WO2011124105A1 - 一种确定下行时间参考的方法 - Google Patents

一种确定下行时间参考的方法 Download PDF

Info

Publication number
WO2011124105A1
WO2011124105A1 PCT/CN2011/071523 CN2011071523W WO2011124105A1 WO 2011124105 A1 WO2011124105 A1 WO 2011124105A1 CN 2011071523 W CN2011071523 W CN 2011071523W WO 2011124105 A1 WO2011124105 A1 WO 2011124105A1
Authority
WO
WIPO (PCT)
Prior art keywords
component carrier
downlink
terminal
time reference
random access
Prior art date
Application number
PCT/CN2011/071523
Other languages
English (en)
French (fr)
Inventor
杜忠达
陈中明
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to JP2012546351A priority Critical patent/JP2013516128A/ja
Priority to BR112012015818A priority patent/BR112012015818A2/pt
Priority to EP11765023.4A priority patent/EP2509383A4/en
Priority to MX2012007822A priority patent/MX2012007822A/es
Priority to US13/520,026 priority patent/US8804564B2/en
Publication of WO2011124105A1 publication Critical patent/WO2011124105A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time

Definitions

  • the present invention relates to the field of wireless communications, and more particularly to a method of determining a downlink time reference.
  • the user equipment In the Long Term Evolution (LTE) system, the user equipment (User Equipment, UE for short) needs to obtain uplink synchronization and downlink synchronization with the base station before transmitting uplink data to the base station. If the UE does not obtain downlink synchronization with the cell, a process similar to cell search needs to be performed. As shown in Figure 1, the downlink delay is obtained by downlink synchronization. Uplink synchronization is obtained by performing a random access procedure (at the same time, the Time Advance (TA) is obtained, and the uplink and downlink transmission delays are included. ⁇ The main purpose is to determine the time when the UE sends data.
  • TA Time Advance
  • the downlink of this carrier is used as a time reference, and the time for transmitting the uplink data (time ⁇ 2 in FIG. 1) is determined in combination with ⁇ , and T1/T2/T3 are absolute time, the base station The UE is aligned with the UE. If the UE expects the base station to receive data at ⁇ 3, the UE must send data to the base station at time ⁇ 2. From the perspective of the base station, the ⁇ 2 time of the UE is equivalent to the T1 time of the base station.
  • the ingress process includes both conflicting and non-conflicting.
  • the uplink and downlink carriers performing the collision-free random access procedure may be paired carriers of the same frequency or paired carriers of different frequencies.
  • the uplink and downlink carriers can only be paired carriers of the same frequency.
  • the terminal sends the following to the base station.
  • the machine accesses the preamble (the component carrier that transmits the random access preamble is the uplink carrier that performs the random access procedure), and the base station returns a random access response to the terminal (the component carrier that the base station sends the random access response is the downlink that performs the random access procedure) Carrier ⁇
  • the component carrier that transmits the random access preamble is the uplink carrier that performs the random access procedure
  • the base station returns a random access response to the terminal (the component carrier that the base station sends the random access response is the downlink that performs the random access procedure) Carrier ⁇
  • the terminal and the base station need to include the following two message interactions in addition to performing the above two message interactions:
  • the terminal sends a scheduling transmission message to the base station, and the base station returns a conflict resolution message to the terminal, which is used to resolve the foregoing conflict.
  • LTE-A LTE-Advanced proposes carrier aggregation.
  • Technology the purpose of which is to provide user equipment with corresponding capabilities Greater bandwidth, increasing the peak rate of the UE.
  • the maximum downlink transmission bandwidth supported by the system is 20 MHz.
  • Carrier aggregation is to aggregate two or more component carriers (CCs) to support downlink transmission bandwidths greater than 20 MHz and no more than 100 MHz.
  • the component carrier may use a frequency band already defined by LTE, or may use a frequency band specifically added for LTE-A. Based on the current spectrum resource shortage, it is impossible to always have a continuous component carrier in the frequency domain that can be allocated to the operator. Therefore, carrier aggregation is continuous in the frequency domain according to each component carrier, and can be divided into continuous carrier aggregation and discontinuous carrier aggregation. .
  • Carrier aggregation can be divided into single-band carrier aggregation and carrier-to-band carrier aggregation according to whether each component carrier is in the same frequency band.
  • the so-called single-band carrier aggregation means that all component carriers participating in carrier aggregation are in the same frequency band, and carrier aggregation of single-band can be continuous carrier aggregation or non-continuous carrier aggregation; so-called cross-band carrier aggregation refers to participation.
  • the component carriers of carrier aggregation may originate from different frequency bands.
  • the LTE UE can only send and receive data on one LTE-compatible component carrier.
  • the LTE-A UE with carrier aggregation capability (for the convenience of description, the UEs below are all such UEs, unless otherwise specified), can be in multiple components at the same time. Send and receive data on the carrier.
  • the transmitting device and the receiving device of the UE may be a set of baseband devices, a single frequency band, a bandwidth greater than 20 MHz, or multiple sets of baseband devices, multiple frequency bands, each of which has a bandwidth of less than 20 MHz.
  • CC1 and CC2 are primary component carriers
  • CC1 is a primary component carrier (PCC)
  • SCC Secondary Component Carrier
  • the terminal obtains non-access stratum (NAS) information (such as Evolved Cell Global Identity (ECGI) and Tracking Area Identity (TAI)) through the primary component carrier.
  • NAS non-access stratum
  • Evolved Cell Global Identity (ECGI) and Tracking Area Identity (TAI) through the primary component carrier.
  • RLF Radio link failure
  • RRC Radio Resource Control
  • the component carrier that performs access is the primary component carrier.
  • the network may complete the PCC conversion process through RRC reconfiguration or intra-cell handover, or the network side may specify the primary component carrier in the process of notifying the UE to perform handover.
  • a Radio Radio Head (RRH) technology or a signal amplifier may be used. ( repeater ), so that the base station simultaneously sends data to the UE on CC1 and CC2, and the time of the data of the two carriers arrives at the UE will be different, as shown in FIG. If both the uplink and downlink CC2 use RRH or signal amplifier, the base station only configures the downlink CC2 for the UE, and the same problem exists.
  • RRH Radio Radio Head
  • the uplink data transmission delays of CC1 and CC2 are consistent, it is reasonable to maintain a TA, but the TA is a relative amount of time. How to determine the absolute time for transmitting uplink data according to the relative amount of this time has not been solved yet.
  • the present invention provides a method for determining a downlink time reference, which solves the problem of setting a downlink time reference when a base station uses multiple downlink component carriers to transmit downlink data to a terminal, and a part of downlink components use RRH or repeater.
  • the present invention provides a method for determining a downlink time reference, the method comprising: using a downlink primary component carrier as a time reference, and determining, based on the time reference, an absolute value of transmitting uplink data according to the time advancement time.
  • the method further includes: when the downlink primary component carrier changes, the terminal uses the new downlink primary component carrier as a time reference.
  • the method further includes: a radio link failure occurs on the downlink primary component carrier, the terminal initiates a radio link control reestablishment process, causing a change of the downlink primary component carrier, and the terminal uses the new downlink primary component carrier as a time reference. .
  • the method further includes: the base station reconfiguring another downlink component carrier other than the downlink primary component carrier as a downlink primary component carrier by using a radio link control procedure, where the terminal uses a new downlink primary component carrier as a time reference .
  • the method further includes: The terminal loses the uplink synchronization. When the uplink data arrives, the terminal re-initiates the random access procedure. After the downlink primary component carrier is changed, the terminal uses the current downlink primary component carrier as the time reference.
  • the method further includes: when the terminal loses uplink synchronization, and when downlink data arrives and the base station allocates a dedicated preamble to the terminal, the terminal re-initiates random access on the component carrier to which the dedicated preamble allocated by the base station belongs After the downlink primary component carrier is changed, the terminal uses the current downlink primary component carrier as a time reference.
  • the method further includes: performing, by the terminal, a base station handover, and initiating a random access procedure on a component carrier that the target base station provides the random access resource, and causing the terminal to use the target base station after the downlink primary component carrier is changed.
  • the downlink primary component carrier is used as a time reference.
  • the present invention further provides a method for determining a downlink time reference, where the method includes: a downlink component carrier for performing random access, or a downlink component carrier corresponding to an uplink component carrier, or corresponding to The downlink component carriers of the uplink component carrier are in the same frequency band as the time reference, and the absolute time for transmitting the uplink data is determined according to the timing advance based on the time reference.
  • the method further includes: after the new random access procedure is completed, the downlink component carrier that performs the random access procedure changes, and the terminal uses the new downlink component carrier that performs the random access procedure as a time reference.
  • the method further includes: a radio link failure occurs on the downlink primary component carrier, and the terminal initiates a radio link control reestablishment process, and after the downlink primary component carrier is changed, the terminal still performs a random access downlink component carrier, Or a downlink component carrier corresponding to the uplink component carrier or another downlink component carrier in the same frequency band as the downlink component carrier corresponding to the uplink component carrier is used as a time reference.
  • the method further includes: The terminal loses the uplink synchronization. When the uplink data arrives, the terminal re-initiates the random access procedure to perform the downlink component carrier of the random access, or the downlink component carrier corresponding to the uplink component carrier, or the downlink corresponding to the uplink component carrier.
  • the other carrier components of the same frequency band of the component carrier are used as time references.
  • the method further includes: the terminal loses the uplink synchronization, and when the downlink data arrives, the base station allocates a dedicated preamble to the terminal, and the terminal re-initiates the random access procedure on the component carrier to which the dedicated preamble allocated by the base station belongs, to The downlink component carrier that performs the random access, or the downlink component carrier corresponding to the uplink component carrier, or other downlink component carrier that is in the same frequency band as the downlink component carrier corresponding to the uplink component carrier is used as a time reference.
  • the method further includes: performing, by the terminal, a base station handover, and initiating a random access procedure on a component carrier that the target base station provides the random access resource, where the terminal performs the downlink component carrier of the random access, or the uplink component
  • the downlink component carrier corresponding to the carrier or other downlink component carrier in the same frequency band as the downlink component carrier corresponding to the uplink component carrier is used as a time reference.
  • the method further includes: after the downlink component carrier performing the random access procedure is deleted or deactivated, the terminal performs a downlink primary component carrier as a time reference.
  • the method further includes: the terminal uses a downlink component carrier corresponding to the uplink component carrier as a time reference, and after the base station deletes the downlink component carrier, the terminal uses other downlink component carriers corresponding to the uplink component carrier as a time reference, or Other downlink component carriers in the same frequency band as the downlink component carrier are used as time references.
  • the present invention further provides a terminal, where the terminal is configured to: use a downlink primary component carrier as a time reference, and determine, according to the time reference, an absolute time for transmitting uplink data according to the time advance; or a downlink component carrier that performs random access or a downlink component corresponding to an uplink component carrier
  • the carrier, or other downlink component carrier in the same frequency band as the downlink component carrier corresponding to the uplink component carrier serves as a time reference, and determines the absolute time for transmitting the uplink data according to the timing advance based on the time reference.
  • the terminal is further configured to: when the terminal is configured as a time-based primary component carrier as a time reference, and determine, according to the time reference, an absolute time for transmitting uplink data according to the time advance, when the downlink primary component carrier changes
