WO2011123037A1 - A process for the reduction of a tertiary phosphine oxide to the corresponding tertiary phosphine in the presence of a catalyst and use of a tertiary phosphine for reducing a tertiary phosphine oxide in the presence of a catalyst - Google Patents

A process for the reduction of a tertiary phosphine oxide to the corresponding tertiary phosphine in the presence of a catalyst and use of a tertiary phosphine for reducing a tertiary phosphine oxide in the presence of a catalyst Download PDF

Info

Publication number
WO2011123037A1
WO2011123037A1 PCT/SE2011/050355 SE2011050355W WO2011123037A1 WO 2011123037 A1 WO2011123037 A1 WO 2011123037A1 SE 2011050355 W SE2011050355 W SE 2011050355W WO 2011123037 A1 WO2011123037 A1 WO 2011123037A1
Authority
WO
WIPO (PCT)
Prior art keywords
tertiary phosphine
substituted
phosphine
reducing
bis
Prior art date
Application number
PCT/SE2011/050355
Other languages
French (fr)
Inventor
Gaston Laven
Martin Kullberg
Original Assignee
Chromafora Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chromafora Ab filed Critical Chromafora Ab
Priority to DK11715084.7T priority Critical patent/DK2552928T3/en
Priority to CA2792478A priority patent/CA2792478C/en
Priority to KR1020127026315A priority patent/KR20130040812A/en
Priority to BR112012024952-5A priority patent/BR112012024952B1/en
Priority to PL11715084T priority patent/PL2552928T3/en
Priority to ES11715084.7T priority patent/ES2541276T3/en
Priority to CN201180017856.4A priority patent/CN102947319B/en
Priority to EP11715084.7A priority patent/EP2552928B1/en
Priority to EA201201355A priority patent/EA024399B1/en
Priority to US13/636,152 priority patent/US8735629B2/en
Priority to JP2013502534A priority patent/JP5409958B2/en
Priority to AU2011233746A priority patent/AU2011233746B2/en
Publication of WO2011123037A1 publication Critical patent/WO2011123037A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/50Organo-phosphines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/50Organo-phosphines
    • C07F9/505Preparation; Separation; Purification; Stabilisation
    • C07F9/509Preparation; Separation; Purification; Stabilisation by reduction of pentavalent phosphorus derivatives, e.g. -P=X with X = O, S, Se or -P-Hal2
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B31/00Reduction in general
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F17/00Metallocenes
    • C07F17/02Metallocenes of metals of Groups 8, 9 or 10 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/50Organo-phosphines
    • C07F9/5022Aromatic phosphines (P-C aromatic linkage)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/50Organo-phosphines
    • C07F9/5027Polyphosphines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/655Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having oxygen atoms, with or without sulfur, selenium, or tellurium atoms, as the only ring hetero atoms
    • C07F9/65515Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having oxygen atoms, with or without sulfur, selenium, or tellurium atoms, as the only ring hetero atoms the oxygen atom being part of a five-membered ring

