.1質量%以上3質量%以下である。
In addition to the alkenyl or alkyl succinimide compound, at least one of boron derivatives thereof and those modified with organic acids may be used.
As the boron derivative of the alkenyl or alkyl succinimide compound, those produced by a conventional method can be used.
For example, after reacting the above polyolefin with maleic anhydride to form an alkenyl succinic anhydride, the polyamine and boron oxide, boron halide, boric acid, boric anhydride, boric acid ester, and boric acid It is obtained by reacting with an intermediate obtained by reacting a boron compound such as an ammonium salt and imidizing.
Although there is no restriction | limiting in particular in the boron content in this boron derivative, A preferable boron content is 0.05 to 5 mass%, More preferably, it is 0.1 to 3 mass%.
 上記式(II)で表されるモノタイプのコハク酸イミド化合物、または上記式(III)で表されるビスタイプのコハク酸イミド化合物の配合量は、潤滑油組成物全量基準で、0.5質量%以上15質量%以下が好ましく、より好ましくは1質量%以上10質量%以下である。
 配合量が0.5質量%未満であると、その効果が発揮されにくく、また15質量%を超えてもその配合量に見合った効果は得られない。
 また、コハク酸イミド化合物は、上記の規定量を含有する限り、単独または2種以上を組み合わせて用いてもよい。
The blending amount of the monotype succinimide compound represented by the above formula (II) or the bis type succinimide compound represented by the above formula (III) is 0.5% based on the total amount of the lubricating oil composition. The content is preferably from 15% by mass to 15% by mass, and more preferably from 1% by mass to 10% by mass.
If the blending amount is less than 0.5% by mass, the effect is hardly exhibited, and if it exceeds 15% by mass, an effect commensurate with the blending amount cannot be obtained.
Moreover, a succinimide compound may be used alone or in combination of two or more as long as it contains the specified amount.
 金属系清浄剤としては、潤滑油に用いられる任意のアルカリ土類金属系清浄剤が使用可能であり、例えば、アルカリ土類金属スルフォネート、アルカリ土類金属フェネート、アルカリ土類金属サリシレートおよびこれらの中から選ばれる2種類以上の混合物等が挙げられる。 As the metallic detergent, any alkaline earth metal detergent used for lubricating oils can be used, for example, alkaline earth metal sulfonates, alkaline earth metal phenates, alkaline earth metal salicylates, and the like. And a mixture of two or more selected from.
 アルカリ土類金属スルフォネートとしては、分子量300以上1,500以下、好ましくは400以上700以下のアルキル芳香族化合物をスルフォン化することによって得られるアルキル芳香族スルフォン酸のアルカリ土類金属塩、特にマグネシウム塩および/またはカルシウム塩等が挙げられ、中でもカルシウム塩が好ましく用いられる。 Alkaline earth metal sulfonates include alkaline earth metal salts of alkyl aromatic sulfonic acids, particularly magnesium salts, obtained by sulfonating alkyl aromatic compounds having a molecular weight of 300 to 1,500, preferably 400 to 700. And / or calcium salts and the like, among which calcium salts are preferably used.
 アルカリ土類金属フェネートとしては、アルキルフェノール、アルキルフェノールサルファイド、アルキルフェノールのマンニッヒ反応物のアルカリ土類金属塩、特にマグネシウム塩やカルシウム塩等が挙げられ、中でもカルシウム塩が特に好ましく用いられる。
 アルカリ土類金属サリシレートとしては、アルキルサリチル酸のアルカリ土類金属塩、特にマグネシウム塩やカルシウム塩等が挙げられ、中でもカルシウム塩が好ましく用いられる。
Examples of alkaline earth metal phenates include alkylphenols, alkylphenol sulfides, alkaline earth metal salts of Mannich reactants of alkylphenols, particularly magnesium salts and calcium salts, among which calcium salts are particularly preferably used.
Examples of the alkaline earth metal salicylates include alkaline earth metal salts of alkyl salicylic acid, particularly magnesium salts and calcium salts, among which calcium salts are preferably used.
 前記アルカリ土類金属系清浄剤を構成するアルキル基としては、炭素数4から30までのものが好ましく、より好ましくは6から18までの直鎖または分枝アルキル基であり、これらは直鎖でも分枝でもよい。
 これらはまた1級アルキル基、2級アルキル基または3級アルキル基でもよい。
 また、アルカリ土類金属スルフォネート、アルカリ土類金属フェネートおよびアルカリ土類金属サリシレートとしては、前記のアルキル芳香族スルフォン酸、アルキルフェノール、アルキルフェノールサルファイド、アルキルフェノールのマンニッヒ反応物、アルキルサリチル酸等を直接、マグネシウムおよび/またはカルシウムのアルカリ土類金属の酸化物や水酸化物等のアルカリ土類金属塩基と反応させたり、または一度ナトリウム塩やカリウム塩等のアルカリ金属塩としてからアルカリ土類金属塩と置換させること等により得られる中性アルカリ土類金属スルフォネート、中性アルカリ土類金属フェネートおよび中性アルカリ土類金属サリシレートだけでなく、中性アルカリ土類金属スルフォネート、中性アルカリ土類金属フェネートおよび中性アルカリ土類金属サリシレートと過剰のアルカリ土類金属塩やアルカリ土類金属塩基を水の存在下で加熱することにより得られる塩基性アルカリ土類金属スルフォネート、塩基性アルカリ土類金属フェネートおよび塩基性アルカリ土類金属サリシレートや、炭酸ガスの存在下で中性アルカリ土類金属スルフォネート、中性アルカリ土類金属フェネートおよび中性アルカリ土類金属サリシレートをアルカリ土類金属の炭酸塩またはホウ酸塩を反応させることにより得られる過塩基性アルカリ土類金属スルフォネート、過塩基性アルカリ土類金属フェネートおよび過塩基性アルカリ土類金属サリシレートも含まれる。
The alkyl group constituting the alkaline earth metal detergent is preferably an alkyl group having 4 to 30 carbon atoms, more preferably a linear or branched alkyl group having 6 to 18 carbon atoms, It may be a branch.
These may also be primary alkyl groups, secondary alkyl groups or tertiary alkyl groups.
Further, as the alkaline earth metal sulfonate, alkaline earth metal phenate and alkaline earth metal salicylate, the above alkyl aromatic sulfonic acid, alkylphenol, alkylphenol sulfide, Mannich reaction product of alkylphenol, alkylsalicylic acid, etc. are directly used as magnesium and / or Or it reacts with alkaline earth metal bases such as alkaline earth metal oxides and hydroxides of calcium, or once replaced with alkaline earth metal salts such as sodium salts and potassium salts, etc. Neutral alkaline earth metal sulfonates, neutral alkaline earth metal phenates and neutral alkaline earth metal salicylates as well as neutral alkaline earth metal sulfonates, neutral alkaline earth metal phenates obtained by Basic alkaline earth metal sulfonates, basic alkaline earth metal sulfonates obtained by heating an alkaline earth metal salicylate and excess alkaline earth metal salts or alkaline earth metal bases in the presence of water, Basic alkaline earth metal salicylates or neutral alkaline earth metal sulfonates, neutral alkaline earth metal phenates, and neutral alkaline earth metal salicylates in the presence of carbon dioxide. Also included are overbased alkaline earth metal sulfonates, overbased alkaline earth metal phenates, and overbased alkaline earth metal salicylates obtained by reacting.
 金属系清浄剤としては、上記の中性塩、塩基性塩、過塩基性塩およびこれらの混合物等を用いることができ、特に過塩基性サリチレート、過塩基性フェネート、過塩基性スルフォネートの1種以上と中性スルフォネートとの混合が清浄性、耐摩耗性において好ましい。 As the metallic detergent, the above neutral salts, basic salts, overbased salts, and mixtures thereof can be used, and in particular, one of overbased salicylates, overbased phenates, and overbased sulfonates. Mixing the above with neutral sulfonate is preferable in terms of cleanliness and wear resistance.
