WO2011125614A1 - Curable composition for use in a heat-resistant component in a semiconductor, liquid crystal, solar cell, or organic el manufacturing device - Google Patents

Curable composition for use in a heat-resistant component in a semiconductor, liquid crystal, solar cell, or organic el manufacturing device Download PDF

Info

Publication number
WO2011125614A1
WO2011125614A1 PCT/JP2011/057673 JP2011057673W WO2011125614A1 WO 2011125614 A1 WO2011125614 A1 WO 2011125614A1 JP 2011057673 W JP2011057673 W JP 2011057673W WO 2011125614 A1 WO2011125614 A1 WO 2011125614A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
heat
curable composition
elastomer
mol
Prior art date
Application number
PCT/JP2011/057673
Other languages
French (fr)
Japanese (ja)
Inventor
恵子 鷲野
昌二 福岡
小西 智久
栄作 角野
剛 野口
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2011125614A1 publication Critical patent/WO2011125614A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/02Sealings between relatively-stationary surfaces
    • F16J15/06Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces
    • F16J15/10Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with non-metallic packing
    • F16J15/102Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with non-metallic packing characterised by material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0025Crosslinking or vulcanising agents; including accelerators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/43Compounds containing sulfur bound to nitrogen

Definitions

  • the present invention relates to a heat-resistant component of a semiconductor, liquid crystal, solar battery, or organic electroluminescence (EL) manufacturing apparatus containing a vinylidene fluoride elastomer, particularly to a curable composition for a heat-resistant sealing material.
  • EL organic electroluminescence
  • TFE Tetrafluoroethylene
  • Patent Document 1 discloses tetrafluoroethylene, perfluoro (vinyl ether) using nitrogen-containing nucleophilic compounds such as aniline for perfluoroelastomers used in end uses in which exposure to high temperature and aggressive chemicals occurs. ), And perfluoroelastomer compositions comprising perfluoroelastomers having copolymerized units of nitrile-containing cure site monomers are disclosed.
  • Patent Documents 2 and 3 attempt to improve the heat resistance of vinylidene fluoride elastomers by requiring crosslinking using a specific curing agent. ing.
  • An object of the present invention is to provide a heat-resistant component composition and a heat-resistant component such as a sealing material used in a semiconductor, liquid crystal, solar cell, or organic EL manufacturing apparatus using a specific non-perfluoroelastomer.
  • the semiconductor manufacturing apparatus referred to in the present invention is not particularly limited to an apparatus for manufacturing a semiconductor, but is widely used in the semiconductor field where high heat resistance is required, such as an apparatus for manufacturing a liquid crystal panel or a plasma panel. Including general manufacturing equipment.
  • the present invention (A) Vinylidene fluoride (VdF) (a1) and at least one perfluoroolefin selected from the group consisting of tetrafluoroethylene (TFE), hexafluoropropylene (HFP) and perfluoro (alkyl vinyl ether) (PAVE) VdF elastomer (A1) which is a copolymer of (a2) and a monomer (a3) containing a cyano group, a carboxyl group or an alkoxycarbonyl group (however, the copolymerization ratio of VdF exceeds 20 mol%) Or a TFE-Pr elastomer (A2) which is a copolymer of 40 to 70 mol% of TFE, 30 to 60 mol% of propylene (Pr) and a monomer containing a cyano group, a carboxyl group or an alkoxycarbonyl group, And (B) a curing agent,
  • TFE t
  • the curing agent (B) has the formula (1): (Wherein R 1 is the same or different and is —NH 2 , —NHR 2 , —OH or —SH, and R 2 is a fluorine atom or a monovalent organic group) A compound comprising at least two compounds of formula (2): A compound of formula (3): (Wherein R f 1 is a perfluoroalkylene group having 1 to 10 carbon atoms), and formula (4): In the formula, at least one curing agent selected from the group consisting of compounds represented by the formula (n is an integer of 1 to 10) is preferred.
  • the ammonia generating compound (C) is preferably urea or an ammonium salt.
  • the present invention also relates to a heat-resistant component of a semiconductor, liquid crystal, solar cell, or organic EL manufacturing apparatus obtained by curing the curable composition of the present invention.
  • sealing material for semiconductor manufacturing equipment diffusion equipment As heat-resistant components, sealing material for semiconductor manufacturing equipment diffusion equipment, CVD equipment sealing material, PVD equipment sealing material, etching equipment sealing material or exhaust gas abatement equipment, or silicon manufacturing equipment sealing material, It is suitable as a sealing material for liquid crystal manufacturing apparatus, a sealing material for solar cell manufacturing apparatus, or a sealing material for organic EL manufacturing apparatus.
  • a heat-resistant component composition and a heat-resistant component such as a sealing material used in a semiconductor, a solar cell, a liquid crystal, or an organic EL manufacturing apparatus using a specific non-perfluoroelastomer.
  • non-perfluoroelastomer A1 or TFE-Pr elastomer (A2) (hereinafter sometimes referred to as “non-perfluoroelastomer (A)”) is a curing agent.
  • A1 a specific VdF elastomer
  • A2 TFE-Pr elastomer
  • B an ammonia generating compound
  • F inorganic nitride particles
  • the specific VdF-based elastomer (A1) includes VdF (a1), at least one perfluoroolefin (a2) selected from the group consisting of TFE, HFP and PAVE, a cyano group, It is a VdF elastomer which is a copolymer with a monomer (a3) containing a carboxyl group or an alkoxycarbonyl group.
  • CF 2 CFO (CF 2 CFY 2 O) p- (CF 2 CF 2 CF 2 O) q -R f 3 (7)
  • Y 2 represents a fluorine atom or —CF 3
  • R f 3 represents a perfluoroalkyl group having 1 to 5 carbon atoms
  • p represents an integer of 0 to 5
  • q represents 0 to Represents an integer of 5.
  • CFX CXOCF 2 OR (8) (Wherein X is F or H; R is a C 1 -C 6 linear or branched fluoroalkyl group, a C 5 -C 6 cyclic fluoroalkyl group, or a fluorooxyalkyl group, provided that (It may contain 1 to 2 atoms selected from H, Cl, Br, and I) Can be used alone or in combination of two or more.
  • perfluoro (methyl vinyl ether) and perfluoro (propyl vinyl ether) are preferable, and perfluoro (methyl vinyl ether) is particularly preferable.
  • the copolymerization ratio between VdF (a1) and the specific perfluoroolefin (a2) may be such that VdF exceeds 20 mol%, and in particular, VdF is 45 to 85 mol%, and specific perfluoroolefin 55 to 15 A VdF elastomer consisting of mol% is preferable, and a VdF elastomer consisting of 50 to 80 mol% of VdF and 50 to 20 mol% of a specific perfluoroolefin is more preferable.
  • VdF / HFP / monomer (a3) As a copolymer (A1) of VdF (a1), specific perfluoroolefin (a2) and monomer (a3), VdF / HFP / monomer (a3) copolymer, VdF / HFP / TFE / Monomer (a3) copolymer, VdF / PAVE / monomer (a3) copolymer, VdF / TFE / PAVE / monomer (a3) copolymer, VdF / HFP / PAVE / monomer (A3) A copolymer and VdF / HFP / TFE / PAVE / monomer (a3) copolymer are preferred.
  • the molar ratio of VdF / HFP is preferably 45 to 85/55 to 15 mol%, and more preferably 50 to 80/50 to 20 mol. %, And more preferably 60-80 / 40-20 mol%.
  • the VdF / HFP / TFE / monomer (a3) copolymer preferably has a VdF / HFP / TFE molar ratio of 40 to 80/10 to 35/10 to 35 mol%.
  • the VdF / PAVE / monomer (a3) copolymer preferably has a VdF / PAVE molar ratio of 65 to 90/35 to 10 mol%.
  • the VdF / TFE / PAVE / monomer (a3) copolymer preferably has a molar ratio of VdF / TFE / PAVE of 40 to 80/3 to 40/15 to 35 mol%.
  • the VdF / HFP / PAVE / monomer (a3) copolymer preferably has a molar ratio of VdF / HFP / PAVE of 65 to 90/3 to 25/3 to 25 mol%.
  • the VdF / HFP / TFE / PAVE / monomer (a3) copolymer is preferably a VdF / HFP / TFE / PAVE molar ratio of 40 to 90/0 to 25/0 to 40/3 to 35. 40 to 80/3 to 25/3 to 40/3 to 25 mol% is more preferable.
  • the monomer (a3) containing a cyano group, a carboxyl group or an alkoxycarbonyl group is selected from VdF (a1) and a specific perfluoroolefin (from the viewpoint of good crosslinking characteristics of the curable composition and heat resistance of the crosslinked product.
  • the content is preferably from 0.1 to 5 mol%, more preferably from 0.3 to 3 mol%, based on the total amount of a2).
  • VdF elastomers (A1) can be produced by a conventional method.
  • the presence of the functional group in the elastomer can be confirmed by, for example, infrared spectroscopic analysis.
  • the VdF elastomer (A1) used in the present invention preferably has a Mooney viscosity (ML 1 + 10 (121 ° C.)) of 5 to 140, more preferably 5 to 120, and particularly 5 to 100 from the viewpoint of good processability. .
  • TFE-Pr elastomer (A2) used in the present invention contains 40 to 70 mol% of TFE units, 30 to 60 mol% of Pr units, and a cyano group, a carboxyl group or an alkoxycarbonyl group.
  • VdF units and / or 0 to 15 mol% of PAVE units may be contained as necessary.
  • the TFE unit is 40 to 70 mol%, preferably 50 to 65 mol%, and Pr and elastomer properties are obtained in this range.
  • the Pr unit is 30 to 60 mol%, preferably 30 to 50 mol%, and elastomeric properties can be obtained in TFE and this range.
  • Examples of the monomer containing a cyano group, a carboxyl group or an alkoxycarbonyl group include the monomer (a3) described in the VdF elastomer (A1) and the TFE-Pr elastomer (A2). Can be used.
  • the VdF unit or PAVE unit which is an arbitrary unit, is up to 15 mol%, and further up to 10 mol%, and if it exceeds this, the former is not preferable in terms of amine resistance and the latter is expensive.
  • the TFE-Pr elastomer (A2) used in the present invention has a Mooney viscosity (ML 1 + 10 (121 ° C.)) of 5 to 100.
  • Mooney viscosity is less than 5, the vulcanizability is lowered and sufficient physical properties as a vulcanized rubber are not produced, and when it exceeds 100, the fluidity is lowered and the moldability tends to be deteriorated.
  • a preferable Mooney viscosity (ML 1 + 10 (121 ° C.)) is 10 to 80.
  • the TFE-Pr elastomer (A2) used in the present invention can be produced by a usual emulsion polymerization method. However, since the polymerization rate of TFE and Pr is relatively slow, for example, when produced by a two-stage polymerization method (seed polymerization method). Can be manufactured efficiently.
  • the curing agent (B) may be blended alone, or the ammonia generating compound (C) is blended alone.
  • the curing agent (B) and the ammonia generating compound (C) may be used in combination.
  • the inorganic nitride particles (F) may be blended alone for curing the VdF elastomer (A1) or the TFE-Pr elastomer (A2), or the curing agent (B) and Inorganic nitride particles (F) may be used in combination, ammonia generating compound (C) and inorganic nitride particles (F) may be used in combination, curing agent (B) and ammonia generating compound (C). ) And inorganic nitride particles (F) may be used in combination.
  • (B) Curing agent As the curing agent (B), the formula (1): (Wherein R 1 is the same or different and is —NH 2 , —NHR 2 , —OH or —SH, and R 2 is a fluorine atom or a monovalent organic group) A compound comprising at least two compounds of formula (2): A compound of formula (3): (Wherein R f 1 is a perfluoroalkylene group having 1 to 10 carbon atoms), and formula (4): In the formula, n is preferably at least one selected from the group consisting of compounds represented by the formula (1).
  • curing agents (B) 2,2-bis (3-amino-4-hydroxyphenyl) hexafluoropropane (OH-AF), which has excellent heat resistance and particularly good crosslinking reactivity, 2,2-bis [3-amino-4- (N-phenylamino) phenyl] hexafluoropropane (Nph-AF), 2,2-bis (3,4-diaminophenyl) hexafluoropropane (TA-AF) Is more preferable.
  • OH-AF 2,2-bis (3-amino-4-hydroxyphenyl) hexafluoropropane
  • TA-AF 2,2-bis (3,4-diaminophenyl) hexafluoropropane
  • These curing agents (B) may be used alone or in combination of two or more.
  • curing agents (B) react with a crosslinkable functional group such as a cyano group, a carboxyl group or an alkoxycarbonyl group of the specific non-perfluoroelastomer (A) used in the present invention to give a cross-linked product.
  • a crosslinkable functional group such as a cyano group, a carboxyl group or an alkoxycarbonyl group of the specific non-perfluoroelastomer (A) used in the present invention to give a cross-linked product.
  • the addition amount of the curing agent (B) is preferably 0.1 to 20 parts by mass, and 0.5 to 10 parts by mass with respect to 100 parts by mass of the specific non-perfluoro elastomer (A). Is more preferable.
  • the curing agent (B) is less than 0.1 parts by mass, there is a tendency that practically sufficient mechanical strength, heat resistance and chemical resistance cannot be obtained.
  • the crosslinked product tends to be hard and not flexible.
  • (C) Compound that generates ammonia at 40 to 330 ° C. (ammonia generating compound)
  • ammonia generating compound when at least one of the crosslinkable reactive groups of the specific non-perfluoroelastomer (A) is a cyano group, the cyano group forms a cyclized trimer (triazine ring). Triazine crosslinking system that promotes crosslinking reaction.
  • a curing agent is not essential, and ammonia generated at the crosslinking reaction temperature (40 to 330 ° C.) causes the triazine crosslinking of the non-perfluoro elastomer (A) to cause curing. Therefore, in the present invention, the ammonia generating compound can be used alone to cause curing (triazine crosslinking), but the curing agent (B) can be used in combination to form other crosslinking in addition to the triazine crosslinking. Also good.
  • ammonia generating compound (C) As the ammonia generating compound (C), urea or a derivative thereof and an ammonium salt are preferable, and urea or an ammonium salt is more preferable.
  • the ammonium salt may be an organic ammonium salt or an inorganic ammonium salt.
  • the ammonia generating compound (C) may be one that reacts with a small amount of water to generate ammonia.
  • urea derivatives examples include biurea, thiourea, urea hydrochloride, biuret and the like.
  • organic ammonium salts examples include compounds described in JP-A-9-111101, WO00 / 09603, and WO98 / 23675, such as ammonium perfluorohexanoate and ammonium perfluorooctanoate.
  • Ammonium salt of polyfluorocarboxylic acid ammonium salt of polyfluorosulfonic acid such as ammonium perfluorohexanesulfonate and ammonium perfluorooctanesulfonate; polyfluoroalkyl such as ammonium perfluorohexanephosphate and ammonium perfluorooctanephosphate Group-containing phosphoric acid or phosphonic acid ammonium salt; non-fluorinated carboxylic acid such as ammonium benzoate, ammonium adipate, ammonium phthalate, etc.
  • Ammonium salts of sulfonic acid can be exemplified.
  • a fluorine-based carboxylic acid, a sulfonic acid or an ammonium salt of phosphoric acid is preferable.
  • Ammonium salts of sulfonic acid or phosphoric acid are preferred.
  • Examples of the inorganic ammonium salt include compounds described in JP-A-9-111101, such as ammonium sulfate, ammonium carbonate, ammonium nitrate, and ammonium phosphate. Among them, ammonium phosphate is preferable in view of vulcanization characteristics.
  • acetaldehyde ammonia hexamethylenetetramine, formamidine, formamidine hydrochloride, formamidine acetate, t-butyl carbamate, benzyl carbamate, HCF 2 CF 2 CH (CH 3 ) OCONH 2 , phthalamide and the like can be used.
  • ammonia generating compounds (C) may be used alone or in combination of two or more.
  • the addition amount of the ammonia generating compound (C) may be appropriately selected depending on the amount of ammonia to be generated, but when used alone, it is usually 0.05 to 100 parts by mass of the non-perfluoroelastomer (A). To 10 parts by mass, preferably 0.1 to 5 parts by mass, and more preferably 0.2 to 3 parts by mass. If the amount of the ammonia generating compound is too small, the crosslinking density is lowered, so that there is a tendency that the practically sufficient heat resistance and chemical resistance are not expressed. If the amount is too large, there is a concern of scorching and storage stability is deteriorated. There is a problem and there is a tendency that the color of the molded product is not transparent.
  • the curing agent (B) and the ammonia generating compound (C) may be used in combination.
  • a cross-linked product having excellent mechanical strength, heat resistance, chemical resistance, and cold resistance, and particularly excellent balance between heat resistance and cold resistance is obtained.
  • the amount of the ammonia generating compound (C) to be used in combination with the curing agent (B) may be appropriately selected depending on the amount of generated ammonia, but is usually 100 masses of the specific non-perfluoroelastomer (A). Part by weight, 0.01 to 10 parts by weight, preferably 0.02 to 5 parts by weight, more preferably 0.05 to 3 parts by weight.
  • the ammonia generating compound (C) and the inorganic nitride particles (F) may be used in combination, or the curing agent (B), the ammonia generating compound (C), and the inorganic nitride particles (F). May be used in combination.
  • the inorganic nitride particles (F) are not particularly limited, and examples thereof include silicon nitride (Si 3 N 4 ), lithium nitride, titanium nitride, aluminum nitride, boron nitride, vanadium nitride, and zirconium nitride.
  • silicon nitride particles are preferable from the viewpoint that nano-sized fine particles can be supplied and that they do not contain metals that are hated in the semiconductor manufacturing process.
  • These nitride particles may be used in combination of two or more.
  • the particle size of the inorganic nitride particles (F) is not particularly limited, but is preferably 1000 nm or less, more preferably 300 nm or less, and even more preferably 100 nm or less.
  • the lower limit is not particularly limited.
  • the added amount of the inorganic nitride particles (F) is 0.1 to 20 parts by weight with respect to 100 parts by weight of the non-fluorine perfluoroelastomer (A) when the inorganic nitride particles (F) are used alone. It is preferably 0.2 to 5 parts by weight, more preferably 0.2 to 1 part by weight. If the inorganic nitride particles (F) are less than 0.1 parts by weight, the vulcanization density will be low, so that there is a tendency that practically sufficient heat resistance and chemical resistance will not be expressed, and if the amount exceeds 20 parts by weight. , There is a concern of scorch, there is a problem that storage stability is deteriorated, and there is a tendency that the color of the molded product is not transparent.
  • the added amount of the inorganic nitride particles (F) is 100 parts by weight of the non-fluorine perfluoroelastomer (A).
  • the lower limit is preferably 0.01 to 1 part by weight, more preferably 0.03 part by weight, still more preferably 0.05 part by weight, and the upper limit is more preferably 0.7 part by weight. More preferably, it is 0.5 part by weight.
  • the curable composition of the present invention in a semiconductor manufacturing apparatus or a solar cell manufacturing apparatus, particularly in a heat-resistant component at a location where high purity and non-contamination are not required, the curable composition can be used as necessary.
  • Usable additives such as fillers, processing aids, plasticizers, colorants, stabilizers, adhesion aids, etc. can be blended, and conventional curing agents and crosslinking aids different from those mentioned above One or more may be blended.
  • the filler (D1) improves physical properties such as tensile strength, modulus, hardness and the like of the crosslinked product, and can be added as necessary in the present invention.
  • Examples of the filler (D1) include metal fillers such as metal oxides, metal carbides, metal halides, metal sulfides, metal salts, and metal hydroxides; carbon fillers such as carbon black, graphitized carbon, and graphite. And at least one of organic fillers such as high styrene resin, phenol resin, coumarone resin, polyimide, polyether ether ketone, polyamide imide, polyether sulfone, polyether nitrile, polyether imide, and polyphenylene sulfide.
  • metal fillers such as metal oxides, metal carbides, metal halides, metal sulfides, metal salts, and metal hydroxides
  • carbon fillers such as carbon black, graphitized carbon, and graphite.
  • organic fillers such as high styrene resin, phenol resin, coumarone resin, polyimide, polyether ether ketone, polyamide imide, polyether sulfone, polyether nitrile, poly
  • metal oxide examples include silicon oxide, barium oxide, titanium oxide, aluminum oxide, silver oxide, beryllium oxide, bismuth oxide, chromium oxide, boron oxide, cadmium oxide, copper oxide, iron oxide, gallium oxide, germanium oxide, and oxide.
  • Examples thereof include tantalum oxide, thorium oxide, vanadium oxide, tungsten oxide, zinc oxide, and zirconium oxide, and silicon oxide, titanium oxide, and aluminum oxide are preferable because they are excellent in chemical resistance and chemical stability. From the viewpoint of reinforcement, silicon oxide is particularly preferable.
  • metal carbide examples include boron carbide, calcium carbide, iron carbide, manganese carbide, titanium carbide, silicon carbide, vanadium carbide, and aluminum carbide. From the viewpoint of excellent chemical resistance and chemical stability, carbonization. Silicon and titanium carbide are preferred.
  • metal halides include silver chloride, silver fluoride, aluminum chloride, aluminum fluoride, barium chloride, barium fluoride, calcium chloride, calcium fluoride, cadmium chloride, chromium chloride, cesium chloride, cesium fluoride, and copper chloride.
  • metal chlorides or metal fluorides such as tin, strontium chloride, thallium chloride, vanadium chloride, zinc chloride, zirconium chloride, and bromides or iodides of these, which have low hygroscopicity and excellent chemical stability. From aluminum fluoride, Of barium is preferable.
  • the metal salt is represented by the formula: MnAm (M is a metal, A is a residue of various inorganic acids, m and n are appropriately determined depending on respective valences), for example, sulfates, carbonates of various metals, Examples thereof include phosphate, titanate, silicate, and nitrate.
  • Specific examples include, for example, aluminum sulfate, barium carbonate, silver nitrate, barium nitrate, barium sulfate, barium titanate, calcium carbonate, calcium nitrate, calcium phosphate, calcium silicate, calcium titanate, cadmium sulfate, cobalt sulfate, copper sulfate, carbonate Ferrous iron, iron silicate, iron titanate, potassium nitrate, potassium sulfate, lithium nitrate, magnesium carbonate, magnesium nitrate, magnesium silicate, magnesium titanate, magnesium carbonate, manganese sulfate, manganese silicate, sodium carbonate, sodium nitrate, Sodium sulfate, sodium silicate, sodium titanate, nickel sulfate, lead carbonate, lead sulfate, strontium carbonate, strontium sulfate, strontium titanate, zinc carbonate, zinc sulfate, zinc titanate, etc. From the viewpoint of excellent plasma resistance and
  • metal hydroxide examples include calcium hydroxide and magnesium hydroxide.
  • metal sulfide examples include silver sulfide, calcium sulfide, cadmium sulfide, cobalt sulfide, copper sulfide, iron sulfide, manganese sulfide, molybdenum disulfide, lead sulfide, tin sulfide, zinc sulfide, and tungsten disulfide.
  • Carbon black includes thermal black, bituminous coal filler, furnace black, channel black and the like.
  • a bituminous coal filler is preferable from the viewpoint of compression set resistance of the molded product, and a mixture of bituminous coal filler and thermal black is preferable from the viewpoint of mechanical properties.
  • the added amount of the filler (D1) is preferably 10 to 50 parts by mass with respect to 100 parts by mass of the specific non-perfluoroelastomer (A), from the viewpoint of good mechanical properties of the molded product, From 15 to 45 parts by mass, it is more preferable from the viewpoint of a better balance between the tensile strength and the elongation of the molded product.
  • the mixing weight ratio is preferably 9/95 to 80/20, and preferably 30/70 to 70/30. More preferred. If it is out of the above range, deterioration of compression set resistance and deterioration of compression crack resistance may be observed.
  • the method and order of mixing the components of the curable composition are not particularly limited. For example, although the following method can be illustrated, it is not limited to these.
  • (1-1) A method of simultaneously mixing a specific non-perfluoroelastomer (A), an ammonia generating compound (C) and a curing agent (B).
  • (1-2) A method in which the component (B) and the component (C) are mixed in advance and then mixed with the component (A).
  • (1-3) A method in which a part of the component (A), the component (B), and the component (C) are mixed in advance to form a master batch, and then mixed with the remaining component (A).
  • (1-4) A part of component (A) and component (B) are mixed in advance to form a master batch, and then mixed with the remaining components (A) and (C) (in this case, the remaining (A) ) Component and (C) component may be mixed in advance).
  • the other additive (D) may be blended at any stage in the above methods.
  • filler (D1), (1-5) Component (B) and filler (D1) are mixed in advance to form a master batch, and the remaining components are mixed (in this case, the remaining components are (It may be mixed in advance).
  • the specific non-perfluoroelastomer (A) used for preparing the masterbatch is one of all non-perfluoroelastomers (A) from the viewpoint of improving the dispersibility of the ammonia generating compound (C). ⁇ 50% by weight is preferred.
  • the elastomer used for preparing the masterbatch may not necessarily be the non-perfluoroelastomer (A), and another elastomer such as a scorch during mixing may be used.
  • Such an elastomer that does not have, for example, an elastomer having no cyano group, carboxyl group or alkoxycarbonyl group may be used alone or in combination.
  • VdF type which does not contain monomer (a3) in other VdF type elastomers, for example, VdF type elastomer (A1), from the point of good compatibility with a specific non-perfluoro type elastomer (A).
  • An elastomer or an elastomer of a monomer other than propylene and TFE is preferred.
  • the composition of the master batch is, for example, 5 to 120 parts by mass of the curing agent (B) when adding the curing agent (B) to the master batch with respect to 100 parts by mass of the elastomer for the master batch.
  • blending (C) into the masterbatch it is preferable to blend 5 to 120 parts by mass of the ammonia generating compound (C).
  • Examples of means for mixing the components of the curable composition include ordinary elastomer processing machines such as an open roll, a Banbury mixer, and a kneader.
  • the curable composition of the present invention can be mixed by mixing the components. Can be prepared. In addition, it can be prepared by a method using a closed mixer.
  • the powder of the ammonia generating compound (C) which is a solid substance is directly kneaded with a specific non-perfluoro elastomer (A) with a kneader or an open roll, and the ammonia generating compound (C) is then non-perfluoro elastomer.
  • the non-perfluoroelastomer (A) has high surface slipperiness and it is possible to incorporate the ammonia generating compound (C), but it is not easy to knead and disperse uniformly. Absent.
  • a solvent (E) having an affinity for the ammonia generating compound (C) can be present in the mixing field. That's fine.
  • affinity solvent (E) water (E1) or an organic solvent (E2) having affinity for the ammonia generating compound (C) is preferable.
  • organic solvent (E2) examples include alcohol solvents such as methanol, ethanol and glycerin.
  • water (E1) is preferable because it is inexpensive, easy to handle and remove, and environmentally friendly.
  • the method of causing the affinity solvent (E) to be present in the mixing field is not particularly limited, but from the viewpoint of enhancing the dispersibility of the ammonia generating compound (C), the affinity solvent (E) and the ammonia generation in advance. It is preferable to add to the place of mixing as a liquid mixture with a compound (C).
  • Crosslinking of the curable composition of the present invention can be performed by a usual method such as a method of heat-compressing with a mold, a method of press-fitting into a heated mold, a method of cross-linking after extrusion with an extruder. it can. Crosslinking is usually performed in the order of primary crosslinking and finally secondary crosslinking to obtain a molded product.
  • heating is preferably performed at 150 to 230 ° C. for 5 to 120 minutes, more preferably heating at 160 to 200 ° C. for 5 to 60 minutes, and heating at 170 to 190 ° C. for 5 to 60 minutes. It is particularly preferred to do this.
  • the crosslinking means a known crosslinking means may be used, and examples thereof include press crosslinking.
  • heating at 160 to 320 ° C. for 2 to 24 hours is preferable, and heating at 180 to 310 ° C. for 4 to 20 hours is more preferable.
  • a crosslinking means a known crosslinking means may be used, and examples thereof include oven crosslinking.
  • the heat-resistant part of the present invention can be obtained by crosslinking the curable composition of the present invention.
  • the heat-resistant component of the present invention is excellent in chemical resistance, mechanical strength, heat resistance, compression set, and the like.
  • the heat-resistant component of the present invention exhibits excellent properties such that the compression set is small even after being left at a high temperature as compared with a conventional cross-linked molded product made of a non-perfluoroelastomer. It can be particularly suitably used as a sealing material.
  • the heat-resistant component is preferably a component used at 200 ° C. or higher.
  • heat-resistant components used in semiconductor, liquid crystal, solar battery, or organic EL manufacturing equipment are required to have high-temperature sealing properties, low contamination, low outgassing properties, plasma resistance, etc.
  • the heat-resistant component of the invention satisfies these required characteristics.
  • heat-resistant components used in semiconductor manufacturing apparatuses, liquid crystal manufacturing apparatuses, solar cell manufacturing apparatuses, and organic EL manufacturing apparatuses include various sealing materials such as gaskets, O-rings, square rings, rubber sheets, and joint sheets.
  • the crosslinking conditions employed in the present invention are the following conditions.
  • Standard crosslinking conditions Kneading method: Roll kneading press crosslinking (primary crosslinking): 30 minutes at 180 ° C. (specify if different) Oven crosslinking (secondary crosslinking): 2 hours at 200 ° C., 5 hours at 260 ° C., 18 hours at 300 ° C.
  • ⁇ 100% modulus (M100)> The curable composition shown in Table 1 is subjected to primary press crosslinking and secondary oven crosslinking under standard crosslinking conditions to obtain a sheet having a thickness of 2 mm, and the measurement is performed according to JIS-K6251.
  • Hs Shore A hardness
  • VdF / TFE / HFP 19/11/70 mol% ratio
  • APS ammonium persulfate
  • CF 2 CFOCF 2 CF (CF 3 ) OCF 2 CF 2 CN (CNVE) 1.8 g were injected under nitrogen pressure to initiate the reaction.
  • VdF / HFP 50/50 mol% ratio
  • Example 1 0.4 parts by mass of urea (manufactured by Kishida Chemical Co., Ltd.) and carbon black (CB) (manufactured by Cancarb) with respect to 100 parts by mass of the CN group-containing copolymer (A1-1) obtained in Production Example 1
  • Thermax N990 35 parts by mass was kneaded with an open roll to prepare a curable composition.
  • the obtained composition was cross-linked under the above standard cross-linking conditions to prepare a cross-linked product having a thickness of 2 mm and a test sample of an O-ring (AS-568A-214), 100% modulus, tensile breaking strength and tensile breaking elongation.
  • the Shore A hardness and compression set were measured. The results are shown in Table 1.
  • Example 2 A urea solution was prepared by dissolving 0.4 parts by mass of urea (manufactured by Kishida Chemical Co., Ltd.) in 1 part by mass of water. To 100 parts by mass of the CN group-containing copolymer (A1-1) obtained in Production Example 1, 35 parts by mass of the urea solution prepared above and carbon black (CB) (Thermax N990 manufactured by Cancarb) was blended. The curable composition was prepared by kneading with an open roll. The obtained composition was cross-linked under the above-mentioned standard cross-linking conditions (however, press cross-linking was performed at 180 ° C.
  • CB carbon black
  • Example 3 A curable composition was prepared in the same manner as in Example 1 except that the amount of urea was changed to 0.6 parts by mass, and then crosslinked to give a crosslinked product having a thickness of 2 mm and an O-ring (AS-568A-214).
  • the test samples were prepared and measured for 100% modulus, tensile strength at break, tensile elongation at break, Shore A hardness and compression set. The results are shown in Table 1.
  • Example 4 A curable composition was prepared in the same manner as in Example 1 except that 1.0 part by mass of ammonium perfluorohexanoate was blended in place of urea, and then crosslinked, and a crosslinked product having a thickness of 2 mm and an O-ring (AS A test sample of ⁇ 568A-214) was prepared, and 100% modulus, tensile strength at break, tensile elongation at break, Shore A hardness and compression set were measured. The results are shown in Table 1.
  • Example 5 A curable composition was prepared in the same manner as in Example 4 except that the amount of ammonium perfluorohexanoate was changed to 2.9 parts by mass, and then crosslinked to give a crosslinked product having a thickness of 2 mm and an O-ring (AS- 568A-214), 100% modulus, tensile strength at break, tensile elongation at break, Shore A hardness and compression set were measured. The results are shown in Table 1.
  • Example 6 A curable composition was prepared in the same manner as in Example 1 except that 0.4 parts by mass of ammonium adipate was added instead of urea. The obtained composition was cross-linked under the above-mentioned standard cross-linking conditions (however, press cross-linking was performed at 180 ° C. for 20 minutes) to prepare a 2 mm-thick cross-linked product and an O-ring (AS-568A-214) test sample. Fabricated and measured for 100% modulus, tensile break strength and elongation at break, Shore A hardness and compression set. The results are shown in Table 1.
  • Example 7 With respect to 100 parts by mass of the CN group-containing copolymer (A1-1) obtained in Production Example 1, 2,2-bis (3-amino-4-hydroxyphenyl) hexafluoropropane (OH-AF) is used as a curing agent. ) And 35 parts by mass of carbon black (CB) (Thermax N990 manufactured by Cancarb) were mixed and kneaded with an open roll to prepare a curable composition. The obtained composition was cross-linked under the above-mentioned standard cross-linking conditions to prepare a 2 mm-thick cross-linked product and a test sample of an O-ring (AS-568A-214), 100% modulus, tensile breaking strength, tensile breaking elongation. The Shore A hardness and compression set were measured. The results are shown in Table 1.
  • Example 8 instead of 2,2-bis (3-amino-4-hydroxyphenyl) hexafluoropropane (OH-AF), 2,2-bis (3,4-diaminophenyl) hexafluoropropane (TA-AF)
  • OH-AF 2,2-bis (3-amino-4-hydroxyphenyl) hexafluoropropane
  • TA-AF 2,2-bis (3,4-diaminophenyl) hexafluoropropane
  • a curable composition was prepared in the same manner as in Example 7 except that 8 parts by mass was blended.
  • the obtained composition was cross-linked under the above-mentioned standard cross-linking conditions to prepare a test sample of a cross-linked product having a thickness of 2 mm and an O-ring (AS-568A-214), 100% modulus, tensile breaking strength, tensile breaking elongation, Shore A hardness and compression set were measured. The results are shown in Table 1.
  • Example 9 With respect to 100 parts by mass of the CN group-containing copolymer (A1-1) obtained in Production Example 1, 2,2-bis (3-amino-4-hydroxyphenyl) hexafluoropropane (OH-AF) is used as a curing agent. ), 1.8 parts by mass of urea (manufactured by Kishida Chemical Co., Ltd.), 35 parts by mass of carbon black (CB) (Thermax N990 from Cancarb), and kneaded with an open roll. A curable composition was prepared.
  • urea manufactured by Kishida Chemical Co., Ltd.
  • CB carbon black
  • the obtained composition was cross-linked under the above-mentioned standard cross-linking conditions to prepare a 2 mm-thick cross-linked product and a test sample of an O-ring (AS-568A-214), 100% modulus, tensile breaking strength, tensile breaking elongation.
  • the Shore A hardness and compression set were measured. The results are shown in Table 1.
  • Example 10 instead of 2,2-bis (3-amino-4-hydroxyphenyl) hexafluoropropane (OH-AF), 2,2-bis (3,4-diaminophenyl) hexafluoropropane (TA-AF)
  • OH-AF 2,2-bis (3-amino-4-hydroxyphenyl) hexafluoropropane
  • TA-AF 2,2-bis (3,4-diaminophenyl) hexafluoropropane
  • a curable composition was prepared in the same manner as in Example 9 except that 8 parts by mass was blended.
  • the obtained composition was cross-linked under the above-mentioned standard cross-linking conditions to prepare a test sample of a cross-linked product having a thickness of 2 mm and an O-ring (AS-568A-214), 100% modulus, tensile breaking strength, tensile breaking elongation, Shore A hardness and compression set were measured. The results are shown in Table 1.
  • Example 11 With respect to 100 parts by mass of the CN group-containing copolymer (A1-2) obtained in Production Example 2, 0.4 parts by mass of urea (manufactured by Kishida Chemical Co., Ltd.) and carbon black (CB) (manufactured by Cancarb) Thermax N990) of 35 parts by mass was kneaded with an open roll to prepare a curable composition.
  • the obtained composition was cross-linked under the above-mentioned standard cross-linking conditions to prepare a test sample of a cross-linked product having a thickness of 2 mm and an O-ring (AS-568A-214), 100% modulus, tensile breaking strength, tensile breaking elongation, Shore A hardness and compression set were measured. The results are shown in Table 1.
  • Example 12 0.1 parts by mass of urea (manufactured by Kishida Chemical Co., Ltd.) and 2,2-bis (as a curing agent) with respect to 100 parts by mass of the CN group-containing copolymer (A1-2) obtained in Production Example 2. 1.8 parts by mass of 3,4-diaminophenyl) hexafluoropropane (TA-AF) and 35 parts by mass of carbon black (CB) (Thermax N990 manufactured by Cancarb) are mixed and cured by an open roll. A sex composition was prepared.
  • urea manufactured by Kishida Chemical Co., Ltd.
  • 2,2-bis as a curing agent
  • the obtained composition was cross-linked under the above-mentioned standard cross-linking conditions to prepare a test sample of a cross-linked product having a thickness of 2 mm and an O-ring (AS-568A-214), 100% modulus, tensile breaking strength, tensile breaking elongation, Shore A hardness and compression set were measured. The results are shown in Table 1.
  • Example 13 With respect to 100 parts by mass of the CN group-containing copolymer (A1-2) obtained in Production Example 2, 2,2-bis (3,4-diaminophenyl) hexafluoropropane (TA-AF) is used as a curing agent. 1.8 parts by mass and further 35 parts by mass of carbon black (CB) (Thermax N990 manufactured by Cancarb) were blended and kneaded with an open roll to prepare a curable composition.
  • CB carbon black
  • the obtained composition was cross-linked under the above-mentioned standard cross-linking conditions to prepare a test sample of a cross-linked product having a thickness of 2 mm and an O-ring (AS-568A-214), 100% modulus, tensile breaking strength, tensile breaking elongation, Shore A hardness and compression set were measured. The results are shown in Table 1.
  • Example 14 Compounding 0.5 parts by mass of silicon nitride and 20 parts by mass of carbon black (CB) (Thermax N990 manufactured by Cancarb) with respect to 100 parts by mass of the CN group-containing copolymer (A1-1) obtained in Production Example 1.
  • CB carbon black
  • the mixture was kneaded with an open roll to prepare a curable composition.
  • the obtained composition was crosslinked at 200 ° C. for 8 hours and 290 ° C. for 8 hours (however, press crosslinking was performed at 180 ° C.
  • Example 15 Compounding 20 parts by mass of 1.0 part by mass of silicon nitride and 20 parts by mass of carbon black (CB) (Thermax N990 manufactured by Cancarb) with respect to 100 parts by mass of the CN group-containing copolymer (A1-1) obtained in Production Example 1.
  • the mixture was kneaded with an open roll to prepare a curable composition.
  • the obtained composition was crosslinked at 200 ° C. for 8 hours and 290 ° C. for 8 hours (however, press crosslinking was performed at 180 ° C.
  • Example 16 With respect to 100 parts by mass of the CN group-containing copolymer (A1-1) obtained in Production Example 1, 0.5 part by mass of silicon nitride and 2,2-bis (3-amino-4-hydroxyphenyl) as a curing agent ) 0.5 parts by mass of hexafluoropropane (OH-AF) and 20 parts by mass of carbon black (CB) (Thermax N990 manufactured by Cancarb) were blended and kneaded with an open roll to prepare a curable composition. The obtained composition was crosslinked at 200 ° C. for 8 hours and 290 ° C. for 8 hours (however, press crosslinking was performed at 180 ° C.
  • OH-AF hexafluoropropane
  • CB carbon black
  • Example 17 For 100 parts by mass of the CN group-containing copolymer (A1-1) obtained in Production Example 1, 0.5 part by mass of urea (manufactured by Kishida Chemical Co., Ltd.), 0.5 part by mass of silicon nitride, carbon black 20 parts by mass of (CB) (Thermax N990 manufactured by Cancarb) was blended and kneaded with an open roll to prepare a curable composition. The obtained composition was crosslinked at 200 ° C. for 8 hours and 290 ° C. for 8 hours (however, press crosslinking was performed at 180 ° C.
  • urea manufactured by Kishida Chemical Co., Ltd.
  • CB carbon black 20 parts by mass of
  • the obtained composition was crosslinked at 200 ° C. for 8 hours and 290 ° C. for 8 hours (however, press crosslinking was performed at 180 ° C.
  • a curable composition was prepared by blending parts and kneading with an open roll. Next, this crosslinkable composition was pressed at 160 ° C. for 10 minutes, and further subjected to oven crosslinking in an oven at 200 ° C.

