WO2011125344A1 - Substrate and method for manufacturing substrate - Google Patents

Substrate and method for manufacturing substrate Download PDF

Info

Publication number
WO2011125344A1
WO2011125344A1 PCT/JP2011/050106 JP2011050106W WO2011125344A1 WO 2011125344 A1 WO2011125344 A1 WO 2011125344A1 JP 2011050106 W JP2011050106 W JP 2011050106W WO 2011125344 A1 WO2011125344 A1 WO 2011125344A1
Authority
WO
WIPO (PCT)
Prior art keywords
wax
substrate
ethylene
substrate body
heat dissipation
Prior art date
Application number
PCT/JP2011/050106
Other languages
French (fr)
Japanese (ja)
Inventor
喜光 寒川
Original Assignee
株式会社アテクト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アテクト filed Critical 株式会社アテクト
Publication of WO2011125344A1 publication Critical patent/WO2011125344A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/05Insulated conductive substrates, e.g. insulated metal substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/06Thermal details
    • H05K2201/066Heatsink mounted on the surface of the PCB

Definitions

  • the present invention relates to a substrate for mounting electronic components such as power LSIs and LEDs, and a method for manufacturing the substrate.
  • Patent Document 1 As a substrate on which electronic components such as a power LSI and an LED are mounted, for example, there is one disclosed in Patent Document 1.
  • the semiconductor device of Patent Document 1 is a semiconductor device including a semiconductor chip on which a semiconductor element is formed and a mounting member group for mounting the semiconductor chip on the main surface side, and the mounting member group has an inorganic insulating property. It has a heat radiating substrate made of a material, a metal plate mounted on the main surface side of the heat radiating substrate, and a plurality of fin-like members fixed to the back surface side of the heat radiating substrate so as to be separated from each other. That is, the semiconductor device disclosed in Patent Document 1 is obtained by separately attaching a fin as a heat dissipation member to a heat dissipation substrate.
  • patent document 2 there exists a thing shown in patent document 2 as a mounting method of an electronic component.
  • a component having a positioning portion is mounted on one surface of a substrate, a heat dissipating means is provided on the other surface of the substrate, a proper position of the component and the heat dissipating device are penetrated through the substrate.
  • a heat conductive connection means is connected by a heat conductive connection means. That is, even in the mounting method disclosed in Patent Document 2, the heat radiating means is attached to the other surface on which no component is mounted.
  • the present invention provides a substrate and a substrate manufacturing method that can improve the heat dissipation of the substrate without using an intermediate member such as grease to attach the heat dissipation member to the substrate. Objective.
  • the present invention has taken the following measures. That is, the technical means for solving the problems in the present invention includes a board body on which electronic components are mounted, and a heat radiation promoting part that promotes heat radiation from the board body, and the board body and the heat radiation promoting part are provided. It is in the point of being integrally molded. It is preferable that the heat radiation promoting portion is formed on the outer surface of the substrate body.
  • the surface of the substrate body is a portion on which the electronic component is mounted, and the back surface of the substrate body is a portion on which the heat dissipation promoting portion is formed. It is preferable that the heat dissipation promoting part is provided inside the substrate body, and the heat dissipation promoting part is a cooling flow path through which a cooling medium for cooling the substrate body passes. In the method for manufacturing the substrate, it is preferable that the substrate body and the heat dissipation promoting portion are integrally formed by powder injection molding.
  • the powder injection molding it is preferable to use a material composed of at least one of aluminum nitride, alumina, and silicon carbide.
  • the aluminum nitride is preferably one added with at least one of yttria, calcia, and magnesia.
  • the organic binder used in the powder injection molding is polystyrene, polybutyl methacrylate, polyoxymethylene, polypropylene, styrene / acrylic copolymer, amorphous polyolefin, ethylene / vinyl acetate copolymer, ethylene / methyl acrylate copolymer, ethylene / Resin comprising at least one selected from ethyl acrylate copolymer, ethylene / butyl acrylate copolymer, ethylene glycidyl methacrylate copolymer, fatty acid ester, fatty acid amide, higher fatty acid, phthalic acid ester, adipic acid ester, paraffin wax , Microcrystalline wax, polyethylene wax, polypropylene wax, carnauba wax, montan wax, urethanized wax, maleic anhydride modified It is preferably an organic compound consisting of one or more selected from box.
  • the heat dissipation of the substrate can be improved without using an intermediate member such as grease to attach the heat dissipation member to the substrate.
  • the board 1 of the present invention includes a board main body 3 on which an electronic component 2 is mounted, and a heat dissipation promoting portion 4 that releases heat of the board main body 3.
  • the substrate body 3 and the heat radiation promoting portion 4 are formed separately, but the present invention is characterized in that the substrate body 3 and the heat radiation promoting portion 4 are formed integrally.
  • the electronic component 2 mounted on the substrate 1 is not particularly limited, but is suitable for mounting an electronic component 2 such as a power LSI or LED that generates a large amount of heat.
  • the substrate 1 of the present invention will be described in detail.
  • the horizontal direction in FIG. 1 is the horizontal direction
  • the vertical direction in FIG. 1 is the vertical direction.
  • the substrate body 3 is formed in a plate shape from a material such as ceramics having excellent heat dissipation.
  • a circuit portion 5 constituting an electronic circuit is provided on one surface (front surface 3 a) on which the electronic component 2 is mounted.
  • the electronic component 2 is mounted on the circuit portion 5 by solder or the like.
  • the circuit unit 5 is configured by, for example, printing a circuit pattern formed of a conductive material such as copper, silver, tungsten, molybdenum on an insulating film.
  • the circuit unit 5 may be formed by integrally forming a circuit pattern directly on the surface of the substrate body 3.
  • the circuit pattern can be integrally formed by sintering the ceramic and tungsten or molybdenum when the substrate body 3 is formed of ceramics or the like. it can.
  • the heat radiation promoting portion 4 is formed on the other surface (back surface 3b) where the electronic component 2 is not mounted.
  • the heat dissipation promoting portion 4 is formed of a material such as ceramics (for example, the same material as the substrate main body 3) that is excellent in heat dissipation like the substrate main body 3.
  • the heat radiation promoting portion 4 is configured by a plurality of fins 7 protruding outward (for example, downward) from the back surface of the substrate body 3.
  • the fins 7 constituting the heat radiation promoting unit 4 are arranged at predetermined intervals in the lateral direction of the substrate body 3. Each fin 7 is formed to extend in the vertical direction or the horizontal direction of the substrate body 3.
  • each fin 7 protrudes downward from the back surface 3 b of the substrate body 3, but alternatively, even if it protrudes from the side surface of the substrate body 3 in the left-right direction, It may protrude upward from the front surface 3a, and may be provided on the exposed surface (external surface, including the front surface, back surface, and side surface) of the substrate body 3. Further, when the fins 7 are provided on the surface 3 a of the substrate body 3, it is preferably provided between the electronic components 2 that generate a large amount of heat.
  • the heat dissipation promotion unit 4 may be a pin.
  • the substrate main body 3 and the heat radiation promoting portion 4 that promotes heat radiation are integrally formed, and the heat radiation promoting portion 4 is formed on the outer surface of the substrate main body 3. It is not necessary to attach the heat radiating member to the substrate 1 using an intermediate member such as the above, and the heat radiating property of the entire substrate 1 can be improved.
  • the front surface 3a of the substrate main body 3 is a portion where the electronic component 2 is mounted, and the back surface 3b of the substrate main body 3 is a portion where the heat radiation promoting portion 4 is formed.
  • the back surface can be effectively used as a part for radiating heat, and the board 1 can be easily accommodated in the housing.
  • the module including the substrate 1 can be made compact.
  • the heat radiation promoting part 4 provided inside the substrate body 3 has a cooling channel 9 through which a cooling medium for cooling the substrate itself (substrate body 3) passes. That is, the substrate 1 shown in FIGS. 3 and 4 has the heat radiation promoting part 4 composed of the fins 7 and the cooling flow paths 9.