 金属系清浄剤の全塩基価は、10mgKOH/g以上500mgKOH/g以下が好ましく、15mgKOH/g以上450mgKOH/g以下がより好ましい。
 なお、ここでいう全塩基価とは、JIS K 2501「石油製品および潤滑油-中和価試験方法」の7.に準拠して測定される電位差滴定法(塩基価・過塩素酸法)による全塩基価を意味する。
The total base number of the metal detergent is preferably 10 mgKOH / g or more and 500 mgKOH / g or less, more preferably 15 mgKOH / g or more and 450 mgKOH / g or less.
The total base number referred to here is JIS K 2501 “Petroleum products and lubricants—Test method for neutralization number”. Means the total base number by potentiometric titration method (base number / perchloric acid method) measured according to the above.
 金属系清浄剤としては、その金属比に特に制限はなく、20以下のものを1種または2種以上混合して使用できるが、好ましくは、金属比が3以下、より好ましく1.5以下、特に好ましくは1.2以下の金属系清浄剤を必須成分とすることが、酸化安定性や塩基価維持性および高温清浄性等により優れるため特に好ましい。
 なお、ここでいう金属比とは、金属系清浄剤における金属元素の価数×金属元素含有量(モル%)/せっけん基含有量(モル%)で表され、金属元素とはカルシウム、マグネシウム等、せっけん基とは、スルフォン酸基、フェノール基およびサリチル酸基等を意味する。
The metal detergent is not particularly limited in its metal ratio, and can be used by mixing one or more of 20 or less, preferably the metal ratio is 3 or less, more preferably 1.5 or less, In particular, it is particularly preferable to use a metal-based detergent of 1.2 or less as an essential component because it is excellent in oxidation stability, base number maintenance, high-temperature cleanability, and the like.
The metal ratio here is expressed by the valence of the metal element in the metal-based detergent × the metal element content (mol%) / the soap group content (mol%). The metal elements are calcium, magnesium, and the like. The soap group means a sulfonic acid group, a phenol group, a salicylic acid group, and the like.
 金属系清浄剤は、一般に、軽質潤滑油基油等で希釈された状態で市販されており、その金属含有量が1質量%から20質量%までのものが好ましく、2質量%から16質量%までのものがより好ましい。
 金属系清浄剤の配合量は、組成物全量基準で、好ましくは0.01質量%以上20質量%以下、より好ましくは0.1質量%以上10質量%以下である。
 配合量が0.01質量%未満であると、その効果が発揮されにくく、また20質量%を超えてもその添加に見合った効果は得られない。
 また、金属系清浄剤は、上記の規定量を含有する限り、単独または2種以上を組み合わせて用いてもよい。
The metal detergent is generally marketed in a state diluted with a light lubricating base oil or the like, and preferably has a metal content of 1% by mass to 20% by mass, preferably 2% by mass to 16% by mass. Those up to are more preferred.
The compounding amount of the metal detergent is preferably 0.01% by mass or more and 20% by mass or less, more preferably 0.1% by mass or more and 10% by mass or less, based on the total amount of the composition.
If the blending amount is less than 0.01% by mass, the effect is hardly exhibited, and even if it exceeds 20% by mass, an effect commensurate with the addition cannot be obtained.
Moreover, as long as a metal type detergent contains said prescribed amount, you may use it individually or in combination of 2 or more types.
 酸化防止剤としては、フェノール系酸化防止剤、アミン系酸化防止剤、モリブデンアミン錯体系酸化防止剤、および硫黄系酸化防止剤等が挙げられる。
 フェノール系酸化防止剤としては、例えば、4,4’-メチレンビス(2,6-ジ-t-ブチルフェノール);4,4’-ビス(2,6-ジ-t-ブチルフェノール);4,4’-ビス(2-メチル-6-t-ブチルフェノール);2,2’-メチレンビス(4-エチル-6-t-ブチルフェノール);2,2’-メチレンビス(4-メチル-6-t-ブチルフェノール);4,4’-ブチリデンビス(3-メチル-6-t-ブチルフェノール);4,4’-イソプロピリデンビス(2,6-ジ-t-ブチルフェノール);2,2’-メチレンビス(4-メチル-6-ノニルフェノール);2,2’-イソブチリデンビス(4,6-ジメチルフェノール);2,2’-メチレンビス(4-メチル-6-シクロヘキシルフェノール);2,6-ジ-t-ブチル-4-メチルフェノール;2,6-ジ-t-ブチル-4-エチルフェノール;2,4-ジメチル-6-t-ブチルフェノール;2,6-ジ-t-アミル-p-クレゾール;2,6-ジ-t-ブチル-4-(N,N’-ジメチルアミノメチルフェノール);4,4’-チオビス(2-メチル-6-t-ブチルフェノール);4,4’-チオビス(3-メチル-6-t-ブチルフェノール);2,2’-チオビス(4-メチル-6-t-ブチルフェノール);ビス(3-メチル-4-ヒドロキシ-5-t-ブチルベンジル)スルフィド;ビス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)スルフィド;n-オクチル-3-(4-ヒドロキシ-3,5-ジ-t-ブチルフェニル)プロピオネート;n-オクタデシル-3-(4-ヒドロキシ-3,5-ジ-t-ブチルフェニル)プロピオネート;2,2’-チオ[ジエチル-ビス-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]などが挙げられる。
 これらの中で、特にビスフェノール系およびエステル基含有フェノール系のものが好適である。
Examples of the antioxidant include phenol-based antioxidants, amine-based antioxidants, molybdenum amine complex-based antioxidants, and sulfur-based antioxidants.
Examples of the phenolic antioxidant include 4,4′-methylenebis (2,6-di-t-butylphenol); 4,4′-bis (2,6-di-t-butylphenol); 4,4 ′ -Bis (2-methyl-6-t-butylphenol); 2,2'-methylenebis (4-ethyl-6-t-butylphenol); 2,2'-methylenebis (4-methyl-6-t-butylphenol); 4,4′-butylidenebis (3-methyl-6-tert-butylphenol); 4,4′-isopropylidenebis (2,6-di-tert-butylphenol); 2,2′-methylenebis (4-methyl-6) -Nonylphenol); 2,2'-isobutylidenebis (4,6-dimethylphenol); 2,2'-methylenebis (4-methyl-6-cyclohexylphenol); 2,6-di-t-butyl 2,6-di-t-butyl-4-ethylphenol; 2,4-dimethyl-6-t-butylphenol; 2,6-di-t-amyl-p-cresol; Di-t-butyl-4- (N, N′-dimethylaminomethylphenol); 4,4′-thiobis (2-methyl-6-tert-butylphenol); 4,4′-thiobis (3-methyl- 6-t-butylphenol); 2,2′-thiobis (4-methyl-6-tert-butylphenol); bis (3-methyl-4-hydroxy-5-tert-butylbenzyl) sulfide; bis (3,5- Di-t-butyl-4-hydroxybenzyl) sulfide; n-octyl-3- (4-hydroxy-3,5-di-t-butylphenyl) propionate; n-octadecyl-3- (4-hydroxy-3, 5-di-t-butylphenyl) propionate; 2,2′-thio [diethyl-bis-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] and the like.
Among these, bisphenol-based and ester group-containing phenol-based ones are particularly preferable.
 また、アミン系酸化防止剤としては、例えば、モノオクチルジフェニルアミン;モノノニルジフェニルアミンなどのモノアルキルジフェニルアミン系、4,4’-ジブチルジフェニルアミン;4,4’-ジペンチルジフェニルアミン;4,4’-ジヘキシルジフェニルアミン;4,4’-ジヘプチルジフェニルアミン;4,4’-ジオクチルジフェニルアミン;4,4’-ジノニルジフェニルアミンなどのジアルキルジフェニルアミン系、テトラブチルジフェニルアミン;テトラヘキシルジフェニルアミン;テトラオクチルジフェニルアミン;テトラノニルジフェニルアミンなどのポリアルキルジフェニルアミン系、およびナフチルアミン系のもの、具体的には、α-ナフチルアミン;フェニル-α-ナフチルアミン;更にはブチルフェニル-α-ナフチルアミン;ペンチルフェニル-α-ナフチルアミン;ヘキシルフェニル-α-ナフチルアミン;ヘプチルフェニル-α-ナフチルアミン;オクチルフェニル-α-ナフチルアミン;ノニルフェニル-α-ナフチルアミンなどのアルキル置換フェニル-α-ナフチルアミンなどが挙げられる。
 これらの中で、ジアルキルジフェニルアミン系およびナフチルアミン系のものが好適である。
Examples of the amine antioxidant include monooctyl diphenylamine; monoalkyl diphenylamines such as monononyl diphenylamine; 4,4′-dibutyldiphenylamine; 4,4′-dipentyldiphenylamine; 4,4′-dihexyldiphenylamine; 4,4′-diheptyldiphenylamine; 4,4′-dioctyldiphenylamine; dialkyldiphenylamines such as 4,4′-dinonyldiphenylamine, tetrabutyldiphenylamine; tetrahexyldiphenylamine; tetraoctyldiphenylamine; polyalkyl such as tetranonyldiphenylamine Diphenylamine type and naphthylamine type, specifically α-naphthylamine; phenyl-α-naphthylamine; and butylphenyl-α-naphth Triethanolamine; pentylphenyl -α- naphthylamine; hexylphenyl -α- naphthylamine; heptylphenyl -α- naphthylamine; octylphenyl -α- naphthylamine; and alkyl-substituted phenyl -α- naphthylamine, such as nonylphenyl -α- naphthylamine.