Abstract

Disclosed is a heat-resistant component wherein the cross-linking rate of a non-perfluoro elastomer constituting said heat-resistant component is improved. Furthermore, said heat-resistant component provides the characteristics required of a sealant or the like used in a semiconductor, liquid crystal, solar cell, or organic EL manufacturing device. Also disclosed is a curable composition for use in said heat-resistant component. Said curable composition contains: (A) either a vinylidene fluoride elastomer (A1) or a tetrafluoroethylene-propylene elastomer (A2); (B) a hardener; and (C) a compound that generates ammonia when between 40°C and 330°C and/or (F) inorganic nitride particles. The aforementioned vinylidene fluoride elastomer (A1) is a copolymer of: vinylidene fluoride (constituting over 20 mol% of the copolymer); at least one perfluoroolefin selected from a group comprising tetrafluoroethylene, hexafluoropropylene, and perfluoro(alkyl vinyl ether); and a monomer containing a cyano group, a carboxyl group, or an alkoxycarbonyl group. The abovementioned tetrafluoroethylene-propylene elastomer (A2) is a copolymer of tetrafluoroethylene (40-70 mol%), propylene (30-60 mol%), and a monomer containing a cyano group, a carboxyl group, or an alkoxycarbonyl group.

Description

半導体、液晶、太陽電池または有機ELの製造装置の耐熱部品用硬化性組成物Curable composition for heat-resistant parts of semiconductor, liquid crystal, solar cell or organic EL manufacturing equipment
 本発明はフッ化ビニリデンエラストマーを含む半導体、液晶、太陽電池または有機エレクトロルミネッセンス(EL)の製造装置の耐熱部品、特に耐熱シール材用硬化性組成物に関する。 The present invention relates to a heat-resistant component of a semiconductor, liquid crystal, solar battery, or organic electroluminescence (EL) manufacturing apparatus containing a vinylidene fluoride elastomer, particularly to a curable composition for a heat-resistant sealing material.
 O-リングなどの半導体製造装置のシール材には、優れた耐薬品性、耐溶剤性、耐熱性が要求されており、特に過酷な使用環境で使用されるシール材としてテトラフルオロエチレン(TFE)単位を中心とするパーフルオロエラストマーからなるシール材が広く使用されている。 Sealing materials for semiconductor manufacturing equipment such as O-rings are required to have excellent chemical resistance, solvent resistance, and heat resistance. Tetrafluoroethylene (TFE) is particularly used as a sealing material in harsh usage environments. A sealing material made of a perfluoroelastomer centering on a unit is widely used.
 しかし、技術の進歩に伴い要求される特性はさらに厳しくなり、半導体製造装置、液晶製造装置、太陽電池製造装置あるいは有機EL製造装置の分野では200℃以上の高温環境下におけるシール性が要求されている。 However, as the technology advances, the required characteristics become more severe, and in the field of semiconductor manufacturing equipment, liquid crystal manufacturing equipment, solar cell manufacturing equipment, or organic EL manufacturing equipment, sealing properties in a high temperature environment of 200 ° C. or higher are required. Yes.
 特許文献1には、高温およびアグレッシブな薬品への暴露が起こる最終用途のものにおいて用いられるパーフルオロエラストマー類について、アニリン等の窒素含有求核性化合物を用いて、テトラフルオロエチレン、パーフルオロ(ビニルエーテル)、およびニトリル含有硬化部位モノマーの共重合ユニットを有するパーフルオロエラストマー類を含むパーフルオロエラストマー組成物を硬化させることが開示されている。 Patent Document 1 discloses tetrafluoroethylene, perfluoro (vinyl ether) using nitrogen-containing nucleophilic compounds such as aniline for perfluoroelastomers used in end uses in which exposure to high temperature and aggressive chemicals occurs. ), And perfluoroelastomer compositions comprising perfluoroelastomers having copolymerized units of nitrile-containing cure site monomers are disclosed.
 フッ化ビニリデン系エラストマーはパーフルオロエラストマー類よりも耐熱に劣るが、特許文献2および3では特定の硬化剤を用いた架橋を必須とすることでフッ化ビニリデン系エラストマーの耐熱性の向上が試みられている。 Although vinylidene fluoride elastomers are inferior in heat resistance to perfluoroelastomers, Patent Documents 2 and 3 attempt to improve the heat resistance of vinylidene fluoride elastomers by requiring crosslinking using a specific curing agent. ing.
特表2004-500459号公報JP-T-2004-500409 国際公開第05/105917号パンフレットWO05 / 105917 pamphlet 国際公開第2007/049469号パンフレットInternational Publication No. 2007/049496 Pamphlet
 フッ化ビニリデン系エラストマーなどの非パーフルオロエラストマーを使用して200℃を超える高温環境下におけるシール性を達成するには、従来は特許文献2および3にて提案されているように特定の硬化剤を用いた架橋が必須と考えられていたが、本発明者らが更なる検討を進めたところ、40~330℃でアンモニアを発生させる化合物を使用することにより、または特定の硬化剤や無機窒化物粒子を使用することにより、特定の非パーフルオロエラストマーにおいて架橋速度を改善でき、しかも半導体、液晶、太陽電池または有機ELの製造装置に用いるシール材などの耐熱部品に要求される特性をも満たすことを見出した。 In order to achieve a sealing property in a high temperature environment exceeding 200 ° C. by using a non-perfluoroelastomer such as a vinylidene fluoride elastomer, a specific curing agent as conventionally proposed in Patent Documents 2 and 3 However, as a result of further studies by the present inventors, the use of a compound that generates ammonia at 40 to 330 ° C. or a specific curing agent or inorganic nitriding By using product particles, the crosslinking rate can be improved in specific non-perfluoroelastomers, and also satisfy the characteristics required for heat-resistant parts such as sealing materials used in semiconductor, liquid crystal, solar cell or organic EL manufacturing equipment. I found out.
 本発明は、特定の非パーフルオロエラストマーを用いた半導体、液晶、太陽電池もしくは有機EL製造装置に用いるシール材などの耐熱部品用組成物および耐熱部品を提供することを目的とする。本発明でいう半導体製造装置は、特に半導体を製造するための装置に限られるものではなく、広く、液晶パネルやプラズマパネルを製造するための装置など、高耐熱性が要求される半導体分野において用いられる製造装置全般を含むものである。 An object of the present invention is to provide a heat-resistant component composition and a heat-resistant component such as a sealing material used in a semiconductor, liquid crystal, solar cell, or organic EL manufacturing apparatus using a specific non-perfluoroelastomer. The semiconductor manufacturing apparatus referred to in the present invention is not particularly limited to an apparatus for manufacturing a semiconductor, but is widely used in the semiconductor field where high heat resistance is required, such as an apparatus for manufacturing a liquid crystal panel or a plasma panel. Including general manufacturing equipment.
 すなわち、本発明は、
(A)フッ化ビニリデン(VdF)(a1)と、テトラフルオロエチレン(TFE)、ヘキサフルオロプロピレン(HFP)およびパーフルオロ(アルキルビニルエーテル)(PAVE)よりなる群から選ばれる少なくとも1種のパーフルオロオレフィン(a2)と、シアノ基、カルボキシル基またはアルコキシカルボニル基を含有する単量体(a3)との共重合体であるVdF系エラストマー(A1)(ただし、VdFの共重合割合は20モル%を超える)、またはTFE40~70モル%とプロピレン(Pr)30~60モル%とシアノ基、カルボキシル基またはアルコキシカルボニル基を含有する単量体との共重合体であるTFE-Pr系エラストマー(A2)、並びに、
(B)硬化剤、
(C)40~330℃でアンモニアを発生させる化合物、および/または
(F)無機窒化物粒子
を含む半導体、液晶、太陽電池または有機ELの製造装置の耐熱部品用硬化性組成物に関する。
That is, the present invention
(A) Vinylidene fluoride (VdF) (a1) and at least one perfluoroolefin selected from the group consisting of tetrafluoroethylene (TFE), hexafluoropropylene (HFP) and perfluoro (alkyl vinyl ether) (PAVE) VdF elastomer (A1) which is a copolymer of (a2) and a monomer (a3) containing a cyano group, a carboxyl group or an alkoxycarbonyl group (however, the copolymerization ratio of VdF exceeds 20 mol%) Or a TFE-Pr elastomer (A2) which is a copolymer of 40 to 70 mol% of TFE, 30 to 60 mol% of propylene (Pr) and a monomer containing a cyano group, a carboxyl group or an alkoxycarbonyl group, And
(B) a curing agent,
The present invention relates to a curable composition for a heat-resistant component of a semiconductor, liquid crystal, solar cell, or organic EL production apparatus containing (C) a compound that generates ammonia at 40 to 330 ° C. and / or (F) inorganic nitride particles.
 本発明の硬化性組成物において、硬化剤(B)は、式(1):
Figure JPOXMLDOC01-appb-C000005
(式中、Rは同じかまたは異なり、-NH、-NHR、-OHまたは-SHであり、Rはフッ素原子または1価の有機基である)で示される架橋性反応基を少なくとも2個含む化合物、式(2):
Figure JPOXMLDOC01-appb-C000006
で示される化合物、式(3):
Figure JPOXMLDOC01-appb-C000007
(式中、R は炭素数1~10のパーフルオロアルキレン基)で示される化合物、および式(4):
Figure JPOXMLDOC01-appb-C000008
(式中、nは1~10の整数)で示される化合物
よりなる群から選ばれる少なくとも1種の硬化剤が好ましい。
In the curable composition of the present invention, the curing agent (B) has the formula (1):
Figure JPOXMLDOC01-appb-C000005
(Wherein R 1 is the same or different and is —NH 2 , —NHR 2 , —OH or —SH, and R 2 is a fluorine atom or a monovalent organic group) A compound comprising at least two compounds of formula (2):
Figure JPOXMLDOC01-appb-C000006
A compound of formula (3):
Figure JPOXMLDOC01-appb-C000007
(Wherein R f 1 is a perfluoroalkylene group having 1 to 10 carbon atoms), and formula (4):
Figure JPOXMLDOC01-appb-C000008
In the formula, at least one curing agent selected from the group consisting of compounds represented by the formula (n is an integer of 1 to 10) is preferred.
 また、アンモニア発生化合物(C)は、尿素またはアンモニウム塩であることが好ましい。 The ammonia generating compound (C) is preferably urea or an ammonium salt.
 本発明はまた、本発明の硬化性組成物を硬化させて得られる半導体、液晶、太陽電池または有機ELの製造装置の耐熱部品にも関する。 The present invention also relates to a heat-resistant component of a semiconductor, liquid crystal, solar cell, or organic EL manufacturing apparatus obtained by curing the curable composition of the present invention.
 耐熱部品としては、半導体製造装置の拡散装置用シール材、CVD装置用シール材、PVD装置用シール材、エッチング装置用シール材もしくは排ガス除害装置用のシール材、またはシリコン製造装置用シール材、液晶製造装置用シール材、太陽電池製造装置用シール材または有機EL製造装置用シール材として好適である。 As heat-resistant components, sealing material for semiconductor manufacturing equipment diffusion equipment, CVD equipment sealing material, PVD equipment sealing material, etching equipment sealing material or exhaust gas abatement equipment, or silicon manufacturing equipment sealing material, It is suitable as a sealing material for liquid crystal manufacturing apparatus, a sealing material for solar cell manufacturing apparatus, or a sealing material for organic EL manufacturing apparatus.
 本発明によれば、特定の非パーフルオロエラストマーを用いた半導体または太陽電池または液晶または有機EL製造装置に用いるシール材などの耐熱部品用組成物および耐熱部品を提供することができる。 According to the present invention, it is possible to provide a heat-resistant component composition and a heat-resistant component such as a sealing material used in a semiconductor, a solar cell, a liquid crystal, or an organic EL manufacturing apparatus using a specific non-perfluoroelastomer.
 本発明の硬化性組成物では、特定のVdF系エラストマー(A1)またはTFE-Pr系エラストマー(A2)(以下、併せて「非パーフルオロエラストマー(A)」ということもある)に対し、硬化剤(B)、アンモニア発生化合物(C)および/または無機窒化物粒子(F)が配合されている。 In the curable composition of the present invention, a specific VdF elastomer (A1) or TFE-Pr elastomer (A2) (hereinafter sometimes referred to as “non-perfluoroelastomer (A)”) is a curing agent. (B), an ammonia generating compound (C) and / or inorganic nitride particles (F) are blended.
 以下、各成分について説明する。 Hereinafter, each component will be described.
(A1)特定のVdF系エラストマー
 特定のVdF系エラストマー(A1)は、VdF(a1)と、TFE、HFPおよびPAVEよりなる群から選ばれる少なくとも1種のパーフルオロオレフィン(a2)と、シアノ基、カルボキシル基またはアルコキシカルボニル基を含有する単量体(a3)との共重合体であるVdF系エラストマーである。
(A1) Specific VdF-based elastomer The specific VdF-based elastomer (A1) includes VdF (a1), at least one perfluoroolefin (a2) selected from the group consisting of TFE, HFP and PAVE, a cyano group, It is a VdF elastomer which is a copolymer with a monomer (a3) containing a carboxyl group or an alkoxycarbonyl group.
 ただし、VdFの共重合割合は20モル%を超えていることが、低温での脆弱性を改善するために重要である。 However, it is important to improve the vulnerability at low temperatures that the copolymerization ratio of VdF exceeds 20 mol%.
 PAVEとしては、一般式(7):
CF=CFO(CFCFYO)-(CFCFCFO)-R     (7)
(式中Yは、フッ素原子または-CFを表し、R は、炭素数1~5のパーフルオロアルキル基を表す。pは、0~5の整数を表し、qは、0~5の整数を表す。)
または、一般式(8)
CFX=CXOCFOR  (8)
(式中、XはFまたはH;RはC~Cの直鎖状もしくは分岐鎖状のフルオロアルキル基、C~Cの環状のフルオロアルキル基、またはフルオロオキシアルキル基。ただし、H、Cl、Br、Iから選択される1~2個の原子を含んでもよい)
で表されるものを1種または2種以上を組み合わせて用いることができる。
As PAVE, general formula (7):
CF 2 = CFO (CF 2 CFY 2 O) p- (CF 2 CF 2 CF 2 O) q -R f 3 (7)
Wherein Y 2 represents a fluorine atom or —CF 3 , R f 3 represents a perfluoroalkyl group having 1 to 5 carbon atoms, p represents an integer of 0 to 5, and q represents 0 to Represents an integer of 5.)
Or general formula (8)
CFX = CXOCF 2 OR (8)
(Wherein X is F or H; R is a C 1 -C 6 linear or branched fluoroalkyl group, a C 5 -C 6 cyclic fluoroalkyl group, or a fluorooxyalkyl group, provided that (It may contain 1 to 2 atoms selected from H, Cl, Br, and I)
Can be used alone or in combination of two or more.
 一般式(7)、一般式(8)で示されるものの中でも、パーフルオロ(メチルビニルエーテル)、パーフルオロ(プロピルビニルエーテル)が好ましく、特にパーフルオロ(メチルビニルエーテル)が好ましい。 Among those represented by the general formulas (7) and (8), perfluoro (methyl vinyl ether) and perfluoro (propyl vinyl ether) are preferable, and perfluoro (methyl vinyl ether) is particularly preferable.
 これらはそれぞれ単独で、または任意に組み合わせて用いることができる。 These can be used alone or in any combination.
 VdF(a1)と特定のパーフルオロオレフィン(a2)との共重合割合は、VdFが20モル%を超えていればよいが、なかでもVdF45~85モル%と、特定のパーフルオロオレフィン55~15モル%とからなるVdF系エラストマーが好ましく、さらにはVdF50~80モル%と特定のパーフルオロオレフィン50~20モル%とからなるVdF系エラストマーが好ましい。 The copolymerization ratio between VdF (a1) and the specific perfluoroolefin (a2) may be such that VdF exceeds 20 mol%, and in particular, VdF is 45 to 85 mol%, and specific perfluoroolefin 55 to 15 A VdF elastomer consisting of mol% is preferable, and a VdF elastomer consisting of 50 to 80 mol% of VdF and 50 to 20 mol% of a specific perfluoroolefin is more preferable.
 VdF(a1)と特定のパーフルオロオレフィン(a2)と単量体(a3)との共重合体(A1)としては、VdF/HFP/単量体(a3)共重合体、VdF/HFP/TFE/単量体(a3)共重合体、VdF/PAVE/単量体(a3)共重合体、VdF/TFE/PAVE/単量体(a3)共重合体、VdF/HFP/PAVE/単量体(a3)共重合体、VdF/HFP/TFE/PAVE/単量体(a3)共重合体が好ましい。 As a copolymer (A1) of VdF (a1), specific perfluoroolefin (a2) and monomer (a3), VdF / HFP / monomer (a3) copolymer, VdF / HFP / TFE / Monomer (a3) copolymer, VdF / PAVE / monomer (a3) copolymer, VdF / TFE / PAVE / monomer (a3) copolymer, VdF / HFP / PAVE / monomer (A3) A copolymer and VdF / HFP / TFE / PAVE / monomer (a3) copolymer are preferred.
 VdF/HFP/単量体(a3)共重合体は、VdF/HFPがモル比で、45~85/55~15モル%であることが好ましく、より好ましくは、50~80/50~20モル%であり、さらに好ましくは、60~80/40~20モル%である。 In the VdF / HFP / monomer (a3) copolymer, the molar ratio of VdF / HFP is preferably 45 to 85/55 to 15 mol%, and more preferably 50 to 80/50 to 20 mol. %, And more preferably 60-80 / 40-20 mol%.
 VdF/HFP/TFE/単量体(a3)共重合体は、VdF/HFP/TFEがモル比で、40~80/10~35/10~35モル%のものが好ましい。 The VdF / HFP / TFE / monomer (a3) copolymer preferably has a VdF / HFP / TFE molar ratio of 40 to 80/10 to 35/10 to 35 mol%.
 VdF/PAVE/単量体(a3)共重合体としては、VdF/PAVEがモル比で、65~90/35~10モル%のものが好ましい。 The VdF / PAVE / monomer (a3) copolymer preferably has a VdF / PAVE molar ratio of 65 to 90/35 to 10 mol%.
 VdF/TFE/PAVE/単量体(a3)共重合体としては、VdF/TFE/PAVEがモル比で、40~80/3~40/15~35モル%のものが好ましい。 The VdF / TFE / PAVE / monomer (a3) copolymer preferably has a molar ratio of VdF / TFE / PAVE of 40 to 80/3 to 40/15 to 35 mol%.
 VdF/HFP/PAVE/単量体(a3)共重合体としては、VdF/HFP/PAVEがモル比で、65~90/3~25/3~25モル%のものが好ましい。 The VdF / HFP / PAVE / monomer (a3) copolymer preferably has a molar ratio of VdF / HFP / PAVE of 65 to 90/3 to 25/3 to 25 mol%.
 VdF/HFP/TFE/PAVE/単量体(a3)共重合としては、VdF/HFP/TFE/PAVEがモル比で、40~90/0~25/0~40/3~35のものが好ましく、40~80/3~25/3~40/3~25モル%のものがより好ましい。 The VdF / HFP / TFE / PAVE / monomer (a3) copolymer is preferably a VdF / HFP / TFE / PAVE molar ratio of 40 to 90/0 to 25/0 to 40/3 to 35. 40 to 80/3 to 25/3 to 40/3 to 25 mol% is more preferable.
 シアノ基、カルボキシル基またはアルコキシカルボニル基を含有する単量体(a3)は、硬化性組成物の良好な架橋特性および架橋物の耐熱性の観点から、VdF(a1)と特定のパーフルオロオレフィン(a2)の合計量に対して、0.1~5モル%であることが好ましく、0.3~3モル%であることがより好ましい。 The monomer (a3) containing a cyano group, a carboxyl group or an alkoxycarbonyl group is selected from VdF (a1) and a specific perfluoroolefin (from the viewpoint of good crosslinking characteristics of the curable composition and heat resistance of the crosslinked product. The content is preferably from 0.1 to 5 mol%, more preferably from 0.3 to 3 mol%, based on the total amount of a2).
 シアノ基、カルボキシル基またはアルコキシカルボニル基を含有する単量体(a3)としては、たとえば、式(9)~(12):
CY =CY(CF-X                (9)
(式中、Yは水素原子またはフッ素原子、nは1~8の整数である)
CF=CFCF -X                  (10)
(式中、R は-(OCF-、-(OCF(CF))
であり、nは0~5の整数である)
CF=CF(OCFCF(CF))O(CF-X    (11)
(式中、mは0~5の整数、nは1~8の整数である)
CF=CF(OCFCF(CF))-X          (12)
(式中、mは1~5の整数)
(式(9)~(12)中、Xは、シアノ基(-CN基)、カルボキシル基(-COOH基)またはアルコキシカルボニル基(-COOR基、Rは炭素数1~10のフッ素原子を含んでいてもよいアルキル基))で表される単量体などがあげられ、これらをそれぞれ単独で、または任意に組み合わせて用いることができる。
単量体(a3)としては、なかでも、シアノ基を含有する単量体が好ましい。
Examples of the monomer (a3) containing a cyano group, a carboxyl group or an alkoxycarbonyl group include, for example, formulas (9) to (12):
CY 1 2 = CY 1 (CF 2 ) n -X 1 (9)
(Wherein Y 1 is a hydrogen atom or a fluorine atom, and n is an integer of 1 to 8)
CF 2 = CFCF 2 R f 1 -X 1 (10)
(Wherein R f 1 represents — (OCF 2 ) n —, — (OCF (CF 3 )) n
And n is an integer from 0 to 5)
CF 2 ═CF (OCF 2 CF (CF 3 )) m O (CF 2 ) n —X 1 (11)
(In the formula, m is an integer of 0 to 5, and n is an integer of 1 to 8.)
CF 2 = CF (OCF 2 CF (CF 3 )) m -X 1 (12)
(Where m is an integer from 1 to 5)