  • the cooling flow path 9 is configured by providing a hole through which a cooling medium flows inside the substrate body 3. It is preferable that the cooling flow path 9 is configured to pass through the lower side of the electronic component 2 having a large heat dissipation amount in plan view. In other words, when the electronic component 2 is a power LSI, LED, or the like, the cooling flow path 9 and the electronic component 2 are arranged on the substrate 1 so that the cooling flow path 9 and the electronic component 2 overlap in plan view. It is preferable.
  • One side of the cooling flow path 9 is an inlet 11 for inserting a cooling medium, and this inlet 11 is provided on the side surface of the substrate body 3. Further, the other side of the cooling channel 9 is a discharge port 12 for discharging the cooling medium, and this discharge port 12 is also provided on the side surface of the substrate body 3. It is preferable to connect a pipe or the like to the inlet 11 or the outlet 12 and connect the pipe and a pump that circulates the cooling medium to circulate the cooling medium by the power of the pump.
  • the cooling medium is not particularly limited, but it is preferable to use water, alcohol, a liquid such as fluorine-based inert gas, or a gas such as air, nitrogen, or argon.
  • a liquid such as fluorine-based inert gas
  • a gas such as air, nitrogen, or argon.
  • the aluminum nitride is inferior in water resistance, so that the portion in contact with water is coated with oxide ceramics having high water resistance, vapor deposition or plating. Metal plating may be performed by the above. In this case, when copper is used, heat conductivity is not impaired, and heat dissipation can be secured.
  • the groove 10 a is formed in the first substrate body portion 13 that is the surface side of the substrate body 3 (the side on which the electronic component 2 is mounted).
  • the first substrate body 13 is formed by powder injection molding so that is formed.
  • the second substrate body 14 is formed such that a groove 10b that can be aligned with the groove 10a is formed in the second substrate body portion 14 that is the back side of the substrate body 3 (the side on which the electronic component 2 is not mounted). Is made by powder injection molding.
  • the groove 10a of the first substrate body 13 and the groove 10b of the second substrate body 14 are combined to form the first substrate body 13 and the second substrate body 14 together.
  • the cooling flow path 9 composed of the groove 10a and the groove 10b is formed.
  • the resistance member 15 has a rectangular shape or a rod shape that protrudes inward from the inner wall of the cooling flow path 9, and a plurality of resistance members 15 are provided along the cooling flow path 9.
  • FIG. 7 shows a modification of the cooling flow path.
  • the arrows shown in FIG. 7 indicate the flow of the cooling medium.
  • a spiral cooling channel 9 a is formed in the substrate body 3. That is, the spiral cooling channel 9 a is constituted by a continuous arc-shaped hole that gradually extends from the center of the substrate body 3 in the radially outward direction.
  • a plurality of resistance members 15 are provided in the cooling flow path 9 a located on the center side of the substrate body 3. Note that one side of the cooling channel 9a is an inlet 11 for injecting a cooling medium, and the other side is an outlet 12 for discharging the cooling medium.
  • the substrate body 3 is formed in a box shape having a space (space portion) S inside, and the space portion S serves as a cooling flow path 9b.
  • the inlet 11 of the cooling channel 9b is formed on one side of the substrate body 3 in the horizontal direction, and the outlet 12 of the cooling channel 9b is formed on the other side in the horizontal direction.
  • the width D of the space portion is constant from the inlet 11 to the outlet 12.
  • the substrate body 3 is formed in a box shape, and a plurality of space portions (for example, three spaces) partitioned by a plurality of partition plates 16 (for example, two sheets) are provided therein. Portions S1, S2, S3) are formed.
  • Each partition plate 16 is provided with a communication hole 17 for communicating the partitioned space portions S1, S2, and S3.
  • a cooling channel 9 c is formed by the three space portions S 1, S 2, S 3 and the communication hole 17.
  • An injection port 11 communicating with the space portion S1 on the back surface 3b side is formed on one side of the substrate body 3 in the horizontal direction, and a discharge port 12 communicating with the space portion S1 on the back surface 3b side is formed on the other side in the horizontal direction. Yes.
  • the width D of the space portion gradually decreases from the inlet 11 to the outlet 12.
  • a plurality of resistance members 15 are provided in the space portion S3 on the surface 3a side.
  • Such a substrate 1 is formed by powder injection molding. That is, the substrate main body 3 and the heat radiation promoting portion 4 are integrally formed by powder injection molding. Hereinafter, a method for manufacturing the substrate 1 will be described.
  • a ceramic material having high heat dissipation is used.
  • this material it is preferable to use at least one of aluminum nitride, silicon carbide, and alumina.
  • molding it is desirable to use a powdery material having an average particle diameter of about 0.1 to 5 ⁇ m. It is desirable to use yttria as the sintering aid for aluminum nitride, and calcia and magnesia may be used as the sintering aid.
  • Thermoplastic resins are used for organic banders used in powder injection molding.
  • Thermoplastic resin (organic binder) is polystyrene, polybutyl methacrylate, polyoxymethylene, polypropylene, styrene / acrylic copolymer, amorphous polyolefin, ethylene / vinyl acetate copolymer, ethylene / methyl acrylate copolymer, ethylene / ethyl.
  • Polymer compounds comprising at least one selected from acrylate copolymers, ethylene / butyl acrylate copolymers, ethylene glycidyl methacrylate copolymers, waxes, lubricants, plasticizers for fatty acid esters, fatty acid amides, higher fatty acids, phthalic acid Esters, adipic acid esters, paraffin wax, microcrystalline wax, polyethylene wax, polypropylene wax, carnauba wax, montan wax, urethanized wax, anhydrous An organic compound composed of one or more selected from ynoic acid-modified wax is used.
  • polystyrene, butyl methacrylate, ethylene / vinyl acetate copolymer and ethylene / butyl acrylate copolymer are desirable for thermoplastic resins, and paraffin wax, fatty acid amide and phthalic acid ester are desirable for wax, plasticizer and lubricant.
  • the addition amount of the organic binder is optimally 35 to 60 vol% with respect to the ceramic material used in the powder injection molding.
  • kneading materials by mixing and dispersing ceramics, thermoplastic resin, wax, lubricant, and plasticizer (when mixing and dispersing)
  • the material is previously pelletized to have a diameter of 1 to 5 mm and a length of about 1 to 10 mm to obtain a molding material.
  • powder injection molding is performed by a general method.
  • alumina is used in the atmosphere, and aluminum nitride is used as nitrogen.
  • Silicon carbide is preferably in nitrogen or in an inert gas.
  • a ceramic plate having a rectangular shape with a width of 5 mm or less, a height of 0.5 mm or more, and a pitch interval of 0.5 mm or more is used for the setter during degreasing and sintering. This eliminates defects such as cracks and voids that occur during degreasing.
  • the ceramic plate used in the case of alumina is alumina ceramic, and boron nitride is preferable for aluminum nitride, and graphite is preferable for silicon carbide.
  • the sintering density is set to 93% or more, and the sintering temperature is adjusted appropriately so that no continuous pores remain inside. To do. If continuous pores remain inside, the thermal diffusion of the substrate 1 to be used is impaired, and a sufficient cooling effect cannot be obtained.
  • the circuit pattern (circuit unit 5) is formed using a material such as copper, silver, tungsten, or molybdenum.
  • the cooling channel 9 is formed by bonding the substrate body 3 divided into two, (1) a method of bonding the interface to the surface to be bonded by diffusion between particles during sintering, (2 ) Using a material in which the same ceramic material powder as the powder material used for bonding is dispersed in a solvent together with acrylic resin, etc., applied to the bonded interface, dried and then degreased and sintered to bond the interface And (3) a method in which a molded body bonded up and down is inserted into a mold and an interface portion is molded with a molding material, and then the interface is bonded by diffusion between particles in a degreasing and sintering process.
  • the nozzle 18 when the nozzle 18 connected to the inlet 11 and the outlet 12 is provided in the substrate body 3, the nozzle 18 may be fastened to the substrate body 3 with a screw. Further, when the substrate body 3 and the heat radiation promoting portion 4 are formed, the nozzles 18 may also be formed and sintered together so as to be integrally formed. A plastic material may be used when the temperature of the nozzle 18 is 100 ° C. or lower at the normal use temperature.