Of these, those of dialkyldiphenylamine type and naphthylamine type are preferred.
 モリブデンアミン錯体系酸化防止剤としては、6価のモリブデン化合物、具体的には三酸化モリブデンおよびモリブデン酸のうち少なくともいずれかとアミン化合物とを反応させてなるもの、例えば、特開2003-252887号公報に記載の製造方法で得られる化合物を用いることができる。
 6価のモリブデン化合物と反応させるアミン化合物としては特に制限されないが、具体的には、モノアミン、ジアミン、ポリアミンおよびアルカノールアミンが挙げられる。
 より具体的には、メチルアミン、エチルアミン、ジメチルアミン、ジエチルアミン、メチルエチルアミン、メチルプロピルアミン等の炭素数1~30のアルキル基(これらのアルキル基は直鎖状でも分枝状でもよい)を有するアルキルアミン;エテニルアミン、プロペニルアミン、ブテニルアミン、オクテニルアミン、およびオレイルアミン等の炭素数2~30のアルケニル基(これらのアルケニル基は直鎖状でも分枝状でもよい)を有するアルケニルアミン;メタノールアミン、エタノールアミン、メタノールエタノールアミン、メタノールプロパノールアミン等の炭素数1~30のアルカノール基(これらのアルカノール基は直鎖状でも分枝状でもよい)を有するアルカノールアミン;メチレンジアミン、エチレンジアミン、プロピレンジアミン、およびブチレンジアミン等の炭素数1~30のアルキレン基を有するアルキレンジアミン;ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン等のポリアミン;ウンデシルジエチルアミン、ウンデシルジエタノールアミン、ドデシルジプロパノールアミン、オレイルジエタノールアミン、オレイルプロピレンジアミン、ステアリルテトラエチレンペンタミン等の上記モノアミン、ジアミン、ポリアミンに炭素数8から20までのアルキル基またはアルケニル基を有する化合物やイミダゾリン等の複素環化合物;これらの化合物のアルキレンオキシド付加物;およびこれらの混合物等が例示できる。
 また、特公平3-22438号公報および特開2004-2866公報に記載されているコハク酸イミドの硫黄含有モリブデン錯体等が例示できる。
As the molybdenum amine complex-based antioxidant, a hexavalent molybdenum compound, specifically, a product obtained by reacting at least one of molybdenum trioxide and molybdic acid with an amine compound, for example, JP-A-2003-252887 The compound obtained by the production method described in 1. can be used.
Although it does not restrict | limit especially as an amine compound made to react with a hexavalent molybdenum compound, Specifically, a monoamine, diamine, a polyamine, and an alkanolamine are mentioned.
More specifically, it has an alkyl group having 1 to 30 carbon atoms such as methylamine, ethylamine, dimethylamine, diethylamine, methylethylamine, methylpropylamine and the like (these alkyl groups may be linear or branched). Alkylamines; alkenylamines having 2 to 30 carbon atoms such as ethenylamine, propenylamine, butenylamine, octenylamine, and oleylamine (these alkenyl groups may be linear or branched); methanolamine, ethanolamine Alkanolamines having 1-30 carbon atoms such as methanolethanolamine, methanolpropanolamine, etc. (these alkanol groups may be linear or branched); methylenediamine, ethylenediamine, propylene Amines and alkylenediamines having 1-30 carbon atoms such as butylenediamine; polyamines such as diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine; undecyldiethylamine, undecyldiethanolamine, dodecyldipropanolamine , Oleyldiethanolamine, oleylpropylenediamine, stearyltetraethylenepentamine and the like monoamines, diamines, polyamines having an alkyl or alkenyl group having 8 to 20 carbon atoms, and heterocyclic compounds such as imidazoline; alkylenes of these compounds Examples thereof include oxide adducts; and mixtures thereof.
Examples thereof include a sulfur-containing molybdenum complex of succinimide described in JP-B-3-22438 and JP-A-2004-2866.
 硫黄系酸化防止剤としては、例えばフェノチアジン、ペンタエリスリトール-テトラキス-(3-ラウリルチオプロピオネート)、ジドデシルサルファイド、ジオクタデシルサルファイド、ジドデシルチオジプロピオネート、ジオクタデシルチオジプロピオネート、ジミリスチルチオジプロピオネート、ドデシルオクタデシルチオジプロピオネート、2-メルカプトベンゾイミダゾールなどが挙げられる。
 これらの酸化防止剤の配合量は、組成物全量基準で、0.1質量%以上5質量%以下が好ましく、より好ましくは0.1質量%以上3質量%以下である。
Examples of sulfur-based antioxidants include phenothiazine, pentaerythritol-tetrakis- (3-laurylthiopropionate), didodecyl sulfide, dioctadecyl sulfide, didodecylthiodipropionate, dioctadecylthiodipropionate, dimyristyl. Examples thereof include thiodipropionate, dodecyl octadecyl thiodipropionate, and 2-mercaptobenzimidazole.
The blending amount of these antioxidants is preferably 0.1% by mass or more and 5% by mass or less, more preferably 0.1% by mass or more and 3% by mass or less, based on the total amount of the composition.
 耐摩耗剤または極圧剤としては、ジチオリン酸亜鉛、リン酸亜鉛、ジチオカルバミン酸亜鉛、ジスルフィド類、硫化オレフィン類、硫化油脂類、硫化エステル類、チオカーボネート類、チオカーバメート類、ポリサルファイド類等の硫黄含有化合物;亜リン酸エステル類、リン酸エステル類、ホスホン酸エステル類、およびこれらのアミン塩または金属塩等のリン含有化合物;チオ亜リン酸エステル類、チオリン酸エステル類、チオホスホン酸エステル類、およびこれらのアミン塩または金属塩等の硫黄およびリン含有耐摩耗剤が挙げられる。
 耐摩耗剤または極圧剤の好ましい配合量は、組成物全量基準で、0.1質量%以上、20質量%以下の範囲である。
 なお、亜鉛含有化合物の場合、亜鉛換算(組成物全量基準)で600質量ppm以下が好ましく、より好ましくは500質量ppm以下であり、さらに好ましくは400質量ppm以下である。また、リン含有化合物の場合、リン換算(組成物全量基準)で500質量ppm以下が好ましく、より好ましくは400質量ppm以下であり、さらに好ましくは300質量ppm以下である。亜鉛の配合量が600質量ppm以下、リンの配合量が500質量ppm以下であると、本組成物を用いても、塩基性化合物を消耗し更油期間が極端に短くなるというような不具合が生じない。
Antiwear or extreme pressure agents include zinc dithiophosphate, zinc phosphate, zinc dithiocarbamate, disulfides, sulfurized olefins, sulfurized fats and oils, sulfurized esters, thiocarbonates, thiocarbamates, polysulfides, etc. Containing compounds; phosphorous esters, phosphate esters, phosphonate esters, and phosphorus-containing compounds such as amine salts or metal salts thereof; thiophosphite esters, thiophosphate esters, thiophosphonate esters, And sulfur and phosphorus containing antiwear agents such as amine salts or metal salts thereof.
A preferable blending amount of the antiwear agent or extreme pressure agent is in the range of 0.1% by mass or more and 20% by mass or less based on the total amount of the composition.
In the case of a zinc-containing compound, it is preferably 600 ppm by mass or less, more preferably 500 ppm by mass or less, and still more preferably 400 ppm by mass or less in terms of zinc (based on the total amount of the composition). Moreover, in the case of a phosphorus containing compound, 500 mass ppm or less is preferable in phosphorus conversion (composition whole quantity basis), More preferably, it is 400 mass ppm or less, More preferably, it is 300 mass ppm or less. When the blending amount of zinc is 600 mass ppm or less and the blending amount of phosphorus is 500 mass ppm or less, there is a problem that even if this composition is used, the basic compound is consumed and the oil renewal period becomes extremely short. Does not occur.