(In the formulas (9) to (12), X 1 represents a cyano group (—CN group), a carboxyl group (—COOH group) or an alkoxycarbonyl group (—COOR group, R represents a fluorine atom having 1 to 10 carbon atoms). Examples thereof include a monomer represented by an alkyl group)) which may be contained, and these can be used alone or in any combination.
As the monomer (a3), a monomer containing a cyano group is particularly preferable.
 これらのVdF系エラストマー(A1)は、常法により製造することができる。 These VdF elastomers (A1) can be produced by a conventional method.
 また、これらの官能基のエラストマーへの導入方法としては、国際公開第00/05959号パンフレットに記載の方法も用いることができる。 As a method for introducing these functional groups into the elastomer, the method described in International Publication No. 00/05959 pamphlet can also be used.
 エラストマー中の上記官能基の存在は、例えば、赤外分光分析により確認できる。 The presence of the functional group in the elastomer can be confirmed by, for example, infrared spectroscopic analysis.
 本発明で用いるVdF系エラストマー(A1)は、加工性が良好な点から、ムーニー粘度(ML1+10(121℃))が5~140、さらには5~120、特に5~100であるものが好ましい。 The VdF elastomer (A1) used in the present invention preferably has a Mooney viscosity (ML 1 + 10 (121 ° C.)) of 5 to 140, more preferably 5 to 120, and particularly 5 to 100 from the viewpoint of good processability. .
(A2)TFE-Pr系エラストマー
 本発明で用いるTFE-Pr系エラストマー(A2)は、TFE単位40~70モル%とPr単位30~60モル%とシアノ基、カルボキシル基またはアルコキシカルボニル基を含有する単量体とを有する非パーフルオロエラストマーである。
(A2) TFE-Pr elastomer The TFE-Pr elastomer (A2) used in the present invention contains 40 to 70 mol% of TFE units, 30 to 60 mol% of Pr units, and a cyano group, a carboxyl group or an alkoxycarbonyl group. A non-perfluoroelastomer having a monomer.
 また、必要に応じてVdF単位0~15モル%および/またはPAVE単位0~15モル%を含んでいてもよい。 Further, 0 to 15 mol% of VdF units and / or 0 to 15 mol% of PAVE units may be contained as necessary.
 TFE単位は40~70モル%、好ましくは50~65モル%であり、Prとこの範囲においてエラストマー性が得られる。 The TFE unit is 40 to 70 mol%, preferably 50 to 65 mol%, and Pr and elastomer properties are obtained in this range.
 Pr単位は30~60モル%、好ましくは30~50モル%であり、TFEとこの範囲においてエラストマー性が得られる。 The Pr unit is 30 to 60 mol%, preferably 30 to 50 mol%, and elastomeric properties can be obtained in TFE and this range.
 シアノ基、カルボキシル基またはアルコキシカルボニル基を含有する単量体としては、VdF系エラストマー(A1)で説明した単量体(a3)が好ましいものも含めて、TFE-Pr系エラストマー(A2)にも使用できる。 Examples of the monomer containing a cyano group, a carboxyl group or an alkoxycarbonyl group include the monomer (a3) described in the VdF elastomer (A1) and the TFE-Pr elastomer (A2). Can be used.
 任意の単位であるVdF単位またはPAVE単位は15モル%まで、さらには10モル%までであり、これを超えると前者は耐アミン性、後者は高コストの点で好ましくない。 The VdF unit or PAVE unit, which is an arbitrary unit, is up to 15 mol%, and further up to 10 mol%, and if it exceeds this, the former is not preferable in terms of amine resistance and the latter is expensive.
 また本発明で用いるTFE-Pr系エラストマー(A2)は、ムーニー粘度(ML1+10(121℃))が5~100である。ムーニー粘度が5を下回ると加硫性が低下して加硫ゴムとしての十分な物理特性が出なくなり、100を超えると流動性が低下し、成型加工性が悪くなる傾向にある。好ましいムーニー粘度(ML1+10(121℃))は、10~80である。 The TFE-Pr elastomer (A2) used in the present invention has a Mooney viscosity (ML 1 + 10 (121 ° C.)) of 5 to 100. When the Mooney viscosity is less than 5, the vulcanizability is lowered and sufficient physical properties as a vulcanized rubber are not produced, and when it exceeds 100, the fluidity is lowered and the moldability tends to be deteriorated. A preferable Mooney viscosity (ML 1 + 10 (121 ° C.)) is 10 to 80.
 本発明で用いるTFE-Pr系エラストマー(A2)は、通常の乳化重合法でも製造できるが、TFEとPrの重合速度は比較的遅いため、たとえば2段重合法(シード重合法)で製造するときは、効率よく製造できる。 The TFE-Pr elastomer (A2) used in the present invention can be produced by a usual emulsion polymerization method. However, since the polymerization rate of TFE and Pr is relatively slow, for example, when produced by a two-stage polymerization method (seed polymerization method). Can be manufactured efficiently.
 本発明では、VdF系エラストマー(A1)またはTFE-Pr系エラストマー(A2)の硬化のために、硬化剤(B)を単独で配合してもよいし、アンモニア発生化合物(C)を単独で配合してもよいし、または硬化剤(B)とアンモニア発生化合物(C)とを併用してもよい。 In the present invention, for curing the VdF elastomer (A1) or the TFE-Pr elastomer (A2), the curing agent (B) may be blended alone, or the ammonia generating compound (C) is blended alone. Alternatively, the curing agent (B) and the ammonia generating compound (C) may be used in combination.
 本発明では、また、VdF系エラストマー(A1)またはTFE-Pr系エラストマー(A2)の硬化のために、無機窒化物粒子(F)を単独で配合してもよいし、硬化剤(B)と無機窒化物粒子(F)とを併用してもよいし、アンモニア発生化合物(C)と無機窒化物粒子(F)とを併用してもよいし、硬化剤(B)とアンモニア発生化合物(C)と無機窒化物粒子(F)とを併用してもよい。 In the present invention, the inorganic nitride particles (F) may be blended alone for curing the VdF elastomer (A1) or the TFE-Pr elastomer (A2), or the curing agent (B) and Inorganic nitride particles (F) may be used in combination, ammonia generating compound (C) and inorganic nitride particles (F) may be used in combination, curing agent (B) and ammonia generating compound (C). ) And inorganic nitride particles (F) may be used in combination.
(B)硬化剤
 硬化剤(B)としては、式(1):
Figure JPOXMLDOC01-appb-C000009
(式中、Rは同じかまたは異なり、-NH、-NHR、-OHまたは-SHであり、Rはフッ素原子または1価の有機基である)で示される架橋性反応基を少なくとも2個含む化合物、式(2):
Figure JPOXMLDOC01-appb-C000010
で示される化合物、式(3):
Figure JPOXMLDOC01-appb-C000011
(式中、R は炭素数1~10のパーフルオロアルキレン基)で示される化合物、および式(4):
Figure JPOXMLDOC01-appb-C000012
(式中、nは1~10の整数)で示される化合物よりなる群から選ばれる少なくとも1種が好ましい。
(B) Curing agent As the curing agent (B), the formula (1):
Figure JPOXMLDOC01-appb-C000009
(Wherein R 1 is the same or different and is —NH 2 , —NHR 2 , —OH or —SH, and R 2 is a fluorine atom or a monovalent organic group) A compound comprising at least two compounds of formula (2):
Figure JPOXMLDOC01-appb-C000010
A compound of formula (3):
Figure JPOXMLDOC01-appb-C000011
(Wherein R f 1 is a perfluoroalkylene group having 1 to 10 carbon atoms), and formula (4):
Figure JPOXMLDOC01-appb-C000012
In the formula, n is preferably at least one selected from the group consisting of compounds represented by the formula (1).
 具体的な硬化剤(B)としては、式(1)で示される架橋性反応基を2個有する一般式(5):
Figure JPOXMLDOC01-appb-C000013
(式中、Rは前記と同じ、Rは、-SO-、-O-、-CO-、炭素数1~6のアルキレン基、炭素数1~10のパーフルオロアルキレン基、単結合手、または
Figure JPOXMLDOC01-appb-C000014
で示される基である)で示される化合物や、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン、2,2-ビス(3-アミノ-4-メルカプトフェニル)ヘキサフルオロプロパン、2,2-ビス(3,4-ジアミノフェニル)ヘキサフルオロプロパンなどのほか、
式(6):
Figure JPOXMLDOC01-appb-C000015
(式中、Rは同じかまたは異なり、いずれも炭素数1~10のアルキル基;フッ素原子を含有する炭素数1~10のアルキル基;フェニル基;ベンジル基;フッ素原子および/または-CFで1~5個の水素原子が置換されたフェニル基またはベンジル基である)で示される化合物があげられる。
As a specific curing agent (B), general formula (5) having two crosslinkable reactive groups represented by formula (1):
Figure JPOXMLDOC01-appb-C000013
(Wherein R 1 is the same as above, R 5 is —SO 2 —, —O—, —CO—, an alkylene group having 1 to 6 carbon atoms, a perfluoroalkylene group having 1 to 10 carbon atoms, a single bond) Hand, or
Figure JPOXMLDOC01-appb-C000014
, 2,2-bis (3-amino-4-hydroxyphenyl) hexafluoropropane, 2,2-bis (3-amino-4-mercaptophenyl) hexafluoropropane , 2,2-bis (3,4-diaminophenyl) hexafluoropropane,
Formula (6):
Figure JPOXMLDOC01-appb-C000015
Wherein R 6 is the same or different and both are alkyl groups having 1 to 10 carbon atoms; alkyl groups having 1 to 10 carbon atoms containing fluorine atoms; phenyl groups; benzyl groups; fluorine atoms and / or —CF 3 is a phenyl group or a benzyl group in which 1 to 5 hydrogen atoms are substituted.
 これらの具体例としては、限定的ではないが、たとえば2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン、2,2-ビス(3,4-ジアミノフェニル)ヘキサフルオロプロパン、2,2-ビス[3-アミノ-4-(N-メチルアミノ)フェニル]ヘキサフルオロプロパン、2,2-ビス[3-アミノ-4-(N-エチルアミノ)フェニル]ヘキサフルオロプロパン、2,2-ビス[3-アミノ-4-(N-プロピルアミノ)フェニル]ヘキサフルオロプロパン、2,2-ビス[3-アミノ-4-(N-フェニルアミノ)フェニル]ヘキサフルオロプロパン、2,2-ビス[3-アミノ-4-(N-パーフルオロフェニルアミノ)フェニル]ヘキサフルオロプロパン、2,2-ビス[3-アミノ-4-(N-ベンジルアミノ)フェニル]ヘキサフルオロプロパンなどのビスアミノフェノール系硬化剤などがあげられる。 Specific examples of these include, but are not limited to, for example, 2,2-bis (3-amino-4-hydroxyphenyl) hexafluoropropane, 2,2-bis (3,4-diaminophenyl) hexafluoropropane, 2,2-bis [3-amino-4- (N-methylamino) phenyl] hexafluoropropane, 2,2-bis [3-amino-4- (N-ethylamino) phenyl] hexafluoropropane, 2, 2-bis [3-amino-4- (N-propylamino) phenyl] hexafluoropropane, 2,2-bis [3-amino-4- (N-phenylamino) phenyl] hexafluoropropane, 2,2- Bis [3-amino-4- (N-perfluorophenylamino) phenyl] hexafluoropropane, 2,2-bis [3-amino-4- (N-benzene) Jiruamino) phenyl] bis amino phenolic curing agent such as hexafluoropropane, and the like.
 硬化剤(B)の中でも、耐熱性が優れており、架橋反応性が特に良好である点から、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン(OH-AF)、2,2-ビス[3-アミノ-4-(N-フェニルアミノ)フェニル]ヘキサフルオロプロパン(Nph-AF)、2,2-ビス(3,4-ジアミノフェニル)ヘキサフルオロプロパン(TA-AF)がさらに好ましい。 Among the curing agents (B), 2,2-bis (3-amino-4-hydroxyphenyl) hexafluoropropane (OH-AF), which has excellent heat resistance and particularly good crosslinking reactivity, 2,2-bis [3-amino-4- (N-phenylamino) phenyl] hexafluoropropane (Nph-AF), 2,2-bis (3,4-diaminophenyl) hexafluoropropane (TA-AF) Is more preferable.
 これらの硬化剤(B)は、単独でも2種以上併用してもよい。 These curing agents (B) may be used alone or in combination of two or more.
 これらの硬化剤(B)は、本発明で用いる特定の非パーフルオロエラストマー(A)が有するシアノ基、カルボキシル基またはアルコキシカルボニル基という架橋性官能基と反応し、架橋物を与える。 These curing agents (B) react with a crosslinkable functional group such as a cyano group, a carboxyl group or an alkoxycarbonyl group of the specific non-perfluoroelastomer (A) used in the present invention to give a cross-linked product.
 硬化剤(B)の添加量は、特定の非パーフルオロ系エラストマー(A)100質量部に対して、0.1~20質量部であることが好ましく、0.5~10質量部であることがより好ましい。硬化剤(B)が、0.1質量部未満であると、実用上充分な機械的強度、耐熱性、耐薬品性が得られない傾向があり、20質量部を超えると、架橋に長時間がかかるうえ、架橋物が硬くなり柔軟性がなくなる傾向がある。 The addition amount of the curing agent (B) is preferably 0.1 to 20 parts by mass, and 0.5 to 10 parts by mass with respect to 100 parts by mass of the specific non-perfluoro elastomer (A). Is more preferable. When the curing agent (B) is less than 0.1 parts by mass, there is a tendency that practically sufficient mechanical strength, heat resistance and chemical resistance cannot be obtained. In addition, the crosslinked product tends to be hard and not flexible.
(C)40~330℃でアンモニアを発生させる化合物(アンモニア発生化合物)
 アンモニア発生化合物(C)は、特定の非パーフルオロエラストマー(A)が有する架橋性反応基の少なくとも1種がシアノ基である場合に、シアノ基が環化三量体(トリアジン環)を形成するトリアジン架橋系で、架橋反応を促進する働きをする。
(C) Compound that generates ammonia at 40 to 330 ° C. (ammonia generating compound)
In the ammonia generating compound (C), when at least one of the crosslinkable reactive groups of the specific non-perfluoroelastomer (A) is a cyano group, the cyano group forms a cyclized trimer (triazine ring). Triazine crosslinking system that promotes crosslinking reaction.
 このトリアジン架橋では硬化剤は必須ではなく、架橋反応温度(40~330℃)で発生したアンモニアが非パーフルオロ系エラストマー(A)のトリアジン架橋を引き起こすことにより硬化を生じさせる。したがって、本発明では、アンモニア発生化合物を単独で使用して硬化(トリアジン架橋)を生じさせることができるが、さらに硬化剤(B)を併用し、トリアジン架橋に加えて他の架橋を形成させてもよい。 In this triazine crosslinking, a curing agent is not essential, and ammonia generated at the crosslinking reaction temperature (40 to 330 ° C.) causes the triazine crosslinking of the non-perfluoro elastomer (A) to cause curing. Therefore, in the present invention, the ammonia generating compound can be used alone to cause curing (triazine crosslinking), but the curing agent (B) can be used in combination to form other crosslinking in addition to the triazine crosslinking. Also good.
 アンモニア発生化合物(C)としては、尿素またはその誘導体、アンモニウム塩が好ましくあげられ、尿素またはアンモニウム塩がより好ましく、アンモニウム塩としては有機アンモニウム塩でも無機アンモニウム塩でもよい。また、アンモニア発生化合物(C)としては、微量の水と反応して、アンモニアを発生させるものであってもよい。 As the ammonia generating compound (C), urea or a derivative thereof and an ammonium salt are preferable, and urea or an ammonium salt is more preferable. The ammonium salt may be an organic ammonium salt or an inorganic ammonium salt. The ammonia generating compound (C) may be one that reacts with a small amount of water to generate ammonia.
 尿素の誘導体としては、ビウレア、チオウレア、尿素塩酸塩、ビウレットなどがあげられる。 Examples of urea derivatives include biurea, thiourea, urea hydrochloride, biuret and the like.
 有機アンモニウム塩としては、特開平9-111081号公報、国際公開第00/09603号パンフレット、国際公開第98/23675号パンフレットに記載された化合物、たとえばパーフルオロヘキサン酸アンモニウム、パーフルオロオクタン酸アンモニウムなどのポリフルオロカルボン酸のアンモニウム塩;パーフルオロヘキサンスルホン酸アンモニウム、パーフルオロオクタンスルホン酸アンモニウムなどのポリフルオロスルホン酸のアンモニウム塩;パーフルオロヘキサンリン酸アンモニウム、パーフルオロオクタンリン酸アンモニウムなどのポリフルオロアルキル基含有リン酸またはホスホン酸のアンモニウム塩;安息香酸アンモニウム、アジピン酸アンモニウム、フタル酸アンモニウムなどの非フッ素系のカルボン酸またはスルホン酸のアンモニウム塩が例示できる。なかでも、非パーフルオロ系エラストマー(A)への分散性を考慮するとフッ素系のカルボン酸、スルホン酸またはリン酸のアンモニウム塩が好ましく、一方、安価な点からは、非フッ素系のカルボン酸、スルホン酸またはリン酸のアンモニウム塩が好ましい。 Examples of organic ammonium salts include compounds described in JP-A-9-111101, WO00 / 09603, and WO98 / 23675, such as ammonium perfluorohexanoate and ammonium perfluorooctanoate. Ammonium salt of polyfluorocarboxylic acid; ammonium salt of polyfluorosulfonic acid such as ammonium perfluorohexanesulfonate and ammonium perfluorooctanesulfonate; polyfluoroalkyl such as ammonium perfluorohexanephosphate and ammonium perfluorooctanephosphate Group-containing phosphoric acid or phosphonic acid ammonium salt; non-fluorinated carboxylic acid such as ammonium benzoate, ammonium adipate, ammonium phthalate, etc. Ammonium salts of sulfonic acid can be exemplified. Among these, in view of dispersibility in the non-perfluoro elastomer (A), a fluorine-based carboxylic acid, a sulfonic acid or an ammonium salt of phosphoric acid is preferable. Ammonium salts of sulfonic acid or phosphoric acid are preferred.
 無機アンモニウム塩としては、特開平9-111081号公報に記載された化合物、たとえば硫酸アンモニウム、炭酸アンモニウム、硝酸アンモニウム、リン酸アンモニウムなどが例示でき、なかでも加硫特性を考慮すると、リン酸アンモニウムが好ましい。 Examples of the inorganic ammonium salt include compounds described in JP-A-9-111101, such as ammonium sulfate, ammonium carbonate, ammonium nitrate, and ammonium phosphate. Among them, ammonium phosphate is preferable in view of vulcanization characteristics.
 そのほか、アセトアルデヒドアンモニア、ヘキサメチレンテトラミン、ホルムアミジン、ホルムアミジン塩酸塩、ホルムアミジン酢酸塩、t-ブチルカルバメート、ベンジルカルバメート、HCFCFCH(CH)OCONH、フタルアミドなども使用できる。 In addition, acetaldehyde ammonia, hexamethylenetetramine, formamidine, formamidine hydrochloride, formamidine acetate, t-butyl carbamate, benzyl carbamate, HCF 2 CF 2 CH (CH 3 ) OCONH 2 , phthalamide and the like can be used.
 これらのアンモニア発生化合物(C)は、単独でも2種以上併用してもよい。 These ammonia generating compounds (C) may be used alone or in combination of two or more.
 アンモニア発生化合物(C)の添加量は発生するアンモニアの量により適宜選択すればよいが、単独で使用する場合は、通常、非パーフルオロ系エラストマー(A)100質量部に対して、0.05~10質量部であり、0.1~5質量部であることが好ましく、0.2~3質量部であることがより好ましい。アンモニア発生化合物が、少なすぎると架橋密度が低くなるため、実用上、充分な耐熱性、耐薬品性を発現しない傾向があり、多くなりすぎると、スコーチの懸念があり保存安定性が悪くなるという問題があり、かつ成形品の色目に透明感がなくなる傾向がある。 The addition amount of the ammonia generating compound (C) may be appropriately selected depending on the amount of ammonia to be generated, but when used alone, it is usually 0.05 to 100 parts by mass of the non-perfluoroelastomer (A). To 10 parts by mass, preferably 0.1 to 5 parts by mass, and more preferably 0.2 to 3 parts by mass. If the amount of the ammonia generating compound is too small, the crosslinking density is lowered, so that there is a tendency that the practically sufficient heat resistance and chemical resistance are not expressed. If the amount is too large, there is a concern of scorching and storage stability is deteriorated. There is a problem and there is a tendency that the color of the molded product is not transparent.
 前記のように、硬化剤(B)とアンモニア発生化合物(C)を併用してもよい。その場合、機械的強度、耐熱性、耐薬品性、耐寒性に優れ、特に耐熱性と耐寒性にバランスよく優れた架橋物を与えるものである。 As described above, the curing agent (B) and the ammonia generating compound (C) may be used in combination. In such a case, a cross-linked product having excellent mechanical strength, heat resistance, chemical resistance, and cold resistance, and particularly excellent balance between heat resistance and cold resistance is obtained.
 また、硬化剤(B)と併用する場合のアンモニア発生化合物(C)の添加量は、発生するアンモニアの量により適宜選択すればよいが、通常、特定の非パーフルオロ系エラストマー(A)100質量部に対して、0.01~10質量部であり、0.02~5質量部であることが好ましく、0.05~3質量部であることがより好ましい。 In addition, the amount of the ammonia generating compound (C) to be used in combination with the curing agent (B) may be appropriately selected depending on the amount of generated ammonia, but is usually 100 masses of the specific non-perfluoroelastomer (A). Part by weight, 0.01 to 10 parts by weight, preferably 0.02 to 5 parts by weight, more preferably 0.05 to 3 parts by weight.
 本発明では、また、アンモニア発生化合物(C)と無機窒化物粒子(F)とを併用してもよいし、硬化剤(B)とアンモニア発生化合物(C)と無機窒化物粒子(F)とを併用してもよい。 In the present invention, the ammonia generating compound (C) and the inorganic nitride particles (F) may be used in combination, or the curing agent (B), the ammonia generating compound (C), and the inorganic nitride particles (F). May be used in combination.
(F)無機窒化物粒子
 無機窒化物粒子(F)は、非パーフルオロエラストマー(A)が有する架橋性反応基の少なくとも1種がシアノ基である場合に、シアノ基が環化三量体(トリアジン環)を形成するトリアジン架橋系で、架橋反応を促進する働きをする。