  • the terminal uses a new downlink primary component carrier as a time reference; or when a radio link failure occurs on the downlink primary component carrier, the terminal initiates a radio link control reestablishment process, causing a change in the downlink primary component carrier,
  • the terminal uses the new downlink primary component carrier as a time reference; or when the base station reconfigures another downlink component carrier other than the downlink primary component carrier as a downlink primary component carrier by using a radio link control procedure, the terminal is new
  • the downlink primary component carrier is used as the time reference; or when the terminal loses uplink synchronization and the uplink data arrives, the terminal re-initiates the random access procedure, and after the downlink primary component carrier is changed, the terminal uses the current downlink primary component carrier.
  • the terminal As a time reference; or lost on the terminal If the downlink data arrives and the base station allocates a dedicated preamble to the terminal, the terminal re-initiates the random access procedure on the component carrier to which the dedicated preamble assigned by the base station belongs, causing the downlink main component carrier to change.
  • the terminal uses the current downlink primary component carrier as a time reference; or when the terminal performs base station handover, initiates a random access procedure on the component carrier that the target base station provides the random access resource, and triggers a change of the downlink primary component carrier.
  • the terminal uses a downlink primary component carrier used in the target base station as a time reference.
  • the terminal is further configured to: when the terminal is configured to perform a random access downlink component carrier, or a downlink component carrier corresponding to an uplink component carrier, or a downlink component carrier corresponding to an uplink component carrier
  • the other downlink component carriers of a frequency band are used as a time reference, and when the absolute time for transmitting the uplink data is determined according to the timing advance based on the time reference, when the new random access procedure is completed, the downlink component carrier of the random access procedure is performed.
  • the terminal uses a new downlink component carrier that performs a random access procedure as a time reference; or a radio link failure occurs on the downlink primary component carrier, and the terminal initiates a radio link control reestablishment process, causing a downlink main
  • the terminal still uses the downlink component carrier that performs random access, or the downlink component carrier corresponding to the uplink component carrier, or other downlink component carrier that is in the same frequency band as the downlink component carrier corresponding to the uplink component carrier.
  • the terminal when the terminal loses the uplink synchronization and the uplink data arrives, the terminal re-initiates the random access procedure to perform the downlink component carrier of the random access, or the downlink component carrier corresponding to the uplink component carrier, or corresponds to the uplink.
  • the base station allocates a dedicated preamble to the terminal, and the component of the dedicated preamble allocated by the terminal at the base station belongs to
  • the random access procedure is re-initiated on the carrier to perform the downlink component carrier of the random access, or the downlink component carrier corresponding to the uplink component carrier, or other downlink component carrier in the same frequency band as the downlink component carrier corresponding to the uplink component carrier.
  • the random access procedure is initiated on the component carrier that the target base station provides the random access resource, where the terminal performs the downlink component carrier of the random access, or the uplink component
  • the downlink component carrier corresponding to the carrier or other downlink component carrier in the same frequency band as the downlink component carrier corresponding to the uplink component carrier is used as a time reference; or when the downlink component carrier performing the random access procedure is deleted or deactivated, Terminal
  • the downlink primary component carrier is used as a time reference; or when the terminal uses the downlink component carrier corresponding to the uplink component carrier as a time reference, after the base station deletes the downlink component carrier, the terminal uses other downlink component carriers corresponding to the uplink component carrier as Time reference, or other downlink component carriers in the same frequency band as the downlink component carrier as a time reference.
  • FIG. 1 is a schematic diagram of a timing advance (TA) of a terminal in an LTE system
  • FIG. 2 is a schematic diagram of a collision-based random access procedure
  • FIG. 3 is a schematic diagram of transmitting and receiving after a downlink RRH or repeater is introduced in an LTE-A system.
  • FIG. 4 is a schematic diagram of an application scenario according to Embodiments 1 to 5 of the present invention
  • FIG. 5 and FIG. 6 are schematic diagrams showing a data transmission time of a UE according to a downlink time reference and a TA according to Embodiments 1 to 5 of the present invention
  • FIG. 7 is a sixth embodiment of the present invention
  • FIG. 8 is a schematic diagram of a UE transmitting data according to a downlink time reference and a TA according to a sixth embodiment of the present invention.
  • Method 1 The following main component carrier of the terminal is used as a time reference, and based on the time reference, the absolute time for transmitting the uplink data is determined according to the timing advance. .
  • the terminal uses the new downlink primary component carrier as a time reference.
  • Method 2 The terminal uses a downlink component carrier that performs random access, or a downlink component carrier corresponding to the uplink component carrier, or another downlink component carrier that is in the same frequency band as the downlink component carrier corresponding to the uplink component carrier, and uses This time reference is the reference, and the absolute time for transmitting the uplink data is determined according to the timing advance.
  • the downlink component carrier performing random access is a component carrier used by the base station to transmit a random access response message. After the new random access procedure is completed, the downlink component carrier performing the random access procedure changes.
  • the terminal determines, by using a new downlink component carrier that performs a random access procedure as a time reference, an absolute time for transmitting uplink data.
  • a radio link failure occurs on the downlink main component carrier, and the terminal initiates a radio link control reestablishment process, and after the downlink main component carrier is changed, the terminal still performs a random access downlink component carrier or corresponds to the uplink component carrier.
  • the downlink component carrier or other downlink component carrier in the same frequency band as the downlink component carrier corresponding to the uplink component carrier is used as a time reference.
  • the terminal loses the uplink synchronization.
  • the terminal re-initiates the random access procedure to perform the downlink component carrier of the random access, or the downlink component carrier corresponding to the uplink component carrier, or the downlink corresponding to the uplink component carrier.
  • the other carrier components of the same frequency band of the component carrier are used as time references.
  • the terminal loses the uplink synchronization, and when the downlink data arrives, the base station allocates a dedicated preamble to the terminal, and the terminal re-initiates the random access procedure on the component carrier to which the dedicated preamble allocated by the base station belongs to perform the random access procedure.
  • the downlink component carrier, or the downlink component carrier corresponding to the uplink component carrier, or the other downlink component carrier in the same frequency band as the downlink component carrier corresponding to the uplink component carrier is used as a time reference.
  • the terminal performs the base station handover, and initiates a random access procedure on the component carrier that the target base station provides the random access resource, where the terminal performs the downlink component carrier of the random access, or the downlink component carrier corresponding to the uplink component carrier, or Other downlink component carriers in the same frequency band as the downlink component carriers corresponding to the uplink component carriers are used as time references.
  • the terminal After the downlink component carrier performing the random access procedure is deleted or deactivated, the terminal performs the following main component carrier as a time reference.
  • the terminal uses the downlink component carrier corresponding to the uplink component carrier as a time reference, and after the base station deletes the downlink component carrier, the terminal uses other downlink component carriers corresponding to the uplink component carrier as a time reference, or is in a time reference with the downlink component carrier.
  • Other downlink component carriers of the same frequency band are used as time references.
  • Embodiments of the present invention will be described in detail below with reference to the accompanying drawings. It should be noted that, in the case of no conflict, the features in the embodiments and the embodiments in the present application may be arbitrarily combined with each other.
  • Embodiments 1, 2, 3, and 4 are the first method, and the fifth and sixth methods are the second method.
  • the frequency bands to which each component carrier belongs may be the same or different.
  • Embodiment 1 A radio link failure occurs on a downlink primary component carrier, and the terminal initiates a radio link control reestablishment process, causing a change of the downlink primary component carrier, and the terminal uses the new downlink primary component carrier as a time reference.
  • the UE resides on the CC1, and initiates an RRC connection setup request (mainly including a random access procedure) on the CC1 due to the upper-layer service requirement.
  • an RRC connection setup request (mainly including a random access procedure) on the CC1 due to the upper-layer service requirement.
  • the TA is obtained, and the CC1 is the PCC.
  • the UE then enters the connected state.
  • the network side configures the UE to perform CC2 for carrier aggregation, and the downlink (DL) is equipped with a signal amplifier (if the RRH technology is used, the subsequent processing flow is consistent), so the current UE simultaneously
  • the component carriers used are DL CC1, DL CC2 and Uplink (UL) CCl, ULCC2, UL CC1 and DL CC1 are PCC, and UL CC2 and DL CC2 are SCC.
  • the UE has two receivers, which are responsible for the reception of DL CC1 and DL CC2. As shown in FIG.
  • DL PCC (ie, DL CC1 ) is used as a time reference
  • TA is the time difference between T2 and T1 (ie, TA1)
  • the UE determines the absolute time for transmitting data according to TA1.
  • the data sent by the base station to the UE through the DL CC1 arrives at the UE at time T2, and the data sent to the UE through the DL CC2 arrives at the UE at time T3, and the UE receives the data of the base station at times T2 and T3, respectively.
  • the RLF occurs in the DL CC1, triggering the UE to initiate RRC reestablishment.
  • the result of the cell selection by the UE is CC2.
  • the random access is initiated in CC2.
  • the UE enters the connected state, and CC2 is the PCC.
  • TA is the time difference between T3 and T1 (ie, TA2 ), and the UE determines the absolute time of transmitting data according to TA2.
  • Embodiment 2 The base station reconfigures another downlink component carrier other than the downlink primary component carrier as a downlink primary component carrier by using a radio link control procedure, and the terminal uses the new downlink primary component carrier as a time reference. Still taking FIG. 4 as an example for description.
  • the UE initiates an RRC connection establishment into a connected state through CC1 in the LTE-A system.
  • the component carriers used by the current UE are DL CCl, DL CC2, and UL CC1, ULCC2, UL CCl and DL CCl are PCC, and UL CC2 and DL CC2 are SCC.
  • DL PCC ie DL CCl
  • TA1 the absolute time to send data.
  • the UE has two receivers, which are responsible for receiving DL CC1 and DL CC2, respectively. Since the DL CC1 signal is degraded, the base station changes DL CC2 to DL PCC through RRC reconfiguration, but does not delete DL CC1.
  • the UE and DL CC2 maintain direct downlink synchronization, when the DL PCC changes to DL CC2 (ie, the UE gives After the base station responds to the reconfiguration complete message, the TA transitions to the time difference between T3 and T1 (ie, TA2), and the UE determines the absolute time for transmitting the data according to TA2.
  • the data that the base station sends to the UE through the DL CC1 arrives at the UE at time T2
  • the data that is sent to the UE through the DL CC2 arrives at the UE at time T3, and the UE receives the data of the base station at times T2 and T3, respectively, as shown in FIG. 5.
  • Embodiment 3 The terminal loses the uplink synchronization. When the uplink data arrives, the terminal re-initiates the random access procedure. After the downlink primary component carrier is changed, the terminal uses the current downlink primary component carrier as the time reference. When the terminal loses the uplink synchronization, and the downlink data arrives and the base station allocates the dedicated preamble to the terminal, the terminal re-initiates the random access procedure on the component carrier to which the dedicated preamble allocated by the base station belongs, causing the downlink main component carrier to change. The terminal uses the current downlink primary component carrier as a time reference. Still taking FIG. 4 as an example for description.
  • the current UE is in a connected state in the LTE-A system, the component carriers used by the current UE are DL CC1, DL CC2 and UL CC1, ULCC2, UL CC2 and DL CC2 are PCC, and UL CCl and DL CCl are SCC.
  • the UE has two receivers, which are separately responsible for the reception of DL CC1 and DL CC2.
  • the random access procedure needs to be re-initiated.
