WO2011124609A1 - Débitmètre massique d'air - Google Patents

Débitmètre massique d'air Download PDF

Info

Publication number
WO2011124609A1
WO2011124609A1 PCT/EP2011/055352 EP2011055352W WO2011124609A1 WO 2011124609 A1 WO2011124609 A1 WO 2011124609A1 EP 2011055352 W EP2011055352 W EP 2011055352W WO 2011124609 A1 WO2011124609 A1 WO 2011124609A1
Authority
WO
WIPO (PCT)
Prior art keywords
air mass
sensor element
signal
signal characteristic
mass flow
Prior art date
Application number
PCT/EP2011/055352
Other languages
German (de)
English (en)
Inventor
Stephan Schürer
Thorsten Knittel
Original Assignee
Continental Automotive Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive Gmbh filed Critical Continental Automotive Gmbh
Publication of WO2011124609A1 publication Critical patent/WO2011124609A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/696Circuits therefor, e.g. constant-current flow meters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • F02D41/182Circuit arrangements for generating control signals by measuring intake air flow for the control of a fuel injection device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1432Controller structures or design the system including a filter, e.g. a low pass or high pass filter

Definitions

  • Air mass flow rate - SENSOR The invention relates to an air-mass meter with a sensor element for detecting an air mass flow and He generation ⁇ one signal, and with an electronic circuit for processing the signal from the sensor element, the sensor element generates a non-linear signal characteristic. Furthermore, the invention relates to a method for processing signals of an air mass meter, wherein the air mass ⁇ meter has a sensor element for detecting an air mass flow and for generating a signal and an electronic ⁇ cal circuit for processing the signal from the sensor element, wherein the sensor element is a generated non-linear signal ⁇ characteristic.
  • Air mass meters are suitable for detecting a mass flow of a fluid (air mass flow) in a flow channel.
  • a flow channel may be, for example, an air intake pipe of an internal combustion engine.
  • both diagnoses for example, the operation of the internal combustion ⁇ machine can be carried out as also take control of the internal combustion engine.
  • a reliable and precise as possible detection of the actual mass flow is important even under different operating conditions.
  • DE 197 24 659 A1 discloses a mass flow sensor device comprising a sensor element.
  • the sensor element is arranged on ei ⁇ nem own chip and integrated.
  • a transmitter is disclosed, which is formed separately, but is electrically coupled to the sensor unit.
  • Modern mass air flow sensors built in, for example, microsystem (MEMS) technology are very fast and capture almost any Change in air mass flow. In addition, they can distinguish between air flowing in the air intake pipe to the internal combustion engine and air flowing back from the internal combustion engine. Also pulsations in the air intake pipe, which are caused by the cyclical operation of reciprocating internal combustion engines, are detected by high-speed air mass meters and converted by the sensor element into a signal. However, it is precisely these pulsations that can lead to a significant falsification of the measured value for the average air mass flow.
  • MEMS microsystem
  • the invention has for its object to provide a fast air mass meter, which has the lowest possible error in the processing of the signal.
  • the invention has the object to provide a method for processing signals of an air mass meter, in which the lowest possible processing error occurs.
  • the electronic circuit initially having a linearization ⁇ element for converting the non-linear signal characteristic from the sensor element in a linear signal characteristic ⁇ the error in the formation of the mean value for the air mass senstrom in the filter elements is substantially reduced.
  • the Fil ⁇ terelement performs the integration for averaging in the mass air space and not in the signal space, which leads through the non-linear signal response to a defective means ⁇ value formation.
  • These highly accurate signals are sent to the engine controller.
  • a particularly accurate Luftmassenmes ⁇ ser that allows the combustion of motor ⁇ material into the cylinders of an internal combustion engine can be made perfectly one. This is a contribution to the conservation of fossil fuel reserves and the environment.
  • the advantages just mentioned apply.
  • the sensor element and the elekt ⁇ tronic circuit are formed on a single semiconductor element from ⁇ . This has the advantage that the component can be constructed ponderegüns ⁇ tig and more error-free.
  • the sensor element and the electronic circuit can be produced in microsystem technology.
  • FIG. 1 shows an internal combustion engine
  • FIG. 2 shows an air mass meter according to the invention with a sensor element
  • FIG. 4 a shows the air mass flow pulsating in the air intake pipe as a function of time
  • FIG. 4c shows a non-linearized time-dependent signal
  • FIG. 5a shows the air mass flow pulsating in the air intake tube as a function of time
  • 5b shows the non-linear signal characteristic of the Sensorele ⁇ mentes
  • FIG. 5d shows a linearized time-dependent signal.
  • FIG. 1 shows an internal combustion engine 11.
  • This internal combustion engine 11 can be either an internal combustion engine 11 driven by gasoline or an internal combustion engine 11 driven by diesel fuel. It is also conceivable that the internal combustion engine 11 is driven by gas.
  • This determination of the air mass flow Q er ⁇ follows with the air mass meter 6, which transmits its signal S to the engine controller 8.
  • the engine control unit 8 controls, for example, the injection pump 13 and the injection nozzles 12 in response to the signal S supplied by the air mass meter 6
  • Internal combustion engine 11 according to the intake air mass Q a precisely metered amount of fuel supplied via the injection nozzles 12.
  • the precise knowledge of the air mass flow Q toward the cylinders 16 enables optimum combustion of the fuel supplied via the injection pump 13 and the injection nozzles 12 to the internal combustion engine 11. This allows optimum efficiency of the internal combustion engine 11 and thus an economical consumption of fuels and a relief of the environment.
  • the known internal combustion engines 11 are cyclical internal combustion engines in which the cylinder 16 alternately with Fresh air are filled, after which it comes to the combustion of the injected fuel, and whereupon the exhaust gases are removed from the cylinders 16, the air mass flow Q is not continuous to the engine, but it is coupled with a so-called pulsations.
  • the pulsations arise because each cylinder 16 per combustion process only a certain discrete amount of fresh air is ⁇ leads. After the supply of the fresh air into the cylinder 16, the air inlet valve of the cylinder 16 is closed, and the air mass flow Q is abruptly interrupted.
  • Pulsations are evident in the signal S of a fast and modern air-mass meter 6.