 摩擦低減剤としては、潤滑油用の摩擦低減剤として一般に用いられている任意の化合物が使用可能であり、例えば、炭素数6から30までのアルキル基またはアルケニル基を分子中に少なくとも1個有する、脂肪酸エステル、脂肪酸アミド、脂肪酸、脂肪族アルコール、脂肪族アミン、および脂肪族エーテル等の無灰摩擦低減剤が挙げられる。
 摩擦低減剤の配合量は、組成物全量基準で、好ましくは0.01質量%以上2質量%以下、より好ましくは0.01質量%以上1質量%以下である。
As the friction reducing agent, any compound generally used as a friction reducing agent for lubricating oils can be used. For example, it has at least one alkyl group or alkenyl group having 6 to 30 carbon atoms in the molecule. Ashless friction reducing agents such as fatty acid esters, fatty acid amides, fatty acids, aliphatic alcohols, aliphatic amines, and aliphatic ethers.
The blending amount of the friction reducing agent is preferably 0.01% by mass or more and 2% by mass or less, more preferably 0.01% by mass or more and 1% by mass or less, based on the total amount of the composition.
 金属不活性剤としては、ベンゾトリアゾール系、トリルトリアゾール系、チアジアゾール系、およびイミダゾール系化合物等が挙げられる。
 金属不活性剤の配合量は、組成物全量基準で、0.01質量%以上3質量%以下が好ましく、より好ましくは0.01質量%以上1質量%以下である。
Examples of the metal deactivator include benzotriazole, tolyltriazole, thiadiazole, and imidazole compounds.
The compounding amount of the metal deactivator is preferably 0.01% by mass or more and 3% by mass or less, more preferably 0.01% by mass or more and 1% by mass or less, based on the total amount of the composition.
 防錆剤としては、石油スルフォネート、アルキルベンゼンスルホネート、ジノニルナフタレンスルホネート、アルケニルコハク酸エステル、および多価アルコールエステル等が挙げられる。
 これら防錆剤の配合量は、配合効果の点から、潤滑油組成物全量基準で、0.01質量%以上1質量%以下が好ましく、より好ましくは0.05質量%以上0.5質量%以下である。
Examples of the rust preventive agent include petroleum sulfonate, alkylbenzene sulfonate, dinonylnaphthalene sulfonate, alkenyl succinate, and polyhydric alcohol ester.
The blending amount of these rust preventives is preferably 0.01% by weight or more and 1% by weight or less, more preferably 0.05% by weight or more and 0.5% by weight, based on the total amount of the lubricating oil composition, from the viewpoint of blending effects. It is as follows.
 界面活性剤または抗乳化剤としては、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテルおよびポリオキシエチレンアルキルナフチルエーテル等のポリアルキレングリコール系非イオン性界面活性剤等が挙げられる。
 界面活性剤または抗乳化剤の配合量は、組成物全量基準で、0.01質量%以上3質量%以下が好ましく、より好ましくは0.01質量%以上1質量%以下である。
Examples of the surfactant or demulsifier include polyalkylene glycol nonionic surfactants such as polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether and polyoxyethylene alkyl naphthyl ether.
The blending amount of the surfactant or the demulsifier is preferably 0.01% by mass or more and 3% by mass or less, more preferably 0.01% by mass or more and 1% by mass or less, based on the total amount of the composition.
 消泡剤としては、シリコーン油、フルオロシリコーン油およびフルオロアルキルエーテル等が挙げられ、消泡効果および経済性のバランスなどの点から、組成物全量基準で、0.005質量%以上0.5質量%以下が好ましく、より好ましくは0.01質量%以上0.2質量%以下である。 Examples of the antifoaming agent include silicone oil, fluorosilicone oil, and fluoroalkyl ether, and 0.005% by mass or more and 0.5% by mass on the basis of the total amount of the composition from the viewpoint of balance of defoaming effect and economy. % Or less, more preferably 0.01% by mass or more and 0.2% by mass or less.
 本発明を実施例によりさらに詳細に説明するが、本発明はこれらの例によってなんら限定されるものではない。
 各例における潤滑油組成物(試料油)の性状、および実用性能(モータリング特性)は以下に示す方法で求めた。
The present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
The properties and practical performance (motoring characteristics) of the lubricating oil composition (sample oil) in each example were determined by the following methods.
(1)100℃における動粘度
 JIS K2283に記載の方法に準拠して測定した。なお、混合基油についても100℃における動粘度を測定した。
(2)NOACK
 ASTM D 5800-08に準拠して蒸発損失量を測定した。 
(3)CCS粘度(コールドクランキングシミュレータ粘度)
 JIS K2010に準拠して-35℃におけるせん断粘度を測定した。
(4)粘度指数
 JIS K2283に記載の方法に準拠して、粘度指数を算出した。
(5)モータリング特性
 以下に示すようなモータリング試験を行った。
 「直列4気筒、DOHC、1500cc」のエンジンを用いて、油温60℃,80℃,および100℃、回転数1500rpm,2000rpm,および2500rpmの各条件で駆動トルクを測定し、全データ(9つ)の平均値を、試料油の駆動トルク値とした。そして、市販ACEA C2 5W-30(100℃における動粘度;10.29mm/s、NOACK;14.3質量%、CCS粘度(-35℃);7700mPa・s、粘度指数172)を基準油として用い、基準油対比の駆動トルク値をトルク改善率とし、以下に示す基準でモータリング特性(省燃費性)を評価した。
 A:基準油より優れる。(基準油対比のトルク改善率:1.5%以上)
 B:基準油より優れる。(基準油対比のトルク改善率:1.5%未満)
 C:基準油より劣る。
(1) Kinematic viscosity at 100 ° C. Measured according to the method described in JIS K2283. The kinematic viscosity at 100 ° C. was also measured for the mixed base oil.
(2) NOACK
The amount of evaporation loss was measured according to ASTM D 5800-08.
(3) CCS viscosity (cold cranking simulator viscosity)
The shear viscosity at −35 ° C. was measured according to JIS K2010.
(4) Viscosity index The viscosity index was calculated based on the method described in JIS K2283.
(5) Motoring characteristics The following motoring tests were performed.
Using an in-line 4-cylinder, DOHC, 1500 cc engine, drive torque was measured under conditions of oil temperatures of 60 ° C., 80 ° C., and 100 ° C., rotation speeds of 1500 rpm, 2000 rpm, and 2500 rpm, and all data (9 ) Was used as the driving torque value of the sample oil. Then, commercially available ACEA C2 5W-30 (kinematic viscosity at 100 ° C .; 10.29 mm 2 / s, NOACK; 14.3% by mass, CCS viscosity (−35 ° C.); 7700 mPa · s, viscosity index 172) is used as a reference oil. The driving torque value compared to the reference oil was used as the torque improvement rate, and the motoring characteristics (fuel economy) were evaluated according to the following criteria.
A: Superior to reference oil. (Torque improvement rate compared to standard oil: 1.5% or more)
B: Superior to reference oil. (Torque improvement rate compared to standard oil: less than 1.5%)
C: Inferior to the reference oil.
 基油のうち、後述するmPAOは、以下のようにして製造した。
<製造例:1-デセンオリゴマー(3量体)水素添加物の製造>
(a)デセンのオリゴマー化
 内容積5リットルの三つ口フラスコに、不活性ガス気流下、デセンモノマー(出光興産(株)製:リニアレン10)4リットル(21.4モル)を仕込み、更に、トルエンに溶解したビスシクロペンタジエニルジルコニウムジクロリド(錯体質量1168mg:4ミリモル)と同じくトルエンに溶解したメチルアルモキサン(Al換算:40ミリモル)を添加した。これらの混合物を40℃に保ち、20時間攪拌を行った後、メタノール20mlを添加してオリゴマー化反応を停止させた。次いで、反応混合物をオートクレーブから取出し、これに5モル/リットルの水酸化ナトリウム水溶液4リットルを添加し、室温で強制攪拌を4時間した後、分液操作を行なった。上層の有機層を取出し、未反応のデセンおよび副反応生成物のデセン異性体をストリッピングして除去した。
(b)デセンオリゴマーの水素化
 内容積5リットルのオートクレーブに、窒素気流下、(a)で製造したデセンオリゴマー3リットルを入れ、トルエンに溶解させたコバルトトリスアセチルアセトナート(触媒重量3.0g)とトルエンで希釈したトリイソブチルアルミニウム(30ミリモル)を添加した。添加後、水素で系内を2回置換してから、昇温し、反応温度80℃で、水素圧を0.9MPaに保持した。水素化は発熱を伴いながら直ちに進行し、反応開始後4時間の時点で降温し、反応を停止した。その後、脱圧し、内容物を取出してから、反応生成物を単蒸留し、留出温度240℃から270℃までの範囲で、圧力530Paの留分(1-デセンの3量体の水素添加物)を分離した。