Definitions

  • the present invention relates to a process for producing tertiary phosphines. More particu- larly, the invention relates to a process for producing a tertiary phosphine by reduction of the corresponding tertiary phosphine oxide.
  • Phosphines the phosphorous analogues of organic amines, constitute a class of highly im- portant compounds with widespread industrial applicability within numerous areas.
  • Tertiary phosphines are involved in a variety of extensively utilized chemical reactions, for instance the Wittig reaction, i.e. the conversion of a ketone or an aldehyde functionality into an olefin linkage, the Mitsunobu reaction for stereo-specific preparations of C-O, C-N, C- S, or C-C bonds from alcohol functionalities, the Staudinger reaction, i. e. conversion of azides to free amides, or the Apple reaction for stereo-specific transformation of alcohols to halides. Additionally, phosphines are utilized as ligands in homogenous catalysis.
  • phosphines are highly versatile and useful compounds for various applications, numerous different processes for the preparation of these organophosphorous agents have been developed.
  • virtually all chemical processes for preparing tertiary phosphines suffer from one or more disadvantages, relating to for instance cost, reagent handling, high reaction temperature intervals, severe purification requirements, or significant environmental impact, as well as the inherent complexity of the reaction system.
  • Polymeric analogues of triphenylphosphine have, inter alia, been reported as a means to mitigate the problem with extensive purification, enabling simple filtration-based removal of the undesired product of a particular chemical reaction.
  • issues associated with high reagent cost and substantial water requirements decrease the utility of said strategy.
  • the present invention therefore pertains to an optimized process for converting tertiary phosphine oxides into the corresponding tertiary phosphines, utiliz- ing a completely novel approach to the phosphine oxide reduction.
  • the present invention relates to a process for converting a tertiary phosphine oxide to the corresponding tertiary phosphine, comprising reacting said tertiary phosphine oxide with a reducing tertiary phosphine, in the presence of a catalyst, in order to obtain the de- sired corresponding tertiary phosphine from the tertiary phosphine oxide.
  • the invention pertains to numerous embodiments related to said conversion process, as well as to various uses for this highly efficient, simple, environmentally friendly, and scalable process.
  • the process according to the invention may be represented by the following reaction scheme, wherein a tertiary phosphine oxide of formula (I) is reduced to the corresponding tertiary phosphine of formula (III) by reaction with a reducing tertiary phosphine (II) in the presence of a catalyst: tertiary reducing
  • R 1 , R 2 and R 3 are each independently selected from the group comprising substituted or unsubstituted, branched or linear hydrocarbyl; and substituted or unsubstituted carbocyclyl or heterocyclyl;
  • A is a linking moiety
  • n is an integer of 0 to 2;
  • R 4 , R 5 and R 6 are each independently selected from the group comprising substituted or unsubstituted, branched or linear hydrocarbyl; and substituted or unsubstituted carbocyclyl or heterocyclyl;
  • B is a linking moiety
  • n is an integer of from 0 to 2.
  • the process of the present invention may very advantageously be used for reducing any tertiary phosphine oxide to the corresponding tertiary phosphine. Furthermore, either the tertiary phosphine oxide to be reduced or the reducing tertiary phosphine may be attached to a solid support. In the first case, the process may be used for in situ generation of a tertiary phosphine from the corresponding tertiary phosphine oxide.
  • the present invention also provides a method of reducing a tertiary phosphine oxide attached to a solid support by bringing said tertiary phosphine oxide in contact with a reducing tertiary phosphine in the presence of a catalyst for the reaction.
  • the present invention relates to the use of a tertiary phosphine for reducing a tertiary phosphine oxide, by reacting said tertiary phosphine oxide with the tertiary phosphine in the presence of a catalyst.
  • the tertiary phosphine to be used as a reduction agent may be attached to a solid support.
  • the present invention also provides a method of reducing a tertiary phosphine oxide by bringing said tertiary phosphine oxide in contact with a reducing tertiary phosphine attached to a solid support, in the presence of a catalyst.
  • hydrocarbyl refers to a moiety consisting exclusively of carbon and hydrogen atoms. As defined herein, the hydrocarbyl moiety is branched or linear and is aliphatic. The hydrocarbyl moiety may contain one or several unsaturations, i.e. one or several double bonds or one or several triple bonds, or both. The moiety may comprise 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20 carbon atoms, such as 1 to 10 carbon atoms or 1 to 6 carbon atoms.
  • a substituted hydrocarbyl may carry one or several independently selected substituents and any substituent that does not interfere with the reduction reaction is considered as possible for the purpose of the present invention. It is considered that the person of ordinary skill in the art will be able to ascertain the suitability of a substituent without undue burden.
  • any substituent may be independently selected from substituted or unsubstituted carbocyclyl, substituted or unsubstituted heterocyclyl, halogen, hydroxy, thio, alkylthio, e.g. Ci-Cio alkylthio, alkoxy, e.g. Ci-Cio alkoxy, cyano, haloalkyl, etc.
  • carbocyclyl refers to a cyclic moiety consisting exclusively of carbon and hydrogen atoms.
  • the carbocyclyl moiety may be aliphatic or aromatic and monocyclic or polycyclic, e.g. bicyclic, tricyclic or tetracyclic, including bridged or fused cycles, as well as spiro cycles.
  • An aliphatic carbocyclyl may contain one or several unsaturations, i.e. one or several double bonds or one or several triple bonds, or both.
  • the moiety may comprise 3, 4, 5, 6, 7, 8, 9, 10, 1 1 , 12, 13, 14, 15, 16, 17, 18, 19 or 20 carbon atoms.
  • the hydrocarbyl moiety may be polycyclic and contain e.g. 10 to 20 carbon atoms or monocyclic and contain e.g. 3 to 8 carbon atoms.
  • carbocyclyl are cyclopropyl, cyclo butyl, cyclopentyl, cyclopentenyl, cyclopentadienyl, cyclohexyl, cyclohexenyl, cyclohexadienyl, norbornyl, bicyclo[2.2.2]octyl, phenyl, naphthyl, fluorenyl, azulenyl, indanyl, indenyl, anthryl etc.
  • a substituted carbocyclyl may carry one or several independently selected substituents and again it is considered that any substituent that does not interfere with the reduction reaction is possible, and that the person of ordinary skill in the art will be well able to ascertain the suitability of the substitution without undue burden, e.g. by following the general procedure described herein for reduction of the tertiary phosphine oxide into the corresponding tertiary phosphine, and by usual analytical techniques to ascertain the product identity and the product yield.
  • any substituent may be independently selected from substituted or unsubstituted hydrocarbyl, carbocyclyl or heterocyclyl, halogen, hydroxy, thio, alkylthio, e.g. Ci-Cio alkylthio, alkoxy, e.g. Ci-Cio alkoxy, cyano, haloalkyl, etc.
  • heterocyclyl refers to a monocyclic or polycyclic, e.g. bi-, tri- or tetracyclic radical having 3, 4, 5, 6, 7, 8, 9, 10, 1 1 , 12, 13, 14, 15, 16, 17, 18, 19 or 20 ring atoms, at least one of which, e.g. 1 , 2, 3 or 4, such as 1 or 2, is a heteroatom selected from nitrogen, oxygen, phosphorus, silicon and sulphur, e.g. nitrogen, oxygen and sulphur.
  • the cyclic radical may contain one or several unsaturations, i.e. one or several double bonds or one or several triple bonds, or both.
  • heterocyclyl examples include pyridyl, pyrrolyl, quino- linyl, furyl, thienyl, oxadiazolyl, thiadiazolyl, thiazolyl, oxazolyl, pyrazolyl, triazolyl, tetrazolyl, tetrahydroquinolinyl, tetrazolyl, thiadiazolyl, thiazolyl, thiochromanyl, triazolyl, isoxazolyl, isothiazolyl, isoquinolinyl, naphthyridinyl, imidazolyl, pyrimidinyl, phthalaz- inyl, indolyl, pyrazolyl, pyridazinyl, pyrimidinyl, pyrrolyl, quinazolinyl, quinolinyl, quino- lizinyl, quinoxalinyl, tetrahydrois
  • a substituted heterocyclyl may carry one or several independently selected substituents and again it is considered that any substituent that does not interfere with the reduction reaction is possible, and that the person of ordinary skill in the art will be well able to ascertain the suitability of the substitution without undue burden.
  • any substituent may be independently selected from substituted or unsubstituted hydrocarbyl, carbocy- clyl or heterocyclyl, halogen, hydroxy, thio, alkylthio, e.g. Ci-Cio alkylthio, alkoxy, e.g. Ci-Cio alkoxy, cyano, haloalkyl, etc.
  • halogen or "halo” etc, as used herein refer, to F, CI, Br and I.
  • alkyl refers to a hydrocarbyl radical. In case the alkyl is saturated, it is a radical according to the formula C n H2 n -i , and then is referred to as a "C n alkyl". Further, it should be understood that a moiety such as “C3-C20 cycloalkyl-Co alkyl” or “C 6 - C20 aryl-Co alkyl” represents a "C3-C20 cycloalkyl” and "C6-C20 aryl", respectively. As defined herein, the alkyl also may be unsaturated (i.e. alkenyl or alkynyl), in which case it may contain one or several double bonds or one or several triple bonds, or both.
  • unsaturated i.e. alkenyl or alkynyl
  • aryl as used herein includes reference to a carbocyclyl as defined herein above that is aromatic.
  • Aryl is often phenyl but also may be a polycyclic ring system, having two or more rings, e.g. naphthyl, fluorenyl, azulenyl, anthryl, phenanthryl etc.
  • Hydrocarbylene carbocyclylene, heterocyclylene, alkylene and arylene
  • hydrocarbylene refers to diradicals derived from the corresponding hydrocarbon, car- bocycle, heterocycle, alkane (or alkene or alkyne, when insaturated) or arene, and are essentially analogous to the corresponding monoradicals defined herein, except for being diradicals.
  • the present invention is concerned with a process for converting tertiary phosphine oxides to the corresponding tertiary phosphines, numerous embodiments related to said conversion, as well as various uses for this highly efficient, simple, environmentally friendly, and scalable process.
  • the process comprises reacting a tertiary phosphine oxide, which it is desirable to reduce into the corresponding phosphine, with a reducing tertiary phosphine, in the presence of a catalyst, which catalyzes the reduction of the tertiary phosphine oxide to be reduced.
  • the reducing tertiary phosphine is oxidized to the corresponding tertiary phosphine oxide.
  • the process of the invention is not limited to any particular tertiary phosphine oxide and in fact, it is contemplated that any tertiary phosphine oxide may be reduced by the inventive process, by a proper selection of the reducing tertiary phosphine.
  • the tertiary phosphine oxide of the invention may contain any number of phosphine oxide functions to be reduced.
  • the tertiary phosphine oxide may contain from 1 to 3 e.g. 1 or 2 phosphine oxide functions.
  • the tertiary phosphine oxide contains 1 phosphine oxide function.
  • the tertiary phosphine oxide contains 2 phosphine oxide functions.
  • the phosphine oxide may additionally contain other functional groups.
  • the tertiary phosphine oxide is a compound of formula (I)
  • R 1 , R 2 and R 3 are each independently selected from the group comprising substituted or unsubstituted, branched or linear hydrocarbyl; and substituted or unsubstituted carbocyclyl or heterocyclyl;
  • A is a linking moiety
  • n is an integer of from 0 to 2.
  • each R 1 , R 2 and R 3 may be independently selected from the group comprising C1-C20 alkyl, C6-C20 aryl-Co-C 2 o alkyl, C3-C20 cycloalkyl-Co-C 2 o alkyl, 5-20 membered heterocyclyl-Co-C 2 o alkyl; 5-20 membered heteroaryl-Co-C 2 o alkyl wherein any alkyl, cycloalkyl and heterocyclyl moiety may be saturated or unsaturated, any alkyl moiety may be branched or linear, and any alkyl, cycloalkyl, heterocyclyl, aryl and heteroaryl moiety is optionally substituted with one or several substituents.
  • any C1-C20 alkyl may more particularly be a C1-C10 alkyl; any C0-C20 alkyl may more particularly be a C0-C10 alkyl; any C6-C20 aryl may more particularly be a C 6 -Ci4 aryl; any 5-20 membered heterocyclyl may more particularly be a 5-14 membered heterocyclyl; and any 5-20 membered heteroaryl may more particularly be a 5-14 membered heteroaryl.
  • any C1-C20 alkyl may more particularly be a Ci-C 6 alkyl; any C0-C20 alkyl may more particularly be a Co-C 6 alkyl; any C6-C20 aryl may more particularly be a C 6 -Cio aryl; any 5-20 membered heterocyclyl may more particularly be a 5-10 membered heterocyclyl; and any 5-20 membered heteroaryl may more particularly be a 5-10 membered heteroaryl.
  • R 1 , R 2 and R 3 may be each independently selected from the group comprising substituted or unsubstituted C6-C 2 o aryl-Co-C 2 o alkyl and C5-C20 heteroaryl-Co-C 2 o alkyl, e.g. substituted or unsubstituted C6-C20 aryl and C5-C20 heteroaryl, such as substituted or unsubstituted phenyl, naphthyl and furyl, in particular substituted or unsubstituted phenyl.
  • R 1 , R 2 and R 3 may be each independently selected from the group comprising substituted or unsubstituted C6-C20 aryl-Co-C 2 o alkyl, e.g. substituted or unsubstituted C6-C20 aryl, such as substituted or unsubstituted phenyl or naphthyl, in particular substituted or unsubstituted phenyl.
  • R 1 , R 2 and R 3 are all substituted or unsubstituted phenyl.
  • the integer m in formula (I) is an integer of from 0 to 2, e.g. 0 or 1.
  • n in formula (I) is 0, in which case the tertiary phosphine oxide of the invention may be represented by the formula ( ⁇ )
  • R 1 , R 2 and R 3 are as defined herein above.
  • n in formula (I) is 1
  • the tertiary phosphine oxide of the in- vention may then be represented by the formula (I")
  • R 1 , R 2 , R 3 and A are as defined herein above.
  • R 1 , R 2 and R 3 are all the same, e.g. all are substituted or unsubstituted phenyl.
  • the linking moiety A may be any diradical capable of attaching the two phosphorous atoms of the phosphine (oxide) functions to each other, through any number of intervening bonds.
  • the linking moiety A may comprise substituted or unsubstituted hydrocarbylene or substituted or unsubstituted monocyclic or polycyclic carbocyclylene or heterocyclylene, and optionally one or several functional groups, such as ether or thioether function.
  • A is independently selected at each occurrence.
  • A is a polycyclic diradical, such as a diradical comprising 2 to 8 ring moieties, e.g. 2 to 6, or 2 to 4 ring moieties, wherein each ring moiety is independently selected from 5- or 6-membered, saturated or unsaturated, aromatic or non-aromatic carbo- cycles and hetercycles, and wherein the ring moieties are either fused to each other or attached to each other through one or several intervening bonds of e.g.
  • covalent type or met- allocene type such as a covalent bond, an ether function, a thioether function, an optionally substituted alkylene group, e.g. a methylene or ethylene group, or a ferrocene type bond.
  • the two phosphine oxide functions preferably are attached to different ring moieties.
  • A may be a substituted or unsubstituted hydrocarbylene, carbocyclylene, or heterocyclylene.
  • the linking moiety A also may be a substituted or unsubstituted metallocenylene, i.e. a diradical derived from a metallocene, i.e.
  • A may be a substituted or unsubstituted ferro- cenylene.
  • A is an unsubstituted or substituted diradical selected from the group of substituted or unsubstituted, saturated or unsaturated, branched or linear Ci-C 2 o alkylene, C3-C20 carbocyclylene, e.g. C6-C20 arylene, 5-20 membered heterocyclylene, e.g. 5- 20 membered heteroarylene, C6-C40 bicyclylene, e.g. C12-C40 biarylene, 10-40 membered biheterocyclylene, e.g. 10-40 membered biheteroarylene, and C10-C30 ferrocenylene.
  • A may be an unsubstituted or substituted diradical selected from the group of C6-C20 arylene, 5-20 membered heterocyclylene, 5-20 membered heteroarylene, C12-C40 biarylene, 10-40 membered biheterocyclylene, 10-40 membered biheteroarylene, and C 10 - C30 ferrocenylene.
  • A is an unsubstituted or substituted diradical selected from the group of C12-C40 biarylene, 5-20 membered heterocyclylene and C10-C30 ferrocenylene, e.g. binaphthyl, such as 2,2 ' -binaphthyl; xanthenylene, e.g. 4,5-xanthenylene; and (C 10 ) ferrocenylene, e.g. ⁇ , ⁇ -ferrocenylene.