  • the motor controller 8 can not handle a rapidly pulsating signal S of the Lucasmassenmes ⁇ sers. 6
  • modern micromechanical air mass sensors 6 absorb this pulsation almost completely and convert it into an output signal S.
  • Only the average air mass flow Q is of interest for the engine control unit 8, and only this value can be processed by the engine control unit 8 in order, for example, to control the injection pump 13 and the injection nozzles 12 accordingly.
  • ⁇ controls which consists of digital single pulses
  • the time interval between the digital single pulses is considered as a measure of the air mass flow Q.
  • the time between the edge is a start ⁇ signal and the edge of a stop signal with a certain resolution determined. Whether the rising or falling edge is used depends on the electronics used in the motor control.
  • FIG 2 an air mass meter 6 with a sensor element 1 for detecting an air mass flow Q and for generating a signal S.
  • the sensor element is a fast Sensorele ⁇ ment, which, for example, in micro-system (MEMS) -Technology is built.
  • the air mass meter 6 has an electronic circuit 7 for processing the signal from the sensor element 1.
  • the sensor element 1 shows a non-linear signal characteristic.
  • the signal characteristic 9 corresponds to all signals S which can be generated by the sensor element 1 to the corresponding air mass flows Q.
  • the non-linear relationship between the air mass flow Q and the signals S sensor element 1 is shown later in Figure 3 in the QS diagram of the sensor element 1.
  • the electronic circuit 7 shown in FIG. 2 initially contains a linearization element 2 for converting the nonlinear signal characteristic 9 from the sensor element 1 into a linear signal characteristic line 10.
  • the linear signal S thus generated is then forwarded to a filter element 3.
  • This filter element 3 is integrated via the signal S received by the linearization element 2. This integration takes place over the time t.
  • the function Integ ⁇ ral S (t) to dt (j S ⁇ t) dt) is formed in the filter element 3.
  • the signal S is here as well as the air mass flow Q dependent on the time t function.
  • S (t) dt corresponds to the mean air mass flow Q, wherein now the pulsations have been filtered out by the filter element 3.
  • the thus the filter element 3 ⁇ he testified signal S is then fed to a conversion element 4 to the order ⁇ conversion of the linear characteristic signal 10 in a non-linear signal characteristic.
  • the now nonlinear signal is then passed to a relay element 5 for relaying the signals detected by the sensor element 1 and by the linearization signal. element 2, the filter element 3 and the conversion element 4 processed signal S supplied.
  • the relay element 5 a digital time signal AES to the engine controller 8 ge ⁇ sends.
  • the time interval between two single pulses DIE ses digital time signal AES then corresponds to the value measured by air ⁇ mass meter 6 to the sensor element 1 and processed with the electronic circuit 7, in particular averaged signal value S for the air mass flow Q.
  • the mass air flow sensor 6 shown in Figure 2 can be operated with the inventive method for processing signals.
  • the air mass meter 6 has a sensor element for detecting an air mass flow Q and for generating a signal S.
  • the conversion of the non-linear signal 9 characteristic from the sensor element 1 in a linear signal characteristic occurs initially 10.
  • the filtering of the linear signal characteristic curve 10 for example in a Integ ⁇ ration of the function
  • FIG. 1 shows schematically the components of the erfindungsge ⁇ MAESSEN air mass meter 6 with their functions.
  • the sensor element 1 can be seen, which is usually constructed in MEMS technology (microsystem technology) and detects the air mass flow Q.
  • the sensor element 1 and the elec- tronic circuit 7 are formed on a single Halbleiterele ⁇ ment.
  • the fast sensor element 1 produces a nonlinear Sig ⁇ nalkennline 9, in the corresponding air mass flow Q - S is shown signal diagram.
  • This non-linear signal 9 ⁇ characteristic is linearized by linearization element 2 electronically, whereby we generated from the sensor element 1
  • the ge besides the linearization element 2 ⁇ showed diagram of the air mass flow Q and the signal S has a linear characteristic.
  • the filter element 3 can integrate electronically and form the integral IS (t) dt, whereby a mean air mass flow Q is determined and the existing in the air intake pipe 14 pulsations are filtered out.
  • the element 4 for generating a non-linear signal characteristic 9 can be seen.
  • the non-linear signal characteristic 9 is in turn generated electronically by the element 4 for generating a non-linear signal characteristic 9.
  • the relay element 5 Based on this non-linear signal characteristic 9, the relay element 5 generates an electronic time signal A S, which is supplied to the motor control 8.
  • the time signal ⁇ S can be seen, which is generated by the relay ⁇ element 5.
  • the upper function shows the ideal signal characteristic from which a sharp time signal AES could be transmitted to the engine control unit 8.
  • the time signals are always electronically noisy, as shown in the lower time signal A s.
  • the electronic noise adds an error of + - ⁇ to the time signal A S, which error is passed on to the motor controller 8.
  • the problem of error propagation when is the individual signals S and AES at the time signal explained later.
  • FIG. 4 a shows the air mass flow Q pulsing in the air intake pipe 14 as a function of the time t.
  • way of example here is an ideal sinusoidal pulsation ge shows ⁇ .
  • the real air mass flow Q thus moves here in the air intake pipe 14 between a maximum value Q max and a minimum value 0, which occurs when all Lufteinlassventi- le of the engine 11 are closed, and the air ⁇ mass flow Q in the air intake pipe 14 comes to a standstill.
  • the engine control unit 8 only the average air mass flow Q is of interest.
  • the integral must disappear via the function Q (t), ie equal to zero.
  • the non-linear signal characteristic 9 shown in FIG. 5b is used for the conversion of the real air mass flow Q by means of the sensor element 1 into a signal S, as already known from FIG. 4b.
  • this non-linear signal characteristic 9 is then set by an environmentally Li ⁇ near Deutschenselement 2 in a linear signal characteristic 10th
  • the transition from the nonlinear signal characteristic 9 to the linear signal characteristic 10 can be adapted for each air mass flow Q lying in the measuring range of the sensor element 1 and any pipe cross-section lying in the measuring range, according to the requirements of the users of the air mass meter using a characteristic map.
  • This characteristic map can be stored in an electronic memory in the linearization element 2.
  • nonlinear signal characteristic 10 are particularly well suited to a time-dependent signal that suction pipe is proportional to the mass air flow Q in the air connections 14 to pass to the motor controller 8 without producing a big mistake ⁇ in the time signal AS.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Measuring Volume Flow (AREA)