  • the random access procedure at this time is based on the collision.
  • the UE selects the UL CC1 and the DL CC1 to initiate a random access procedure.
  • the UE Since the DL PCC (ie, DL CC2) is used as the time reference, the UE will send the random access to the base station at the time T3. Preamble, since the delays of UL CC1 and UL CC2 are the same, the obtained TA is TA2, as shown in FIG. 6.
  • the UE loses the uplink synchronization and the downlink data arrives, and the base station allocates the dedicated preamble on the CC1 to the UE, the UE needs to re-initiate the random access procedure, and the random access procedure at this time is collision-free.
  • the UE initiates a random access procedure on the UL CC1. Since the DL PCC (ie, DL CC2) is currently used as a time reference, the UE will send a random access preamble to the base station at time T3, since the delays of the UL CC1 and the UL CC2 are the same. Therefore, the obtained TA is TA2, as shown in FIG. 6.
  • Embodiment 4 When the terminal performs the base station handover, the random access procedure is initiated on the component carrier that the target base station provides the random access resource, and after the downlink primary component carrier is changed, the terminal uses the downlink primary component used in the target base station.
  • the carrier is used as a time reference. Still taking FIG. 4 as an example for explanation.
  • the current UE is in the connected state in the LTE-A system, and the source base station decides to switch the UE to CC1, and sends a handover request message to the target base station.
  • the target base station configures CC1 and CC2 for carrier aggregation, and only random access is provided on CC1. Resources.
  • the UE initiates a random access procedure at the target base station on CC1.
  • the TA is obtained at the target base station, and CC1 is the PCC, and then the UE accesses the target base station.
  • the component carriers used by the current UE are DL CCl, DL CC2 and UL CCl, ULCC2, UL CC1 and DL CC1 are PCC, and UL CC2 and DL CC2 are SCC.
  • the UE has two receivers, which are separately responsible for the reception of DL CC1 and DL CC2. As shown in FIG.
  • DL PCC (ie, DL CC1 ) is used as a time reference
  • TA is the time difference between T2 and T1 (ie, TA1)
  • the UE determines the absolute time for transmitting data according to TA1.
  • the data sent by the base station to the UE through the DL CC1 arrives at the UE at time T2
  • the data sent to the UE through the DL CC2 arrives at the UE at time T3
  • the UE receives the data of the base station at times T2 and T3, respectively.
  • Embodiment 5 Still taking FIG. 4 as an example for description.
  • the UE initiates an RRC connection establishment into a connected state through CC1 in the LTE-A system.
  • the component carriers used by the current UE are DL CCl, DL CC2 and UL CCl, UL CC2, UL CC1 and DL CC1 are PCC, and UL CC2 and DL CC2 are
  • the SCC uses a downlink CC (ie, DL CC1) that performs random access as a time reference, and determines an absolute time for transmitting data according to TA1.
  • the UE has two receivers, which are responsible for receiving DL CC1 and DL CC2, respectively.
  • the CC1 and CC2 belong to the frequency band 5.
  • the DL CC1 signal is degraded, causing the RLF to occur in the DL CC1.
  • the terminal initiates the radio link control reestablishment process.
  • the base station changes the DL CC2 into the DL PCC through RRC reconfiguration, but does not delete the DL CC1. At this time, the uplink and downlink correspondence relationship is modified.
  • the UE For the UL CC1 and the DL CC2, since the UE and the DL CC1 are always in downlink synchronization, after the DL PCC is converted into the DL CC2 (that is, after the UE responds to the reconfiguration complete message to the base station), the UE still performs the downlink CC for performing random access (ie, DL CC1) As a time reference, the UE still determines the absolute time of transmitting data according to TA1. As shown in Figure 5. In the above process, if the base station deletes or deactivates CC1, the UE performs the following main component carrier DL PCC (ie, DL CC2) as a time reference, and the TA is also adjusted to TA2 accordingly.
  • main component carrier DL PCC ie, DL CC2
  • the random access procedure at this time is based on the collision.
  • the UE selects the UL CC1 and the DL CC2 to initiate a random access procedure.
  • the accessed downlink CC ie, DL CC2
  • the UE will send a random access preamble to the base station at time T3.
  • the obtained TA is TA2, and the UE determines the absolute time of sending data according to TA2, as shown in FIG. 6.
  • the UE When the UE loses the uplink synchronization and the downlink data arrives, and the base station allocates the dedicated preamble on the CC1 to the UE, the UE needs to re-initiate the random access procedure, and the random access procedure at this time is collision-free.
  • the UE initiates a random access procedure on the UL CC1. Since the downlink CC (ie, DL CC2) that performs random access is used as a time reference, the UE will send a random access preamble to the base station at time T3, and the obtained TA is TA2, UE. The absolute time of sending data is still determined according to TA2, as shown in FIG. 6.
  • Embodiment 6 Taking FIG. 7 as an example, CC1 and CC3 belong to the frequency band 5, and CC2 belongs to the frequency band 1.
  • the UE initiates an RRC connection through the CC1 in the LTE-A system to establish a connection state, which is required by the service.
  • the station configures CC3 and DLCC2 for the UE, where DL CC2 is RRH.
  • the component carriers used by the current UE are DLCC1, DLCC2, DLCC3, and ULCC1, ULCC3, where UL CC1 and DL CC1 are PCC, DL CC2, DL CC3, and UL CC3 are SCCs, and downlink CCs corresponding to UL CCs are used (ie, DL) CC1 or DL CC3) is a time reference, or other downlink CCs (ie, DLCC3 or DLCC1) in the same frequency band as the downlink CC are time references, and the absolute time of transmitting data is determined according to TA1.
  • the UE Since the downlink delays of CC1 and CC3 are consistent, the UE only needs to have two receivers, which are responsible for the reception of DL CC1 and DL CC3 and the reception of DL CC2, respectively. Since the DL CC1 signal is degraded, the terminal initiates a radio link control re-establishment procedure, and the base station changes DLCC2 into DLPCC through RRC reconfiguration, but DLCC1 is not deleted. At this time, the uplink and downlink correspondences are modified to ULCC1 and DLCC2.
  • the UE After the DLCCC is converted to the DL CC2 (that is, after the UE responds to the reconfiguration complete message by the UE), the UE still uses the downlink CC (ie, DLCC1 or DL CC3) corresponding to the ULCC as the time reference, and the UE still determines the absolute time of sending the data according to the TA1. .
  • Figure 8 shows. If DL CC1 is deleted, the downlink CC (such as DLCC3) in the same frequency band as DL CC1 can be used as a time reference.
  • the random access procedure needs to be re-initiated. The random access procedure is based on the collision.
  • the UE selects the UL CC3 and the DL CC3 to initiate a random access procedure, and the UE has the ULCC corresponding.
  • the downlink CC ie, DLCC1 or DLCC3
  • the UE will send a random access preamble to the base station at time T2.
  • the obtained TA is TA1, and the UE still determines the absolute time for transmitting data according to TA1, as shown in FIG. 8.
  • the UE loses the uplink synchronization and the downlink data arrives, and the base station allocates the dedicated preamble on the CC3 to the UE, the UE needs to re-initiate the random access procedure, and the random access procedure at this time is collision-free.
  • the UE initiates a random access procedure on the UL CC3, and the UE uses the downlink CC (ie, DL CC1 or DLCC3) corresponding to the UL CC as a time reference, and the UE sends a random access preamble to the base station at time T2, and the obtained TA is TA1.
  • the UE still determines the absolute time for transmitting data according to TA1, as shown in FIG. In the above process, if the base station deletes CC1, the UE uses TA on the other downlink component carrier DL CC3 in the same frequency band as CC1.
  • the embodiment of the present invention further discloses a terminal, where the terminal is configured to: use a downlink primary component carrier as a time reference, and determine, according to the time reference, an absolute time for transmitting uplink data according to the time advance; or perform random connection.
  • the incoming downlink component carrier, or the downlink component carrier corresponding to the uplink component carrier, or other downlink component carrier in the same frequency band as the downlink component carrier corresponding to the uplink component carrier, as a time reference, and based on the time reference as a reference The amount determines the absolute time at which the upstream data is sent.
  • the terminal is further configured to: when the terminal is configured as a time-based primary component carrier as a time reference, and determine, according to the time reference, an absolute time for transmitting uplink data according to the time advance, when the downlink primary component carrier changes
  • the terminal uses a new downlink primary component carrier as a time reference; or when a radio link failure occurs on the downlink primary component carrier, the terminal initiates a radio link control reestablishment process, causing a change in the downlink primary component carrier,
  • the terminal uses the new downlink primary component carrier as a time reference; or when the base station reconfigures another downlink component carrier other than the downlink primary component carrier as a downlink primary component carrier by using a radio link control procedure, the terminal is new
  • the downlink primary component carrier is used as the time reference; or when the terminal loses uplink synchronization and the uplink data arrives, the terminal re-initiates the random access procedure, and after the downlink primary component carrier is changed, the terminal uses the current downlink primary component carrier.
  • the terminal As a time reference; or lost on the terminal If the downlink data arrives and the base station allocates a dedicated preamble to the terminal, the terminal re-initiates the random access procedure on the component carrier to which the dedicated preamble assigned by the base station belongs, causing the downlink main component carrier to change.
  • the terminal uses the current downlink primary component carrier as a time reference; or When the terminal performs base station handover, a random access procedure is initiated on the component carrier that the target base station provides the random access resource, and after the downlink primary component carrier is changed, the terminal uses the downlink primary component carrier used in the target base station as Time reference.
  • the terminal is further configured to: when the terminal is configured to perform a random access downlink component carrier, or a downlink component carrier corresponding to the uplink component carrier, or another downlink component carrier corresponding to the uplink component carrier
  • the downlink component carrier is used as a time reference, and the absolute time for transmitting the uplink data is determined according to the time advance according to the time reference.
  • the new random access procedure is completed, the downlink component carrier of the random access procedure is changed.
  • the terminal uses the new downlink component carrier that performs the random access procedure as a time reference; or the radio link failure occurs on the downlink primary component carrier, and the terminal initiates a radio link control reestablishment process, causing a change in the downlink main component carrier.
  • the terminal After that, the terminal still uses the downlink component carrier that performs random access, or the downlink component carrier corresponding to the uplink component carrier, or other downlink component carriers that are in the same frequency band as the downlink component carrier corresponding to the uplink component carrier as a time reference; or The terminal loses the same uplink
  • the terminal re-initiates the random access procedure to perform the downlink component carrier of the random access, or the downlink component carrier corresponding to the uplink component carrier, or the downlink component carrier corresponding to the uplink component carrier.
  • the other downlink component carriers of the frequency band are used as time references; or when the terminal loses uplink synchronization and downlink data arrives, the base station allocates a dedicated preamble to the terminal, and the terminal re-initiates the component carrier to which the dedicated preamble allocated by the base station belongs.
  • a random access procedure where the downlink component carrier that performs the random access, or the downlink component carrier corresponding to the uplink component carrier, or other downlink component carriers that are in the same frequency band as the downlink component carrier corresponding to the uplink component carrier is used as a time reference; Or when the terminal performs the base station handover, the random access procedure is initiated on the component carrier that the target base station provides the random access resource, where the terminal performs the downlink component carrier of the random access or the downlink corresponding to the uplink component carrier.
  • the other downlink component carriers whose carriers are in the same frequency band serve as a time reference; or when the downlink component carrier performing the random access procedure is deleted or deactivated, the terminal performs the downlink primary component carrier as a time reference; or when the terminal uses The downlink component carrier corresponding to the uplink component carrier is used as a time reference.
  • the terminal uses other downlink component carriers corresponding to the uplink component carrier as a time reference, or is in the same frequency band as the downlink component carrier.
  • Other downlink component carriers are used as time references.
  • the present invention solves the problem that the base station uses a plurality of downlink component carriers to transmit downlink data to the terminal, and the downstream downlink component uses the RRH or the repeater to set the downlink time reference, which is simple and easy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