Abstract

Disclosed is a substrate wherein heat dissipation is improved even without attaching a heat dissipating member to the substrate using an intermediate member, such as grease. A substrate main body (3) having an electronic component (2) mounted thereon, and a heat dissipation promoting section (4), which promotes dissipation of heat from the substrate main body (3) are integrally formed. The heat dissipation promoting section (4) is formed on the outer surface of the substrate main body (3). The front surface (3a) of the substrate main body (3) is a portion having the electronic component (2) mounted thereon, and the rear surface (3b) of the substrate main body (3) is a portion having the heat dissipation promoting section (4) formed thereon. A cooling channel (9) is formed inside of the heat dissipation promoting section (4), said cooling channel passing through a cooling medium for cooling.

Description

基板及び基板の製造方法Substrate and substrate manufacturing method
 本発明は、例えば、パワーLSI、LED等の電子部品を実装するための基板及びその基板の製造方法に関する。 The present invention relates to a substrate for mounting electronic components such as power LSIs and LEDs, and a method for manufacturing the substrate.
 従来より、パワーLSI、LED等の電子部品を実装した基板として、例えば、特許文献1に開示されたものがある。
 特許文献1の半導体装置は、半導体素子が形成された半導体チップと、主面側に半導体チップを実装するための実装部材群とを備えた半導体装置であって、実装部材群は、無機絶縁性材料により構成されている放熱基板と、放熱基板の主面側に搭載された金属板と、放熱基板の裏面側に互いに離間して固定された複数のフィン状部材とを有したものである。即ち、特許文献1の半導体装置は、放熱基板に放熱部材であるフィンが別途取り付けられたものである。
Conventionally, as a substrate on which electronic components such as a power LSI and an LED are mounted, for example, there is one disclosed in Patent Document 1.
The semiconductor device of Patent Document 1 is a semiconductor device including a semiconductor chip on which a semiconductor element is formed and a mounting member group for mounting the semiconductor chip on the main surface side, and the mounting member group has an inorganic insulating property. It has a heat radiating substrate made of a material, a metal plate mounted on the main surface side of the heat radiating substrate, and a plurality of fin-like members fixed to the back surface side of the heat radiating substrate so as to be separated from each other. That is, the semiconductor device disclosed in Patent Document 1 is obtained by separately attaching a fin as a heat dissipation member to a heat dissipation substrate.
 また、電子部品の実装方法として特許文献2に示すものがある。
 特許文献2の実装方法では、基板の一方の面に位置決め部位を備えた部品を搭載すること、基板の他方の面に放熱手段を設けること、基板を貫通して、部品の適所と前記放熱手段とを伝熱性の接続手段で接続することを行っている。即ち、特許文献2の実装方法でも、部品を実装していない他方の面に放熱手段を取り付けている。
Moreover, there exists a thing shown in patent document 2 as a mounting method of an electronic component.
In the mounting method of Patent Document 2, a component having a positioning portion is mounted on one surface of a substrate, a heat dissipating means is provided on the other surface of the substrate, a proper position of the component and the heat dissipating device are penetrated through the substrate. Are connected by a heat conductive connection means. That is, even in the mounting method disclosed in Patent Document 2, the heat radiating means is attached to the other surface on which no component is mounted.
特開2008-244394号公報JP 2008-244394 A 特開平5-343827号公報JP-A-5-343827
 特許文献1や特許文献2に示したように、電子部品を実装する基板にフィンなどの放熱部材を取り付けることは従来より行われており、基板に放熱部材を取り付ける場合には、基板と放熱部材との間にグリース等を介在させる構造(以降、放熱構造ということがある)としているのが一般的である。
 従来のような放熱構造では、基板と放熱部材とが互いに位置ズレが生じる場合がある。また、基板と放熱部材との間にグリースを介在させる際に、グリース中にボイドが形成し易く、ボイドが形成されてしまうと、グリースの熱伝導率の向上を図ったとしても、期待した効果が得られない場合がある。
As shown in Patent Document 1 and Patent Document 2, attaching a heat radiating member such as a fin to a substrate on which an electronic component is mounted has been conventionally performed. When attaching a heat radiating member to a substrate, the substrate and the heat radiating member In general, a structure in which grease or the like is interposed between them (hereinafter sometimes referred to as a heat dissipation structure) is used.
In a conventional heat dissipation structure, the substrate and the heat dissipation member may be misaligned with each other. In addition, when grease is interposed between the substrate and the heat radiating member, voids are easily formed in the grease. If voids are formed, the expected effect even if the thermal conductivity of the grease is improved. May not be obtained.
 加えて、放熱構造では、高温で長時間使用した場合、グリースと基板との界面、グリースと放熱部材との界面が剥離が生じる可能性があるし、グリス自体の熱伝導性も金属などに比べて悪く熱抵抗となり得る。
 そこで、本発明は、上記問題点に鑑み、グリースなどの中間部材を用いて放熱部材を基板に取り付けなくても基板の放熱性を向上させることができる基板及び基板の製造方法を提供することを目的とする。
In addition, in the heat dissipation structure, when used for a long time at a high temperature, the interface between the grease and the substrate and the interface between the grease and the heat dissipation member may be peeled off. It can be a bad heat resistance.
Therefore, in view of the above problems, the present invention provides a substrate and a substrate manufacturing method that can improve the heat dissipation of the substrate without using an intermediate member such as grease to attach the heat dissipation member to the substrate. Objective.
 前記目的を達成するために、本発明は、次の手段を講じた。
 即ち、本発明における課題解決のための技術的手段は、電子部品を実装する基板本体と、前記基板本体の放熱を促進する放熱促進部とを有し、前記基板本体と前記放熱促進部とが一体成形されている点にある。
 前記基板本体の外面に前記放熱促進部が形成されていることが好ましい。
In order to achieve the above object, the present invention has taken the following measures.
That is, the technical means for solving the problems in the present invention includes a board body on which electronic components are mounted, and a heat radiation promoting part that promotes heat radiation from the board body, and the board body and the heat radiation promoting part are provided. It is in the point of being integrally molded.
It is preferable that the heat radiation promoting portion is formed on the outer surface of the substrate body.
 前記基板本体の表面が前記電子部品が実装される部分とされ、前記基板本体の裏面が前記放熱促進部が形成される部分とされていることが好ましい。
 前記基板本体の内部に前記放熱促進部が設けられ、この放熱促進部は、基板本体を冷却するための冷却媒体が通る冷却流路とされていることが好ましい。
 前記基板を製造する方法であっては、前記基板本体と放熱促進部とを粉末射出成形により一体成形することが好ましい。
It is preferable that the surface of the substrate body is a portion on which the electronic component is mounted, and the back surface of the substrate body is a portion on which the heat dissipation promoting portion is formed.
It is preferable that the heat dissipation promoting part is provided inside the substrate body, and the heat dissipation promoting part is a cooling flow path through which a cooling medium for cooling the substrate body passes.
In the method for manufacturing the substrate, it is preferable that the substrate body and the heat dissipation promoting portion are integrally formed by powder injection molding.
 前記粉末射出成形においては、窒化アルミ、アルミナ、炭化ケイ素の少なくとも1種類以上からなる材料を用いることをことが好ましい。
 前記窒化アルミは、イットリア、カルシア、マグネシアの少なくとも1種以上を添加したものであることが好ましい。
 前記粉末射出成形において用いる有機バインダーは、ポリスチレン、ポリブチルメタクリレート、ポリオキシメチレン、ポリプロピレン、スチレン・アクリル共重合体、アモルファスポリオレフィン、エチレン・酢酸ビニル共重合体、エチレン・メチルアクリレート共重合体、エチレン・エチルアクリレート共重合体、エチレン・ブチルアクリレート共重合体、エチレングリシジルメタクリレート共重合体より選ばれる少なくとも一種以上からなる樹脂、並びに脂肪酸エステル、脂肪酸アミド、高級脂肪酸、フタル酸エステル、アジピン酸エステル、パラフィンワックス、マイクロクリスタリンワックス、ポリエチレンワックス、ポリプロピレンワックス、カルナバワックス、モンタン系ワックス、ウレタン化ワックス、無水マレイン酸変性ワックスより選ばれる一種以上からなる有機化合物であることが好ましい。
In the powder injection molding, it is preferable to use a material composed of at least one of aluminum nitride, alumina, and silicon carbide.
The aluminum nitride is preferably one added with at least one of yttria, calcia, and magnesia.
The organic binder used in the powder injection molding is polystyrene, polybutyl methacrylate, polyoxymethylene, polypropylene, styrene / acrylic copolymer, amorphous polyolefin, ethylene / vinyl acetate copolymer, ethylene / methyl acrylate copolymer, ethylene / Resin comprising at least one selected from ethyl acrylate copolymer, ethylene / butyl acrylate copolymer, ethylene glycidyl methacrylate copolymer, fatty acid ester, fatty acid amide, higher fatty acid, phthalic acid ester, adipic acid ester, paraffin wax , Microcrystalline wax, polyethylene wax, polypropylene wax, carnauba wax, montan wax, urethanized wax, maleic anhydride modified It is preferably an organic compound consisting of one or more selected from box.
