WO2011124094A1 - 一种双极化微带天线 - Google Patents

一种双极化微带天线 Download PDF

Info

Publication number
WO2011124094A1
WO2011124094A1 PCT/CN2011/000682 CN2011000682W WO2011124094A1 WO 2011124094 A1 WO2011124094 A1 WO 2011124094A1 CN 2011000682 W CN2011000682 W CN 2011000682W WO 2011124094 A1 WO2011124094 A1 WO 2011124094A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
dual
antenna
polarized
dielectric layer
Prior art date
Application number
PCT/CN2011/000682
Other languages
English (en)
French (fr)
Inventor
庄昆杰
Original Assignee
Zhuang Kunjie
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN2010201522580U external-priority patent/CN201689984U/zh
Priority claimed from CN2010201522504U external-priority patent/CN201690448U/zh
Priority claimed from CN2010205200868U external-priority patent/CN201812928U/zh
Priority claimed from CN2010205201019U external-priority patent/CN202121055U/zh
Priority claimed from CN2010205200711U external-priority patent/CN201812926U/zh
Priority claimed from CN2010205200779U external-priority patent/CN201812927U/zh
Priority claimed from CN2010205200904U external-priority patent/CN202121054U/zh
Priority claimed from CN2010205201131U external-priority patent/CN202121056U/zh
Priority claimed from CN2010205200590U external-priority patent/CN201812925U/zh
Priority claimed from CN2010105294164A external-priority patent/CN102332635B/zh
Application filed by Zhuang Kunjie filed Critical Zhuang Kunjie
Priority to EP11765012.7A priority Critical patent/EP2565985A4/en
Priority to CN2011800280064A priority patent/CN103222114A/zh
Priority to US13/639,958 priority patent/US9030364B2/en
Priority to KR1020127029114A priority patent/KR101318830B1/ko
Priority to JP2013502986A priority patent/JP5727587B2/ja
Publication of WO2011124094A1 publication Critical patent/WO2011124094A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/42Housings not intimately mechanically associated with radiating elements, e.g. radome
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/104Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces using a substantially flat reflector for deflecting the radiated beam, e.g. periscopic antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting antenna units or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/29Combinations of different interacting antenna units for giving a desired directional characteristic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/378Combination of fed elements with parasitic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0414Substantially flat resonant element parallel to ground plane, e.g. patch antenna in a stacked or folded configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0428Substantially flat resonant element parallel to ground plane, e.g. patch antenna radiating a circular polarised wave
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0442Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular tuning means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/045Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/045Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means
    • H01Q9/0457Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means electromagnetically coupled to the feed line