一种确定下行时间参考的方法
技术领域 本发明涉及无线通信领域, 尤其涉及确定下行时间参考的方法。
背景技术
长期演进 ( Long Term Evolution , 简称 LTE ) 系统中, 用户设备 ( User Equipment , 简称 UE )向基站发送上行数据之前, 需要获得与基站的上行同 步和下行同步。 如果 UE没有取得与该小区的下行同步, 需要执行类似小区 搜索的过程。 图 1所示, 下行时延是通过下行同步获取到的。 上行同步是通 过执行随机接入过程来获取的(同时获取到发送时间提前量( Time Advance, 简称 TA ) , ΤΑ包含了上行和下行发送时延。 ΤΑ主要用途是 UE用来确定 发送数据时刻的。 由于 LTE系统中小区只有一个载波, 因此以这个载波的下 行作为时间参考,结合 ΤΑ来确定发送上行数据的时间(图 1中的 Τ2时刻 ) , T1/T2/T3都是绝对的时间, 基站和 UE都是对齐的, 如果 UE期望基站在 Τ3 收到数据,那么 UE必须在 Τ2时刻将数据发送给基站,在基站的角度看起来, UE的 Τ2时刻, 相当于基站的 T1时刻。 随机接入过程包含有冲突和无冲突 两种。 执行无冲突的随机接入过程的上行和下行载波可以是相同频率的配对 载波, 也可以是不同频率的配对载波。 执行有冲突的随机接入过程的上行和 下行载波只能是相同频率的配对载波。 执行无冲突的随机接入过程时, 终端 向基站发送随机接入前导(发送随机接入前导的分量载波即执行随机接入过 程的上行载波) , 基站向终端返回随机接入响应 (基站发送随机接入响应的 分量载波即执行随机接入过程的下行载波)。执行有冲突的随机接入过程时, 如图 2所示, 终端与基站(E-UTRAN Node Β, 简称 eNB ) 除了进行上述两 个消息交互,还需包括以下两个消息的交互: 终端向基站发送调度传输消息, 基站向终端返回冲突解决消息, 用于解决上述冲突。 为向移动用户提供更高的数据速率, 增强长期演进(LTE-Advanced, 简 称 LTE-A )提出了载波聚合技术, 其目的是为具有相应能力的用户设备提供 更大宽带, 提高 UE的峰值速率。 LTE中, 系统支持的最大下行传输带宽为 20MHz, 载波聚合是将两个或者更多的分量载波(Component Carrier, 简称 CC )聚合起来支持大于 20MHz, 最大不超过 100MHz的下行传输带宽。 分量载波可以使用 LTE已经定义的频段, 也可以使用为 LTE-A专门新 增的频段。 基于目前频谱资源紧张, 不可能总有频域上连续的分量载波可以 分配给运营商使用, 因此载波聚合按各分量载波在频域上是否连续, 可以分 连续的载波聚合和非连续的载波聚合。 载波聚合按各分量载波是否在同一频 带内,可以分为单频带( single band )的载波聚合和跨频带( multiple frequency bands )的载波聚合。 所谓单频带的载波聚合是指参与载波聚合的所有分量载 波都在同一个频带内, 单频带的载波聚合可以是连续的载波聚合也可以是非 连续的载波聚合; 所谓跨频带的载波聚合是指参与载波聚合的分量载波可以 源自不同的频带。 LTE UE只能在一个兼容 LTE的分量载波上收发数据, 具 有载波聚合能力的 LTE-A UE (为了描述方便, 下文中的 UE都是此类 UE, 除非特别指出), 可以同时在多个分量载波上收发数据。 与此相对应的, UE 的发送设备和接收设备可以是一套基带设备,一个单频段,带宽大于 20MHz, 也可以是多套基带设备, 多个频段, 每个频段带宽小于 20MHz。
LTE-A系统中, UE进入连接态后可以同时通过多个分量载波(例如 CC1 和 CC2 )与源基站进行通信, 其中 CC1是主分量载波(Primary Component Carrier, 简称 PCC ) , 其他的如 CC2是辅分量载波(Secondary Component Carrier,简称 SCC )。终端通过主分量载波获取非接入层( Non- Access Stratum, 简称 NAS )信息 (如演进小区全球标识 (Evolved Cell Global Identity, 简称 ECGI )和跟踪区域标识(Tracking Area Identity, 简称 TAI )等信息), 如果 下行主分量载波出现无线链路失败( radio link failure, 简称 RLF ) 的情况, UE需要执行无线资源控制 ( Radio Resource Control, 简称 RRC )重建过程。 UE从空闲 (IDLE ) 态接入网络进入连接态后, 执行接入的分量载波即为主 分量载波。 UE在连接态的时候, 网络可以通过 RRC重配或小区内切换完成 PCC的转换过程,或者网络侧在通知 UE进行切换的过程中指定主分量载波。 另外, 为了提高基站的覆盖范围, 对于某些下行载波如 CC2, 可以釆用 射频拉远(Remote Radio Head, 简称 RRH )技术, 或者配备信号放大器 ( repeater ) , 这样基站同时在 CC1和 CC2上给 UE发送数据, 此两个载波 的数据到达 UE的时间将会是不一样的, 如图 3所示。 如果上行和下行 CC2 都釆用 RRH或信号放大器, 基站只给 UE配置下行 CC2, 存在同样的问题。 由于 CC1和 CC2的上行数据发送时延是一致的,维护一个 TA是比较合理的, 但是 TA是一个时间相对量, 如何根据此时间相对量确定发送上行数据的绝 对时间目前尚未有解决办法。
发明内容 本发明提供了一种确定下行时间参考的方法, 解决了基站釆用多个下行 分量载波向终端发送下行数据,并且部分下行分量釆用 RRH或 repeater时下 行时间参考的设置问题。 为了解决上述技术问题, 本发明提供了一种确定下行时间参考的方法, 该方法包括: 终端以下行主分量载波作为时间参考, 并以该时间参考为基准根据时间 提前量确定发送上行数据的绝对时间。 所述方法还包括: 当下行主分量载波发生变化时, 所述终端以新的下行主分量载波作为时 间参考。 所述方法还包括: 所述下行主分量载波上发生无线链路失败情况, 终端发起无线链路控制 重建过程, 引发下行主分量载波发生变化, 所述终端以新的下行主分量载波 作为时间参考。 所述方法还包括: 基站通过无线链路控制过程重新配置将除了所述下行主分量载波外的另 一下行分量载波设置为下行主分量载波, 所述终端以新的下行主分量载波作 为时间参考。 所述方法还包括: 所述终端失去上行同步, 有上行数据到达时, 终端重新发起随机接入过 程, 引发下行主分量载波发生变化后, 所述终端以当前下行主分量载波作为 时间参考。 所述方法还包括: 所述终端失去上行同步, 有下行数据到达并且基站为所述终端分配了专 用前导的情况下, 终端在基站分配的所述专用前导所属的分量载波上重新发 起随机接入过程, 引发下行主分量载波发生变化后, 所述终端以当前下行主 分量载波作为时间参考。 所述方法还包括: 所述终端进行基站切换, 在目标基站提供有随机接入资源的分量载波上 发起随机接入过程, 引发下行主分量载波发生变化后, 所述终端以目标基站 中使用的下行主分量载波作为时间参考。 为了解决上述技术问题,本发明还提供了一种确定下行时间参考的方法, 该方法包括: 终端以执行随机接入的下行分量载波、 或者与上行分量载波对应的下行 分量载波、 或者与对应于上行分量载波的下行分量载波处于同一频带的其他 下行分量载波作为时间参考, 并以此时间参考为基准根据时间提前量确定发 送上行数据的绝对时间。 所述方法还包括: 当新的随机接入过程完成后, 执行随机接入过程的下行分量载波发生变 化, 所述终端以新的执行随机接入过程的下行分量载波为时间参考。 所述方法还包括: 所述下行主分量载波上发生无线链路失败情况, 终端发起无线链路控制 重建过程, 引发下行主分量载波发生变化后, 终端仍然以执行随机接入的下 行分量载波、 或者与上行分量载波对应的下行分量载波、 或者与对应于上行 分量载波的下行分量载波处于同一频带的其他下行分量载波作为时间参考。 所述方法还包括: 终端失去上行同步, 有上行数据到达时, 终端重新发起随机接入过程, 以执行此随机接入的下行分量载波、 或者与上行分量载波对应的下行分量载 波、 或者与对应于上行分量载波的下行分量载波处于同一频带的其他下行分 量载波作为时间参考。 所述方法还包括: 终端失去上行同步, 有下行数据到达时, 同时基站为所述终端分配了专 用前导, 终端在基站分配的所述专用前导所属的分量载波上重新发起随机接 入过程, 以执行此随机接入的下行分量载波、 或者与上行分量载波对应的下 行分量载波、 或者与对应于上行分量载波的下行分量载波处于同一频带的其 他下行分量载波作为时间参考。 所述方法还包括: 所述终端进行基站切换, 在目标基站提供有随机接入资源的分量载波上 发起随机接入过程, 所述终端以执行此随机接入的下行分量载波、 或者与上 行分量载波对应的下行分量载波、 或者与对应于上行分量载波的下行分量载 波处于同一频带的其他下行分量载波作为时间参考。 所述方法还包括: 当执行随机接入过程的下行分量载波被删除或去激活后, 所述终端以下 行主分量载波作为时间参考。 所述方法还包括: 所述终端以与上行分量载波对应的下行分量载波作为时间参考, 基站删 除此下行分量载波后, 所述终端以其他与上行分量载波对应的下行分量载波 作为时间参考, 或者以与所述下行分量载波处于同一频带的其他下行分量载 波作为时间参考。 为了解决上述技术问题, 本发明还提供了一种终端, 所述终端设置为: 以下行主分量载波作为时间参考, 并以该时间参考为基准根据时间提前 量确定发送上行数据的绝对时间; 或者 以执行随机接入的下行分量载波、 或者与上行分量载波对应的下行分量 载波、 或者与对应于上行分量载波的下行分量载波处于同一频带的其他下行 分量载波作为时间参考, 并以此时间参考为基准根据时间提前量确定发送上 行数据的绝对时间。 所述终端还设置为: 当所述终端设置为以下行主分量载波作为时间参考, 并以该时间参考为 基准根据时间提前量确定发送上行数据的绝对时间时, 当下行主分量载波发生变化时, 所述终端以新的下行主分量载波作为时 间参考; 或者 当所述下行主分量载波上发生无线链路失败情况, 终端发起无线链路控 制重建过程, 引发下行主分量载波发生变化, 所述终端以新的下行主分量载 波作为时间参考; 或者 当基站通过无线链路控制过程重新配置将除了所述下行主分量载波外的 另一下行分量载波设置为下行主分量载波, 所述终端以新的下行主分量载波 作为时间参考; 或者 当所述终端失去上行同步, 有上行数据到达时, 终端重新发起随机接入 过程, 引发下行主分量载波发生变化后, 所述终端以当前下行主分量载波作 为时间参考; 或者 在所述终端失去上行同步, 有下行数据到达并且基站为所述终端分配了 专用前导的情况下, 终端在基站分配的所述专用前导所属的分量载波上重新 发起随机接入过程, 引发下行主分量载波发生变化后, 所述终端以当前下行 主分量载波作为时间参考; 或者 当所述终端进行基站切换, 在目标基站提供有随机接入资源的分量载波 上发起随机接入过程, 引发下行主分量载波发生变化后, 所述终端以目标基 站中使用的下行主分量载波作为时间参考。 