  本発明によれば、グリースなどの中間部材を用いて放熱部材を基板に取り付けなくても基板の放熱性を向上させることができる。 According to the present invention, the heat dissipation of the substrate can be improved without using an intermediate member such as grease to attach the heat dissipation member to the substrate.
本発明の基板の斜視図である。It is a perspective view of the board | substrate of this invention. 基板の側面図である。It is a side view of a board | substrate. 冷却流路を有する基板の平面図である。It is a top view of the board | substrate which has a cooling flow path. 冷却流路を有する基板の側面図である。It is a side view of the board | substrate which has a cooling flow path. 冷却流路を形成する場合の基板本体の説明図である。It is explanatory drawing of the board | substrate body in the case of forming a cooling flow path. 冷却流路に抵抗部材を設けた場合の冷却流路の斜視図である。It is a perspective view of a cooling channel when a resistance member is provided in the cooling channel. 冷却流路の変形例の図であって、(a)第1変形例、(b)第2変形例、(c)第3変形例の図である。It is a figure of the modification of a cooling channel, Comprising: It is a figure of (a) 1st modification, (b) 2nd modification, (c) 3rd modification.
 以下、本発明の実施の形態を、図面に基づき説明する。
 図1~7は、本発明の基板を示したものである。
 図1、2に示すように、本発明の基板1は、電子部品2を実装する基板本体3と、この基板本体3の熱を放出する放熱促進部4とを備えたものである。
 従来では、基板本体3と放熱促進部4とを別体に形成していたが、本発明は、基板本体3と放熱促進部4とを一体化形成したことを特徴としたものである。また、基板1に実装する電子部品2は、特に限定されないが、発熱量が多いパワーLSI、LED等の電子部品2を実装する場合に適している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1 to 7 show a substrate of the present invention.
As shown in FIGS. 1 and 2, the board 1 of the present invention includes a board main body 3 on which an electronic component 2 is mounted, and a heat dissipation promoting portion 4 that releases heat of the board main body 3.
Conventionally, the substrate body 3 and the heat radiation promoting portion 4 are formed separately, but the present invention is characterized in that the substrate body 3 and the heat radiation promoting portion 4 are formed integrally. The electronic component 2 mounted on the substrate 1 is not particularly limited, but is suitable for mounting an electronic component 2 such as a power LSI or LED that generates a large amount of heat.
 以下、本発明の基板1について詳しく説明する。なお、説明の便宜上、図1の左右方向を横方向、図1の上下方向を縦方向とする。
 基板本体3は、詳細は後述するように、放熱性に優れたセラミックス等の材料により板状に形成されたものである。この基板本体3において、電子部品2を実装する一方の面(表面3a)には電子回路を構成する回路部5が設けられている。
Hereinafter, the substrate 1 of the present invention will be described in detail. For convenience of explanation, the horizontal direction in FIG. 1 is the horizontal direction, and the vertical direction in FIG. 1 is the vertical direction.
As will be described in detail later, the substrate body 3 is formed in a plate shape from a material such as ceramics having excellent heat dissipation. In this substrate body 3, a circuit portion 5 constituting an electronic circuit is provided on one surface (front surface 3 a) on which the electronic component 2 is mounted.
 この回路部5上に電子部品2が半田等により実装されている。回路部5は、例えば、絶縁性のフィルムに、銅、銀、タングステン、モリブデン等の導電性の材料から形成された回路パターンを印刷することにより構成されたものである。なお、回路部5は、基板本体3の表面に、直接、回路パターンを一体的に成形したものであってもよい。例えば、タングステン、モリブデンを用いて回路パターンを形成する場合には、基板本体3をセラミックス等にて形成する際に当該セラミックスとタングステン又はモリブデンとを焼結することにより回路パターンを一体成形することができる。 The electronic component 2 is mounted on the circuit portion 5 by solder or the like. The circuit unit 5 is configured by, for example, printing a circuit pattern formed of a conductive material such as copper, silver, tungsten, molybdenum on an insulating film. The circuit unit 5 may be formed by integrally forming a circuit pattern directly on the surface of the substrate body 3. For example, when a circuit pattern is formed using tungsten or molybdenum, the circuit pattern can be integrally formed by sintering the ceramic and tungsten or molybdenum when the substrate body 3 is formed of ceramics or the like. it can.
 電子部品2を実装していない他方の面(裏面3b)には、放熱促進部4が形成されている。この放熱促進部4は、基板本体3と同じように放熱性に優れたセラミックス等の材料(例えば、基板本体3と同一材料)により形成されたものである。具体的には、この放熱促進部4は、基板本体3の裏面から外方(例えば、下方)に突出した複数のフィン7から構成されたものである。放熱促進部4を構成する各フィン7は、基板本体3の横方向に所定の間隔で配置されている。また、各フィン7は、基板本体3の縦方向又は横方向に延設して形成されている。 The heat radiation promoting portion 4 is formed on the other surface (back surface 3b) where the electronic component 2 is not mounted. The heat dissipation promoting portion 4 is formed of a material such as ceramics (for example, the same material as the substrate main body 3) that is excellent in heat dissipation like the substrate main body 3. Specifically, the heat radiation promoting portion 4 is configured by a plurality of fins 7 protruding outward (for example, downward) from the back surface of the substrate body 3. The fins 7 constituting the heat radiation promoting unit 4 are arranged at predetermined intervals in the lateral direction of the substrate body 3. Each fin 7 is formed to extend in the vertical direction or the horizontal direction of the substrate body 3.
 なお、図1、2に示すように、各フィン7は、基板本体3の裏面3bから下方に突出しているが、これに代え、基板本体3の側面から左右方向に突出しても基板本体3の表面3aから上方に突出したものであってもよく、基板本体3の露出面(外面であって、表面、裏面、側面を含む)に設けるようにすればよい。さらに、基板本体3の表面3aにフィン7を設ける場合には、発熱量の多い電子部品2間に設けることが好ましい。放熱促進部4はピンであってもよい。 As shown in FIGS. 1 and 2, each fin 7 protrudes downward from the back surface 3 b of the substrate body 3, but alternatively, even if it protrudes from the side surface of the substrate body 3 in the left-right direction, It may protrude upward from the front surface 3a, and may be provided on the exposed surface (external surface, including the front surface, back surface, and side surface) of the substrate body 3. Further, when the fins 7 are provided on the surface 3 a of the substrate body 3, it is preferably provided between the electronic components 2 that generate a large amount of heat. The heat dissipation promotion unit 4 may be a pin.
 本発明によれば、基板本体3と放熱を促進する放熱促進部4とが一体形成され、その放熱促進部4は、基板本体3の外面に形成されていることから、従来のように、グリースなどの中間部材を用いて放熱部材を基板1に取り付けなくてもよく、基板1全体の放熱性を向上させることができる。
  しかも、本発明の基板1では、基板本体3の表面3aが電子部品2が実装される部分とされ、基板本体3の裏面3bが放熱促進部4が形成される部分とされている。そのため、発熱量が多いパワーLSIやLEDを表面に実装した場合(片面実装の場合)、裏面側を放熱するための部分として有効利用することが可能となり、基板1の筐体への収まりも良く、この基板1を備えたモジュールをコンパクトにすることができる。
According to the present invention, the substrate main body 3 and the heat radiation promoting portion 4 that promotes heat radiation are integrally formed, and the heat radiation promoting portion 4 is formed on the outer surface of the substrate main body 3. It is not necessary to attach the heat radiating member to the substrate 1 using an intermediate member such as the above, and the heat radiating property of the entire substrate 1 can be improved.
Moreover, in the substrate 1 of the present invention, the front surface 3a of the substrate main body 3 is a portion where the electronic component 2 is mounted, and the back surface 3b of the substrate main body 3 is a portion where the heat radiation promoting portion 4 is formed. Therefore, when a power LSI or LED that generates a large amount of heat is mounted on the front surface (in the case of single-sided mounting), the back surface can be effectively used as a part for radiating heat, and the board 1 can be easily accommodated in the housing. The module including the substrate 1 can be made compact.
 加えて、図3、4に示すように、基板本体3の内部にも放熱促進部4を設けることが好ましい。基板本体3の内部に設けられた放熱促進部4は、基板自体(基板本体3)を冷却するための冷却媒体が通る冷却流路9を有している。即ち、図3、4に示した基板1には、フィン7と冷却流路9とからなる放熱促進部4を有するものとなっている。
 冷却流路9は、基板本体3の内部に冷却媒体が流れる孔を設けることにより構成されている。この冷却流路9は、平面視で、特に放熱量の多い電子部品2の下側を通過するように構成されていることが好ましい。言い換えるならば、電子部品2がパワーLSI、LED等であるとき、冷却流路9と電子部品2とが平面視でオーバラップするように、冷却流路9及び電子部品2が基板1に配置されることが好ましい。