Definitions

  • the invention relates to an antenna device, in particular to a microwave low-band multi-band high-gain dual-polarization small microstrip antenna.
  • the embodiment discloses a microwave antenna with multiple excitation and multi-layer tuning mechanisms, belonging to signal transmission and movement.
  • the patent document CN200710145376. 1 relates to a multi-antenna mode selection method in a relay network cell handover procedure.
  • Patent Document No. 3 relates to a relay transmission method based on antenna beam overlap.
  • Patent Document No. 1 relates to a base station antenna and a base station antenna unit.
  • the patent document R27919/08 relates to an apparatus and method for processing signals in a distributed antenna system.
  • the patent document JP144655/06 relates to an antenna device.
  • the patent document PCT/JP2007/000969 relates to a mobile communication system using an adaptive multi-antenna.
  • the patent document JP144655/06 relates to an antenna device.
  • the patent document US 60/545,896 relates to an antenna module.
  • Patent Document No. 32/028275 relates to a base station antenna array.
  • Patent Document PCT/JP01/02001 patent document relates to an array antenna base station apparatus.
  • Patent Document PCT/US99/19117 relates to a combination channel.
  • the technique of coding and space-time coding enhances the performance of the antenna.
  • the patent documents of US20110001682, US7508346, and US7327317 relate to a dual-polarized microstrip antenna. These related antenna related technologies cannot satisfy the miniaturization, light weight, high gain, and adjustable antenna. Design requirements such as standing wave ratio do not meet the performance requirements and technical standards set by China Mobile Communications Corporation for antennas of the new generation of TDSCDMA and LTE systems.
  • the technical problem to be solved by the present invention is to overcome the shortcomings of the conventional microwave low-band (300MHz-6GHz) microstrip antenna, and to provide a microwave with high working frequency bandwidth, high gain, good cross polarization isolation, small volume, and light weight.
  • a dual-polarized microstrip antenna comprising at least one metal radiating sheet, that is, a first metal radiating sheet;
  • Including at least one dielectric layer that is, a first dielectric layer, preferably the dielectric layer is a resonant dielectric layer, and preferably the dielectric layer is an air i-vibrating dielectric layer or other optimized resonant material layer; a metal radiating sheet between the metal layer and the common metal layer;
  • the excitation micro-grooves are two perpendicular H and the same size H, that is, the two Hs are not in contact, and preferably the H is equal in size, and the size is related to the 'central frequency band wavelength ⁇ of the antenna that needs resonant radiation, and is used for guaranteeing
  • the dual-polarized antenna optimizes and aligns the radiation performance in the two polarization directions.
  • it is preferred that the two ⁇ cross arms "-" are perpendicular to each other to ensure good polarization isolation of the dual-polarized antenna.
  • the preferred design ensures that the planned isolation is above 25-30 dBi.
  • the dual-polarized microstrip antenna described in the present invention is substantially a microwave antenna including multiple excitation and multi-layer tuning mechanisms.
  • the second dielectric layer has a thickness of 1 - 20 mm, and the experiment proves that the voltage standing wave ratio of the antenna source input terminal is optimal when the thickness is preferably 4 - 10 mm in the frequency range of 2 GHz - 3 GHz, and may be less than 1.2;
  • the effects of dielectric constant and dielectric layer thickness on the microstrip excitation line and the microslot excitation line width/length are considered.
  • the thickness of the substrate is 0. 2-5 legs, preferably 0. 5-2mm.
  • the front ends of the two agglomeration microstrip lines are in the shape of a straight line.
  • each of the front ends is perpendicular to the cross arm "-" of an H-shaped excitation groove, and passes through the cross arm "-" of the respective H-shaped excitation groove.
  • a midpoint the front ends of the two excitation lines are discrete and perpendicular to each other, and the vertical optimization is designed to ensure polarization isolation of the dual-polarized antenna, and is used to make one dual-polarized antenna be used as two independent antennas;
  • the distance between the two discrete front ends of the contact is 3, 8 mm; the perpendicularity between the two discrete front ends that are not in contact is 90 degrees.
  • the simulation and real- ⁇ results prove that the above design and optimization design data can obtain better radiation efficiency (gain) and dual polarization polarization isolation, the gain can reach 8-8. 5dBi, polarization isolation reaches 25-3QdB i or above,
  • the two Hs have the same size, width, groove depth, groove width, and shape; preferably, the ends of the single cross arm "-" of each H intersect with the midpoints of the two vertical arms "I";
  • the shape of the single cross arm "-" and the two vertical arms “I” of each H is straight; preferably, the single cross arm "-" of each H is perpendicular to its two vertical arms "I”;
  • the virtual extension of the cross arm "-" of at least one H just passes through the midpoint of the cross arm "-” of the other H; preferably at least one straight line passing through the center point of the first metal radiating piece is located in at least one H 3 ⁇ 4 ⁇ "-" one of the verticals: and the straight-speed vertical plane just passes through the midpoint of the other transverse arm "-", which is perpendicular to the plane in which the groove bottom of the previous H lies;
  • the groove bottoms of the two Hs are on the same plane, preferably the groove faces of the two Hs are on the same plane; the
  • the parameters such as height, thickness and length of the antenna radiation piece, the shield layer and the common metal layer are selected through simulation and experiment. .
  • the size of the radiation piece is freely optimized according to the needs of the band broadening; preferably, the relationship between the size of the second metal radiation piece and the size of the first metal radiation piece follows the relative relationship between the frequency band used by the antenna and the broadening frequency band, and the smaller the frequency of the metal piece is, the smaller the area of the metal piece is.
  • the size of the two pieces is approximately equal to the wavelength ratio of the center frequency of two adjacent frequency bands to be widened; preferably, the second metal radiation piece is disposed above the second shield layer, thereby making the first
  • the dielectric layer is divided into two regions, the lower portion is preferably the cavity, and the upper portion is preferably the first dielectric layer region between the first and second metal radiating sheets.
  • An air dielectric layer ie an A air dielectric layer, which provides an undisturbed working space height for the excitation microstrip line interfaced with the source.
  • the height needs to be greater than the thickness of the first dielectric substrate. - 10 times, the lower the dielectric constant of the dielectric substrate, the larger the multiple should be; preferably a metal reflective common ground plate is provided for providing good back radiation isolation for the radiating element; and for the source portion/feed
  • the meta-section/radiation unit section provides a convenient system common ground.
  • the dual 3 ⁇ 4 strips of the present invention can be used as an antenna unit, which are connected by a two-way power splitter.
  • the connector includes two dual-polarized antenna units, each of which is top-down, that is, The first air dielectric layer, the first metal radiation piece, the second air dielectric layer, the dual polarization micro-channel common ground metal layer, the first dielectric substrate, and the dual-polarized microstrip are sequentially arranged in the reverse direction of the microwave radiation direction.
  • the first metal radiating piece is connected to the radome through an insulating screw, and the grounding metal piece is laid on the upper end surface of the first dielectric substrate, and is fixedly connected to the hollow metal support fixed on the metal reflective bottom plate,
  • the lower end surface of the first shield substrate is provided with a double-polarized microstrip excitation line whose front ends are orthogonal to each other and not in contact with each other, and the upper end surface of the ground metal piece is provided with two mutually orthogonal and non-contact dual polarization
  • the excitation radiation microgrooves, the two dual-polarized stimulated radiation microgrooves and the front ends of the dual-polarized microstrip excitation lines are orthogonally corresponding respectively, and the experiment proves that the orthogonal and vertical correspondences can obtain good dual polarization characteristics. , that is, the polarization isolation is high.
  • the dual-polarized microstrip antenna of the present invention can be connected as an antenna unit through a four-way power dividing network, and the connecting body can include four dual-polarized antennas connected by a four-way power dividing network placed in the antenna cover.
  • the unit, the four dual-polarized antenna units are linearly distributed in the radome, and each of the dual-polarized antenna units has a first air permeable layer, a first metal radiant sheet, and a second air from top to bottom.
  • the first metal radiating piece is connected to the radome through an insulating screw, and the grounding metal piece is laid on the upper end surface of the first dielectric substrate, and is fixedly connected to the hollow metal support fixed on the metal reflective bottom plate,
  • the lower end surface of the first dielectric substrate is provided with a front end which is orthogonal to each other and is not in contact with the double-polarized 3 ⁇ 4t.
  • the upper end surface of the grounded metal piece is provided with two mutually orthogonal and non-contacting dual-polarized stimulated radiation micro-grooves.
  • the two dual-polarized stimulated radiation microchannels and the front ends of the dual-polarized microstrip excitation lines are orthogonally respectively corresponding.
  • the dual-polarized microstrip antenna of the present invention can be used as an antenna unit and connected together through a four-way power dividing network.
  • the connecting body includes four dual-polarized antenna units connected by a four-way power dividing network placed in the antenna cover.
  • the dual-polarized antenna unit is distributed in two rows and two columns in the radome.
  • Each of the dual-polarized antenna units has a first air dielectric layer, a first metal radiating sheet, and a second air medium in order from top to bottom.
  • the first metal bismuth piece is connected to the radome through an insulating screw, the grounding metal piece is laid on the upper end surface of the first dielectric substrate, and the m ⁇ X AKJ- hollow gold bearing is fixedly connected.
  • the lower end surface of a dielectric substrate is provided with front ends that are orthogonal to each other and are not connected a dual-polarized microstrip excitation line, the upper end surface of the grounding metal piece is provided with two mutually orthogonal and non-contacting dual-polarized stimulated radiation micro-grooves, and the two dual-polarized stimulated radiation micro-grooves
  • the front ends of the double-polarized microstrip excitation lines are orthogonally respectively.
  • the invention also discloses a dual-polarized microstrip antenna, which comprises two mutually independent dual-polarized antennas placed in the same antenna cover, and the dual-polarized antenna has two two-way power points.
  • the dual-polarized antenna unit is connected together, and each of the dual-polarized antenna units has a first air dielectric layer, a first metal radiation piece, a second air medium layer, and a dual-polarized micro-channel in sequence from top to bottom. a ground metal layer, a germanium dielectric substrate, a dual polarized microstrip excitation line, a third air dielectric layer, and a metal reflective substrate.
  • the first metal radiating piece is connected to the radome through an insulating screw, and the grounding metal piece is laid on the upper end surface of the first dielectric shield substrate, and is fixedly connected with the hollow metal support fixed on the metal reflective bottom plate.
  • the lower end surface of the first dielectric substrate is provided with a double-polarized microstrip excitation line whose front ends are orthogonal to each other and not in contact with each other, and the upper end surface of the ground metal piece is provided with two mutually orthogonal and non-contact double polarizations.
  • the stimulated radiation microgrooves, the two dual-polarized stimulated radiation microgrooves and the front ends of the dual-polarized microstrip excitation lines respectively correspond orthogonally.
  • the invention also discloses a dual-polarized microstrip antenna, which comprises eight dual-polarized antenna units connected by an eight-way power distribution network disposed in an antenna cover, each dual-polarized antenna unit
  • the first air medium layer, the first metal radiation piece, the second air medium layer, the dual-polarized micro-channel common ground metal layer, the first dielectric shield book, and the dual-polarized microstrip excitation are sequentially arranged from top to bottom. Line, third air shield layer, metal reflective bottom plate.
  • the first metal radiating piece is connected to the radome through an insulating screw, and the grounding metal piece is laid on the upper end surface of the first dielectric shield substrate, and is fixedly connected with the hollow metal support fixed on the metal reflective bottom plate.
  • the lower end surface of the first dielectric substrate is provided with a polarization microstrip excitation line whose front ends are orthogonal to each other and not in contact with each other, and the upper end surface of the ground metal piece is provided with two mutually orthogonal and non-contact dual polarization
  • the excitation radiation microgrooves, the two dual-polarized stimulated radiation microgrooves and the front ends of the dual-polarized microstrip excitation lines are orthogonally respectively corresponding.
  • the present invention also discloses a dual-polarized microstrip antenna, which comprises four mutually independent dual-polarized antennas placed in the same antenna cover, wherein: the dual-polarized antenna has one column per column.
  • Two dual-polarized antenna units connected by a two-way power splitter, each of the dual-polarized antenna elements having a first air dielectric layer, a first metal radiating sheet, and a second air dielectric layer from top to bottom a dual-polarized micro-groove common metal layer, a first dielectric substrate, a dual-polarized microstrip excitation line, a third air dielectric layer, and a metal reflective substrate.
  • the first metal radiating piece is connected to the radome through an insulating screw, and the grounding metal piece is laid on the upper end surface of the first dielectric substrate, and is fixedly connected to the hollow metal support fixed on the metal reflective bottom plate,
  • the lower end surface of the first dielectric substrate is provided with a double-polarized microstrip excitation line whose front ends are orthogonal to each other and not in contact with each other, and the upper end surface of the ground metal piece is provided with two mutually orthogonal and non-contact dual polarization
  • the excitation radiation microgrooves, the two dual-polarized stimulated radiation microgrooves and the front ends of the dual-polarized microstrip excitation lines are orthogonally respectively corresponding.
  • the present invention also discloses a dual-polarized microstrip antenna, which comprises four mutually independent dual-polarized antennas placed in the same antenna cover, wherein: the dual-polarized antenna has one column per column.
  • the dual-polarized antenna has one column per column.
  • Four dual-polarized antenna units connected by four-way power splitters, each of which has a first air dielectric layer, a first metal radiating sheet, and a second air dielectric layer in order from top to bottom a dual-polarized micro-groove common metal layer, a first dielectric substrate, a dual-polarized microstrip excitation line, a third air dielectric layer, and a metal reflective substrate.
  • the first metal radiating piece is connected to the radome through an insulating screw, and the grounding metal piece is laid on the upper end surface of the first dielectric shield substrate, and is fixedly connected with the hollow metal support fixed on the metal reflective bottom plate.
  • the lower end surface of the first dielectric substrate is provided with a double-polarized microstrip excitation line whose front ends are orthogonal to each other and not in contact with each other, and the upper end surface of the ground metal piece is provided with two mutually orthogonal and non-contact dual polarization
  • the excitation radiation microgrooves, the two dual-polarized stimulated radiation microgrooves and the front ends of the dual-polarized microstrip excitation lines are orthogonally respectively corresponding.
  • the invention also discloses a dual-polarized microstrip antenna, which comprises a first air medium layer, a first metal radiation piece, a second air shield layer and a grounding metal piece from top to bottom in the radome. a first dielectric substrate, a microstrip excitation line, a third air dielectric layer, and a metal reflective substrate.
  • the grounding metal piece is laid on the upper end surface of the first dielectric substrate, and is fixedly connected to the hollow metal support fixed on the metal reflective bottom plate, and the upper end surface of the grounding metal piece is provided with a stimulated radiation micro groove.
  • the first metal radiating piece is circular, and an adjusting screw is fixed at a center thereof, and the fixing of the first metal radiating piece is achieved by screwing the adjusting screw and the central thread of the radome.
  • a wireless communication relay station to which the dual-polarized microstrip antenna of the present invention is applied characterized in that the relay station comprises at least one dual-polarized microstrip antenna, and preferably the input port of the dual-polarized microstrip antenna is connected to a relay station retransmission end .
  • a wireless communication base station to which the dual-polarized microstrip antenna of the present invention is applied characterized in that the base station comprises at least one dual-polarized microstrip antenna.
  • a communication system and terminal for applying the dual-polarized microstrip antenna of the present invention characterized in that at least one of the system and the terminal is configured with the dual-polarized microstrip antenna.
  • the dual-polarized microstrip antenna of the present invention is substantially a microwave antenna comprising a multiple excitation multilayer tuning mechanism.
  • the present invention discloses a dual-polarized microstrip antenna comprising at least one metal radiating sheet, that is, a first metal radiating sheet; and comprising at least one common metal layer engraved with an excitation micro-slot line;
  • Including at least one dielectric layer that is, a first dielectric layer, preferably the dielectric layer is a resonant dielectric layer, and preferably the dielectric layer is an air resonant dielectric layer or other optimized resonant material layer; the dielectric layer is located in the first metal a radiation sheet, between the conductive metal layer;
  • a unit of independently adjustable voltage standing wave ratio connected to the first metal radiating sheet is provided, and the metal radiating sheet is circular.
  • the excitation micro-grooves are two vertically-spaced Hs of the same size, that is, two ⁇ are not in contact, and preferably the ⁇ are equal in size, which is used to ensure uniform performance of the dual-polarized antenna in two polarization directions.
  • the cross arms "-" of the two turns are perpendicular to each other for ensuring good polarization isolation.
  • the thickness of the substrate is 0.20.
  • the thickness of the substrate is 0. 2, the thickness of the substrate is 0. 2 5 ⁇ The -5mm, preferably 0. 5 2mm.
  • the front ends of the two excitation lines are in the shape of a straight line, preferably each of the front ends is perpendicular to the cross arm "-" of an H-shaped excitation groove, and passes through the midpoint of the cross arm "-" of the respective H-shaped excitation groove;
  • the front ends of the two excitation lines are discrete and perpendicular to each other.
  • the vertical optimization is designed to ensure polarization isolation of the dual-polarized antenna, and is used to make one dual-polarized antenna be used as two independent antennas;
  • the distance between discrete front ends is 3 - 8mm; the perpendicularity between two discrete front ends that are not in contact is 90 degrees.
  • the two Hs have the same size, width, groove depth, groove width, and shape; preferably, the ends of the single cross arm "-" of each H intersect with the midpoints of the two vertical arms "I";
  • the shape of the single cross arm "-" and the two vertical arms “I” of each H is straight; preferably, the single cross arm ⁇ of each of the turns and its two vertical arms “I” are mutually disposed;
  • the virtual extension of the cross arm "-" of at least one H just passes through the midpoint of the cross arm "-” of the other H; preferably at least one straight line passing through the center point of the first metal radiating piece is located at least one transverse direction of H
  • the second dielectric layer is a slot for reducing the influence between the arrays when the antenna is used in an array; the height of the slots depends on the correlation/isolation parameters specifically determined in the final antenna application.
  • the cavity is preferably a cavity formed by the metal support of the system, the cavity is formed above the common metal layer, the cavity depth is 0. 5 - 20mm; if the first and second dielectric layers are The air layer, and no other radiation sheets or other members are disposed above the second dielectric layer, the first and second dielectric layers are integrated, and the second dielectric layer is a part of the first dielectric layer.
  • the height and length of the antenna radiating sheet, the dielectric layer, and the common metal layer are selected according to the frequency band and the wavelength.
  • the material shield, thickness and shape of the second metal radiating sheet are opposite to the first metal radiating sheet; preferably, the size of the second metal radiating sheet is freely optimized according to the needs of the band broadening; preferably the second metal radiation
  • the ratio of the size of the sheet to the first metal radiating sheet is approximately the ratio of the wavelength of the corresponding frequency that needs to be tuned or widened; preferably the second metal radiating sheet is disposed above the second dielectric layer, thereby placing the first dielectric layer Divided into two regions, the lower portion is preferably the groove cavity, and the upper portion is preferably a first dielectric layer region between the first and second metal radiating sheets.
  • An air dielectric layer ie, an A-air dielectric layer, is provided to provide an undisturbed working space height to the excitation microstrip line of the source port, and the height is required to be greater than 3 - 10 times the thickness of the first dielectric substrate.
  • the at least one metal radiating sheet that is, the first metal radiating sheet, is preferably provided with a unit that is independently adjusted with a convenient voltage standing wave ratio connected thereto, and preferably the metal radiating sheet is circular, and the metal radiating sheet may have various shapes, wherein Rectangular or square performance is better, the circle is more suitable for production debugging compensation, and the comprehensive effect is better. Under the same conditions, other shapes can produce different antenna performance; the voltage standing wave ratio independent adjustment unit can independently control the metal radiation Film
  • the excitation micro-grooves preferably being two discrete Hs of the same size H, that is, the two Hs are not in contact, and preferably the Hs are of equal size, thereby ensuring double
  • the polarized antennas have the same performance in the two polarization directions, and at the same time, it is preferable that the cross arms "_" of the two Hs are perpendicular to each other to ensure good polarization isolation; preferably, the size, width, groove depth, The groove width and shape are identical; preferably, the ends of the single cross arm "-" of each H intersect with the midpoints of the two arm "I”; preferably the single cross arm "-” of each H
  • the shape of the two vertical arms "I” is a straight line; preferably, the single cross arm "-” of each H is perpendicular to its two vertical arms "I”; preferably the virtual extension of the cross arm "-” of at least one H The line just passes through the midpoint
  • At least one dielectric layer that is, a first dielectric layer, preferably the dielectric layer is an air resonant dielectric layer or other optimized resonant material layer; the first metal-shot, and the ground- The metal-layer-between the degree of the 3 ⁇ 4H layer! 3 ⁇ 4 1 - '23 ⁇ 4 ⁇ , excellent i£3 ⁇ 4 4 - Instruction manual
  • the first dielectric layer is an important component of antenna source port voltage standing wave ratio tuning
  • At least one set of bipolar microstrip excitation lines preferably the front ends of the two excitation lines are in a straight line shape, preferably each of the front ends is perpendicular to the cross arm "-" of an H-shaped excitation groove, and passes through respective H-shaped excitations The center of the cross arm "-" of the slot; the front ends of the two excitation lines are discrete and perpendicular to each other.
  • the vertical optimization design ensures polarization isolation of the dual-polarized antenna, and excellent polarization isolation allows a dual-polarized antenna It is used as two independent antennas; the distance and the perpendicularity between the two discrete front ends that are not in contact are one of the important parameters affecting the polarization isolation of the dual-polarized antenna, and the preferred separation of the present invention is 3 - 8mm, in the present invention, the verticality is preferably 90 degrees;
  • the second dielectric layer is disposed, and preferably the second dielectric layer is a resonant dielectric layer, and preferably the dielectric layer is an air resonant dielectric layer or other optimized resonant material layer; preferably, the second dielectric layer is a trench cavity.
  • the cavity is provided to provide a cavity formed by the common metal support of the system above the common metal layer, the cavity depth is preferably 1 - 10 mm, and the second dielectric layer is used for frequency band matching and broadening.
  • the tuning member if the first and second dielectric layers are air layers, and no radiation sheet or other member is disposed above the second meso layer, the first and second dielectric layers are integrated And the second dielectric layer is part of the first dielectric layer;
  • the second metal radiation piece is arranged to widen the width of the radiation band of the antenna or to form a bimodal resonance effect of the adjacent frequency band; preferably, the second metal radiation piece is provided with a voltage standing wave ratio connected thereto, and the second independent adjustment sheep element;
  • the size, material, thickness, shape and size relationship of the second metal radiating sheet follow the relative relationship between the frequency band used by the antenna and the broadening frequency band. The higher the frequency of the metal sheet is, the smaller the size is.
  • the two-piece size is approximately equal to the wavelength ratio of the center frequency of two adjacent frequency bands to be broadened; preferably, the voltage standing wave ratio can independently manipulate the second metal radiation piece; the second metal radiation piece is preferably set Above the second dielectric layer, thereby separating the first dielectric layer into two regions, the lower portion is preferably the cavity, and the upper portion is preferably the first dielectric layer region between the first and second metal radiating sheets; The addition of the second metal radiation sheet can effectively extend the antenna bandwidth by more than 20%.
  • an air dielectric layer ie, an air dielectric layer, which provides an undisturbed working space height for the excitation microstrip line interfaced with the source.
  • the height needs to be larger than the first dielectric substrate. 3-10 times the thickness, the lower the dielectric constant of the dielectric substrate, the larger the multiple should be;
  • a metal reflective common ground plate is provided which provides good back radiation isolation for the radiating element; and provides a convenient system common ground for the source portion/feeder portion/radiation unit portion;
  • the radome is disposed to cover all of the components and the dielectric layer, and preferably the first metal radiating fin is connected to the radome through a screw; the first metal radiating fin may be connected to the radome or the second air vent
  • the cavity layer is connected/fixed, preferably the first metal radiating piece is connected to the radome through a screw.
  • the screw is fixedly connected to the center of the first metal radiating piece, and is screwed to the radome through the internally threaded hole in the center of the radome.
  • the screw is used to fix the height of the finally optimized metal radiating sheet and the common metal layer, and the screw can finely adjust the height in the large-scale manufacturing process to compensate various processing and assembly errors to ensure the antenna is optimized for comprehensive comprehensive design performance. ;
  • the radome is a non-metallic radome, or a day-line cover that has no shielding effect or shielding effect negligible in engineering angle;
  • the sky-line cover functions as aesthetics and protection, including resisting the external environment (cold heat and cold, The influence of cloud rain, sand, frost, artificial touch, bird and beast collision, etc. on the internal structure of the antenna;
  • the radome is preferably a PVC shield;
  • the angle between the H-shaped intermediate cross arm "-" of the double-twisted stimulated radiation microgroove and the X-axis or the ⁇ -axis of the grounded metal piece is preferably positive and negative 45 degrees; the angle between plus and minus 45 degrees is formed A dual-polarized antenna that meets the source requirements of plus or minus 45 degrees; however, plus or minus 45 degrees is not the only option; 0 degrees / 90 degrees is another commonly used mode of dual polarization selection;
  • the first and second metal radiating sheets are preferably metal sheets having stable electrical properties/light weight/cheap, and the shape may be rectangular/square/circular/elliptical, preferably circular;
  • the first and second dielectric layers are preferably as wide as the common metal layer, and the material is superior to the air medium, but other low dielectric loss is not excluded. Description
  • the common ground metal layer preferably forms a microstrip excitation line/microslot excitation line layout with excellent performance in the antenna operating frequency band, and does not affect any PCB layout of the antenna performance;
  • the common metal layer preferably uses a metal with good electrical conductivity Material, preferably copper/aluminum material;
  • an air dielectric layer i.e., a B air dielectric layer, preferably a B air dielectric layer, is disposed outside the first metal radiating sheet in the forward direction of the microwave radiation direction, and preferably the B air dielectric layer is located between the outer cover and the first metal radiating sheet.
  • the technical solution of the present invention, and the first specific design and the second specific design scheme applying the technical solution have the following effects: Fully utilizing the effective area of the grounded metal piece, so that a set of dual-polarized micro-grooves can share one metal radiating piece ;
  • the dual-polarized microstrip antenna with multi-layered radiation structure is designed in a relatively small volume, with a clever layout and compact structure. It has been proved that the antenna has a working frequency relative bandwidth of more than 20%, a high gain, and more than 8.5 dBi, and the dual-polarized cross-isolation is good, up to 25-30 dB.
  • the pair of dual-polarized antenna radiating elements of the present invention can Supports a 2 2 MIM0 system, and is suitable for forming an antenna array, and has the advantages of small size and light weight, so the installation space and load bearing requirements of the antenna are low, processing, installation, and maintenance are relatively convenient, and the antenna installation can be effectively saved. Cost and maintenance costs, can be widely used in the field of mobile communications and Internet technology;
  • the length of the product of the invention is greatly reduced, and the use of the single-phase single-polarized smart antenna in the 3G existing network of China Mobile Communications Group is reduced by more than 75%, and the weight is reduced by 703 ⁇ 4 or more; the TD-SCDMA double is improved compared with the second phase.
  • the volume of the polarized smart antenna is reduced by more than 60% year-on-year, and the weight is reduced by more than 50%;
  • the product of the invention is thinned, and the main body portion of the antenna can be controlled within 40;