(F) Inorganic nitride particles In the inorganic nitride particles (F), when at least one of the crosslinkable reactive groups of the non-perfluoroelastomer (A) is a cyano group, the cyano group is a cyclized trimer ( It is a triazine crosslinking system that forms a triazine ring) and serves to promote the crosslinking reaction.
 無機窒化物粒子(F)としては、特に限定されるものではないが、窒化ケイ素(Si)、窒化リチウム、窒化チタン、窒化アルミニウム、窒化ホウ素、窒化バナジウム、窒化ジルコニウムなどがあげられる。これらの中でも、ナノサイズの微粒子が供給可能であること、半導体製造工程で嫌われる金属等を含んでいない点から、窒化ケイ素粒子であることが好ましい。また、これらの窒化物粒子は2種以上混合使用してもよい。 The inorganic nitride particles (F) are not particularly limited, and examples thereof include silicon nitride (Si 3 N 4 ), lithium nitride, titanium nitride, aluminum nitride, boron nitride, vanadium nitride, and zirconium nitride. Among these, silicon nitride particles are preferable from the viewpoint that nano-sized fine particles can be supplied and that they do not contain metals that are hated in the semiconductor manufacturing process. These nitride particles may be used in combination of two or more.
 無機窒化物粒子(F)の粒径としては、特に限定されるものではないが、1000nm以下であることが好ましく、300nm以下であることがより好ましく、100nm以下であることがさらに好ましい。下限値は特に限定されない。 The particle size of the inorganic nitride particles (F) is not particularly limited, but is preferably 1000 nm or less, more preferably 300 nm or less, and even more preferably 100 nm or less. The lower limit is not particularly limited.
 無機窒化物粒子(F)の添加量は、無機窒化物粒子(F)を単独で使用する場合、非フッ素パーフルオロエラストマー(A)100重量部に対して、0.1~20重量部であることが好ましく、0.2~5重量部であることがより好ましく、0.2~1重量部であることがさらに好ましい。無機窒化物粒子(F)が、0.1重量部未満であると加硫密度が低くなるため、実用上、充分な耐熱性、耐薬品性を発現しない傾向があり、20重量部をこえると、スコーチの懸念があり保存安定性が悪くなるという問題があり、かつ成形品の色目に透明感が無くなる傾向がある。 The added amount of the inorganic nitride particles (F) is 0.1 to 20 parts by weight with respect to 100 parts by weight of the non-fluorine perfluoroelastomer (A) when the inorganic nitride particles (F) are used alone. It is preferably 0.2 to 5 parts by weight, more preferably 0.2 to 1 part by weight. If the inorganic nitride particles (F) are less than 0.1 parts by weight, the vulcanization density will be low, so that there is a tendency that practically sufficient heat resistance and chemical resistance will not be expressed, and if the amount exceeds 20 parts by weight. , There is a concern of scorch, there is a problem that storage stability is deteriorated, and there is a tendency that the color of the molded product is not transparent.
 無機窒化物粒子(F)の添加量は、無機窒化物粒子(F)を硬化剤(B)またはアンモニア発生化合物(C)と併用する場合、非フッ素パーフルオロエラストマー(A)100重量部に対して、0.01~1重量部であることが好ましく、その下限はより好ましくは0.03重量部、さらに好ましくは0.05重量部であり、その上限はより好ましくは0.7重量部、さらに好ましくは0.5重量部である。 When the inorganic nitride particles (F) are used in combination with the curing agent (B) or the ammonia generating compound (C), the added amount of the inorganic nitride particles (F) is 100 parts by weight of the non-fluorine perfluoroelastomer (A). The lower limit is preferably 0.01 to 1 part by weight, more preferably 0.03 part by weight, still more preferably 0.05 part by weight, and the upper limit is more preferably 0.7 part by weight. More preferably, it is 0.5 part by weight.
(D)他の成分
 本発明の硬化性組成物において、半導体製造装置や太陽電池製造装置において、特に高純度かつ非汚染性が要求されない箇所の耐熱部品では、必要に応じて硬化性組成物に配合される通常の添加物、たとえば充填剤、加工助剤、可塑剤、着色剤、安定剤、接着助剤などを配合することができ、前記のものとは異なる常用の硬化剤や架橋助剤を1種またはそれ以上配合してもよい。
(D) Other components In the curable composition of the present invention, in a semiconductor manufacturing apparatus or a solar cell manufacturing apparatus, particularly in a heat-resistant component at a location where high purity and non-contamination are not required, the curable composition can be used as necessary. Usable additives such as fillers, processing aids, plasticizers, colorants, stabilizers, adhesion aids, etc. can be blended, and conventional curing agents and crosslinking aids different from those mentioned above One or more may be blended.
 充填材(D1)は、架橋物の引張り強さ、モジュラス、硬度などの物性を向上させるものであり、本発明においても必要に応じて添加することができる。 The filler (D1) improves physical properties such as tensile strength, modulus, hardness and the like of the crosslinked product, and can be added as necessary in the present invention.
 充填剤(D1)としては、たとえば金属酸化物、金属炭化物、金属ハロゲン化物、金属硫化物、金属塩、金属水酸化物などの金属系フィラー;カーボンブラック、黒鉛化カーボン、グラファイトなどの炭素系フィラー;ハイスチレン樹脂、フェノール樹脂、クマロン樹脂、ポリイミド、ポリエーテルエーテルケトン、ポリアミドイミド、ポリエーテルスルフォン、ポリエーテルニトリル、ポリエーテルイミド、ポリフェニレンサルファイドなどの有機物系フィラーの少なくとも1種が例示できる。 Examples of the filler (D1) include metal fillers such as metal oxides, metal carbides, metal halides, metal sulfides, metal salts, and metal hydroxides; carbon fillers such as carbon black, graphitized carbon, and graphite. And at least one of organic fillers such as high styrene resin, phenol resin, coumarone resin, polyimide, polyether ether ketone, polyamide imide, polyether sulfone, polyether nitrile, polyether imide, and polyphenylene sulfide.
 金属酸化物としては、たとえば酸化ケイ素、酸化バリウム、酸化チタン、酸化アルミニウム、酸化銀、酸化ベリリウム、酸化ビスマス、酸化クロム、酸化ホウ素、酸化カドミウム、酸化銅、酸化鉄、酸化ガリウム、酸化ゲルマニウム、酸化ハフニウム、酸化イリジウム、酸化ランタン、酸化リチウム、酸化マグネシウム、酸化マンガン、酸化モリブデン、酸化ニオブ、酸化ネオジブ、酸化ニッケル、酸化鉛、酸化プラセオジウム、酸化ロジウム、酸化アンチモン、酸化スカンジウム、酸化スズ、酸化ストロンチウム、酸化タンタル、酸化トリウム、酸化バナジウム、酸化タングステン、酸化亜鉛、酸化ジルコニウムなどがあげられ、耐薬品性、化学的安定性に優れている点から、酸化ケイ素、酸化チタン、酸化アルミニウムが好ましい。補強性の点から、酸化ケイ素が特に好ましい。 Examples of the metal oxide include silicon oxide, barium oxide, titanium oxide, aluminum oxide, silver oxide, beryllium oxide, bismuth oxide, chromium oxide, boron oxide, cadmium oxide, copper oxide, iron oxide, gallium oxide, germanium oxide, and oxide. Hafnium, iridium oxide, lanthanum oxide, lithium oxide, magnesium oxide, manganese oxide, molybdenum oxide, niobium oxide, neodyb oxide, nickel oxide, lead oxide, praseodymium oxide, rhodium oxide, antimony oxide, scandium oxide, tin oxide, strontium oxide, Examples thereof include tantalum oxide, thorium oxide, vanadium oxide, tungsten oxide, zinc oxide, and zirconium oxide, and silicon oxide, titanium oxide, and aluminum oxide are preferable because they are excellent in chemical resistance and chemical stability. From the viewpoint of reinforcement, silicon oxide is particularly preferable.
 金属炭化物としては、たとえば炭化ホウ素、炭化カルシウム、炭化鉄、炭化マンガン、炭化チタン、炭化ケイ素、炭化バナジウム、炭化アルミニウムなどがあげられ、耐薬品性、化学的安定性に優れている点から、炭化ケイ素、炭化チタンが好ましい。 Examples of the metal carbide include boron carbide, calcium carbide, iron carbide, manganese carbide, titanium carbide, silicon carbide, vanadium carbide, and aluminum carbide. From the viewpoint of excellent chemical resistance and chemical stability, carbonization. Silicon and titanium carbide are preferred.
 金属ハロゲン化物としては、たとえば塩化銀、フッ化銀、塩化アルミニウム、フッ化アルミニウム、塩化バリウム、フッ化バリウム、塩化カルシウム、フッ化カルシウム、塩化カドミウム、塩化クロム、塩化セシウム、フッ化セシウム、塩化銅、塩化カリウム、フッ化カリウム、塩化リチウム、フッ化リチウム、塩化マグネシウム、フッ化マグネシウム、塩化マンガン、塩化ナトリウム、フッ化ナトリウム、塩化ニッケル、塩化鉛、フッ化鉛、塩化ルビジウム、フッ化ルビジウム、塩化スズ、塩化ストロンチウム、塩化タリウム、塩化バナジウム、塩化亜鉛、塩化ジルコニウムなどの金属塩化物または金属フッ化物や、これらの臭化物またはヨウ化物があげられ、吸湿性が小さく化学的安定性に優れている点から、フッ化アルミニウム、フッ化バリウムが好ましい。 Examples of metal halides include silver chloride, silver fluoride, aluminum chloride, aluminum fluoride, barium chloride, barium fluoride, calcium chloride, calcium fluoride, cadmium chloride, chromium chloride, cesium chloride, cesium fluoride, and copper chloride. , Potassium chloride, potassium fluoride, lithium chloride, lithium fluoride, magnesium chloride, magnesium fluoride, manganese chloride, sodium chloride, sodium fluoride, nickel chloride, lead chloride, lead fluoride, rubidium chloride, rubidium fluoride, chloride Examples include metal chlorides or metal fluorides such as tin, strontium chloride, thallium chloride, vanadium chloride, zinc chloride, zirconium chloride, and bromides or iodides of these, which have low hygroscopicity and excellent chemical stability. From aluminum fluoride, Of barium is preferable.
 金属塩は式:MnAm(Mは金属、Aは各種無機酸の残基、mおよびnはそれぞれの価数によって適宜決まる)で表されるものであり、たとえば各種金属の硫酸塩、炭酸塩、リン酸塩、チタン酸塩、ケイ酸塩、硝酸塩などがあげられる。具体例としては、たとえば硫酸アルミニウム、炭酸バリウム、硝酸銀、硝酸バリウム、硫酸バリウム、チタン酸バリウム、炭酸カルシウム、硝酸カルシウム、リン酸カルシウム、ケイ酸カルシウム、チタン酸カルシウム、硫酸カドミウム、硫酸コバルト、硫酸銅、炭酸第一鉄、ケイ酸鉄、チタン酸鉄、硝酸カリウム、硫酸カリウム、硝酸リチウム、炭酸マグネシウム、硝酸マグネシウム、ケイ酸マグネシウム、チタン酸マグネシウム、炭酸マグネシウム、硫酸マンガン、ケイ酸マンガン、炭酸ナトリウム、硝酸ナトリウム、硫酸ナトリウム、ケイ酸ナトリウム、チタン酸ナトリウム、硫酸ニッケル、炭酸鉛、硫酸鉛、炭酸ストロンチウム、硫酸ストロンチウム、チタン酸ストロンチウム、炭酸亜鉛、硫酸亜鉛、チタン酸亜鉛などがあげられ、耐プラズマ性や化学的安定性に優れている点から、硫酸バリウム、硫酸アルミニウムが好ましい。 The metal salt is represented by the formula: MnAm (M is a metal, A is a residue of various inorganic acids, m and n are appropriately determined depending on respective valences), for example, sulfates, carbonates of various metals, Examples thereof include phosphate, titanate, silicate, and nitrate. Specific examples include, for example, aluminum sulfate, barium carbonate, silver nitrate, barium nitrate, barium sulfate, barium titanate, calcium carbonate, calcium nitrate, calcium phosphate, calcium silicate, calcium titanate, cadmium sulfate, cobalt sulfate, copper sulfate, carbonate Ferrous iron, iron silicate, iron titanate, potassium nitrate, potassium sulfate, lithium nitrate, magnesium carbonate, magnesium nitrate, magnesium silicate, magnesium titanate, magnesium carbonate, manganese sulfate, manganese silicate, sodium carbonate, sodium nitrate, Sodium sulfate, sodium silicate, sodium titanate, nickel sulfate, lead carbonate, lead sulfate, strontium carbonate, strontium sulfate, strontium titanate, zinc carbonate, zinc sulfate, zinc titanate, etc. From the viewpoint of excellent plasma resistance and chemical stability, barium sulfate, aluminum sulfate preferred.
 金属水酸化物としては、たとえば水酸化カルシウム、水酸化マグネシウムなどがあげられる。 Examples of the metal hydroxide include calcium hydroxide and magnesium hydroxide.
 金属硫化物としては、硫化銀、硫化カルシウム、硫化カドミウム、硫化コバルト、硫化銅、硫化鉄、硫化マンガン、二硫化モリブデン、硫化鉛、硫化スズ、硫化亜鉛、二硫化タングステンなどがあげられる。 Examples of the metal sulfide include silver sulfide, calcium sulfide, cadmium sulfide, cobalt sulfide, copper sulfide, iron sulfide, manganese sulfide, molybdenum disulfide, lead sulfide, tin sulfide, zinc sulfide, and tungsten disulfide.
 カーボンブラックは、サーマルブラック、瀝青炭フィラー、ファーネスブラック、チャンネルブラックなどがあげられる。これらの中でも、成形品の耐圧縮永久ひずみ性の点から、瀝青炭フィラーが好ましく、力学物性の点から、瀝青炭フィラーとサーマルブラックの混合物が好ましい。 Carbon black includes thermal black, bituminous coal filler, furnace black, channel black and the like. Among these, a bituminous coal filler is preferable from the viewpoint of compression set resistance of the molded product, and a mixture of bituminous coal filler and thermal black is preferable from the viewpoint of mechanical properties.
 充填材(D1)の添加量は、特定の非パーフルオロ系エラストマー(A)100質量部に対して、10~50質量部であることが得られる成形品の力学物性が良好な点から好ましく、15~45質量部であることが得られる成形品の引張り強度、伸びのバランスがさらに良好な点からより好ましい。 The added amount of the filler (D1) is preferably 10 to 50 parts by mass with respect to 100 parts by mass of the specific non-perfluoroelastomer (A), from the viewpoint of good mechanical properties of the molded product, From 15 to 45 parts by mass, it is more preferable from the viewpoint of a better balance between the tensile strength and the elongation of the molded product.
 また、瀝青炭フィラーとサーマルブラックの混合物を用いる場合、その混合重量比(瀝青炭フィラー/サーマルブラック)は、9/95~80/20であることが好ましく、30/70~70/30であることがより好ましい。前記範囲外であると、耐圧縮永久ひずみ性の悪化や耐圧縮割れ性の低下が認められることがある。 When a mixture of bituminous coal filler and thermal black is used, the mixing weight ratio (bituminous coal filler / thermal black) is preferably 9/95 to 80/20, and preferably 30/70 to 70/30. More preferred. If it is out of the above range, deterioration of compression set resistance and deterioration of compression crack resistance may be observed.
 前記硬化性組成物の各成分を混合する方法や順序は特に限定されない。たとえば、つぎの方法が例示できるが、これらに限定されるものではない。 The method and order of mixing the components of the curable composition are not particularly limited. For example, although the following method can be illustrated, it is not limited to these.
(1-1)特定の非パーフルオロ系エラストマー(A)とアンモニア発生化合物(C)と硬化剤(B)を同時に混合する方法。
(1-2)(B)成分と(C)成分を予め混合した後、(A)成分と混合する方法。
(1-3)(A)成分の一部と(B)成分と(C)成分を予め混合してマスターバッチとした後、残りの(A)成分と混合する方法。
(1-4)(A)成分の一部と(B)成分を予め混合してマスターバッチとした後、残りの(A)成分および(C)成分と混合する(この場合、残りの(A)成分と(C)成分は予め混合されていてもよい)方法。
(1-1) A method of simultaneously mixing a specific non-perfluoroelastomer (A), an ammonia generating compound (C) and a curing agent (B).
(1-2) A method in which the component (B) and the component (C) are mixed in advance and then mixed with the component (A).
(1-3) A method in which a part of the component (A), the component (B), and the component (C) are mixed in advance to form a master batch, and then mixed with the remaining component (A).
(1-4) A part of component (A) and component (B) are mixed in advance to form a master batch, and then mixed with the remaining components (A) and (C) (in this case, the remaining (A) ) Component and (C) component may be mixed in advance).
 無機窒化物粒子(F)を配合する場合は、非パーフルオロ系エラストマー(A)に添加してから公知の方法により混合すればよい。 What is necessary is just to mix by a well-known method, when adding inorganic nitride particle | grains (F), after adding to a non-perfluoro type | system | group elastomer (A).
 さらに他の添加剤(D)を配合する場合は、上記の各方法においていずれかの段階で他の添加剤(D)を配合すればよい。 Further, when other additive (D) is blended, the other additive (D) may be blended at any stage in the above methods.
 また、他の添加剤、特に充填剤(D1)を用いる場合、
(1-5)(B)成分と充填剤(D1)、さらに要すれば(A)成分の一部を予め混合してマスターバッチとし、残りの成分を混合する(この場合、残りの成分は予め混合されていてもよい)方法
も採用できる。
Moreover, when using other additives, especially filler (D1),
(1-5) Component (B) and filler (D1), and if necessary, part of component (A) are mixed in advance to form a master batch, and the remaining components are mixed (in this case, the remaining components are (It may be mixed in advance).
 なお、マスターバッチを調製するために使用する特定の非パーフルオロ系エラストマー(A)は、アンモニア発生化合物(C)の分散性を良好にする点から、全非パーフルオロ系エラストマー(A)の1~50質量%が好ましい。また、マスターバッチ用に使用するエラストマーの量が少ない場合は、マスターバッチの調製に使用するエラストマーは必ずしも非パーフルオロ系エラストマー(A)でなくてもよく、別のエラストマー、たとえば、混合中にスコーチしないようなエラストマー、たとえばシアノ基またはカルボキシル基またはアルコキシカルボニル基を有していないエラストマーを単独または併用してもよい。別のエラストマーとしては、特定の非パーフルオロ系エラストマー(A)と相溶性が良好な点から、他のVdF系エラストマー、たとえばVdF系エラストマー(A1)において単量体(a3)を含まないVdF系エラストマー、またはプロピレン以外の単量体とTFEとのエラストマーが好ましい。 The specific non-perfluoroelastomer (A) used for preparing the masterbatch is one of all non-perfluoroelastomers (A) from the viewpoint of improving the dispersibility of the ammonia generating compound (C). ~ 50% by weight is preferred. In addition, when the amount of elastomer used for the masterbatch is small, the elastomer used for preparing the masterbatch may not necessarily be the non-perfluoroelastomer (A), and another elastomer such as a scorch during mixing may be used. Such an elastomer that does not have, for example, an elastomer having no cyano group, carboxyl group or alkoxycarbonyl group may be used alone or in combination. As another elastomer, VdF type which does not contain monomer (a3) in other VdF type elastomers, for example, VdF type elastomer (A1), from the point of good compatibility with a specific non-perfluoro type elastomer (A). An elastomer or an elastomer of a monomer other than propylene and TFE is preferred.
 また、マスターバッチの組成としては、たとえばマスターバッチ用のエラストマー100質量部に対して、硬化剤(B)をマスターバッチに配合する場合は硬化剤(B)を5~120質量部、アンモニア発生化合物(C)をマスターバッチに配合する場合はアンモニア発生化合物(C)を5~120質量部配合することが好ましい。 The composition of the master batch is, for example, 5 to 120 parts by mass of the curing agent (B) when adding the curing agent (B) to the master batch with respect to 100 parts by mass of the elastomer for the master batch. When blending (C) into the masterbatch, it is preferable to blend 5 to 120 parts by mass of the ammonia generating compound (C).
 前記硬化性組成物の各成分を混合する手段としては、通常のエラストマー用加工機械、たとえば、オープンロール、バンバリーミキサー、ニーダーなどがあげられ、各成分を混合することにより本発明の硬化性組成物を調製することができる。この他、密閉式混合機を用いる方法によっても調製することができる。 Examples of means for mixing the components of the curable composition include ordinary elastomer processing machines such as an open roll, a Banbury mixer, and a kneader. The curable composition of the present invention can be mixed by mixing the components. Can be prepared. In addition, it can be prepared by a method using a closed mixer.
 ところで、特定の非パーフルオロ系エラストマー(A)に固形物であるアンモニア発生化合物(C)の粉末を混練機やオープンロールなどで直接混練して、アンモニア発生化合物(C)を非パーフルオロ系エラストマー(A)中に分散させる場合、非パーフルオロ系エラストマー(A)の表面滑り性が高く、アンモニア発生化合物(C)を取り込むことは可能ではあるが、均一に練り込んで分散させることは容易ではない。 By the way, the powder of the ammonia generating compound (C) which is a solid substance is directly kneaded with a specific non-perfluoro elastomer (A) with a kneader or an open roll, and the ammonia generating compound (C) is then non-perfluoro elastomer. When dispersed in (A), the non-perfluoroelastomer (A) has high surface slipperiness and it is possible to incorporate the ammonia generating compound (C), but it is not easy to knead and disperse uniformly. Absent.