In addition, as shown in FIGS. 3 and 4, it is preferable to provide a heat radiation promoting portion 4 also inside the substrate body 3. The heat radiation promoting part 4 provided inside the substrate body 3 has a cooling channel 9 through which a cooling medium for cooling the substrate itself (substrate body 3) passes. That is, the substrate 1 shown in FIGS. 3 and 4 has the heat radiation promoting part 4 composed of the fins 7 and the cooling flow paths 9.
The cooling flow path 9 is configured by providing a hole through which a cooling medium flows inside the substrate body 3. It is preferable that the cooling flow path 9 is configured to pass through the lower side of the electronic component 2 having a large heat dissipation amount in plan view. In other words, when the electronic component 2 is a power LSI, LED, or the like, the cooling flow path 9 and the electronic component 2 are arranged on the substrate 1 so that the cooling flow path 9 and the electronic component 2 overlap in plan view. It is preferable.
 冷却流路9の一方側は、冷却媒体を入れる注入口11とされ、この注入口11は、基板本体3の側面に設けられている。また、冷却流路9の他方側は冷却媒体を排出する排出口12とされ、この排出口12も基板本体3の側面に設けられている。注入口11や排出口12にパイプ等を接続すると共に、パイプと冷却媒体を循環させるポンプとを接続して、ポンプの動力により冷却媒体を循環させることが好ましい。 One side of the cooling flow path 9 is an inlet 11 for inserting a cooling medium, and this inlet 11 is provided on the side surface of the substrate body 3. Further, the other side of the cooling channel 9 is a discharge port 12 for discharging the cooling medium, and this discharge port 12 is also provided on the side surface of the substrate body 3. It is preferable to connect a pipe or the like to the inlet 11 or the outlet 12 and connect the pipe and a pump that circulates the cooling medium to circulate the cooling medium by the power of the pump.
 冷却媒体は、特に限定されないが、水、アルコール、フッ素系不活性等の液体並びに空気、窒素、アルゴン等の気体を用いることが好ましい。また、基板1に窒化アルミを用い、冷媒に水を用いた場合には、窒化アルミが耐水性に劣ることから、水が接する箇所を耐水性の高い酸化物セラミックスによりコーティングするか、蒸着もしくはメッキにより金属メッキを行っても良い。この場合、銅を用いると熱伝導性も損なわれず、放熱性を確保することができる。 The cooling medium is not particularly limited, but it is preferable to use water, alcohol, a liquid such as fluorine-based inert gas, or a gas such as air, nitrogen, or argon. In addition, when aluminum nitride is used for the substrate 1 and water is used as the coolant, the aluminum nitride is inferior in water resistance, so that the portion in contact with water is coated with oxide ceramics having high water resistance, vapor deposition or plating. Metal plating may be performed by the above. In this case, when copper is used, heat conductivity is not impaired, and heat dissipation can be secured.
 図5に示すように、冷却流路9を基板本体3の内部に形成するにあたっては、基板本体3の表面側(電子部品2を実装する側)となる第1基板本体部13に、溝10aが形成されるように当該第1基板本体13を粉末射出成形により作成する。また、基板本体3の裏面側(電子部品2を実装しない側)となる第2基板本体部14に、溝10aと合わせることができるような溝10bが形成されるように当該第2基板本体14を粉末射出成形により作成する。 As shown in FIG. 5, in forming the cooling flow path 9 inside the substrate body 3, the groove 10 a is formed in the first substrate body portion 13 that is the surface side of the substrate body 3 (the side on which the electronic component 2 is mounted). The first substrate body 13 is formed by powder injection molding so that is formed. In addition, the second substrate body 14 is formed such that a groove 10b that can be aligned with the groove 10a is formed in the second substrate body portion 14 that is the back side of the substrate body 3 (the side on which the electronic component 2 is not mounted). Is made by powder injection molding.
 そして、基板本体3を形成する際に、第1基板本体部13の溝10aと、第2基板本体部14の溝10bとを合わせて、第1基板本体部13及び第2基板本体部14を焼結することにより、溝10aと溝10bとからなる冷却流路9を形成する。
 なお、図6に示すように、冷却流路9、即ち、溝10aや溝10bを形成する際、冷却媒体の流れを阻害することによって抵抗となる抵抗部材15を設けるようにすることが好ましい。具体的には、抵抗部材15は、冷却流路9の内壁から内方へ突出する矩形状又は棒状等のものであって、冷却流路9に沿って複数設けられている。これにより、冷却媒体が冷却流路9内を流れた際に抵抗部材15に当たるため、乱流が生じることとなり、冷却効率を向上させることができる。
Then, when the substrate body 3 is formed, the groove 10a of the first substrate body 13 and the groove 10b of the second substrate body 14 are combined to form the first substrate body 13 and the second substrate body 14 together. By sintering, the cooling flow path 9 composed of the groove 10a and the groove 10b is formed.
In addition, as shown in FIG. 6, when forming the cooling flow path 9, ie, the groove 10a or the groove 10b, it is preferable to provide a resistance member 15 that becomes a resistance by inhibiting the flow of the cooling medium. Specifically, the resistance member 15 has a rectangular shape or a rod shape that protrudes inward from the inner wall of the cooling flow path 9, and a plurality of resistance members 15 are provided along the cooling flow path 9. Thereby, when the cooling medium flows through the cooling flow path 9, it hits the resistance member 15, so that a turbulent flow is generated and the cooling efficiency can be improved.
  図7は、冷却流路の変形例を示したものである。図7に示した矢印は、冷却媒体の流れを示したものである。
 図7(a)に示すように、基板本体3内には、渦巻き状の冷却流路9aが形成されている。即ち、渦巻き状の冷却流路9aとは、基板本体3の中心部から次第に径外方向に延設される連続した円弧状の孔により構成されたものである。基板本体3の中心部側に位置する冷却流路9a内には複数の抵抗部材15が設けられている。なお、冷却流路9aの一方側が冷却媒体を注入する注入口11とされ、他方側が冷却媒体を排出する排出口12とされている。
FIG. 7 shows a modification of the cooling flow path. The arrows shown in FIG. 7 indicate the flow of the cooling medium.
As shown in FIG. 7A, a spiral cooling channel 9 a is formed in the substrate body 3. That is, the spiral cooling channel 9 a is constituted by a continuous arc-shaped hole that gradually extends from the center of the substrate body 3 in the radially outward direction. A plurality of resistance members 15 are provided in the cooling flow path 9 a located on the center side of the substrate body 3. Note that one side of the cooling channel 9a is an inlet 11 for injecting a cooling medium, and the other side is an outlet 12 for discharging the cooling medium.
 図7(b)に示すように、基板本体3は内部が空間(空間部分)Sとなる箱状に形成されたもので、空間部分Sが冷却流路9bとされている。基板本体3の横方向の一方側に冷却流路9bの注入口11が形成され、横方向の他方側に冷却流路9bの排出口12が形成されている。空間部分の幅Dは、注入口11から排出口12に亘って一定となっている。
 図7(c)に示すように、基板本体3は箱状に形成され、その内部には、複数の仕切板16(例えば、2枚)に仕切られた複数の空間部分(例えば、3つの空間部分S1、S2、S3)が形成されている。各仕切板16には仕切られた空間部分S1、S2、S3を連通させる連通孔17が設けられている。3つの空間部分S1、S2、S3及び連通孔17により冷却流路9cが形成されている。基板本体3の横方向の一方側に裏面3b側の空間部分S1と連通する注入口11が形成され、横方向の他方側に裏面3b側の空間部分S1と連通する排出口12が形成されている。空間部分の幅Dは、注入口11から排出口12に亘って次第に小さくなっている。表面3a側の空間部分S3には、複数の抵抗部材15が設けられている。
As shown in FIG. 7B, the substrate body 3 is formed in a box shape having a space (space portion) S inside, and the space portion S serves as a cooling flow path 9b. The inlet 11 of the cooling channel 9b is formed on one side of the substrate body 3 in the horizontal direction, and the outlet 12 of the cooling channel 9b is formed on the other side in the horizontal direction. The width D of the space portion is constant from the inlet 11 to the outlet 12.
As shown in FIG. 7C, the substrate body 3 is formed in a box shape, and a plurality of space portions (for example, three spaces) partitioned by a plurality of partition plates 16 (for example, two sheets) are provided therein. Portions S1, S2, S3) are formed. Each partition plate 16 is provided with a communication hole 17 for communicating the partitioned space portions S1, S2, and S3. A cooling channel 9 c is formed by the three space portions S 1, S 2, S 3 and the communication hole 17. An injection port 11 communicating with the space portion S1 on the back surface 3b side is formed on one side of the substrate body 3 in the horizontal direction, and a discharge port 12 communicating with the space portion S1 on the back surface 3b side is formed on the other side in the horizontal direction. Yes. The width D of the space portion gradually decreases from the inlet 11 to the outlet 12. A plurality of resistance members 15 are provided in the space portion S3 on the surface 3a side.
 このような基板1は粉末射出成形により成形されている。即ち、基板本体3と放熱促進部4とは粉末射出成形により一体成形されている。
 以下、基板1の製造方法について説明する。
 基板本体3と放熱促進部4とを形成するにあたっては、放熱性の高いセラミックス材料が用いられる。この材料には窒化アルミ、炭化ケイ素、アルミナの少なくとも1種類以上を用いることが好適である。成形するにあたっては、平均粒子径0.1~5μm程度の粉末状の材料を用いることが望ましい。窒化アルミには焼結助剤としてイットリアを用いる事が望ましく、カルシア及びマグネシアを焼結助剤に用いても良い。