  • the key to the miniaturization of the antenna of the present invention is that the gain of the unit element is greatly improved, and the gain is higher than that of the equivalent element such as the folded vibrator antenna by about 2. 5 dB; especially for the array antenna, the antenna antenna can be independently tuned to make the array antenna voltage standing wave ratio ⁇ 1 2-1. 2, the volume is 25»/»_503 ⁇ 4 of the vibrator antenna and antenna array of the same year-on-year performance, and the weight is 30% - 50%; the product of the present invention is preferably provided with an excitation layer, a feed layer, and a resonant tank change Layer 5, 1-3 layer of tuned radiation layer, radiation compensation layer, etc.
  • 5-10 layer structure realizes the structure of multiple microwave excitation and multilayer tuning components, transforms the line radiation mechanism of conventionally used vibrator antenna into surface radiation mechanism , the radiation efficiency of the unit antenna element is improved, and the high gain of the unit vibration element is obtained, and the gain of the unit antenna vibration element can reach 8. 5dBi through simulation calculation and experiment.
  • the air/shield/metal radiating sheet of the present invention is densely arranged in a very small space, which is a widened frequency band and an optimized matching design; by such a structural design, the antenna of the present invention can be used in a bimodal or multi-peak frequency band (similar to a hump)
  • the antenna resonance characteristics of the pattern can be used in an extremely small antenna structure for an operator customer having an effect that is separated by a certain frequency interval and difficult to be broadbanded by one antenna in a conventional antenna.
  • the technical solution of the present invention can be optimized as a preferred first specific design in the case where only one metal radiating sheet is provided: a microwave low-band multi-band high-gain dual-polarized small microstrip antenna, which is characterized by an antenna
  • the top inside of the cover that is, the first air medium layer, the first metal radiation piece, the second air shield layer, the dual polarization micro groove excitation common ground metal layer, and the first medium base are sequentially reversed in the direction of the microwave radiation.
  • the first air-conditioning layer is the B air medium layer in the above technical solution of the present invention
  • the first specific design scheme is the first air-conditioning layer, the third air-source layer, and the metal-reflecting substrate
  • the second air-conducting layer is a medium-layer in the above technical solution of the present invention; in the first-specific specific scheme, the "m-temperament-layer--"------------------------------------------------------------------------------------------------------------------------ In a first specific design, the first metal radiating piece is connected to the radome through a screw, and the lower end surface of the grounding metal piece is integrated with the upper end surface of the first dielectric substrate, and is fixed on the metal reflective bottom plate.
  • the hollow metal support is fixedly connected, and the lower end surface of the first dielectric substrate is provided with a bipolar microstrip excitation line whose front ends are orthogonal to each other and does not contact, and the upper end surface of the ground metal piece is opened and orthogonal to each other.
  • the non-contact dual-polarized stimulated radiation microgrooves, the set of dual-polarized stimulated-radiation microgrooves and the front ends of the polarized microstrip excitation lines are orthogonally respectively corresponding.
  • the dielectric substrate holder is fixed on the hollow metal support, and a fourth air dielectric layer is formed under the second metal radiation sheet. This technical solution is also advantageous for further increasing the operating bandwidth of the antenna.
  • the screw is fixedly connected to the center of the first metal radiating piece, and is screwed to the radome through the internally threaded hole in the center of the radome.
  • the technical solution is beneficial for finely adjusting the height between the first metal radiating piece and the stimulated radiation microgroove by the rotating screw outside the radome, conveniently adjusting the voltage standing wave ratio of the antenna input and output port, matching with the impedance of the microstrip excitation line, and improving the antenna. Gain.
  • the second metal radiation piece and the first metal radiation piece further have a third metal radiation piece parallel to the first metal radiation piece, the third metal radiation piece and the second metal radiation piece, the hollow metal
  • the support is insulated, and a fifth air dielectric layer is formed between the third metal radiation piece and the second metal radiation piece.
  • the dual polarized antenna unit has a third dielectric substrate attached to a lower end surface of the third metal radiating sheet, and the third dielectric substrate is fixed above the second dielectric substrate through an insulating support.
  • the first metal radiating piece is circular, which is convenient for adjusting the voltage standing wave ratio of the antenna input and output port, and matching with the impedance of the microstrip excitation line to improve the antenna gain.
  • the second metal radiation piece is circular or square, which is convenient for adjusting the voltage standing wave ratio of the antenna input and output ports, matching the impedance of the microstrip excitation line, and improving the antenna gain.
  • the two stimulated radiation microchannels on the grounding metal piece are equal in size and have a double "H” shape, and the double "H" shaped intermediate cross arms are orthogonal to each other.
  • This technical solution is advantageous for increasing the gain of the dual-polarized radiating element (i.e., the electromagnetic field to electromagnetic wave conversion efficiency or radiation efficiency) for achieving high gain of the antenna unit in a small volume/radiation area.
  • the angle between the "H"-shaped middle cross arm of the double “H”-shaped excited radiation micro-groove and the X-axis or the Y-axis of the grounded metal piece is positive, negative 45 degrees or 0 degree / 90 degrees, This achieves ⁇ 45° or 0° / 90° dual-polarized antenna radiation.
  • the result of the detection of the small dual-polarized ( ⁇ 45° polarization) antenna unit of the present invention that is, the detection data of the embodiment 17 shows that the actual measurement is substantially consistent with the simulation result, that is, the gain is about 8. 5dBi; the detection map shows that the level is The vertical beamwidth is 70-75. , the front-to-back ratio is greater than 25dB.
  • the present invention is different from the conventional half-wave oscillator type antenna, the multi-wave excitation and the multi-layered tuned component of the surface radiant, the gain of the oscillating element is 5. 5dBi, The unit gain of the invention is 8. 5dB i ; Instruction manual
  • the multi-antenna cell array is usually used to obtain the gain improvement; for example, the present invention can realize the gain of 14. 5dBi by using four dual-polarized cell arrays; the antenna of the present invention has an excellent small size.
  • Characteristics The antenna volume is equal to 1/3 - 1 /5 or less of the conventional antenna under the same antenna gain characteristics;
  • the antennas with different gains and different beam width requirements can be flexibly combined: the horizontal and vertical angles of the unit beam are both 75°, and the gain can be multiplied when the number of antenna units is multiplied in different directions, and the beam width is doubled. Less;
  • the antenna unit of the present invention has high isolation characteristics, and the same polarization/isopolarization isolation can be greater than 25 dB, and the radiation pattern of the array is consistent when the multi-antenna array is used, and the application effect in the MiMo antenna is good.
  • the antenna radiating element feed element of the invention adopts a micro-band excitation mode of a planar structure, and the port voltage standing wave ratio is convenient to debug, and is beneficial to the integrated design with the source circuit;
  • a TD-SCDMA base station that achieves the technical effects of the present invention uses a ⁇ -TD2814-AF8 channel dual-polarized smart antenna, each channel having a gain of 14-14. 5dBi, and a typical size of 405 * 420 * 35 mm 3 , the weight is less than 5 kg, the windward area is only 0. 17m 2 , which is much smaller than the commonly used antennas; Conducive to concealment and beautification, to dilute the sensitivity of the owners; Common station construction can share the poles, reduce network construction investment; Product repeatability Good, consistent, easy to operate and maintain.
  • the antenna of the present invention can be applied to any fixed and mobile device using a microwave antenna, including but not limited to various types of mobile terminals: mobile phones, handheld televisions, notebook computers, GPS locators; traffic vehicles or road monitors, communication relay stations, and repeaters , launch pad, etc., especially suitable for antenna systems of base stations/distributed base stations I networked equipment in complex dense urban areas or high-rise buildings.
  • Figure 1 is a cross-sectional view showing an embodiment 1
  • Figure 2 is a top plan view of the embodiment 1 of the present invention with the radome removed.
  • Figure 3 is a cross-sectional view showing a second embodiment of the present invention.
  • Fig. 4 is a graph showing the reflection coefficient and the isolation test of the embodiment 1.
  • Fig. 5 is a graph showing the reflection coefficient and isolation test of the embodiment 2.
  • Figure 6 is a cross-sectional view showing a third embodiment of the present invention.
  • Figure 7 is an explanatory view of Embodiment 7.
  • Figure 8 is an explanatory diagram of Embodiment 8.
  • Figure 9 is an explanatory view of Embodiment 9.
  • Figure 10 is an explanatory view of Embodiment 10.
  • Figure 11 is an explanatory view of Embodiment 11.
  • Figure 12 is an explanatory view of Embodiment 12.
  • Figure 13 is an explanatory view of Embodiment 13.
  • Figure 14 is an explanatory view of Embodiment 14.
  • Figure 15 is an explanatory view of Embodiment 15.
  • Figure 16 shows a set of standing wave diagrams for a dual-polarized channel.
  • Figure ⁇ is the phase diagram of the calibration channel.
  • Figure 18 is a single-port horizontal measurement.
  • Figure 19 shows a single port vertical direction measurement.
  • Figure 20 shows the horizontal direction of the 1-3-5-7 port.
  • Figure 21 shows the horizontal measurement of the 2-4-6-8 port.
  • Embodiment 1 TD-SCDMA dual-polarized antenna
  • the microwave low-band multi-band high-gain dual-polarization small microstrip antenna of the present embodiment (for TD-SCD A dual-polarized antenna, the TD-SCDMA frequency band obtained by China Mobile Communications Group under the 3G license is 1880 ⁇ 1920 MHz, 2010 - 2025 MHz ) , as shown in FIG. 1 and FIG. 2 , the radome 1 has a first air dielectric layer 2 , a first metal radiating sheet 3 , a second air dielectric layer 4 , and a ground metal sheet 5 from top to bottom.
  • the grounding metal piece 5 is laid on the upper end surface of the first dielectric substrate 6, and is fixedly connected to the hollow metal support 11 fixed on the metal reflective bottom plate 9.
  • the surface of the first dielectric substrate is: JJ is provided ⁇ Front-end phase—mutually connected to one another” 3 ⁇ 4 ⁇ - ⁇ - ⁇ T excitation 3 ⁇ 4 ⁇ 7 ⁇ , W Instruction manual
  • the upper end surface of the grounding metal piece 5 is provided with two mutually opposite and non-contacting stimulated radiation micro-grooves 12, 12', the two stimulated radiation micro-grooves 12, 12' and the bipolar microstrip line 7
  • the front ends of 7' are orthogonally corresponding.
  • the first metal radiating sheet 3 is circular
  • the screw 10 is fixedly coupled to the center of the first metal radiating sheet 3, and is screwed to the radome 1 through the internally threaded hole in the center of the radome 1.
  • the technical solution is beneficial for finely adjusting the height between the first metal radiating piece and the stimulated radiation microgroove by the rotating screw outside the radome, conveniently adjusting the voltage standing wave ratio of the antenna input and output port, matching with the impedance of the microstrip excitation line, and improving the antenna.
  • Gain the circular metal radiating piece only has a height change during the adjustment process, so the adjustment is more convenient.
  • the two stimulated radiation microgrooves 12, 12' on the grounded metal piece 5 are of equal size and have a double "H” shape, and the double "H” shaped intermediate cross arms are orthogonal to each other.
  • the technical solution is advantageous for opening the dual-polarized stimulated radiation micro-groove on a grounded metal piece with a small area for miniaturization of the antenna.
  • the angle between the "H"-shaped intermediate cross arm of the double "H"-shaped stimulated micro-groove 12, 12' and the X-axis or Y-axis of the grounded metal piece is positive and negative 45 degrees.
  • the technical solution is advantageous for opening the dual-polarized stimulated radiation micro-groove on a grounded metal piece with a small area for miniaturization of the antenna.
  • the measured reflection coefficient curve of the antenna S11 is the reflection coefficient of port 1
  • S22 is the reflection coefficient of port 2. It can be seen that the reflection coefficients of the two ports working in dual-polarization in the TD-SCDMA band are less than -17dB, and the bandwidth indicators are all up to the requirement (relative bandwidth is greater than 8%).
  • the figure also shows the measured isolation curve between the two ports of the dual-polarized antenna. S21 (S12) is the isolation between port 1 and port 2. It can be seen that the isolation is less than -32dB in the bandwidth range.
  • the test results show that the two ports of the dual-polarized antenna are ideally isolated from each other and can work independently of each other.
  • the gain of the antenna gain at the test frequency of 1900MHz is 8. 9dBi, and the width of the ta-surface half-power lobe is 83°.
  • Embodiment 2 TD-SCDMA band and TD-LTE band antenna
  • the microwave low-band multi-band high-gain dual-polarization small microstrip antenna of the present embodiment covers the TD-SCDMA frequency band and the TD-LTE frequency band, the WCDMA frequency band 1920-1980 MHz, 2110-2170 MHz, and the TD-SCDMA frequency band 1880-1920 MHz , 2010 - 2025 MHz.), as shown in FIG. 3, based on the structure of Embodiment 1, further provided with a second metal radiating sheet 13 and a second dielectric substrate 14 in the second air medium layer 4, The lower end surface of the second metal radiating sheet 13 is integrally formed with the upper end surface of the second dielectric substrate 14, and is fixedly connected to the hollow metal support 11 fixed on the metal reflective bottom plate 9, in the second dielectric substrate.
  • a fourth air dielectric layer 15 is formed below the 14 .
  • This technical solution is advantageous for further increasing the operating bandwidth of the antenna.
  • the second metal radiating sheet 13 is circular, which is convenient for adjusting the voltage standing wave ratio of the antenna input and output ports, matching with the impedance of the microstrip excitation line, and improving the antenna gain.
  • the graph shows the measured reflection coefficient of the antenna. It can be seen that the reflection coefficients of the two ports working in dual-polarization in the TD-SCDMA and WCDMA bands are less than -17dB, and the bandwidth indicators meet the requirements. . It can be seen that due to the addition of the second radiating film, the antenna effectively broadens the operating band width characteristic of the antenna based on the original single-chip radiating chip bandwidth effect and various performance indexes, and the relative bandwidth reaches 22. 5»/. . The figure also shows the measured isolation curve between the two ports of the dual-board antenna. It can be seen that the isolation is less than -32dB in the bandwidth range. The test results show that the two ports of the dual-polarized antenna are ideally isolated from each other and can work independently of each other.
  • the second metal radiation plate and the dielectric substrate are disposed in the second air shield layer.
  • the second metal radiating fin is fixed on the dielectric substrate holder, and the dielectric substrate holder is fixed on the hollow metal support, and a fourth air shield layer is formed under the second metal radiating sheet.
  • This technical solution is also advantageous for further increasing the operating bandwidth of the antenna.
  • Embodiment 3 Three-metal radiation sheet dual-polarization small microstrip antenna
  • a third metal radiating sheet 18 and a third dielectric substrate 17 are further disposed between the second metal radiating sheet 13 and the first metal radiating sheet 3, and the third metal radiating sheet 18 is parallel to the first metal radiating sheet 3, 3 ⁇ 4 ⁇ Jj is insulated from a hollow metal support 11, and the lower end surface of the third metal radiation piece 18 is attached to the upper end surface of the third shield substrate 17 Description
  • test results show that in the embodiment 3, the working bandwidth of the antenna is further widened under the premise that the original electrical performance index of the antenna is unchanged, and the relative bandwidth can reach about 40%.
  • a third metal radiation piece parallel to the first metal radiation piece is disposed between the second metal radiation piece and the first metal radiation piece, and the third metal radiation is The sheet is insulated from the second metal radiating sheet and the hollow metal support, and a fifth air dielectric layer is formed between the third metal radiating sheet and the second metal radiating sheet.
  • This technical solution is also advantageous for further increasing the operating bandwidth of the antenna.
  • Embodiment 4 Small multilayer microstrip antenna for facilitating voltage standing wave ratio
  • the embodiment discloses a small multi-layer microstrip antenna for facilitating debugging of a voltage standing wave ratio, wherein the radome has a first air shield layer, a first metal radiating sheet and a second air medium from top to bottom. a layer, a grounding metal piece, a first dielectric substrate, a microstrip excitation line, a third air dielectric layer, a metal reflective bottom plate, the grounding metal piece is laid on the upper end surface of the first dielectric substrate, and is fixed to the metal
  • the hollow metal support on the reflective bottom plate is fixedly connected, the upper end surface of the grounding metal piece is provided with a stimulated radiation micro-groove, the first metal radiating piece is circular, and an adjusting screw is fixed in the center thereof, and the adjusting screw is passed through the adjusting screw
  • the screwing of the internal thread of the radome realizes the fixing of the first metal radiating piece.
  • the solution facilitates fine adjustment of the height between the first metal radiating piece and the stimulated radiation microgroove by the rotating screw outside the radome, and conveniently adjusts the voltage standing wave ratio of the antenna input and output port, matches the impedance of the microstrip excitation line, and improves the antenna gain. . Since the first metal radiating piece is circular, there is only one variable in the adjustment, so the adjustment is very convenient and fast, and the production efficiency is greatly improved.
  • the lower end surface of the first dielectric substrate is provided with a bipolar microstrip excitation line whose front ends are orthogonal to each other and not in contact with each other, and the upper end surface of the ground metal piece is provided with two mutually orthogonal and non-contacting stimulated radiation micro
  • the slots, the two stimulated radiation microgrooves and the front ends of the bipolar microstrip excitation lines are orthogonally respectively corresponding.
  • the hollow metal support on the metal reflective bottom plate is fixedly connected to form a fourth air dielectric layer under the second dielectric substrate.
  • This technical solution is advantageous for further widening the operating band width characteristics of the antenna.
  • the second metal radiating sheet is fixed on the medium shield substrate holder, and the dielectric substrate holder is fixed on the hollow metal support Forming a fourth air dielectric layer under the second metal radiation sheet.
  • This technical solution is also advantageous for further increasing the operating bandwidth of the antenna.
  • the second metal radiating piece is circular, which is convenient for adjusting the voltage standing wave ratio of the antenna input and output port, matching with the impedance of the microstrip excitation line, and improving the antenna gain. 5.
  • the two stimulated radiation micro-grooves on the grounding metal piece are of equal size and have a double "H” shape, and the middle cross arms of the double "H” shape are orthogonal to each other.
  • the technical solution is advantageous for opening the dual-polarized stimulated radiation micro-groove on a grounded metal piece with a small area for miniaturization of the antenna. 6, the double "H” fan-shaped stimulated emission microgrooves "H” shaped intermediate arm and the ground metal piece in the X-axis or 4 - the angle between positive and negative 45 degrees.
  • the technical solution further utilizes the effective area of the grounded metal piece to achieve miniaturization of the antenna.
  • the utility model designs the dual-polarized microstrip antenna and the multi-layer radiation structure in a relatively small volume, and has a clever layout and a compact structure.
  • the antenna has a working frequency relative bandwidth of up to 20»/.
  • the gain is high 9dBi
  • the dual polarization cross isolation is good (30dB)
  • the dual-polarized antenna unit can support a 2 x 2 MIM0 system. Due to its small size and light weight, the antenna installation space and load-bearing requirements are required. Low, processing, installation and maintenance are convenient. It is suitable to form an antenna array, which can effectively save antenna installation cost and maintenance cost. It is widely used in mobile communication and Internet technology.
  • the small multi-layer microstrip antenna of the present embodiment is convenient for debugging the voltage standing wave ratio, and the specific design is as shown in FIG. 1 and FIG. 2, and the radome 1 is from the top.
  • the first air medium layer 2, the first metal radiation sheet 3, the second air shield layer 4, the ground metal sheet 5, the first dielectric substrate 6, the microstrip excitation lines 7, 7' (this embodiment) a bipolar microstrip antenna, a third air dielectric layer 8, and a metal reflective substrate 9,
  • the first metal radiating sheet 3 is connected to the radome 1 by a screw 10, and the grounding metal sheet 5 is laid over the first dielectric base.
  • the upper end surface of the sheet 6 is fixedly connected to the hollow metal support 11 fixed on the metal reflective bottom plate 9.
  • the upper end surface of the ground metal sheet 5 is provided with stimulated radiation microgrooves 12, 12' (in this case, bipolar a microstrip antenna), the first metal radiating sheet 3 is circular, and an adjusting screw 10 is fixed at a center thereof, and the first metal radiating sheet 3 is realized by screwing the adjusting screw 10 and the internal thread of the radome 1 Fixed.
  • the lower end surface of the first dielectric substrate 6 is provided with a bipolar microstrip excitation line 7 whose front ends are orthogonal to each other and which are not in contact with each other.
  • the upper end surface of the grounded metal sheet 5 is provided with two mutually orthogonal and non-contacting
  • the excitation radiation microchannels 12, 12' respectively correspond to the front ends of the silent microstrip excitation lines 7, T, respectively.
  • the two stimulated radiation microgrooves 12, 12' on the grounded metal piece 5 are of equal size and have a double ' ⁇ ' shape, and the middle of the double " ⁇ " shape is said.
  • the cross arms are orthogonal to each other.
  • the technical solution is advantageous for opening the dual-polarized stimulated radiation micro-groove on a grounded metal piece with a small area for miniaturization of the antenna.
  • the angle between the " ⁇ " shaped intermediate cross arm of the double " ⁇ " shaped stimulated micro-groove 12, 12' and the X-axis or the ⁇ axis of the grounded metal piece is positive and negative 45 degrees.
  • the technical solution further utilizes the effective area of the grounded metal piece to achieve miniaturization of the antenna.
  • Embodiment 5 Small multilayer microstrip antenna for facilitating voltage standing wave ratio
  • the small multi-layer microstrip antenna of the present embodiment is convenient for debugging the voltage standing wave ratio, as shown in FIG. 3, which is based on the structure of the embodiment 4, and is also provided with the second air medium.
  • a second metal tab 13 and a second dielectric substrate 14 in the layer 4 the lower end surface of the second metal radiating sheet 13 is integrated with the upper end surface of the second dielectric substrate 14, and is fixed to the metal reflection
  • the hollow metal support 11 on the bottom plate 9 is fixedly connected, and a fourth air dielectric layer 15 is formed below the second dielectric substrate 14.
  • the second metal dome 13 is circular, which is convenient for adjusting the voltage standing wave ratio of the antenna input and output ports, and matching the impedance of the microstrip excitation line to improve the antenna gain.
  • a second metal radiating sheet and a dielectric substrate holder are disposed in the second air dielectric layer, and the second metal radiating sheet is fixed on the dielectric substrate holder, and the dielectric substrate holder is disposed. It is fixed on the hollow metal support, and a fourth air shield layer is formed under the second metal radiation piece.
  • This technical solution is also advantageous for further increasing the operating bandwidth of the antenna.
  • Embodiment 6 Antenna built-in wireless communication relay station
  • An antenna built-in wireless communication relay station having a relay main body chassis, an antenna matched with the relay station, and characterized in that it further has a curved upper cover of the relay station, and the antenna is placed on the curved upper cover of the relay station.
  • the screw is connected to the curved upper cover of the relay station by a screw, and the input port of the antenna is directly connected to the repeating end of the relay station, and the curved upper cover of the relay station is fixedly connected to the main body of the relay station by screws.
  • the antenna built-in wireless communication relay station of the embodiment has a relay main body chassis and an antenna matched with the relay station, and the improvement thereof is to further have a curved upper cover of the relay station, the antenna is placed in the curved upper cover of the relay station, and the screw and the relay station are passed through the screw
  • the curved upper cover is fixed-connected, and the input port of the antenna is directly connected to the retransmission end of the relay station, and the curved upper cover of the relay station is fixedly connected to the main body of the relay station by screws.
  • the antenna is a multi-layer microstrip antenna, and specifically, a multi-layered dual-polarized small microstrip antenna.
  • the antenna of this embodiment is of a ceiling type.
  • the beneficial effects of the embodiment are as follows: the antenna is placed in the main body of the wireless communication relay station, the structure is compact, the connection cable is saved, the cost is low, the engineering installation is convenient, and the system is suitable for use in the wireless communication indoor distribution system, not only the appearance is beautiful, but also the antenna transmission performance. Good, high reliability.
  • Example 7 Miniature dual-polarized microstrip antenna
  • each of the dual-polarized antenna units has a first air dielectric layer, a first metal radiation piece, a second air dielectric layer, a ground metal piece, and a top, bottom, and a first dielectric substrate, a bipolar microstrip excitation line, a third air dielectric layer, and a metal reflective substrate, wherein the first metal radiation piece is connected to the radome through an insulating screw, and the grounding metal piece is laid on the first dielectric base
  • the upper end surface of the sheet is fixedly connected to the hollow metal support fixed on the metal reflective bottom plate, and the lower end surface of the first dielectric substrate is provided with a bipolar microstrip excitation line whose front ends are orthogonal to each other and not in contact with each other,
  • the upper end surface of the grounding metal piece is provided with two mutually opposite and non-contacting stimulated radiation micro-grooves, and the two stimulated radiation grooves are orthogonally orthogonal to the front ends of the bi
  • the beneficial effects of the embodiment are as follows:
  • the embodiment combines the microstrip, micro-slot and multi-layer theory into one body, has the advantages of small size, compact structure and light weight; and the antenna has good energy radiation performance and high reliability;
  • the antenna adopts a linear arrangement, and has a planar emission source, so that the microwave beam has better directional selectivity;
  • the dual-polarized antenna is composed of two antenna elements, and the gain can reach l ldBi, which satisfies the need;
  • the microstrip line saves the use of the connecting cable and reduces the cost; the compact size and light weight make the installation more convenient.
  • the miniature dual-polarized microstrip antenna has been tested to fully meet the operator's requirements for electrical and mechanical performance.
  • the miniature dual-polarized microstrip antenna of this embodiment includes two pairs connected by a two-way power splitter (such as Wilkinson power splitter) placed in the antenna cover 1 Polarized antenna elements B1 and B2, each of the dual-polarized antenna elements (taking the dual-polarized antenna unit B1 as an example), as shown in FIG. 2, has a first air dielectric layer 2 and a first metal from top to bottom.
  • a two-way power splitter such as Wilkinson power splitter
  • the metal radiating sheet 3 is connected to the radome 1 through the insulating screw 10, and the grounding metal sheet 5 is laid on the upper end surface of the first dielectric substrate 6, and is fixedly connected to the hollow metal support 11 fixed on the metal reflective bottom plate 9.
  • the lower end surface of the first dielectric substrate 6 is provided with bipolar microstrip excitation lines 7, 7' whose front ends are orthogonal to each other and not in contact with each other.
  • the upper end surface of the ground metal sheet is provided with two mutually orthogonal and non-contacting stimulated radiation.
  • the first metal radiating piece 3 is circular
  • the insulating screw 10 is fixedly coupled to the center of the first metal radiating piece 3, and is screwed to the radome 1 through the internally threaded hole in the center of the radome 1.
  • the technical solution is beneficial for finely adjusting the height between the first metal radiating piece and the stimulated radiation microgroove by the rotating screw outside the radome, conveniently adjusting the voltage standing wave ratio of the antenna input and output port, matching with the impedance of the microstrip excitation line, and improving the antenna.
  • the circular metal radiating piece only has a height change during the adjustment process, so the adjustment is more convenient.
  • the two excited microgrooves 12, 12' on the grounded metal piece 5 are of equal size and have a double "H" shape, and the double "H” shaped intermediate cross arms are orthogonal to each other.
  • the technical solution is advantageous for opening the dual-polarized stimulated radiation micro-groove on a grounded metal piece with a small area for miniaturization of the antenna.
  • the angle between the "H"-shaped intermediate cross arm of the double "H"-shaped stimulated radiation microgrooves 12, 12' and the X-axis or Y-axis of the grounded metal piece is positive and negative 45 degrees.
  • the technical solution is advantageous for opening the dual-polarized stimulated radiation micro-groove on a grounded metal piece with a small area for miniaturization of the antenna.
  • the test results show that the gain of the dual-polarized antenna gain is lldBi at the test frequency of 1900MHz; the half-power lobe width of the horizontal plane is 72 °, the half-power lobe width of the vertical plane is 36°, and the front-to-back ratio is smaller than -25dB; The port voltage standing wave ratio is less than 1.3, and the relative bandwidth of the working frequency band is about 1 W.
  • Example 8 Miniature dual-polarized microstrip antenna
  • a second metal radiating sheet 13 and a second dielectric substrate 14 are disposed in the second air dielectric layer 4, and the second metal radiating sheet 13 is parallel to a first metal radiating plate 3, the lower end surface attached to a second end surface of the metallic radiating plate 13 and the second I 4 of the dielectric substrate integrally, and connected to a fixed support 11 fixed on the metal reflection hollow metal base plate 9 in A fourth air dielectric layer 15 is formed below the second dielectric substrate 14.
  • the second metal radiating sheet 13 is circular, which is convenient for adjusting the voltage standing wave ratio of the antenna input and output ports, matching with the impedance of the microstrip excitation line, and improving the antenna gain.