所述终端还设置为: 当所述终端设置为以执行随机接入的下行分量载波、 或者与上行分量载 波对应的下行分量载波、 或者与对应于上行分量载波的下行分量载波处于同 一频带的其他下行分量载波作为时间参考, 并以此时间参考为基准根据时间 提前量确定发送上行数据的绝对时间时, 当新的随机接入过程完成后, 执行随机接入过程的下行分量载波发生变 化, 所述终端以新的执行随机接入过程的下行分量载波为时间参考; 或者 在所述下行主分量载波上发生无线链路失败情况, 终端发起无线链路控 制重建过程, 引发下行主分量载波发生变化后, 终端仍然以执行随机接入的 下行分量载波、 或者与上行分量载波对应的下行分量载波、 或者与对应于上 行分量载波的下行分量载波处于同一频带的其他下行分量载波作为时间参 考; 或者 当终端失去上行同步,有上行数据到达时,终端重新发起随机接入过程, 以执行此随机接入的下行分量载波、 或者与上行分量载波对应的下行分量载 波、 或者与对应于上行分量载波的下行分量载波处于同一频带的其他下行分 量载波作为时间参考; 或者 当终端失去上行同步, 有下行数据到达时, 同时基站为所述终端分配了 专用前导, 终端在基站分配的所述专用前导所属的分量载波上重新发起随机 接入过程, 以执行此随机接入的下行分量载波、 或者与上行分量载波对应的 下行分量载波、 或者与对应于上行分量载波的下行分量载波处于同一频带的 其他下行分量载波作为时间参考; 或者 当所述终端进行基站切换, 在目标基站提供有随机接入资源的分量载波 上发起随机接入过程, 所述终端以执行此随机接入的下行分量载波、 或者与 上行分量载波对应的下行分量载波、 或者与对应于上行分量载波的下行分量 载波处于同一频带的其他下行分量载波作为时间参考; 或者 当执行随机接入过程的下行分量载波被删除或去激活后, 所述终端以下 行主分量载波作为时间参考; 或者 当所述终端以与上行分量载波对应的下行分量载波作为时间参考, 基站 删除此下行分量载波后, 所述终端以其他与上行分量载波对应的下行分量载 波作为时间参考, 或者以与所述下行分量载波处于同一频带的其他下行分量 载波作为时间参考。 本发明解决了基站釆用多个下行分量载波向终端发送下行数据, 并且部 分下行分量釆用 RRH或 repeater时下行时间参考的设置问题, 简单易行。
附图概述 图 1 是 LTE系统中终端的时间提前量(TA ) 的示意图; 图 2 是基于冲突的随机接入过程的示意图; 图 3 是 LTE-A系统中引入下行 RRH或 repeater后发送接收时延示意图; 图 4 是本发明实施例一至五中应用场景示意图; 图 5和图 6 本发明实施例一至五中 UE根据下行时间参考及 TA确定数 据发送时间示意图; 图 7是本发明实施例六中应用场景示意图; 图 8是本发明实施例六中 UE根据下行时间参考及 TA确定数据发送时 间示意图。
本发明的较佳实施方式 针对上述问题, 提出两种解决的办法: 方法一: 终端以下行主分量载波作为时间参考,并以此时间参考为基准, 根据时间提前量确定发送上行数据的绝对时间。 当下行主分量载波发生变化 时, 终端以新的下行主分量载波作为时间参考。
方法二: 终端以执行随机接入的下行分量载波、 或者与上行分量载波对 应的下行分量载波、 或者与对应于上行分量载波的下行分量载波处于同一频 带的其他下行分量载波作为时间参考, 并以此时间参考为基准, 根据时间提 前量确定发送上行数据的绝对时间。 执行随机接入的下行分量载波是基站用 于发送随机接入响应消息的分量载波。 当新的随机接入过程完成后, 执行随机接入过程的下行分量载波发生变 化, 所述终端以新的执行随机接入过程的下行分量载波为时间参考确定发送 上行数据的绝对时间。 所述下行主分量载波上发生无线链路失败情况, 终端发起无线链路控制 重建过程, 引发下行主分量载波发生变化后, 终端仍然以执行随机接入的下 行分量载波或者与上行分量载波对应的下行分量载波、 或者与对应于上行分 量载波的下行分量载波处于同一频带的其他下行分量载波作为时间参考。 终端失去上行同步, 有上行数据到达时, 终端重新发起随机接入过程, 以执行此随机接入的下行分量载波、 或者与上行分量载波对应的下行分量载 波、 或者与对应于上行分量载波的下行分量载波处于同一频带的其他下行分 量载波作为时间参考。 终端失去上行同步, 有下行数据到达时, 同时基站为所述终端分配了专 用前导, 终端在基站分配的所述专用前导所属的分量载波上重新发起随机接 入过程, 以执行此随机接入的下行分量载波、 或者与上行分量载波对应的下 行分量载波、 或者与对应于上行分量载波的下行分量载波处于同一频带的其 他下行分量载波作为时间参考。 终端进行基站切换, 在目标基站提供有随机接入资源的分量载波上发起 随机接入过程, 所述终端以执行此随机接入的下行分量载波、 或者与上行分 量载波对应的下行分量载波、 或者与对应于上行分量载波的下行分量载波处 于同一频带的其他下行分量载波作为时间参考。 当执行随机接入过程的下行分量载波被删除或去激活后, 所述终端以下 行主分量载波作为时间参考。 终端以与上行分量载波对应的下行分量载波作为时间参考, 基站删除此 下行分量载波后, 所述终端以其他与上行分量载波对应的下行分量载波作为 时间参考, 或者以与所述下行分量载波处于同一频带的其他下行分量载波作 为时间参考。
下文中将结合附图对本发明的实施例进行详细说明。 需要说明的是, 在 不冲突的情况下, 本申请中的实施例及实施例中的特征可以相互任意组合。 实施例一、 二、 三和四是釆用方法一, 实施例五和六是釆用方法二。 实 施例中, 当 UE失去上行同步, 并且有上行或下行数据到达时, 需要重新发 起随机接入过程。 以下实施例中, 各分量载波归属的频带可以相同, 或者不 同。
实施例一: 下行主分量载波上发生无线链路失败情况, 终端发起无线链路控制重建 过程, 引发下行主分量载波发生变化, 终端以新的下行主分量载波作为时间 参考。
如图 4所示, UE驻留在 CC1上, 由于上层业务需求, 在 CC1上发起 RRC 连接建立请求(主要包含随机接入过程), 随机接入过程完成后, 获得 TA, CC1即为 PCC, 之后 UE进入连接态。 由于业务的需要, 网络侧给 UE 配置了 CC2进行载波聚合, 下行链路 ( Downlink, 简称 DL ) CC2配备了信号放大器(如果是釆用 RRH技术, 后 续处理流程是一致的 ),因此当前 UE同时使用的分量载波是 DL CC1、DL CC2 和上行链路( Uplink, 简称 UL ) CCl、 ULCC2, UL CC1和 DL CC1是 PCC, UL CC2和 DL CC2是 SCC。 UE有两个接收机,分另 负责 DL CC1和 DL CC2 的接收。 如图 5所示, 以 DL PCC (即 DL CC1 )作为时间参考, TA为 T2和 T1 之间的时间差(即 TA1 ) , UE依据 TA1确定发送数据的绝对时间。 基站通过 DL CC1给 UE发送的数据在 T2时刻到达 UE,通过 DL CC2给 UE发送到数 据在 T3时刻到达 UE, UE在 T2和 T3时刻分别接收基站的数据。 某个时刻, 由于 DL CC1信号迅速变差, 导致 DL CC1发生 RLF, 触发 UE发起 RRC重建。 由于 DL CC1信号差, 因此 UE执行小区选择的结果是 CC2, 在 CC2发起随机接入, 随机接入完成后, UE进入连接态, CC2即为 PCC。 以此时的 DL PCC (即 DL CC2 ) 为时间参考, TA为 T3和 T1之间的 时间差 (即 TA2 ), UE依据 TA2确定发送数据的绝对时间。
实施例二: 基站通过无线链路控制过程重新配置将除了所述下行主分量载波外的另 一下行分量载波设置为下行主分量载波, 终端以新的下行主分量载波作为时 间参考。 仍然以图 4为例进行说明。 UE通过 LTE-A系统中 CC1发起 RRC连接 建立进入连接态, 当前 UE同时使用的分量载波是 DL CCl、 DL CC2和 UL CC1、 ULCC2, UL CCl和 DL CCl是 PCC, UL CC2和 DL CC2是 SCC , 使 用 DL PCC (即 DL CCl )作为时间参考, 依据 TA1确定发送数据的绝对时 间。 UE有两个接收机, 分别负责 DL CC1和 DL CC2的接收。 由于 DL CC1信号变差, 基站通过 RRC重配将 DL CC2变成 DL PCC, 但是并未删除 DL CC1 , 由于 UE与 DL CC2—直保持下行同步, 当 DL PCC 转变成 DL CC2后 (即 UE给基站回应重配完成消息后), TA转变成 T3和 T1之间的时间差 (即 TA2 ), UE依据 TA2确定发送数据的绝对时间。 基站 通过 DL CC1给 UE发送的数据在 T2时刻到达 UE, 通过 DL CC2给 UE发 送到数据在 T3时刻到达 UE, UE在 T2和 T3时刻分别接收基站的数据, 如 图 5所示。
实施例三: 终端失去上行同步, 有上行数据到达时, 终端重新发起随机接入过程, 引发下行主分量载波发生变化后, 所述终端以当前下行主分量载波作为时间 参考。 终端失去上行同步, 有下行数据到达并且基站为所述终端分配了专用 前导的情况下, 终端在基站分配的专用前导所属的分量载波上重新发起随机 接入过程, 引发下行主分量载波发生变化后, 所述终端以当前下行主分量载 波作为时间参考。 仍然以图 4为例进行说明。 当前 UE在 LTE-A系统中处于连接态, 当前 UE同时使用的分量载波是 DL CC1、 DL CC2和 UL CC1、 ULCC2, UL CC2 和 DL CC2是 PCC, UL CCl和 DL CCl是 SCC。 UE有两个接收机, 分另 负 责 DL CC1和 DL CC2的接收。 当 UE失去上行同步,有上行数据到达时, 需要重新发起随机接入过程, 此时的随机接入过程是基于冲突的, UE选择 UL CC1和 DL CC1发起随机接 入过程, 由于当前以 DL PCC (即 DL CC2 )作为时间参考, UE将在 T3时 刻给基站发送随机接入前导, 由于 UL CC1和 UL CC2的时延是一样的, 因 此获得的 TA是 TA2, 如图 6所示。 当 UE失去上行同步, 有下行数据到达, 同时基站分配 CC1上的专用前 导给 UE, UE需要重新发起随机接入过程,此时的随机接入过程是无冲突的。
UE在 UL CC1上发起随机接入过程, 由于当前以 DL PCC (即 DL CC2 )作 为时间参考, UE将在 T3 时刻给基站发送随机接入前导, 由于 UL CC1和 UL CC2的时延是一样的, 因此获得的 TA是 TA2, 如图 6所示。