Such a substrate 1 is formed by powder injection molding. That is, the substrate main body 3 and the heat radiation promoting portion 4 are integrally formed by powder injection molding.
Hereinafter, a method for manufacturing the substrate 1 will be described.
In forming the substrate body 3 and the heat dissipation promoting portion 4, a ceramic material having high heat dissipation is used. As this material, it is preferable to use at least one of aluminum nitride, silicon carbide, and alumina. In molding, it is desirable to use a powdery material having an average particle diameter of about 0.1 to 5 μm. It is desirable to use yttria as the sintering aid for aluminum nitride, and calcia and magnesia may be used as the sintering aid.
 炭化ケイ素を用いる場合は、炭化ケイ素に対して焼結助剤として窒化ホウ素、炭化ホウ素、炭素及び金属シリコンの添加により、常圧での焼結が可能である。
 粉末射出成形で用いられる有機バンダには熱可塑性樹脂、ワックス、滑剤、可塑剤等が用いられる。
 熱可塑性樹脂(有機バインダ)にはポリスチレン、ポリブチルメタクリレート、ポリオキシメチレン、ポリプロピレン、スチレン・アクリル共重合体、アモルファスポリオレフィン、エチレン・酢酸ビニル共重合体、エチレン・メチルアクリレート共重合体、エチレン・エチルアクリレート共重合体、エチレン・ブチルアクリレート共重合体、エチレングリシジルメタクリレート共重合体より選ばれる少なくとも一種以上からなる高分子化合物、ワックス、滑剤、可塑剤には脂肪酸エステル、脂肪酸アミド、高級脂肪酸、フタル酸エステル、アジピン酸エステル、パラフィンワックス、マイクロクリスタリンワックス、ポリエチレンワックス、ポリプロピレンワックス、カルナバワックス、モンタン系ワックス、ウレタン化ワックス、無水マレイン酸変性ワックスより選ばれる一種以上からなる有機化合物を用いる。特に熱可塑性樹脂ではポリスチレン、ブチルメタクリレート、エチレン・酢酸ビニル共重合体並びにエチレン・ブチルアクリレート共重合体が望ましく、ワックス、可塑剤並びに滑剤にはパラフィンワックス、脂肪酸アミド並びにフタル酸エステルが望ましい。
When silicon carbide is used, sintering at normal pressure is possible by adding boron nitride, boron carbide, carbon and metal silicon as a sintering aid to silicon carbide.
Thermoplastic resins, waxes, lubricants, plasticizers, and the like are used for organic banders used in powder injection molding.
Thermoplastic resin (organic binder) is polystyrene, polybutyl methacrylate, polyoxymethylene, polypropylene, styrene / acrylic copolymer, amorphous polyolefin, ethylene / vinyl acetate copolymer, ethylene / methyl acrylate copolymer, ethylene / ethyl. Polymer compounds comprising at least one selected from acrylate copolymers, ethylene / butyl acrylate copolymers, ethylene glycidyl methacrylate copolymers, waxes, lubricants, plasticizers for fatty acid esters, fatty acid amides, higher fatty acids, phthalic acid Esters, adipic acid esters, paraffin wax, microcrystalline wax, polyethylene wax, polypropylene wax, carnauba wax, montan wax, urethanized wax, anhydrous An organic compound composed of one or more selected from ynoic acid-modified wax is used. In particular, polystyrene, butyl methacrylate, ethylene / vinyl acetate copolymer and ethylene / butyl acrylate copolymer are desirable for thermoplastic resins, and paraffin wax, fatty acid amide and phthalic acid ester are desirable for wax, plasticizer and lubricant.
 有機バインダの添加量は、粉末射出成形では用いるセラミックス材料に対して35~60vol%が最適である。
 セラミックスと熱可塑性樹脂及びワックス、滑剤、可塑剤とを混合分散して材料を混練する場合(混合分散を行う場合)には加熱混練機、多軸押出機および加熱ロール等を用いることが好ましい。材料を予め直径1~5mm、長さ1~10mm程度にペレット化して成形用の材料とすることが望ましい。その他、粉末射出成形は、一般的な方法により行う。
The addition amount of the organic binder is optimally 35 to 60 vol% with respect to the ceramic material used in the powder injection molding.
When kneading materials by mixing and dispersing ceramics, thermoplastic resin, wax, lubricant, and plasticizer (when mixing and dispersing), it is preferable to use a heating kneader, a multi-screw extruder, a heating roll, or the like. It is desirable that the material is previously pelletized to have a diameter of 1 to 5 mm and a length of about 1 to 10 mm to obtain a molding material. In addition, powder injection molding is performed by a general method.
 基板本体3及び放熱促進部4とを成形するための成形体(元材料)に対して脱脂を行うには、使用する粉末状の材料に応じて、アルミナでは大気中で行い、窒化アルミでは窒素中で行う。また、炭化珪素では窒素中もしくは不活性ガス中が望ましい。
 また、脱脂時のバインダの分解ガスをスムースに除去するために脱脂及び焼結時に幅5mm以下、高さ0.5mm以上、ピッチ間隔0.5mm以上の矩形形状を有するセラミックスプレートをセッターに用いることにより、脱脂時に生じるクラック、ボイド等の不具合を解消する。アルミナの場合用いるセラミックスプレートはアルミナ系セラミックスであり、窒化アルミでは窒化ホウ素、炭化珪素ではグラファイトが望ましい。
In order to degrease the molded body (original material) for molding the substrate body 3 and the heat radiation promoting portion 4, depending on the powder material used, alumina is used in the atmosphere, and aluminum nitride is used as nitrogen. To do in. Silicon carbide is preferably in nitrogen or in an inert gas.
In order to smoothly remove the decomposition gas of the binder during degreasing, a ceramic plate having a rectangular shape with a width of 5 mm or less, a height of 0.5 mm or more, and a pitch interval of 0.5 mm or more is used for the setter during degreasing and sintering. This eliminates defects such as cracks and voids that occur during degreasing. The ceramic plate used in the case of alumina is alumina ceramic, and boron nitride is preferable for aluminum nitride, and graphite is preferable for silicon carbide.
 焼結には使用する粉末に合わせて空気、窒素、アルゴン、水素等のガス雰囲気下で行い、焼結密度を93%以上にして、内部に連続気孔が残留しないように焼結温度を適宜調整する。内部に連続気孔が残留すると用いる基板1の熱拡散が損なわれ、十分な冷却効果が得られない。
 回路パターン(回路部5)は、上述したように、銅、銀、タングステン、モリブデン等の材料を用いて形成する。また、2つに分割した基板本体3を貼り合わせて冷却流路9を形成する場合には、(1)接着させる面を焼結の際の粒子間の拡散により界面を接着させる方法、(2)接着させる面に用いた粉末材料と同じセラミックス材料粉末をアクリル樹脂等とともに溶剤に分散させた材料を用いて、張り合わせる界面に塗布して乾燥させた後、脱脂焼結を行い、界面を接着させる方法、(3)上下を張り合わせた成形体を金型に挿入し界面部分を成形材料で成形を行った後、脱脂焼結工程において粒子間の拡散により界面を接着させる方法などがある。
Sintering is performed in a gas atmosphere such as air, nitrogen, argon, hydrogen, etc. according to the powder used, the sintering density is set to 93% or more, and the sintering temperature is adjusted appropriately so that no continuous pores remain inside. To do. If continuous pores remain inside, the thermal diffusion of the substrate 1 to be used is impaired, and a sufficient cooling effect cannot be obtained.
As described above, the circuit pattern (circuit unit 5) is formed using a material such as copper, silver, tungsten, or molybdenum. Further, when the cooling channel 9 is formed by bonding the substrate body 3 divided into two, (1) a method of bonding the interface to the surface to be bonded by diffusion between particles during sintering, (2 ) Using a material in which the same ceramic material powder as the powder material used for bonding is dispersed in a solvent together with acrylic resin, etc., applied to the bonded interface, dried and then degreased and sintered to bond the interface And (3) a method in which a molded body bonded up and down is inserted into a mold and an interface portion is molded with a molding material, and then the interface is bonded by diffusion between particles in a degreasing and sintering process.
 なお、図7に示すように、基板本体3に注入口11や排出口12に連通するノズル18を設ける場合には、ノズル18をネジにより基板本体3に締結させてもよい。また、基板本体3や放熱促進部4を作成する際にノズル18もあわせて形成して燒結させることで一体的に形成してもよい。ノズル18の温度が常時使用温度で100℃以下になる場合には、プラスチック材料を用いても良い。 In addition, as shown in FIG. 7, when the nozzle 18 connected to the inlet 11 and the outlet 12 is provided in the substrate body 3, the nozzle 18 may be fastened to the substrate body 3 with a screw. Further, when the substrate body 3 and the heat radiation promoting portion 4 are formed, the nozzles 18 may also be formed and sintered together so as to be integrally formed. A plastic material may be used when the temperature of the nozzle 18 is 100 ° C. or lower at the normal use temperature.
 なお、今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
1 基板
2 電子部品
3 基板本体
3a 表面
3b 裏面
4 放熱促進部
5 回路部
7 フィン
9 冷却流路
9a 冷却流路
9b 冷却流路
9c 冷却流路
10a 溝
10b 溝
11 注入口
12 排出口
13 第1基板本体部
14 第2基板本体部
15 抵抗部材
16 仕切板
17 連通孔
D  幅
S  空間部分
S1 空間部分
S2 空間部分
S3 空間部分
DESCRIPTION OF SYMBOLS 1 Board | substrate 2 Electronic component 3 Board | substrate main body 3a Front surface 3b Back surface 4 Heat radiation promotion part 5 Circuit part 7 Fin 9 Cooling flow path 9a Cooling flow path 9b Cooling flow path 9c Cooling flow path 10a Groove 10b Groove 11 Inlet 12 Outlet 13 First Substrate body portion 14 Second substrate body portion 15 Resistance member 16 Partition plate 17 Communication hole D Width S Space portion S1 Space portion S2 Space portion S3 Space portion