  • test results show that the embodiment 8 is in the real 7 _ ⁇ original one electric energy refers to the non-variable - the ⁇ " ⁇ " ⁇ ⁇ belt - wide - spread" 3 ⁇ 47 ⁇ * 1 pair - wide Up to 253 ⁇ 4 or so.
  • a dual metal radiating piece parallel to the first metal radiating piece located in the second air dielectric layer is disposed in the dual polarized antenna unit, and the second metal radiating piece is disposed. Insulating and fixing with the hollow metal support, a fourth air dielectric layer is formed between the second metal radiation piece and the ground metal piece.
  • a third metal radiating sheet 18 and a third dielectric substrate ⁇ are further disposed between the second metal radiating sheet 13 and the first metal radiating sheet 3,
  • the trimetal radiating sheet 18 is parallel to the first metal tab 3 , and the third metal sheet 18 is said
  • the lower end surface of the third metal radiating sheet 18 is integrated with the upper end surface of the third dielectric substrate, and is insulated from the second dielectric substrate 14.
  • the holder 19 is fixedly connected to form a fifth air dielectric layer 16 below the third dielectric substrate 17.
  • the test results show that in the embodiment 9, the working bandwidth of the antenna is further widened under the premise that the original electrical performance index of the antenna is unchanged, and the relative bandwidth can reach about 40%.
  • a technical solution equivalent to the solution of the present embodiment that is, a third metal radiation piece parallel to the first metal film is disposed between the second metal radiation piece and the first metal radiation piece, and the third The metal radiating sheet is insulated from the second metal radiating sheet and the hollow metal support, and a fifth air dielectric layer is formed between the third metal radiating sheet and the second metal emitting sheet.
  • This technical solution is also advantageous for further increasing the operating frequency bandwidth of the antenna, but since there is no third dielectric substrate, the operating bandwidth is slightly smaller.
  • Embodiment 10 Small dual-polarized microstrip antenna
  • a small dual-polarized microstrip antenna which comprises four dual-polarized antenna units connected by four-way signal splitters placed in an antenna cover, the four The dual-polarized antenna units are linearly distributed in the radome, and each of the dual-polarized antenna units has a first air dielectric layer, a first metal radiating sheet, a second air dielectric layer, and a grounded metal sheet from top to bottom. a first dielectric substrate, a bipolar microstrip excitation line, a third air dielectric layer, and a metal reflective substrate.
  • the first metal radiation piece is connected to the radome through an insulating screw, and the grounding metal piece is laid on the first dielectric layer.
  • the upper end surface of the shield substrate is fixedly connected to the hollow metal support fixed on the metal reflective bottom plate, and the lower end surface of the first dielectric substrate is provided with a bipolar microstrip excitation line whose front ends are orthogonal to each other and not in contact with each other.
  • the upper end surface of the grounding metal piece is provided with two mutually opposite and non-contacting stimulated radiation micro-grooves, and the two stimulated radiation micro-grooves respectively correspond to the front ends of the bipolar microstrip excitation lines.
  • the beneficial effects of the embodiment are as follows:
  • the utility model combines the microstrip, microgroove and multi-layer theory into one, has the advantages of small size, compact structure and light weight; and the antenna has good energy radiation performance and high reliability;
  • the antenna adopts a linear arrangement, and has a planar-one-emission source, so that the microwave beam has better directional selectivity;
  • the dual-polarized antenna is composed of two antenna elements, and the gain can be up to 14dBi, which satisfies the need;
  • Micro-belt routing is used, which saves the use of connecting cables and reduces the cost. Because of its compact size and light weight, the installation is more convenient.
  • the small dual-polarized microstrip antenna has been tested to fully meet the operator's requirements for electrical and mechanical performance.
  • the small dual-polarized microstrip antenna of this embodiment includes four four-way power splitters placed in the antenna cover 1 (in this example, the four-way power splitter consists of three WLs). Lkinson and other power dividers are connected in series) dual-polarized antenna units B1, B2, B3, and B4 connected together, and the four dual-polarized antenna units are linearly distributed in the radome, and each dual-polarized antenna unit (in the case of the dual-polarized antenna unit B1 as an example), as shown in FIG. 2, the first air dielectric layer 2, the first metal radiating sheet 3, the second air dielectric layer 4, and the grounded metal sheet are sequentially arranged from top to bottom.
  • the hollow metal support 11 on the board 9 is fixedly connected, and the lower end surface of the first shield substrate 6 is provided with bipolar microstrip excitation lines 7, 7' whose front ends are orthogonal to each other and not in contact, and the upper end surface of the ground metal sheet is opened.
  • the first metal radiating sheet 3 is circular, and the insulating screw 10 is fixedly coupled to the center of the first metal radiating sheet 3. and is screwed to the radome 1 through the internally threaded hole in the center of the radome 1.
  • the technical solution is beneficial for finely adjusting the height between the first metal radiating piece and the stimulated radiation microgroove by the rotating screw outside the radome, conveniently adjusting the voltage standing wave ratio of the antenna input and output port, matching with the impedance of the microstrip excitation line, and improving the antenna.
  • Gain The circular metal radiating piece has only a high degree of variation during the adjustment process, so the adjustment is more convenient.
  • the two stimulated radiation microgrooves 12, 12' on the grounded metal piece 5 are of equal size and have a double "H” shape, and the double "H” shaped intermediate cross arms are orthogonal to each other.
  • the technical solution is advantageous for opening the dual-polarized stimulated radiation micro-groove on a grounded metal piece with a small area for miniaturization of the antenna.
  • the angle between the "H"-shaped intermediate cross arm of the double "H"-shaped stimulated radiation microgrooves 12, 12' and the X-axis or Y-axis of the grounded metal piece is positive and negative 45 degrees.
  • the technical solution is advantageous for opening the dual-polarized stimulated radiation micro-groove on a grounded metal piece with a small area for miniaturization of the antenna.
  • the test results show that the gain of the dual-polarized antenna is 1400° at the test frequency (14dBi; the half-power lobe width is 70 ⁇ °, the vertical half-power lobe width is 18°, and the front-to-back ratio is less than -25dB; The output port voltage standing wave ratio is less than 1.3, and the relative bandwidth of the working frequency band is about 101 ⁇ 2.
  • Embodiment 11 Small dual-polarized microstrip antenna
  • FIG. 13 which is formed by the structure of Embodiment 10, a second metal radiating sheet 13 and a second dielectric substrate 14 are disposed in the second air medium layer 4, and the second metal radiating sheet 13 is parallel to The first metal radiating sheet 3, the lower end surface of the second metal radiating sheet 13 is integrally formed with the upper end surface of the second dielectric substrate 14, and is fixedly connected to the hollow metal support 11 fixed on the metal reflective bottom plate 9, A fourth air dielectric layer 15 is formed under the second dielectric substrate 14.
  • the second metal radiating sheet 13 is circular, which is convenient for adjusting the voltage standing wave ratio of the antenna input and output ports, matching with the impedance of the microstrip excitation line, and improving the antenna gain.
  • test results show that in the embodiment 11, the working bandwidth of the antenna is widened under the premise that the original electrical performance index of the antenna is unchanged, and the relative bandwidth can reach about 25%.
  • a dual metal radiating piece parallel to the first metal radiating piece located in the second air dielectric layer is disposed in the dual polarized antenna unit, and the second metal radiating piece is disposed. Insulating and fixing with the hollow metal support, a fourth air dielectric layer is formed between the second metal radiation piece and the ground metal piece.
  • Embodiment 12 Small dual-polarized microstrip antenna
  • the structure of the embodiment 11 is taken out, and a third metal radiating sheet 18 and a third dielectric substrate 17 are further disposed between the second metal radiating sheet 13 and the first metal radiating sheet 3.
  • the third metal radiating sheet 18 is parallel to the first metal radiating sheet '3, and the third metal radiating sheet 18 is insulated from the second metal radiating sheet 13 and the hollow metal holder 11, and the lower end surface of the third metal radiating sheet 18 is on the third dielectric substrate 17 is integrally attached to the end face, and the insulating support 19 is fixedly connected to the second fixed to the dielectric substrate I 4 is formed in the fifth dielectric layer 16 of air under the third dielectric substrate 17 wide.
  • test results show that in the embodiment 12, the working bandwidth of the antenna is further widened under the premise that the original electrical performance index of the antenna is unchanged, and the relative bandwidth can reach about 40%.
  • a second metal-radiation sheet and a first metal-radiation sheet are disposed parallel to the first gold-radius-the first gold-genus radiation-sheet- - - ⁇
  • a fifth air dielectric layer is formed between the radiation sheet and the second metal radiation sheet.
  • the technical solution is also advantageous for further increasing the working frequency bandwidth of the antenna. However, since there is no third dielectric substrate, the working bandwidth is slightly smaller.
  • Embodiment 13 Small high-gain dual-polarized microstrip antenna
  • a small high-gain dual-polarized microstrip antenna which comprises four dual-polarized antenna units connected by four-way signal splitters placed in an antenna cover,
  • the dual-polarized antenna unit is distributed in two rows and two columns in the radome.
  • Each of the dual-polarized antenna units has a first air dielectric layer, a first metal radiating sheet, a second air dielectric layer, and a second air dielectric layer in order from top to bottom.
  • first metal radiation piece is connected to the radome through an insulating screw, and the grounding metal piece is covered
  • the upper end surface of the first shield substrate is fixedly connected to the hollow metal support fixed on the metal reflective bottom plate, and the lower end surface of the first dielectric substrate is provided with bipolar micro electrodes whose front ends are orthogonal to each other and are not in contact with each other.
  • the upper end surface of the grounding metal piece is provided with two mutually opposite and non-contacting stimulated radiation micro-grooves, and the front ends of the two stimulated radiation micro-grooves and the bipolar microstrip excitation line are respectively Match should.
  • This embodiment combines the microstrip, micro-slot, and multi-layer theory into one, and has the advantages of small size, compact structure, and light weight; and the antenna has good energy radiation performance, high gain, and reliable book.
  • the antenna is linearly arranged, and has a planar emission source to make the microwave beam have better directional selectivity;
  • the dual-polarized antenna is composed of two antenna elements, and the gain can be up to 14dBi, which satisfies the need;
  • Micro-band traces are used inside, which saves the use of connecting cables and reduces the cost. Because of its small size and light weight, the installation is more convenient.
  • the small high-gain dual-polarized microstrip antenna has been tested to meet the operator's requirements for electrical and mechanical performance.
  • the small high-gain dual-board microstrip antenna of this embodiment includes four four-way power splitters placed in the antenna cover 1 (in this example, the four-way power splitter is three Wilkinson and other power splitters are formed in a tree-like series, that is, one-two-two-two-fourth) dual-polarized antenna elements B1, B2, B3, and B4 connected together, and each dual-polarized antenna unit
  • the dual-polarized antenna unit B1 as shown in FIG. 2, the first air dielectric layer 2, the first metal radiating sheet 3, the second air dielectric layer 4, the grounded metal sheet 5, and the first portion are sequentially arranged from top to bottom.
  • the first metal radiation sheet 3 is connected to the radome 1 through an insulating screw 10, a grounded metal sheet 5 is laid on the upper end surface of the first dielectric substrate 6, and is fixedly connected to the hollow metal support 11 fixed on the metal reflective bottom plate 9.
  • the lower end surface of the first dielectric substrate 6 is provided with the front ends being orthogonal to each other and not Contacted bipolar microstrip excitation line 7, 7', upper end of grounded metal piece Two mutually orthogonal opened without touching the stimulated emission microgrooves 12, 12 ', two stimulated emission microgrooves 12, 12' and the distal end of the bipolar microstrip excitation line 7, 7 'respectively, correspond to orthogonal.
  • the first metal radiating piece 3 is circular, and the insulating screw 10 is fixedly connected to the center of the first metal radiating piece 3, and is screwed to the radome 1 through the inner screw hole in the center of the radome 1. This technical solution is advantageous.
  • the height between the first metal radiating piece and the stimulated radiation microgroove is finely adjusted by the rotating screw outside the radome, and the voltage standing wave ratio of the antenna input and output port is conveniently adjusted, matched with the excitation line impedance, and the antenna gain is improved.
  • the circular metal radiating piece has only a high degree of change during the adjustment process, so the adjustment is more convenient.
  • the two stimulated radiation microgrooves 12, 12' on the grounded metal piece 5 are of equal size and have a double shape, and the double "H" shaped intermediate cross arms are orthogonal to each other.
  • the technical solution is advantageous for opening the dual-polarized stimulated radiation micro-groove on a grounded metal piece with a small area for miniaturization of the antenna.
  • the angle between the "H"-shaped intermediate cross arm of the double "H"-shaped stimulated radiation microgrooves 12, 12' and the X-axis or Y-axis of the grounded metal piece is positive and negative 45 degrees.
  • the technical solution is advantageous for opening the dual-polarized stimulated radiation micro-groove on a grounded metal piece with a small area for miniaturization of the antenna.
  • test results show that the gain of the dual-polarized antenna gain is 14dBi at the test frequency of 1900MHz; the half-power lobe width of the horizontal plane is 70
  • Embodiment 14 Small high-gain dual-polarized microstrip antenna
  • a high-gain dual-polarization microstrip antenna which comprises eight dual-polarized antenna units connected by an eight-way signal splitter placed in an antenna cover, each double The polarized antenna unit has a first air dielectric layer, a first metal radiating sheet, a second air dielectric layer, a grounded metal piece, a first dielectric substrate, a bipolar microstrip excitation line, and a third air in order from top to bottom.
  • the first metal radiating fin is connected to the radome through an insulating screw, the grounding metal sheet is laid on the upper end surface of the first dielectric substrate, and is connected to the hollow metal fixed on the metal reflective bottom plate
  • the support is fixedly connected, and the lower end surface of the first dielectric substrate is provided with a bipolar microstrip excitation line whose front ends are orthogonal to each other and not in contact with each other, and the upper end surface of the grounded metal piece is provided with two mutually orthogonal and non-contacting
  • the stimulated radiation microgrooves, the two stimulated radiation microgrooves and the front ends of the bipolar microstrip excitation lines respectively correspond orthogonally.
  • This embodiment combines the microstrip, microslot, and multi-layer theory into one, and has the advantages of compact size, compact structure, and light weight; and the antenna has good energy radiation performance, high gain, and reliability.
  • the antenna is linearly arranged, and has a planar emission source to make the microwave beam have better directional selectivity; the dual-polarized antenna is composed of two antenna elements, and the gain can reach 17dBi, which satisfies the need; Micro-belt routing is used inside, which saves the use of connecting cables and reduces the cost. Because of its small size and light weight, the installation is more convenient.
  • the high-gain dual-polarized microstrip antenna has been tested to meet the operator's requirements for electrical and mechanical performance.
  • the high-gain dual-polarized microstrip antenna of this embodiment includes eight eight-way splitters placed in the antenna cover 1 (in this example, the eight-way splitter is composed of seven Wilks).
  • the power dividers such as inson are composed of a tree-like serial connection, that is, one-two-two-two-four-four-eighth) dual-polarized antenna elements B1, B2, B3, B4, B5, B6, B7, B8 connected together.
  • the dual-polarized antenna units taking the dual-polarized antenna unit B1 as an example), as shown in FIG. 2, the first air dielectric layer 2, the first metal radiation sheet 3, and the second air are sequentially arranged from top to bottom.
  • the end face is provided with a bipolar microstrip excitation line 7 whose front ends are orthogonal to each other and not in contact with each other.
  • the upper end surface of the grounding metal piece is provided with two mutually orthogonal and non-contacting stimulated radiation micro-grooves 12, 12', two stimulated radiation micro-grooves 12, 12' and a bipolar microstrip excitation line 7, T
  • the front ends correspond to each other orthogonally.
  • the first metal radiating piece 3 is circular, and the insulating screw 10 is fixedly coupled to the center of the first metal radiating piece 3, and is screwed to the radome 1 through the internally threaded hole in the center of the radome 1.
  • the technical solution is beneficial for finely adjusting the height between the first metal radiating piece and the stimulated radiation microgroove by the rotating screw outside the radome, conveniently adjusting the voltage standing wave ratio of the antenna input and output port, matching with the impedance of the microstrip excitation line, and improving the antenna.
  • Gain The circular metal radiating piece has only a high degree of change in the adjustment process, so the adjustment is more convenient.
  • the two stimulated radiation slots 12, 12' on the grounded metal piece 5 are of equal size and have a double "H" shape, and the double "H” shaped intermediate cross arms are orthogonal to each other.
  • the technical solution facilitates the opening of the dual-polarized stimulated micro-groove on a grounded metal piece with a small area for miniaturization of the antenna.
  • the angle between the intermediate cross arm of the double "H"-shaped stimulated radiation microgrooves 12, 12' and the X-axis or Y-axis of the grounded metal piece is ⁇ ⁇ ⁇ negative - 45 degrees.
  • the technical solution is advantageous for opening the dual-polarized stimulated radiation micro-groove on a grounded metal piece with a small area for miniaturization of the antenna.
  • the test results show that the gain of the dual-polarized antenna gain is 17dBi at the test frequency of 1900MHz; the half-power lobe width of the horizontal plane is 70 °, the half-power lobe width of the vertical plane is 18°, and the front-to-back ratio is less than -25dB; The standing wave ratio is less than 1.3, and the relative bandwidth of the working frequency band is about 10%.
  • Embodiment 15 It is a high-isolation dual-polarization intelligent array antenna.
  • the technical solution of the present embodiment is as follows: An eight-channel high-isolation dual-polarization smart array antenna, including four objects in the same antenna cover. - The double 3 ⁇ 4: Huatian-line, its special sign is: The 3 ⁇ 4 dual-polarized antenna has two dual-polarized days connected by a two-way splitter Description
  • a line unit in each of the dual-polarized antenna units, having a first air dielectric layer, a first metal radiation piece, a second air dielectric layer, a ground metal piece, a first dielectric substrate, and a bipolar microstrip from top to bottom
  • the excitation wire, the third air dielectric layer, and the metal reflective substrate, the first metal radiation piece is connected to the radome through an insulating screw, and the grounded metal piece is laid on the upper end surface of the first dielectric substrate, and is fixed to the metal
  • the hollow metal support on the reflective bottom plate is fixedly connected, and the lower end surface of the first dielectric substrate is provided with a bipolar microstrip excitation line whose front ends are orthogonal to each other and not in contact, and the upper end surface of the ground metal piece has two open ends
  • the stimulated radiation microgrooves that are orthogonal to each other and do not contact, the two stimulated radiation microgrooves and the front ends of the bipolar microstrip excitation lines respectively correspond orthogonally.
  • the beneficial effects of the embodiment are as follows:
  • the embodiment combines the microstrip, micro-slot and multi-layer theory into one body, has the advantages of small size, compact structure and light weight; and the antenna has good energy radiation performance and high reliability;
  • the antenna adopts a linear arrangement, and has a planar emission source, so that the microwave beam has better directional selectivity;
  • each dual-polarized antenna is composed of two antenna elements, and the gain can reach l ldBi, which satisfies the urban civil residential area, Commercial building coverage and other user-intensive but not very wide areas;
  • Micro-band traces inside the antenna saving the use of connecting cables, low cost; Due to its small size and light weight, the installation is more convenient and can be directly installed.
  • the existing 3G smart antenna mounting bracket does not require additional mounting brackets, thus greatly reducing the installation investment and reducing the cost for future equipment maintenance.
  • This eight-channel high-isolation dual-polarization smart array antenna is suitable for urban use. Residential areas, such as civil residential areas and commercial buildings, are densely populated but not widely distributed. The test fully satisfies the operator's requirements for electrical and mechanical performance indicators, and breaks the inherent idea and mode of using the half-wave oscillator design of the existing smart antennas.
  • the antenna unit with high unit gain is used to form the antenna array, and the same index is achieved.
  • the size of the antenna is greatly reduced, the weight of the antenna is reduced, and the antenna is miniaturized. It can replace the existing 3G antenna and will be a strong competitor of 4G antenna. This practical implementation has achieved miniaturization, making it possible to enter the community, dispelling and alleviating the concern of nearby residents that large antenna radiation is not conducive to health.
  • the eight-channel high-isolation dual-polarization smart array antenna of the present embodiment includes four mutually independent dual-polarized antennas A1, A2, and A3 disposed in the same antenna cover 1.
  • A4 the dual-polarized antenna (for example, the dual-polarized antenna A2) has two dual-polarized antenna units B1 and B2 connected by a two-way power splitter (power splitter such as Wilkinson).
  • the dual-polarized antenna unit taking the dual-polarized antenna unit B1 as an example), as shown in FIG. 2, the first air dielectric layer 2, the first metal slab 3, and the second air medium are sequentially arranged from top to bottom.
  • a layer 4 a grounding metal sheet 5, a first dielectric substrate 6, a bipolar microstrip excitation line 7, 7', a third air shield layer 8, a metal reflective bottom plate 9, the first metal radiating sheet 3 passing through an insulating screw 10 is connected to the radome 1 , the grounding metal piece 5 is laid on the upper end surface of the first dielectric substrate 6 , and is fixedly connected to the hollow metal support 11 fixed on the metal reflective bottom plate, and the lower end surface of the first dielectric substrate 6 Bipolar micro with front ends that are orthogonal to each other and not in contact
  • the excitation wires 7, V and the upper end surface of the grounding metal piece are provided with two mutually opposite and non-contacting stimulated radiation microchannels 12, 12', two stimulated radiation microchannels 12, 12' and bipolar microstrip excitation
  • the front ends of lines 7 and T correspond to each other orthogonally.
  • the first metal radiating piece 3 is circular, and the insulating screw 10 is fixedly coupled to the center of the first metal radiating piece 3, and is screwed to the radome 1 through the internally threaded hole in the center of the radome 1.
  • the technical solution is convenient for finely adjusting the height between the first metal radiating piece and the stimulated radiation microgroove by the rotating screw outside the radome, thereby conveniently adjusting the voltage standing wave ratio of the antenna input and output port, matching with the impedance of the microstrip excitation line, and improving Antenna gain. Round metal radiator ⁇ . There is only a height change during the adjustment process, so adjustment is more convenient.
  • the two stimulated radiation microgrooves 12, 12' on the grounded metal piece 5 are of equal size and have a double "H” shape, and the intermediate cross arms of the double "H” shape are orthogonal to each other.
  • the technical solution is advantageous for opening the dual-polarized stimulated radiation micro-groove on a grounded metal piece with a small area for miniaturization of the antenna.
  • the angle between the "H"-shaped intermediate cross arm of the double "H"-shaped stimulated radiation microgrooves I 2 , 12' and the X-axis or the Y-axis of the grounded metal piece is positive and negative 45 degrees.
  • the technical solution is advantageous for opening the dual-polarized stimulated radiation micro-groove on a grounded metal piece with a small area for miniaturization of the antenna.
  • the test results show that the two ports of the dual-polarized antenna are ideal for isolation from each other, and the isolation index is more than 30dB, which can work independently of each other.
  • Example 16 Eight Channel High Gain High Isolation Dual Polarization Smart Array Antenna
  • An eight-channel high-gain high-isolation dual-polarization smart array antenna includes four mutually independent dual-polarized antennas placed in the same antenna cover, and the feature is:
  • the polarized antenna has four dual-polarized antenna units connected by a four-way power splitter, and each of the dual-polarized antenna units has a first air dielectric layer, a first metal radiating film, and a top from bottom to bottom.
  • a second dielectric layer a grounded metal piece, a first dielectric substrate, a bipolar microstrip excitation line, a third air dielectric layer, and a metal reflective substrate, wherein the first metal radiation piece is connected to the radome through an insulating screw, the grounding
  • the metal piece is laid on the upper end surface of the first dielectric substrate, and is fixedly connected to the hollow metal support fixed on the metal reflective bottom plate.
  • the lower end surface of the first dielectric substrate is provided with the front ends being orthogonal to each other and not in contact with each other.
  • the upper end surface of the grounding metal piece is provided with two mutually orthogonal and non-contacting stimulated radiation microgrooves, and the two stimulated radiation microgrooves and bipolar microstrip excitation Corresponding to the front end respectively orthogonal.
  • the beneficial effects of the embodiment are as follows:
  • the embodiment combines the microstrip, micro-slot and multi-layer theory into one body, has the advantages of small size, compact structure and light weight; and the antenna has good energy radiation performance and high reliability;
  • the antenna adopts a linear arrangement, and has a planar emission source, so that the microwave beam has better directional selectivity;
  • each dual-polarized antenna is composed of two antenna elements, and the gain can reach 14dBi, which satisfies the establishment of the mobile communication base station. Coverage requirements, address signal coverage problems in different geomorphology, different user quantities, different occasions, different ranges, etc.
  • the eight-channel high-gain and high-isolation dual-polarization smart array antenna is suitable for the construction of mobile communication base stations. It has been tested to fully meet the electrical and mechanical performance requirements of operators, and breaks the existing smart antennas with half-wave oscillator design.
  • the antenna unit is composed of antenna elements with high unit gain, and the size of the antenna is greatly reduced, the weight of the antenna is reduced, and the antenna is miniaturized. It can replace the existing 3G antenna and will be a strong competitor for 4G antenna.
  • the eight-channel high-gain high-isolation dual-polarization smart array antenna of the present embodiment includes four mutually independent dual-polarized antennas A1 and A2 disposed in the same antenna cover.
  • A3, A4 the dual-polarized antenna (using the dual-polarized antenna A2 as an example) has four four-way power splitters (in this example, the four-way power splitter is connected by three Wilkinson power splitters)
  • the dual-polarized antenna elements B1, B2, B3, and B4 are connected together, and each of the dual-polarized antenna elements (for example, the dual-polarized antenna unit B1) is as shown in FIG. 2, from top to bottom.
  • first metal radiating sheet 3 is connected to the radome 1 via an insulating screw 10, and the grounding metal sheet 5 is laid on the upper end surface of the first dielectric substrate 6, and is fixed to the metal reflective substrate 9.
  • Hollow metal support 11 fixed connection, first dielectric base The lower end surface of 6 is provided with bipolar microstrip excitation lines 7, 7' whose front ends are orthogonal to each other and not in contact with each other, and the upper end surface of the ground metal piece is provided with two mutually orthogonal and non-contacting stimulated radiation 4 slots 12, 12 ', the two stimulated radiation microchannels 12, 12' and the front ends of the bipolar microstrip excitation lines 7, 7' respectively correspond orthogonally.
  • the first metal radiating piece 3 is circular, and the insulating screw 10 is fixedly coupled to the center of the first metal radiating piece 3, and is screwed to the radome 1 through the internally threaded hole in the center of the radome 1.
  • the technical solution is beneficial for finely adjusting the height between the first metal radiating piece and the stimulated radiation microgroove by the rotating screw outside the radome, conveniently adjusting the voltage standing wave ratio of the antenna input and output port, matching with the impedance of the microstrip excitation line, and improving the antenna.
  • Gain The circular metal radiating piece has only a height change amount during the adjustment process, so the adjustment is more convenient.
  • the two stimulated radiation microgrooves 12, 12' on the grounded metal piece 5 are of equal size and have a double "H” shape, and the double "H” shaped intermediate cross arms are orthogonal to each other.
  • the technical solution is advantageous for opening the dual-polarized stimulated radiation micro-groove on a grounded metal piece with a small area for miniaturization of the antenna.
  • the angle between the "H"-shaped intermediate cross arm of the double "H"-shaped stimulated radiation microchannels I 2 and 12' and the X-axis or the Y-axis of the grounded metal piece is positive and negative "degrees.
  • This technical solution is advantageous for the double The polarized radiation micro-groove is opened on a grounded metal piece with a small area to achieve miniaturization of the antenna.
  • the antenna gain has a gain of 14dB i at the test frequency of 1900MHz; the half-power lobe width of the horizontal plane is 70°, the vertical half-power lobe width is 18°, and the front-to-back ratio is less than -25dB; The ratio is less than 1.3, and the relative bandwidth of the working frequency band is about 10%.
  • Embodiment 17 TD-LTE Network Antenna
  • the product of this embodiment is used to improve the engineering construction difficulties caused by the large existing antenna.
  • the product of this embodiment is a miniaturized TD-LTE dual-polarized 8-channel smart antenna for internal security testing.
  • the low-loss high-frequency shield is used as the filling material in the antenna, and the antenna structure of the radiation sheet of two or more houses is combined, and the shape and dielectric constant of the member in the embodiment 17 are applied.
  • the feeding mode greatly reduces the geometric size of the antenna, thereby achieving multi-band, multi-mode, and miniaturization effects.