  • tertiary phosphine oxides that may be reduced according to the invention are triphenylphosphine oxide, 2,2'-bis(diphenyloxyphosphino)-l,r-binaphthyl, bis(2-
  • tertiary phosphine oxide examples include:
  • di-(tert-butyl)phenylphosphine di(l-methylbutyl)phenylphosphine, di(l,l-dimethyl- propyl)phenylphosphine, di( 1 , 1 -dimethylbutyl)phenylphosphine, di-(tert-butyl)-2- methoxyphenylphosphine, di(l-methylbutyl)-2-methoxyphenylphosphine, di(l,l-dimethyl- propyl)-2-methoxyphenylphosphine, di(l , 1 -dimethylbutyl)-2-methoxyphenylphosphine, bis(trimethylsilyl)-2-methoxyphenylphosphine, di-(tert-butyl)-4-methoxyphenylphosphine, di( 1 -methylbutyl)-4-methoxyphenylphosphine, di( 1 , 1 -
  • JandaJelTM is a polystyrene resin available from Sigma- Aldrich Co.
  • the compounds of the invention may include one or several atoms having an (R) form and (S) form, in which case all forms and combinations thereof are contemplated as included within the scope of the invention, as well as any mixture of any isomeres.
  • the reducing tertiary phosphine may contain one or several tertiary phosphine functions and the phosphorus atom of each phosphine function may be linked to groups selected from substituted or unsubstituted, branched or linear hydrocarbyl; and substituted or un- substituted carbocyclyl or heterocyclyl, as defined herein above.
  • the reducing tertiary phosphine may contain from 1 to 3 phosphine functions. In one embodiment, the reducing tertiary phosphine contains 1 or 2 phosphine functions. In one particular embodiment, the reducing tertiary phosphine contains 1 phosphine function.
  • the reducing tertiary phosphine may additionally contain other functional groups.
  • the reducing tertiary phosphine is represented by the formula (II)
  • R 4 , R 5 and R 6 are each independently selected from the group comprising substituted or unsubstituted, branched or linear hydrocarbyl; and substituted or unsubstituted, aliphatic or aromatic carbocyclyl or heterocyclyl;
  • B is a linking moiety
  • n is an integer of from 0 to 2, e.g. 0 or 1.
  • R 4 , R 5 and R 6 may be selected from the group comprising substituted or un- substituted, branched or linear C1-C20 hydrocarbyl, e.g. C1-C10 hydrocarbyl, e.g. Ci-C 6 hydrocarbyl; and substituted or unsubstituted, aliphatic or aromatic C3-C20 carbocyclyl, e.g. C3-C10 carbocyclyl, or C3-C6 carbocyclyl, or 5-20 membered heterocyclyl, e.g. 5-10 membered heterocyclyl, or 5-6 membered heterocyclyl.
  • R 4 , R 5 and R 6 are independently selected from the group comprising substituted or unsubstituted, branched or linear C1-C20 hydrocarbyl, e.g. C1-C10 hydrocarbyl, e.g. Ci-C 6 hydrocarbyl; and substituted or unsubstituted, aliphatic C3-C20 carbocyclyl, e.g. C3-C10 carbocyclyl, or C3-C6 carbocyclyl.
  • any hydrocarbyl moiety may be an alkyl and any carbocyclyl moiety may be a cycloalkyl.
  • R 4 , R 5 and R 6 are all the same, although they may equally well be different from each other.
  • the number of phosphine functions in the compound of formula (II) suitably may range from 1 to 3, i.e. the integer n in formula (II) is from 0 to 2.
  • n in formula (II) is 0, in which case the reducing tertiary phosphine of the invention may be represented by the formula (IF)
  • R 4 , R 5 and R 6 are as defined herein above.
  • n in formula (II) is 1 or 2.
  • R 4 , R 5 and R 6 are all the same, e.g. all are substituted or unsubstituted Ci-C 6 alkyl or C3-C6 cycloalkyl.
  • the linking moiety B may be any diradical capable of attaching the two phosphorous atoms of the phosphine (oxide) functions to each other, through any number of intervening bonds.
  • the linking moiety B may comprise substituted or unsubstituted hydrocarbylene, monocyclic or polycyclic carbocyclylene or heterocyclylene, and optionally one or several functional groups, such as ether or thioether function.
  • n in formula (II) is more than 1
  • B is independently selected at each occurrence.
  • B is a polycyclic diradical, such as a diradical comprising 2 to 8 ring moieties, e.g. 2 to 6, or 2 to 4 ring moieties, wherein each ring moiety is independently selected from 5- or 6-membered, saturated or unsaturated, aromatic or non-aromatic, car- bocycles and heterocycles, and wherein the ring moieties are either fused to each other or attached to each other through one or several intervening bonds of e.g. covalent type or metallocene type, such as a covalent bond, an ether function, a thioether function, an optionally substituted alkylene group, e.g.
  • covalent type or metallocene type such as a covalent bond, an ether function, a thioether function, an optionally substituted alkylene group, e.g.
  • B may be a substituted or unsubstituted hydrocarbylene, carbo- cyclylene, or heterocyclylene.
  • the linking moiety B also may be a substituted or unsubstituted metallocenylene, i.e. a diradical derived from a metallocene, i.e. a compound with the general formula (C 5 H 5 ) 2 M consisting of two cyclopentadienyl anions bound to a positively charged metal centre (M).
  • B may be a substituted or unsubstituted ferro- cenylene.
  • B is an unsubstituted or substituted diradical selected from the group of substituted or unsubstituted, saturated or unsaturated, branched or linear Ci-C 2 o al- kylene, C3-C20 carbocyclylene, e.g. C6-C20 arylene, 5-20 membered heterocyclylene, e.g. 5- 20 membered heteroarylene, C6-C40 bicyclylene, e.g. C12-C40 biarylene, 10-40 membered biheterocyclylene, e.g. 10-40 membered biheteroarylene, and C10-C30 ferrocenylene.
  • B may be an unsubstituted or substituted diradical selected from the group of C6-C20 arylene, 5-20 membered heterocyclylene, 5-20 membered heteroarylene, C12-C40 biarylene, 10-40 membered biheterocyclylene, 10-40 membered biheteroarylene, and C 10 - C30 ferrocenylene.
  • B may is an unsubstituted or substituted diradical selected from the group of C12-C40 biarylene, 5-20 membered heterocyclylene and C10-C30 ferrocenylene, e.g. binaphthyl, such as 2,2 ' -binaphthyl; xanthenylene, e.g. 4,5-xanthenylene; and (C 10 ) ferrocenylene, e.g. ⁇ , ⁇ -ferrocenylene.
  • the basicity of the reducing tertiary phosphine preferably is greater than the basicity of the product phosphine. This is because a more basic phosphine is more easily oxidized than a less basic phosphine.
  • the reaction according to the invention may additionally be driven in the desired direction e.g. by addition of an excess of the reducing tertiary phosphine to the reaction mixture.
  • the term "basicity” essentially refers to the capability of the phosphine of donating electron pairs, i.e. of acting as a Lewis base; the electron pairs involved being those of the phosphine-phosphorus.
  • the basicity of the reducing phosphine mainly is governed by the groups linked to the phosphine function(s), i.e. mainly the groups R 4 , R 5 and R 6 in the formula (II).
  • R 4 , R 5 and R 6 are selected from Ci-C 6 alkyl and C3-C6 cycloalkyl, such as tri-tert-butylphosphine and tricyclopropylphosphine, are quite basic compounds and as such they are advantageous as reducing tertiary phosphines for use in a process according to the invention.
  • the tertiary reducing phosphine thus preferably is selected so as to be a stronger base than the tertiary phosphine oxide reduction product. Additional parameters for selecting the tertiary reducing phosphine may be e.g. ease of handling, availability and low cost.
  • the oxidation product of the reducing tertiary phosphine normally is considered a side product of the process. However, it should be realized that, if so desired, also this oxidation product may be collected and e.g. recycled through reduction or used in any other way.
  • Non-limiting examples of reducing tertiary phosphine suitable for the process of the present invention may be selected from the group comprising tributylphosphine, triethyl- phosphine, trimethylphosphine, tricyclohexylphosphine, tri-tert-butylphosphine, triphenyl- phosphine and other similar phosphines.
  • the reducing tertiary phosphine preferably is present in an amount corresponding to at least 1 molar equivalent phosphine-phosphorus of the reducing tertiary phosphine to the phosphine oxide-phosphorus of the tertiary phosphine oxide.
  • the reducing tertiary phosphine may suitably be present in an amount such as the molar ratio of the phosphine function(s) of the reducing tertiary phosphine to the phosphine oxide function(s) of the tertiary phosphine oxide to be reduced is from about 1 to about 10, e.g. from about 1.2 to about 5, e.g. about 1.5 to about 2.5, or approximately 2.
  • the reducing tertiary phosphine is present in excess, compared to the phosphine oxide.
  • the reducing tertiary phosphine may suitably be present in an amount such as the molar ratio of the phosphine function(s) of the reducing tertiary phosphine to the phosphine oxide function(s) of the tertiary phosphine oxide to be reduced is from about 2 to about 10, e.g. from about 3 to about 8, or about 4 to about 6.
  • the reducing tertiary phosphine is attached to a solid support.
  • the reducing tertiary phosphine may be regenerated after use, e.g. by reacting it with a reduction agent, such as a reducing tertiary phosphine, which may be more basic than the reducing tertiary phosphine attached to the solid phase or which is added in an excess to the reaction medium containing the solid phase with the attached reducing phosphine to be regenerated.
  • a reduction agent such as a reducing tertiary phosphine, which may be more basic than the reducing tertiary phosphine attached to the solid phase or which is added in an excess to the reaction medium containing the solid phase with the attached reducing phosphine to be regenerated.
  • the catalyst can be any type of chemical species capable of catalyzing the reaction of the invention.
  • the catalyst comprises at least one halogen atom.
  • the catalyst may inter alia be selected from the group comprising fluorine (F 2 ), chlorine (Cl 2 ), bromine (Br 2 ), iodine (I 2 ), e.g. I 2 and Br 2 ; haloalkanes, in particular tetrahalomethanes, such as tetrachloromethane, tetrabromomethane, tetraiodomethane, tetrafluoromethane, e.g.CCl 4 ; phosphine dihalides, e.g.
  • tertiary phosphine dihalides such as triphenylphosphine dichloride, triphenylphosphine dibromide, triphenylphosphine diio- dide, triphenylphosphine difluoride, e.g. triphenylphosphine dichloride, and/or any trialkyl, cycloalkyl or aryl analogues thereof.
  • the catalyst only needs to be present in catalytic amounts, but, since spurious water pre- sent in reagents and in solvents may consume catalyst, the optimal catalyst loading may be e.g. 0.02-0.5 molar equivalents of the tertiary phosphine oxide to be reduced, in particular 0.05-0.2 molar equivalents, e.g. 0.08-0.12 molar equivalents and suitably approximately 0.1 molar equivalents.
  • increasing the amount of catalyst above the indicated ranges does not appear to have any significant effect on the reaction.
  • higher/lower molar equivalents may be relevant, and increasing/decreasing the amount of catalyst is thus also within the scope of the present invention.
  • the catalyst may be present in any physical form, but suitable forms known to a person skilled in the art for a particular combination of reagents and/or reaction conditions are naturally preferable.
  • reaction mechanism of the process of the present invention is reliant on an initial interaction between the catalyst and the reducing tertiary phosphine, possibly leading to an intermediary complex formed between at least certain components of these two molecules. Subsequently, the tertiary phosphine oxide is reduced into its corresponding tertiary phosphine, a reaction facilitated by the intermediary complex generated from the catalyst and the reducing tertiary phosphine.
  • the process of the present invention thus results in, in total, reduction of the tertiary phosphine oxide into the corresponding tertiary phosphine, oxidation of the reducing tertiary phosphine into the corresponding tertiary phosphine oxide, as well as regeneration of the catalyst.
  • the process of converting the tertiary phosphine oxide into the corresponding phosphine may be performed under solvent-free conditions, in order to further reduce the environmental impact of the process.
  • the process of the present invention has, by virtue of the selection of reagents and conditions under which the reaction is taking place, a remarkably low environmental impact, but the possibility to utilize solvent-free reaction conditions further optimizes the eco-friendly characteristics of the present invention.
  • the process may also be carried out in anhydrous aprotic solvent(s), such as for instance toluene, hexane, tetrahydrofuran (THF), acetonitrile, diethylether, propionitrile, benzonitrile, ethyl acetate and mixtures of these, e.g. tetrahydrofuran, acetonitrile, diethylether, propionitrile, toluene, ethyl acetate and mixtures of these.
  • a preferable solvent for the process of the present invention may be selected from the group comprising acetonitrile and a 1 to 1 mixture of acetonitrile and THF.
  • reaction constituents has no effect on the process, with the implication that obstacles associated with scale-up and handling can be minimized.
  • the process can be carried out in virtually any type of reaction vessel, additionally increasing the versatility, specifically from an industrial perspective, of the invention.
  • the process of the present invention is, as mentioned herein above, associated with numer- ous advantages pertaining to inexpensiveness, low environmental impact, scalability, and ease of handling. Further advantageous aspects of the invention relate for instance to the fact that the process may be carried out at any temperature, most conveniently at ambient temperature, and that the concentration of the reaction mixture does not affect the process. Additionally, the process is very mild and thus highly suitable for sensitive reaction sys- terns. For instance, the process of the present invention is ideally suitable for use in the reduction of tertiary phosphine oxides attached to a polymeric carrier or backbone, so as to regenerate the tertiary phosphine attached to the polymeric carrier or backbone.
  • the process of the invention may be used in the regeneration of triphenylphosphine on polystyrene.
  • Such uses, and additional uses for regenerating tertiary phosphines attached to solid support imply that the regenerated agents can be used repeatedly, resulting in minimized costs and optimized processes, especially for applications on a more industrial scale.
  • the solid support
  • either the tertiary phosphine oxide or the reducing phosphine may be attached to a solid support.
  • a solid support is a polystyrene material, such as sold under the trade name JandaJelTM, by Sigma- Aldrich Co.
  • Other possible solid phase supports are e.g. silica gel, Ring-Opening Olefin Metathesis Polymerization (ROMP) gel etc.
  • triphenylphosphine attached to polystyrene may be prepared by copolymerizaion of diphenylstyrylphosphine and styrene or by copolymerization of diphenylphosphine and poly(4-bromostyrene).
  • the process of the invention very advantageously may be carried out at low reaction temperature, e.g. room temperature (e.g. 18-25 °C), and preferably is carried out under an inert atmosphere, e.g. a nitrogen atmosphere.
  • the reaction time may be kept very short, i.e. less than an hour, e.g. from 10 minutes to 30 minutes, giving a very high product yield of e.g. over 90 mole %, and up to 99 mole % or even an almost quantitative yield.
  • the tertiary phosphine oxide, the reduc- ing tertiary phosphine and a catalyst are admixed, optionally in an anhydrous aprotic solvent.
  • the mixture is stirred for the appropriate amount of time under an inert atmosphere.
  • the reaction mixture suitably then is quenched, e.g. by addition of water.
  • the product may be extracted, purified and crystallized, e.g. by following the procedure described in the Examples.
  • the reaction medium is diluted, if necessary, and washed with portions of a weak basic buffer solution, such as saturated NaHC03.
  • the solution is dried, e.g. with Na 2 S0 4 , and filtered, whereafter the solvent is evaporated.
  • the evaporation residue is redissolved in a hot solvent, e.g. EtOH, and made to crystallize, e.g. by keeping in a refrigerator.
  • the prod- uct crystals then are filtered off, washed and dried.
  • triphenylphosphine oxide 100 mg (0.359 mmol) of triphenylphosphine oxide were treated with 12 mg triphenylphosphine dichloride (35 ⁇ ) and tributylphosphme 180 ⁇ ⁇ (0.72 mmol) in acetonitrile 1 mL for 48 hours at room temperature. Essentially the same results as in Example 6 were obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