Claims (13)

  1.  電子部品を実装する基板本体と、前記基板本体の放熱を促進する放熱促進部とを有し、前記基板本体と前記放熱促進部とが一体成形されていることを特徴とする基板。 A board having a board body on which electronic components are mounted and a heat radiation promoting part for promoting heat radiation of the board body, wherein the board body and the heat radiation promoting part are integrally formed.
  2.  前記基板本体の外面に前記放熱促進部が形成されていることを特徴とする請求項1に記載の基板。 The substrate according to claim 1, wherein the heat radiation promoting portion is formed on an outer surface of the substrate body.
  3.  前記基板本体の表面が前記電子部品が実装される部分とされ、前記基板本体の裏面が前記放熱促進部が形成される部分とされていることを特徴とする請求項1に記載の基板。 2. The substrate according to claim 1, wherein a surface of the substrate body is a portion on which the electronic component is mounted, and a back surface of the substrate body is a portion on which the heat dissipation promoting portion is formed.
  4.  前記基板本体の表面が前記電子部品が実装される部分とされ、前記基板本体の裏面が前記放熱促進部が形成される部分とされていることを特徴とする請求項2に記載の基板。 3. The substrate according to claim 2, wherein a surface of the substrate body is a portion on which the electronic component is mounted, and a back surface of the substrate body is a portion on which the heat dissipation promoting portion is formed.
  5.  前記基板本体の内部に前記放熱促進部が設けられ、この放熱促進部は、基板本体を冷却するための冷却媒体が通る冷却流路とされていることを特徴とする請求項1に記載の基板。 2. The substrate according to claim 1, wherein the heat radiation promoting portion is provided inside the substrate body, and the heat radiation promoting portion is a cooling flow path through which a cooling medium for cooling the substrate body passes. .
  6.  前記基板本体の内部に前記放熱促進部が設けられ、この放熱促進部は、基板本体を冷却するための冷却媒体が通る冷却流路とされていることを特徴とする請求項2に記載の基板。 3. The substrate according to claim 2, wherein the heat dissipation promoting part is provided inside the substrate body, and the heat dissipation promoting part is a cooling flow path through which a cooling medium for cooling the substrate body passes. .
  7.  前記基板本体の内部に前記放熱促進部が設けられ、この放熱促進部は、基板本体を冷却するための冷却媒体が通る冷却流路とされていることを特徴とする請求項3に記載の基板。 4. The substrate according to claim 3, wherein the heat dissipation promoting part is provided inside the substrate body, and the heat dissipation promoting part is a cooling flow path through which a cooling medium for cooling the substrate body passes. .
  8.  請求項1~7のいずれかに記載の基板を製造する方法であって、前記基板本体と放熱促進部とを粉末射出成形により一体成形することを特徴とする基板の製造方法。 A method for manufacturing a substrate according to any one of claims 1 to 7, wherein the substrate main body and the heat dissipation accelerating portion are integrally formed by powder injection molding.
  9.  前記粉末射出成形においては、窒化アルミ、アルミナ、炭化ケイ素の少なくとも1種類以上からなる材料を用いることを特徴とする請求項8に記載の基板の製造方法。 9. The method for manufacturing a substrate according to claim 8, wherein the powder injection molding uses a material made of at least one of aluminum nitride, alumina, and silicon carbide.
  10.  前記窒化アルミは、イットリア、カルシア、マグネシアの少なくとも1種類以上を添加したものであることを特徴とする請求項9に記載の基板の製造方法。 10. The method for manufacturing a substrate according to claim 9, wherein the aluminum nitride is one to which at least one of yttria, calcia, and magnesia is added.
  11.  前記粉末射出成形において用いる有機バインダーは、ポリスチレン、ポリブチルメタクリレート、ポリオキシメチレン、ポリプロピレン、スチレン・アクリル共重合体、アモルファスポリオレフィン、エチレン・酢酸ビニル共重合体、エチレン・メチルアクリレート共重合体、エチレン・エチルアクリレート共重合体、エチレン・ブチルアクリレート共重合体、エチレングリシジルメタクリレート共重合体より選ばれる少なくとも1種類以上からなる樹脂、並びに脂肪酸エステル、脂肪酸アミド、高級脂肪酸、フタル酸エステル、アジピン酸エステル、パラフィンワックス、マイクロクリスタリンワックス、ポリエチレンワックス、ポリプロピレンワックス、カルナバワックス、モンタン系ワックス、ウレタン化ワックス、無水マレイン酸変性ワックスより選ばれる少なくとも1種類以上からなる有機化合物であることを特徴とする請求項8に記載の基板の製造方法。 The organic binder used in the powder injection molding is polystyrene, polybutyl methacrylate, polyoxymethylene, polypropylene, styrene / acrylic copolymer, amorphous polyolefin, ethylene / vinyl acetate copolymer, ethylene / methyl acrylate copolymer, ethylene / Resin comprising at least one selected from ethyl acrylate copolymer, ethylene / butyl acrylate copolymer, ethylene glycidyl methacrylate copolymer, fatty acid ester, fatty acid amide, higher fatty acid, phthalic acid ester, adipic acid ester, paraffin Wax, microcrystalline wax, polyethylene wax, polypropylene wax, carnauba wax, montan wax, urethanized wax, maleic anhydride A method for manufacturing a substrate according to claim 8, characterized in that the organic compound comprising at least one or more selected from sexual wax.
  12.  前記粉末射出成形において用いる有機バインダーは、ポリスチレン、ポリブチルメタクリレート、ポリオキシメチレン、ポリプロピレン、スチレン・アクリル共重合体、アモルファスポリオレフィン、エチレン・酢酸ビニル共重合体、エチレン・メチルアクリレート共重合体、エチレン・エチルアクリレート共重合体、エチレン・ブチルアクリレート共重合体、エチレングリシジルメタクリレート共重合体より選ばれる少なくとも1種類以上からなる樹脂、並びに脂肪酸エステル、脂肪酸アミド、高級脂肪酸、フタル酸エステル、アジピン酸エステル、パラフィンワックス、マイクロクリスタリンワックス、ポリエチレンワックス、ポリプロピレンワックス、カルナバワックス、モンタン系ワックス、ウレタン化ワックス、無水マレイン酸変性ワックスより選ばれる少なくとも1種類以上からなる有機化合物であることを特徴とする請求項9に記載の基板の製造方法。 The organic binder used in the powder injection molding is polystyrene, polybutyl methacrylate, polyoxymethylene, polypropylene, styrene / acrylic copolymer, amorphous polyolefin, ethylene / vinyl acetate copolymer, ethylene / methyl acrylate copolymer, ethylene / Resin comprising at least one selected from ethyl acrylate copolymer, ethylene / butyl acrylate copolymer, ethylene glycidyl methacrylate copolymer, fatty acid ester, fatty acid amide, higher fatty acid, phthalic acid ester, adipic acid ester, paraffin Wax, microcrystalline wax, polyethylene wax, polypropylene wax, carnauba wax, montan wax, urethanized wax, maleic anhydride A method for manufacturing a substrate according to claim 9, characterized in that the organic compound comprising at least one or more selected from sexual wax.
  13.  前記粉末射出成形において用いる有機バインダーは、ポリスチレン、ポリブチルメタクリレート、ポリオキシメチレン、ポリプロピレン、スチレン・アクリル共重合体、アモルファスポリオレフィン、エチレン・酢酸ビニル共重合体、エチレン・メチルアクリレート共重合体、エチレン・エチルアクリレート共重合体、エチレン・ブチルアクリレート共重合体、エチレングリシジルメタクリレート共重合体より選ばれる少なくとも1種類以上からなる樹脂、並びに脂肪酸エステル、脂肪酸アミド、高級脂肪酸、フタル酸エステル、アジピン酸エステル、パラフィンワックス、マイクロクリスタリンワックス、ポリエチレンワックス、ポリプロピレンワックス、カルナバワックス、モンタン系ワックス、ウレタン化ワックス、無水マレイン酸変性ワックスより選ばれる少なくとも1種類以上からなる有機化合物であることを特徴とする請求項10に記載の基板の製造方法。 The organic binder used in the powder injection molding is polystyrene, polybutyl methacrylate, polyoxymethylene, polypropylene, styrene / acrylic copolymer, amorphous polyolefin, ethylene / vinyl acetate copolymer, ethylene / methyl acrylate copolymer, ethylene / Resin comprising at least one selected from ethyl acrylate copolymer, ethylene / butyl acrylate copolymer, ethylene glycidyl methacrylate copolymer, fatty acid ester, fatty acid amide, higher fatty acid, phthalic acid ester, adipic acid ester, paraffin Wax, microcrystalline wax, polyethylene wax, polypropylene wax, carnauba wax, montan wax, urethanized wax, maleic anhydride A method for manufacturing a substrate according to claim 10, characterized in that the organic compound comprising at least one or more selected from sexual wax.
PCT/JP2011/050106 2010-04-06 2011-01-06 Substrate and method for manufacturing substrate WO2011125344A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-087839 2010-04-06
JP2010087839A JP5713578B2 (en) 2010-04-06 2010-04-06 Substrate manufacturing method