Description

一种双极化微带天线 技术领域
本发明涉及一种天线装置, 特别是一种微波低波段多频带高增益双极化小型微带天线, 实施例公开了一 种含多重激励与多层调谐机构的微波天线,属于信号传输与移动通信以及无线互联网的天线技术领域。
背景技术
近年来, 随着移动通信技术和互联网技术的迅猛发展, 一批新的热点技术应运而生, 如移动互联网、 无 线宽带局域网、 城域网、 物联网等技术, 迫切需要采用多天线技术(即多输入多输出 MIM0技术)来提高无 线通信信道传输信息的质量和数据传输速率。 而现有的微波天线均存在着工作效率低、 体形庞大笨重、 安装 维护困难的缺点, 远不能适应移动通信技术的发展对天线技术的要求。
首先, 国内外公开宣传、 展示、 销售、 应用的产品已不能适应运营商在新一代通讯标准中提出的技术需 求。 而且, 现有产品存在体积大、 重量大、 垂直面半功率波束宽度低、 增益低等缺点。 如表(1 )显示, 现 有产品中,被拥有 5. 2亿手机用户的全球最大移动通讯运营商一一中国移动通讯集团采用的 8通道 TD-SCDMA 双极化智能天线, 存在体积大、 重量大、 辐射效率低等缺陷, 不能适应客户市场对天线外观感官与心理接受 度的新需求, 以及通信运营商的技术需求。
表( 1 ) 现有产品的技术指标
Figure imgf000003_0001
其次, 国内外公开发表的文献涉及的同类微波天线, 也同样存在体积大、 重量大、 垂直面半功率波束宽 度低、 增益低等技术缺陷。
例如, CN200710145376. 1 号专利文献涉及一种中继网络小区切换过程中的多天线模式选择方法。
CN200910085526. 3 号专利文献涉及一种基于天线波束交叠的中继传输方法。 CN201010222613. 1 号专利文献 涉及一种基站天线及基站天线单元。 R27919/08号专利文献涉及一种在分布式天线系统中处理信号的装置和 方法。 JP144655/06 号专利文献涉及一种天线装置。 PCT/JP2007/000969 号专利文献涉及一种使用自适应多 天线的移动通信系统。 JP144655/06 号专利文献涉及一种天线装置。 US60/545896 号专利文献涉及一种天线 模块。 PC- T/- US20(32/028275号专利文献涉及一种基站天线阵列。 PCT/JP01/02001号专利文献涉及一种阵列天 线基站装置。 PCT/US99/19117号专利文献涉及一种通过组合信道编码与空-时编码原理增强天线性能的技术。 US20110001682号、 US7508346号、 US7327317号专利文献涉及双极化微带天线。 这些相关天线相关技术不能 满足天线小型化、重量轻、高增益、可调驻波比等设计需求,不满足中国移动通信集团公司对新一代 TDSCDMA、 LTE系统的天线设定的性能要求和技术标准。
发明内容
本发明所要解决的技术问题是, 克服传统的微波低波段 ( 300MHz-6GHz )微带天线的缺点, 提供一种工 作频带宽、 增益高、 交叉极化隔离度好、 体积小、 重量轻的微波低波段多频带高增益双极化小型微带天
' 线。 说 明 书
本发明的技术方案是:
一种双极化微带天线, 包括至少一个金属辐射片, 即第一金属辐射片;
包括至少一个刻有一组双极化激励微槽线的共地金属层;
包括至少一个介质层, 即第一介质层, 优选所述介质层为谐振介质层, 再优选所述介质层为空气 i皆振 介质层或者其他优化谐振材料层; 所述介质层位于所述第一金属辐射片, 与所述共地金属层之间;
包括至少一组双极化微带激励线。
设置一个与第一金属辐射片连接的电压驻波比独立调整单元, 所述金属辐射片优选为圆形, 使得在调 整金属辐射片时金属辐射片与其它辐射调谐机构的之间的结构关系只改变一个高度参数而不改变有可能影 响天线最终辐射效果的其它参数, 从而简化和方便制造过程中电压驻波比的调整。
所述激励微槽为离散垂直的两个同尺寸 H, 即两个 H不相接触, 并且优选所述 H的尺寸相等, 该尺寸与 天线需要谐振辐射的'中心频段波长 λ相关, 用于保障双极化天线在两个极化方向上的辐射性能优化与一 致, 同时优选两个 Η 的横臂 "-" 相互垂直, 用于保障双极化天线良好的极化隔离度, 实验证明这样的优选 设计可以保证计划隔离度达到 25-30dBi以上。
本发明中所述的双极化微带天线实质意义是一种包含多重激励及多层调谐机构的微波天线。
所述第一介质层的厚度为 1 - 20mm, 实验证明在 2GHz-3GHz频段厚度优选为 4 - 10mm时天线信源输入端 电压驻波比最优, 可小于 1. 2 ; 所述双极化微带激励线与共地金属层之间有介质基片 6 , 根据微带线的基本 理论, 同时考虑介电常数及介质层厚度对微带激励线以及微槽激励线线宽 /和长度的影响, 所述介质基片的 厚度为 0. 2-5腿, 优选为 0. 5-2mm。
所述两个激凝微带线的前端形状为直线, 优选所述每个前端与一个 H 形激励槽的横臂 "-" 垂直, 并且 穿过各自 H 形激励槽的横臂 "-" 的中点; 所述两个激励线的前端相互离散垂直, 该垂直的优化设计用于保 障双极化天线的极化隔离, 用于让一个双极化天线当作两个独立天线使用; 不相接触的两个离散前端之间 相距的距离为 3, 8mm; 不相接触的两个离散前端之间的垂直度为 90度。 仿真和实 -睑结果证明上述设计及优 化设计数据能够获得较佳的辐射效率(增益)和双极化的极化隔离度,增益可达 8-8. 5dBi , 极化隔离度达到 25-3QdB i以上,
所述两个 H的大小、 宽度、 槽深、 槽宽、 形状完全相同; 优选所述每个 H的单个横臂 "-" 的两端与两 个竖臂 " I " 的中点相交; 优选所述每个 H 的单个橫臂 "-" 与两个竖臂 " I " 的形状均为直线; 优选所述 每个 H的单个横臂 "-" 与其两个竖臂 " I " 相互垂直; 优选至少一个 H的横臂 "-" 的虚拟延长线正好穿过 另一个 H的横臂 "-" 的中点; 优选穿过第一金属辐射片中心点的至少一条直线位于至少一个 H ¾^ "-" 一的垂¾上: 而直所速垂面正好 f过另一 Γ的横臂 "-" 的中点, 所述垂面与前一 H的槽底所在的平面垂直; 优选所述两个 H的槽底在同一平面上, 优选所述两个 H的槽面在同一平面上; 在所迷第一金属辐射片垂直投 射到所述共地金属层上的相同形状和大小的区域内, 优选所述每个 H单独占据相同形状和大小的半个所述区 域, 并优选把每个 H最大化, 或者把每个 H的横臂 "-" 长度最大化, 或者把每个 H的橫臂 "-" 与两个竖臂 " I " 的长度之和最大化, 再优选把每个 H 的横臂 "-" 与两个竖臂 " I " 的槽面积之和最大化, 以充分利 用有效面积保障天线的小型化优点。 仿真和实验结果证明上述设计及优化设计数据能够获得最佳的辐射效 率 (即天线增益), 天线单元增益达到 8-8. 5dBi。
设一置—第二介 层—, H所-述 介盾层^ H皆振 ^^盾层^再―优 - 所—迷- 膚层为 -空气 3皆振- ^质 -或^ ¾ 说 明 书
优化谐振材料层,
根据频段和波长以及微波电磁场基本理论以及微带微槽线基本理论, 通过仿真和实验选定所述天线辐 射片、 介盾层、 共地金属层与辐射效果相关的高度、 厚度、 长度等参数。
设置第二金属辐射片, 用以展宽天线的辐射频段宽度或形成相邻频段的双峰谐振效果; 优选第二金属辐 射片的材质、 厚度、 形状与第一金属辐射片相同; 优选第二金属辐射片的大小根据频段展宽的需要自由优 化; 优选第二金属辐射片的大小与第一金属辐射片大小关系遵循天线使用频段与展宽频段间的相对关系, 频率越高的金属片面积越小, 根据实验和仿真的综合结果两片尺寸大小近似等比与需展宽的两个相邻频段中 心频率的波长比; 优选把第二金属辐射片设置在第二介盾层上方, 从而把第一介质层分隔为两个区域, 下 部优选为所述槽腔, 上部优选为第一、 第二金属辐射片之间的第一介质层区域。 实验结果证明, 第二金属辐 射片的加入可以有效扩展天线频带宽度达 20%以上。
设置一个空气介质层, 即 A空气介质层, 它为与信源接口的激励微带线提供不受干扰的工作空间高度, 根据微波电磁场基础理论, 该高度需大于第一介质基片厚度的 3 - 10倍, 介盾基片的介电常数越低该倍数应 越大; 优选设置一个金属反射共地底板, 它用于为辐射单元提供良好的背向辐射隔离; 并为信源部分 /馈元 部分 /辐射单元部分提供方便的系统共地。
本 明的双¾化 带天^可作为天线单元, 通过二路功分器连接在一起, 连接体包括两个双极化天线单 元, 每个双极化天线单元中, 自上而下, 即沿着微波辐射方向的逆向依次具有第一空气介质层、 第一金属 辐射片、 第二空气介^:层、 双极化微槽共地金属层、 第一介质基片、 双极化微带激励线、 第三空气介质 层、 金属反射底板。
所述第一金属辐射片通过绝缘螺杆与天线罩连接, 所述接地金属片铺覆在第一介质基片的上端面, 并 与固定在金属反射底板上的空心金属支座固定连接, 所述第一介盾基片的下端面设有前端相互正交且不接 触的双极化微带激励线, 所述接地金属片的上端面开有两个相互正交且不接触的双极化受激辐射微槽, 所 述两个双极化受激辐射微槽与双极化微带激励线的前端分别正交对应, 实验证明上述正交、 垂直的对应关 系可以获得良好的双极化特性, 即极化隔离度高。
本发明的双极化微带天线可作为天线单元, 通过四路功分网絡连接在一起, 连接体可包括置于天线外罩 内的四个通过四路功分网络连接在一起的双极化天线单元, 所述四个双极化天线单元呈直线分布于天线罩 内, 每个双极化天线单元中, 自上而下依次具有第一空气介廣层、 第一金属辐射片、 第二空气介质层、 双 极化微槽共地金属层、 第一介质基片、 双极化微带激励线、 第三空气介质层、 金属反射底板。
所述第一金属辐射片通过绝缘螺杆与天线罩连接, 所述接地金属片铺覆在第一介质基片的上端面, 并 与固定在金属反射底板上的空心金属支座固定连接, 所述第一介质基片的下端面设有前端相互正交且不接 触^双极化 ¾t带激 所 接地金属片的上端面开有两个相互正交且不接触的双极化受激辐射微槽, 所 述两个双极化受激辐射微槽与双极化微带激励线的前端分别正交对应。
本发明的双极化微带天线可作为天线单元, 通过四路功分网络连接在一起, 连接体包括置于天线外罩内 的四个通过四路功分网络连接在一起的双极化天线单元, 所述双极化天线单元呈两行两列分布于天线罩 内, 每个双极化天线单元中, 自上而下依次具有第一空气介质层、 第一金属辐射片、 第二空气介质层、 双 极化微槽共地金属层、 第一介质基片、 双极化微带激励线、 第三空气介质层、 金属反射底板。
所述第一金属轾射片通过绝缘螺杆与天线罩连接, 所述接地金属片铺覆在第一介质基片的上端面, 并 m ^ X AKJ-的空心金 支座固定连接 , 所述第一介质基片的下端面设有前端相互正交且不接 触的双极化微带激励线, 所述接地金属片的上端面开有两个相互正交且不接触的双极化受激辐射微槽, 所 述两个双极化受激辐射微槽与双极化微带激励线的前端分别正交对应。
本发明还公开了一种双极化微带天线, 其特征在于, 包括置于同一天线外罩内的两个互相独立的双极 化天线, 所述双极化天线具有两个通过二路功分器连接在一起的双极化天线单元, 每个双极化天线单元 中, 自上而下依次具有第一空气介质层、 第一金属辐射片、 第二空气介质层、 双极化微槽共地金属层、 笫 一介质基片、 双极化微带激励线、 第三空气介质层、 金属反射底板。
所述第一金属辐射片通过绝缘螺杆与天线罩连接, 所述接地金属片铺覆在第一介盾基片的上端面, 并 与固定在金属反射底板上的空心金属支座固定连接, 所述第一介质基片的下端面设有前端相互正交且不接 触的双极化微带激励线, 所述接地金属片的说上端面开有两个相互正交且不接触的双极化受激辐射微槽, 所 述两个双极化受激辐射微槽与双极化微带激励线的前端分别正交对应。
本发明还公开了一种双极化微带天线, 其特征在于, 包括置于天线外罩内的八个通过八路功分'网络连 接在一起的双极化天线单元, 每个双极化天线单元中, 自上而下依次具有第一空气介质层、 第一金属辐射 片、 第二空气介质层、 双极化微槽共地金属层、 第一介盾基书片、 双极化微带激励线、 第三空气介盾层、 金 属反射底板。
所述第一金属辐射片通过绝缘螺杆与天线罩连接, 所述接地金属片铺覆在第一介盾基片的上端面, 并 与固定在金属反射底板上的空心金属支座固定连接, 所述第一介质基片的下端面设有前端相互正交且不接 触的玟极化微带激励线, 所述接地金属片的上端面开有两个相互正交且不接触的双极化受激辐射微槽, 所 述两个双极化受激辐射微槽与双极化微带激励线的前端分别正交对应。
本发明还公开了一种双极化微带天线, 其特征在于, 包括置于同一天线外罩内的四个互相独立的双极 化天线, 其特征是: 所述的双极化天线每列具有两个通过二路功分器连接在一起的双极化天线单元, 每个 双极化天线单元中, 自上而下依次具有第一空气介质层、 第一金属辐射片、 第二空气介质层、 双极化微槽 共地金属层、 第一介质基片、 双极化微带激励线、 第三空气介质层、 金属反射底板。
所述第一金属辐射片通过绝缘螺杆与天线罩连接, 所述接地金属片铺覆在第一介质基片的上端面, 并 与固定在金属反射底板上的空心金属支座固定连接, 所述第一介廣基片的下端面设有前端相互正交且不接 触的双极化微带激励线, 所述接地金属片的上端面开有两个相互正交且不接触的双极化受激辐射微槽, 所 述两个双极化受激辐射微槽与双极化微带激励线的前端分别正交对应。
本发明还公开了一种双极化微带天线, 其特征在于, 包括置于同一天线外罩内的四个互相独立的双极 化天线, 其特征是: 所述的双极化天线每列具有四个通过四路功分器连接在一起的双极化天线单元, 每个 双极化天线单元中, 自上而下依次具有第一空气介质层、 第一金属辐射片、 第二空气介质层、 双极化微槽 共地金属层、 第一介质基片、 双极化微带激励线、 第三空气介质层、 金属反射底板。
所述第一金属辐射片通过绝缘螺杆与天线罩连接, 所述接地金属片铺覆在第一介盾基片的上端面, 并 与固定在金属反射底板上的空心金属支座固定连接, 所述第一介质基片的下端面设有前端相互正交且不接 触的双极化微带激励线, 所述接地金属片的上端面开有两个相互正交且不接触的双极化受激辐射微槽, 所 述两个双极化受激辐射微槽与双极化微带激励线的前端分别正交对应。
本发明还公开了一种双极化微带天线, 其特征在于, 包括天线罩内自上而下依次具有第一空气介质 层、 第一金属辐射片、 第二空气介盾层、 接地金属片、 第一介质基片、 微带激励线、 第三空气介质层、 金 属反射底板。 说 明 书
所述接地金属片铺覆在第一介质基片的上端面, 并与固定在金属反射底板上的空心金属支座固定连 接, 所述接地金属片的上端面开有受激辐射微槽, 所述第一金属辐射片为圓形, 其中央固定有调节螺杆, 并通过该调节螺杆与天线罩中央内螺紋的螺接实现第一金属辐射片的固定。
应用本发明双极化微带天线的一种无线通信中继站, 其特征在于所述中继站包括至少一个双极化微带 天线, 优选所述双极化微带天线的输入端口与中继站重发端连接。
应用本发明双极化微带天线的一种无线通信基站, 其特征在于, 所述基站包含至少一个双极化微带天 线。
应用本发明双极化微带天线的一种通信系统及终端, 其特征在于, 所述系统及终端中, 至少一个设备 配置有所述双极化微带天线。 本发明的双极化微带天线实质意义是一种包含多重激励多层调谐机构的微波 天线。
具体而言, 本发明公开了一种双极化微带天线, 包括至少一个金属辐射片, 即第一金属辐射片; 包括至少一个刻有激励微槽线的共地金属层;
包括至少一个介质层, 即第一介质层, 优选所述介质层为谐振介质层, 再优选所述介质层为空气谐振 介质层或者其他优化谐振材料层; 所述介质层位于所述第一金属辐射片, 与所述共地金属层之间;
包括至少一组双极微带激励线。
设置一个与第一金属辐射片连接的方便电压驻波比独立调整的单元, 所述金属辐射片为圓形。
所述激励微槽为离散垂直的两个同尺寸 H, 即两个 ίΐ不相接触, 并且优选所述 Η的尺寸相等, 用于保障 双极化天线在两个极化方向上的性能一致, 同时优选两个 Η 的横臂 "-" 相互垂直, 用于保障良好的极化隔 离度。
所述介质层的厚度为 1 - 20mm, 优选为 4 - 10mm; 所述双极微带激励线与共地金属层之间有介廣基片 6 , 所述介盾基片的厚度为 0. 2-5mm, 优选为 0. 5 2mm。
所述两个激励线的前端形状为直线, 优选所述每个前端与一个 H形激励槽的横臂 "-" 垂直, 并且穿过 各自 H 形激励槽的横臂 "-" 的中点; 所述两个激励线的前端相互离散垂直, 该垂直的优化设计用于保障双 极化天线的极化隔离, 用于让一个双极化天线当作两个独立天线使用; 不相接触的两个离散前端之间相距 的距离为 3 - 8mm; 不相接触的两个离散前端之间的垂直度为 90度。
所述两个 H的大小、 宽度、 槽深、 槽宽、 形状完全相同; 优选所述每个 H的单个横臂 "-" 的两端与两 个竖臂 " I " 的中点相交; 优选所述每个 H 的单个横臂 "-" 与两个竖臂 " I " 的形状均为直线; 优选所述 每个 ΪΓ的单个横臂 ^与其两个竖臂 " I "—相互 ^置; 优选至少一个 H的橫臂 "-" 的虚拟延长线正好穿过 另一个 H的横臂 "-" 的中点; 优选穿过第一金属辐射片中心点的至少一条直线位于至少一个 H的横臂 "-" 的垂面上, 而且所述垂面正好穿过另一 H的横臂 "-" 的中点, 所述垂面与前一 H的槽底所在的平面垂直; 优选所述两个 H的槽底在 1¾一平面上, 优选所述两个 H的槽面在同一平面上; 在所述第一金属辐射片垂直投 射到所述共地金属层上的相同形状和大小的区域内, 优选所述每个 H单独占据相同形状和大小的半个所迷区 域, 并优选把每个 H最大化, 或者把每个 H的横臂 "-" 长度最大化, 或者把每个 H的横臂 "-" 与两个竖臂 " I " 的长度之和最大化, 再优选把每个 H的横臂 "-" 与两个竖臂 " I " 的槽面积之和最大化。
i殳一½二 4^质-层—, 选-所— ¾#二 -层-为- -^-层 τ再 4fe ^所 -述" ^质 -层舟空 " ¾b振-介盾-层或奇其-他- 优化谐振材料层。 说 明 书
所述第二介质层为一个槽腔, 用途是解决天线阵列化使用时减少阵列之间的影响; 所述槽腔的高度取 决于最终天线应用中具体确定的相关度 /隔离度参数。
所述槽腔优选为提供系统共地的金属支座在所述共地金属层上方形成的空腔, 所述槽腔深度为 0. 5 - 20mm; 如果所述第一、 第二介质层为空气层, 并且所述第二介质层上方不再设置其他辐射片或者其他构 件, 则所述第一、 第二介质层连为一体, 并且第二介质层为第一介质层的一部分。
根据频段和波长, 选定所述天线辐射片、 介质层、 共地金属层的高度、 长度。
设置第二金属辐射片; 优选第二金属辐射片的材盾、 厚度、 形状与第一金属辐射片相罔; 优选第二金 属辐射片的大小根据频段展宽的需要自由优化; 优选第二金属辐射片的大小与第一金属辐射片的比例近似 同比为需要调谐或展宽频带范围的对应频率的波长之比; 优选把第二金属辐射片设置在第二介质层上方, 从而把第一介质层分隔为两个区域, 下部优选为所述槽腔, 上部优选为第一、 第二金属辐射片之间的第一 介质层区域。
设置一个空气介质层, 即 A空气介质层, 它为与信源端口的激励微带线提供不受干扰的工作空间高度, 高度需大于第一介盾基片厚度的 3 - 10 倍, 介质基片的介电常数越低该倍数应越大; 优选设置一个金属反射 共地底板, 它用于为辐射单元提供良好的背向辐射隔离; 并为信源部分 /馈元部分 /辐射单元部分提供方便 的系统共地。
具体而言, 本发明的技术方案是:
至少一个金属辐射片, 即第一金属辐射片, 优选设置一个与其连接的方便电压驻波比独立调整的单 元, 优选所述金属辐射片为圆形, 该金属辐射片可以是各种形状, 其中矩形或方形性能较佳, 圓形更适合 生产化调试补偿, 综合效果更佳, 同样条件下, 其它形状可产生不同的天线性能; 所述电压驻波比独立调 整单元能独立操控所述金属辐射片;
至少一个刻有激励微槽线的共地金属层, 所述激励微槽优选为离散垂直的两个同尺寸 H, 即两个 H不相 接触, 并且优选所述 H的尺寸相等, 从而保障双极化天线在两个极化方向上的性能一致, 同时优选两个 H的 横臂 "_" 相互垂直, 保障良好的极化隔离度; 优选所述两个 H 的大小、 宽度、 槽深、 槽宽、 形状完全相 同; 优选所述每个 H 的单个橫臂 "-" 的两端与两个竖臂 " I " 的中点相交; 优选所述每个 H 的单个横臂 "-" 与两个竖臂 " I " 的形状均为直线; 优选所述每个 H的单个横臂 "-" 与其两个竖臂 " I " 相互垂直; 优选至少一个 H的横臂 "-" 的虚拟延长线正好穿过另一个 H的横臂 "-" 的中点; 优选穿过第一金属辐射片 中心点的至少一奈直线位于至少一个 H的横臂 "-" 的垂面上, 而且所述垂面正好穿过另一 H的横臂 "- " 的 中点, 所述垂面与前一 H的槽底所在的平面垂直; 优选所述两个 H的槽底在同一平面上, 优选所述两个 H的 槽面在同一平面上; 在所述第一金属辐射片垂直投射到所述共地金属层上的相同形状和大小的区域内, 优 选所述每个 H单独占据相同形状和大小的半个所述区域, 并优选在符合本段全部必要和优选限定条件的基础 上, 把每个 H最大化, 或者把每个 H的横臂 "-" 长度最大化, 或者把每个 H的横臂 "_" 与两个竖臂 " I " 的长度之和最大化, 再优选把每个 H 的橫臂 "-" 与两个竖臂 " I " 的槽面积之和最大化; 实验发现, 优选 的上述双 H 结构能大大提高本发明的效果; 实验还发现, 优选的上述把每个 H 的横臂 "-" 与两个竖臂
" I " 的槽面积之和最大化的技术方案, 以充分利用有效面积保障天线的小型化优点。 仿真和实验结果证 明上述设计及优化设计数据能够获得最佳的辐射效率 (即天线增益), 天线单元增益达到 8-8. 5dBi ;
至少一个介质层, 即第一介质层, 优选所述介质层为空气谐振介质层或者其他优化谐振材料层; 所述 夺质层位 所迷-第一金属- 射片, 与斤述" 地-金属-层之-间了 优逸所 ¾H层―的 度! ¾ 1 - '2¾ηι,优 i£¾ 4 - 说 明 书
1 Oram; 所述第一介质层为天线信源端口电压驻波比调谐的重要构件;
至少一组双极微带激励线, 优选所述两个激励线的前端形状为直线, 优选所述每个前端与一个 H形激励 槽的横臂 "-" 垂直, 并且穿过各自 H形激励槽的横臂 "-" 中点; 所述两个激励线的前端相互离散垂直, 该 垂直的优化设计可保障双极化天线的极化隔离, 优良的极化隔离可以让一个双极化天线近当作两个独立天 线使用; 不相接触的两个离散前端之间相距的距离、 垂直度是影响双极化天线极化隔离度的重要参数之 一,本发明优选所 巨离为 3 - 8mm,本发明优选所述垂直度为 90度;
优选设置第二介质层, 优选所述第二介质层为谐振介质层, 再优选所述介质层为空气谐振介质层或者 其他优化谐振材料层; 优选所迷第二介质层为一个槽腔, 所迷槽腔优逸为提供系统共地的金属支座在所迷 共地金属层上方形成的空腔, 所述槽腔深度优选为 1 - 10mm, 所述第二介质层为参与频段匹配和展宽的调谐 构件, 如果所述第一、 第二介度层为空气层, 并且所述第二介庸层上方不再设置辐射片或者其他构件, 则 所述第一、 第二介质层连为一体, 并且第二介质层为第一介质层的一部分;
优选设置第二金属辐射片, 用以展宽天线的辐射频段宽度或形成相邻频段的双峰谐振效果; 优选第二金 属辐射片设置一个与其连接的电压驻波比第二独立调整羊元; 优选第二金属辐射片的大小、 材质、 厚度、 形状大小关系遵循天线使用频段与展宽频段间的相对关系, 频率越高的金属片面积越小 , 根据实 -睑和仿真的 综合结果两片尺寸大小近似等比与需展宽的两个相邻频段中心频率的波长比; 优选所述电压驻波比第二独 立调整单元能独立操控所述第二金属辐射片; 优选把第二金属辐射片设置在第二介质层上方, 从而把第一 介质层分隔为两个区域, 下部优选为所述槽腔, 上部优选为第一、 第二金属辐射片之间的第一介质层区 域; 实验结果证明, 第二金属辐射片的加入可以有效扩展天线频带宽度达 20%以上。
, 优选设置一个空气介质层, 即 A空气介质层, 它为与信源接口的激励微带线提供不受干扰的工作空间高 度, 根据微波电磁场基础理论, 该高度需大于第一介盾基片厚度的 3-10倍, 介质基片的介电常数越低该倍 数应越大;
优选设置一个金属反射共地底板, 它为辐射单元提供良好的背向辐射隔离; 并为信源部分 /馈元部分 / 辐射单元部分提供方便的系统共地;
优选设置天线罩覆盖上述全部组件和介质层, 并优选使所述第一金属辐射片通过螺杆与天线罩连接; 所述第一金属辐射片既可与天线罩连接, 也可与第二空气槽腔层连接 /固定, 优选为所述第一金属辐射片通 过螺杆与天线罩连接, 优选所迷螺杆与第一金属辐射片中心固定连接, 并通过天线罩中心的内螺纹孔与天 线罩螺纹连接; 所述螺杆用于固定最终优化的金属辐射片与共地金属层的高度, 螺杆可在规模化制造环节 微调所述高度, 补偿各类加工和装配误差以保证天线达到最优化的全面综合设计性能;
所述天线罩为非金属天线罩, 或者没有屏蔽作用或屏蔽作用在工程角度可忽略的天—线罩; 所述天 -线罩 的作用是美观、 防护, 包括抵御外界环境(寒暑冷热、 云雨风沙、 暴晒水冻、 人工触碰、 鸟兽碰撞等)对天 线内部结构的影响; 所述天线罩优选为 PVC防护罩;
优选所述双 Η形受激辐射微槽的 H形中间横臂 " - " 与接地金属片的 X轴或 Υ轴的夹角优选为正、 负 45 度; 夹角正负 45度是为了形成符合信源要求的正负 45度的双极化天线; 但是, 正负 45度不是唯一的选择; 0度 /90度是另一种常用的双极化选择的模式;
所述第一、 第二金属辐射片优选为电性能稳定 /轻质 /廉价的金属薄片, 形状可选矩形 /方形 /圆形 /椭圓 形, 优选为圆形;
所迷第一、 第二介质层优选与共地金属层等宽, 材质以空气介质为优, 但不排除使用其它低介电损耗 说 明 书
介质板材;
所述共地金属层优选能在天线工作频段形成优良性能的微带激励线 /微槽激励线布局, 并不影响天线性 能的任何 PCB排版; 所述共地金属层优选使用导电性能良好的金属材质, 优选为铜 /铝材质;
优选沿着微波辐射方向正向, 在第一金属辐射片外侧设置一个空气介质层, 即 B空气介质层, 优选 B空 气介质层位于所述外罩与所迷第一金属辐射片之间。