 アンモニア発生化合物(C)の非パーフルオロ系エラストマー(A)中への分散を均一にするためには、アンモニア発生化合物(C)に親和性を有する溶媒(E)を混合の場に存在させればよい。 In order to uniformly disperse the ammonia generating compound (C) in the non-perfluoroelastomer (A), a solvent (E) having an affinity for the ammonia generating compound (C) can be present in the mixing field. That's fine.
 親和性溶媒(E)としては、水(E1)、またはアンモニア発生化合物(C)に親和性を有する有機溶媒(E2)が好ましい。 As the affinity solvent (E), water (E1) or an organic solvent (E2) having affinity for the ammonia generating compound (C) is preferable.
 具体的な有機溶媒(E2)としては、たとえばメタノール、エタノール、グリセリンなどのアルコール溶剤などがあげられる。 Specific examples of the organic solvent (E2) include alcohol solvents such as methanol, ethanol and glycerin.
 特には、水(E1)が、安価な点や取扱いや除去が容易である点、環境に優しい点などから好ましい。 In particular, water (E1) is preferable because it is inexpensive, easy to handle and remove, and environmentally friendly.
 親和性溶媒(E)を混合の場に存在させる方法としては、特に限定されるものではないが、アンモニア発生化合物(C)の分散性を高める観点から、あらかじめ親和性溶媒(E)とアンモニア発生化合物(C)との混合液として混合の場に添加することが好ましい。 The method of causing the affinity solvent (E) to be present in the mixing field is not particularly limited, but from the viewpoint of enhancing the dispersibility of the ammonia generating compound (C), the affinity solvent (E) and the ammonia generation in advance. It is preferable to add to the place of mixing as a liquid mixture with a compound (C).
 本発明の硬化性組成物の架橋は、たとえば、金型にて加熱圧縮する方法、加熱された金型に圧入する方法、押出機で押出した後架橋する方法などの通常の方法で行うことができる。架橋は通常、一次架橋、最後に二次架橋の順で行い、成形品を得ることができる。 Crosslinking of the curable composition of the present invention can be performed by a usual method such as a method of heat-compressing with a mold, a method of press-fitting into a heated mold, a method of cross-linking after extrusion with an extruder. it can. Crosslinking is usually performed in the order of primary crosslinking and finally secondary crosslinking to obtain a molded product.
 一次架橋条件としては、150~230℃で5~120分間加熱を行うことが好ましく、160~200℃で5~60分間加熱を行うことがより好ましく、170~190℃で5~60分間加熱を行うことが特に好ましい。架橋手段としては、公知の架橋手段を用いればよく、たとえばプレス架橋などをあげることができる。 As the primary crosslinking conditions, heating is preferably performed at 150 to 230 ° C. for 5 to 120 minutes, more preferably heating at 160 to 200 ° C. for 5 to 60 minutes, and heating at 170 to 190 ° C. for 5 to 60 minutes. It is particularly preferred to do this. As the crosslinking means, a known crosslinking means may be used, and examples thereof include press crosslinking.
 二次架橋条件としては、160~320℃で2~24時間加熱を行うことが好ましく、180~310℃で4~20時間加熱を行うことがより好ましい。架橋手段としては、公知の架橋手段を用いればよく、たとえばオーブン架橋などをあげることができる。 As the secondary crosslinking conditions, heating at 160 to 320 ° C. for 2 to 24 hours is preferable, and heating at 180 to 310 ° C. for 4 to 20 hours is more preferable. As a crosslinking means, a known crosslinking means may be used, and examples thereof include oven crosslinking.
 本発明の硬化性組成物を架橋成形して、本発明の耐熱部品を得ることができる。本発明の耐熱部品は、耐薬品性、機械的強度、耐熱性、圧縮永久歪みなどに優れる。特に、本発明の耐熱部品は、従来の非パーフルオロエラストマーからなる架橋成形物に比べて、高温に放置された後でも圧縮永久歪が小さいという優れた特性を示すので、高温環境下において使用するシール材として特に好適に使用できる。耐熱部品としては、200℃以上で使用される部品であることが好ましい。 The heat-resistant part of the present invention can be obtained by crosslinking the curable composition of the present invention. The heat-resistant component of the present invention is excellent in chemical resistance, mechanical strength, heat resistance, compression set, and the like. In particular, the heat-resistant component of the present invention exhibits excellent properties such that the compression set is small even after being left at a high temperature as compared with a conventional cross-linked molded product made of a non-perfluoroelastomer. It can be particularly suitably used as a sealing material. The heat-resistant component is preferably a component used at 200 ° C. or higher.
 また、半導体、液晶、太陽電池または有機ELの製造装置に用いる耐熱部品、特に、シール材などには、高温シール性、低汚染性、低アウトガス性、耐プラズマ性などが要求されるが、本発明の耐熱部品はこれらの要求特性を満たすものである。 In addition, heat-resistant components used in semiconductor, liquid crystal, solar battery, or organic EL manufacturing equipment, especially sealing materials, are required to have high-temperature sealing properties, low contamination, low outgassing properties, plasma resistance, etc. The heat-resistant component of the invention satisfies these required characteristics.
 半導体製造装置、液晶製造装置、太陽電池製造装置または有機EL製造装置に用いる耐熱部品としては、各種シール材、たとえばガスケット、O-リング、角-リング、ゴムシート、ジョイントシートなどがあげられる。 Examples of heat-resistant components used in semiconductor manufacturing apparatuses, liquid crystal manufacturing apparatuses, solar cell manufacturing apparatuses, and organic EL manufacturing apparatuses include various sealing materials such as gaskets, O-rings, square rings, rubber sheets, and joint sheets.
 つぎに本発明を実施例に基づいて説明するが、本発明はかかる実施例のみに限定されるものではない。 Next, the present invention will be described based on examples, but the present invention is not limited to such examples.
 本発明で採用している架橋条件は以下の条件である。
(標準架橋条件)
混練方法  :ロール練り
プレス架橋(一次架橋) :180℃で30分間(異なる場合は特記する)
オーブン架橋(二次架橋):200℃で2時間、260℃で5時間、300℃で18時間
The crosslinking conditions employed in the present invention are the following conditions.
(Standard crosslinking conditions)
Kneading method: Roll kneading press crosslinking (primary crosslinking): 30 minutes at 180 ° C. (specify if different)
Oven crosslinking (secondary crosslinking): 2 hours at 200 ° C., 5 hours at 260 ° C., 18 hours at 300 ° C.
 また、本発明における各種特性は以下の方法で測定した。 Further, various properties in the present invention were measured by the following methods.
<ムーニー粘度(ML1+10(121℃))>
 ASTM-D1646およびJIS K6300に準じて測定する。
<Mooney viscosity (ML 1 + 10 (121 ° C.))>
Measured according to ASTM-D1646 and JIS K6300.
<100%モジュラス(M100)>
 表1に示す硬化性組成物を標準架橋条件で1次プレス架橋および2次オーブン架橋して厚さ2mmのシートとし、JIS-K6251に準じて測定する。
<100% modulus (M100)>
The curable composition shown in Table 1 is subjected to primary press crosslinking and secondary oven crosslinking under standard crosslinking conditions to obtain a sheet having a thickness of 2 mm, and the measurement is performed according to JIS-K6251.
<引張破断強度(TB)および引張破断伸び(EB)>
 表1に示す硬化性組成物を標準架橋条件で1次プレス架橋および2次オーブン架橋して厚さ2mmのシートとし、JIS-K6251に準じて測定する。
<Tensile breaking strength (TB) and tensile breaking elongation (EB)>
The curable composition shown in Table 1 is subjected to primary press crosslinking and secondary oven crosslinking under standard crosslinking conditions to obtain a sheet having a thickness of 2 mm, and the measurement is performed according to JIS-K6251.
<ショアA硬度(Hs)>
 ASTM D2240に準拠して、測定を行う。具体的には、高分子計器(株)製アナログ硬さ計のA型を用いて測定を行う。
<Shore A hardness (Hs)>
Measurement is performed in accordance with ASTM D2240. Specifically, measurement is performed using an A type analog hardness meter manufactured by Kobunshi Keiki Co., Ltd.
<圧縮永久歪み(CS)>
 JIS K6301に準じてO-リング(AS-568A-214)の260℃における、70時間後の圧縮永久歪み(CS)を測定する。
<Compression set (CS)>
According to JIS K6301, the compression set (CS) after 70 hours at 260 ° C. of an O-ring (AS-568A-214) is measured.
製造例1(CN基含有共重合体(A1-1)の合成)
内容積6リットルのステンレススチール製オートクレーブに、純水3.0リットルおよび乳化剤として、C11COONH 6.0gおよびCH=CFCFOCF(CF)CFOCF(CF)COONH 0.15g、リン酸水素二ナトリウム3.5g、水酸化ナトリウム0.6gを仕込み、系内を窒素ガスで充分に置換し脱気したのち、600rpmで撹拌しながら、80℃に昇温し、VdF、TFE、HFPの混合ガス(VdF/TFE/HFP=19/11/70モル%比)を、内圧が1.59MPa・Gになるように仕込んだ。ついで、1.8g/2mlの過硫酸アンモニウム(APS)水溶液、CF=CFOCFCF(CF)OCFCFCN(CNVE) 1.8gを窒素圧で圧入して反応を開始した。
Production Example 1 (Synthesis of CN group-containing copolymer (A1-1))
In an autoclave made of stainless steel with an internal volume of 6 liters, 3.0 liters of pure water and 6.0 g of C 5 F 11 COONH 4 and CH 2 = CFCF 2 OCF (CF 3 ) CF 2 OCF (CF 3 ) COONH 4 as emulsifiers 0.15 g, disodium hydrogen phosphate 3.5 g, and sodium hydroxide 0.6 g were charged, and the system was thoroughly purged with nitrogen gas. After deaeration, the temperature was raised to 80 ° C. while stirring at 600 rpm. A mixed gas of VdF, TFE, and HFP (VdF / TFE / HFP = 19/11/70 mol% ratio) was charged so that the internal pressure was 1.59 MPa · G. Subsequently, 1.8 g / 2 ml of ammonium persulfate (APS) aqueous solution and CF 2 = CFOCF 2 CF (CF 3 ) OCF 2 CF 2 CN (CNVE) 1.8 g were injected under nitrogen pressure to initiate the reaction.
 重合の進行により内圧が、1.48MPa・Gまで降下した時点で、マロン酸ジエチル1.0gを窒素圧にて圧入した。ついで圧力が1.58MPa・Gになるように、VdF、TFE、HFPの混合ガス(VdF/TFE/HFP=50/20/30モル%比)を圧入した。以後、反応の進行にともないVdF、TFE、HFPの混合ガスを圧入し、1.48~1.58MPa・Gの間で、昇圧、降圧を繰り返すと共に、CNVEを30g、水酸化ナトリウムを1.2g窒素圧で圧入した。 When the internal pressure dropped to 1.48 MPa · G due to the progress of polymerization, 1.0 g of diethyl malonate was injected under nitrogen pressure. Subsequently, a mixed gas of VdF, TFE, and HFP (VdF / TFE / HFP = 50/20/30 mol% ratio) was injected so that the pressure became 1.58 MPa · G. Thereafter, as the reaction proceeds, a mixed gas of VdF, TFE, and HFP is injected, and the pressure is increased and decreased repeatedly between 1.48 and 1.58 MPa · G, and 30 g of CNVE and 1.2 g of sodium hydroxide are added. Press-fitted with nitrogen pressure.
 重合反応の開始から10時間後、VdF、TFE、HFPの合計仕込み量が1000gになった時点で、オートクレーブを冷却し、未反応モノマーを放出して固形分濃度25.4質量%の水性分散体4081gを得た。 10 hours after the start of the polymerization reaction, when the total amount of VdF, TFE, and HFP reached 1000 g, the autoclave was cooled to release unreacted monomers, and an aqueous dispersion having a solid content concentration of 25.4% by mass. 4081 g was obtained.
 この水性分散体のうち2000gを、硫酸マグネシウム水溶液2000g中に、撹拌しながらゆっくりと添加した。添加後1分間撹拌した後、凝析物を濾別し、この後水洗、濾別の操作をさらに3回繰り返し、70℃で24時間、乾燥させ、500gのポリマーを得た。 2,000 g of this aqueous dispersion was slowly added to 2000 g of magnesium sulfate aqueous solution while stirring. After the addition, the mixture was stirred for 1 minute, and then the coagulated product was separated by filtration. Thereafter, washing with water and filtration were repeated three more times, followed by drying at 70 ° C. for 24 hours to obtain 500 g of a polymer.
 分析の結果、この重合体のモノマー単位組成は、VdF/TFE/HFP/CNVE=50.6/18.8/29.6/1.0モル%であった。また赤外分光分析により測定したところ、ニトリル基の特性吸収が2169cm-1付近に認められた。また、この共重合体のムーニー粘度(ML1+10(121℃))は、85であった。 As a result of analysis, the monomer unit composition of this polymer was VdF / TFE / HFP / CNVE = 50.6 / 18.8 / 29.6 / 1.0 mol%. Further, when measured by infrared spectroscopic analysis, a characteristic absorption of a nitrile group was observed at around 2169 cm −1 . Moreover, the Mooney viscosity (ML 1 + 10 (121 ° C.)) of this copolymer was 85.
製造例2(CN基含有共重合体(A1-2)の合成)
内容積6リットルのステンレススチール製オートクレーブに、純水3.0リットルおよび乳化剤として、C11COONH 6.0gおよびCH=CFCFOCF(CF)CFOCF(CF)COONH 0.15g、リン酸水素二ナトリウム3.5g、水酸化ナトリウム0.6gを仕込み、系内を窒素ガスで充分に置換し脱気したのち、600rpmで撹拌しながら、80℃に昇温し、VdF、HFPの混合ガス(VdF/HFP=50/50モル%比)を、内圧が1.59MPa・Gになるように仕込んだ。ついで、1.8g/2mlの過硫酸アンモニウム(APS)水溶液、CF=CFOCFCF(CF)OCFCFCN(CNVE)を1.8g窒素圧で圧入して反応を開始した。
Production Example 2 (Synthesis of CN group-containing copolymer (A1-2))
In an autoclave made of stainless steel with an internal volume of 6 liters, 3.0 liters of pure water and 6.0 g of C 5 F 11 COONH 4 and CH 2 = CFCF 2 OCF (CF 3 ) CF 2 OCF (CF 3 ) COONH 4 as emulsifiers 0.15 g, disodium hydrogen phosphate 3.5 g, and sodium hydroxide 0.6 g were charged, and the system was thoroughly purged with nitrogen gas. After deaeration, the temperature was raised to 80 ° C. while stirring at 600 rpm. A mixed gas of VdF and HFP (VdF / HFP = 50/50 mol% ratio) was charged so that the internal pressure was 1.59 MPa · G. Then, 1.8 g / 2 ml of ammonium persulfate (APS) aqueous solution, CF 2 = CFOCF 2 CF (CF 3 ) OCF 2 CF 2 CN (CNVE) was injected under pressure of 1.8 g nitrogen pressure to start the reaction.
 重合の進行により内圧が、1.48MPa・Gまで降下した時点で、マロン酸ジエチル1.0gを窒素圧にて圧入した。ついで圧力が1.58MPa・Gになるように、VdF、HFPの混合ガス(VdF/HFP=78/22モル%比)を圧入した。以後、反応の進行にともないVdF、HFPの混合ガスを圧入し、1.48~1.58MPa・Gの間で、昇圧、降圧を繰り返すと共に、CNVEを30g、水酸化ナトリウムを1.2g窒素圧で圧入した。 When the internal pressure dropped to 1.48 MPa · G due to the progress of polymerization, 1.0 g of diethyl malonate was injected under nitrogen pressure. Subsequently, a mixed gas of VdF and HFP (VdF / HFP = 78/22 mol% ratio) was injected so that the pressure became 1.58 MPa · G. Thereafter, as the reaction progresses, a mixed gas of VdF and HFP is injected, and the pressure is increased and decreased repeatedly between 1.48 and 1.58 MPa · G, and 30 g of CNVE and 1.2 g of sodium hydroxide are added under nitrogen pressure. Press-fitted with.
 重合反応の開始から10時間後、VdF、HFPの合計仕込み量が1000gになった時点で、オートクレーブを冷却し、未反応モノマーを放出して固形分濃度25.3質量%の水性分散体4139gを得た。 10 hours after the start of the polymerization reaction, when the total amount of VdF and HFP reached 1000 g, the autoclave was cooled to release unreacted monomers, and 4139 g of an aqueous dispersion having a solid content concentration of 25.3% by mass was obtained. Obtained.
 この水性分散体のうち2000gを、硫酸マグネシウム水溶液2000g中に、撹拌しながらゆっくりと添加した。添加後1分間撹拌した後、凝析物を濾別し、この後水洗、濾別の操作をさらに3回繰り返し、70℃で24時間、乾燥させ、500gのポリマーを得た。 2,000 g of this aqueous dispersion was slowly added to 2000 g of magnesium sulfate aqueous solution while stirring. After the addition, the mixture was stirred for 1 minute, and then the coagulated product was separated by filtration. Thereafter, washing with water and filtration were repeated three more times, followed by drying at 70 ° C. for 24 hours to obtain 500 g of a polymer.
 分析の結果、この重合体のモノマー単位組成は、VdF/HFP/CNVE=77.8/21.2/1.0モル%であった。また赤外分光分析により測定したところ、ニトリル基の特性吸収が2169cm-1付近に認められた。また、この共重合体のムーニー粘度(ML1+10(121℃))は、88であった。 As a result of analysis, the monomer unit composition of this polymer was VdF / HFP / CNVE = 77.8 / 21.2 / 1.0 mol%. Further, when measured by infrared spectroscopic analysis, a characteristic absorption of a nitrile group was observed at around 2169 cm −1 . Moreover, the Mooney viscosity (ML 1 + 10 (121 ° C.)) of this copolymer was 88.
実施例1
 製造例1で得られたCN基含有共重合体(A1-1)100質量部に対して、尿素(キシダ化学(株)製)を0.4質量部、さらにカーボンブラック(CB)(Cancarb製のThermax N990)を35質量部配合し、オープンロールにて混練して硬化性組成物を調製した。得られた組成物を上記標準架橋条件で架橋して、厚さ2mmの架橋物およびO-リング(AS-568A-214)の被験サンプルを作製し、100%モジュラス、引張破断強度および引張破断伸び、ショアA硬度および圧縮永久歪みを測定した。結果を表1に示す。
Example 1
0.4 parts by mass of urea (manufactured by Kishida Chemical Co., Ltd.) and carbon black (CB) (manufactured by Cancarb) with respect to 100 parts by mass of the CN group-containing copolymer (A1-1) obtained in Production Example 1 Thermax N990) of 35 parts by mass was kneaded with an open roll to prepare a curable composition. The obtained composition was cross-linked under the above standard cross-linking conditions to prepare a cross-linked product having a thickness of 2 mm and a test sample of an O-ring (AS-568A-214), 100% modulus, tensile breaking strength and tensile breaking elongation. The Shore A hardness and compression set were measured. The results are shown in Table 1.
実施例2
 尿素(キシダ化学(株)製)0.4質量部を1質量部の水に溶解して、尿素溶液を調製した。製造例1で得られたCN基含有共重合体(A1-1)100質量部に対して、上記で調製した尿素溶液、カーボンブラック(CB)(Cancarb製のThermax N990)を35質量部配合し、オープンロールにて混練して硬化性組成物を調製した。得られた組成物を上記標準架橋条件(ただし、プレス架橋を180℃、20分間で行った)で架橋して、厚さ2mmの架橋物およびO-リング(AS-568A-214)の被験サンプルを作製し、100%モジュラス、引張破断強度、引張破断伸び、ショアA硬度および圧縮永久歪みを測定した。結果を表1に示す。
Example 2
A urea solution was prepared by dissolving 0.4 parts by mass of urea (manufactured by Kishida Chemical Co., Ltd.) in 1 part by mass of water. To 100 parts by mass of the CN group-containing copolymer (A1-1) obtained in Production Example 1, 35 parts by mass of the urea solution prepared above and carbon black (CB) (Thermax N990 manufactured by Cancarb) was blended. The curable composition was prepared by kneading with an open roll. The obtained composition was cross-linked under the above-mentioned standard cross-linking conditions (however, press cross-linking was performed at 180 ° C. for 20 minutes), and a test sample of a cross-linked product having a thickness of 2 mm and an O-ring (AS-568A-214) And 100% modulus, tensile strength at break, tensile elongation at break, Shore A hardness and compression set were measured. The results are shown in Table 1.
実施例3
 尿素の配合量を0.6質量部とした以外は、実施例1と同様にして硬化性組成物を調製したのち架橋し、厚さ2mmの架橋物およびO-リング(AS-568A-214)の被験サンプルを作製し、100%モジュラス、引張破断強度、引張破断伸び、ショアA硬度および圧縮永久歪みを測定した。結果を表1に示す。
Example 3
A curable composition was prepared in the same manner as in Example 1 except that the amount of urea was changed to 0.6 parts by mass, and then crosslinked to give a crosslinked product having a thickness of 2 mm and an O-ring (AS-568A-214). The test samples were prepared and measured for 100% modulus, tensile strength at break, tensile elongation at break, Shore A hardness and compression set. The results are shown in Table 1.