Abstract

L'invention concerne un dispositif de mesure de masse d'air comprenant un élément de détection pour détecter un débit massique d'air et pour générer un signal et comprenant aussi un circuit électronique pour traiter le signal de l'élément de détection. Selon l'invention, l'élément de détection génère une caractéristique de signal non linéaire. Pour réaliser un dispositif de mesure de masse d'air rapide qui présente la plus faible erreur possible lors du traitement du signal, le circuit électronique présente tout d'abord un élément de linéarisation pour convertir la caractéristique de signal non linéaire de l'élément de détection en une caractéristique de signal linéaire, après quoi le circuit présente un élément filtrant, puis un élément de conversion pour convertir la caractéristique de signal linéaire en une caractéristique de signal non linéaire, puis un élément de transmission pour transmettre les signaux détectés par l'élément de détection et traités par l'élément de linéarisation, l'élément filtrant et l'élément de conversion.
PCT/EP2011/055352 2010-04-09 2011-04-06 Débitmètre massique d'air WO2011124609A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE201010014599 DE102010014599A1 (de) 2010-04-09 2010-04-09 Luftmassenmesser
DE102010014599.8 2010-04-09

Publications (1)

Publication Number Publication Date
WO2011124609A1 true WO2011124609A1 (fr) 2011-10-13

Family

ID=42979279

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/055352 WO2011124609A1 (fr) 2010-04-09 2011-04-06 Débitmètre massique d'air