本发明的技术方案, 以及应用该技术方案的第一具体设计方案、 第二具体设计方案具有如下效果: 充分利用接地金属片的有效面积, 使一组双极化微槽能共用一个金属辐射片;
使用介质基片缩小了天线辐射单元的面积;
将多层辐射结构的双极化微带天线设计在一个相对较小的体积内, 布局巧妙, 结构紧凑。 实践证明本 发明天线工作频相对带宽可达 20%以上, 增益高, 超过 8. 5dBi, 双极化交叉隔离度好, 可达 25-30dB; 本发明的一对双极化天线辐射单元就能支持一个 2 2的 MIM0系统, 且宜于组成天线阵列, 并具备体积 小、 重量轻的优点, 因此对天线安装空间和承重要求低, 加工制作和安装、 维护都比较方便, 可有效节省 天线安装成本和维护成本, 在移动通信和互联网技术领域中能得到广泛应用;
本发明的产品长度大大缩小, 比目前中国移动通信集团的 3G现网中使用一期单极化智能天线同比减小 75%以上, 重量减轻 70¾以上; 比二期改进型的的 TD-SCDMA双极化智能天线体积同比缩小 60%以上, 重量减 轻 50%以上;
本发明的产品变薄, 天线主体部分可控制在 40 以内;
本发明的天线小型化的关键是单元振元增益的大大提升, 增益高于折合振子天线等馈元约 2. 5dB; 尤 其对于阵列天线, 可分别独立调谐以使阵列天线电压驻波比 <1. 2-1. 2 , 体积是同类同比性能的振子天线及 天线阵列的 25»/»_50¾, 重量为其 30%- 50%; 本发明的产品优选设置激励层、 馈源层、 谐振槽变换层、 1-3层调 谐辐射层、 辐射补偿层等 5-10 层的结构, 实现了多重微波激励与多层调谐构件的结构, 将常规采用的振子 天线的线辐射机理转变成了面辐射机理, 提高了单位天线振元的辐射效率, 从而获得单位振元的高增益, 通过仿真计算与实验证明单位天线振元增益可以达到 8. 5dBi ;
本发明的空气 /介盾 /金属辐射片在极小空间的密集布置, 为展宽频段和优化匹配设计; 通过这样的结 构设计, 本发明的天线可形成双峰或多峰频段使用 (类似驼峰样式的天线谐振特性) , 对拥有相隔一定频率 间隔并难以在常规天线中由一个天线进行宽带化达到效果的运营商客户而言, 这样的特性可以使本发明在 一个极小型化的天线结构中实现多频段使用的―优异经济价值。
本发明的第一具体设计方案:
本发明的技术方案, 在仅设置一个金属辐射片的情况下, 可优化为如下优选的第一具体设计方案: 一种微波低波段多频带高增益双极化小型微带天线, 其特征是天线罩内自上而下, 即沿着微波辐射方 向逆向依次具有第一空气介质层、 第一金属辐射片、 第二空气介盾层、 双极化微槽激励共地金属层、 第一 介质基片、 双极化微带激励线、 第三空气介质层、 金属反射底板; 第一具体设计方案中, 第一空气介质层 为本发明上述技术方案中的 B空气介质层; 第一具体设计方案中, 第二空气介廣层即本发明上述技术方案中 一介质 -层;一第 -一具体被计方案中" m —气 质—层—即 «— ϊΐ拔术方案中的 Λ空气介质层; 第一具体设计方案中, 所述第一金属辐射片通过螺杆与天线罩连接, 所述接地金属片的下端面与第一 介质基片的上端面贴合成一体, 并与固定在金属反射底板上的空心金属支座固定连接, 所述第一介质基片 的下端面设有前端相互正交且不接触的双极微带激励线, 所述接地金属片的上端面开有一组相互正交且不 接触的双极化受激辐射微槽, 所述一组双极化受激辐射微槽与议极化微带激励线的前端分别正交对应。
本发明的第二具体设计方案:
本发明的技术方案, 在至少设置二个金属辐射片的情况下, 可在第一具体设计方案的基础上优化为如 下优选的第二具体设计方案:
1 )、 具有位于第二空气介廣层中的第二金属辐射片和第二介质基片, 所述第二金属辐射片的下端面与第 二介质基片的上端面贴合成一体, 并与固定说在金属反射底板上的空心金属支座固定连接, 在第二介质基片 的下方形成笫四空气介盾层, 即本发明上述技术方案描述中的第二介质层。 该技术设计有利于进一步展宽 天线的工作频带宽度特性。
2 ) 、 具有位于第二空气介质层中的第二金属辐射片和介质基片座, 所述第二金属辐射片固定在介盾基
片座上, 介质基片座固定在空心金属支座上, 在第二金属辐射片的下方形成第四空气介质层。 该技术方案 同样有利于进一步增大天线的工作频带宽度。
3 ) 、 所述螺杆与第一金属辐射片中心固定连接, 并通过天线罩中心的内螺纹孔与天线罩螺紋连接。 该 技术方案有利于在天线罩外面通过旋转螺杆微调第一金属辐射片与受激辐射微槽之间的高度, 方便调节天 线输入输出端口电压驻波比, 与微带激励线阻抗匹配, 提高天线增益。
4 ) 、 所述第二金属辐射片与第一金属辐射片之间还具有平行于第一金属辐射片的第三金属辐射片, 所 述第三金属辐射片与第二金属辐射片、 空心金属支座绝缘, 第三金属辐射片与第二金属辐射片之间形成第 五空气介质层。
5 ) 、 所述双极化天线单元具有与第三金属辐射片下端面贴合的第三介质基片, 所述第三介廣基片通过 绝缘支座固定于第二介盾基片上方。
6 ) 、 所述第一金属辐射片为圓形, 方便调节天线输输入输出端口电压驻波比, 与微带激励线阻抗匹 配, 提高天线增益。
7 ) 、 所述第二金属辐射片为圆形或方形, 方便调节天线输入输出端口电压驻波比, 与微带激励线阻抗 匹配, 提高天线增益。
8 ) 、 所述接地金属片上的两个受激辐射微槽尺寸相等, 呈双 "H" 形, 双 "H" 形的中间横臂相互正 交。 该技术方案有利于提升双极化辐射单元的增益 (亦即电磁场到电磁波的转换效率或即辐射效率) , 用以 在较小的体积 /辐射面积内实现天线单元的高增益。
9 ) 、 所述双 "H" 形受激福射微槽的 "H" 形中间橫臂与接地金属片的 X轴或 Y轴的夹角为正、 负 45度 或 0度 / 90度, 从而实现 ± 45° 或 0° / 90° 的双极化天线辐射。
本发明的小型双极化 ( ± 45° 极化)天线单元的检测实验结果, 即实施例 17 的检测数据显示实测与仿 真结果基本一致, 即增益约为 8. 5dBi ; 检测图显示, 水平与垂直波束宽度均为 70-75。 , 前后比大于 25dB。 本发明不同于常规半波振子类型的天线, 釆用多重微波激励与多层调谐构件的的面辐射基理, 莸得 元振 元的高增益, 常规振子天线单元增益多为 5. 5dBi , 本发明的单元增益为 8. 5dB i ; 说 明 书
实际天线应用过程中, 通常用多天线单元的阵列化来获得增益的提高; 例如, 本发明可采用 4个双极化 单元阵列实现了 14. 5dBi的增益; 本发明的天线具有极为优秀的小型化特性: 在同等天线增益特性下天线体 积为常规天线的 1/3 - 1 /5以下;
本发明的天线单元组成阵列天线时, 可灵活组合实现不同增益、 不同波束宽度要求的天线: 单元波束 水平与垂直角度均为 75° , 不同方向倍增天线单元数量时, 增益可倍增, 波束宽度倍减;
本发明的天线单元具有高隔离度的特性, 同极化 /异极化隔离度都可大于 25dB, 并且多天线组阵使用 时, 阵列的辐射方向图一致性良好, 在 MiMo天线中的应用效果更佳;
本发明的天线辐射单元馈元采用平面结构的微带激励模式, 端口电压驻波比调试方便, 利于与信源电路 的一体化集成设计;
上述发明效果在内部保密测试的实际产品中得到了验证。 例如, 实现本发明目的, 达到本发明技术效 果的 TD-SCDMA基站采用 丽- TD2814-AF8 通道双极化智能天线, 每通道增益可达 14-14. 5dBi,典型尺寸为 405 *420*35 mm3, 重量小于 5 kg, 迎风面积仅为 0. 17m2, 均远小于目前常用的天线; 利于隐蔽与美化, 淡化 业主敏感度; 共站建设可以共用抱杆, 减少网络建设投入; 产品重复性好, 一致性强, 运营维护方便。
MM-TD2814-AF天线的技术参数如下表(2 )
表(2 ) TD2814- AF天线主要技术指标
名称 L -TD-2814-AF
频率范围 1880- 2025MHz
增益(dBi) 14. 5 ± 0. 2
电下倾角 0度
垂直面 >18
半功率波束宽度
水平面 >75
极化方式 + 45度极化
前后比 > 25
同极化隔离度
>30
(dB)
异极化隔离度
>30
(dB)
输入阻抗 50 Ω
电压驻.波比 1^4
接口形式 ( 4+1+4 ) - N
尺寸 405*419* 34
重量(kg ) 4. 8
雷电保护 直流接地
最大抗风速 200km/h
工作温度。 C -40— +60
防水等级 5A
天线罩材料 ABS 说 明 书
本发明的天线可应用于任何使用微波天线的固定、 移动设备, 包括但是不限于各类移动终端: 手机、 手 持电视、 笔记本电脑、 GPS 定位仪; 交通车辆或道路监视器, 通信中继站、 转发站、 发射台等, 尤其适合应 用于复杂的密集城区或高层建筑群的基站 /分布基站 I网 化设备等的天线系统。
附图说明
下面结合附图对本发明作进一步的说明。
图 1为本发明实施例 1剖视图。
图 2为本发明实施例 1去掉天线罩后的俯视图。
图 3为本发明实施例 2剖视图。
图 4为实施例 1反射系数与隔离度测试曲线图。
图 5为实施例 2反射系数与隔离度测试曲线图。
图 6为本发明实施例 3剖视图。
图 7为实施例 7说明图。
图 8为实施例 8说明图,
图 9为实施例 9说明图。
图 10为实施例 10说明图。
图 11为实施例 11说明图。
图 12为实施例 12说明图。
图 13为实施例 13说明图。
图 14为实施例 14说明图。
图 15为实施例 15说明图。
图 16为一组双极化通道驻波图。
图 Π为校准通道幅相图。
图 18为单端口水平方向实测图。
图 19为单端口垂直方向实测图。
图 20为 1-3-5- 7端口水平方向实测图。
图 21为 2-4-6-8端口水平方向实测图。
具体实施方式
实施例 1: TD- SCDMA双极化天线
本实施例的微波低波段多频带高增益双极化小型微带天线(为 TD- SCD A双极化天线, 中国移动通信集 团在 3G牌照下获得的 TD-SCDMA频段是 1880 ~ 1920 MHz、 2010 - 2025 MHz ) , 如图 1、 图 2所示, 其天线罩 1 内自上而下依次具有第一空气介质层 2、 第一金属辐射片 3、 第二空气介质层 4、 接地金属片 5、 第一介质 基片 6、 双极微带激励线 7、 V 、 第三空气介质层 8、 金属反射底板 9 , 所述第一金属辐射片 3通过螺杆 1 0 与天线罩 1连接, 所述接地金属片 5铺覆在第一介质基片 6的上端面, 并与因定在金属反射底板 9上的空心 金属支座 11固定连接, 所述第一介质基片 ό的: 面 JJ设有―前 -端相—互一 ^接舶妁"¾义-极-微带T励 ¾Γ7·, W 说 明 书
述接地金属片 5 的上端面开有两个相互正交且不接触的受激辐射微槽 12、 12 ' , 所述两个受激辐射微槽 12、 12' 与双极微带激 线 7、 7' 的前端分别正交对应。 本例中, 第一金属辐射片 3为圓形, 螺杆 10与第 一金属辐射片 3中心固定连接, 并通过天线罩 1中心的内螺纹孔与天线罩 1螺纹连接。 该技术方案有利于在 天线罩外面通过旋转螺杆微调第一金属辐射片与受激辐射微槽之间的高度, 方便调节天线输入输出端口电 压驻波比, 与微带激励线阻抗匹配, 提高天线增益, 圓形的金属辐射片在调节过程中只存在高度变化量, 因此调节更方便。
如图 2所示, 接地金属片 5上的两个受激辐射微槽 12、 12' 尺寸相等, 呈双 "H" 形, 双 "H" 形的中间 橫臂相互正交。 该技术方案有利于将双极化受激辐射微槽开在面积较小的接地金属片上, 用以实现天线的 小型化。 双 "H" 形受激福射微槽 12、 12' 的 "H" 形中间横臂与接地金属片的 X轴或 Y轴的夹角为正、 负 45度。 该技术方案有利于将双极化受激辐射微槽开在面积较小的接地金属片上, 用以实现天线的小型化。
如图 4所示, 为天线实测的反射系数曲线图, S11为端口 1的反射系数, S22为端口 2的反射系数。 可 以看出在 TD-SCDMA频段内双极化工作的两个端口的反射系数均小于 -17dB, 带宽指标均达到要求(相对带宽 大于 8% )。 图中还给出了双极化天线两端口间的实测隔离度曲线图, S21 (S12)为端口 1和端口 2之间的隔离 度, 可以看出在带宽范围内隔离度小于 -32dB。 测试结果表明, 双极化天线的两个端口互相隔离效果理想, 可以彼此独立的工作。
经实测, 天线增益在测试频率 1900MHz时的增益为 8. 9dBi , the ta面半功率波瓣宽度为 83°
实施例 2: TD-SCDMA频段和 TD-LTE频段天线
本实施例的微波低波段多频带高增益双极化小型微带天线(覆盖 TD- SCDMA频段和 TD-LTE频段, WCDMA 频段 1920 - 1980 MHz , 2110 - 2170 MHz, TD—SCDMA频段 1880— 1920 MHz, 2010 - 2025 MHz. ) , 如图 3所 示, 其以实施例 1的结构为基础, 还设有位于第二空气介质层 4中的第二金属辐射片 13和第二介质基片 14 , 所述第二金属辐射片 13的下端面与第二介质基片 14的上端面贴合成一体, 并与固定在金属反射底板 9上的 空心金属支座 11固定连接, 在第二介廣基片 14的下方形成第四空气介质层 15。 该技术方案有利于进一步增 大天线的工作频带宽度。 所述第二金属辐射片 13 为圆形, 方便调节天线输入输出端口的电压驻波比, 与微 带激励线阻抗匹配, 提高天线增益。
如图 5所示, 图中给出天线实测的反射系数曲线图, 可以看出在 TD- SCDMA和 WCDMA频段内双极化工作 的两个端口的反射系数均小于- 17dB, 带宽指标均达到要求。 可知由于第二片辐射片的加入, 使该天线在原 有单片辐射片带宽效果及各项性能指标不变的基础上有效展宽了天线的工作频带宽度特性, 相对带宽达到 22. 5»/。。 图中还给出了双板化天线两端口间的实测隔离度曲线图, 可以看出在带宽范围内隔离度小于 -32dB。 测试结果表明, 双极化天线的两个端口互相隔离效果理想, 可以彼此独立的工作。
此外, 还有一种于本例方案等同的技术方案, 即第二空气介盾层中设置第二金属辐射片和介质基片
'座, 第二金属辐射片固定在介质基片座上, 介质基片座固定在空心金属支座上, 在第二金属辐射片的下方 形成第四空气介盾层。 该技术方案同样有利于进一步增大天线的工作频带宽度。
实施例 3: 三金属辐射片双极化小型微带天线
如图 6所示, 其以实施例 2的结构为! 在第二金属辐射片 13与第一金属辐射片 3之间还设有第三 金属辐射片 18和第三介质基片 17 , 第三金属辐射片 18平行于第一金属辐射片 3, 所述 ¾^金 賴射 Jj 与一第 空心金属支座 11绝缘, 第三金属辐射片 18的下端面与第三介盾基片 17的上端面贴 说 明 书
合成一体, 并与固定在第二介廣基片上 14的绝缘支座 19 固定连接, 在第三介质基片 I7的下方形成第五空 气介质层 16。
测试结果表明, 实施例 3在实施例 2中天线原有电气性能指标不变的前提下工作带宽进一步展宽, 相对 带宽可达 40%左右。
此外, 还有一种与本例方案等同的技术方案, 即第二金属辐射片与第一金属辐射片之间设有平行于第 一金属辐射片的第三金属辐射片, 所述第三金属辐射片与第二金属辐射片、 空心金属支座绝缘, 第三金属 辐射片与第二金属辐射片之间形成第五空气介质层。 该技术方案同样有利于进一步增大天线的工作频带宽 度。
实施例 4: 方便调试电压驻波比的小型多层微带天线
本实施例公开了一种方便调试电压驻波比的小型多层微带天线, 其特征是天线罩内自上而下依次具有 第一空气介盾层、 第一金属辐射片、 第二空气介质层、 接地金属片, 第一介质基片、 微带激励线、 第三空 气介质层、 金属反射底板, 所述接地金属片铺覆在第一介盾基片的上端面, 并与固定在金属反射底板上的 空心金属支座固定连接, 所述接地金属片的上端面开有受激辐射微槽, 所述第一金属辐射片为圆形, 其中 央固定有调节螺杆, 并通过该调节螺杆与天线罩中央内螺紋的螺接实现第一金属辐射片的固定。
本方案有利于在天线罩外面通过旋转螺杆微调第一金属辐射片与受激辐射微槽之间的高度, 方便调节 天线输入输出端口电压驻波比, 与微带激励线阻抗匹配, 提高天线增益。 由于第一金属辐射片为圆形, 因 此调节时仅存在一个变量, 因此调节十分方便、 快捷, 大大提高了生产效率。
本实施例的技术方案进一步描述如下:
1、 第一介质基片的下端面设有前端相互正交且不接触的双极微带激励线, 所述接地金属片的上端面开 有两个相互正交且不接触的受激辐射微槽 , 所述两个受激辐射微槽与双极微带激励线的前端分别正交对 应。 2、 具有位于第二空气介质层中的第二金属辐射片和第二介质基片, 所述第二金属辐射片的下端面与第 二介廣基片的上端面贴合成一体, 并与固定在金属反射底板上的空心金属支座固定连接, 在第二介质基片 的下方形成第四空气介质层. 该技术方案有利于进一步展宽天线的工作频带宽度特性。 3、 具有位于第二空 气介廣层中的第二金属辐射片和介质基片座, 所述第二金属辐射片固定在介盾基片座上, 介质基片座固定 在空心金属支座上, 在第二金属辐射片的下方形成第四空气介质层。 该技术方案同样有利于进一步增大天 线的工作频带宽度。 4、 所述第二金属辐射片为圓形, 方便调节天线输入输出端口的电压驻波比, 与微带激 励线阻抗匹配, 提高天线增益。 5、 所述接地金属片上的两个受激辐射微槽尺寸相等, 呈双 "H" 形, 双 "H" 形的中间横臂相互正交。 该技术方案有利于将双极化受激辐射微槽开在面积较小的接地金属片上, 用 以实现天线的小型化。 6、 所迷双 "H" 形受激辐射微槽的 "H" 形中间横臂与接地金属片的 X轴或 4 的-夹 角为正、 负 45度。 该技术方案进一步充分利用接地金属片的有效面积, 用以实现天线的小型化。 本实用新型将双极化微带天线和多层辐射结构设计在一个相对较小的体积内, 布局巧妙, 结构紧凑。 实践证明本实用新型天线工作频相对带宽可达 20»/。以上, 增益高 9dBi , 双极化交叉隔离度好( 30dB ) , —对 双极化天线单元就能支持一个 2 x 2 的 MIM0 系统, 由于体积小、 重量轻, 因此对天线安装空间和承重要求 低, 加工制作和安装、 维护都比较方便, 宜于组成天线阵列, 可有效节省天线安装成本和维护成本, 在移 动通信和互联网技术领域中得到广泛应用。
本实施例的方便调试电压驻波比的小型多层微带天线, 具体设计如图 1、 图 2所示, 其天线罩 1内自上 而下依次具有第一空气介质层 2、 第一金属辐射片 3、 第二空气介盾层 4、 接地金属片 5、 第一介质基片 6、 微带激励线 7、 7' (本实施例为双极微带天线) 、 第三空气介质层 8、 金属反射底板 9 , 所述第一金属辐射 片 3通过螺杆 10与天线罩 1连接, 所述接地金属片 5铺覆在第一介质基片 6的上端面, 并与固定在金属反 射底板 9上的空心金属支座 11 固定连接, 所述接地金属片 5的上端面开有受激辐射微槽 12、 12' (本例为 双极微带天线) , 所述第一金属辐射片 3为圓形, 其中央固定有调节螺杵 10, 并通过该调节螺杆 10与天线 罩 1中夬内螺纹的螺接实现第一金属辐射片 3的固定。 所述第一介质基片 6的下端面敷设有前端相互正交且 不接触的双极微带激励线 7 , 所述接地金属片 5 的上端面开有两个相互正交且不接触的受激辐射微槽 12 , 12' , 所述两个受激辐射微槽 12、 12' 与默极微带激励线 7、 T 的前端分别正交对应。
如图 2所示, 接地金属片 5上的两个受激辐射微槽 12、 12' 尺寸相等, 呈双 'Ή" 形, 双 "Η" 形的中间 说
横臂相互正交。 该技术方案有利于将双极化受激辐射微槽开在面积较小的接地金属片上, 用以实现天线的 小型化。 双 "Η" 形受激福射微槽 12、 12' 的 "Η" 形中间横臂与接地金属片的 X轴或 Υ轴的夹角为正、 负 45度。 该技术方案进一步充分利用接地金属片的有效面积, 用以实现天线的小型化。
实施例 5: 方便调试电压驻波比的小型多层微带天线
在实施例 4的 出上, 本实施例的方便调试电压驻波比的小型多层微带天线, 如图 3所示, 其以实施例 4的结构为基础, 还设有位于第二空气介质层 4中的第二金属轾射片 13和第二介质基片 14 , 所述第二金属 辐射片 13的下端面与第二介质基片 14的上端面贴合成一体, 并与固定在金属反射底板 9上的空心金属支座 11固定连接, 在第二介质基片 14的下方形成第四空气介质层 15。 该技术方案有利于进一步增大天线的工作 频带宽度。 所述第二金属轾射片 13 为圓形, 方便调节天线输入输出端口电压驻波比, 与微带激励线阻抗匹 配, 提高天线增益。
此外, 还有一种于本例方案等同的技术方案, 即第二空气介质层中设置第二金属辐射片和介质基片 座, 第二金属辐射片固定在介质基片座上, 介质基片座固定在空心金属支座上, 在第二金属辐射片的下方 形成第四空气介盾层。 该技术方案同样有利于进一步增大天线的工作频带宽度。
实施例 6: 天线内置式无线通信中继站
本实施例的技术方案如下: 一种天线内置式无线通信中继站, 具有中继站主体机箱, 一个与中继站配 套的天线, 其特征是还具有中继站弧形上盖, 所述天线置于中继站弧形上盖内, 并通过螺钉与中继站弧形 上盖固定连接, 天线的输入端口与中继站重发端直接连接, 所述中继站弧形上盖通过螺钉与中继站主体机 箱固定连接。
本实施例的天线内置式无线通信中继站, 具有中继站主体机箱, 一个与中继站配套的天线, 其改进之 在于还具有中继站弧形上盖, 天线置于中继站弧形上盖内, 并通过螺钉与中继站弧形上盖固定—连 -接, 天 线的输入端口与中继站重发端直接连接, 所述中继站弧形上盖通过螺钉与中继站主体机箱固定连接。 本例 中, 所述的天线为多层结构的微带天线, 具体地说, 是一种多层结构的双极化小型微带天线。
本实施例的天线为吸顶式。 本实施例的有益效果为: 将天线置于无线通信中继站主体机箱内, 结构紧 凑, 节省连接电缆, 成本低, 工程安装方便, 适于无线通信室内分布系统使用, 不但外形美观, 而且天线 传输性能好, 可靠性高。
实施例 7: 微型双极化微带天线
拿实" "施-例 T技^^方一案 种— 化微帶 线, 其特征是包括置于天线外罩内的两个通过二路 说 明 书
功分器连接在一起的双极化天线单元, 每个双极化天线单元中, 自上而下依次具有第一空气介质层、 第一 金属輻射片、 第二空气介质层、 接地金属片、 第一介质基片、 双极微带激励线、 第三空气介质层、 金属反 射底板, 所述第一金属辐射片通过绝缘螺杆与天线罩连接, 所述接地金属片铺覆在第一介质基片的上端 面, 并与固定在金属反射底板上的空心金属支座固定连接, 所述第一介质基片的下端面设有前端相互正交 且不接触的双极微带激励线, 所述接地金属片的上端面开有两个相互正交且不接触的受激辐射微槽, 所述 两个受激辐射 £槽与双极」 ί鼓带激励线的前端分别正交对应。
本实施例的有益效果如下: 本实施例将微带、 微槽、 多层理论结合为一体, 具有体积小巧、 结构紧 凑, 质量轻的优点; 并且天线的能量辐射性能好, 可靠性高; 本天线采用直线型排列方式, 加之具有面状 发射源, 使微波线束具有更好的方向选择性; 双极化天线由有两个天线单元构成, 增益可达 l ldBi , 满足需 要; 天线内部均采用微带走线, 节省了连接电缆的使用量, 降低了成本; 由于体积小巧质量轻, 使安装更 加方便。 本微型双极化微带天线经测试完全满足运营商相关的电气、 机械等性能指标要求。
本实施例的微型双极化微带天线, 如图 7、 图 8 所示, 包括置于天线外罩 1 内的两个通过二路功分器 ( Wi lkinson等功率分配器)连接在一起的双极化天线单元 Bl、 B2, 每个双极化天线单元(以双极化天线单 元 B1为例)中, 如图 2所示, 自上而下依次具有第一空气介质层 2、 第一金属辐射片 3、 第二空气介质层 4、 接地金属片 5、 第一介质基片 6、 双极微带激励线 7、 V 、 第三空气介盾层 8、 金属反射底板 9, 所述第一金 属辐射片 3通过绝缘螺杆 10与天线罩 1连接', 接地金属片 5铺覆在第一介质基片 6的上端面, 并与固定在 金属反射底板 9上的空心金属支座 11 固定连接, 第一介质基片 6的下端面设有前端相互正交且不接触的双 极微带激励线 7、 7' , 接地金属片的上端面开有两个相互正交且不接触的受激辐射微槽 12、 12' , 两个受 激辐射微槽 12、 12' 与双极微带激励线 7、 V 的前端分别正交对应。 本例中, 第一金属辐射片 3为圓形, 绝缘螺杆 10与第一金属辐射片 3中心固定连接, 并通过天线罩 1 中心的内螺纹孔与天线罩 1螺纹连接。 该 技术方案有利于在天线罩外面通过旋转螺杆微调第一金属辐射片与受激辐射微槽之间的高度, 方便调节天 线输入输出端口电压驻波比, 与微带激励线阻抗匹配, 提高天线增益, 圓形的金属辐射片在调节过程中只 存在高度变化量, 因此调节更方便。
如图 7所示, 接地金属片 5上的两个受激 射微槽 12、 12' 尺寸相等, 呈双 "H" 形, 双 "H" 形的中间 横臂相互正交。 该技术方案有利于将双极化受激辐射微槽开在面积较小的接地金属片上, 用以实现天线的 小型化。 双 "H" 形受激辐射微槽 12、 12' 的 "H" 形中间横臂与接地金属片的 X轴或 Y轴的夹角为正、 负 45度。 该技术方案有利于将双极化受激辐射微槽开在面积较小的接地金属片上, 用以实现天线的小型化。
测试结果表明, 双极化天线增益在测试频率 1900MHz 时的增益为 lldBi ; 水平面半功率波瓣宽度为 72 ° , 垂直面半功率波瓣宽度为 36° , 前后比小 '于 -25dB; 输入输出端口电压驻波比小于 1. 3, 工作频段的相 对带宽为 1 W左右。
实施例 8: 微型双极化微带天线
如图 9所示, 其以实施例 7的结构为基础, 还设有位于第二空气介质层 4中的第二金属辐射片 13和第 二介质基片 14 , 第二金属辐射片 13平行于第一金属辐射片 3, 第二金属辐射片 13的下端面与第二介质基片 I 4的上端面贴合成一体, 并与固定在金属反射底板 9上的空心金属支座 11固定连接, 在第二介质基片 14的 下方形成第四空气介质层 15。 该技术方案有利于进一步增大天线的工作频带宽度。 所述第二金属辐射片 13 为圆形, 方便调节天线输入输出端口的电压驻波比, 与微带激励线阻抗匹配, 提高天线增益。