Among the base oils, mPAO described later was manufactured as follows.
<Production Example: Production of 1-decene oligomer (trimer) hydrogenated product>
(A) Oligomerization of decene A three-necked flask with an internal volume of 5 liters was charged with 4 liters (21.4 mol) of decene monomer (Idemitsu Kosan Co., Ltd .: Linearlen 10) under an inert gas stream. Methylalumoxane (Al conversion: 40 mmol) dissolved in toluene was added in the same manner as biscyclopentadienylzirconium dichloride (complex mass 1168 mg: 4 mmol) dissolved in toluene. These mixtures were kept at 40 ° C. and stirred for 20 hours, and then 20 ml of methanol was added to stop the oligomerization reaction. Next, the reaction mixture was taken out of the autoclave, 4 liters of a 5 mol / liter sodium hydroxide aqueous solution was added thereto, the mixture was forcedly stirred at room temperature for 4 hours, and then a liquid separation operation was performed. The upper organic layer was removed, and unreacted decene and side reaction product decene isomers were removed by stripping.
(B) Hydrogenation of decene oligomer Cobalt trisacetylacetonate (catalyst weight: 3.0 g) in which 3 liters of decene oligomer produced in (a) was placed in an autoclave with an internal volume of 5 liters under nitrogen flow and dissolved in toluene And triisobutylaluminum diluted with toluene (30 mmol) were added. After the addition, the inside of the system was replaced with hydrogen twice, and then the temperature was raised. The hydrogen pressure was maintained at 0.9 MPa at a reaction temperature of 80 ° C. Hydrogenation proceeded immediately with exotherm, the temperature was lowered at 4 hours after the start of the reaction, and the reaction was stopped. Then, after depressurizing and taking out the contents, the reaction product is subjected to simple distillation, and a fraction at a pressure of 530 Pa in the range of a distillation temperature from 240 ° C. to 270 ° C. (1-decene trimer hydrogenated product) ).
〔実施例1から3まで、比較例1から4まで〕
 以下のようなPAO、鉱油および添加剤を用い、表1に示す配合組成の潤滑油組成物(試料油)を調製した。各試料油の性状、および各種性能についても併せて表1に示す。
・PAO-1:INEOS社製、Durasyn125(100℃における動粘度;5.196mm/s、NOACK;5.5質量%、CCS粘度(-35℃);2490mPa・s、粘度指数;143)
・PAO-2:INEOS社製、Durasyn145(100℃における動粘度;5.194mm/s、NOACK;5.1質量%、CCS粘度(-35℃);2570mPa・s、粘度指数;145)
・PAO-3:上記製造例で得られたmPAO(100℃における動粘度;3.458mm/s、NOACK;11.1質量%、CCS粘度(-35℃);800mPa・s、粘度指数;127)
[Examples 1 to 3, Comparative Examples 1 to 4]
A lubricating oil composition (sample oil) having the composition shown in Table 1 was prepared using the following PAO, mineral oil, and additives. The properties of each sample oil and various performances are also shown in Table 1.
PAO-1: manufactured by INEOS, Durasyn 125 (kinematic viscosity at 100 ° C .; 5.196 mm 2 / s, NOACK; 5.5% by mass, CCS viscosity (−35 ° C.); 2490 mPa · s, viscosity index; 143)
PAO-2: manufactured by INEOS, Durasyn 145 (kinematic viscosity at 100 ° C .; 5.194 mm 2 / s, NOACK; 5.1% by mass, CCS viscosity (−35 ° C.); 2570 mPa · s, viscosity index; 145)
PAO-3: mPAO obtained in the above production example (kinematic viscosity at 100 ° C .; 3.458 mm 2 / s, NOACK; 11.1% by mass, CCS viscosity (−35 ° C.); 800 mPa · s, viscosity index; 127)
・PAO-4:INEOS社製、Durasyn164(100℃における動粘度;3.893mm/s、NOACK;14.0質量%、CCS粘度(-35℃);1330mPa・s、粘度指数;120)
・PAO-5:INEOS社製、Durasyn166(100℃における動粘度;5.824mm/s、NOACK;6.0質量%、CCS粘度(-35℃);3950mPa・s、粘度指数;178)
・鉱油-1:水素化精製鉱油(100℃における動粘度;4.121mm/s、NOACK;14.1質量%、CCS粘度(-35℃);1870mPa・s、粘度指数;122)
・鉱油-2:水素化精製鉱油(100℃における動粘度;6.483mm/s、NOACK;7.5質量%、CCS粘度(-35℃);10100mPa・s、粘度指数;121)
PAO-4: manufactured by INEOS, Durasyn 164 (kinematic viscosity at 100 ° C .; 3.893 mm 2 / s, NOACK; 14.0% by mass, CCS viscosity (−35 ° C.); 1330 mPa · s, viscosity index; 120)
PAO-5: manufactured by INEOS, Durasyn 166 (kinematic viscosity at 100 ° C .; 5.824 mm 2 / s, NOACK; 6.0 mass%, CCS viscosity (−35 ° C.); 3950 mPa · s, viscosity index; 178)
Mineral oil-1: hydrorefined mineral oil (kinematic viscosity at 100 ° C .; 4.121 mm 2 / s, NOACK; 14.1% by mass, CCS viscosity (−35 ° C.); 1870 mPa · s, viscosity index; 122)
Mineral oil-2: hydrorefined mineral oil (kinematic viscosity at 100 ° C .; 6.483 mm 2 / s, NOACK; 7.5 mass%, CCS viscosity (−35 ° C.); 10100 mPa · s, viscosity index; 121)
・添加剤パッケージ:Infineum社製、infineum P6000
・粘度指数向上剤:ポリメタクリレート(質量平均分子量230,000、樹脂分45質量%(表1の配合量は、樹脂分も含めた全量である。))
・流動点降下剤:ポリアルキルメタクリレート(質量平均分子量6,000)
Additive package: Infineum P6000 manufactured by Infineum
Viscosity index improver: polymethacrylate (mass average molecular weight 230,000, resin content 45% by mass (the compounding amount in Table 1 is the total amount including the resin content))
Pour point depressant: polyalkyl methacrylate (mass average molecular weight 6,000)
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
〔評価結果〕
 表1に示すように、本組成物の構成を全て備えた実施例1から3までの試料油は、特定の性状を有するPAOと特定の性状を有する鉱油が配合されているので、低蒸発性でありながら低粘度であって省燃費性に優れていることがわかる。また、低温における流動性にも優れている。省燃費性に優れることはモータリング試験の結果からも明らかである。それ故、本組成物は、通常の内燃機関だけでなく、ターボ機構を備えたガソリンエンジンやディーゼルエンジンに対しても好適である。
 一方、比較例の各試料油は、いずれも所定のPAOが配合されていないので、低蒸発性と省燃費性の双方を満足することができない。
〔Evaluation results〕
As shown in Table 1, since the sample oils of Examples 1 to 3 having all of the composition of the present composition are blended with PAO having a specific property and mineral oil having a specific property, low evaporation property However, it can be seen that it has low viscosity and excellent fuel economy. It also has excellent fluidity at low temperatures. It is clear from the results of the motoring test that fuel efficiency is excellent. Therefore, the present composition is suitable not only for ordinary internal combustion engines but also for gasoline engines and diesel engines having a turbo mechanism.
On the other hand, since each sample oil of the comparative example does not contain a predetermined PAO, it cannot satisfy both low evaporation and fuel economy.