A process for the conversion of a tertiary phosphine oxide to the corresponding tertiary phosphine comprising reacting said tertiary phosphine oxide with a reducing tertiary phosphine, in the presence of a catalyst that catalyzes the conversion.

Description

A PROCESS FOR THE REDUCTION OF A TERTIARY PHOSPHINE OXIDE TO THE CORRESPONDING TERTIARY PHOSPHINE IN THE PRESENCE OF A CATALYST AND USE OF A TERTIARY PHOSPHINE FOR REDUCING A TERTIARY PHOSPHINE OXIDE IN THE PRESENCE OF A CATALYST.
Technical field
The present invention relates to a process for producing tertiary phosphines. More particu- larly, the invention relates to a process for producing a tertiary phosphine by reduction of the corresponding tertiary phosphine oxide.
Technical background
Phosphines, the phosphorous analogues of organic amines, constitute a class of highly im- portant compounds with widespread industrial applicability within numerous areas. Tertiary phosphines are involved in a variety of extensively utilized chemical reactions, for instance the Wittig reaction, i.e. the conversion of a ketone or an aldehyde functionality into an olefin linkage, the Mitsunobu reaction for stereo-specific preparations of C-O, C-N, C- S, or C-C bonds from alcohol functionalities, the Staudinger reaction, i. e. conversion of azides to free amides, or the Apple reaction for stereo-specific transformation of alcohols to halides. Additionally, phosphines are utilized as ligands in homogenous catalysis.
Tertiary phosphines are commonly prepared through reduction of the corresponding phosphine oxides. Over the years, concomitantly with the realization that tertiary
phosphines are highly versatile and useful compounds for various applications, numerous different processes for the preparation of these organophosphorous agents have been developed. However, virtually all chemical processes for preparing tertiary phosphines suffer from one or more disadvantages, relating to for instance cost, reagent handling, high reaction temperature intervals, severe purification requirements, or significant environmental impact, as well as the inherent complexity of the reaction system. Polymeric analogues of triphenylphosphine have, inter alia, been reported as a means to mitigate the problem with extensive purification, enabling simple filtration-based removal of the undesired product of a particular chemical reaction. However, despite being an elegant solution to the purification problem, issues associated with high reagent cost and substantial water requirements decrease the utility of said strategy.
An alternative approach for allegedly generating a relatively pure tertiary phosphine product, supposedly obtainable through an economically feasible route, is disclosed in
US4113783, wherein triphenylphosphine oxide is reacted with a dialkylaluminium hydride followed by subsequent hydrolysis, in order to obtain the desired product. A similar approach is disclosed in US4507504, where the reducing agent is a trialkylaluminium/boron trihalide compound, again providing a purportedly inexpensive route to tertiary
phosphines. Despite disclosing asserted inexpensive routes to tertiary phosphines, the envi- ronmental impact of essentially all tertiary phosphine producing reactions of the prior art is very high, inter alia as a result of the use of harsh reagents, high temperatures, and/or substantial amounts of solvents. Further, numerous teachings of the prior art relate to procedures with low susceptibility for industrial application, relatively often as an implication of a lack of scalability, or as a result of the use of harsh reagents, obstructing safe and envi- ronmentally feasible process development.
Summary of the invention
There is thus a significant need in the art for improved processes for conversion of tertiary phosphine oxides into the corresponding tertiary phosphines, with desired characteristics such as for instance inexpensiveness, simplicity, scalability, ease of handling, and efficiency, as well as low environmental impact.
Bearing in mind the substantial drawbacks associated with the processes constituting state- of-the-art, it is an object of the present invention to overcome said drawbacks and to satisfy the existing needs, by providing an inexpensive, simple, and highly efficient chemical process with minimal environmental impact.
According to a first aspect the present invention therefore pertains to an optimized process for converting tertiary phosphine oxides into the corresponding tertiary phosphines, utiliz- ing a completely novel approach to the phosphine oxide reduction.
Thus, the present invention relates to a process for converting a tertiary phosphine oxide to the corresponding tertiary phosphine, comprising reacting said tertiary phosphine oxide with a reducing tertiary phosphine, in the presence of a catalyst, in order to obtain the de- sired corresponding tertiary phosphine from the tertiary phosphine oxide. Further, the invention pertains to numerous embodiments related to said conversion process, as well as to various uses for this highly efficient, simple, environmentally friendly, and scalable process. In one embodiment, the process according to the invention may be represented by the following reaction scheme, wherein a tertiary phosphine oxide of formula (I) is reduced to the corresponding tertiary phosphine of formula (III) by reaction with a reducing tertiary phosphine (II) in the presence of a catalyst: tertiary reducing
phosphine oxide tertiary phosphine catalyst
Figure imgf000004_0001
(I)
(II) product
tertiary phosphine
Figure imgf000004_0002
(IN) (iv)
wherein
R1, R2 and R3 are each independently selected from the group comprising substituted or unsubstituted, branched or linear hydrocarbyl; and substituted or unsubstituted carbocyclyl or heterocyclyl;
A is a linking moiety;
m is an integer of 0 to 2;
R4, R5 and R6 are each independently selected from the group comprising substituted or unsubstituted, branched or linear hydrocarbyl; and substituted or unsubstituted carbocyclyl or heterocyclyl;
B is a linking moiety; and
n is an integer of from 0 to 2.
The process of the present invention may very advantageously be used for reducing any tertiary phosphine oxide to the corresponding tertiary phosphine. Furthermore, either the tertiary phosphine oxide to be reduced or the reducing tertiary phosphine may be attached to a solid support. In the first case, the process may be used for in situ generation of a tertiary phosphine from the corresponding tertiary phosphine oxide. Thus, the present invention also provides a method of reducing a tertiary phosphine oxide attached to a solid support by bringing said tertiary phosphine oxide in contact with a reducing tertiary phosphine in the presence of a catalyst for the reaction.
In one aspect, the present invention relates to the use of a tertiary phosphine for reducing a tertiary phosphine oxide, by reacting said tertiary phosphine oxide with the tertiary phosphine in the presence of a catalyst.
The tertiary phosphine to be used as a reduction agent may be attached to a solid support. Thus, the present invention also provides a method of reducing a tertiary phosphine oxide by bringing said tertiary phosphine oxide in contact with a reducing tertiary phosphine attached to a solid support, in the presence of a catalyst.
Further aspects of the invention and embodiments thereof will be apparent from the following detailed description and the appended claims.
Detailed description of the invention
Some terms used with respect to the present invention will first of all be defined.
Hydrocarbyl
The term "hydrocarbyl" as used herein refers to a moiety consisting exclusively of carbon and hydrogen atoms. As defined herein, the hydrocarbyl moiety is branched or linear and is aliphatic. The hydrocarbyl moiety may contain one or several unsaturations, i.e. one or several double bonds or one or several triple bonds, or both. The moiety may comprise 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20 carbon atoms, such as 1 to 10 carbon atoms or 1 to 6 carbon atoms.
A substituted hydrocarbyl may carry one or several independently selected substituents and any substituent that does not interfere with the reduction reaction is considered as possible for the purpose of the present invention. It is considered that the person of ordinary skill in the art will be able to ascertain the suitability of a substituent without undue burden. For example, any substituent may be independently selected from substituted or unsubstituted carbocyclyl, substituted or unsubstituted heterocyclyl, halogen, hydroxy, thio, alkylthio, e.g. Ci-Cio alkylthio, alkoxy, e.g. Ci-Cio alkoxy, cyano, haloalkyl, etc.
Carbocyclyl
The term "carbocyclyl" as used herein refers to a cyclic moiety consisting exclusively of carbon and hydrogen atoms. As defined herein, the carbocyclyl moiety may be aliphatic or aromatic and monocyclic or polycyclic, e.g. bicyclic, tricyclic or tetracyclic, including bridged or fused cycles, as well as spiro cycles. An aliphatic carbocyclyl may contain one or several unsaturations, i.e. one or several double bonds or one or several triple bonds, or both. The moiety may comprise 3, 4, 5, 6, 7, 8, 9, 10, 1 1 , 12, 13, 14, 15, 16, 17, 18, 19 or 20 carbon atoms. For example, the hydrocarbyl moiety may be polycyclic and contain e.g. 10 to 20 carbon atoms or monocyclic and contain e.g. 3 to 8 carbon atoms. Examples of carbocyclyl are cyclopropyl, cyclo butyl, cyclopentyl, cyclopentenyl, cyclopentadienyl, cyclohexyl, cyclohexenyl, cyclohexadienyl, norbornyl, bicyclo[2.2.2]octyl, phenyl, naphthyl, fluorenyl, azulenyl, indanyl, indenyl, anthryl etc.
A substituted carbocyclyl may carry one or several independently selected substituents and again it is considered that any substituent that does not interfere with the reduction reaction is possible, and that the person of ordinary skill in the art will be well able to ascertain the suitability of the substitution without undue burden, e.g. by following the general procedure described herein for reduction of the tertiary phosphine oxide into the corresponding tertiary phosphine, and by usual analytical techniques to ascertain the product identity and the product yield. For example, any substituent may be independently selected from substituted or unsubstituted hydrocarbyl, carbocyclyl or heterocyclyl, halogen, hydroxy, thio, alkylthio, e.g. Ci-Cio alkylthio, alkoxy, e.g. Ci-Cio alkoxy, cyano, haloalkyl, etc.
Heterocyclyl
The term "heterocyclyl" as used herein refers to a monocyclic or polycyclic, e.g. bi-, tri- or tetracyclic radical having 3, 4, 5, 6, 7, 8, 9, 10, 1 1 , 12, 13, 14, 15, 16, 17, 18, 19 or 20 ring atoms, at least one of which, e.g. 1 , 2, 3 or 4, such as 1 or 2, is a heteroatom selected from nitrogen, oxygen, phosphorus, silicon and sulphur, e.g. nitrogen, oxygen and sulphur. The cyclic radical may contain one or several unsaturations, i.e. one or several double bonds or one or several triple bonds, or both. Examples of heterocyclyl are pyridyl, pyrrolyl, quino- linyl, furyl, thienyl, oxadiazolyl, thiadiazolyl, thiazolyl, oxazolyl, pyrazolyl, triazolyl, tetrazolyl, tetrahydroquinolinyl, tetrazolyl, thiadiazolyl, thiazolyl, thiochromanyl, triazolyl, isoxazolyl, isothiazolyl, isoquinolinyl, naphthyridinyl, imidazolyl, pyrimidinyl, phthalaz- inyl, indolyl, pyrazolyl, pyridazinyl, pyrimidinyl, pyrrolyl, quinazolinyl, quinolinyl, quino- lizinyl, quinoxalinyl, tetrahydroisoquinolinyl, pyrazinyl, indazolyl, indolinyl, indolyl, pyrimidinyl, thiophenetyl, pyranyl, chromanyl, cinnolinyl, quinolinyl, benzimidazolyl, benzodioxanyl, benzodioxepinyl, benzodioxolyl, benzo furyl, benzothiazolyl, benzoxadia- zolyl, benzothiazolyl, benzoxazinyl, benzoxazolyl, benzimidazolyl, benzo morpholinyl, xanthenyl, phenoxathiinyl, phenazinyl, carbazolyl, acridinyl, carbolinyl, phenoxazinyl, benzoselenadiazolyl, benzothienyl, purinyl, cinnolinyl, pteridinyl, aziridinyl, phenantrid- inyl, azetidinyl, dihydropyranyl, dihydropyridyl, dihydropyrrolyl, dioxolanyl, dioxanyl, dithianyl, dithiolanyl, imidazolidinyl, imidazolinyl, morpholinyl, oxetanyl, oxiranyl, pyr- rolidinyl, pyrrolidinonyl, piperidyl, piperazinyl, piperidinyl, pyranyl, pyrazolidinyl, quinu- clidinyl, sulfalonyl, 3-sulfolenyl, tetrahydro furyl, tetrahydropyranyl, tetrahydropyridyl, thietanyl, thiiranyl, thiolanyl, thiomorpholinyl, trithianyl, tropanyl etc.
A substituted heterocyclyl may carry one or several independently selected substituents and again it is considered that any substituent that does not interfere with the reduction reaction is possible, and that the person of ordinary skill in the art will be well able to ascertain the suitability of the substitution without undue burden. For example, any substituent may be independently selected from substituted or unsubstituted hydrocarbyl, carbocy- clyl or heterocyclyl, halogen, hydroxy, thio, alkylthio, e.g. Ci-Cio alkylthio, alkoxy, e.g. Ci-Cio alkoxy, cyano, haloalkyl, etc.
Halogen
The terms "halogen" or "halo" etc, as used herein refer, to F, CI, Br and I.
A Iky I
The term "alkyl", as used herein, refers to a hydrocarbyl radical. In case the alkyl is saturated, it is a radical according to the formula CnH2n-i , and then is referred to as a "Cn alkyl". Further, it should be understood that a moiety such as "C3-C20 cycloalkyl-Co alkyl" or "C6- C20 aryl-Co alkyl" represents a "C3-C20 cycloalkyl" and "C6-C20 aryl", respectively. As defined herein, the alkyl also may be unsaturated (i.e. alkenyl or alkynyl), in which case it may contain one or several double bonds or one or several triple bonds, or both.
Aryl
The term "aryl" as used herein includes reference to a carbocyclyl as defined herein above that is aromatic. Aryl is often phenyl but also may be a polycyclic ring system, having two or more rings, e.g. naphthyl, fluorenyl, azulenyl, anthryl, phenanthryl etc.
Hydrocarbylene, carbocyclylene, heterocyclylene, alkylene and arylene