测试结果表明, 实施例 8在实 7中_ ^原者一电 能指 不 -变-的番提 "Τ"^·带-宽 -展" ¾7~*1对带 -宽可 达 25¾左右。
此外, 还有一种与本例方案等同的技术方案, 即双极化天线单元内设置具有位于第二空气介质层中的 平行于第一金属辐射片的第二金属辐射片, 第二金属辐射片与空心金属支座绝缘固定, 第二金属辐射片与 接地金属片之间形成第四空气介质层。 该技术方案同样有利于进一步增大天线的工作频带宽度, 但由于没 有第二介盾基片, 因此工作带宽展宽略小。
实施例 9: 微型双极化微带天线
如图 10所示, 其以实施例 8的结构为基础, 在第二金属辐射片 13与第一金属辐射片 3之间还设有第三 金属輻射片 18和第三介质基片 Π , 第三金属辐射片 18平行于第一金属轾射片 3, 所述第三金属福射片 18 说
与第二金属辐射片 13、 空心金属支座 11绝缘, 第三金属辐射片 18的下端面与第三介质基片 Π的上端面贴 合成一体, 并与固定在第二介质基片上 14的绝缘支座 19固定连接, 在第三介质基片 17的下方形成第五空 气介质层 16。
测试结果表明, 实施例 9在实施例 8中天线原有电气性能指标不变的前提下工作带宽进一步展宽, 相对 带宽可达 40%左右。 书 此外, 还有一种与本例方案等同的技术方案, 即第二金属辐射片与第一金属辐射片之间设有平行于第 一金属 ¾射片的第三金属辐射片, 所述第三金属辐射片与第二金属辐射片、 空心金属支座绝缘, 第三金属 辐射片与第二金属轾射片之间形成第五空气介质层。 该技术方案同样有利于进一步增大天线的工作频带宽 度, 但由于没有第三介质基片, 因此工作带宽展宽略小。
实施例 10: 小型双极化微带天线
本实施例的技术方案如下: 一种小型双极化微带天线, 其特征是包括置于天线外罩内的四个通过四路 信号功分器连接在一起的双极化天线单元, 所述四个双极化天线单元呈直线分布于天线罩内, 每个双极化 天线单元中, 自上而下依次具有第一空气介质层、 第一金属辐射片、 第二空气介质层、 接地金属片、 第一 介质基片、 双极微带激励线、 第三空气介质层、 金属反射底板, 所述第一金属辐射片通过绝缘螺杆与天线 罩连接, 所述接地金属片铺覆在第一介盾基片的上端面, 并与固定在金属反射底板上的空心金属支座固定 连接, 所述第一介度基片的下端面设有前端相互正交且不接触的双极微带激励线, 所述接地金属片的上端 面开有两个相互正交且不接触的受激辐射微槽, 所述两个受激辐射微槽与双极微带激励线的前端分別正交 对应。
本实施例的有益效果如下: 本实用新型将微带、 微槽、 多层理论结合为一体, 具有体积小巧、 结构紧 凑, 质量轻的优点; 并且天线的能量辐射性能好, 可靠性高; 本天线采用直线型排列方式, 加之具有面状 -一发射'源, 使微波线束具有更好的方向选择性; 双极化天线由有两个天线单元构成, 增益可达 14dBi , 满足需 要; 天线内部均采用微带走线, 节省了连接电缆的使用量, 降低了成本; 由于体积小巧质量轻, 使安装更 加方便。 本小型双极化微带天线经测试完全满足运营商相关的电气、 机械等性能指标要求。
本实施例的小型双极化微带天线, 如图 11、 图 12所示, 包括置于天线外罩 1 内的四个通过四路功分器 (本例中四路功分器由三个 WL lkinson等功率分配器串接组成)连接在一起的双极化天线单元 Bl、 B2、 B3、 B4 , 所述四个双极化天线单元呈直线分布于天线罩内, 每个双极化天线单元(以双极化天线单元 B1 为例) 中, 如图 2所示, 自上而下依次具有第一空气介质层 2、 第一金属辐射片 3、 第二空气介质层 4、 接地金属片
5、 第一^^ ^j Ltt激励戴丄」 _ ^三— 层 U-属-反射-底 -H所 第一金-属-辐嚇-片一 3- 通过绝缘螺杆 10与天线罩 1连接, 接地金属片 5铺覆在第一介质基片 6的上端面, 并与固定在金属反射底 说 明 书
板 9上的空心金属支座 11 固定连接, 第一介盾基片 6的下端面设有前端相互正交且不接触的双极微带激励 线 7、 7' , 接地金属片的上端面开有两个相互正交且不接触的受激辐射微槽 12、 12' , 两个受激辐射微槽 12、 12' 与双极微带激励线 7、 V 的前端分别正交对应。 本例中, 第一金属辐射片 3为圓形, 绝缘螺杆 10 与第一金属辐射片.3中心固定连接, 并通过天线罩 1中心的内螺纹孔与天线罩 1螺紋连接。 该技术方案有利 于在天线罩外面通过旋转螺杆微调第一金属辐射片与受激辐射微槽之间的高度, 方便调节天线输入输出端 口电压驻波比, 与微带激励线阻抗匹配, 提高天线增益。 圆形的金属辐射片在调节过程中只存在高度变化 量, 因此调节更方便。
如图 11所示, 接地金属片 5上的两个受激辐射微槽 12、 12' 尺寸相等, 呈双 "H" 形, 双 "H" 形的中 间橫臂相互正交。 该技术方案有利于将双极化受激辐射微槽开在面积较小的接地金属片上, 用以实现天线 的小型化。 双 "H" 形受激辐射微槽 12、 12' 的 "H" 形中间横臂与接地金属片的 X轴或 Y轴的夹角为正、 负 45度。 该技术方案有利于将双极化受激辐射微槽开在面积较小的接地金属片上, 用以实现天线的小型化。
测试结果表明, 双极化天线增益在测试频率 190( ίζ 时的增益为 14dBi ; 水平面半功率波瓣宽度为 70· ° , 垂直面半功率波瓣宽度为 18° , 前后比小于- 25dB; 输入输出端口电压驻波比小于 1. 3 , 工作频段的相 对带宽为 10½左右。
实施例 11 : 小型双极化微带天线
如图 13所示, 其以实施例 10的结构为 出, 还设有位于第二空气介质层 4中的第二金属辐射片 13和 第二介质基片 14 , 第二金属輻射片 13平行于第一金属辐射片 3 , 第二金属辐射片 13的下端面与第二介质基 片 14的上端面贴合成一体, 并与固定在金属反射底板 9上的空心金属支座 11固定连接, 在第二介廣基片 14 的下方形成第四空气介质层 15。 该技术方案有利于进一步增大天线的工作频带宽度。 所述第二金属辐射片 13为圓形, 方便调节天线输入输出端口的电压驻波比, 与微带激励线阻抗匹配, 提高天线增益。
测试结果表明, 实施例 11在实施例 10中天线原有电气性能指标不变的前提下工作带宽展宽, 相对带宽 可达 25%左右。
此外, 还有一种与本例方案等同的技术方案, 即双极化天线单元内设置具有位于第二空气介质层中的 平行于第一金属辐射片的第二金属辐射片, 第二金属辐射片与空心金属支座绝缘固定, 第二金属辐射片与 接地金属片之间形成第四空气介质层。 该技术方案同样有利于进一步增大天线的工作频带宽度, 但由于没 有第二介质基片, 因此工作带宽展宽略小。
实施例 12: 小型双极化微带天线
如图 14所示, 其以实施例 11的结构为 ^5出, 在第二金属辐射片 13与第一金属辐射片 3之间还设有第 三金属辐射片 18和第三介质基片 17 , 第三金属辐射片 18平行于第一金属辐射片' 3 , 所述第三金属辐射片 18 与第二金属辐射片 13、 空心金属支座 11绝缘, 第三金属辐射片 18的下端面与第三介质基片 17的上端面贴 合成一体, 并与固定在第二介质基片上 I4的绝缘支座 19 固定连接, 在第三介廣基片 17的下方形成第五空 气介质层 16。
测试结果表明, 实施例 12在实施例 11中天线原有电气性能指标不变的前提下工作带宽进一步展宽, 相 对带宽可达 40%左右。
此外, 还有一种与本例方案等同的技术方案, 即第二金属辐射片与第一金属辐射片之间设有平行于第 一金 -辐 的-第 金-属辐射 -片^~所 -述-第^^属-辐甜 与-第 "^金 -属 射 、 空^"属—^ T绝—緣, 第 H 辐射片与第二金属辐射片之间形成第五空气介质层, 该技术方案同样有利于进一步增大天线的工作频带宽 度, 但由于没有第三介质基片, 因此工作带宽展宽略小。
实施例 13: 小型高增益双极化微带天线
本实施例的技术方案如下: 一种小型高增益双极化微带天线, 其特征是包括置于天线外罩内的四个通 过四路信号功分器连接在一起的双极化天线单元, 所述双极化天线单元呈两行两列分布于天线罩内, 每个 双极化天线单元中, 自上而下依次具有第一空气介质层、 第一金属辐射片、 第二空气介质层、 接地金属 片、 第一介质基片、 双极微带激励线、 第三空气介质层、 金属反射底板, 所述第一金属辐射片通过绝缘螺 杆与天线罩连接, 所述接地金属片铺覆在第一介盾基片的上端面, 并与固定在金属反射底板上的空心金属 支座固定连接, 所述第一介质基片的下端面说设有前端相互正交且不接触的双极微带激凝线, 所述接地金属 片的上端面开有两个相互正交且不接触的受激辐射微槽, 所述两个受激辐射微槽与双极微带激励线的前端 分别正交对应。
本实施例的有益效果如下: 本实施例将微带、 微槽、 多层理论结合为一体, 具有体积小巧、 结构紧 凑, 质量轻的优点; 并且天线的能量辐射性能好, 增益高、书可靠性高; 本天线采用直线型排列方式, 加之 具有面状发射源, 使微波线束具有更好的方向选择性; 双极化天线由有两个天线单元构成, 增益可达 14dBi , 满足需要; 天线内部均采用微带走线, 节省了连接电缆的使用量, 降低了成本; 由于体积小巧廣量 轻, 使安装更加方便。 本小型高增益双极化微带天线经测试完全满足运营商相关的电气、 机械等性能指标 要求。
本实施例的小型高增益双板化微带天线, 如图 12、 图 13所示, 包括置于天线外罩 1内的四个通过四路 功分器 (本例中四路功分器由三个 Wi lkinson等功率分配器呈树状串接组成, 即一分二一一二分四)连接在 一起的双极化天线单元 Bl、 B2、 B3、 B4 , 每个双极化天线单元(以双极化天线单元 B1为例) 中, 如图 2所 示, 自上而下依次具有第一空气介质层 2、 第一金属辐射片 3、 第二空气介质层 4、 接地金属片 5、 第一介质 基片 6、 双极微带激励线 7、 7' 、 第三空气介质层 8、 金属反射底板 9, 所述第一金属辐射片 3通过绝缘螺 杆 10与天线罩 1连接, 接地金属片 5铺覆在第一介质基片 6的上端面, 并与固定在金属反射底板 9上的空 心金属支座 11 固定连接, 第一介盾基片 6的下端面设有前端相互正交且不接触的双极微带激励线 7 , 7' , 接地金属片的上端面开有两个相互正交且不接触的受激辐射微槽 12、 12' , 两个受激辐射微槽 12、 12' 与 双极微带激励线 7、 7' 的前端分别正交对应。 本例中, 第一金属辐射片 3为圆形, 绝缘螺杆 10与第一金属 辐射片 3中心固定连接, 并通过天线罩 1中心的内螺 孔与天线罩 1螺纹连接, 该技术方案有利于在天线罩 外面通过旋转螺杆微调第一金属辐射片与受激辐射微槽之间的高度, 方便调节天线输入输出端口电压驻波 比, 与 带激励线阻抗匹配, 提高天线增益。 圆形的金属辐射片在调节过程中只存在高度变化量, 因此调 节更方便。
如图 Π所示, 接地金属片 5上的两个受激辐射微槽 12、 12' 尺寸相等, 呈双 形, 双 "H" 形的中 间横臂相互正交。 该技术方案有利于将双极化受激辐射微槽开在面积较小的接地金属片上, 用以实现天线 的小型化。 双 "H" 形受激辐射微槽 12、 12' 的 "H" 形中间横臂与接地金属片的 X轴或 Y轴的夹角为正、 负 45度。 该技术方案有利于将双极化受激辐射微槽开在面积较小的接地金属片上, 用以实现天线的小型化。
测试结果表明, 双极化天线增益在测试频率 1900MHz 时的增益为 14dBi ; 水平面半功率波瓣宽度为 70
。 , 垂直面半功率波瓣宽度为 18° , 前后比小于 -25dB; 输入输出端口电压驻波比小于 1. 3 , 工作频段的相 对带宽为 10%左右。 实施例 14: 小型高增益双极化微带天线
本实施例的技术方案如下: 一种高增益双极化微带天线, 其特征是包括置于天线外罩内的八个通过八 路信号功分器连接在一起的双极化天线单元, 每个双极化天线单元中, 自上而下依次具有第一空气介质 层、 第一金属辐射片、 第二空气介质层、 接地金属片、 第一介质基片、 双极微带激励线、 第三空气介质 层、 金属反射底板, 所述第一金属辐射片通过绝缘螺杆与天线罩连接, 所述接地金属片铺覆在第一介质基 片的上端面, 并与固定在金属反射底板上的空心金属支座固定连接, 所述第一介质基片的下端面设有前端 相互正交且不接触的双极微带激励线, 所迷接地金属片的上端面开有两个相互正交且不接触的受激辐射微 槽, 所述两个受激辐射微槽与双极微带激励线的前端分别正交对应。
本实施例的有益效果如下: 本实施例说将微带、 微槽、 多层理论结合为一体, 具有体积小巧、 结构紧 凑, 质量轻的优点; 并且天线的能量辐射性能好, 增益高、 可靠性高; 本天线采用直线型排列方式, 加之 具有面状发射源, 使微波线束具有更好的方向选择性; 双极化天线由有两个天线单元构成, 增益可达 17dBi , 满足需要; 天线内部均采用微带走线, 节省了连接电缆的使用量, 降低了成本; 由于体积小巧质量 轻, 使安装更加方便。 本高增益双极化微带天线经测试完书全满足运营商相关的电气、 机械等性能指标要 求。
本实施例的高增益双极化微带天线, 如图 13、 图 14所示, 包括置于天线外罩 1 内的八个通过八路功分 器(本例中八路功分器由七个 Wi l k inson等功率分配器呈树状串接组成, 即一分二——二分四——四分八) 连接在一起的双极化天线单元 Bl、 B2. B3、 B4、 B5、 B6、 B7、 B8 , 每个双极化天线单元(以双极化天线单元 B1为例) 中, 如图 2所示, 自上而下依次具有第一空气介质层 2、 第一金属辐射片 3、 第二空气介盾层 4、 接地金属片 5、 第一介质基片 6、 双极微带激励线 7、 V 、 第三空气介质层 8、 金属反射底板 9 , 所述第一金 属辐射片 3通过绝缘螺杆 10与天线罩 1连接, 接地金属片 5铺覆在第一介质基片 6的上端面, 并与固定在 金属反射底板 9上的空心金属支座 11 固定连接, 第一介质基片 6的下端面设有前端相互正交且不接触的双 极微带激励线 7、 V , 接地金属片的上端面开有两个相互正交且不接触的受激辐射微槽 12、 12' , 两个受 激辐射微槽 12、 12 ' 与双极微带激励线 7、 T 的前端分别正交对应。 本例中, 第一金属辐射片 3为圆形, 绝缘螺杆 10与第一金属辐射片 3中心固定连接, 并通过天线罩 1 中心的内螺纹孔与天线罩 1螺紋连接。 该 技术方案有利于在天线罩外面通过旋转螺杆微调第一金属辐射片与受激辐射微槽之间的高度, 方便调节天 线输入输出端口电压驻波比, 与微带激励线阻抗匹配, 提高天线增益。 圆形的金属辐射片在调节过程中只 存在高度变化量, 因此调节更方便。
如图 13所示, 接地金属片 5上的两个受激辐射孩槽 12、 12' 尺寸相等, 呈双 "H" 形, 双 "H" 形的中 间横臂相互正交。 该技术方案有利于将双极化受激轾射微槽开在面积较小的接地金属片上, 用以实现天线 的小型化。 双 "H" 形受激辐射微槽 12、 12' 的 形中间横臂与接地金属片的 X轴或 Y轴的夹角为 ^正 τ~负- 45度。 该技术方案有利于将双极化受激辐射微槽开在面积较小的接地金属片上, 用以实现天线的小型化。
测试结果表明, 双极化天线增益在测试频率 1900MHz 时的增益为 17dBi ; 水平面半功率波瓣宽度为 70 ° , 垂直面半功率波瓣宽度为 18° , 前后比小于 -25dB; 输入输出端口电压驻波比小于 1. 3 , 工作频段的相 对带宽为 10%左右。
实施例 15: it道高隔离度双极化智能阵列天线 本实施例的技术方案如下: 一种八通道高隔离度双极化智能阵列天线, 包括置于同一天线外罩内的四 个 目独玄 -的双¾:化天—线, 其特一征是: 所¾ 双极化天线具有两个通过二路功分器连接在一起的双极化天 说 明 书
线单元, 每个双极化天线单元中, 自上而下依次具有第一空气介质层、 第一金属辐射片、 第二空气介质 层、 接地金属片、 第一介质基片、 双极微带激励线、 第三空气介质层、 金属反射底板, 所述第一金属辐射 片通过绝缘螺杆与天线罩连接, 所迷接地金属片铺覆在笫一介质基片的上端面, 并与固定在金属反射底板 上的空心金属支座固定连接, 所述第一介质基片的下端面设有前端相互正交且不接触的双极微带激励线, 所述接地金属片的上端面开有两个相互正交且不接触的受激辐射微槽, 所述两个受激辐射微槽与双极微带 激励线的前端分别正交对应。
本实施例的有益效果如下: 本实施例将微带、 微槽、 多层理论结合为一体, 具有体积小巧、 结构紧 凑, 质量轻的优点; 并且天线的能量辐射性能好, 可靠性高; 本天线采用直线型排列方式, 加之具有面状 发射源, 使微波线束具有更好的方向选择性; 每个双极化天线由有两个天线单元构成, 增益可达 l ldBi , 满 足城市民用小区、 商业楼宇覆盖等用户密集但范围不是很广区域的需要; 天线内部均采用微带走线, 节省 了连接电缆的使用量, 低了成本; 由于体积小巧质量轻, 使安装更加方便, 可直接安装于现有 3G 智能天 线的安装支架上, 而无需增设固定架, 因此大大降低了安装的投入, 也为将来的设备维护降低了成本, 本 八通道高隔离度双极化智能阵列天线适用于城市民用小区、 商业楼宇覆盖等用户密集但范围不是很广的区 域, 经测试完全满足运营商相关的电气、 机械等性能指标要求, 打破了现有智能天线均采用半波振子设计 的固有思路和模式, 采用高单元增益的天线单元组成天线阵列, 在达到同样指标的情况下大大缩小天线的 体积、 减轻天线的重量, 实现天线的小型化。 , 可替代现有 3G天线, 也将是 4G天线的强有力竟争者。 本实 用新型实现了小型化, 使其进小区成为可能, 打消和緩解了附近居民担心大型天线辐射不利于健康的顾 虚、。
本实施例的八通道高隔离度双极化智能阵列天线, 如图 14、 图 15所示, 其包括置于同一天线外罩 1 内 的四个互相独立的双极化天线 Al、 A2、 A3、 A4 , 所述的双极化天线(以双极化天线 A2为例)具有两个通过 二路功分器(Wi lkinson等功率分配器)连接在一起的双极化天线单元 Bl、 B2 , 每个双极化天线单元(以双 极化天线单元 B1为例) 中, 如图 2所示, 自上而下依次具有第一空气介质层 2、 第一金属轾射片 3、 第二空 气介质层 4、 接地金属片 5、 第一介质基片 6、 双极微带激励线 7、 7' 、 第三空气介盾层 8、 金属反射底板 9 , 所述第一金属辐射片 3通过绝缘螺杆 10与天线罩 1连接, 接地金属片 5铺覆在第一介质基片 6的上端面, 并与固定在金属反射底板 上的空心金属支座 11 固定连接, 第一介质基片 6的下端面设有前端相互正交且 不接触的双极微带激励线 7、 V , 接地金属片的上端面开有两个相互正交且不接触的受激辐射微槽 12、 12' , 两个受激辐射微槽 12、 12' 与双极微带激励线 7、 T 的前端分别正交对应。 本例中, 第一金属辐射 片 3为圓形, 绝缘螺杆 10与第一金属辐射片 3中心固定连接, 并通过天线罩 1 中心的内螺紋孔与天线罩 1 螺纹连接。 该技术方案有利于在天线罩外面通过旋转螺杆微调第一金属辐射片与受激辐射微槽之间的高 度, 方便调节天线输入榆出端口电压驻波比, 与微带激励线阻抗匹配, 提高天线增益。 圓形的金属辐射片 吝.调节过程中只存在高度变化量, 因此调节更方便。
如图 14所示, 接地金属片 5上的两个受激福射微槽 12、 12' 尺寸相等, 呈双 "H" 形, 双 "H" 形的中 间横臂相互正交。 该技术方案有利于将双极化受激辐射微槽开在面积较小的接地金属片上, 用以实现天线 的小型化。 双 "H" 形受激辐射微槽 I 2、 12' 的 "H" 形中间横臂与接地金属片的 X轴或 Y轴的夹角为正、 负 45度。 该技术方案有利于将双极化受激辐射微槽开在面积较小的接地金属片上, 用以实现天线的小型化。
测试结果表明, 双极化天线的两个端口互相隔离效果理想, 隔离度指标达到 30dB 以上, 可以彼此独立 的工作; 天线增益在测试频率 1900MHz时的增益为 l ldBi ; 水平面半功率波瓣宽度为 72° , 垂直面半功率波 M£度为— 36 _i½-tb'J> ^=25dBi -输-入鲁出端 电 τϋ¾:波比卟- m7~ -作—频―段 I ?带"!—为 10%左右。 说 明 书
实施例 16: 八通道高增益高隔离度双极化智能阵列天线
本实施例的技术方案如下: 一种八通道高增益高隔离度双极化智能阵列天线, 包括置于同一天线外罩 内的四个互相独立的双极化天线, 其特征是: 所述的双极化天线具有四个通过四路功分器连接在一起的双 极化天线单元, 每个双极化天线单元中, 自上而下依次具有第一空气介质层、 第一金属辐射片、 第二空气 介质层、 接地金属片、 第一介质基片、 双极微带激励线、 第三空气介质层、 金属反射底板, 所述第一金属 辐射片通过绝缘螺杆与天线罩连接, 所述接地金属片铺覆在第一介质基片的上端面, 并与固定在金属反射 底板上的空心金属支座固定连接, 所述第一介质基片的下端面设有前端相互正交且不接触的双极微带激励 线, 所述接地金属片的上端面开有两个相互正交且不接触的受激福射微槽, 所述两个受激辐射微槽与双极 微带激励线的前端分别正交对应。
本实施例的有益效果如下: 本实施例将微带、 微槽、 多层理论结合为一体, 具有体积小巧、 结构紧 凑, 质量轻的优点; 并且天线的能量辐射性能好, 可靠性高; 本天线采用直线型排列方式, 加之具有面状 发射源, 使微波线束具有更好的方向选择性; 每个双极化天线由有两个天线单元构成, 增益可达 14dBi , 满 足移动通信基站的建站覆盖要求, 解决城市、 郊区、 农村等不同地貌、 不同用户量、 不同场合、 不同范围 等的信号覆盖问题; 天线内部均采用微带走线, 节省了连接电缆的使用量, 降低了成本; 由于体积小巧质 量轻, 使安装更加方便, 可直接安装于现有 3G 智能天线的安装支架上, 而无需增设固定架, 因此大大降低 了安装的投入, 也为将来的设备维护降低了成本。 本八通道高增益高隔离度双极化智能阵列天线适用于移 动通信基站的建站, 经测试完全满足运营商相关的电气、 机械等性能指标要求, 打破了现有智能天线均采 用半波振子设计的固有思路和模式, 采用高单元增益的天线单元组成天线阵列, 在达到同样指标的情况下 大大缩小天线的体积、 减轻天线的重量, 实现天线的小型化。 , 可替代现有 3G天线, 也将是 4G天线的强有 力竟争者。
本实施例的八通道高增益高隔离度双极化智能阵列天线, 如图 15、 图 16所示, 其包括置于同一天线外 罩 ] 内的四个互相独立的双极化天线 Al、 A2, A3、 A4 , 所述的双极化天线(以双极化天线 A2为例)具有四 个通过四路功分器(本例中四路功分器由三个 Wi lkinson等功率分配器串接組成)连接在一起的双极化天线 单元 Bl、 B2、 B3、 B4 , 每个双极化天线单元(以双极化天线单元 B1为例) 中, 如图 2所示, 自上而下依次 具有第一空气介质层 2、 第一金属辐射片 3、 第二空气介质层 4、 接地金属片 5、 第一介质基片 6、 双极微带 激励线 7、 V 、 第三空气介质层 8、 金属反射底板 9, 所述第一金属辐射片 3通过绝缘螺杆 10与天线罩 1连 接, 接地金属片 5铺覆在第一介质基片 6的上端面, 并与固定在金属反射底板 9上的空心金属支座 11 固定 连接, 第一介质基片 6的下端面设有前端相互正交且不接触的双极微带激励线 7、 7' , 接地金属片的上端面 开有两个相互正交且不接触的受激辐射 4 槽 12、 12' , 两个受激辐射微槽 12、 12' 与双极微带激励线 7、 7' 的前端分别正交对应。 本例中, 第一金属辐射片 3为圆形, 绝缘螺杆 10与第一金属辐射片 3中心固定连 接, 并通过天线罩 1中心的内螺紋孔与天线罩 1螺纹连接。 该技术方案有利于在天线罩外面通过旋转螺杆微 调第一金属辐射片与受激辐射微槽之间的高度, 方便调节天线输入输出端口电压驻波比, 与微带激励线阻 抗匹配, 提高天线增益。 圆形的金属辐射片在调节过程中只存在高度变化量, 因此调节更方便。
如图 15所示, 接地金属片 5上的两个受激辐射微槽 12、 12' 尺寸相等, 呈双 "H" 形, 双 "H" 形的中 间横臂相互正交。 该技术方案有利于将双极化受激辐射微槽开在面积较小的接地金属片上, 用以实现天线 的小型化。 双 "H" 形受激辐射微槽 I2、 12' 的 "H" 形中间横臂与接地金属片的 X轴或 Y轴的夹角为正、 负 "度。 该技术方案有利于将双极化受激辐射微槽开在面积较小的接地金属片上, 用以实现天线的小型化。
¾试结果表明, 双极化天线的两个端口互相隔离效果理想, 隔离度指标达到 30dB 以上, 可以彼此独立 说 明 书
的工作; 天线增益在测试频率 1900MHz时的增益为 14dB i ; 水平面半功率波瓣宽度为 70° , 垂直面半功率波 瓣宽度为 18° , 前后比小于 -25dB; 榆入输出端口电压驻波比小于 1. 3 , 工作频段的相对带宽为 10%左右。
实施例 17: TD-LTE网络天线
针对通讯网络建设中智能天线太大带来的种种问题, 结合本发明的小型化天线单振元的研究成果、 提高 天线单振元的轾射效率以及实现单振元双极化的研究成果, 本实施例的产品用于改善现有天线较大而带来的 工程建设困难等诸多问题; 本实施例的产品是内部保密测试的小型化 TD-LTE双极化 8通道智能天线。
根据电磁波在不同的介质传播特性上有所不同, 在天线中利用低损耗高频介盾作为填充材料, 结合两屋 以上辐射片的天线结构, 应用实施例 17 中的构件形状、 介电常数以及馈电方式, 把天线的几何尺寸大大降 低, 进而达到多频段、 多模式、 小型化的效果。
不同于常规半波振子类型的天线, 本实施例采用微波口径耦合多模腔模式叠片平面微带辐射机理, 获得 单元振元的高增益, 常规振元单元增益多为 5. 5dB i , MM天线单元增益为 8. 5dBi。 水平与垂直波束宽度均为 75-80。 , 前后比大于 25dB。
除上述实施例外, 本发明还可以有其他实施方式。 凡采用等同替换或等效变换形成的技术方案, 均落在 本发明要求的保护范围。