Claims (7)

  1.  (A)100℃における動粘度が5.5mm/s以下、-35℃におけるCCS粘度が3000mPa・s以下、NOACKが12質量%以下であるポリα-オレフィンと、
     (B)粘度指数が120以上である鉱油とを配合してなり、
     組成物全量基準で、前記(A)成分の配合量が10質量%以上である
     ことを特徴とする内燃機関用潤滑油組成物。
    (A) a polyα-olefin having a kinematic viscosity at 100 ° C. of 5.5 mm 2 / s or less, a CCS viscosity at −35 ° C. of 3000 mPa · s or less, and NOACK of 12% by mass or less;
    (B) blended with mineral oil having a viscosity index of 120 or more,
    The lubricating oil composition for an internal combustion engine, wherein the blending amount of the component (A) is 10% by mass or more based on the total amount of the composition.
  2.  請求項1に記載の内燃機関用潤滑油組成物において、
     前記(A)成分と(B)成分とを配合してなる基油の100℃における動粘度が4.35mm/s以下である
     ことを特徴とする内燃機関用潤滑油組成物。
    The lubricating oil composition for an internal combustion engine according to claim 1,
    A lubricating oil composition for an internal combustion engine, wherein the base oil obtained by blending the component (A) and the component (B) has a kinematic viscosity at 100 ° C. of 4.35 mm 2 / s or less.
  3.  請求項1または請求項2に記載の内燃機関用潤滑油組成物において、
     該組成物のNOACKが13質量%以下であり、-35℃におけるCCS粘度が5500mPa・s以下である
     ことを特徴とする内燃機関用潤滑油組成物。
    In the lubricating oil composition for internal combustion engines according to claim 1 or 2,
    A lubricating oil composition for an internal combustion engine, wherein the composition has a NOACK of 13% by mass or less and a CCS viscosity at −35 ° C. of 5500 mPa · s or less.
  4.  請求項1から請求項3までのいずれか1項に記載の内燃機関用潤滑油組成物において、
     前記(B)成分の配合量が組成物全量基準で50質量%以上である
     ことを特徴とする内燃機関用潤滑油組成物。
    In the lubricating oil composition for internal combustion engines according to any one of claims 1 to 3,
    The lubricating oil composition for an internal combustion engine, wherein the blending amount of the component (B) is 50% by mass or more based on the total amount of the composition.
  5.  請求項1から請求項4までのいずれか1項に記載の内燃機関用潤滑油組成物において、
     前記(A)成分がメタロセン触媒により重合してなる
     ことを特徴とする内燃機関用潤滑油組成物。
    In the lubricating oil composition for an internal combustion engine according to any one of claims 1 to 4,
    The lubricating oil composition for an internal combustion engine, wherein the component (A) is polymerized with a metallocene catalyst.
  6.  請求項1から請求項5までのいずれか1項に記載の内燃機関用潤滑油組成物において、
     前記(A)成分が炭素数10から14までのα-オレフィンから選ばれた少なくともいずれかをモノマーとするポリα-オレフィンである
     ことを特徴とする内燃機関用潤滑油組成物。
    In the lubricating oil composition for an internal combustion engine according to any one of claims 1 to 5,
    A lubricating oil composition for an internal combustion engine, wherein the component (A) is a poly α-olefin having at least one selected from α-olefins having 10 to 14 carbon atoms as a monomer.
  7.  請求項1から請求項6までのいずれか1項に記載の内燃機関用潤滑油組成物において、
     前記(A)成分が3量体である
     ことを特徴とする内燃機関用潤滑油組成物。
    The lubricating oil composition for an internal combustion engine according to any one of claims 1 to 6,
    The lubricating oil composition for an internal combustion engine, wherein the component (A) is a trimer.
PCT/JP2011/058292 2010-04-02 2011-03-31 Lubricant composition for an internal combustion engine WO2011125880A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020127028724A KR20130103651A (en) 2010-04-02 2011-03-31 Lubricant composition for an internal combustion engine
US13/639,048 US9023191B2 (en) 2010-04-02 2011-03-31 Lubricant composition for an internal combustion engine and method for lubricating an internal combustion engine
JP2012509595A JP6151914B2 (en) 2010-04-02 2011-03-31 Lubricating oil composition for internal combustion engines
EP11765780.9A EP2554642A4 (en) 2010-04-02 2011-03-31 Lubricant composition for an internal combustion engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-086582 2010-04-02
JP2010086582 2010-04-02