実施例4
 尿素に代えてパーフルオロヘキサン酸アンモニウムを1.0質量部配合した以外は、実施例1と同様にして硬化性組成物を調製したのち架橋し、厚さ2mmの架橋物およびO-リング(AS-568A-214)の被験サンプルを作製し、100%モジュラス、引張破断強度、引張破断伸び、ショアA硬度および圧縮永久歪みを測定した。結果を表1に示す。
Example 4
A curable composition was prepared in the same manner as in Example 1 except that 1.0 part by mass of ammonium perfluorohexanoate was blended in place of urea, and then crosslinked, and a crosslinked product having a thickness of 2 mm and an O-ring (AS A test sample of −568A-214) was prepared, and 100% modulus, tensile strength at break, tensile elongation at break, Shore A hardness and compression set were measured. The results are shown in Table 1.
実施例5
 パーフルオロヘキサン酸アンモニウムの配合量を2.9質量部とした以外は、実施例4と同様にして硬化性組成物を調製したのち架橋し、厚さ2mmの架橋物およびO-リング(AS-568A-214)の被験サンプルを作製し、100%モジュラス、引張破断強度、引張破断伸び、ショアA硬度および圧縮永久歪みを測定した。結果を表1に示す。
Example 5
A curable composition was prepared in the same manner as in Example 4 except that the amount of ammonium perfluorohexanoate was changed to 2.9 parts by mass, and then crosslinked to give a crosslinked product having a thickness of 2 mm and an O-ring (AS- 568A-214), 100% modulus, tensile strength at break, tensile elongation at break, Shore A hardness and compression set were measured. The results are shown in Table 1.
実施例6
 尿素に代えてアジピン酸アンモニウムを0.4質量部配合した以外は、実施例1と同様にして硬化性組成物を調製した。得られた組成物を上記標準架橋条件(ただし、プレス架橋を180℃、20分間で行った)で架橋して厚さ2mmの架橋物およびO-リング(AS-568A-214)の被験サンプルを作製し、100%モジュラス、引張破断強度および引張破断伸び、ショアA硬度および圧縮永久歪みを測定した。結果を表1に示す。
Example 6
A curable composition was prepared in the same manner as in Example 1 except that 0.4 parts by mass of ammonium adipate was added instead of urea. The obtained composition was cross-linked under the above-mentioned standard cross-linking conditions (however, press cross-linking was performed at 180 ° C. for 20 minutes) to prepare a 2 mm-thick cross-linked product and an O-ring (AS-568A-214) test sample. Fabricated and measured for 100% modulus, tensile break strength and elongation at break, Shore A hardness and compression set. The results are shown in Table 1.
実施例7
 製造例1で得られたCN基含有共重合体(A1-1)100質量部に対して、硬化剤として2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン(OH-AF)を1.8質量部、さらにカーボンブラック(CB)(Cancarb製のThermax N990)を35質量部配合し、オープンロールにて混練して硬化性組成物を調製した。得られた組成物を上記標準架橋条件で架橋して、厚さ2mmの架橋物およびO-リング(AS-568A-214)の被験サンプルを作製し、100%モジュラス、引張破断強度、引張破断伸び、ショアA硬度および圧縮永久歪みを測定した。結果を表1に示す。
Example 7
With respect to 100 parts by mass of the CN group-containing copolymer (A1-1) obtained in Production Example 1, 2,2-bis (3-amino-4-hydroxyphenyl) hexafluoropropane (OH-AF) is used as a curing agent. ) And 35 parts by mass of carbon black (CB) (Thermax N990 manufactured by Cancarb) were mixed and kneaded with an open roll to prepare a curable composition. The obtained composition was cross-linked under the above-mentioned standard cross-linking conditions to prepare a 2 mm-thick cross-linked product and a test sample of an O-ring (AS-568A-214), 100% modulus, tensile breaking strength, tensile breaking elongation. The Shore A hardness and compression set were measured. The results are shown in Table 1.
実施例8
 2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン(OH-AF)に代えて2,2-ビス(3,4-ジアミノフェニル)ヘキサフルオロプロパン(TA-AF)を1.8質量部配合した以外は、実施例7と同様にして硬化性組成物を調製した。得られた組成物を上記標準架橋条件で架橋して厚さ2mmの架橋物およびO-リング(AS-568A-214)の被験サンプルを作製し、100%モジュラス、引張破断強度、引張破断伸び、ショアA硬度および圧縮永久歪みを測定した。結果を表1に示す。
Example 8
Instead of 2,2-bis (3-amino-4-hydroxyphenyl) hexafluoropropane (OH-AF), 2,2-bis (3,4-diaminophenyl) hexafluoropropane (TA-AF) A curable composition was prepared in the same manner as in Example 7 except that 8 parts by mass was blended. The obtained composition was cross-linked under the above-mentioned standard cross-linking conditions to prepare a test sample of a cross-linked product having a thickness of 2 mm and an O-ring (AS-568A-214), 100% modulus, tensile breaking strength, tensile breaking elongation, Shore A hardness and compression set were measured. The results are shown in Table 1.
実施例9
 製造例1で得られたCN基含有共重合体(A1-1)100質量部に対して、硬化剤として2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン(OH-AF)を1.8質量部、尿素(キシダ化学(株)製)を0.1質量部、さらにカーボンブラック(CB)(Cancarb製のThermax N990)を35質量部配合し、オープンロールにて混練して硬化性組成物を調製した。得られた組成物を上記標準架橋条件で架橋して、厚さ2mmの架橋物およびO-リング(AS-568A-214)の被験サンプルを作製し、100%モジュラス、引張破断強度、引張破断伸び、ショアA硬度および圧縮永久歪みを測定した。結果を表1に示す。
Example 9
With respect to 100 parts by mass of the CN group-containing copolymer (A1-1) obtained in Production Example 1, 2,2-bis (3-amino-4-hydroxyphenyl) hexafluoropropane (OH-AF) is used as a curing agent. ), 1.8 parts by mass of urea (manufactured by Kishida Chemical Co., Ltd.), 35 parts by mass of carbon black (CB) (Thermax N990 from Cancarb), and kneaded with an open roll. A curable composition was prepared. The obtained composition was cross-linked under the above-mentioned standard cross-linking conditions to prepare a 2 mm-thick cross-linked product and a test sample of an O-ring (AS-568A-214), 100% modulus, tensile breaking strength, tensile breaking elongation. The Shore A hardness and compression set were measured. The results are shown in Table 1.
実施例10
 2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン(OH-AF)に代えて2,2-ビス(3,4-ジアミノフェニル)ヘキサフルオロプロパン(TA-AF)を1.8質量部配合した以外は、実施例9と同様にして硬化性組成物を調製した。得られた組成物を上記標準架橋条件で架橋して厚さ2mmの架橋物およびO-リング(AS-568A-214)の被験サンプルを作製し、100%モジュラス、引張破断強度、引張破断伸び、ショアA硬度および圧縮永久歪みを測定した。結果を表1に示す。
Example 10
Instead of 2,2-bis (3-amino-4-hydroxyphenyl) hexafluoropropane (OH-AF), 2,2-bis (3,4-diaminophenyl) hexafluoropropane (TA-AF) A curable composition was prepared in the same manner as in Example 9 except that 8 parts by mass was blended. The obtained composition was cross-linked under the above-mentioned standard cross-linking conditions to prepare a test sample of a cross-linked product having a thickness of 2 mm and an O-ring (AS-568A-214), 100% modulus, tensile breaking strength, tensile breaking elongation, Shore A hardness and compression set were measured. The results are shown in Table 1.
実施例11
 製造例2で得られたCN基含有共重合体(A1-2)100質量部に対して、尿素(キシダ化学(株)製)を0.4質量部、さらにカーボンブラック(CB)(Cancarb製のThermax N990)を35質量部配合し、オープンロールにて混練して硬化性組成物を調製した。得られた組成物を上記標準架橋条件で架橋して厚さ2mmの架橋物およびO-リング(AS-568A-214)の被験サンプルを作製し、100%モジュラス、引張破断強度、引張破断伸び、ショアA硬度および圧縮永久歪みを測定した。結果を表1に示す。
Example 11
With respect to 100 parts by mass of the CN group-containing copolymer (A1-2) obtained in Production Example 2, 0.4 parts by mass of urea (manufactured by Kishida Chemical Co., Ltd.) and carbon black (CB) (manufactured by Cancarb) Thermax N990) of 35 parts by mass was kneaded with an open roll to prepare a curable composition. The obtained composition was cross-linked under the above-mentioned standard cross-linking conditions to prepare a test sample of a cross-linked product having a thickness of 2 mm and an O-ring (AS-568A-214), 100% modulus, tensile breaking strength, tensile breaking elongation, Shore A hardness and compression set were measured. The results are shown in Table 1.
実施例12
 製造例2で得られたCN基含有共重合体(A1-2)100質量部に対して、尿素(キシダ化学(株)製)を0.1質量部、硬化剤として2,2-ビス(3,4-ジアミノフェニル)ヘキサフルオロプロパン(TA-AF)を1.8質量部、さらにカーボンブラック(CB)(Cancarb製のThermax N990)を35質量部配合し、オープンロールにて混練して硬化性組成物を調製した。得られた組成物を上記標準架橋条件で架橋して厚さ2mmの架橋物およびO-リング(AS-568A-214)の被験サンプルを作製し、100%モジュラス、引張破断強度、引張破断伸び、ショアA硬度および圧縮永久歪みを測定した。結果を表1に示す。
Example 12
0.1 parts by mass of urea (manufactured by Kishida Chemical Co., Ltd.) and 2,2-bis (as a curing agent) with respect to 100 parts by mass of the CN group-containing copolymer (A1-2) obtained in Production Example 2. 1.8 parts by mass of 3,4-diaminophenyl) hexafluoropropane (TA-AF) and 35 parts by mass of carbon black (CB) (Thermax N990 manufactured by Cancarb) are mixed and cured by an open roll. A sex composition was prepared. The obtained composition was cross-linked under the above-mentioned standard cross-linking conditions to prepare a test sample of a cross-linked product having a thickness of 2 mm and an O-ring (AS-568A-214), 100% modulus, tensile breaking strength, tensile breaking elongation, Shore A hardness and compression set were measured. The results are shown in Table 1.
実施例13
 製造例2で得られたCN基含有共重合体(A1-2)100質量部に対して、硬化剤として2,2-ビス(3,4-ジアミノフェニル)ヘキサフルオロプロパン(TA-AF)を1.8質量部、さらにカーボンブラック(CB)(Cancarb製のThermax N990)を35質量部配合し、オープンロールにて混練して硬化性組成物を調製した。得られた組成物を上記標準架橋条件で架橋して厚さ2mmの架橋物およびO-リング(AS-568A-214)の被験サンプルを作製し、100%モジュラス、引張破断強度、引張破断伸び、ショアA硬度および圧縮永久歪みを測定した。結果を表1に示す。
Example 13
With respect to 100 parts by mass of the CN group-containing copolymer (A1-2) obtained in Production Example 2, 2,2-bis (3,4-diaminophenyl) hexafluoropropane (TA-AF) is used as a curing agent. 1.8 parts by mass and further 35 parts by mass of carbon black (CB) (Thermax N990 manufactured by Cancarb) were blended and kneaded with an open roll to prepare a curable composition. The obtained composition was cross-linked under the above-mentioned standard cross-linking conditions to prepare a test sample of a cross-linked product having a thickness of 2 mm and an O-ring (AS-568A-214), 100% modulus, tensile breaking strength, tensile breaking elongation, Shore A hardness and compression set were measured. The results are shown in Table 1.
実施例14
 製造例1で得られたCN基含有共重合体(A1-1)100質量部に対して、窒化珪素0.5質量部、カーボンブラック(CB)(Cancarb製のThermax N990)を20質量部配合し、オープンロールにて混練して硬化性組成物を調製した。得られた組成物を200℃、8時間と290℃、8時間(ただし、プレス架橋を180℃、20分間で行った)で架橋して、厚さ2mmの架橋物およびO-リング(AS-568A-214)の被験サンプルを作製し、100%モジュラス、引張破断強度、引張破断伸び、ショアA硬度および圧縮永久歪みを測定した。結果を表1に示す。
Example 14
Compounding 0.5 parts by mass of silicon nitride and 20 parts by mass of carbon black (CB) (Thermax N990 manufactured by Cancarb) with respect to 100 parts by mass of the CN group-containing copolymer (A1-1) obtained in Production Example 1. The mixture was kneaded with an open roll to prepare a curable composition. The obtained composition was crosslinked at 200 ° C. for 8 hours and 290 ° C. for 8 hours (however, press crosslinking was performed at 180 ° C. for 20 minutes) to obtain a crosslinked product having a thickness of 2 mm and an O-ring (AS- 568A-214), 100% modulus, tensile strength at break, tensile elongation at break, Shore A hardness and compression set were measured. The results are shown in Table 1.
実施例15
 製造例1で得られたCN基含有共重合体(A1-1)100質量部に対して、窒化珪素1.0質量部、カーボンブラック(CB)(Cancarb製のThermax N990)を20質量部配合し、オープンロールにて混練して硬化性組成物を調製した。得られた組成物を200℃、8時間と290℃、8時間(ただし、プレス架橋を180℃、20分間で行った)で架橋して、厚さ2mmの架橋物およびO-リング(AS-568A-214)の被験サンプルを作製し、100%モジュラス、引張破断強度、引張破断伸び、ショアA硬度および圧縮永久歪みを測定した。結果を表1に示す。
Example 15
Compounding 20 parts by mass of 1.0 part by mass of silicon nitride and 20 parts by mass of carbon black (CB) (Thermax N990 manufactured by Cancarb) with respect to 100 parts by mass of the CN group-containing copolymer (A1-1) obtained in Production Example 1. The mixture was kneaded with an open roll to prepare a curable composition. The obtained composition was crosslinked at 200 ° C. for 8 hours and 290 ° C. for 8 hours (however, press crosslinking was performed at 180 ° C. for 20 minutes) to obtain a crosslinked product having a thickness of 2 mm and an O-ring (AS- 568A-214), 100% modulus, tensile strength at break, tensile elongation at break, Shore A hardness and compression set were measured. The results are shown in Table 1.
実施例16
 製造例1で得られたCN基含有共重合体(A1-1)100質量部に対して、窒化珪素0.5質量部、硬化剤として2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン(OH-AF)を0.5質量部、カーボンブラック(CB)(Cancarb製のThermax N990)を20質量部配合し、オープンロールにて混練して硬化性組成物を調製した。得られた組成物を200℃、8時間と290℃、8時間(ただし、プレス架橋を180℃、20分間で行った)で架橋して、厚さ2mmの架橋物およびO-リング(AS-568A-214)の被験サンプルを作製し、100%モジュラス、引張破断強度、引張破断伸び、ショアA硬度および圧縮永久歪みを測定した。結果を表1に示す。
Example 16
With respect to 100 parts by mass of the CN group-containing copolymer (A1-1) obtained in Production Example 1, 0.5 part by mass of silicon nitride and 2,2-bis (3-amino-4-hydroxyphenyl) as a curing agent ) 0.5 parts by mass of hexafluoropropane (OH-AF) and 20 parts by mass of carbon black (CB) (Thermax N990 manufactured by Cancarb) were blended and kneaded with an open roll to prepare a curable composition. The obtained composition was crosslinked at 200 ° C. for 8 hours and 290 ° C. for 8 hours (however, press crosslinking was performed at 180 ° C. for 20 minutes) to obtain a crosslinked product having a thickness of 2 mm and an O-ring (AS- 568A-214), 100% modulus, tensile strength at break, tensile elongation at break, Shore A hardness and compression set were measured. The results are shown in Table 1.
実施例17
 製造例1で得られたCN基含有共重合体(A1-1)100質量部に対して、尿素(キシダ化学(株)製)0.5質量部、窒化珪素0.5質量部、カーボンブラック(CB)(Cancarb製のThermax N990)を20質量部配合し、オープンロールにて混練して硬化性組成物を調製した。得られた組成物を200℃、8時間と290℃、8時間(ただし、プレス架橋を180℃、20分間で行った)で架橋して、厚さ2mmの架橋物およびO-リング(AS-568A-214)の被験サンプルを作製し、100%モジュラス、引張破断強度、引張破断伸び、ショアA硬度および圧縮永久歪みを測定した。結果を表1に示す。
Example 17
For 100 parts by mass of the CN group-containing copolymer (A1-1) obtained in Production Example 1, 0.5 part by mass of urea (manufactured by Kishida Chemical Co., Ltd.), 0.5 part by mass of silicon nitride, carbon black 20 parts by mass of (CB) (Thermax N990 manufactured by Cancarb) was blended and kneaded with an open roll to prepare a curable composition. The obtained composition was crosslinked at 200 ° C. for 8 hours and 290 ° C. for 8 hours (however, press crosslinking was performed at 180 ° C. for 20 minutes) to obtain a crosslinked product having a thickness of 2 mm and an O-ring (AS- 568A-214), 100% modulus, tensile strength at break, tensile elongation at break, Shore A hardness and compression set were measured. The results are shown in Table 1.
比較例1
 VdF/HFP(=78/22モル%比)共重合体(A3)100質量部に対して、2,2-ビス(4-ヒドロキシフェニル)ヘキサフルオロプロパン(bis-AF)を2.1質量部、カーボンブラック(MT-C、カンカーブ社製)を20質量部、水酸化カルシウム(Caldic#2000、協和化学工業(株)製)を6質量部、酸化マグネシウム(MA-150、協和化学工業(株)製)を3質量部配合し、オープンロールにて混練して硬化性組成物を調製した。ついでこの架橋性組成物を170℃で10分間プレスしたのち、さらにオーブン中で230℃にて24時間のオーブン架橋を施し、厚さ2mmの架橋物およびO-リング(AS-568A-214)の被験サンプルを作製した。この架橋物の100%モジュラス、引張破断強度、引張破断伸び、ショアA硬度および圧縮永久歪みについて測定した。結果を表1に示す。
Comparative Example 1
2.1 parts by mass of 2,2-bis (4-hydroxyphenyl) hexafluoropropane (bis-AF) with respect to 100 parts by mass of the VdF / HFP (= 78/22 mol% ratio) copolymer (A3) , 20 parts by mass of carbon black (MT-C, manufactured by Cancarb), 6 parts by mass of calcium hydroxide (Caldic # 2000, manufactured by Kyowa Chemical Industry Co., Ltd.), magnesium oxide (MA-150, Kyowa Chemical Industry Co., Ltd.) 3 parts by mass) was prepared and kneaded with an open roll to prepare a curable composition. Next, this crosslinkable composition was pressed at 170 ° C. for 10 minutes, and further subjected to oven crosslinking in an oven at 230 ° C. for 24 hours to obtain a crosslinked product having a thickness of 2 mm and an O-ring (AS-568A-214). A test sample was prepared. The crosslinked product was measured for 100% modulus, tensile strength at break, tensile elongation at break, Shore A hardness and compression set. The results are shown in Table 1.
比較例2
 VdF/TFE/HFP(=50/20/30モル%比)共重合体(A4)100質量部に対して、カーボンブラック(MT-C、カンカーブ社製)を20質量部、トリアリルイソシアヌレート(TAIC、日本化成(株)製)を3質量部、2,5-ジメチル-2,5-ジ(t-ブチルペルオキシ)ヘキサン(パーヘキサ2.5B、日油(株)製)を1.5質量部配合し、オープンロールにて混練して硬化性組成物を調製した。ついでこの架橋性組成物を160℃で10分間プレスしたのち、さらにオーブン中で200℃にて24時間のオーブン架橋を施し、厚さ2mmの架橋物およびO-リング(AS-568A-214)の被験サンプルを作製した。この架橋物の100%モジュラス、引張破断強度、引張破断伸び、ショアA硬度および圧縮永久歪みについて測定した。結果を表1に示す。
Comparative Example 2
VdF / TFE / HFP (= 50/20/30 mol% ratio) copolymer (A4) 100 parts by mass, carbon black (MT-C, manufactured by Cancarb) 20 parts by mass, triallyl isocyanurate ( 3 parts by weight of TAIC (Nippon Kasei Co., Ltd.), 1.5 parts of 2,5-dimethyl-2,5-di (t-butylperoxy) hexane (Perhexa 2.5B, NOF Corporation) A curable composition was prepared by blending parts and kneading with an open roll. Next, this crosslinkable composition was pressed at 160 ° C. for 10 minutes, and further subjected to oven crosslinking in an oven at 200 ° C. for 24 hours to obtain a crosslinked product having a thickness of 2 mm and an O-ring (AS-568A-214). A test sample was prepared. The crosslinked product was measured for 100% modulus, tensile strength at break, tensile elongation at break, Shore A hardness and compression set. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
表1から、従来の硬化性組成物に比べて、高温シール性に優れた材料であることが分かる。 From Table 1, it can be seen that the material is superior in high-temperature sealing properties as compared with conventional curable compositions.