实施例四: 终端进行基站切换时, 在目标基站提供有随机接入资源的分量载波上发 起随机接入过程, 引发下行主分量载波发生变化后, 所述终端以目标基站中 使用的下行主分量载波作为时间参考。 仍然以图 4为例进行说明。 当前 UE在 LTE-A系统中处于连接态, 源基 站决定将 UE切换到 CC1 , 给目标基站发送切换请求消息, 目标基站给 UE 配置 CC1和 CC2进行载波聚合, 只有 CC1上都提供了随机接入资源。 UE 在 CC1上发起在目标基站的随机接入过程, 随机接入过程完成后, 获得在目 标基站的 TA, CC1即为 PCC, 之后 UE接入目标基站。 当前 UE同时使用的 分量载波是 DL CCl、 DL CC2和 UL CCl、 ULCC2, UL CC1和 DL CC1是 PCC, UL CC2和 DL CC2是 SCC。 UE有两个接收机, 分另 负责 DL CC1和 DL CC2的接收。 如图 5所示, 以 DL PCC (即 DL CC1 )作为时间参考, TA为 T2和 T1 之间的时间差(即 TA1 ) , UE依据 TA1确定发送数据的绝对时间。 基站通过 DL CC1给 UE发送的数据在 T2时刻到达 UE,通过 DL CC2给 UE发送到数 据在 T3时刻到达 UE, UE在 T2和 T3时刻分别接收基站的数据。
实施例五: 仍然以图 4为例进行说明。 UE通过 LTE-A系统中 CC1发起 RRC连接 建立进入连接态, 当前 UE同时使用的分量载波是 DL CCl、 DL CC2和 UL CCl、 UL CC2, UL CC1和 DL CC1是 PCC, UL CC2和 DL CC2是 SCC, 使用执行随机接入的下行 CC (即 DL CC1 )为时间参考, 依据 TA1确定发送 数据的绝对时间。 UE有两个接收机, 分别负责 DL CC1和 DL CC2的接收。
CC1和 CC2归属频带 5。 由于 DL CC1信号变差, 导致 DL CC1发生 RLF, 终端发起无线链路控 制重建过程, 基站通过 RRC重配将 DL CC2变成 DL PCC, 但是并未删除 DL CC1 , 此时, 上下行对应关系修改为 UL CC1和 DL CC2 , 由于 UE与 DL CC1一直保持下行同步, 当 DL PCC转变成 DL CC2后 (即 UE给基站回应 重配完成消息后), UE仍然以执行随机接入的下行 CC (即 DL CC1 )作为时 间参考, UE仍然依据 TA1确定发送数据的绝对时间。 如图 5所示。 上述过 程中,如果基站删除或去激活 CC1 ,那么 UE以下行主分量载波 DL PCC (即 DL CC2 )作为时间参考, TA也相应调整到 TA2。 当 UE失去上行同步,有上行数据到达时, 需要重新发起随机接入过程, 此时的随机接入过程是基于冲突的, UE选择 UL CC1和 DL CC2发起随机接 入过程, 由于需要以执行随机接入的下行 CC (即 DL CC2 )作为时间参考, UE将在 T3时刻给基站发送随机接入前导,获得的 TA是 TA2, UE依据 TA2 确定发送数据的绝对时间, 如图 6所示。 当 UE失去上行同步, 有下行数据到达, 同时基站分配 CC1上的专用前 导给 UE, UE需要重新发起随机接入过程,此时的随机接入过程是无冲突的。
UE在 UL CC1上发起随机接入过程,由于当前以执行随机接入的下行 CC(即 DL CC2 )作为时间参考, UE将在 T3时刻给基站发送随机接入前导, 获得 的 TA是 TA2 , UE仍然依据 TA2确定发送数据的绝对时间, 如图 6所示。
实施例六: 以图 7为例进行说明, CC1和 CC3属于频带 5, CC2属于频带 1。 UE 通过 LTE-A系统中 CC1发起 RRC连接建立进入连接态, 由于业务需要, 基 站给 UE配置了 CC3和 DLCC2, 其中 DL CC2是釆用 RRH的。 当前 UE同 时使用的分量载波是 DLCC1、 DLCC2、 DLCC3和 ULCC1、 ULCC3, 其 中 , UL CC1和 DL CC1是 PCC, DL CC2、 DL CC3和 UL CC3是 SCC, 使 用有 UL CC对应的下行 CC (即 DL CC1或 DL CC3 )为时间参考, 或者与该 下行 CC相同频带的其他下行 CC (即 DLCC3或 DLCC1)为时间参考, 依 据 TA1确定发送数据的绝对时间。 由于 CC1和 CC3的下行时延是一致的, 因此 UE只需要有两个接收机,分别负责 DL CC1和 DL CC3的接收和 DL CC2 的接收。 由于 DL CC1信号变差,终端发起无线链路控制重建过程,基站通过 RRC 重配将 DLCC2变成 DLPCC, 但是并未删除 DLCC1。 此时, 上下行对应关 系修改为 ULCC1和 DLCC2。 当 DLPCC转变成 DL CC2后(即 UE给基站 回应重配完成消息后), UE仍然以有 ULCC对应的下行 CC (即 DLCC1或 DL CC3 )作为时间参考, UE仍然依据 TA1确定发送数据的绝对时间。 图 8 所示。 如果删除了 DL CC1 , 那么可以以与 DL CC1相同频带的下行 CC (如 DLCC3)作为时间参考。 当 UE失去上行同步,有上行数据到达时, 需要重新发起随机接入过程, 此时的随机接入过程是基于冲突的, UE选择 UL CC3和 DL CC3发起随机接 入过程, UE以有 ULCC对应的下行 CC (即 DLCC1或 DLCC3)作为时间 参考, UE将在 T2时刻给基站发送随机接入前导, 获得的 TA是 TA1, UE 仍然依据 TA1确定发送数据的绝对时间, 如图 8所示。 当 UE失去上行同步, 有下行数据到达, 同时基站分配 CC3上的专用前 导给 UE, UE需要重新发起随机接入过程,此时的随机接入过程是无冲突的。 UE在 UL CC3上发起随机接入过程, UE以有 UL CC对应的下行 CC (即 DL CC1或 DLCC3)作为时间参考, UE将在 T2时刻给基站发送随机接入前导, 获得的 TA是 TA1 , UE仍然依据 TA1确定发送数据的绝对时间, 如图 8所 示。 上述过程中, 如果基站删除了 CC1, 那么 UE以与 CC1处于同一频带的 其他下行分量载波 DL CC3上, 使用的 TA为 TA1。 本发明实施例还公开了一种终端, 所述终端设置为: 以下行主分量载波作为时间参考, 并以该时间参考为基准根据时间提前 量确定发送上行数据的绝对时间; 或者 以执行随机接入的下行分量载波、 或者与上行分量载波对应的下行分量 载波、 或者与对应于上行分量载波的下行分量载波处于同一频带的其他下行 分量载波作为时间参考, 并以此时间参考为基准根据时间提前量确定发送上 行数据的绝对时间。
所述终端还设置为: 当所述终端设置为以下行主分量载波作为时间参考, 并以该时间参考为 基准根据时间提前量确定发送上行数据的绝对时间时, 当下行主分量载波发生变化时, 所述终端以新的下行主分量载波作为时 间参考; 或者 当所述下行主分量载波上发生无线链路失败情况, 终端发起无线链路控 制重建过程, 引发下行主分量载波发生变化, 所述终端以新的下行主分量载 波作为时间参考; 或者 当基站通过无线链路控制过程重新配置将除了所述下行主分量载波外的 另一下行分量载波设置为下行主分量载波, 所述终端以新的下行主分量载波 作为时间参考; 或者 当所述终端失去上行同步, 有上行数据到达时, 终端重新发起随机接入 过程, 引发下行主分量载波发生变化后, 所述终端以当前下行主分量载波作 为时间参考; 或者 在所述终端失去上行同步, 有下行数据到达并且基站为所述终端分配了 专用前导的情况下, 终端在基站分配的所述专用前导所属的分量载波上重新 发起随机接入过程, 引发下行主分量载波发生变化后, 所述终端以当前下行 主分量载波作为时间参考; 或者 当所述终端进行基站切换, 在目标基站提供有随机接入资源的分量载波 上发起随机接入过程, 引发下行主分量载波发生变化后, 所述终端以目标基 站中使用的下行主分量载波作为时间参考。
所述终端还设置为: 当所述终端设置为以执行随机接入的下行分量载波、 或者与上行分量载 波对应的下行分量载波、 或者与对应于上行分量载波的下行分量载波处于同 一频带的其他下行分量载波作为时间参考, 并以此时间参考为基准根据时间 提前量确定发送上行数据的绝对时间时, 当新的随机接入过程完成后, 执行随机接入过程的下行分量载波发生变 化, 所述终端以新的执行随机接入过程的下行分量载波为时间参考; 或者 在所述下行主分量载波上发生无线链路失败情况, 终端发起无线链路控 制重建过程, 引发下行主分量载波发生变化后, 终端仍然以执行随机接入的 下行分量载波、 或者与上行分量载波对应的下行分量载波、 或者与对应于上 行分量载波的下行分量载波处于同一频带的其他下行分量载波作为时间参 考; 或者 当终端失去上行同步,有上行数据到达时,终端重新发起随机接入过程, 以执行此随机接入的下行分量载波、 或者与上行分量载波对应的下行分量载 波、 或者与对应于上行分量载波的下行分量载波处于同一频带的其他下行分 量载波作为时间参考; 或者 当终端失去上行同步, 有下行数据到达时, 同时基站为所述终端分配了 专用前导, 终端在基站分配的所述专用前导所属的分量载波上重新发起随机 接入过程, 以执行此随机接入的下行分量载波、 或者与上行分量载波对应的 下行分量载波、 或者与对应于上行分量载波的下行分量载波处于同一频带的 其他下行分量载波作为时间参考; 或者 当所述终端进行基站切换, 在目标基站提供有随机接入资源的分量载波 上发起随机接入过程, 所述终端以执行此随机接入的下行分量载波、 或者与 上行分量载波对应的下行分量载波、 或者与对应于上行分量载波的下行分量 载波处于同一频带的其他下行分量载波作为时间参考; 或者 当执行随机接入过程的下行分量载波被删除或去激活后, 所述终端以下 行主分量载波作为时间参考; 或者 当所述终端以与上行分量载波对应的下行分量载波作为时间参考, 基站 删除此下行分量载波后, 所述终端以其他与上行分量载波对应的下行分量载 波作为时间参考, 或者以与所述下行分量载波处于同一频带的其他下行分量 载波作为时间参考。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保护 范围, 凡在本发明的精神和原则之内所作的任何修改、 等同替换和改进等, 均应包含在本发明的保护范围之内。 本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序 来指令相关硬件完成, 所述程序可以存储于计算机可读存储介质中, 如只读 存储器、 磁盘或光盘等。 可选地, 上述实施例的全部或部分步骤也可以使用 一个或多个集成电路来实现。 相应地, 上述实施例中的各模块 /单元可以釆用 硬件的形式实现, 也可以釆用软件功能模块的形式实现。 本发明不限制于任 何特定形式的硬件和软件的结合。
工业实用性 本发明解决了基站釆用多个下行分量载波向终端发送下行数据, 并且部 分下行分量釆用 RRH或 repeater时下行时间参考的设置问题, 简单易行。