The terms "hydrocarbylene", "carbocyclylene", "heterocyclylene", "alkylene" and "arylene" as used herein, refer to diradicals derived from the corresponding hydrocarbon, car- bocycle, heterocycle, alkane (or alkene or alkyne, when insaturated) or arene, and are essentially analogous to the corresponding monoradicals defined herein, except for being diradicals.
The present invention is concerned with a process for converting tertiary phosphine oxides to the corresponding tertiary phosphines, numerous embodiments related to said conversion, as well as various uses for this highly efficient, simple, environmentally friendly, and scalable process.
The process comprises reacting a tertiary phosphine oxide, which it is desirable to reduce into the corresponding phosphine, with a reducing tertiary phosphine, in the presence of a catalyst, which catalyzes the reduction of the tertiary phosphine oxide to be reduced. In the reaction, the reducing tertiary phosphine is oxidized to the corresponding tertiary phosphine oxide.
The tertiary phosphine oxide and the tertiary phosphine product
It should be realized that the process of the invention is not limited to any particular tertiary phosphine oxide and in fact, it is contemplated that any tertiary phosphine oxide may be reduced by the inventive process, by a proper selection of the reducing tertiary phosphine.
The tertiary phosphine oxide of the invention may contain any number of phosphine oxide functions to be reduced. For example, the tertiary phosphine oxide may contain from 1 to 3 e.g. 1 or 2 phosphine oxide functions. In one embodiment, the tertiary phosphine oxide contains 1 phosphine oxide function. In another embodiment, the tertiary phosphine oxide contains 2 phosphine oxide functions. Furthermore, it is contemplated that the phosphine oxide may additionally contain other functional groups.
In one embodiment, the tertiary phosphine oxide is a compound of formula (I)
Figure imgf000009_0001
( I)
wherein
R1, R2 and R3 are each independently selected from the group comprising substituted or unsubstituted, branched or linear hydrocarbyl; and substituted or unsubstituted carbocyclyl or heterocyclyl;
A is a linking moiety; and
m is an integer of from 0 to 2.
For example, each R1, R2 and R3 may be independently selected from the group comprising C1-C20 alkyl, C6-C20 aryl-Co-C2o alkyl, C3-C20 cycloalkyl-Co-C2o alkyl, 5-20 membered heterocyclyl-Co-C2o alkyl; 5-20 membered heteroaryl-Co-C2o alkyl wherein any alkyl, cycloalkyl and heterocyclyl moiety may be saturated or unsaturated, any alkyl moiety may be branched or linear, and any alkyl, cycloalkyl, heterocyclyl, aryl and heteroaryl moiety is optionally substituted with one or several substituents.
In one embodiment, in a compound of formula (I), any C1-C20 alkyl may more particularly be a C1-C10 alkyl; any C0-C20 alkyl may more particularly be a C0-C10 alkyl; any C6-C20 aryl may more particularly be a C6-Ci4 aryl; any 5-20 membered heterocyclyl may more particularly be a 5-14 membered heterocyclyl; and any 5-20 membered heteroaryl may more particularly be a 5-14 membered heteroaryl.
In one embodiment, in a compound of formula (I), any C1-C20 alkyl may more particularly be a Ci-C6 alkyl; any C0-C20 alkyl may more particularly be a Co-C6 alkyl; any C6-C20 aryl may more particularly be a C6-Cio aryl; any 5-20 membered heterocyclyl may more particularly be a 5-10 membered heterocyclyl; and any 5-20 membered heteroaryl may more particularly be a 5-10 membered heteroaryl. For example, R1, R2 and R3 may be each independently selected from the group comprising substituted or unsubstituted C6-C2o aryl-Co-C2o alkyl and C5-C20 heteroaryl-Co-C2o alkyl, e.g. substituted or unsubstituted C6-C20 aryl and C5-C20 heteroaryl, such as substituted or unsubstituted phenyl, naphthyl and furyl, in particular substituted or unsubstituted phenyl. More particularly, R1, R2 and R3 may be each independently selected from the group comprising substituted or unsubstituted C6-C20 aryl-Co-C2o alkyl, e.g. substituted or unsubstituted C6-C20 aryl, such as substituted or unsubstituted phenyl or naphthyl, in particular substituted or unsubstituted phenyl.
In one embodiment, R1, R2 and R3 are all substituted or unsubstituted phenyl.
The integer m in formula (I) is an integer of from 0 to 2, e.g. 0 or 1.
In one embodiment, m in formula (I) is 0, in which case the tertiary phosphine oxide of the invention may be represented by the formula (Γ)
O
1 1 1 3
R— P-R
R
(O
wherein R1, R2 and R3 are as defined herein above.
In another embodiment, m in formula (I) is 1 , and the tertiary phosphine oxide of the in- vention may then be represented by the formula (I")
O O
1 I I i i 3
R— P A-P R
l 2 l 2
R R
(I ")
wherein R1, R2, R3 and A are as defined herein above. In one embodiment, in a compound of formula (I), R1, R2 and R3 are all the same, e.g. all are substituted or unsubstituted phenyl.
Any reference made herein to a compound of formula (I), should be understood as a refer- ence also to a compound of formula (Γ) or (I"), unless otherwise specified or apparent from the context.
The linking moiety A may be any diradical capable of attaching the two phosphorous atoms of the phosphine (oxide) functions to each other, through any number of intervening bonds. The linking moiety A may comprise substituted or unsubstituted hydrocarbylene or substituted or unsubstituted monocyclic or polycyclic carbocyclylene or heterocyclylene, and optionally one or several functional groups, such as ether or thioether function.
When m in formula (I) is more than 1, A is independently selected at each occurrence. In one embodiment, A is a polycyclic diradical, such as a diradical comprising 2 to 8 ring moieties, e.g. 2 to 6, or 2 to 4 ring moieties, wherein each ring moiety is independently selected from 5- or 6-membered, saturated or unsaturated, aromatic or non-aromatic carbo- cycles and hetercycles, and wherein the ring moieties are either fused to each other or attached to each other through one or several intervening bonds of e.g. covalent type or met- allocene type, such as a covalent bond, an ether function, a thioether function, an optionally substituted alkylene group, e.g. a methylene or ethylene group, or a ferrocene type bond. In this embodiment, the two phosphine oxide functions preferably are attached to different ring moieties. In another embodiment, A may be a substituted or unsubstituted hydrocarbylene, carbocyclylene, or heterocyclylene. The linking moiety A also may be a substituted or unsubstituted metallocenylene, i.e. a diradical derived from a metallocene, i.e. a compound with the general formula (C5H5)2M consisting of two cyclopentadienyl anions bound to a positively charged metal centre (M). As an example, A may be a substituted or unsubstituted ferro- cenylene.
In one embodiment, A is an unsubstituted or substituted diradical selected from the group of substituted or unsubstituted, saturated or unsaturated, branched or linear Ci-C2o alkylene, C3-C20 carbocyclylene, e.g. C6-C20 arylene, 5-20 membered heterocyclylene, e.g. 5- 20 membered heteroarylene, C6-C40 bicyclylene, e.g. C12-C40 biarylene, 10-40 membered biheterocyclylene, e.g. 10-40 membered biheteroarylene, and C10-C30 ferrocenylene.
For example, A may be an unsubstituted or substituted diradical selected from the group of C6-C20 arylene, 5-20 membered heterocyclylene, 5-20 membered heteroarylene, C12-C40 biarylene, 10-40 membered biheterocyclylene, 10-40 membered biheteroarylene, and C10- C30 ferrocenylene.
In one embodiment, A is an unsubstituted or substituted diradical selected from the group of C12-C40 biarylene, 5-20 membered heterocyclylene and C10-C30 ferrocenylene, e.g. binaphthyl, such as 2,2'-binaphthyl; xanthenylene, e.g. 4,5-xanthenylene; and (C10) ferrocenylene, e.g. Ι,Γ-ferrocenylene.
Examples of tertiary phosphine oxides that may be reduced according to the invention are triphenylphosphine oxide, 2,2'-bis(diphenyloxyphosphino)-l,r-binaphthyl, bis(2-
(diphenyloxyphosphino)phenyl ether, 9,9-dimethyl-4,6-bis(diphenyloxyphosphino)- xanthene, 1 , 1 '-bis(diphenyloxyphosphino)ferrocene, tris(4-chlorophenyl)phosphineoxide, bis(2-methylphenyl)phenylphosphineoxide, bis(2-methylphenyl)phenylphosphineoxide, or any of these compounds attached to a solid and/or polymeric support.
However, as noted herein above, the process of the invention very advantageously may be applied to essentially any tertiary phosphine oxide, and some examples of tertiary phosphines that may be prepared from the corresponding phosphine oxide by the reduction reaction according to the invention are:
di-(tert-butyl)phenylphosphine, di(l-methylbutyl)phenylphosphine, di(l,l-dimethyl- propyl)phenylphosphine, di( 1 , 1 -dimethylbutyl)phenylphosphine, di-(tert-butyl)-2- methoxyphenylphosphine, di(l-methylbutyl)-2-methoxyphenylphosphine, di(l,l-dimethyl- propyl)-2-methoxyphenylphosphine, di(l , 1 -dimethylbutyl)-2-methoxyphenylphosphine, bis(trimethylsilyl)-2-methoxyphenylphosphine, di-(tert-butyl)-4-methoxyphenylphosphine, di( 1 -methylbutyl)-4-methoxyphenylphosphine, di( 1 , 1 -dimethylpropyl)-4-methoxyphenyl- phosphine, di( 1 , 1 -dimethylbutyl)-4-methoxyphenylphosphine di-(tert-butyl)-2,4- dimethoxyphenylphosphine, di(l -methylbutyl)-2,4-dimethoxyphenylphosphine, di(l , 1 - dimethylpropyl)-2,4-dimethoxyphenylphosphine, di( 1 , 1 -dimethylbutyl)-2,4-dimethoxy- phenylphosphine, di-(tert-butyl)-2,4,6-trimethoxyphenylphosphine, di(l -methylbutyl)- 2,4,6-trimethoxyphenylphosphine, di( 1 , 1 -dimethylpropyl)-2,4,6-trimethoxyphenyl- phosphine, di( 1 , 1 -dimethylbutyl)-2,4,6-tri-methoxyphenylphosphine, di-(tert-butyl)-2- methylphenylphosphine, di( 1 -methyl-butyl)-2-methylphenylphosphine, di( 1 , 1 -dimethyl- propyl)-2-methylphenylphosphine, di( 1 , 1 -dimethylbutyl)-2-methylphenyl-phosphine, di(tert-butyl)-4-methylphenylphosphine, di(l -methylbutyl)-4-methylphenylphosphine, di( 1 , 1 -dimethylpropyl)-4-methylphenylphosphine, di( 1 , 1 -dimethylbutyl)-4-methylphenyl- phosphine, di-(tert-butyl)-2,4-dimethylphenylphosphine, di(l -methylbutyl)-2,4-dimethyl- phenylphosphine, di( 1 , 1 -dimethylpropyl)-2,4-dimethylphenylphosphine, di( 1 , 1 -dimethyl- butyl)-2,4-dimethylphenylphosphine, di-(tert-butyl)-2,4,6-trimethyl-phenylphosphine, di( 1 -methylbutyl)-2,4,6-trimethylphenylphosphine, di( 1 , 1 -dimethylpropyl)-2,4,6-tri- methylphenylphosphine, di( 1 , 1 -dimethylbutyl)-2,4,6-tri-methylphenylphosphine, di-(tert- butyl)pentafluorophenylphosphine, di(l -methylbutyl)pentafluorophenylphosphine, di( 1,1- dimethylpropyl)pentafluorophenylphosphine, di( 1 , 1 -dimethylbutyl)pentafluorophenyl- phosphine, di-(tert-butyl)-2,4-difluorophenylphosphine, di(l -methylbutyl)-2,4-difluoro- phenylphosphine, di( 1 , 1 -dimethylpropyl)-2,4-difluorophenylphosphine, di( 1 , 1 -dimethyl- butyl)-2,4-difluorophenylphosphine, di-(tert-butyl)-3,5-difluorophenylphosphine, di(l- methylbutyl)-3,5-difluorophenylphosphine, di(l,l-dimethylpropyl)-3,5-difluorophenyl- phosphine, di(l,l-dimethylbutyl)-3,5-difluorophenylphosphine, di(tert-butyl)-4-fluoro- phenylphosphine, di( 1 -methylbutyl)-4-fluorophenylphosphine, di( 1 , 1 -dimethylpropyl)-4- fluorophenylphosphine, di( 1 , 1 -dimethylbutyl)-4-fluorophenylphosphine, di( 1 ,2-dimethyl- butyl)-4-fluorophenylphosphine, di(tert-butyl)-4-chlorophenylphosphine, di(l -methyl- butyl)-4-chlorophenylphosphine, di(l , 1 -dimethylpropyl)-4-chlorophenylphosphine, di(l , 1 - dimethylbutyl)-4-chlorophenylphosphine, di(tert-butyl)-4-bromophenylphosphine, di( 1 - methylbutyl)-4-bromophenylphosphine, di(l , 1 -dimethylpropyl)-4-bromophenylphosphine, di( 1 , 1 -dimethylbutyl)-4-bromophenylphosphine, di(tert-butyl)-4-(tert-butyl)phenyl- phosphine, di( 1 -methylbutyl)-4-(tert-butyl)phenylphosphine, di( 1 , 1 -dimethylpropyl)-4- (tert-butyl)phenylphosphine, di( 1 , 1 -dimethylbutyl)-4-(tert-butyl)phenylphosphine, bis(trimethylsilyl)-4-(tert-butyl)phenylphosphine, di(tert-butyl)-2,4,6-tri(tert-butyl)- phenylphosphine, di( 1 -methylbutyl)-2,4,6-tri(tert-butyl)phenylphosphine, di( 1 , 1 -dimethyl- propyl)-2,4,6-tri(tert-butyl)phenylphosphine, di(l,l-dimethylbutyl)-2,4,6-tri(tert-butyl)- phenylphosphine, di-(tert-butyl)-4-trifluoromethylphenylphosphine, di( 1 -methylbutyl)-4- trifluoromethylphenylphosphine di( 1 , 1 -dimethylpropyl)-4-trifluoromethylphenyl- phosphine, di(l,l-dimethylbutyl)-4-trifluoromethylphenylphosphine, di-(tert-butyl)-3,5- bis(trifluoromethyl)phenylphosphine, di(l-methylbutyl)-3,5-bis(trifluoromethyl)phenyl- phosphine, di( 1 , 1 -dimethylpropyl)-3 ,5 -bis(trifluoromethyl)phenylphosphine, di( 1 , 1 -di- methylbutyl)-3,5-bis(trifluoromethyl)phenylphosphine, di-(tert-butyl)-2-biphenyl- phosphine, di(l-methylbutyl)-2-biphenylphosphine, di(l,l-dimethylpropyl)-2-biphenyl- phosphine, di( 1 , 1 -dimethylbutyl)-2-biphenylphosphine, di( 1 ,2-dimethylbutyl)-2-biphenyl- phosphine, bis(trimethylsilyl)-2-biphenylphosphine, di-(tert-butyl)-3-biphenylphosphine, di( 1 -methylbutyl)-3 -biphenylphosphine, di( 1 , 1 -dimethylpropyl)-3 -biphenylphosphine, di( 1 , 1 -dimethylbutyl)-3 -biphenylphosphine, di-(tert-butyl)- 1 -naphthylphosphine, di( 1 - methylbutyl)- 1 -naphthylphosphine, di( 1 , 1 -dimethylpropyl)- 1 -naphthylphosphine, di( 1,1- dimethylbutyl)- 1 -naphthylphosphine, di-(tert-butyl)-2-naphthylphosphine, di(l -methyl- butyl)-2-naphthylphosphine, di( 1 , 1 -dimethylpropyl)-2-naphthylphosphine, di( 1 , 1 -di- methylbutyl)-2-naphthylphosphine, di-(tert-butyl)-5-acenaphthylphosphine, di(l -methyl- butyl)-5 -acenaphthylphosphine, di( 1 , 1 -dimethylpropyl)-5 -acenaphthylphosphine, di( 1 , 1 - dimethylbutyl)-5-acenaphthylphosphine, di-(tert-butyl)-9-fluorenylphosphine, di(l -methyl- butyl)-9-fluorenylphosphine, di( 1 , 1 -dimethylpropyl)-9-fluorenylphosphine, di( 1 , 1 -di- methylbutyl)-9-fluorenylphosphine, di-(tert-butyl)-9-anthracenylphosphine, di(l-methyl- butyl)-9-anthracenylphosphine, di( 1 , 1 -dimethylpropyl)-9-anthracenylphosphine, di( 1 , 1 -di- methylbutyl)-9-anthracenylphosphine, di-(tert-butyl)-9-phenanthrylphosphine, di( 1 - methylbutyl)-9-phenanthrylphosphine, di(l , 1 -dimethylpropyl)-9-phenanthrylphosphine, di( 1 , 1 -dimethylbutyl)-9-phenanthrylphosphine, di-(tert-butyl)- 1 -pyrenylphosphine, di( 1 - methylbutyl)- 1 -pyrenylphosphine, di( 1 , 