Claims

权 利 要 求 书
1、 一种双极化微带天线, 包括至少一个金属辐射片, 即第一金属辐射片;
包括至少一个刻有激励微槽线的共地金属层;
包括至少一个介质层, 即第一介质层, 优选所述介质层为谐振介质层, 再优选所述介质层为空气谐振 介盾层或者其他优化谐振材料层; 所述介质层位于所述第一金属辐射片, 与所述共地金属层之间;
包括至少一组双极微带激励线。
2、 根据权利要求 1 所述的一种双极化微带天线单元, 其特征在于, 设置一个与第一金属辐射片连接 的电压驻波比独立调整单元, 所述金属辐射片为圓形。
3、 根据权利要求 1 所述的一种双极化微带天线, 其特征在于, 所述激励微槽为离散垂直的两个同尺 寸 H, 即两个 H不相接触, 并且优选所述 H的尺寸相等, 用于保障双极化天线在两个极化方向上的性能一 致, 同时优选两个 H的横臂 "-" 相互垂直, 用于保障良好的极化隔离度。
4、 根据权利要求 1所述的一种双极化微带天线, 其特征在于, 所述介质层的厚度为 1 - 4 Omm, 优选为 2 - 10mm; 所述双极微带激励线与共地金属层之间有介质基片 6, 所述介质基片的厚度为 0. 2- 5 优选为 0. 5-2
5、 #■据权利要求 3所述的一种双极化 带天线, 其特征在于, 所述两个激励线的前端形状为直线, 优选所述每个前端与一个 H形激励槽的橫臂 "-" 垂直, 并且穿过各自 H形激励槽的横臂 "-" 的中点; 所 述两个激励线的前端相互离散垂直, 该垂直的优化设计用于保障双极化天线的极化隔离 用于让一个双极 化天线当作两个独立天线使用; 不相接触的两个离散前端之间相距的距离为 1 - 8 不相接触的两个离散 前端之间的垂直度为 60 - 90度, 再优选为 90度。
6、 根据权利要求 3所述的一种双极化微带天线, 其特征在于, 所述两个 H的大小、 宽度、 槽深、 槽 宽、 形状完全相同; 优选所述每个 H 的单个横臂 "-" 的两端与两个竖臂 " I,' 的中点相交; 优选所述每 个 H的单个橫臂 "-" 与两个竖臂 " I " 的形状均为直线; 优选所述每个 H的单个横臂 "-" 与其两个竖臂
" I " 相互垂直; 优选至少一个 H的橫臂 "-" 的虚拟延长线正好穿过另一个 H的横臂 "-" 的中点; 优选 穿过第一金属辐射片中心点的至少一条直线位于至少一个 H 的橫臂 "-" 的垂面上, 而且所迷垂面正好穿 过另一 H的横臂 "-" 的中点, 所述垂面与前一 H的槽底所在的平面垂直; 优选所述两个 H的槽底在同一 平面上, 优选所述两个 H的槽面在同一平面上; 在所述第一金属辐射片垂直投射到所述共地金属层上的相 同形状和大小的区域内, 优选所述每个 H单独占据相同形状和大小的半个所述区域, 并优选把每个 H最大 化, 或者把每个 H的横臂 "-" 长度最大化, 或者把每个 H的横臂 "-" 与两个竖臂 " I " 的长度之和最大 化, 再优选把每个 H的横臂 "-" 与两个竖臂 " I " 的槽面积之和最大化。
7、 根据权利要求 6 所述的一种双极化微带天线, 其特征在于, 设置第二介质层, 优选所述第二介盾 层为谐振介质层, 再优选所述介廣层为空气谐振介质层或者其他优化谐振材料层。
8、 根据权利要求 7 所述的一种双极化微带天线, 其特征在于, 所述第二介质层为一个槽腔, 用途是 解决天线阵列化使用时减少阵列之间的影响; 所述槽腔的高度取决于 _最 天线应 JL†_&feA 的湘―关-度 -/ 权 利 要 求 书
隔离度参数。
9、 根据权利要求 8 所述的一种双极化微带天线, 其特征在于, 所述槽腔优选为提供系统共地的金属 支座在所述共地金属层上方形成的空腔, 所述槽腔深度为 0. 5 - 20mm; 如果所述第一、 第二介质层为空气 层, 并且所述第二介质层上方不再设置其他辐射片或者其他构件, 则所述笫一、 第二介质层连为一体, 并 且第二介质层为第一介质层的一部分。
10、 根据权利要求 1至 9的任一项所述的一种双极化微带天线, 其特征在于, 根据频段和波长, 选定 所述天线辐射片、 介质层、 共地金属层的高度、 长度。
11、 根据权利要求 10 所述的一种双极化微带天线, 其特征在于, 设置第二金属辐射片; 优选第二金 属辐射片的材质、 厚度、 形状与第一金属辐射片相同; 优选第二金属辐射片的大小根据频 宽的需要自 由优化; 优选第二金属辐射片的大小为第一金属辐射片的 ± 20%; 优选把第二金属辐射片设置在第二介质 层上方, 从而把第一介盾层分隔为两个区域, 下部优选为所述槽腔, 上部优选为第一、 第二金属辐射片之 间的第一介质层区域。
12、 根据权利要求 11所述的一种双极化微带天线, 其特征在于, 设置一个空气介质层, 即 A空气介 质层, 它为与信源接口的激励微带线提供不受干扰的工作空间高度, 高度需大于 λ /Ν ( Ν 约为 10-8 ); 优 选设置一个金属反射共地底板, 它用于为辐射单元提供良好的背向辐射隔离; 并为信源部分 /馈元部分 /辐 射单元部分提供方便的系统共地。
13、一种双极化微带天线, 其特征在于, 包括两个通过二路功分器连接在一起的双极化天线单元, 每 个双极化夫线单元中, 自上而下, 即沿着微波辐射方向的逆向依次具有第一空气介质层、 第一金属辐射片、 第二空气介质层- 接地金属片、 第一介盾基片、 双极微带激励线、 第三空气介质层、 金属反射底板。
14、 根据权利要求 13 所述的一种双极化微带天线, 其特征在于, 所述第一金属辐射片通过绝缘螺杆 与天线罩连接, 所述接地金属片铺覆在第一介质基片的上端面, 并与固定在金属反射底板上的空心金属支 座固定连接, 所述第一介质基片的下端面设有前端相互正交且不接触的双极微带激励线, 所述接地金属片 的上端面开有两个相互正交且不接触的受激辐射微槽, 所述两个受激辐射微槽与双极微带激励线的前端分 别正交对应。 - 15、一种双极化微带天线, 其特征在于, 包括置于天线外罩内的四个通过四路功分器连接在一起的双 极化天线单元, 所述四个双极化天线单元呈直线分布于天线罩内, 每个双极化天线单元中, 自上而下依次 具有第一空气介质层、 第一金属辐射片、 第二空气介质层、接地金属片、 第一介质基片、 双极微带激励线、
-第-三 -空-气-介质-层、 -金-属反射玄板:
16、 根据权利要求 15 所述的一种双极化微带天线, 其特征在于, 所述第一金属辐射片通过绝缘螺杆 与天线罩连接, 所述接地金属片铺覆在第一介盾基片的上端面, 并与固定在金属反射底板上的空心金属支 座固定连接, 所述第一介质基片的下端面设有前端相互正交且不接触的双极微带激励线, 所述接地金属片 的上端面开有两个相互正交且不接触的受激辐射微槽, 所述两个受激辐射微槽与双极微带激励线的前端分 别正交对应。
L7_、_ ^种 i极北微華 -天為,~*特-征 -在^ "包 天-线-外 "内-的 '四 通tW路 —起的双 权 利 要 求 书
极化天线单元, 所述双极化天线单元呈两行两列分布于天线罩内, 每个双极化天线单元中, 自上而下依次 具有第一空气介质层、 第一金属辐射片、 第二空气介质层、接地金属片、 第一介质基片、 双极微带激励线、 第三空气介质层、 金属反射底板。
18、 根据权利要求 17 所述的一种双极化微带天线, 其特征在于, 所述第一金属辐射片通过绝缘螺杆 与天线罩连接, 所述接地金属片铺覆在第一介质基片的上端面, 并与固定在金属反射底板上的空心金属支 座固定连接, 所述第一介质基片的下端面设有前端相互正交且不接触的双极微带激励线, 所述接地金属片 的上端面开有两个相互正交且不接触的受激辐射微槽 , 所述两个受激辐射微槽与双极微带激励线的前端分 别正交对应。
19、一种双极化微带天线, 其特征在于, 包括置于同一天线外罩内的两个互相独立的双极化天线, 所 述双极化天线具有两个通过二路功分器连接在一起的双极化天线单元, 每个双极化天线单元中, 自上而下 依次具有第一空气介质层、 第一金属辐射片、 第二空气介质层、 接地金属片、 第一介质基片、 双极微带激 励线、 第三空气介质层、 金属反射底板。
20、 根据权利要求 19 所述的一种双极化微带天线, 其特征在于, 所述第一金属辐射片通过绝缘螺杆 与天线罩连接, 所述接地金属片铺覆在第一介质基片的上端面, 并与固定在金属反射底板上的空心金属支 座固定连接, 所述第一介质基片的下端面设有前端相互正交且不接触的双极微带激励线, 所述接地金属片 的上端面开有两个相互正交且不接触的受激辐射微槽, 所述两个受激辐射微槽与双极微带激励线的前端分 别正交对应。
21、一种双极化微带天线, 其特征在于, 包括置于天线外罩内的八个通过八路功分器连接在一起的双 极化天线单元, 每个双极化天线单元中, 自上而下依次具有第一空气介质层、 第一金属辐射片、 第二空气 介质层、 接地金属片、 第一介质基片、 双极微带激励线、 第三空气介质层、 金属反射底板。
22、 根据权利要求 21 所述的一种 极化微带天线, 其特征在于, 所述第一金属辐射片通过绝缘螺杆 与天线罩连接, 所述接地金属片铺覆在第一介质基片的上端面, 并与固定在金属反射底板上的空心金属支 座固定连接, 所述第一介质基片的下端面设有前端相互正交且不接触的双极微带激励线, 所述接地金属片 的上端面开有两个相互正交且不接触的受激辐射微槽, 所述两个受激辐射微槽与双极微带激励线的前端分 别正交对应。
23、一种双极化微带天线, 其特征在于, 包括置于同一天线外罩内的四个互相独立的双极化天线, 其 特征是: 所述的双极化天线具有两个通过二路功分器连接在一起的双极化天线单元, 每个双极化天线单元 中, 自上而下依次具有第一空气介质层、 第一金属辐射片、 第二空气介质层、接地金属片、 第一介质基片、 双极微带激励线、 第三空气介质 、 金属反射底板。
24、 根据权利要求 23 所述的一种双极化微带天线, 其特征在于, 所述第一金属辐射片通过绝缘螺杆 与天线罩连接, 所述接地金属片铺覆在第一介质基片的上端面, 并与固定在金属反射底板上的空心金属支 座固定连接, 所述第一介质基片的下端面设有前端相互正交且不接触的双极微带激励线, 所述接地金属片 的上端面开有 ϋ相五 jL^JL 4 ii^^激辐射 ^所 -述 牛受-激-辐 -射微槽 1又* "微啼—激―励 -线—的―前 -端 权 利 要 求 书
别正交对应。
25、 一种双极化微带天线, 其特征在于, 包括置于同一天线外罩内的四个互相独立的双极化天线, 其 特征是: 所述的双极化天线具有四个通过四路功分器连接在一起的双极化天线单元, 每个双极化天线单元 中, 自上而下依次具有第一空气介质层、 第一金属辐射片、 第二空气介盾层、 接地金属片、 第一介质基片、 双极微带激励线、 第三空气介质层、 金属反射底板。
26、 根据权利要求 25 所述的一种双极化微带天线, 其特征在于, 所述第一金属辐射片通过绝缘螺杆 与天线罩连接, 所述接地金属片铺覆在第一介质基片的上端面, 并与固定在金属反射底板上的空心金属支 座固定连接, 所述第一介质基片的下端面设有前端相互正交且不接触的双极微带激励线, 所述接地金属片 的上端面开有两个相互正交且不接触的受激辐射微槽,所述两个受激辐射微槽与双极微带激励线的前端分 别正交对应。
27、一种双极化微带天线, 其特征在于, 包括天线罩内自上而下依次具有第一空气介质层、 第一金属 辐射片、 第二空气介质层、 接地金属片、 第一介质基片、 微带激励线、 第三空气介质层、 金属反射底板。
28、 根据权利要求 27 所述的一种双极化微带天线, 其特征在于, 所述接地金属片铺覆在第一介质基 片的上端面, 并与固定在金属反射底板上的空心金属支座固定连接, 所述接地金属片的上端面开有受激辐 射微槽, 所述第一金属辐射片为圆形, 其中央固定有调节螺杆, 并通过该调节螺杆与天线罩中央内螺纹的 螺接实现第一金属辐射片的固定。
29、 应用权利要求 1至 28的任一项中的双极化微带天线的一种无线通信中继站, 其特征在于所述中 继站包括至少一个双极化微带天线, 优选所述双极化微带天线的输入端口与中继站重发端连接。
30、 应用权利要求 1至 28的任一项中的双极化微带天线的一种无线通信基站, 其特征在于, 所述基 站包含至少一个双极化微带天线。
31、 应用权利要求 1至 28的任一项中的双极化微带天线的一种通信系统, 其特征在于, 所述系统中, 至少一个设备配置有所述双极化微带天线。
PCT/CN2011/000682 2010-04-07 2011-04-19 一种双极化微带天线 WO2011124094A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP11765012.7A EP2565985A4 (en) 2010-04-07 2011-04-19 ANTENNA TO MICRORUBANS AND DUAL POLARIZATION
US13/639,958 US9030364B2 (en) 2010-09-07 2011-04-19 Dual-polarized microstrip antenna
CN2011800280064A CN103222114A (zh) 2010-09-07 2011-04-19 一种双极化微带天线
JP2013502986A JP5727587B2 (ja) 2010-09-07 2011-04-19 二偏波マイクロストリップアンテナ
KR1020127029114A KR101318830B1 (ko) 2010-09-07 2011-04-19 일종의 양극화 마이크로 안테나

Applications Claiming Priority (22)

Application Number Priority Date Filing Date Title
CN201020152260 2010-04-07
CN201020152258.0 2010-04-07
CN2010201522580U CN201689984U (zh) 2010-04-07 2010-04-07 方便调试电压驻波比的小型多层微带天线
CN201020152260.8 2010-04-07
CN2010201522504U CN201690448U (zh) 2010-04-07 2010-04-07 天线内置式无线通信中继站
CN201020152250.4 2010-04-07
CN2010205200590U CN201812925U (zh) 2010-09-07 2010-09-07 小型四通道双极化微带天线
CN201020520077.9 2010-09-07
CN2010205201019U CN202121055U (zh) 2010-09-07 2010-09-07 高增益双极化微带天线
CN201020520059.0 2010-09-07
CN201020520071.1 2010-09-07
CN2010205201131U CN202121056U (zh) 2010-09-07 2010-09-07 八通道高增益高隔离度双极化智能阵列天线
CN2010205200868U CN201812928U (zh) 2010-09-07 2010-09-07 微型双极化微带天线
CN2010205200904U CN202121054U (zh) 2010-09-07 2010-09-07 八通道高隔离度双极化智能阵列天线
CN201020520113.1 2010-09-07
CN2010205200779U CN201812927U (zh) 2010-09-07 2010-09-07 小型高增益双极化微带天线
CN201020520101.9 2010-09-07
CN201020520086.8 2010-09-07
CN201020520090.4 2010-09-07
CN2010205200711U CN201812926U (zh) 2010-09-07 2010-09-07 小型双极化微带天线
CN201010529416.4 2010-11-02
CN2010105294164A CN102332635B (zh) 2010-04-07 2010-11-02 微波低波段多频带高增益双极化小型微带天线

Publications (1)

Publication Number Publication Date
WO2011124094A1 true WO2011124094A1 (zh) 2011-10-13

Family

ID=47629990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/000682 WO2011124094A1 (zh) 2010-04-07 2011-04-19 一种双极化微带天线

Country Status (2)

Country Link
EP (1) EP2565985A4 (zh)
WO (1) WO2011124094A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107181058A (zh) * 2017-05-25 2017-09-19 广东工业大学 一种新型双波束定向辐射mimo贴片天线及移动终端
TWI712216B (zh) * 2018-11-29 2020-12-01 大陸商深圳市超捷通訊有限公司 天線結構及具有該天線結構的無線通訊裝置
GB2556156B (en) * 2016-09-02 2022-03-30 Taoglas Group Holdings Ltd Multi-band MIMO panel antennas
US20220173530A1 (en) * 2019-08-19 2022-06-02 Murata Manufacturing Co., Ltd. Antenna device and communication device
WO2022144696A1 (es) * 2020-12-30 2022-07-07 Instituto Tecnológico Metropolitano Dispositivo de antena sintonizado por luz
US11811135B2 (en) 2016-09-02 2023-11-07 Taoglas Group Holdings Limited Multi-band MIMO panel antennas

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2973849A2 (en) 2013-03-15 2016-01-20 Intel Corporation Low profile high performance integrated antenna for small cell base station
GB2528839B (en) 2014-07-25 2019-04-03 Kathrein Werke Kg Multiband antenna
US20200303820A1 (en) * 2019-03-19 2020-09-24 Wilson Electronics, Llc Antenna with parasitic elements
CN110190389B (zh) * 2019-06-03 2020-11-20 深圳市景旺电子股份有限公司 一种天线板及其制作方法
CN112909497A (zh) * 2021-02-09 2021-06-04 福耀玻璃工业集团股份有限公司 天线组件及车辆

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2329091Y (zh) * 1998-06-12 1999-07-14 庄昆杰 一种宽频带微带阵列天线单元
CN2492989Y (zh) * 2001-07-27 2002-05-22 台湾骏炎科技股份有限公司 双极化阵列天线
TW490888B (en) * 2000-05-02 2002-06-11 Jin-Lu Weng A broadband dual-polarized aperture-coupled patch antenna with modified H-shaped coupling slots
CN2783548Y (zh) * 2005-02-01 2006-05-24 烟台高盈科技有限公司 3g45°双极化板状基站用天线
JP2006144655A (ja) 2004-11-19 2006-06-08 Toyota Motor Corp 内燃機関の燃料噴射制御装置
US7327317B2 (en) 2003-07-16 2008-02-05 Huber + Suhner Ag Dual-polarized microstrip patch antenna
KR20080027919A (ko) 2005-07-07 2008-03-28 엠케이에스 인스트루먼츠, 인코포레이티드 멀티 챔버 툴을 위한 오존 시스템
US7508346B2 (en) 2007-04-16 2009-03-24 Research In Motion Limited Dual-polarized, microstrip patch antenna array, and associated methodology, for radio device
CN201536151U (zh) * 2009-08-14 2010-07-28 南京理工大学 X波段双极化低互耦微带天线
CN201689984U (zh) * 2010-04-07 2010-12-29 福建省光微电子科技有限公司 方便调试电压驻波比的小型多层微带天线
US20110001682A1 (en) 2009-07-02 2011-01-06 Research In Motion Limited Compact single feed dual-polarized dual-frequency band microstrip antenna array
US9919117B2 (en) 2011-05-09 2018-03-20 Impel Neuropharma Inc. Nozzles for nasal drug delivery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7864117B2 (en) * 2008-05-07 2011-01-04 Nokia Siemens Networks Oy Wideband or multiband various polarized antenna

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2329091Y (zh) * 1998-06-12 1999-07-14 庄昆杰 一种宽频带微带阵列天线单元
TW490888B (en) * 2000-05-02 2002-06-11 Jin-Lu Weng A broadband dual-polarized aperture-coupled patch antenna with modified H-shaped coupling slots
CN2492989Y (zh) * 2001-07-27 2002-05-22 台湾骏炎科技股份有限公司 双极化阵列天线
US7327317B2 (en) 2003-07-16 2008-02-05 Huber + Suhner Ag Dual-polarized microstrip patch antenna
JP2006144655A (ja) 2004-11-19 2006-06-08 Toyota Motor Corp 内燃機関の燃料噴射制御装置
CN2783548Y (zh) * 2005-02-01 2006-05-24 烟台高盈科技有限公司 3g45°双极化板状基站用天线
KR20080027919A (ko) 2005-07-07 2008-03-28 엠케이에스 인스트루먼츠, 인코포레이티드 멀티 챔버 툴을 위한 오존 시스템
US7508346B2 (en) 2007-04-16 2009-03-24 Research In Motion Limited Dual-polarized, microstrip patch antenna array, and associated methodology, for radio device
US20110001682A1 (en) 2009-07-02 2011-01-06 Research In Motion Limited Compact single feed dual-polarized dual-frequency band microstrip antenna array
CN201536151U (zh) * 2009-08-14 2010-07-28 南京理工大学 X波段双极化低互耦微带天线
CN201689984U (zh) * 2010-04-07 2010-12-29 福建省光微电子科技有限公司 方便调试电压驻波比的小型多层微带天线
US9919117B2 (en) 2011-05-09 2018-03-20 Impel Neuropharma Inc. Nozzles for nasal drug delivery

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2565985A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2556156B (en) * 2016-09-02 2022-03-30 Taoglas Group Holdings Ltd Multi-band MIMO panel antennas
US11811135B2 (en) 2016-09-02 2023-11-07 Taoglas Group Holdings Limited Multi-band MIMO panel antennas
CN107181058A (zh) * 2017-05-25 2017-09-19 广东工业大学 一种新型双波束定向辐射mimo贴片天线及移动终端
CN107181058B (zh) * 2017-05-25 2022-12-30 广东工业大学 一种新型双波束定向辐射mimo贴片天线及移动终端
TWI712216B (zh) * 2018-11-29 2020-12-01 大陸商深圳市超捷通訊有限公司 天線結構及具有該天線結構的無線通訊裝置
US20220173530A1 (en) * 2019-08-19 2022-06-02 Murata Manufacturing Co., Ltd. Antenna device and communication device
WO2022144696A1 (es) * 2020-12-30 2022-07-07 Instituto Tecnológico Metropolitano Dispositivo de antena sintonizado por luz

Also Published As

Publication number Publication date
EP2565985A4 (en) 2013-12-18
EP2565985A1 (en) 2013-03-06

Similar Documents

Publication Publication Date Title
US9030364B2 (en) Dual-polarized microstrip antenna
WO2011124094A1 (zh) 一种双极化微带天线
EP3012910A1 (en) Broadband dual-polarization four-leaf clover planar aerial
CN104900998A (zh) 低剖面双极化基站天线
JP2020506631A (ja) 新型のスペクトル拡散広帯域基地局アンテナ
CN105048077B (zh) 双三角形槽内嵌共面波导单极子多进多出天线
TW201044692A (en) Multi-antenna for a multi-input multi-output wireless communication system
CN106450683A (zh) 一种宽带双极化磁电偶极子基站天线上发送信号的方法
CN106450706A (zh) 一种宽带双极化磁电偶极子基站天线
CN108292794A (zh) 一种通信设备
CN114976665B (zh) 一种加载频率选择表面辐射稳定的宽带双极化偶极子天线
Abdullah et al. Compact four-port MIMO antenna system at 3.5 GHz
Wi et al. Multiband handset antenna analysis including LTE band MIMO service
CN210516983U (zh) 一种天通收发天线装置
CN110518343B (zh) 基于单极子结构的宽带基站天线
CN111916886A (zh) 一种增强型扩频宽带基站天线及无线通信设备
CN111180884A (zh) 一种宽带双极化基站天线单元及mimo天线
TWI612727B (zh) 陣列偶極天線裝置
Guo et al. A compact ultra-wideband crossed-dipole antenna for 2G/3G/4G/IMT/5G customer premise equipment applications
CN206364175U (zh) 一种宽带双极化磁电偶极子基站天线
CN208111696U (zh) 一种宽波束双极化基站天线
CN112968271A (zh) 一种宽带双极化天线
CN201741806U (zh) 一种用于射频前端系统的ltcc电小集成天线
TWI464962B (zh) 複合式多天線系統及其無線通訊裝置
CN219833015U (zh) 一种用于700-960Mhz的双极化高增益偶极子天线单元

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11765012

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013502986

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13639958

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20127029114

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2011765012

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011765012

Country of ref document: EP