Claims

权 利 要 求 书
1、 一种确定下行时间参考的方法, 该方法包括: 终端以下行主分量载波作为时间参考, 并以该时间参考为基准根据时间 提前量确定发送上行数据的绝对时间。
2、 如权利要求 1所述的方法, 所述方法还包括: 当下行主分量载波发生变化时, 所述终端以新的下行主分量载波作为时 间参考。
3、 如权利要求 1或 2所述的方法, 所述方法还包括: 所述下行主分量载波上发生无线链路失败情况, 终端发起无线链路控制 重建过程, 引发下行主分量载波发生变化, 所述终端以新的下行主分量载波 作为时间参考。
4、 如权利要求 1或 2所述的方法, 所述方法还包括: 基站通过无线链路控制过程重新配置将除了所述下行主分量载波外的另 一下行分量载波设置为下行主分量载波, 所述终端以新的下行主分量载波作 为时间参考。
5、 如权利要求 1或 2所述的方法, 所述方法还包括: 所述终端失去上行同步, 有上行数据到达时, 终端重新发起随机接入过 程, 引发下行主分量载波发生变化后, 所述终端以当前下行主分量载波作为 时间参考。
6、 如权利要求 1或 2所述的方法, 所述方法还包括: 所述终端失去上行同步, 有下行数据到达并且基站为所述终端分配了专 用前导的情况下, 终端在基站分配的所述专用前导所属的分量载波上重新发 起随机接入过程, 引发下行主分量载波发生变化后, 所述终端以当前下行主 分量载波作为时间参考。
7、 如权利要求 1或 2所述的方法, 所述方法还包括: 所述终端进行基站切换, 在目标基站提供有随机接入资源的分量载波上 发起随机接入过程, 引发下行主分量载波发生变化后, 所述终端以目标基站 中使用的下行主分量载波作为时间参考。
8、 一种确定下行时间参考的方法, 该方法包括: 终端以执行随机接入的下行分量载波、 或者与上行分量载波对应的下行 分量载波、 或者与对应于上行分量载波的下行分量载波处于同一频带的其他 下行分量载波作为时间参考, 并以此时间参考为基准根据时间提前量确定发 送上行数据的绝对时间。
9、 如权利要求 8所述的方法, 所述方法还包括: 当新的随机接入过程完成后, 执行随机接入过程的下行分量载波发生变 化, 所述终端以新的执行随机接入过程的下行分量载波为时间参考。
10、 如权利要求 8所述的方法, 所述方法还包括: 所述下行主分量载波上发生无线链路失败情况, 终端发起无线链路控制 重建过程, 引发下行主分量载波发生变化后, 终端仍然以执行随机接入的下 行分量载波、 或者与上行分量载波对应的下行分量载波、 或者与对应于上行 分量载波的下行分量载波处于同一频带的其他下行分量载波作为时间参考。
11、 如权利要求 8所述的方法, 所述方法还包括: 终端失去上行同步, 有上行数据到达时, 终端重新发起随机接入过程, 以执行此随机接入的下行分量载波、 或者与上行分量载波对应的下行分量载 波、 或者与对应于上行分量载波的下行分量载波处于同一频带的其他下行分 量载波作为时间参考。
12、 如权利要求 8所述的方法, 所述方法还包括: 终端失去上行同步, 有下行数据到达时, 同时基站为所述终端分配了专 用前导, 终端在基站分配的所述专用前导所属的分量载波上重新发起随机接 入过程, 以执行此随机接入的下行分量载波、 或者与上行分量载波对应的下 行分量载波、 或者与对应于上行分量载波的下行分量载波处于同一频带的其 他下行分量载波作为时间参考。
13、 如权利要求 8所述的方法, 所述方法还包括: 所述终端进行基站切换, 在目标基站提供有随机接入资源的分量载波上 发起随机接入过程, 所述终端以执行此随机接入的下行分量载波、 或者与上 行分量载波对应的下行分量载波、 或者与对应于上行分量载波的下行分量载 波处于同一频带的其他下行分量载波作为时间参考。
14、 如权利要求 8所述的方法, 所述方法还包括: 当执行随机接入过程的下行分量载波被删除或去激活后, 所述终端以下 行主分量载波作为时间参考。
15、 如权利要求 8所述的方法, 所述方法还包括: 所述终端以与上行分量载波对应的下行分量载波作为时间参考, 基站删 除此下行分量载波后, 所述终端以其他与上行分量载波对应的下行分量载波 作为时间参考, 或者以与所述下行分量载波处于同一频带的其他下行分量载 波作为时间参考。
16、 一种终端, 所述终端设置为: 以下行主分量载波作为时间参考, 并以该时间参考为基准根据时间提前 量确定发送上行数据的绝对时间; 或者 以执行随机接入的下行分量载波、 或者与上行分量载波对应的下行分量 载波、 或者与对应于上行分量载波的下行分量载波处于同一频带的其他下行 分量载波作为时间参考, 并以此时间参考为基准根据时间提前量确定发送上 行数据的绝对时间。
17、 如权利要求 16所述的终端, 所述终端还设置为: 当所述终端设置为以下行主分量载波作为时间参考, 并以该时间参考为 基准根据时间提前量确定发送上行数据的绝对时间时, 当下行主分量载波发生变化时, 所述终端以新的下行主分量载波作为时 间参考; 或者 当所述下行主分量载波上发生无线链路失败情况, 终端发起无线链路控 制重建过程, 引发下行主分量载波发生变化, 所述终端以新的下行主分量载 波作为时间参考; 或者 当基站通过无线链路控制过程重新配置将除了所述下行主分量载波外的 另一下行分量载波设置为下行主分量载波, 所述终端以新的下行主分量载波 作为时间参考; 或者 当所述终端失去上行同步, 有上行数据到达时, 终端重新发起随机接入 过程, 引发下行主分量载波发生变化后, 所述终端以当前下行主分量载波作 为时间参考; 或者 在所述终端失去上行同步, 有下行数据到达并且基站为所述终端分配了 专用前导的情况下, 终端在基站分配的所述专用前导所属的分量载波上重新 发起随机接入过程, 引发下行主分量载波发生变化后, 所述终端以当前下行 主分量载波作为时间参考; 或者 当所述终端进行基站切换, 在目标基站提供有随机接入资源的分量载波 上发起随机接入过程, 引发下行主分量载波发生变化后, 所述终端以目标基 站中使用的下行主分量载波作为时间参考。
18、 如权利要求 16所述的终端, 所述终端还设置为: 当所述终端设置为以执行随机接入的下行分量载波、 或者与上行分量载 波对应的下行分量载波、 或者与对应于上行分量载波的下行分量载波处于同 一频带的其他下行分量载波作为时间参考, 并以此时间参考为基准根据时间 提前量确定发送上行数据的绝对时间时, 当新的随机接入过程完成后, 执行随机接入过程的下行分量载波发生变 化, 所述终端以新的执行随机接入过程的下行分量载波为时间参考; 或者 在所述下行主分量载波上发生无线链路失败情况, 终端发起无线链路控 制重建过程, 引发下行主分量载波发生变化后, 终端仍然以执行随机接入的 下行分量载波、 或者与上行分量载波对应的下行分量载波、 或者与对应于上 行分量载波的下行分量载波处于同一频带的其他下行分量载波作为时间参 考; 或者 当终端失去上行同步,有上行数据到达时,终端重新发起随机接入过程, 以执行此随机接入的下行分量载波、 或者与上行分量载波对应的下行分量载 波、 或者与对应于上行分量载波的下行分量载波处于同一频带的其他下行分 量载波作为时间参考; 或者 当终端失去上行同步, 有下行数据到达时, 同时基站为所述终端分配了 专用前导, 终端在基站分配的所述专用前导所属的分量载波上重新发起随机 接入过程, 以执行此随机接入的下行分量载波、 或者与上行分量载波对应的 下行分量载波、 或者与对应于上行分量载波的下行分量载波处于同一频带的 其他下行分量载波作为时间参考; 或者 当所述终端进行基站切换, 在目标基站提供有随机接入资源的分量载波 上发起随机接入过程, 所述终端以执行此随机接入的下行分量载波、 或者与 上行分量载波对应的下行分量载波、 或者与对应于上行分量载波的下行分量 载波处于同一频带的其他下行分量载波作为时间参考; 或者 当执行随机接入过程的下行分量载波被删除或去激活后, 所述终端以下 行主分量载波作为时间参考; 或者 当所述终端以与上行分量载波对应的下行分量载波作为时间参考, 基站 删除此下行分量载波后, 所述终端以其他与上行分量载波对应的下行分量载 波作为时间参考, 或者以与所述下行分量载波处于同一频带的其他下行分量 载波作为时间参考。
PCT/CN2011/071523 2010-04-05 2011-03-04 一种确定下行时间参考的方法 WO2011124105A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012546351A JP2013516128A (ja) 2010-04-05 2011-03-04 ダウンリンク時間参照の確定方法
BR112012015818A BR112012015818A2 (pt) 2010-04-05 2011-03-04 ''método para determinação de referência de tempo de enlace descendente e terminal''
EP11765023.4A EP2509383A4 (en) 2010-04-05 2011-03-04 Method for determining downlink time reference
MX2012007822A MX2012007822A (es) 2010-04-05 2011-03-04 Metodo para determinar una referencia temporal de enlace descendente.
US13/520,026 US8804564B2 (en) 2010-04-05 2011-03-04 Method for determining downlink time reference