1 -dimethylpropyl)- 1 -pyrenylphosphine, di( 1 , 1 -di- methylbutyl)-l -pyrenylphosphine, l,2-bis(di-tert-butylphosphino)benzene, 1,2-, l,2-bis(di- 1 -methylbutyl-phosphino)benzene, 1 ,2-bis[di(l , 1 -dimethylpropyl)phosphino]benzene, 1 ,2- bis[bis( 1 , 1 -dimethylbutyl)-phosphino]benzene, 1 ,2-bis[bis(trimethylsilyl)methyl- phosphino)benzene, 1 ,3-bis(di-tert-butylphosphino)benzene, 1 ,3-bis[bis-(trimethylsilyl- phosphino)]benzene, l,3-bis(di-l-methylbutylphosphino)benzene, l,3-bis-[di(l,l-di- methylpropyl)phosphino]benzene, 1 ,3-bis[bis(l , 1 -dimethylbutyl)phosphino]benzene, 1,3- bis-[bis(trimethylsilyl)methylphosphino)benzene, l,4-bis(di-tert-butyl-phosphino)benzene, 1 ,4-bis(di- 1 -methylbutylphosphino)benzene, 1 ,4-bis[di( 1 , 1 -dimethylpropyl)phosphino]- benzene, 1 ,4-bis[bis( 1 , 1 -dimethylbutyl)phosphino]benzene, 1 ,4-bis[bis(trimethylsilyl)- methylphosphino)benzene. l,4-bis(di-tert-butyl-phosphino)-cyclohexane, l,4-bis(di-l- methylbutylphosphino)cyclohexane, l,4-bis[di(l,l-di-methylpropyl)phosphino]-cyclo- hexane, 1 ,4-bis[bis( 1 , 1 -dimethylbutyl)phosphino]-cyclohexane, 1 ,4-bis[bis(trimethylsilyl)- methylphosphino)cyclohexane, 1 , 1 '-bis(di-tert-butylphosphino)ferrocene, 1 , 1 '-bis(di- 1 - methylbutylphosphino)ferrocene, 1 , 1 '-bis[di( 1 , 1 -dimethylpropyl)phosphino]ferrocene, 1 , Γ- bis[bis(trimethylsilyl)methylphosphino)ferrocene, l,2-bis(di-tert-butylphosphino)- ferrocene, 1 ,2-bis(di- 1 -methylbutylphosphino)ferrocene, 1 ,2-bis[di(l , 1 -dimethyl- propyl)phosphino]ferrocene, 1 ,2-bis[bis( 1 , 1 -dimethylbutyl)phosphino]ferrocene, 1 ,2-bis- [bis(trimethylsilyl)methylphosphino)ferrocene, tri-tert-butylphosphine, trineopentyl- phosphine, tris(trimethylsilyl)phosphine, tri( 1 -methylbutyl)phosphine, tri( 1 -ethylpropyl)- phosphine, tri(l,l-dimethylpropyl)phosphine, tris(l,2-dimethylpropyl)phosphine, tri(l- methylpentyl)phosphine, tris( 1 , 1 -dimethylbutyl)phosphine, tris( 1 ,2-dimethylbutyl)- phosphine, tris(l,3-dimethylbutyl)phosphine, tri(l-ethylbutyl)phosphine, tris(l,l,2-tri- methylpropyl)phosphine, tris(l ,2,2-trimethylpropyl)phosphine, tri(l -ethyl- 1 -methyl- propyl)phosphine, tris[(trimethylsilyl)methyl]phosphine, tri(tert-butyl)phosphine, trineo- pentylphosphine, 2,2'-bis[bis(3,5-dimethylphenyl)phosphino]-l, -binaphthyl, 2,2'- bis[bis(4-methoxyphenyl)phosphino]- 1 , 1 '-binaphthyl, 2,2'-bis[bis(4-dimethylamino- phenyl)phosphino]- 1 , 1 '-binaphthyl, 2,2'-bis[bis(4-fluorophenyl)phosphino]- 1 , 1 '-binaphthyl, 2,2'-bis[bis(3,5-di-tert-butyl-4-methoxyphenyl)phosphino]- 1 , 1 '-binaphthyl, 2,2'- bis(diphenylphosphino)- 1 , 1 '-binaphthyl, 2,2'-bis[bis(2-methylphenyl)phosphino]- 1 , 1 '-binaphthyl, 2,2'-bis[bis(3-methylphenyl)phosphino]- 1 , 1 '-binaphthyl, 2,2'-bis[bis(4-methyl- phenyl)phosphino]- 1 , 1 '-binaphthyl, 2,2'-bis[bis(4-tert-butylphenyl)phosphino]- 1 , 1 '-binaphthyl, 2,2'-bis[bis(3,5-di-tert-butylphenyl)phosphino]-l,l'-binaphthyl, 2,2'-bis[bis(4- methoxy-3,5-dimethylphenyl)phosphino]-l, -binaphthyl, 2,2'-bis[bis(4-chlorophenyl)- phosphino]- 1 , 1 '-binaphthyl, 2,2'-bis[bis(l ,3-benzodioxol-5-yl)phosphino]- 1 , 1 '-binaphthyl, 2,2'-bis[bis(2-naphthyl)phosphino]- 1 , 1 '-binaphthyl, 2,2'-bis(diphenylphosphino)-6,6'-di- phenyl- 1 , 1 '-binaphthyl, 2,2'-bis(diphenylphosphino)-7,7'-dimethoxy- 1 , 1 '-binaphthyl, and any of these phosphines attached to a solid and/or polymeric support, e.g. 4-diphenyl- phosphinomethyl on polystyrene resin, and JandaJel™-triphenylphosphine (JandaJel™ is a polystyrene resin available from Sigma- Aldrich Co.), and the like.
It should be realized that the compounds of the invention may include one or several atoms having an (R) form and (S) form, in which case all forms and combinations thereof are contemplated as included within the scope of the invention, as well as any mixture of any isomeres.
The reducing tertiary phosphine
The reducing tertiary phosphine may contain one or several tertiary phosphine functions and the phosphorus atom of each phosphine function may be linked to groups selected from substituted or unsubstituted, branched or linear hydrocarbyl; and substituted or un- substituted carbocyclyl or heterocyclyl, as defined herein above.
For example, the reducing tertiary phosphine may contain from 1 to 3 phosphine functions. In one embodiment, the reducing tertiary phosphine contains 1 or 2 phosphine functions. In one particular embodiment, the reducing tertiary phosphine contains 1 phosphine function.
Furthermore, it is contemplated that the reducing tertiary phosphine may additionally contain other functional groups.
In one embodiment, the reducing tertiary phosphine is represented by the formula (II)
Figure imgf000016_0001
(I I)
wherein R4, R5 and R6 are each independently selected from the group comprising substituted or unsubstituted, branched or linear hydrocarbyl; and substituted or unsubstituted, aliphatic or aromatic carbocyclyl or heterocyclyl;
B is a linking moiety; and
n is an integer of from 0 to 2, e.g. 0 or 1.
For example, R4, R5 and R6 may be selected from the group comprising substituted or un- substituted, branched or linear C1-C20 hydrocarbyl, e.g. C1-C10 hydrocarbyl, e.g. Ci-C6 hydrocarbyl; and substituted or unsubstituted, aliphatic or aromatic C3-C20 carbocyclyl, e.g. C3-C10 carbocyclyl, or C3-C6 carbocyclyl, or 5-20 membered heterocyclyl, e.g. 5-10 membered heterocyclyl, or 5-6 membered heterocyclyl. In one embodiment, R4, R5 and R6 are independently selected from the group comprising substituted or unsubstituted, branched or linear C1-C20 hydrocarbyl, e.g. C1-C10 hydrocarbyl, e.g. Ci-C6 hydrocarbyl; and substituted or unsubstituted, aliphatic C3-C20 carbocyclyl, e.g. C3-C10 carbocyclyl, or C3-C6 carbocyclyl. For example, any hydrocarbyl moiety may be an alkyl and any carbocyclyl moiety may be a cycloalkyl. In one embodiment, R4, R5 and R6 are all the same, although they may equally well be different from each other.
The number of phosphine functions in the compound of formula (II) suitably may range from 1 to 3, i.e. the integer n in formula (II) is from 0 to 2. In one embodiment, n in formula (II) is 0, in which case the reducing tertiary phosphine of the invention may be represented by the formula (IF)
R4-P- R6
R5
(Ι Γ)
wherein R4, R5 and R6 are as defined herein above.
In another embodiment, n in formula (II) is 1 or 2.
In one embodiment, in a compound of formula (II), R4, R5 and R6 are all the same, e.g. all are substituted or unsubstituted Ci-C6 alkyl or C3-C6 cycloalkyl.
The linking moiety B may be any diradical capable of attaching the two phosphorous atoms of the phosphine (oxide) functions to each other, through any number of intervening bonds. The linking moiety B may comprise substituted or unsubstituted hydrocarbylene, monocyclic or polycyclic carbocyclylene or heterocyclylene, and optionally one or several functional groups, such as ether or thioether function.
When n in formula (II) is more than 1 , B is independently selected at each occurrence.
In one embodiment, B is a polycyclic diradical, such as a diradical comprising 2 to 8 ring moieties, e.g. 2 to 6, or 2 to 4 ring moieties, wherein each ring moiety is independently selected from 5- or 6-membered, saturated or unsaturated, aromatic or non-aromatic, car- bocycles and heterocycles, and wherein the ring moieties are either fused to each other or attached to each other through one or several intervening bonds of e.g. covalent type or metallocene type, such as a covalent bond, an ether function, a thioether function, an optionally substituted alkylene group, e.g. a methylene or ethylene group, or a ferrocene type bond. In this embodiment, the two phosphine oxide functions preferably are attached to different ring moieties. In another embodiment, B may be a substituted or unsubstituted hydrocarbylene, carbo- cyclylene, or heterocyclylene. The linking moiety B also may be a substituted or unsubstituted metallocenylene, i.e. a diradical derived from a metallocene, i.e. a compound with the general formula (C5H5)2M consisting of two cyclopentadienyl anions bound to a positively charged metal centre (M). As an example, B may be a substituted or unsubstituted ferro- cenylene.
In one embodiment, B is an unsubstituted or substituted diradical selected from the group of substituted or unsubstituted, saturated or unsaturated, branched or linear Ci-C2o al- kylene, C3-C20 carbocyclylene, e.g. C6-C20 arylene, 5-20 membered heterocyclylene, e.g. 5- 20 membered heteroarylene, C6-C40 bicyclylene, e.g. C12-C40 biarylene, 10-40 membered biheterocyclylene, e.g. 10-40 membered biheteroarylene, and C10-C30 ferrocenylene.
For example, B may be an unsubstituted or substituted diradical selected from the group of C6-C20 arylene, 5-20 membered heterocyclylene, 5-20 membered heteroarylene, C12-C40 biarylene, 10-40 membered biheterocyclylene, 10-40 membered biheteroarylene, and C10- C30 ferrocenylene.
In one embodiment, B may is an unsubstituted or substituted diradical selected from the group of C12-C40 biarylene, 5-20 membered heterocyclylene and C10-C30 ferrocenylene, e.g. binaphthyl, such as 2,2'-binaphthyl; xanthenylene, e.g. 4,5-xanthenylene; and (C10) ferrocenylene, e.g. Ι,Γ-ferrocenylene.
The basicity of the reducing tertiary phosphine preferably is greater than the basicity of the product phosphine. This is because a more basic phosphine is more easily oxidized than a less basic phosphine. However, the person of ordinary skill in the art will realize that the reaction according to the invention may additionally be driven in the desired direction e.g. by addition of an excess of the reducing tertiary phosphine to the reaction mixture. As used herein, the term "basicity" essentially refers to the capability of the phosphine of donating electron pairs, i.e. of acting as a Lewis base; the electron pairs involved being those of the phosphine-phosphorus. The basicity of the reducing phosphine mainly is governed by the groups linked to the phosphine function(s), i.e. mainly the groups R4, R5 and R6 in the formula (II). For example, compounds of formula (II) wherein R4, R5 and R6 are selected from Ci-C6 alkyl and C3-C6 cycloalkyl, such as tri-tert-butylphosphine and tricyclopropylphosphine, are quite basic compounds and as such they are advantageous as reducing tertiary phosphines for use in a process according to the invention.
The tertiary reducing phosphine thus preferably is selected so as to be a stronger base than the tertiary phosphine oxide reduction product. Additional parameters for selecting the tertiary reducing phosphine may be e.g. ease of handling, availability and low cost.
The oxidation product of the reducing tertiary phosphine normally is considered a side product of the process. However, it should be realized that, if so desired, also this oxidation product may be collected and e.g. recycled through reduction or used in any other way.
Non-limiting examples of reducing tertiary phosphine suitable for the process of the present invention may be selected from the group comprising tributylphosphine, triethyl- phosphine, trimethylphosphine, tricyclohexylphosphine, tri-tert-butylphosphine, triphenyl- phosphine and other similar phosphines.
The reducing tertiary phosphine preferably is present in an amount corresponding to at least 1 molar equivalent phosphine-phosphorus of the reducing tertiary phosphine to the phosphine oxide-phosphorus of the tertiary phosphine oxide. For example, the reducing tertiary phosphine may suitably be present in an amount such as the molar ratio of the phosphine function(s) of the reducing tertiary phosphine to the phosphine oxide function(s) of the tertiary phosphine oxide to be reduced is from about 1 to about 10, e.g. from about 1.2 to about 5, e.g. about 1.5 to about 2.5, or approximately 2.
In one embodiment, the reducing tertiary phosphine is present in excess, compared to the phosphine oxide. In this embodiment, the reducing tertiary phosphine may suitably be present in an amount such as the molar ratio of the phosphine function(s) of the reducing tertiary phosphine to the phosphine oxide function(s) of the tertiary phosphine oxide to be reduced is from about 2 to about 10, e.g. from about 3 to about 8, or about 4 to about 6. In one embodiment, the reducing tertiary phosphine is attached to a solid support. In this embodiment, the reducing tertiary phosphine may be regenerated after use, e.g. by reacting it with a reduction agent, such as a reducing tertiary phosphine, which may be more basic than the reducing tertiary phosphine attached to the solid phase or which is added in an excess to the reaction medium containing the solid phase with the attached reducing phosphine to be regenerated.
The catalyst
In accordance with the invention, the catalyst can be any type of chemical species capable of catalyzing the reaction of the invention. Preferably the catalyst comprises at least one halogen atom. The catalyst may inter alia be selected from the group comprising fluorine (F2), chlorine (Cl2), bromine (Br2), iodine (I2), e.g. I2 and Br2; haloalkanes, in particular tetrahalomethanes, such as tetrachloromethane, tetrabromomethane, tetraiodomethane, tetrafluoromethane, e.g.CCl4; phosphine dihalides, e.g. tertiary phosphine dihalides, such as triphenylphosphine dichloride, triphenylphosphine dibromide, triphenylphosphine diio- dide, triphenylphosphine difluoride, e.g. triphenylphosphine dichloride, and/or any trialkyl, cycloalkyl or aryl analogues thereof.
The catalyst only needs to be present in catalytic amounts, but, since spurious water pre- sent in reagents and in solvents may consume catalyst, the optimal catalyst loading may be e.g. 0.02-0.5 molar equivalents of the tertiary phosphine oxide to be reduced, in particular 0.05-0.2 molar equivalents, e.g. 0.08-0.12 molar equivalents and suitably approximately 0.1 molar equivalents. In fact, increasing the amount of catalyst above the indicated ranges does not appear to have any significant effect on the reaction. However, depending on the utilized catalyst, higher/lower molar equivalents may be relevant, and increasing/decreasing the amount of catalyst is thus also within the scope of the present invention.