Publications (1)

Publication Number Publication Date
WO2011125880A1 true WO2011125880A1 (en) 2011-10-13

Family

ID=44762818

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/058292 WO2011125880A1 (en) 2010-04-02 2011-03-31 Lubricant composition for an internal combustion engine

Country Status (5)

Country Link
US (1) US9023191B2 (en)
EP (1) EP2554642A4 (en)
JP (1) JP6151914B2 (en)
KR (1) KR20130103651A (en)
WO (1) WO2011125880A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013055480A1 (en) 2011-10-10 2013-04-18 Exxonmobil Research And Engineering Company Low viscosity engine oil compositions

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015152143A1 (en) * 2014-03-31 2015-10-08 出光興産株式会社 Lubricating-oil composition
CN105802704B (en) * 2015-01-21 2020-04-17 精工电子有限公司 Grease, rolling bearing device, and information recording/reproducing device
CN105802716B (en) 2015-01-21 2020-03-24 精工电子有限公司 Grease for rolling bearing, rolling bearing device, and information recording/reproducing device
SG11201907681QA (en) * 2017-02-22 2019-09-27 Sonoda Co Ltd A lubricant additive and process for manufacturing the same
US10858610B2 (en) * 2017-03-24 2020-12-08 Exxonmobil Chemical Patents Inc. Cold cranking simulator viscosity boosting base stocks and lubricating oil formulations containing the same
US10876062B2 (en) * 2017-03-24 2020-12-29 Exxonmobil Chemical Patents Inc. Cold cranking simulator viscosity boosting base stocks and lubricating oil formulations containing the same
US10808196B2 (en) * 2017-03-28 2020-10-20 Exxonmobil Chemical Patents Inc. Cold cranking simulator viscosity reducing base stocks and lubricating oil formulations containing the same
CN109321337A (en) * 2018-11-01 2019-02-12 江苏龙蟠科技股份有限公司 A kind of engine oil composition and preparation method with low-friction coefficient
US11840908B2 (en) 2020-10-01 2023-12-12 Saudi Arabian Oil Company Acidizing fluid and method of improving hydrocarbon recovery using the same utilizing a surfactant consisting of an oil mixture