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010165271.4 2010-04-05
CN201010165271.4A CN102215599B (zh) 2010-04-05 2010-04-05 一种确定下行时间参考的方法

Publications (1)

Publication Number Publication Date
WO2011124105A1 true WO2011124105A1 (zh) 2011-10-13

Family

ID=44746657

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/071523 WO2011124105A1 (zh) 2010-04-05 2011-03-04 一种确定下行时间参考的方法

Country Status (7)

Country Link
US (1) US8804564B2 (zh)
EP (1) EP2509383A4 (zh)
JP (1) JP2013516128A (zh)
CN (1) CN102215599B (zh)
BR (1) BR112012015818A2 (zh)
MX (1) MX2012007822A (zh)
WO (1) WO2011124105A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102740444B (zh) * 2011-04-04 2016-03-23 上海贝尔股份有限公司 在蜂窝通信系统中初始化从小区的方法、用户设备和基站
EP2756729B1 (en) * 2011-09-16 2019-02-20 Telefonaktiebolaget LM Ericsson (publ) Improved contention-free random access procedure in wireless networks
CN103327646B (zh) * 2012-03-19 2018-04-06 中兴通讯股份有限公司 一种时间参考小区的修改方法及装置
CN103326978B (zh) * 2012-03-20 2016-12-14 上海贝尔股份有限公司 用于配置新载波类型(nct)载波的操作的方法和设备
US20130294418A1 (en) * 2012-05-04 2013-11-07 Nokia Siemens Networks Oy Switching Between Remote Radio Heads
CN103582151A (zh) * 2012-07-23 2014-02-12 中兴通讯股份有限公司 随机接入方法及接收机
US9226290B2 (en) * 2012-08-16 2015-12-29 Qualcomm Incorporated Multiple timing advance groups (TAGS) for UL carrier aggregation (CA)
US10430487B2 (en) * 2014-04-04 2019-10-01 Paypal, Inc. System and method to share content utilizing universal link format
CN105722213B (zh) * 2014-12-04 2019-08-13 中国移动通信集团公司 一种多连接场景下的终端连接状态的获取方法及装置
TWI620462B (zh) * 2015-04-10 2018-04-01 財團法人資訊工業策進會 單一基地台節點對多點網路系統及其資料傳輸方法
CN108029103A (zh) * 2015-09-29 2018-05-11 华为技术有限公司 一种载波聚合技术中载波选择方法和设备
JP6733939B2 (ja) * 2016-06-30 2020-08-05 ホアウェイ・テクノロジーズ・カンパニー・リミテッド 周波数帯処理方法及び装置
JP6968584B2 (ja) * 2017-06-14 2021-11-17 矢崎総業株式会社 電力伝送ユニット

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101174869A (zh) * 2006-11-01 2008-05-07 中兴通讯股份有限公司 上行导频发射方法
CN101505538A (zh) * 2009-03-13 2009-08-12 中兴通讯股份有限公司 一种多载波随机接入的方法和系统
WO2009120123A1 (en) * 2008-03-25 2009-10-01 Telefonaktiebolaget L M Ericsson (Publ) Timing of component carriers in multi-carrier wireless networks
CN101626269A (zh) * 2009-08-17 2010-01-13 中兴通讯股份有限公司 一种下行同步发射控制方法及系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8416761B2 (en) * 2006-09-28 2013-04-09 Motorola Mobility Llc Mitigating synchronization loss
WO2009132246A2 (en) 2008-04-25 2009-10-29 Interdigital Patent Holdings, Inc. Multi-cell wtrus configured to perform mobility procedures and methods
US8676208B2 (en) 2008-06-11 2014-03-18 Mediatek Inc. Scanning and handover operation in multi-carrier wireless communications systems
US8515481B2 (en) 2008-09-05 2013-08-20 Mediatek Inc. Power management for multi-carrier transmission

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101174869A (zh) * 2006-11-01 2008-05-07 中兴通讯股份有限公司 上行导频发射方法
WO2009120123A1 (en) * 2008-03-25 2009-10-01 Telefonaktiebolaget L M Ericsson (Publ) Timing of component carriers in multi-carrier wireless networks
CN101505538A (zh) * 2009-03-13 2009-08-12 中兴通讯股份有限公司 一种多载波随机接入的方法和系统
CN101626269A (zh) * 2009-08-17 2010-01-13 中兴通讯股份有限公司 一种下行同步发射控制方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2509383A4 *

Also Published As

Publication number Publication date
US8804564B2 (en) 2014-08-12
US20130021902A1 (en) 2013-01-24
EP2509383A1 (en) 2012-10-10
JP2013516128A (ja) 2013-05-09
CN102215599B (zh) 2015-03-18
BR112012015818A2 (pt) 2017-12-12
MX2012007822A (es) 2012-07-25
CN102215599A (zh) 2011-10-12
EP2509383A4 (en) 2017-08-30

Similar Documents

Publication Publication Date Title
JP7273056B2 (ja) 無線システムにおける強化されたモビリティのための方法
US11399410B2 (en) Techniques for controlling timing of downstream nodes in wireless communications
WO2011124105A1 (zh) 一种确定下行时间参考的方法
US10925107B2 (en) Fast activation of multi-connectivity utilizing uplink signals
EP3143807B1 (en) Determination of ue band and synchronization capability in dual connectivity
KR102666360B1 (ko) 무선 통신 방법, 단말 장치 및 네트워크 장치
JP6714578B2 (ja) デバイスツーデバイスサービス処理方法及び装置
US10045266B2 (en) Scheme for transmitting and receiving information in wireless communication system
JP6775665B2 (ja) プライマリセル変更のための方法、デバイス及びコンピュータプログラム
EP3439422B1 (en) Device and method supporting access to secondary cells for dual connectivity and handover
TW201911935A (zh) 處理載波聚合及雙連結的裝置及方法
US11895720B2 (en) Control mechanism for supporting connection establishment procedure
JP2014522198A (ja) ヘテロジニアス・ネットワークにおけるキャリア・アグリゲーション・タイミング・アドバンス・グループの形成
TWI743386B (zh) 用於改善多載波利用之傳訊
TWI786670B (zh) 用於無線通訊的方法及使用者設備
JP2023501369A (ja) セル構成パラメーター
JP2013523030A (ja) ハンドオーバ時における無線リソース設定方法及び設定装置
WO2016017715A1 (ja) ユーザ装置、及び上り送信タイミング制御方法
EP3439421B1 (en) Device and method supporting access to secondary cells for dual connectivity
US10841846B2 (en) Method and apparatus
US9629124B2 (en) Method for establishing evolved packet system bearer and base station
WO2022057520A1 (zh) 一种配置载波的方法和装置
JP2014138302A (ja) 端末装置、基地局装置、通信システム及び通信方法
KR20120103668A (ko) 다운링크 시간 기준을 결정하는 방법
WO2023065129A1 (zh) 维护上行时间同步的方法以及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11765023

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011765023

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012546351

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13520026

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20127017159

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2012/007822

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012015818

Country of ref document: BR

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112012015818

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012015818

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120626