The catalyst may be present in any physical form, but suitable forms known to a person skilled in the art for a particular combination of reagents and/or reaction conditions are naturally preferable.
Without wishing to be bound by any particular theory, it is surmised that the reaction mechanism of the process of the present invention is reliant on an initial interaction between the catalyst and the reducing tertiary phosphine, possibly leading to an intermediary complex formed between at least certain components of these two molecules. Subsequently, the tertiary phosphine oxide is reduced into its corresponding tertiary phosphine, a reaction facilitated by the intermediary complex generated from the catalyst and the reducing tertiary phosphine. Theoretically, the process of the present invention thus results in, in total, reduction of the tertiary phosphine oxide into the corresponding tertiary phosphine, oxidation of the reducing tertiary phosphine into the corresponding tertiary phosphine oxide, as well as regeneration of the catalyst.
The reaction medium
The process of converting the tertiary phosphine oxide into the corresponding phosphine may be performed under solvent-free conditions, in order to further reduce the environmental impact of the process. The process of the present invention has, by virtue of the selection of reagents and conditions under which the reaction is taking place, a remarkably low environmental impact, but the possibility to utilize solvent-free reaction conditions further optimizes the eco-friendly characteristics of the present invention. However, the process may also be carried out in anhydrous aprotic solvent(s), such as for instance toluene, hexane, tetrahydrofuran (THF), acetonitrile, diethylether, propionitrile, benzonitrile, ethyl acetate and mixtures of these, e.g. tetrahydrofuran, acetonitrile, diethylether, propionitrile, toluene, ethyl acetate and mixtures of these. A preferable solvent for the process of the present invention may be selected from the group comprising acetonitrile and a 1 to 1 mixture of acetonitrile and THF.
The order of addition of the reaction constituents has no effect on the process, with the implication that obstacles associated with scale-up and handling can be minimized. Fur- ther, as a result of the advantageous characteristics of the present invention, the process can be carried out in virtually any type of reaction vessel, additionally increasing the versatility, specifically from an industrial perspective, of the invention.
The process of the present invention is, as mentioned herein above, associated with numer- ous advantages pertaining to inexpensiveness, low environmental impact, scalability, and ease of handling. Further advantageous aspects of the invention relate for instance to the fact that the process may be carried out at any temperature, most conveniently at ambient temperature, and that the concentration of the reaction mixture does not affect the process. Additionally, the process is very mild and thus highly suitable for sensitive reaction sys- terns. For instance, the process of the present invention is ideally suitable for use in the reduction of tertiary phosphine oxides attached to a polymeric carrier or backbone, so as to regenerate the tertiary phosphine attached to the polymeric carrier or backbone. For instance the process of the invention may be used in the regeneration of triphenylphosphine on polystyrene. Such uses, and additional uses for regenerating tertiary phosphines attached to solid support, imply that the regenerated agents can be used repeatedly, resulting in minimized costs and optimized processes, especially for applications on a more industrial scale. The solid support
As noted herein above, either the tertiary phosphine oxide or the reducing phosphine may be attached to a solid support. An example of such a solid support is a polystyrene material, such as sold under the trade name JandaJel™, by Sigma- Aldrich Co. Other possible solid phase supports are e.g. silica gel, Ring-Opening Olefin Metathesis Polymerization (ROMP) gel etc.
The person of ordinary skill in the art will now of various other possible solid supports, such as those described e.g. in US patent No. 7,491,779 to Steinke, et al, the contents of which are incorporated by reference.
The attachment to the solid support is achieved through use of well-known chemistry for bonding compounds of the present type to a solid phase, and the skilled person is well able of selecting the proper reaction conditions and reactants. For example, triphenylphosphine attached to polystyrene may be prepared by copolymerizaion of diphenylstyrylphosphine and styrene or by copolymerization of diphenylphosphine and poly(4-bromostyrene).
Other features of the inventive process
As may be noted from the Examples that will follow, which are intended for illustrative purposes only, and which are not to be construed as limiting the scope of the invention, the process of the invention very advantageously may be carried out at low reaction temperature, e.g. room temperature (e.g. 18-25 °C), and preferably is carried out under an inert atmosphere, e.g. a nitrogen atmosphere. Very advantageously, the reaction time may be kept very short, i.e. less than an hour, e.g. from 10 minutes to 30 minutes, giving a very high product yield of e.g. over 90 mole %, and up to 99 mole % or even an almost quantitative yield.
In one embodiment of the process of the invention, the tertiary phosphine oxide, the reduc- ing tertiary phosphine and a catalyst are admixed, optionally in an anhydrous aprotic solvent. The mixture is stirred for the appropriate amount of time under an inert atmosphere. The reaction mixture suitably then is quenched, e.g. by addition of water.
The product may be extracted, purified and crystallized, e.g. by following the procedure described in the Examples. For example, in one embodiment, at the completion of the reaction, the reaction medium is diluted, if necessary, and washed with portions of a weak basic buffer solution, such as saturated NaHC03. The solution is dried, e.g. with Na2S04, and filtered, whereafter the solvent is evaporated. The evaporation residue is redissolved in a hot solvent, e.g. EtOH, and made to crystallize, e.g. by keeping in a refrigerator. The prod- uct crystals then are filtered off, washed and dried. Of course, many variants of this procedure and modifications thereto will present themselves to the person of ordinary skill in the art, and all are considered to fall within the scope of the invention.
Examples
EXAMPLE 1
100 mg (0.153 mmol) of 2,2'-Bis(diphenyloxyphosphino)-l,r-binaphthyl were treated with 4 mg I2 (16 μιηοΐ) and tributylphosphine 150 μΐ (0.6 mmol) in acetonitrile/THF (1 : 1 v/v) 1 mL. The mixture was stirred at room temperature for 10 minutes under nitrogen atmosphere before it was quenched with H20 (100 μί). The reaction mixture was diluted with ethyl acetate (10 mL) and was washed with portions of sat. NaHCOs (3x5 mL). The organic fraction was dried with Na2S04, filtered and the solvent evaporated under vacuum. The resulting residue was recrystallized from EtOH, the resulting crystals were filtered, washed and dried in vacuum, giving 88 mg (0.141 mmol, 92%) of 2,2'- Bis(diphenylphosphino)-l, Γ -binaphthyl (BINAP) .
EXAMPLE 2
100 mg (0.186 mmol) of Bis(2-(diphenyloxyphosphino)phenyl ether were treated with 5 mg I2 (20 μιηοΐ) and tributylphosphine 185 μΐ^ (0.74 mmol) in acetonitrile/THF (1 : 1 v/v) 1 mL. The mixture was stirred at room temperature for 10 minutes under nitrogen atmos- phere before it was quenched with H20 (100 μί). The reaction mixture was diluted with ethyl acetate (lOmL) and was washed with portions of sat. NaHC03 (3x5 mL). The organic fraction was dried with Na2S04, filtered and the solvent evaporated under vacuum. The resulting residue was recrystallized from 1-propanol, the resulting crystals were filtered, washed and dried in vacuum, giving 94 mg (0.175 mmol, 94%) of Bis(2- (diphenylphosphino)phenyl ether (DPEphos).
EXAMPLE 3
100 mg (0.164 mmol) of 9,9-Dimethyl-4,6-bis(diphenyloxyphosphino)xanthene were treated with 4 mg I2 (16 μιηοΐ) and tributylphosphine 162 μΕ (0.65 mmol) in acetoni- trile/THF (1 : 1 v/v) 1 mL. The mixture was stirred at room temperature for 10 minutes under nitrogen atmosphere before it was quenched with H20 (100 μί). The reaction mixture was diluted with ethyl acetate (lOmL) and was washed with portions of sat. NaHC03 (3x5 mL). The organic fraction was dried with Na2S04, filtered and the solvent evaporated un- der vacuum. The resulting residue was recrystallized from 1-propanol, the resulting crystals were filtered, washed and dried in vacuum, giving 90 mg (0.156 mmol, 95%) of 9,9- Dimethyl-4,6-bis(diphenyloxyphosphino)xanthene (Xanthphos).
EXAMPLE 4
100 mg (0.171 mmol) of l,l'-Bis(diphenyloxyphosphino)ferrocene were treated with I2 4 mg (16 μιηοΐ) and tributylphosphine 170 μΐ^ (0.68 mmol) in acetonitrile/THF (1 : 1 v/v) 1 mL. The mixture was stirred at room temperature for 10 minutes under nitrogen atmosphere before it was quenched with H20 (100 μί). The reaction mixture was diluted with ethyl acetate (lOmL) and was washed with portions of sat. NaHC03 (3x5 mL). The organic fraction was dried with Na2S04, filtered and the solvent evaporated under vacuum. The resulting residue was recrystallized from ethanol, the resulting crystals were filtered, washed and dried in vacuum, giving 89 mg (0.160 mmol, 94%>) of Ι,Γ- Bis(diphenylphosphino)ferrocene (dppf). EXAMPLE 5
100 mg (0.262 mmol) of tris(4-chlorophenyl)phosphineoxide were treated with 6 mg I2 (26 μιηοΐ) and tributylphosphine 130 μΐ^ (0.52 mmol) in acetonitrile/THF (1 :1 v/v) 1 mL. The mixture was stirred at room temperature for 10 minutes under nitrogen atmosphere before it was quenched with H20 (100 μί). The reaction mixture was diluted with ethyl acetate (lOmL) and was washed with portions of sat. NaHC03 (3x5 mL). The organic fraction was dried with Na2S04, filtered and the solvent evaporated under vacuum. The resulting residue was recrystallized from methanol (2 mL), the resulting crystals were filtered, washed and dried in vacuum, giving 95 mg (0.260 mmol, 99%) of tris(4-chlorophenyl)phosphine.
EXAMPLE 6
100 mg (0.359 mmol) of triphenylphosphine oxide were treated with 9 mg I2 (35 μιηοΐ) and tributylphosphine 180 (0.72 mmol) in acetonitrile/THF (1 : 1 v/v) 1 mL. The mixture was stirred at room temperature for 10 minutes under nitrogen atmosphere before it was quenched with H20 (100 μί). The reaction mixture was diluted with ethyl acetate (lOmL) and was washed with portions of sat. NaHC03 (3x5 mL). The organic fraction was dried with Na2S04, filtered and the solvent evaporated under vacuum. The resulting residue was recrystallized from methanol, the resulting crystals were filtered, washed and dried in vacuum, giving 88 mg (0.334 mmol, 93%) of triphenylphosphine.
EXAMPLE 7
3 g (0.12-0.18 mmol) of triphenylphosphine oxide polymer-bound on polystyrene support (3 IP NMR, bs, 24.5 ppm), were treated with 12 270 mg (1.07 mmol) and tributylphosphine 2 mL (8 mmol) in acetonitrile/THF (1 : 1 v/v) 12 mL. The mixture was stirred at room temperature for 4 hours under nitrogen atmosphere after which time the solid support was filtered off and washed with THF (10 ml). The solid support was analyzed by 3 IP NMR, no triphenylphosphine oxide signal could be seen only triphenylphosphine polymer-bound on polystyrene support (3 IP NMR, bs, -6.9 ppm).
EXAMPLE 8
100 mg (0.359 mmol) of triphenylphosphine oxide were treated with 9 mg I2 (35 μιηοΐ) and tributylphosphine 180 μΐ^ (0.72 mmol) in acetonitrile/toluene (1 : 1 v/v) 1 mL using the general procedure according to Example 6. Essentially the same results as in Example 6 were obtained.
EXAMPLE 9
100 mg (0.359 mmol) of triphenylphosphine oxide were treated with 9 mg I2 (35 μιηοΐ) and tributylphosphine 180 μΐ^ (0.72 mmol) in acetonitrile/diethylether (1 : 1 v/v) 1 mL using the general procedure according to Example 6. Essentially the same results as in Example 6 were obtained.
EXAMPLE 10
100 mg (0.359 mmol) of triphenylphosphine oxide were treated with 9 mg I2 (35 μιηοΐ) and tributylphosphme 180 (0.72 mmol) in acetonitrile/EtOAc (1 : 1 v/v) 1 mL using the general procedure according to Example 6. Essentially the same results as in Example 6 were obtained. EXAMPLE 11
100 mg (0.359 mmol) of triphenylphosphine oxide were treated with 9 mg I2 (35 μιηοΐ) and triethylphosphine 106 μΐ^ (0.72 mmol) in acetonitrile 1 mL using the general procedure according to Example 6. Essentially the same results as in Example 6 were obtained. EXAMPLE 12
100 mg (0.431 mmol) of tri(2-furyl)phosphine oxide ( 31P NMR, s, -15.4) were treated with I2 11 mg (43 μιηοΐ) and tributylphosphme 180 μΐ^ (0.70 mmol) in acetonitrile/THF (1 : 1 v/v) 2 mL for 19 hours at room temperature, which gave 31P NMR integrated conversion of tri(2-furyl)phosphine ( 31P NMR, s, -76.5) in ca. 50%.
EXAMPLE 13
100 mg (0.359 mmol) of triphenylphosphine oxide were treated with 9 mg I2 (35 μιηοΐ) and tricyclohexylphosphine 202 mg (0.72 mmol) in acetonitrile 1 mL using the general procedure according to Example 6. Essentially the same results as in Example 6 were ob- tained.
EXAMPLE 14
100 mg (0.359 mmol) of triphenylphosphine oxide were treated with 2 μΐ Br2 (35 μιηοΐ) and tributylphosphme 180 μΐ^ (0.72 mmol) in acetonitrile 1 mL using the general proce- dure according to Example 6. Essentially the same results as in Example 6 were obtained.
EXAMPLE 15
100 mg (0.359 mmol) of triphenylphosphine oxide were treated with 12 mg triphenylphosphine dichloride (35 μιηοΐ) and tributylphosphme 180 μΐ^ (0.72 mmol) in acetonitrile 1 mL for 48 hours at room temperature. Essentially the same results as in Example 6 were obtained.
EXAMPLE 16
100 mg (0.359 mmol) of triphenylphosphine oxide were treated with 3 μΐ CC14 (35 μιηοΐ) and tributylphosphine 180 μΐ^ (0.72 mmol) in acetonitrile 1 mL using the general procedure according to Example 6. Essentially the same results as in Example 6 were obtained.