Claims (5)

  1. (A)フッ化ビニリデン(a1)と、テトラフルオロエチレン、ヘキサフルオロプロピレンおよびパーフルオロ(アルキルビニルエーテル)よりなる群から選ばれる少なくとも1種のパーフルオロオレフィン(a2)と、シアノ基、カルボキシル基またはアルコキシカルボニル基を含有する単量体(a3)との共重合体であるフッ化ビニリデン系エラストマー(A1)(ただし、フッ化ビニリデンの共重合割合は20モル%を超える)、またはテトラフルオロエチレン40~70モル%とプロピレン30~60モル%とシアノ基、カルボキシル基またはアルコキシカルボニル基を含有する単量体との共重合体であるテトラフルオロエチレン-プロピレン系エラストマー(A2)、並びに、
    (B)硬化剤、
    (C)40~330℃でアンモニアを発生させる化合物、および/または
    (F)無機窒化物粒子
    を含む半導体、液晶、太陽電池または有機ELの製造装置の耐熱部品用硬化性組成物。
    (A) at least one perfluoroolefin (a2) selected from the group consisting of vinylidene fluoride (a1), tetrafluoroethylene, hexafluoropropylene and perfluoro (alkyl vinyl ether), a cyano group, a carboxyl group or an alkoxy group A vinylidene fluoride elastomer (A1) which is a copolymer with a carbonyl group-containing monomer (a3) (however, the copolymerization ratio of vinylidene fluoride exceeds 20 mol%), or tetrafluoroethylene 40- A tetrafluoroethylene-propylene elastomer (A2) which is a copolymer of 70 mol%, propylene 30 to 60 mol% and a monomer containing a cyano group, a carboxyl group or an alkoxycarbonyl group, and
    (B) a curing agent,
    (C) A curable composition for a heat-resistant component of a semiconductor, liquid crystal, solar cell or organic EL production apparatus comprising a compound that generates ammonia at 40 to 330 ° C. and / or (F) inorganic nitride particles.
  2. 硬化剤(B)が、式(1):
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1は同じかまたは異なり、-NH2、-NHR2、-OHまたは-SHであり、R2はフッ素原子または1価の有機基である)で示される架橋性反応基を少なくとも2個含む化合物、式(2):
    Figure JPOXMLDOC01-appb-C000002
    で示される化合物、式(3):
    Figure JPOXMLDOC01-appb-C000003
    (式中、Rf 1は炭素数1~10のパーフルオロアルキレン基)で示される化合物、および式(4):
    Figure JPOXMLDOC01-appb-C000004
    (式中、nは1~10の整数)で示される化合物
    よりなる群から選ばれる少なくとも1種の硬化剤である請求項1記載の耐熱部品用硬化性組成物。
    The curing agent (B) has the formula (1):
    Figure JPOXMLDOC01-appb-C000001
    (Wherein, R 1 is the same or different and is —NH 2 , —NHR 2 , —OH or —SH, and R 2 is a fluorine atom or a monovalent organic group) A compound comprising at least two compounds of formula (2):
    Figure JPOXMLDOC01-appb-C000002
    A compound of formula (3):
    Figure JPOXMLDOC01-appb-C000003
    (Wherein R f 1 is a perfluoroalkylene group having 1 to 10 carbon atoms) and formula (4):
    Figure JPOXMLDOC01-appb-C000004
    The curable composition for heat-resistant parts according to claim 1, which is at least one curing agent selected from the group consisting of compounds represented by the formula: wherein n is an integer of 1 to 10.
  3. アンモニア発生化合物(C)が、尿素またはアンモニウム塩である請求項1または2記載の耐熱部品用硬化性組成物。 The curable composition for heat-resistant parts according to claim 1 or 2, wherein the ammonia generating compound (C) is urea or ammonium salt.
  4. 請求項1~3のいずれかに記載された耐熱部品用硬化性組成物を硬化させて得られる半導体、液晶、太陽電池または有機ELの製造装置の耐熱部品。 A heat-resistant component of a semiconductor, liquid crystal, solar cell or organic EL production apparatus obtained by curing the curable composition for a heat-resistant component according to any one of claims 1 to 3.
  5. 半導体製造装置の拡散装置用シール材、CVD装置用シール材、PVD装置用シール材、エッチング装置用シール材、排ガス除害装置用のシール材、液晶製造装置用シール材、太陽電池製造装置用シール材または有機EL製造装置用シール材である請求項4記載の耐熱部品。 Sealing material for diffusion device, sealing material for CVD device, sealing material for PVD device, sealing material for etching device, sealing material for exhaust gas abatement device, sealing material for liquid crystal manufacturing device, seal for solar cell manufacturing device The heat-resistant component according to claim 4, which is a material or a sealing material for an organic EL manufacturing apparatus.
PCT/JP2011/057673 2010-03-31 2011-03-28 Curable composition for use in a heat-resistant component in a semiconductor, liquid crystal, solar cell, or organic el manufacturing device WO2011125614A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-081492 2010-03-31
JP2010081492 2010-03-31