Country Status (2)

Country Link
DE (1) DE102010014599A1 (fr)
WO (1) WO2011124609A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11842742B2 (en) 2016-01-22 2023-12-12 Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung V. Apparatus and method for MDCT M/S stereo with global ILD with improved mid/side decision

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013215921A1 (de) * 2013-08-12 2015-03-05 Continental Automotive Gmbh Luftmassenmesser

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19724659A1 (de) 1996-06-12 1997-12-18 Unisia Jecs Corp Vorrichtung zum Messen einer Gasflußrate
US20020056319A1 (en) * 1998-05-27 2002-05-16 Hitachi Ltd. Air flow rate measureing apparatus
US20060217901A1 (en) * 2002-06-19 2006-09-28 Atsushi Kanke Flowmeter and flowmeter system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19724659A1 (de) 1996-06-12 1997-12-18 Unisia Jecs Corp Vorrichtung zum Messen einer Gasflußrate
US20020056319A1 (en) * 1998-05-27 2002-05-16 Hitachi Ltd. Air flow rate measureing apparatus
US20060217901A1 (en) * 2002-06-19 2006-09-28 Atsushi Kanke Flowmeter and flowmeter system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11842742B2 (en) 2016-01-22 2023-12-12 Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung V. Apparatus and method for MDCT M/S stereo with global ILD with improved mid/side decision

Also Published As

Publication number Publication date
DE102010014599A1 (de) 2010-11-18

Similar Documents

Publication Publication Date Title
DE102008000138B4 (de) Brennkraftmaschinen-Diagnosevorrichtung
DE102007028900B4 (de) Verfahren und Vorrichtung zur Diagnose eines mit einer Kraftstoffverteilerleiste in Verbindung stehenden Einspritzventils einer Brennkraftmaschine
EP1907683B1 (fr) Procede et appareil de commande pour doser du carburant vers une chambre de combustion de moteur a combustion interne
WO2006131435A1 (fr) Procede et dispositif pour corriger un signal d'un capteur
DE102014205992B4 (de) Verbrennungsmotor-Steuervorrichtung
DE102013204785A1 (de) Klopfsteuervorrichtung für Innenverbrennungsmotor
DE102007000392A1 (de) Verbrennungsmotor-Steuervorrichtung
DE2305313A1 (de) Otto-motor mit brennstoffeinspritzung, insbesondere fuer kraftfahrzeuge
DE102011087303A1 (de) Innenverbrennungsmotorsteuerung
DE102018218679A1 (de) Aktives Kanisterspülsystem und Verfahren zur Steuerung desselben
EP3298266A1 (fr) Dispositif de mesure du taux d'injection, procédé de fabrication d'un tel dispositif et procédé de mesure
DE10154521A1 (de) Einlassluftmengenberechnungsvorrichtung und Verfahren für selbiges, sowie Einlassdruckberechnungsvorrichtung und Verfahren für selbiges
DE102014221918A1 (de) Sensorstruktur für eine EVAP- Kohlenwasserstoffkonzentration und -Strömungsrate
DE102006057528A1 (de) System und Verfahren zum Überwachen von Partikelfilterleistung
DE102004017868B4 (de) System zum Berechnen eines Luft-Kraftstoff-Verhältnisses jedes Zylinders einer Mehrzylinder-Brennkraftmaschine
WO2011124609A1 (fr) Débitmètre massique d'air
EP0859146A2 (fr) Système d'admission pour moteur à combustion
WO2008028849A1 (fr) Procédé et dispositif de correction de la durée d'injection dans un moteur a combustion interne
DE10148649C1 (de) Verfahren sowie Steuer und/oder Regelgerät zum Betreiben einer Brennkraftmaschine, sowie Brennkraftmaschine
DE10343069B4 (de) Verfahren zur Quantifizierung einer Voreinspritzung bei einem Kraftstoffeinspritzsystem einer Brennkraftmaschine
DE10028886A1 (de) Verfahren und Vorrichtung zum Überwachen des Betriebs eines Verbrennungsmotors
DE102006061438A1 (de) Verfahren und Steuergerät zur Überprüfung einer Saugrohrlängenverstellung bei einem Verbrennungsmotor
DE102007063102A1 (de) Verfahren zur Erfassung eines periodisch pulsierenden Betriebsparameters
DE19620435C1 (de) Verfahren zur Kompensation eines Meßfehlers eines einen Luftmassenstrom repräsentierenden Meßsignals
DE19713180C1 (de) Verfahren zur Überwachung des Sekundärluftmassenstroms einer Abgasreinigungsanlage

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11712269

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11712269

Country of ref document: EP

Kind code of ref document: A1