Claims

Claims
1. A process for the conversion of a tertiary phosphine oxide to the corresponding tertiary phosphine comprising reacting said tertiary phosphine oxide with a reducing tertiary phosphine, in the presence of a catalyst that catalyzes the conversion.
2. A process according to claim 1 , wherein a tertiary phosphine oxide of formula (I)
Figure imgf000028_0001
(I)
wherein
each R1, R2 and R3 is independently selected from the group comprising substituted or un- substituted, branched or linear hydrocarbyl; and substituted or unsubstituted carbocyclyl or heterocyclyl;
A is a linking moiety;
m is an integer of from 0 to 2; is converted into the corresponding tertiary phosphine of formula (III)
Figure imgf000028_0002
wherein R1, R2, R3, A and m are as defined herein above; by reaction with a reducing tertiary phosphine of formula (II)
Figure imgf000028_0003
(I I)
wherein
each R4, R5 and R6 is independently selected from the group comprising substituted or unsubstituted, branched or linear hydrocarbyl; and substituted or unsubstituted, aliphatic or aromatic carbocyclyl or heterocyclyl;
B is a linking moiety; and n is an integer of from 0 to 2;
in the presence of a catalyst for the reaction.
3. The process according to claim 2, wherein each A and B is independently selected from substituted or unsubstituted hydrocarbylene, substituted or unsubstituted monocyclic or polycyclic carbocyclylene, substituted or unsubstituted monocyclic or polycyclic heterocy- clylene and substituted or unsubstituted metallocenylene.
4. The process according to any one of the claims 1-3, wherein the catalyst is a halogen- containing compound.
5. The process according to claim 4, wherein the catalyst is selected from the group comprising chlorine, bromine, iodine, cyanuric chloride, tetrahalomethanes, and phosphine dihalides.
6. The process according to any one of the claims 1-5, wherein the process is performed under solvent-free conditions or in an anhydrous aprotic solvent.
7. The process according to claim 6, wherein the anhydrous aprotic solvent is selected from the group comprising tetrahydrofuran, acetonitrile, diethylether, propionitrile, toluene, ethyl acetate and mixtures of these.
8. The process according to any one of the claims 1-7, wherein the reducing tertiary phosphine is added to the reaction mixture at a molar ratio of the phosphine function(s) of the reducing tertiary phosphine to the phosphine oxide function(s) of the tertiary phosphine oxide of at least 1.
9. The process according to any one of the claims 1-8, wherein the basicity of the reducing tertiary phosphine is greater than the basicity of the product tertiary phosphine.
10. The process according to any one of the claims 1-9, wherein the tertiary phosphine oxide to be reduced is attached to a solid support.
11. The process according to any one of the claims 1-10, wherein the reducing tertiary phosphine is attached to a solid support.
12. Use of a tertiary phosphine for reducing a tertiary phosphine oxide by reacting said tertiary phosphine oxide with the tertiary phosphine in the presence of a catalyst.
13. Use according to claim 12, wherein the tertiary phosphine is attached to a solid support.
PCT/SE2011/050355 2010-03-31 2011-03-29 A process for the reduction of a tertiary phosphine oxide to the corresponding tertiary phosphine in the presence of a catalyst and use of a tertiary phosphine for reducing a tertiary phosphine oxide in the presence of a catalyst WO2011123037A1 (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
DK11715084.7T DK2552928T3 (en) 2010-03-31 2011-03-29 METHOD FOR REDUCING a tertiary phosphine TO the corresponding tertiary phosphine PRESENCE OF A CATALYST AND USE OF A TERTIARY phosphine TO REDUCE a tertiary oxide in presence of a catalyst
CA2792478A CA2792478C (en) 2010-03-31 2011-03-29 A process for the reduction of a tertiary phosphine oxide to the corresponding tertiary phosphine in the presence of a catalyst and use of a tertiary phosphine for reducing a tertiary phosphine oxide in the presence of a catalyst
KR1020127026315A KR20130040812A (en) 2010-03-31 2011-03-29 A process for the reduction of a tertiary phosphine oxide to the corresponding tertiary phosphine in the presence of a catalyst and use of a tertiary phosphine for reducing a tertiary phosphine oxide in the presence of a catalyst
BR112012024952-5A BR112012024952B1 (en) 2010-03-31 2011-03-29 PROCESS FOR THE CONVERSION OF A TERTIARY PHOSPHINE OXIDE, AND, USE OF TERTIARY PHOSPHINE
PL11715084T PL2552928T3 (en) 2010-03-31 2011-03-29 A process for the reduction of a tertiary phosphine oxide to the corresponding tertiary phosphine in the presence of a catalyst and use of a tertiary phosphine for reducing a tertiary phosphine oxide in the presence of a catalyst.
ES11715084.7T ES2541276T3 (en) 2010-03-31 2011-03-29 Procedure for the reduction of a tertiary phosphine oxide to give the corresponding tertiary phosphine in the presence of a catalyst and use of a tertiary phosphine to reduce a tertiary phosphine oxide in the presence of a catalyst
CN201180017856.4A CN102947319B (en) 2010-03-31 2011-03-29 Method and tertiary phosphine for phosphine oxides is reduced into corresponding tertiary phosphine in the presence of a catalyst is used for reducing in the presence of a catalyst the purposes of phosphine oxides
EP11715084.7A EP2552928B1 (en) 2010-03-31 2011-03-29 A process for the reduction of a tertiary phosphine oxide to the corresponding tertiary phosphine in the presence of a catalyst and use of a tertiary phosphine for reducing a tertiary phosphine oxide in the presence of a catalyst.
EA201201355A EA024399B1 (en) 2010-03-31 2011-03-29 Process for the reduction of a tertiary phosphine oxide to the corresponding tertiary phosphine in the presence of a catalyst and use of a tertiary phosphine for reducing a tertiary phosphine oxide in the presence of a catalyst
US13/636,152 US8735629B2 (en) 2010-03-31 2011-03-29 Process for the reduction of a tertiary phosphine oxide to the corresponding tertiary phosphine in the presence of a catalyst and use of a tertiary phosphine for reducing a tertiary phosphine oxide in the presence of a catalyst
JP2013502534A JP5409958B2 (en) 2010-03-31 2011-03-29 Method for reducing tertiary phosphine oxide to the corresponding tertiary phosphine in the presence of a catalyst, and use of a tertiary phosphine to reduce tertiary phosphine oxide in the presence of a catalyst
AU2011233746A AU2011233746B2 (en) 2010-03-31 2011-03-29 A process for the reduction of a tertiary phosphine oxide to the corresponding tertiary phosphine in the presence of a catalyst and use of a tertiary phosphine for reducing a tertiary phosphine oxide in the presence of a catalyst

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
SE1050311 2010-03-31
SE1050311-8 2010-03-31
US38769710P 2010-09-29 2010-09-29
US61/387,697 2010-09-29

Publications (1)

Publication Number Publication Date
WO2011123037A1 true WO2011123037A1 (en) 2011-10-06

Family

ID=44080239

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/SE2011/050355 WO2011123037A1 (en) 2010-03-31 2011-03-29 A process for the reduction of a tertiary phosphine oxide to the corresponding tertiary phosphine in the presence of a catalyst and use of a tertiary phosphine for reducing a tertiary phosphine oxide in the presence of a catalyst

Country Status (13)

Country Link
US (1) US8735629B2 (en)
EP (1) EP2552928B1 (en)
JP (1) JP5409958B2 (en)
KR (1) KR20130040812A (en)
CN (1) CN102947319B (en)
AU (1) AU2011233746B2 (en)
CA (1) CA2792478C (en)
DK (1) DK2552928T3 (en)
EA (1) EA024399B1 (en)
ES (1) ES2541276T3 (en)
PL (1) PL2552928T3 (en)
PT (1) PT2552928E (en)
WO (1) WO2011123037A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017041250A1 (en) * 2015-09-09 2017-03-16 Rhodia Operations Phosphine oxides reduction

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101648744B1 (en) * 2014-10-07 2016-08-17 한국화학연구원 Reduced graphene oxide and method of producing same
JP6857133B2 (en) * 2015-04-02 2021-04-14 アップル インコーポレイテッドApple Inc. Inductive transmitter
WO2020077582A1 (en) * 2018-10-18 2020-04-23 Rhodia Operations A process for preparing tertiary phosphines
CN116273160B (en) * 2023-02-17 2024-08-30 中山大学 Catalyst for preparing trivalent phosphorus compound from pentavalent phosphorus compound

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4113783A (en) 1976-05-17 1978-09-12 Texas Alkyls, Inc. Reduction of triphenylphosphine oxide to triphenylphosphine
US4507504A (en) 1983-11-25 1985-03-26 Ethyl Corporation Process for preparing tertiary phosphines
US7491779B2 (en) 2002-06-05 2009-02-17 Imperial College Of Science, Technology And Medicine Polyvinyl ethers

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3847999A (en) * 1973-09-21 1974-11-12 Hoffmann La Roche Preparation of triaryl phosphines
DE3523320A1 (en) * 1985-06-29 1987-01-08 Basf Ag REDUCTION OF TERTIAL PHOSPHINOXIDES, SULFIDES OR DIHALOGENIDES WITH HYDROCARBONS
JP3770639B2 (en) * 1995-10-31 2006-04-26 高砂香料工業株式会社 Method for producing optically active diphosphine
JP2001131192A (en) * 1999-10-29 2001-05-15 Takasago Internatl Corp New optically active diphosphine compound, intermediate for producing the same, transition metal complex having the compound as ligand, and asymmetric hydrogenation catalyst containing the complex
CA2732390A1 (en) * 2008-07-29 2010-02-04 The Royal Institution For The Advancement Of Learning/Mcgill University Zwitterionic phosphonium salts
EP2559788B1 (en) * 2010-04-16 2015-10-14 National University Corporation Okayama University Method for directly producing phosphine derivative from phosphine oxide derivative

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4113783A (en) 1976-05-17 1978-09-12 Texas Alkyls, Inc. Reduction of triphenylphosphine oxide to triphenylphosphine
US4507504A (en) 1983-11-25 1985-03-26 Ethyl Corporation Process for preparing tertiary phosphines
US7491779B2 (en) 2002-06-05 2009-02-17 Imperial College Of Science, Technology And Medicine Polyvinyl ethers

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KULLBERG M ET AL: "Theoretical investigations on the mechanism of chalcogens exchange reaction between P(V) and P(III) compounds", JOURNAL OF ORGANOMETALLIC CHEMISTRY, ELSEVIER-SEQUOIA S.A. LAUSANNE, CH, vol. 690, no. 10, 16 May 2005 (2005-05-16), pages 2571 - 2576, XP004877394, ISSN: 0022-328X, DOI: DOI:10.1016/J.JORGANCHEM.2004.10.026 *
YANO T ET AL: "Electroreduction of triphenylphosphine dichloride and the efficient one-pot reductive conversion of phosphine oxide to triphenylphosphine", TETRAHEDRON LETTERS, ELSEVIER, AMSTERDAM, NL, vol. 51, no. 4, 27 January 2010 (2010-01-27), pages 698 - 701, XP026815299, ISSN: 0040-4039, [retrieved on 20091129] *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017041250A1 (en) * 2015-09-09 2017-03-16 Rhodia Operations Phosphine oxides reduction
WO2017041723A1 (en) * 2015-09-09 2017-03-16 Rhodia Operations Phosphine oxides reduction
EP3347364A4 (en) * 2015-09-09 2019-03-20 Rhodia Operations Phosphine oxides reduction
US10815258B2 (en) 2015-09-09 2020-10-27 Rhodia Operations Phosphine oxides reduction

Also Published As

Publication number Publication date
KR20130040812A (en) 2013-04-24
US20130012725A1 (en) 2013-01-10
JP5409958B2 (en) 2014-02-05
JP2013523727A (en) 2013-06-17
EA201201355A1 (en) 2013-03-29
CN102947319A (en) 2013-02-27
EA024399B1 (en) 2016-09-30
ES2541276T3 (en) 2015-07-17
EP2552928A1 (en) 2013-02-06
DK2552928T3 (en) 2015-07-06
US8735629B2 (en) 2014-05-27
CA2792478A1 (en) 2011-10-06
PL2552928T3 (en) 2015-09-30
EP2552928B1 (en) 2015-04-15
AU2011233746B2 (en) 2014-12-04
AU2011233746A1 (en) 2012-10-18
CN102947319B (en) 2016-11-09
PT2552928E (en) 2015-07-28
CA2792478C (en) 2019-02-19

Similar Documents

Publication Publication Date Title
ES2727734T3 (en) Bridged bi-aromatic ligands and transition metal compounds repaired from them
EP2552928B1 (en) A process for the reduction of a tertiary phosphine oxide to the corresponding tertiary phosphine in the presence of a catalyst and use of a tertiary phosphine for reducing a tertiary phosphine oxide in the presence of a catalyst.
CN103962183A (en) PNN ligand-metal complex catalyst as well as preparation method and application thereof
JP7010822B2 (en) Chiral phosphoramide amides and their derivatives
ES2741625T3 (en) Bi-aromatic bridging ligands and olefin polymerization catalysts prepared therefrom
TW200417542A (en) A catalyst system
JP2019531322A (en) Method
US10815258B2 (en) Phosphine oxides reduction
Silvestru et al. Synthesis, spectroscopic characterization and molecular structure of dimeric (diethyldithiophosphinatod) DI (para-tolyl) antimonyl (III),[(p-CH3C6H4) 2SbS2P (C2H5) 2] 2, containing a novel monocyclic P2S4Sb2 inorganic ring system, formed through Sb… S semibonding interactions
Orthaber et al. A fluoroaryl substituent with spectator function: Reactivity and structures of cyclic and acyclic HF4C6-substituted phosphanes
ITMI20011259A1 (en) PROCEDURE FOR THE (CO) POLYMERIZATION OF CONJUGATE DIENES
CN113179642A (en) Method for producing alkenyl phosphorus compound
JP6670164B2 (en) Bisphosphine-bipyridine ligand-containing conjugated polymer and method for producing the same
CN110452178B (en) Chiral carbene precursor compound with sandwich structure and synthesis method thereof
KR100441107B1 (en) Catalysts for polymerizing cyclic olefins and polymerization method using the same
BR112012024952B1 (en) PROCESS FOR THE CONVERSION OF A TERTIARY PHOSPHINE OXIDE, AND, USE OF TERTIARY PHOSPHINE
JP2009107943A (en) Method for producing bisphosphine oxide
US6455704B1 (en) Process for the preparation of base-free carbazolide anions
Said et al. Synthesis and structure of bulky phosphiniminato complexes of zirconium and hafnium: Aryl groups as “non-innocent” substituents in electrophilic systems
KR20150016828A (en) Novel ligand compound and transiton metal compound comprising the same
JP2023176740A (en) Method for producing organic phosphorus compound
JP4572389B2 (en) Process for producing optically active phosphonate esters
JP2005232065A (en) Method for producing phosphorus-containing butadiene compound
Cossairt Niobium-mediated synthesis of phosphorus-rich molecules
JP2006312665A (en) Organometallic compound, catalyst for polymerizing polar group-containing norbornene and method for producing polar group-containing norbornene polymer

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180017856.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11715084

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 7192/DELNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 221548

Country of ref document: IL

ENP Entry into the national phase

Ref document number: 2792478

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 13636152

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011233746

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2013502534

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127026315

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2011233746

Country of ref document: AU

Date of ref document: 20110329

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011715084

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 201201355

Country of ref document: EA

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012024952

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012024952

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120928