Publications (1)

Publication Number Publication Date
WO2011125344A1 true WO2011125344A1 (en) 2011-10-13

Family

ID=44762311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/050106 WO2011125344A1 (en) 2010-04-06 2011-01-06 Substrate and method for manufacturing substrate

Country Status (3)

Country Link
JP (1) JP5713578B2 (en)
TW (1) TW201135881A (en)
WO (1) WO2011125344A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014170835A (en) * 2013-03-04 2014-09-18 Mitsubishi Electric Corp Heat radiation structure of heating component and audio device using the same
CN112638029A (en) * 2020-12-23 2021-04-09 华为技术有限公司 Circuit board

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2780776A4 (en) * 2011-11-15 2015-08-26 Henkel US IP LLC Electronic devices assembled with thermally insulating layers
JP2014535174A (en) * 2011-11-15 2014-12-25 ヘンケル アイピー アンド ホールディング ゲゼルシャフト ミット ベシュレンクテル ハフツング Electronic devices assembled using thermal insulation layers
US8349116B1 (en) * 2011-11-18 2013-01-08 LuxVue Technology Corporation Micro device transfer head heater assembly and method of transferring a micro device
JP2013123014A (en) * 2011-12-12 2013-06-20 Toyota Industries Corp Semiconductor device
JP6055232B2 (en) * 2012-08-10 2016-12-27 株式会社Uacj Cooling plate and cooling device
TWI657132B (en) 2013-12-19 2019-04-21 德商漢高智慧財產控股公司 Compositions having a matrix and encapsulated phase change materials dispersed therein, and electronic devices assembled therewith
DE102014107217A1 (en) * 2014-05-19 2015-11-19 Ceram Tec Gmbh The power semiconductor module
DE102015217231A1 (en) * 2014-09-09 2016-03-10 Ceramtec Gmbh Multilayer cooler
WO2016148065A1 (en) * 2015-03-13 2016-09-22 大沢健治 Heat transfer device for cooling
JP7148276B2 (en) * 2018-05-30 2022-10-05 京セラ株式会社 Light-emitting element mounting package and light-emitting device
KR102330453B1 (en) * 2020-11-06 2021-11-24 김인호 Integrated degreasing and sintering device for oxidation prevention

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5878676U (en) * 1981-11-20 1983-05-27 富士通株式会社 Ceramic wiring device
JP2002026469A (en) * 2000-07-11 2002-01-25 Denki Kagaku Kogyo Kk Circuit board having directly cooling structure
JP2002329938A (en) * 2001-04-27 2002-11-15 Kyocera Corp Ceramic circuit board
JP2005101164A (en) * 2003-09-24 2005-04-14 Matsushita Electric Works Ltd Circuit board and method of manufacturing the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10284808A (en) * 1997-04-08 1998-10-23 Denki Kagaku Kogyo Kk Circuit board
JP2002121602A (en) * 2000-07-25 2002-04-26 Planet Polymer Technologies Inc Powder injection molding of high density metal matrix composite material
JP2002141164A (en) * 2000-10-31 2002-05-17 Miyaden Co Ltd Transistor inverter device for high-power and high- frequency induction heating
JP2003347600A (en) * 2002-05-28 2003-12-05 Matsushita Electric Works Ltd Substrate for mounting led
JP5230903B2 (en) * 2006-02-06 2013-07-10 東京窯業株式会社 Setter for firing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5878676U (en) * 1981-11-20 1983-05-27 富士通株式会社 Ceramic wiring device
JP2002026469A (en) * 2000-07-11 2002-01-25 Denki Kagaku Kogyo Kk Circuit board having directly cooling structure
JP2002329938A (en) * 2001-04-27 2002-11-15 Kyocera Corp Ceramic circuit board
JP2005101164A (en) * 2003-09-24 2005-04-14 Matsushita Electric Works Ltd Circuit board and method of manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014170835A (en) * 2013-03-04 2014-09-18 Mitsubishi Electric Corp Heat radiation structure of heating component and audio device using the same
CN112638029A (en) * 2020-12-23 2021-04-09 华为技术有限公司 Circuit board

Also Published As

Publication number Publication date
JP2011222624A (en) 2011-11-04
JP5713578B2 (en) 2015-05-07
TW201135881A (en) 2011-10-16

Similar Documents

Publication Publication Date Title
JP5713578B2 (en) Substrate manufacturing method
JP5046378B2 (en) Power semiconductor module and power semiconductor device equipped with the module
KR101782886B1 (en) Electrical heating unit, heating device for a vehicle, and method for producing a heating unit
CN101840914A (en) Power model with double-sided cooled of power overlay
US8754437B2 (en) LED module having a heat sink
CN1497711A (en) Aluminium-ceramic combined component
JP2010147478A (en) Low cost manufacturing of micro-channel heat sink
CN107924891B (en) Cooling body for electronic component and method for manufacturing same
US20100302734A1 (en) Heatsink and method of fabricating same
JP2008016515A (en) Semiconductor module
KR101010351B1 (en) heatsink using Nanoparticles
CN101087505A (en) Heat radiator
KR100928548B1 (en) Adhesive tape and producing method thereof
JP2017143094A (en) Heat sink, thermoelectric conversion module, method of manufacturing heat sink
JP7049849B2 (en) Cooling system
JP4202923B2 (en) Thermally conductive material, microelectronic device, method of forming thermally conductive material, and method of conducting and removing heat from a microchip
Gerges et al. Investigation of 3D printed polymer-based heat dissipator for GaN transistors
CN115084058B (en) Power semiconductor device packaging structure
CN116741724A (en) Cooling integrated silicon carbide module, preparation method thereof and chip transformation method
JP2009224783A (en) Device having semiconductor constituent and method for manufacturing the same
JP3072189B2 (en) Heat dissipation board for semiconductor devices
JP6587373B2 (en) Ceramic circuit board, ceramic circuit board with radiator, and method for manufacturing ceramic circuit board
JP2007324351A (en) Pressure-contact semiconductor module
JP2005024107A (en) Heat exchanger and method of manufacturing the same
CN115084059B (en) Preparation method of insulating substrate and power device packaging method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11765246

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11765246

Country of ref document: EP

Kind code of ref document: A1