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62240385A (en) * 1986-03-31 1987-10-21 Idemitsu Kosan Co Ltd Lubricating oil composition
JPH0322438B2 (en) 1981-04-27 1991-03-26 Chevron Res
JPH10114895A (en) * 1996-10-11 1998-05-06 Idemitsu Kosan Co Ltd Lubricating oil composition for internal combustion engine
JPH10330778A (en) * 1997-05-30 1998-12-15 Tonen Corp Lubricating oil composition
JP2003252887A (en) 2002-03-04 2003-09-10 Asahi Denka Kogyo Kk Method for producing molybdenum amine compound
JP2004002866A (en) 2002-05-31 2004-01-08 Chevron Oronite Co Llc Molybdenum-containing composition with reduced color and its preparation process
JP2008533274A (en) 2005-03-17 2008-08-21 エクソンモービル・ケミカル・パテンツ・インク Blends containing Group III and Group IV base stock
JP2008231189A (en) * 2007-03-19 2008-10-02 Nippon Oil Corp Lubricant composition
JP2008231192A (en) * 2007-03-19 2008-10-02 Nippon Oil Corp Lubricant composition
JP2008231191A (en) * 2007-03-19 2008-10-02 Nippon Oil Corp Lubricant composition
JP2008231190A (en) * 2007-03-19 2008-10-02 Nippon Oil Corp Lubricant composition
JP2009510214A (en) 2005-09-30 2009-03-12 エクソンモービル・ケミカル・パテンツ・インク Blends containing Group II and Group IV base stocks

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0322438A (en) 1989-06-20 1991-01-30 Oki Electric Ind Co Ltd Manufacture of bipolar semiconductor integrated circuit device
JP5185489B2 (en) 2004-04-20 2013-04-17 出光興産株式会社 Base oil for lubricating oil comprising decene oligomer hydride, lubricating oil composition, and method for producing decene oligomer hydride
JP5390738B2 (en) 2005-11-15 2014-01-15 出光興産株式会社 Lubricating oil composition for internal combustion engines
EP2011854A4 (en) 2006-03-31 2012-03-07 Idemitsu Kosan Co Lubricating oil composition for internal combustion engine
JP5565999B2 (en) 2007-01-31 2014-08-06 Jx日鉱日石エネルギー株式会社 Lubricating oil composition
US7871966B2 (en) 2007-03-19 2011-01-18 Nippon Oil Corporation Lubricating oil composition
CN101883838B (en) * 2007-11-29 2014-03-19 伊内奥斯美国公司 Low viscosity oligomer oil product, process, and composition
JP5690041B2 (en) 2008-03-25 2015-03-25 Jx日鉱日石エネルギー株式会社 Lubricating oil base oil, method for producing the same, and lubricating oil composition
JP5345808B2 (en) * 2008-07-25 2013-11-20 Jx日鉱日石エネルギー株式会社 Engine oil composition

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0322438B2 (en) 1981-04-27 1991-03-26 Chevron Res
JPS62240385A (en) * 1986-03-31 1987-10-21 Idemitsu Kosan Co Ltd Lubricating oil composition
JPH10114895A (en) * 1996-10-11 1998-05-06 Idemitsu Kosan Co Ltd Lubricating oil composition for internal combustion engine
JPH10330778A (en) * 1997-05-30 1998-12-15 Tonen Corp Lubricating oil composition
JP2003252887A (en) 2002-03-04 2003-09-10 Asahi Denka Kogyo Kk Method for producing molybdenum amine compound
JP2004002866A (en) 2002-05-31 2004-01-08 Chevron Oronite Co Llc Molybdenum-containing composition with reduced color and its preparation process
JP2008533274A (en) 2005-03-17 2008-08-21 エクソンモービル・ケミカル・パテンツ・インク Blends containing Group III and Group IV base stock
JP2009510214A (en) 2005-09-30 2009-03-12 エクソンモービル・ケミカル・パテンツ・インク Blends containing Group II and Group IV base stocks
JP2008231189A (en) * 2007-03-19 2008-10-02 Nippon Oil Corp Lubricant composition
JP2008231192A (en) * 2007-03-19 2008-10-02 Nippon Oil Corp Lubricant composition
JP2008231191A (en) * 2007-03-19 2008-10-02 Nippon Oil Corp Lubricant composition
JP2008231190A (en) * 2007-03-19 2008-10-02 Nippon Oil Corp Lubricant composition

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2554642A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013055480A1 (en) 2011-10-10 2013-04-18 Exxonmobil Research And Engineering Company Low viscosity engine oil compositions
WO2013055482A1 (en) 2011-10-10 2013-04-18 Exxonmobil Research And Engineering Company Lubricating compositions
WO2013055481A1 (en) 2011-10-10 2013-04-18 Exxonmobil Research And Engineering Company High efficiency engine oil compositions
US9234150B2 (en) 2011-10-10 2016-01-12 Exxonmobil Research And Engineering Company Low viscosity engine oil compositions
US9234151B2 (en) 2011-10-10 2016-01-12 Exxonmobil Research And Engineering Company Lubricating compositions
US9234152B2 (en) 2011-10-10 2016-01-12 Exxonmobil Research And Engineering Company High efficiency engine oil compositions

Also Published As

Publication number Publication date
EP2554642A1 (en) 2013-02-06
JP6151914B2 (en) 2017-06-21
US20130023705A1 (en) 2013-01-24
KR20130103651A (en) 2013-09-24
JPWO2011125880A1 (en) 2013-07-11
EP2554642A4 (en) 2013-10-09
US9023191B2 (en) 2015-05-05

Similar Documents

Publication Publication Date Title
JP6151914B2 (en) Lubricating oil composition for internal combustion engines
JP5878863B2 (en) Lubricating oil composition for internal combustion engines
JP5952846B2 (en) Lubricating oil composition
JP5745277B2 (en) Gear lubricant
JP5787484B2 (en) Lubricating oil composition
JP5667166B2 (en) Lubricating oil composition for internal combustion engines
US20120190601A1 (en) Viscosity modifier for lubricating oils, additive composition for lubricating oils, and lubricating oil composition
JP2018199836A (en) Lubricate oil composition
JP5555478B2 (en) Lubricating oil composition for transmission
JP5879396B2 (en) Lubricating oil composition
JP2013256561A (en) Lubricating oil composition
JP2012107142A (en) Lubricant composition
WO2020132166A1 (en) Lubricating oil compositions with antioxidant formation and dissipation control
WO2020132164A1 (en) Lubricating oil compositions with viscosity control
WO2020131310A1 (en) Method for improving high temperature antifoaming performance of a lubricating oil
JP2014105220A (en) Lubricant composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11765780

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012509595

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13639048

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2011765780

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011765780

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127028724

Country of ref document: KR

Kind code of ref document: A