Publications (1)

Publication Number Publication Date
WO2011125614A1 true WO2011125614A1 (en) 2011-10-13

Family

ID=44762561

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/057673 WO2011125614A1 (en) 2010-03-31 2011-03-28 Curable composition for use in a heat-resistant component in a semiconductor, liquid crystal, solar cell, or organic el manufacturing device

Country Status (2)

Country Link
TW (1) TW201209090A (en)
WO (1) WO2011125614A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015125726A1 (en) * 2014-02-18 2017-03-30 ダイキン工業株式会社 Method for producing aqueous perfluoroelastomer dispersion and method for producing perfluoroelastomer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09111081A (en) * 1995-03-31 1997-04-28 Nippon Mektron Ltd Fluorine-containing elastomer composition
JP2004524424A (en) * 2001-04-12 2004-08-12 スリーエム イノベイティブ プロパティズ カンパニー Fluoropolymer having pendant imidate structure
WO2007013397A1 (en) * 2005-07-26 2007-02-01 Daikin Industries, Ltd. Curable composition, molded article obtained from same, and method for producing molded article

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09111081A (en) * 1995-03-31 1997-04-28 Nippon Mektron Ltd Fluorine-containing elastomer composition
JP2004524424A (en) * 2001-04-12 2004-08-12 スリーエム イノベイティブ プロパティズ カンパニー Fluoropolymer having pendant imidate structure
WO2007013397A1 (en) * 2005-07-26 2007-02-01 Daikin Industries, Ltd. Curable composition, molded article obtained from same, and method for producing molded article

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015125726A1 (en) * 2014-02-18 2017-03-30 ダイキン工業株式会社 Method for producing aqueous perfluoroelastomer dispersion and method for producing perfluoroelastomer

Also Published As

Publication number Publication date
TW201209090A (en) 2012-03-01

Similar Documents

Publication Publication Date Title
JP5067161B2 (en) Crosslinkable composition and molded article comprising the same
JP5549668B2 (en) Curable composition and molded article comprising the same
US6221970B1 (en) Curable perfluoroelastomer composition
JP2008266368A (en) Fluoroelastomer composition and sealing material composed of the same
JP2006316112A (en) Fluorine-containing elastomer composition and molded article comprising the same
WO2005105917A1 (en) Fluorine-containing elastomer composition and molded article formed therefrom
TW200427699A (en) Fluorine-containing elastomer composition having execllent prevention effect of plasma aging and molded article using the same
JP5293823B2 (en) Curable composition and molded article comprising the same
US9068057B2 (en) Curable composition, molded article obtained from same and process for production of molded article
KR20140021615A (en) Curable fluoroelastomer composition
JP6618506B2 (en) Perfluoroelastomer composition and sealing material
JP5792916B2 (en) Curable fluoroelastomer composition
WO2011125614A1 (en) Curable composition for use in a heat-resistant component in a semiconductor, liquid crystal, solar cell, or organic el manufacturing device
JP5864224B2 (en) Fluoropolymer composition
US8198386B2 (en) Fluorine-containing elastomer composition and sealing material made of same
JP2017071763A (en) Curing agents for fluoroelastomers
JP5986311B2 (en) Curable fluoroelastomer composition
EP3239227B1 (en) Curing agents for compounds
US8889796B2 (en) Perfluoroelastomer composition
JP2013539528A (en) Hardened perfluoroelastomer diaphragm
JP2008274104A (en) Cross-linkable composition and molded article including the same
JP2014031485A (en) Curable composition and molded article made of the same
JP2013068748A (en) Fixing roll and fixing belt
WO2020116394A1 (en) Elastomer composition and sealing material
KR20140021617A (en) Curable fluoroelastomer composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11765514

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11765514

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP