WO2011121705A1 - Communication apparatus, communication system and path switching method - Google Patents

Communication apparatus, communication system and path switching method Download PDF

Info

Publication number
WO2011121705A1
WO2011121705A1 PCT/JP2010/055586 JP2010055586W WO2011121705A1 WO 2011121705 A1 WO2011121705 A1 WO 2011121705A1 JP 2010055586 W JP2010055586 W JP 2010055586W WO 2011121705 A1 WO2011121705 A1 WO 2011121705A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication
switching
path
communication device
route
Prior art date
Application number
PCT/JP2010/055586
Other languages
French (fr)
Japanese (ja)
Inventor
佐藤 浩司
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2010/055586 priority Critical patent/WO2011121705A1/en
Priority to TW100105030A priority patent/TW201218685A/en
Publication of WO2011121705A1 publication Critical patent/WO2011121705A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/12Avoiding congestion; Recovering from congestion
    • H04L47/125Avoiding congestion; Recovering from congestion by balancing the load, e.g. traffic engineering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0876Network utilisation, e.g. volume of load or congestion level
    • H04L43/0882Utilisation of link capacity

Definitions

  • the present invention relates to a communication apparatus in which two paths of a point-to-point active system and a standby system are set in advance with a communication partner apparatus, and a path switching method in the communication apparatus.
  • Protection that makes the end-to-end connection between two devices redundant and automatically switches to a backup path when a failure occurs as a technology to prevent communication interruption when a failure occurs in the communication path when communicating between the two devices
  • ITU-T International Telecommunication Union Telecommunication Standardization Sector
  • Recommendation G In the linear protection switching technique defined in 8031, two paths of an active system and a standby system between two devices corresponding to Ethernet (registered trademark) are set in advance, and the standby system path is automatically set when a failure occurs in the active system path. Switch to.
  • By using such a linear protection switching technique it is possible to continue the communication by switching the path even when a failure occurs in the communication between the two devices.
  • Patent Document 1 discloses a path protection method capable of improving switching efficiency.
  • the order of switching to the standby system can be specified and controlled for each traffic.
  • the ITU-T recommendation G In the linear protection switching technique defined in 8031, a VLAN (Virtual Local Area Network) set as a switching target is switched to a backup path when triggered by a failure detection or switching operation instruction. Therefore, even if the active route is congested and frame loss actually occurs, it is not possible to switch to the backup route until a failure is detected even for high priority traffic. Even in the case of occurrence, there was a problem that temporary communication interruption due to failure occurred. There is also a problem that frame loss due to congestion cannot be prevented.
  • VLAN Virtual Local Area Network
  • the present invention has been made in view of the above, and obtains a communication device, a communication system, and a route switching method capable of reducing congestion of a route in use without interruption of communication of high-priority traffic. For the purpose.
  • the present invention provides a communication device in which a plurality of communication paths are set with a facing communication device, and one of the communication paths is set.
  • the congestion determining unit that determines whether the selected route is congested and the congestion determining unit are configured so that the selected route is congested.
  • Switching control means for selecting a part of the transmission data as switching target data and switching the transmission path of the switching target data to a communication path other than the selection path when it is determined that To do.
  • the communication device, the communication system, and the route switching method according to the present invention have an effect that congestion of a route in use can be reduced without communication interruption of high priority traffic.
  • FIG. 1 is a diagram illustrating a configuration example of a communication system according to the first embodiment.
  • FIG. 2 is a diagram illustrating a functional configuration example of the communication apparatus according to the first embodiment.
  • FIG. 3 is a diagram illustrating an example of usage route information.
  • FIG. 4 is a diagram illustrating a configuration example of an Ethernet (registered trademark) frame.
  • FIG. 5 is a diagram illustrating a configuration example of C-TAG TCI.
  • FIG. 6 is a diagram illustrating a configuration example of S-TAG TCI and B-TAG TCI.
  • FIG. 7 is a diagram illustrating a configuration example of the I-TAG TCI.
  • FIG. 8 is a diagram illustrating an example of an active route and a standby route for each traffic.
  • FIG. 8 is a diagram illustrating an example of an active route and a standby route for each traffic.
  • FIG. 9 is a flowchart illustrating an example of a route switching processing procedure according to the first embodiment.
  • FIG. 10 is a diagram illustrating an example of use route information when a threshold is set for each priority.
  • FIG. 11 is a diagram illustrating a configuration example of an APS protocol message (APS message) format.
  • FIG. 12 is a diagram showing information included in the data format of the APS protocol.
  • FIG. 13 is a sequence diagram illustrating an example of a route switching procedure when an APS message is used.
  • FIG. 14 is a diagram illustrating a configuration example of an APS message storing priority information.
  • FIG. 15 is a diagram illustrating another configuration example of an APS message storing priority information.
  • FIG. 16 is a diagram illustrating a sequence example in the case of switching during congestion.
  • FIG. 1 is a diagram showing a configuration example of a first embodiment of a communication system according to the present invention.
  • the communication system of this embodiment is an ITU-T G.
  • the communication device 1 and the communication device 2 having a linear protection switching function defined in 8031, and communication paths 3 and 4 are provided.
  • the communication paths 3 and 4 are communication paths set for communication between the communication apparatus 1 and the communication apparatus 2, and the communication path 3 is set as an active path and the communication path 4 is set as a backup path.
  • the communication flow from the communication device 1 to the communication device 2 is transferred using either the communication route 3 or the communication route 4.
  • the communication path 3 and the communication path 4 are each a single link.
  • the communication paths 3 and 4 are a single link? It doesn't matter. It is assumed that a plurality of VLANs are set between the communication device 1 and the communication device 2.
  • this embodiment is based on a communication system in which the transfer source side determines the transfer route, assuming that the transfer route does not matter whether or not the transfer route is the same route. Therefore, the communication device 1 that is the transfer source device has only to determine the transfer destination route, and the transfer destination communication device 2 does not obtain information on which route of the communication routes 3 and 4 is transmitted in advance. However, a predetermined reception process is performed on the traffic input through one of the communication paths 3 and 4.
  • the transfer destination communication device 2 has the same configuration as that of the communication device 1 according to the present embodiment, and the communication device 2 has the communication device 1 described below. What is necessary is just to perform operation
  • FIG. 2 is a diagram illustrating a functional configuration example of the communication device 1 according to the present embodiment.
  • the communication device 1 includes a communication interface 11, a transfer processing unit 12, a switching control unit 13, a failure monitoring unit 14, a traffic flow measurement unit 15, and a communication interface 16.
  • the communication interface 11 includes a communication interface 11, a transfer processing unit 12, a switching control unit 13, a failure monitoring unit 14, a traffic flow measurement unit 15, and a communication interface 16.
  • the communication device 1 of the present embodiment is an ITU-T G.
  • the communication device 1 of the present embodiment is an ITU-T G.
  • the communication interface 11 includes ports 21-1 to 21-5, performs predetermined reception processing on the traffic input from the ports 21-1 to 21-5, and outputs the processed traffic to the transfer processing unit 12. To do. It is assumed that the communication interface 11 supports a link speed such as 10 Mbps / 100 Mbps / 1 Gbps used in Ethernet (registered trademark), and can measure a flow rate of traffic received by each port and detect a failure.
  • the communication interface 16 includes ports 22-1 to 22-5, performs predetermined transmission processing on the traffic output from the transfer processing unit 12, and sends the processed traffic from the ports 22-1 to 22-5. Output.
  • the communication interface 16 is assumed to be compatible with a link speed such as 10 Mbps / 100 Mbps / 1 Gbps used in Ethernet (registered trademark), and can measure the flow rate of traffic transmitted by each port and detect a failure.
  • each of the communication interface 11 and the communication interface 16 includes five ports.
  • the number of ports is not limited to this, and the number of ports included in the communication interface 11 and the communication interface 16 is not limited thereto. But you can.
  • the communication interface 11 is described as an input-side communication interface
  • the communication interface 16 is described as an output-side communication interface.
  • both the communication interface 11 and the communication interface 16 are both input-side and output-side communication. It may have a function as an interface.
  • the transfer processing unit 12 uses, as a transfer rule, the correspondence with the transfer destination port (any one of the ports 22-1 to 22-5) for each received VLAN identifier (or for each VLAN identifier and priority). Hold and perform transfer processing based on transfer rules.
  • the switching control unit 13 uses a VLAN identifier of a VLAN to be switched at the time of congestion and information for identifying whether to transfer traffic corresponding to the VLAN identifier using an active route or a standby route. The information is retained, the used route information is updated based on the failure information and the traffic flow information, and the transfer processing unit 12 is instructed to rewrite the transfer rule based on the used route information.
  • the traffic flow measurement unit 15 collects the traffic flow measurement results of the ports 22-1 to 22-5 of the communication interface 16, monitors whether the traffic flow exceeds the threshold, and the traffic flow exceeds the threshold. When a port is detected, the switch control unit 13 is notified of the port number and traffic flow rate with a predetermined threshold value. Note that the traffic flow measurement unit 15 obtains and holds threshold values corresponding to the ports 22-1 to 22-5 from the switching control unit 13 in advance.
  • the failure monitoring unit 14 detects the failure occurrence and recovery of each port 22-1 to 22-5 of the communication interface 16, and transmits the detected event (failure detection or recovery) to the switching control unit 13. It should be noted that detection of failure occurrence and recovery may be performed for each port or for each VLAN. As a method for detecting failure occurrence and recovery, an ETH-CC (ETHernet (registered trademark) Continuity Check) function defined by ITU-T recommendation Y.1731, or other methods may be used.
  • ETH-CC ETHernet (registered trademark) Continuity Check
  • FIG. 3 is a diagram illustrating an example of usage route information held by the switching control unit 13.
  • the usage path information includes, for each VLAN identifier, the working system port number (abbreviated as working system in the figure), threshold, highest priority, and standby system port number (in the figure, the standby system).
  • a selection system currently selected system: information on whether the active system path is selected as the transfer path or the backup system path is selected as the transfer path. Note that FIG. 3 is an example, and information similar to that shown in FIG. 3 may be stored as long as similar information is stored.
  • the active system port number indicates the identification number of the port to which the VLAN traffic is transferred (any one of the ports 22-1 to 22-5). For example, it is assumed that ports 22-1, 22-2,..., 22-5 correspond to port numbers # 1, # 2,.
  • the transfer destination port corresponds to the transfer route, and the active port number indicates the port number when transferring to the active route.
  • the standby port number indicates the port number when forwarding to the standby path.
  • the switching control unit 13 switches the traffic path for each VLAN identifier and priority based on the VLAN identifier and priority information of the Ethernet (registered trademark) frame as switching during congestion.
  • the traffic is identified for each priority and the path is switched for each priority. For example, priority A traffic and priority B traffic (A ⁇ B) with the same VLAN identifier are identified, and priority A traffic and priority B traffic are transferred to different transfer paths.
  • the threshold shown in FIG. 3 is a threshold for the traffic flow measurement unit 15 to determine whether or not it is congested, and is set for each VLAN.
  • This threshold value may be set in any way. For example, a method of setting a small threshold value for a VLAN that performs communication of an application with a severe delay requirement may be considered.
  • the switching control unit 13 obtains a minimum threshold value for each port based on the use route information, and notifies the traffic flow rate measurement unit 15 of the threshold value as a threshold value for each port.
  • the highest priority shown in FIG. 3 is the highest priority to be switched when the traffic flow exceeds the VLAN threshold.
  • the switching control unit 13 determines a VLAN whose traffic flow exceeds the threshold, and the traffic of the VLAN has a priority lower than the highest priority.
  • the traffic transfer route is switched to a communication route other than the selected system. For the VLAN traffic whose traffic flow rate exceeds the threshold, the transfer route of the traffic with the priority exceeding the highest priority is left as the selection system.
  • high priority traffic has severe demands for communication interruption.
  • the traffic flow measurement unit 15 notifies the switching control unit 13 of the port number and the traffic flow when the traffic flow exceeds the threshold for each port. Not limited to.
  • the traffic flow measurement unit 15 may not have a threshold value, and periodically notify the switching control unit 13 of the port number and the traffic flow rate.
  • priority information in a VLAN tag stored in an Ethernet (registered trademark) frame is used to determine the priority of traffic.
  • PCP Priority Code Point
  • 4 to 7 are diagrams showing examples of priority information used for determining the priority of traffic.
  • FIG. 4 is a diagram illustrating a configuration example of an Ethernet (registered trademark) frame.
  • the Ethernet (registered trademark) frame includes information of DA (Destination Address) / SA (Source Address), Type indicating the type of frame, and TCI (Tag Control Information).
  • DA Densination Address
  • SA Source Address
  • Type indicating the type of frame
  • TCI Tag Control Information
  • Type is “81-00”
  • C-TAG TCI Customer VLAN Tag Control Information
  • S-TAG TCI Service VLAN Tag Control Information
  • B-TAG TCI Backbone VLAN Tag Control Information
  • I-TAG TCI Backbone Service Instance VLAN Tag Control Information
  • FIG. 5 is a diagram showing a configuration example of C-TAG TCI.
  • C-TAG TCI includes PCP, CFI (Canonical Format Indicator), and VID (VLAN Identifier).
  • PCP Physical Format Indicator
  • VID VLAN Identifier
  • the priority of each traffic is determined using this PCP as priority information.
  • FIG. 6 is a diagram showing a configuration example of S-TAG TCI and B-TAG TCI.
  • the S-TAG TCI and the B-TAG TCI include PCP, DEI (Drop Eligible Indicator), and VID.
  • the priority of each traffic is determined using this PCP as priority information.
  • FIG. 7 is a diagram showing a configuration example of I-TAG TCI.
  • I-TAG TCI includes I-PCP, I-DEI, UCA (Use Customer Address), I-SID (Backbone Service Instance Identifier), and C-DA (Encapsulated Customer Destination Address). ) And C-SA (Encapsulated Customer Source Address).
  • the priority of each traffic is determined using this IPCP as priority information. Note that the priority information described above is an example, and the present invention is not limited to this, and other information may be used as the priority information.
  • FIG. 8 is a diagram illustrating an example of the active route and the standby route of each traffic based on the used route information illustrated in FIG.
  • the traffic 31 in FIG. 8 indicates traffic with the VLAN identifier # 5, the traffic 32 indicates traffic with the VLAN identifier # 7, and the traffic 33 indicates traffic with the VLAN identifier # 10. Further, the solid line in FIG. 8 indicates the active system, and the dotted line indicates the standby system.
  • the communication device 1 transfers the traffic 31 that is the traffic with the VLAN identifier # 5 to the port # 2 when the active route is selected, and selects the standby route. If so, transfer to port # 4.
  • the traffic 31 is transferred to the port # 2.
  • the transfer processing unit 12 only needs to maintain the correspondence between the VLAN identifier and the transfer destination port as a transfer rule for a VLAN that is not congested in the selection system, but congestion occurs in the selection system.
  • the transfer processing unit 12 rewrites the transfer rule based on an instruction from the switching control unit 13.
  • FIG. 9 is a flowchart illustrating an example of a route switching processing procedure according to the present embodiment.
  • the switching control unit 13 determines whether or not a failure detection notification has been received from the failure monitoring unit 14 (step S1).
  • a failure detection notification is received from the failure monitoring unit 14 (Yes in step S1)
  • a VLAN that uses a port in which a failure is detected based on the use path information (uses that port as a standby system or an active system) is used. It discriminate
  • the switching control unit 13 determines whether or not there is an unprocessed VLAN (the following steps S4 to S7 are not performed) among the determined VLANs (step S3), and there is no unprocessed VLAN. If so (No at step S3), the process returns to step S1. If there is an unprocessed VLAN (Yes in step S3), for the unprocessed VLAN (or any one of the unprocessed VLANs), the failure notified in step S1 corresponds to that VLAN. It is determined whether or not the failure corresponds to the backup transfer path (step S4).
  • step S4 If it is determined in step S4 that the failure corresponds to the backup transfer path of the standby system (Yes in step S4), the switching control unit 13 updates the use path information with the selected system of the VLAN as the active system (step S5).
  • the transfer processing unit 12 is instructed to rewrite the transfer rule with the transfer destination of the VLAN as the port corresponding to the working path, and the transfer processing unit 12 rewrites the transfer rule based on the instruction (step S7), and step S3.
  • step S4 If it is determined in step S4 that the failure does not correspond to the transfer path of the backup system (No in step S4), the switching control unit 13 updates the use path information with the selected system of the VLAN as the backup system, and the VLAN The transfer processing unit 12 is instructed to rewrite the transfer rule with the transfer destination as the port corresponding to the backup route, and the transfer processing unit 12 rewrites the transfer rule based on the instruction (step S7), and returns to step S3.
  • step S7 The above processing at the time of failure occurrence (steps S1 to S7) is the same as the conventional one. Same as 8031. In the case of failure recovery, ITU-T Recommendation G. The same operation as 8031 is performed.
  • step S1 determines that a failure detection notification has not been received from the failure monitoring unit 14 (No in step S1)
  • the switching control unit 13 determines that the traffic flow rate and port that exceeded the threshold from the traffic flow measurement unit 15 It is determined whether or not a number has been notified (whether or not an overthreshold has been detected) (step S9), and if the traffic flow and port number that have exceeded the threshold have not been notified (No in step S9), the process returns to step S1. .
  • step S9 If it is determined in step S9 that the traffic flow exceeding the threshold and the port number have been notified (Yes in step S9), the switching control unit 13 determines the threshold based on the notified traffic flow, port number, and usage route information. VLANs that exceed are determined (step S10).
  • the switching control unit 13 determines whether or not there is an unprocessed VLAN (the following steps S12 to S14 are not performed) among the VLANs determined in step S10 (step S11). If not (No at Step S11), the process returns to Step S1.
  • the switching control unit 13 determines the unprocessed VLAN (or one of the unprocessed VLANs when there are a plurality of unprocessed VLANs) based on the use route information. It is determined whether or not the port corresponding to the VLAN selection system exceeds the threshold (step S12). For example, it is assumed that the usage route information shown in FIG. 3 is held, and that traffic flow of 80% of the physical bandwidth is measured at port # 2.
  • the active port # 2 is used as a selection system and VLAN # 5 is set with a threshold of 60%, and the active port # 2 is used as a selection system and a threshold of 80% is set. For VLAN # 7, it is determined that the port corresponding to the VLAN selection system exceeds the threshold.
  • step S12 If it is determined in step S12 that the port corresponding to the VLAN selection system does not exceed the threshold value (No in step S12), the process returns to step S11. If it is determined in step S12 that the port corresponding to the VLAN selection system has exceeded the threshold (Yes in step S12), the highest priority of the VLAN is acquired based on the use route information, and the maximum priority or lower is obtained. A transfer rule for transferring the traffic to the non-selection system is generated (step S13). Then, the transfer processing unit 12 is instructed to update the transfer rule to the generated transfer rule, and the transfer processing unit 12 updates the transfer rule based on the instruction (step S14).
  • step S13 if the use route information shown in FIG. 3 is held, and if traffic flow of 80% of the physical bandwidth is measured at port # 2, it is determined in step S13 that the threshold is exceeded in VLAN # 5.
  • step S14 a transfer rule is generated so that traffic having a priority of 6 or lower corresponding to VLAN # 5 is transferred to port # 4, which is a standby system.
  • the switching control unit 13 is also provided with a function of a congestion determination unit that determines whether the route of the selected system is congested.
  • the congestion determination unit is separated from the switching control unit 13. You may make it prepare. In this case, the congestion determination unit performs the processing from step S1 to step S12 based on the usage route information, and the switching control unit 13 performs the processing of steps S13 and S14 based on the usage route information.
  • a threshold value may be set for each priority level to determine whether to perform switching.
  • FIG. 10 is a diagram illustrating an example of use route information when a threshold is set for each priority.
  • the active system port number, threshold value, standby system port number, and selection system information are stored for each VLAN and priority level.
  • step S10 the combination of the VLAN exceeding the threshold and the priority is determined. Then, the following steps S11 to S14 are performed for each combination of VLAN and priority.
  • the method of determining switching using the highest priority illustrated in FIG. 3 can also be considered as an example of a method of determining whether to perform switching for each priority.
  • VLANs and entries with a priority lower than the highest priority are stored, and the same value that does not depend on the priority is set as the threshold. It is possible to perform the same operation as when using.
  • the traffic when the selection system is congested, the traffic is distributed to the selection system and the non-selection path using the priority.
  • Traffic may be distributed using criteria.
  • the route when the selection system is congested, the route is switched based on the priority of traffic.
  • the route can be switched using the priority. For example, in the case where the usage route information shown in FIG. 3 is retained, if a failure occurs in the active route, the traffic exceeding the highest priority is discarded without transferring the traffic data below the highest priority without transferring it. Is switched to the backup path and transferred. Specifically, in step S6 of FIG. 9, when the selected system is set as the backup system, the traffic exceeding the highest priority is switched to the backup path, and the traffic data below the highest priority is transferred so as to be discarded. Generate rules. By doing so, a route having a low communication capacity can be used as the standby communication route. When both the above-described switching at the time of mixing and path switching using the priority at the time of failure occurrence are performed, the highest priority corresponding to each may be set separately.
  • whether or not the selection system is congested is determined based on the traffic flow rate for each port. However, when the occurrence of congestion can be detected by another means such as detection of a delay time. Alternatively, it may be determined whether or not it is crowded by other means.
  • the case where a plurality of VLANs are set has been described as an example. However, if two communication paths of the active system and the standby system are set, no VLAN is set.
  • the switching method at the time of congestion of the present embodiment can also be applied to a communication system. In this case, since the VLAN tag value cannot be used as the priority information, the traffic whose path is switched to the non-selected system is selected using other priority information.
  • the switching method at the time of congestion of this embodiment may be applied.
  • the switching method at the time of congestion of this embodiment may be applied.
  • one of them may be used as a forwarding route for traffic with the highest priority or lower, and two or more routes may be used for traffic with the highest priority or lower. It may be used as a transfer path.
  • the switching control unit 13 holds the use route information storing the threshold for the traffic flow of the selected system for each VLAN and the priority for switching to the non-selected system when the threshold is exceeded. Then, the path switching is instructed based on the used path information and the traffic flow rate for each port, and the transfer processing unit 12 performs the transfer on the switched path according to the path switching instruction. For this reason, it is possible to reduce the congestion of the selected route (route in use) without disconnecting high-priority traffic.
  • Embodiment 2 a route switching method according to the second embodiment of the present embodiment will be described.
  • the configuration of the communication system of the present embodiment is the same as that of the first embodiment. Further, the configuration of the communication apparatus 1 of the present embodiment is the same as that of the first embodiment. Components having the same functions as those of the first embodiment are denoted by the same reference numerals as those of the first embodiment, and description thereof is omitted.
  • Embodiment 1 the method of switching the one-way communication path from the communication device 1 to the communication device 2 has been described.
  • the same route (however, the direction is opposite) is used in both directions. Will be described.
  • the communication device 2 has the same configuration as the communication device 1.
  • the communication device 1 and the communication device 2 may perform the operation of the first embodiment.
  • the communication device 1 When the same route is used in both directions, when the communication device 1 switches the route, it is necessary to notify the communication device 2 of the VLAN and the priority of which the route has been switched. Then, the communication device 2 sets a route for transferring data to the communication device 1 based on the notification. Any method may be used as this notification method.
  • ITU-T G The following description will be given by taking as an example the case of using the APS (Automatic Protection Switching) protocol defined in 8031.
  • FIG. 11 is a diagram illustrating a configuration example of an APS protocol message (APS message) format.
  • FIG. 12 is a diagram showing information included in the data format of the APS protocol. As shown in FIG. 11, the data used by the APS protocol includes Request / State, Protection Type indicating the type of protection, Requested Signal, and Bridged Signal.
  • FIG. 12 is a diagram showing the value and meaning of each item in the format of the APS message shown in FIG.
  • FIG. 13 is a sequence diagram illustrating an example of a route switching procedure when an APS message is used.
  • FIG. 13 shows a switching procedure when a failure occurs, and this procedure is the same as the conventional linear protection switching technique.
  • NR in FIG. 13 indicates an APS message in which NR (No Request) is set in Request / State, and SF indicates an APS message in which SF (Signal Fail) is set in Request / State.
  • R / b is an abbreviation for Request / Bridged Signal.
  • FIG. 13 shows an example in which two communication devices, WEST and EAST, are performing bidirectional communication.
  • WEST and EAST have the same configuration as that of communication apparatus 1 shown in the first embodiment.
  • the path switching at the time of transmission is controlled, but in this embodiment, since the same path is used in both directions, the transmission path is changed. Then, the reception path is changed as well.
  • the communication interface 16 has a transmission / reception function, and the switching control unit 13 also controls switching of the reception path (from which port of the communication interface 16 is received), and reception is performed on the selected path.
  • SEL in FIG. 13 shows the state of the selector for switching the reception path between the active system and the standby system
  • the white part shows the state of receiving from the active system
  • the filled part is received from the standby system It shows the state.
  • BRG indicates the state of the bridge that switches the transmission path between the active system and the standby system
  • the white part indicates the state of transmission to the active system
  • the filled part transmits to the standby system Indicates the state.
  • SEL and BRG shown on the left side indicate the WEST state
  • SEL and BRG shown on the right side indicate the EAST state.
  • the switching control unit 13 performs APS protocol processing.
  • the switching control unit 13 performs processing (switching processing and the like) according to the APS protocol when the switching control unit 13 generates an APS message and receives the APS message.
  • the generated APS message is transmitted via the transfer processing unit 12 and the communication interface, and is received by the switching control unit 13 via the transfer processing unit 12 and the communication interface.
  • the working communication path is used in both the west-to-east direction and the east-to-west direction.
  • WEST and EAST each periodically transmit an APS message (APS periodic transmission) to the counterpart device (steps S21 and S22).
  • a communication disconnection in one direction occurs in the active communication path.
  • the EAST switches its own route (transmission / reception route) to the standby system and transmits an APS message (step S23).
  • the WEST switches the transmission / reception route of its own station to the standby system (step S26).
  • the Protection Type in the APS message used in the above process a value according to the switching method set in the communication system is set. Since the present embodiment is premised on two-way communication (communication that requires a route agreement with the opposite device), the value corresponding to the two-way communication is set in Protection Type. Further, since the path switching is performed for each VLAN, the above steps S21 to S30 are performed for each VLAN.
  • route switching at the time of congestion since communication is bidirectional, when the communication device 1 on the transmission side selects a route for each traffic based on the priority information at the time of congestion as described in the first embodiment, the opposite device also receives traffic. Each time the transmission path is switched so that the same path (direction is reversed) is obtained. Therefore, in the present embodiment, the switching control unit 13 of the communication device 1 notifies priority information used as a reference for switching to the opposite device to the opposite route.
  • the communication apparatus 1 communicates with the communication apparatus 2 as illustrated in FIG. 1 will be described as an example.
  • priority information is stored in an APS message and transmitted.
  • FIG. 14 is a diagram illustrating a configuration example of an APS message storing priority information.
  • a part of the Reserved area of the APS message shown in FIG. 11 is used as the priority information area.
  • PCP or I-PCP
  • a new area for storing PCP is defined.
  • the PCP value corresponding to the highest priority described in the first embodiment is stored in this area.
  • the priority information stored in the APS message is not limited to PCP, and any information may be used as long as the priority information is agreed in advance with the opposite device.
  • the Request / State of the APS message that stores the priority information may be defined by using a value indicating that switching at the time of congestion is being performed, or an existing value such as SF may be used. Good. r / s may be used even if a corresponding value is defined during switching at the time of congestion. For example, Normal Traffic Signal may be used.
  • the communication device 1 on the APS message transmission side stores the highest priority corresponding to the VLAN and transmits the APS message.
  • the communication device 1 on the transmission side performs switching at the time of congestion (both the standby system and the active system are used)
  • the PCP is stored in the APS message and transmitted, and the standby system or the active system is transmitted as in the past.
  • transmission is performed only through one of the routes of the system
  • PCP is not stored in the APS message.
  • the communication apparatus 2 can obtain information on whether or not the opposite communication apparatus 1 is performing transmission by switching at the time of congestion and the highest priority.
  • the communication device 1 separately notifies whether or not switching is performed during congestion (uses both the standby system and the active system), and always stores the PCP in the APS message. Also good.
  • step S14 the transfer rule is updated, and the communication device 2 transmits traffic of each priority through a transmission route opposite to the transmission route from the communication device 1.
  • the communication device 2 detects congestion, the operation similar to that of the communication device 1 is performed, and the communication device 1 performs the same operation as that of the communication device 2 described above.
  • FIG. 15 is a diagram showing another configuration example of an APS message storing priority information.
  • the PCP corresponding to the highest priority is stored in the APS message, but in the example of FIG. 15, the priority (switching target priority) corresponding to the traffic to be switched (transmitted in the non-selection system) is set to APS.
  • the priority switching target priority
  • the priority level transmitted in a non-selected system is communicated in the format of FIG.
  • the device 2 can be notified.
  • priority information may be notified not only by this method but by what kind of method.
  • FIG. 16 is a diagram illustrating an example of a sequence in the case of switching during congestion.
  • WEST and EAST are communication apparatuses similar to the communication apparatus 1.
  • CON a value indicating that the APS message Request / State is being switched
  • the SEL and BRG fill portions are periods during which communication using both the standby system and the active system is performed.
  • WEST and EAST perform APS regular transmission as in the example of FIG. 13 (steps S21 and S22). Therefore, when the EAST detects the congestion due to the traffic flow rate of a certain port exceeding the threshold value, the VLAN using that port as the selection system (set as a switching target VLAN) according to the procedure described in the first embodiment. Is switched to a non-selection route (step S31).
  • the EAST transmits an APS message (CON (priority)) indicating that the switching at the time of congestion storing the highest priority is being performed for each switching target VLAN (step S32).
  • Step S25 is similar to the example of FIG.
  • the WEST switching control unit 13 When receiving the APS message indicating that switching at the time of congestion is being performed, the WEST switching control unit 13 performs switching so that traffic below the highest priority is transmitted in a non-selected system based on the highest priority (step S33). ). In this case, the WEST switching control unit 13 performs path switching based on an instruction from the EAST. Therefore, WEST also has a function as instruction switching control means for switching a route based on an instruction including the highest priority notified from EAST when EAST detects congestion.
  • CON priority
  • the EAST notifies the fact using the APS message.
  • the switching control unit 13 when performing bidirectional communication, when switching during congestion is performed as in Embodiment 1, stores the highest priority in the APS message. I sent it. Then, the opposite device switches the transmission path based on the highest priority stored in the received APS message. Therefore, even when the round-trip transfer paths are the same, congestion of the working path can be reduced without interruption of traffic with high priority traffic.
  • the communication apparatus, the communication system, and the path switching method according to the present invention provide a communication apparatus in which two paths of a point-to-point active system and a standby system are set in advance with a communication partner apparatus. It is useful and is particularly suitable for communication devices that transfer traffic of various priorities.

Abstract

A communication apparatus (1), which has a currently used system of communication path and a reserve system of communication path both established to communicate with an opposed communication apparatus, comprises a switching control unit (13) that, when having selected, as a selected path, one of the communication paths and using the selected path to perform a data transmission, determines, based on a traffic flow amount, whether the selected path exhibits a heavy traffic and that, when having determined that the selected path exhibits a heavy traffic, selects some of transport data as to-be-switched data and then switches the transmission path of the to-be-switched data to the communication path other than the selected path.

Description

通信装置、通信システムおよび経路切替方法Communication apparatus, communication system, and path switching method
 本発明は、通信相手の装置との間にポイント-トゥ-ポイントの現用系および予備系の2経路をあらかじめ設定された通信装置およびその通信装置における経路切替方法に関する。 The present invention relates to a communication apparatus in which two paths of a point-to-point active system and a standby system are set in advance with a communication partner apparatus, and a path switching method in the communication apparatus.
 2装置間の通信を行う際、通信経路で障害が発生した場合の通信断を防ぐ技術として、2装置間のEnd-to-End接続を冗長化し、障害時に予備系経路に自動的に切替えるプロテクション切替技術がある。たとえば、ITU-T(International Telecommunication Union Telecommunication Standardization Sector)勧告G.8031で定義される線形プロテクション切替技術では、Ethernet(登録商標)に対応する2装置間の現用系および予備系の2経路をあらかじめ設定しておき、現用系経路の障害時に自動的に予備系経路に切替える。このような線形プロテクション切替技術を用いることで、2装置間の通信に対し、障害が発生した場合にも経路を切替て通信を継続することができる。 Protection that makes the end-to-end connection between two devices redundant and automatically switches to a backup path when a failure occurs as a technology to prevent communication interruption when a failure occurs in the communication path when communicating between the two devices There is a switching technology. For example, ITU-T (International Telecommunication Union Telecommunication Standardization Sector) Recommendation G. In the linear protection switching technique defined in 8031, two paths of an active system and a standby system between two devices corresponding to Ethernet (registered trademark) are set in advance, and the standby system path is automatically set when a failure occurs in the active system path. Switch to. By using such a linear protection switching technique, it is possible to continue the communication by switching the path even when a failure occurs in the communication between the two devices.
 線形プロテクション切替を実施する従来技術として、たとえば、下記特許文献1では、切替効率を向上させることができるパスプロテクション方法が開示されている。この方法では、ある箇所の故障検出を契機に、切替えるべきトラフィックが複数存在する場合、トラフィックごとに予備系へ切替える順序を指定・制御することができる。 As a conventional technique for performing linear protection switching, for example, Patent Document 1 below discloses a path protection method capable of improving switching efficiency. In this method, when there is a plurality of traffic to be switched when a failure is detected at a certain location, the order of switching to the standby system can be specified and controlled for each traffic.
特開2007-181010号公報JP 2007-181010 A
 しかしながら、上記ITU-T勧告G.8031で規定される線形プロテクション切替技術では、障害検出や切替操作指示を契機として、切替対象として設定されているVLAN(Virtual Local Area Network)を予備系経路へ切替える。そのため、現用系経路が混雑して実際にフレームロスが発生している場合でも、優先度の高いトラフィックに関しても障害を検出するまでは予備系経路への切替を行なうことができず、混雑による障害発生の場合でも障害による一時的な通信断が生じる、という問題があった。また、混雑によるフレームロス発生を防ぐことができない、という問題があった。 However, the ITU-T recommendation G. In the linear protection switching technique defined in 8031, a VLAN (Virtual Local Area Network) set as a switching target is switched to a backup path when triggered by a failure detection or switching operation instruction. Therefore, even if the active route is congested and frame loss actually occurs, it is not possible to switch to the backup route until a failure is detected even for high priority traffic. Even in the case of occurrence, there was a problem that temporary communication interruption due to failure occurred. There is also a problem that frame loss due to congestion cannot be prevented.
 また、上記特許文献1に記載の方法では、複数のVLANをグループ化し、各グループに対して切替順序を設定しておくことで、障害検出時に、設定された切替順序で切替を実施し、優先するVLANグループに対しては短時間での切替完了ができる。しかし、上記特許文献1に記載の方法でも、切替の契機は、障害検出である。したがって、ITU-T勧告G.8031で規定される線形プロテクション切替技術と同様に、障害による一時的な通信断が生じ、また混雑によるフレームロス発生を防ぐことができない、という問題があった。 In the method described in Patent Document 1, a plurality of VLANs are grouped and a switching order is set for each group, so that when a failure is detected, switching is performed in the set switching order, and priority is given. The VLAN group to be switched can be completed in a short time. However, even in the method described in Patent Document 1, the trigger for switching is failure detection. Therefore, ITU-T Recommendation G. Similar to the linear protection switching technique defined in 8031, there is a problem that a temporary communication interruption occurs due to a failure, and that a frame loss due to congestion cannot be prevented.
 本発明は、上記に鑑みてなされたものであって、優先度の高いトラフィックの通信断を伴わずに使用中の経路の混雑を低減することができる通信装置、通信システムおよび経路切替方法を得ることを目的とする。 The present invention has been made in view of the above, and obtains a communication device, a communication system, and a route switching method capable of reducing congestion of a route in use without interruption of communication of high-priority traffic. For the purpose.
 上述した課題を解決し、目的を達成するために、本発明は、対向する通信装置との間に複数の通信経路を設定している通信装置であって、前記通信経路のうちの1つを選択経路とし、前記選択経路を用いてデータ送信を行っている場合に、前記選択経路が混雑しているか否かを判定する混雑判定手段と、前記混雑判定手段が、前記選択経路が混雑していると判定した場合に、送信データのうちの一部を切替対象データとして選択し、前記切替対象データの送信経路を前記選択経路以外の通信経路に切替える切替制御手段と、を備えることを特徴とする。 In order to solve the above-described problems and achieve the object, the present invention provides a communication device in which a plurality of communication paths are set with a facing communication device, and one of the communication paths is set. When the selected route is used and data transmission is performed using the selected route, the congestion determining unit that determines whether the selected route is congested and the congestion determining unit are configured so that the selected route is congested. Switching control means for selecting a part of the transmission data as switching target data and switching the transmission path of the switching target data to a communication path other than the selection path when it is determined that To do.
 本発明にかかる通信装置、通信システムおよび経路切替方法は、優先度の高いトラフィックの通信断を伴わずに使用中の経路の混雑を低減することができる、という効果を奏する。 The communication device, the communication system, and the route switching method according to the present invention have an effect that congestion of a route in use can be reduced without communication interruption of high priority traffic.
図1は、実施の形態1の通信システムの構成例を示す図である。FIG. 1 is a diagram illustrating a configuration example of a communication system according to the first embodiment. 図2は、実施の形態1の通信装置の機能構成例を示す図である。FIG. 2 is a diagram illustrating a functional configuration example of the communication apparatus according to the first embodiment. 図3は、使用経路情報の一例を示す図である。FIG. 3 is a diagram illustrating an example of usage route information. 図4は、Ethernet(登録商標)フレームの構成例を示す図である。FIG. 4 is a diagram illustrating a configuration example of an Ethernet (registered trademark) frame. 図5は、C-TAG TCIの構成例を示す図である。FIG. 5 is a diagram illustrating a configuration example of C-TAG TCI. 図6は、S-TAG TCIおよびB-TAG TCIの構成例を示す図である。FIG. 6 is a diagram illustrating a configuration example of S-TAG TCI and B-TAG TCI. 図7は、I-TAG TCIの構成例を示す図である。FIG. 7 is a diagram illustrating a configuration example of the I-TAG TCI. 図8は、各トラフィックの現用系経路および予備系経路の一例を示す図である。FIG. 8 is a diagram illustrating an example of an active route and a standby route for each traffic. 図9は、実施の形態1の経路切替処理手順の一例を示すフローチャートである。FIG. 9 is a flowchart illustrating an example of a route switching processing procedure according to the first embodiment. 図10は、優先度ごとに閾値を設定する場合の使用経路情報の一例を示す図である。FIG. 10 is a diagram illustrating an example of use route information when a threshold is set for each priority. 図11は、APSプロトコルのメッセージ(APSメッセージ)フォーマットの構成例を示す図である。FIG. 11 is a diagram illustrating a configuration example of an APS protocol message (APS message) format. 図12は、APSプロトコルのデータフォーマットに含まれる情報を示す図である。FIG. 12 is a diagram showing information included in the data format of the APS protocol. 図13は、APSメッセージを用いる場合の経路切替手順の一例を示すシーケンス図である。FIG. 13 is a sequence diagram illustrating an example of a route switching procedure when an APS message is used. 図14は、優先度情報を格納したAPSメッセージの構成例を示す図である。FIG. 14 is a diagram illustrating a configuration example of an APS message storing priority information. 図15は、優先度情報を格納したAPSメッセージの別の構成例を示す図である。FIG. 15 is a diagram illustrating another configuration example of an APS message storing priority information. 図16は、混雑時切替を実施する場合のシーケンス例を示す図である。FIG. 16 is a diagram illustrating a sequence example in the case of switching during congestion.
 以下に、本発明にかかる通信装置、通信システムおよび経路切替方法の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Hereinafter, embodiments of a communication device, a communication system, and a path switching method according to the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.
実施の形態1.
 図1は、本発明にかかる通信システムの実施の形態1の構成例を示す図である。図1に示すように、本実施の形態の通信システムは、ITU-T G.8031で規定される線形プロテクション切替機能を有する通信装置1および通信装置2と、通信経路3,4と、を備える。通信経路3,4は、通信装置1と通信装置2の間の通信のために設定された通信経路であり、通信経路3を現用系経路とし、通信経路4を予備系経路とする。
Embodiment 1 FIG.
FIG. 1 is a diagram showing a configuration example of a first embodiment of a communication system according to the present invention. As shown in FIG. 1, the communication system of this embodiment is an ITU-T G. The communication device 1 and the communication device 2 having a linear protection switching function defined in 8031, and communication paths 3 and 4 are provided. The communication paths 3 and 4 are communication paths set for communication between the communication apparatus 1 and the communication apparatus 2, and the communication path 3 is set as an active path and the communication path 4 is set as a backup path.
 通信装置1から通信装置2への通信フローは通信経路3、通信経路4のいずれかの経路を利用して転送される。通信装置1と通信装置2が直接隣接する場合は、通信経路3および通信経路4は、それぞれが単一リンクとなるが、本実施の形態では、通信経路3,4が単一リンクであるかどうかは問わない。また、通信装置1と通信装置2との間では、複数のVLANが設定されているとする。 The communication flow from the communication device 1 to the communication device 2 is transferred using either the communication route 3 or the communication route 4. When the communication apparatus 1 and the communication apparatus 2 are directly adjacent to each other, the communication path 3 and the communication path 4 are each a single link. In the present embodiment, are the communication paths 3 and 4 a single link? It doesn't matter. It is assumed that a plurality of VLANs are set between the communication device 1 and the communication device 2.
 なお、本実施の形態では、転送経路の往復が同一の経路か否かを問わない場合を前提とし、転送元側が転送経路を決定する通信システムを前提としている。そのため、転送元装置である通信装置1が転送先の経路を決定すればよく、転送先の通信装置2は、事前に通信経路3,4のどちらの経路で送信されるかの情報を得なくても、通信経路3,4のいずれかで入力されるトラフィックに対して所定の受信処理を行うこととする。通信装置2から通信装置1への方向の通信を行う場合には、転送先の通信装置2を本実施の形態の通信装置1と同様の構成とし、通信装置2が以下の述べる通信装置1の動作を行うようにすればよい。 Note that this embodiment is based on a communication system in which the transfer source side determines the transfer route, assuming that the transfer route does not matter whether or not the transfer route is the same route. Therefore, the communication device 1 that is the transfer source device has only to determine the transfer destination route, and the transfer destination communication device 2 does not obtain information on which route of the communication routes 3 and 4 is transmitted in advance. However, a predetermined reception process is performed on the traffic input through one of the communication paths 3 and 4. When communication in the direction from the communication device 2 to the communication device 1 is performed, the transfer destination communication device 2 has the same configuration as that of the communication device 1 according to the present embodiment, and the communication device 2 has the communication device 1 described below. What is necessary is just to perform operation | movement.
 図2は、本実施の形態の通信装置1の機能構成例を示す図である。図2に示すように、通信装置1は、通信インタフェース11と、転送処理部12と、切替制御部13と、障害監視部14と、トラフィック流量測定部15と、通信インタフェース16と、で構成される。 FIG. 2 is a diagram illustrating a functional configuration example of the communication device 1 according to the present embodiment. As shown in FIG. 2, the communication device 1 includes a communication interface 11, a transfer processing unit 12, a switching control unit 13, a failure monitoring unit 14, a traffic flow measurement unit 15, and a communication interface 16. The
 本実施の形態の通信装置1は、ITU-T G.8031で規定される線形プロテクション切替機能を実現することにより障害時に経路を切替える障害時切替と、障害が発生していなくても転送先の経路が混雑していると判断した場合に経路を切替える混雑時経路切替の両方を実施する。 The communication device 1 of the present embodiment is an ITU-T G. By implementing the linear protection switching function defined in 8031, switching when there is a failure when switching the route when there is a failure, and congestion when switching the route when it is determined that the destination route is congested even if no failure has occurred Perform both time-path switching.
 通信インタフェース11は、ポート21-1~21-5を備え、ポート21-1~21-5から入力されるトラフィックに対して所定の受信処理を行い、処理後のトラフィックを転送処理部12へ出力する。通信インタフェース11は、たとえばEthernet(登録商標)で用いられる10Mbps/100Mbps/1Gbpsといったリンク速度に対応していることとし、また、各ポートが受信するトラフィックの流量計測および障害検出ができるものとする。 The communication interface 11 includes ports 21-1 to 21-5, performs predetermined reception processing on the traffic input from the ports 21-1 to 21-5, and outputs the processed traffic to the transfer processing unit 12. To do. It is assumed that the communication interface 11 supports a link speed such as 10 Mbps / 100 Mbps / 1 Gbps used in Ethernet (registered trademark), and can measure a flow rate of traffic received by each port and detect a failure.
 通信インタフェース16は、ポート22-1~22-5を備え、転送処理部12から出力されるトラフィックに対して所定の送信処理を行い、処理後のトラフィックをポート22-1~22-5からへ出力する。通信インタフェース16は、たとえばEthernet(登録商標)で用いられる10Mbps/100Mbps/1Gbpsといったリンク速度に対応していることとし、また、各ポートが送信するトラフィックの流量計測および障害検出ができるものとする。なお、図2では、通信インタフェース11および通信インタフェース16は、それぞれ5つのポートを備えることとしているが、ポートの数はこれに限らず、通信インタフェース11および通信インタフェース16が備えるポートの数はそれぞれいくつでもよい。 The communication interface 16 includes ports 22-1 to 22-5, performs predetermined transmission processing on the traffic output from the transfer processing unit 12, and sends the processed traffic from the ports 22-1 to 22-5. Output. The communication interface 16 is assumed to be compatible with a link speed such as 10 Mbps / 100 Mbps / 1 Gbps used in Ethernet (registered trademark), and can measure the flow rate of traffic transmitted by each port and detect a failure. In FIG. 2, each of the communication interface 11 and the communication interface 16 includes five ports. However, the number of ports is not limited to this, and the number of ports included in the communication interface 11 and the communication interface 16 is not limited thereto. But you can.
 なお、ここでは、通信インタフェース11を入力側の通信インタフェースとし、通信インタフェース16を出力側の通信インタフェースとして説明したが、通信インタフェース11および通信インタフェース16が、いずれも入力側および出力側の両方の通信インタフェースとしての機能を有するようにしてもよい。 Here, the communication interface 11 is described as an input-side communication interface, and the communication interface 16 is described as an output-side communication interface. However, both the communication interface 11 and the communication interface 16 are both input-side and output-side communication. It may have a function as an interface.
 転送処理部12は、受信したトラフィックのVLAN識別子ごと(またはVLAN識別子と優先度ごと)にそのトラフィックの転送先ポート(ポート22-1~ポート22-5のいずれか)との対応を転送ルールとして保持し、転送ルールに基づいて転送処理を行う。 The transfer processing unit 12 uses, as a transfer rule, the correspondence with the transfer destination port (any one of the ports 22-1 to 22-5) for each received VLAN identifier (or for each VLAN identifier and priority). Hold and perform transfer processing based on transfer rules.
 切替制御部13は、混雑時切替の対象とするVLANのVLAN識別子とそのVLAN識別子に対応するトラフィックを現用系経路と予備系経路のいずれを用いて転送するかを識別する情報とを含む使用経路情報を保持し、障害情報やトラフィック流量情報に基づいて、使用経路情報を更新し、使用経路情報に基づいて、転送処理部12に対して転送ルールの書き換えを指示する。 The switching control unit 13 uses a VLAN identifier of a VLAN to be switched at the time of congestion and information for identifying whether to transfer traffic corresponding to the VLAN identifier using an active route or a standby route. The information is retained, the used route information is updated based on the failure information and the traffic flow information, and the transfer processing unit 12 is instructed to rewrite the transfer rule based on the used route information.
 トラフィック流量測定部15は、通信インタフェース16の各ポート22-1~22-5のトラフィック流量の計測結果を収集し、トラフィック流量が閾値を超えたか否かを監視し、トラフィック流量が閾値を超えたポートを検出した場合には、切替制御部13へそのポートの番号とトラフィック流量を所定の閾値を切替制御部13へ通知する。なお、トラフィック流量測定部15は、予め各ポート22-1~22-5に対応する閾値を切替制御部13から取得して保持しておくこととする。 The traffic flow measurement unit 15 collects the traffic flow measurement results of the ports 22-1 to 22-5 of the communication interface 16, monitors whether the traffic flow exceeds the threshold, and the traffic flow exceeds the threshold. When a port is detected, the switch control unit 13 is notified of the port number and traffic flow rate with a predetermined threshold value. Note that the traffic flow measurement unit 15 obtains and holds threshold values corresponding to the ports 22-1 to 22-5 from the switching control unit 13 in advance.
 障害監視部14は、通信インタフェース16の各ポート22-1~22-5の障害発生と回復を検出し、検出した事象(障害検出または回復)を切替制御部13に伝達する。なお、障害発生および回復の検出は、ポートごとに行なってもよいし、VLANごとに行なってもよい。障害発生および回復の検出方法は、ITU-T勧告Y.1731で規定されるETH-CC(ETHernet(登録商標) Continuity Check)機能などを用いてもよいし、他の方法を用いてもよい。 The failure monitoring unit 14 detects the failure occurrence and recovery of each port 22-1 to 22-5 of the communication interface 16, and transmits the detected event (failure detection or recovery) to the switching control unit 13. It should be noted that detection of failure occurrence and recovery may be performed for each port or for each VLAN. As a method for detecting failure occurrence and recovery, an ETH-CC (ETHernet (registered trademark) Continuity Check) function defined by ITU-T recommendation Y.1731, or other methods may be used.
 つぎに、本実施の形態の混雑時切替の動作について説明する。図3は、切替制御部13が保持する使用経路情報の一例を示す図である。図3に示すように、使用経路情報には、VLAN識別子ごとに、現用系のポート番号(図中では現用系と省略),閾値,最高優先度,予備系のポート番号(図中では予備系と省略),選択系(現在選択されている系:現用系経路が転送経路として選択されているか予備系経路が転送経路として選択されているかの情報)が含まれている。なお、図3は一例であり、同様の情報を保持していれば、図3に示した以外の形式の情報として保持していてもよい。 Next, the switching operation at the time of congestion in this embodiment will be described. FIG. 3 is a diagram illustrating an example of usage route information held by the switching control unit 13. As shown in FIG. 3, the usage path information includes, for each VLAN identifier, the working system port number (abbreviated as working system in the figure), threshold, highest priority, and standby system port number (in the figure, the standby system). A selection system (currently selected system: information on whether the active system path is selected as the transfer path or the backup system path is selected as the transfer path). Note that FIG. 3 is an example, and information similar to that shown in FIG. 3 may be stored as long as similar information is stored.
 現用系のポート番号は、そのVLANのトラフィックの転送先のポート(ポート22-1~22-5のいずれか)の識別番号を示している。たとえば、ポート22-1,22-2,…,22-5がポート番号#1,#2,…,#5にそれぞれ対応するとする。転送先のポートは、転送経路に対応しており、現用系のポート番号は、現用系経路へ転送する場合のポート番号を示している。同様に予備系のポート番号は、予備系経路へ転送する場合のポート番号を示している。 The active system port number indicates the identification number of the port to which the VLAN traffic is transferred (any one of the ports 22-1 to 22-5). For example, it is assumed that ports 22-1, 22-2,..., 22-5 correspond to port numbers # 1, # 2,. The transfer destination port corresponds to the transfer route, and the active port number indicates the port number when transferring to the active route. Similarly, the standby port number indicates the port number when forwarding to the standby path.
 本実施の形態では、切替制御部13は、混雑時切替として、Ethernet(登録商標)フレームのVLAN識別子および優先度情報に基づいて、VLAN識別子と優先度ごとにトラフィックの経路を現用系と予備系との間で切替えるとする。すなわち、本実施の形態では、同一VLAN識別子のトラフィックでも、優先度が異なる場合には、優先度ごとにトラフィックを識別し、優先度ごとに経路の切替を行なう。たとえば、同一VLAN識別子の優先度Aのトラフィックと優先度B(A≠B)のトラフィックとを識別し、優先度Aのトラフィックと優先度Bのトラフィックとが、それぞれ別の転送経路に転送されることもある。 In the present embodiment, the switching control unit 13 switches the traffic path for each VLAN identifier and priority based on the VLAN identifier and priority information of the Ethernet (registered trademark) frame as switching during congestion. Suppose you want to switch between In other words, in the present embodiment, even when traffic with the same VLAN identifier has different priorities, the traffic is identified for each priority and the path is switched for each priority. For example, priority A traffic and priority B traffic (A ≠ B) with the same VLAN identifier are identified, and priority A traffic and priority B traffic are transferred to different transfer paths. Sometimes.
 図3に示した閾値は、トラフィック流量測定部15が、混雑しているか否かを判定するための閾値であり、VLANごとに設定しておくこととする。この閾値は、どのように設定してもよいが、たとえば、遅延に対する要求が厳しいアプリケーションの通信を行っているVLANは、閾値を小さく設定しておく方法が考えられる。切替制御部13は、使用経路情報に基づいて、ポートごとの最小の閾値を求め、その閾値をトラフィック流量測定部15へポートごとの閾値として通知しておく。 The threshold shown in FIG. 3 is a threshold for the traffic flow measurement unit 15 to determine whether or not it is congested, and is set for each VLAN. This threshold value may be set in any way. For example, a method of setting a small threshold value for a VLAN that performs communication of an application with a severe delay requirement may be considered. The switching control unit 13 obtains a minimum threshold value for each port based on the use route information, and notifies the traffic flow rate measurement unit 15 of the threshold value as a threshold value for each port.
 図3に示した最高優先度は、トラフィック流量がそのVLANの閾値を超えた場合に、切替える最も高い優先度である。切替制御部13は、トラフィック流量測定部15から通知されるポート番号とトラフィック流量に基づいて、トラフィック流量が閾値を超えたVLANを判別し、そのVLANのトラフィックについて、最高優先度以下の優先度のトラフィックの転送経路を選択系以外の通信経路へ切替える。また、トラフィック流量が閾値を超えたVLANのトラフィックについて、最高優先度を超える優先度のトラフィックの転送経路は選択系のままとする。一般に、優先度の高いトラフィックは通信断に対する要求が厳しい。本実施の形態では、一定の優先度(最高優先度)以下のトラフィックの転送経路を選択系以外の通信経路へ切替えることにより、高優先度のトラフィックの通信断を防ぎつつ、選択系の混雑を解消することができる。なお、ここでは、優先度の値の大きいほど、優先度が高いとする。 The highest priority shown in FIG. 3 is the highest priority to be switched when the traffic flow exceeds the VLAN threshold. Based on the port number and traffic flow notified from the traffic flow measurement unit 15, the switching control unit 13 determines a VLAN whose traffic flow exceeds the threshold, and the traffic of the VLAN has a priority lower than the highest priority. The traffic transfer route is switched to a communication route other than the selected system. For the VLAN traffic whose traffic flow rate exceeds the threshold, the transfer route of the traffic with the priority exceeding the highest priority is left as the selection system. Generally, high priority traffic has severe demands for communication interruption. In the present embodiment, by switching the transfer route of traffic below a certain priority (highest priority) to a communication route other than the selection system, it is possible to reduce the congestion of the selection system while preventing communication interruption of high priority traffic. Can be resolved. Here, it is assumed that the higher the priority value, the higher the priority.
 なお、ここでは、トラフィック流量測定部15が、トラフィック流量がポートごとの閾値を超えた場合に、ポート番号とトラフィック流量を切替制御部13に通知するようにしたが、トラフィック流量の通知方法はこれに限らない。たとえば、トラフィック流量測定部15では閾値を持たず、定期的にポート番号とトラフィック流量とを切替制御部13に通知するようにしてもよい。 Here, the traffic flow measurement unit 15 notifies the switching control unit 13 of the port number and the traffic flow when the traffic flow exceeds the threshold for each port. Not limited to. For example, the traffic flow measurement unit 15 may not have a threshold value, and periodically notify the switching control unit 13 of the port number and the traffic flow rate.
 本実施の形態では、トラフィックの優先度を判断するために、たとえば、Ethernet(登録商標)フレーム内に格納されるVLANタグ内の優先度情報(PCP:Priority Code Point)を用いる。図4~図7は、トラフィックの優先度を判断するために用いる優先度情報の一例を示す図である。 In this embodiment, for example, priority information (PCP: Priority Code Point) in a VLAN tag stored in an Ethernet (registered trademark) frame is used to determine the priority of traffic. 4 to 7 are diagrams showing examples of priority information used for determining the priority of traffic.
 図4は、Ethernet(登録商標)フレームの構成例を示す図である。Ethernet(登録商標)フレームは、DA(Destination Address)/SA(Source Address)と、フレームの種別を示すTypeと、TCI(Tag Control Information)と、の情報を含む。Typeが“81-00”の場合はTCIとしてC-TAG TCI(Customer VLAN Tag Control Information)を用い、Typeが“88-a8”の場合はTCIとしてS-TAG TCI(Service VLAN Tag Control Information)またはB-TAG TCI(Backbone VLAN Tag Control Information)を用い、Typeが“88-e7”の場合はTCIとしてI-TAG TCI(Backbone Service Instance VLAN Tag Control Information)を用いる。 FIG. 4 is a diagram illustrating a configuration example of an Ethernet (registered trademark) frame. The Ethernet (registered trademark) frame includes information of DA (Destination Address) / SA (Source Address), Type indicating the type of frame, and TCI (Tag Control Information). When Type is “81-00”, C-TAG TCI (Customer VLAN Tag Control Information) is used as TCI. When Type is “88-a8”, S-TAG TCI (Service VLAN Tag Control Information) or TCI is used. B-TAG TCI (Backbone VLAN Tag Control Information) is used. When Type is “88-e7”, I-TAG TCI (Backbone Service Instance VLAN Tag Control Information) is used as TCI.
 図5は、C-TAG TCIの構成例を示す図である。図5に示すように、C-TAG TCIは、PCPと、CFI(Canonical Format Indicator)と、VID(VLAN Identifier)と、を含む。C-TAG TCIを含むフレームの場合には、このPCPを優先度情報として用いて各トラフィックの優先度を決定する。 FIG. 5 is a diagram showing a configuration example of C-TAG TCI. As shown in FIG. 5, C-TAG TCI includes PCP, CFI (Canonical Format Indicator), and VID (VLAN Identifier). In the case of a frame including C-TAG TCI, the priority of each traffic is determined using this PCP as priority information.
 図6は、S-TAG TCIおよびB-TAG TCIの構成例を示す図である。図6に示すように、S-TAG TCIおよびB-TAG TCIは、PCPと、DEI(Drop Eligible Indicator)と、VIDと、を含む。S-TAG TCIまたはB-TAG TCIを含むフレームの場合には、このPCPを優先度情報として用いて各トラフィックの優先度を決定する。 FIG. 6 is a diagram showing a configuration example of S-TAG TCI and B-TAG TCI. As shown in FIG. 6, the S-TAG TCI and the B-TAG TCI include PCP, DEI (Drop Eligible Indicator), and VID. In the case of a frame including S-TAG TCI or B-TAG TCI, the priority of each traffic is determined using this PCP as priority information.
 図7は、I-TAG TCIの構成例を示す図である。図7に示すように、I-TAG TCIは、I-PCPと、I-DEIと、UCA(Use Customer Address)と、I-SID(Backbone Service Instance Identifier)と、C-DA(Encapsulated Customer Destination Address)と、C-SA(Encapsulated Customer Source Address)と、を含む。I-TAG TCIを含むフレームの場合には、このIPCPを優先度情報として用いて各トラフィックの優先度を決定する。なお、以上説明した優先度情報は一例であり、これに限らず、他の情報を優先度情報として用いてもよい。 FIG. 7 is a diagram showing a configuration example of I-TAG TCI. As shown in FIG. 7, I-TAG TCI includes I-PCP, I-DEI, UCA (Use Customer Address), I-SID (Backbone Service Instance Identifier), and C-DA (Encapsulated Customer Destination Address). ) And C-SA (Encapsulated Customer Source Address). In the case of a frame including I-TAG TCI, the priority of each traffic is determined using this IPCP as priority information. Note that the priority information described above is an example, and the present invention is not limited to this, and other information may be used as the priority information.
 図8は、図3に例示した使用経路情報に基づく各トラフィックの現用系経路および予備系経路の一例を示す図である。図8のトラフィック31は、VLAN識別子が#5のトラフィックを示し、トラフィック32は、VLAN識別子が#7のトラフィックを示し、トラフィック33は、VLAN識別子が#10のトラフィックを示している。また、図8の実線は現用系を示し、点線は予備系を示している。 FIG. 8 is a diagram illustrating an example of the active route and the standby route of each traffic based on the used route information illustrated in FIG. The traffic 31 in FIG. 8 indicates traffic with the VLAN identifier # 5, the traffic 32 indicates traffic with the VLAN identifier # 7, and the traffic 33 indicates traffic with the VLAN identifier # 10. Further, the solid line in FIG. 8 indicates the active system, and the dotted line indicates the standby system.
 図8に示すように、たとえば、通信装置1は、VLAN識別子が#5のトラフィックであるトラフィック31を、現用系経路を選択している場合はポート#2へ転送し、予備系経路を選択している場合はポート#4へ転送する。図3の例では、VLAN識別子が#5の選択系は、現用系であるため、トラフィック31はポート#2へ転送されている。 As shown in FIG. 8, for example, the communication device 1 transfers the traffic 31 that is the traffic with the VLAN identifier # 5 to the port # 2 when the active route is selected, and selects the standby route. If so, transfer to port # 4. In the example of FIG. 3, since the selected system with the VLAN identifier # 5 is the active system, the traffic 31 is transferred to the port # 2.
 なお、選択系で混雑が発生していない(トラフィック流量が閾値を超えていない)VLANについては、全ての優先度のトラフィックを選択系に対応するポートへ転送することとする。 For VLANs in which the selection system is not congested (traffic flow rate does not exceed the threshold), all priority traffic is transferred to the ports corresponding to the selection system.
 したがって、転送処理部12では、選択系で混雑が発生していないVLANについては、転送ルールとして、VLANの識別子と転送先のポートとの対応を保持すればよいが、選択系で混雑が発生しているVLANについては、さらに優先度情報ごとに転送先のポートの情報を保持することになる。転送処理部12は、切替制御部13からの指示に基づいて転送ルールを書き換える。 Therefore, the transfer processing unit 12 only needs to maintain the correspondence between the VLAN identifier and the transfer destination port as a transfer rule for a VLAN that is not congested in the selection system, but congestion occurs in the selection system. For the existing VLAN, information on the transfer destination port is held for each priority information. The transfer processing unit 12 rewrites the transfer rule based on an instruction from the switching control unit 13.
 図9は、本実施の形態の経路切替処理手順の一例を示すフローチャートである。まず、切替制御部13は、障害監視部14から障害検出の通知を受信したか否かを判断する(ステップS1)。障害監視部14から障害検出の通知を受信した場合(ステップS1 Yes)は、使用経路情報に基づいて障害が検出されたポートを使用する(予備系または現用系としてそのポートを使用する)VLANを判別する(ステップS2)。たとえば、図3に例示した使用経路情報を保持している場合に、ポート#2で障害が検出されると、そのポートを使用しているVLANはVLAN#5とVLAN#7であると判別する。 FIG. 9 is a flowchart illustrating an example of a route switching processing procedure according to the present embodiment. First, the switching control unit 13 determines whether or not a failure detection notification has been received from the failure monitoring unit 14 (step S1). When a failure detection notification is received from the failure monitoring unit 14 (Yes in step S1), a VLAN that uses a port in which a failure is detected based on the use path information (uses that port as a standby system or an active system) is used. It discriminate | determines (step S2). For example, when the use route information illustrated in FIG. 3 is held and a failure is detected at port # 2, it is determined that the VLANs using the port are VLAN # 5 and VLAN # 7. .
 つぎに切替制御部13は、判別したVLANのうち未処理の(以下のステップS4~ステップS7を実施していない)VLANがあるか否かを判断し(ステップS3)、未処理のVLANが無い場合(ステップS3 No)は、ステップS1に戻る。未処理のVLANがある場合(ステップS3 Yes)は、未処理のVLAN(未処理のVLANが複数ある場合はそのうちのいずれかのVLAN)について、ステップS1で通知された障害がそのVLANに対応する予備系の転送経路に対応する障害であるか否かを判断する(ステップS4)。 Next, the switching control unit 13 determines whether or not there is an unprocessed VLAN (the following steps S4 to S7 are not performed) among the determined VLANs (step S3), and there is no unprocessed VLAN. If so (No at step S3), the process returns to step S1. If there is an unprocessed VLAN (Yes in step S3), for the unprocessed VLAN (or any one of the unprocessed VLANs), the failure notified in step S1 corresponds to that VLAN. It is determined whether or not the failure corresponds to the backup transfer path (step S4).
 ステップS4で、予備系の転送経路に対応する障害であると判断した場合(ステップS4 Yes)は、切替制御部13は、そのVLANの選択系を現用系として使用経路情報を更新し(ステップS5)、そのVLANの転送先を現用系経路に対応するポートとして転送ルールを書き換えるよう、転送処理部12へ指示し、転送処理部12は指示に基づいて転送ルールを書き換え(ステップS7)、ステップS3へ戻る。 If it is determined in step S4 that the failure corresponds to the backup transfer path of the standby system (Yes in step S4), the switching control unit 13 updates the use path information with the selected system of the VLAN as the active system (step S5). The transfer processing unit 12 is instructed to rewrite the transfer rule with the transfer destination of the VLAN as the port corresponding to the working path, and the transfer processing unit 12 rewrites the transfer rule based on the instruction (step S7), and step S3. Return to.
 ステップS4で、予備系の転送経路に対応する障害でないと判断した場合(ステップS4 No)は、切替制御部13は、そのVLANの選択系を予備系として使用経路情報を更新し、そのVLANの転送先を予備系経路に対応するポートとして転送ルールを書き換えるよう、転送処理部12へ指示し、転送処理部12は指示に基づいて転送ルールを書き換え(ステップS7)、ステップS3へ戻る。 If it is determined in step S4 that the failure does not correspond to the transfer path of the backup system (No in step S4), the switching control unit 13 updates the use path information with the selected system of the VLAN as the backup system, and the VLAN The transfer processing unit 12 is instructed to rewrite the transfer rule with the transfer destination as the port corresponding to the backup route, and the transfer processing unit 12 rewrites the transfer rule based on the instruction (step S7), and returns to step S3.
 以上の障害発生時の処理(ステップS1~ステップS7の処理)は、従来と同様であり、たとえば、ITU-T勧告G.8031と同様である。また、障害回復の場合の処理もITU-T勧告G.8031と同様の動作を行う。 The above processing at the time of failure occurrence (steps S1 to S7) is the same as the conventional one. Same as 8031. In the case of failure recovery, ITU-T Recommendation G. The same operation as 8031 is performed.
 一方、ステップS1で、障害監視部14から障害検出の通知を受信していないと判断した場合(ステップS1 No)は、切替制御部13は、トラフィック流量測定部15から閾値超過したトラフィック流量とポート番号が通知されたか否か(閾値超過を検出したか否か)を判断し(ステップS9)、閾値超過したトラフィック流量とポート番号が通知されていない場合(ステップS9 No)は、ステップS1に戻る。 On the other hand, if it is determined in step S1 that a failure detection notification has not been received from the failure monitoring unit 14 (No in step S1), the switching control unit 13 determines that the traffic flow rate and port that exceeded the threshold from the traffic flow measurement unit 15 It is determined whether or not a number has been notified (whether or not an overthreshold has been detected) (step S9), and if the traffic flow and port number that have exceeded the threshold have not been notified (No in step S9), the process returns to step S1. .
 ステップS9で、閾値超過したトラフィック流量とポート番号が通知されたと判断した場合(ステップS9 Yes)は、切替制御部13は、通知されたトラフィック流量およびポート番号と使用経路情報とに基づいて、閾値を超過したVLANを判別する(ステップS10)。 If it is determined in step S9 that the traffic flow exceeding the threshold and the port number have been notified (Yes in step S9), the switching control unit 13 determines the threshold based on the notified traffic flow, port number, and usage route information. VLANs that exceed are determined (step S10).
 切替制御部13は、ステップS10で判別したVLANのうち未処理の(以下のステップS12~ステップS14を実施していない)VLANがあるか否かを判断し(ステップS11)、未処理のVLANが無い場合(ステップS11 No)は、ステップS1に戻る。未処理のVLANが有る場合(ステップS11 Yes)は、切替制御部13は、未処理のVLAN(未処理のVLANが複数ある場合はそのうちのいずれかのVLAN)について、使用経路情報に基づいてそのVLANの選択系に対応するポートが閾値を超えているか否かを判断する(ステップS12)。例えば図3に示した使用経路情報が保持されているとし、ポート#2で物理帯域の80%のトラフィック流量が測定されていたとする。この場合、選択系として現用系のポート#2を使用し、60%という閾値が設定されているVLAN#5と、選択系として現用系のポート#2を使用し、80%という閾値が設定されているVLAN#7については、VLANの選択系がに対応するポートが閾値を超えていると判断する。 The switching control unit 13 determines whether or not there is an unprocessed VLAN (the following steps S12 to S14 are not performed) among the VLANs determined in step S10 (step S11). If not (No at Step S11), the process returns to Step S1. When there is an unprocessed VLAN (step S11, Yes), the switching control unit 13 determines the unprocessed VLAN (or one of the unprocessed VLANs when there are a plurality of unprocessed VLANs) based on the use route information. It is determined whether or not the port corresponding to the VLAN selection system exceeds the threshold (step S12). For example, it is assumed that the usage route information shown in FIG. 3 is held, and that traffic flow of 80% of the physical bandwidth is measured at port # 2. In this case, the active port # 2 is used as a selection system and VLAN # 5 is set with a threshold of 60%, and the active port # 2 is used as a selection system and a threshold of 80% is set. For VLAN # 7, it is determined that the port corresponding to the VLAN selection system exceeds the threshold.
 ステップS12で、そのVLANの選択系に対応するポートが閾値を超えていないと判断した場合(ステップS12 No)は、ステップS11に戻る。ステップS12で、そのVLANの選択系に対応するポートが閾値を超えていると判断した場合(ステップS12 Yes)は、使用経路情報に基づいてそのVLANの最高優先度を取得し、最高優先度以下のトラフィックを非選択系に転送する転送ルールを生成する(ステップS13)。そして、その転送ルールを生成した転送ルールへ更新するよう転送処理部12へ指示し、転送処理部12は指示に基づいて転送ルールを更新する(ステップS14)。 If it is determined in step S12 that the port corresponding to the VLAN selection system does not exceed the threshold value (No in step S12), the process returns to step S11. If it is determined in step S12 that the port corresponding to the VLAN selection system has exceeded the threshold (Yes in step S12), the highest priority of the VLAN is acquired based on the use route information, and the maximum priority or lower is obtained. A transfer rule for transferring the traffic to the non-selection system is generated (step S13). Then, the transfer processing unit 12 is instructed to update the transfer rule to the generated transfer rule, and the transfer processing unit 12 updates the transfer rule based on the instruction (step S14).
 例えば図3に示した使用経路情報が保持されている場合、ポート#2で物理帯域の80%のトラフィック流量が測定されていたとすると、VLAN#5では閾値を超えているとステップS13で判定され、ステップS14ではVLAN#5に対応する最高優先度6以下の優先度のトラフィックを予備系であるポート#4へ転送するよう転送ルールを生成する。 For example, if the use route information shown in FIG. 3 is held, and if traffic flow of 80% of the physical bandwidth is measured at port # 2, it is determined in step S13 that the threshold is exceeded in VLAN # 5. In step S14, a transfer rule is generated so that traffic having a priority of 6 or lower corresponding to VLAN # 5 is transferred to port # 4, which is a standby system.
 以上のように、本実施の形態では、選択系でトラフィック流量が閾値を超過したVLANについて、ある優先度以下のトラフィックを非選択系の経路に切替える。そのため、高い優先度のトラフィックには切替に伴う通信断などの悪影響を及ぼすことなく、かつ選択系のトラフィック流量を低く抑えることが可能となる。 As described above, in the present embodiment, for a VLAN in which the traffic flow rate exceeds the threshold value in the selected system, traffic having a priority or lower is switched to a non-selected system path. Therefore, it is possible to keep the traffic flow of the selected system low without adversely affecting the high priority traffic such as a communication interruption due to switching.
 なお、以上の混雑時切替を行なっている場合に、トラフィック流量の監視を継続し、閾値を超過していたポート22-1~22-5の混雑が解消し、トラフィック流量が所定の値以下となった場合には、混雑時切替前の状態(混雑時切替前に選択系としていた経路で全優先度のトラフィックを送信する)に復帰するようにしてもよい。 Note that when the above switching at the time of congestion is performed, monitoring of the traffic flow is continued, the congestion of the ports 22-1 to 22-5 that has exceeded the threshold is eliminated, and the traffic flow is reduced to a predetermined value or less. In such a case, it may be possible to return to a state before switching at the time of congestion (transmission of traffic of all priorities through the route that was the selection system before switching at the time of congestion).
 なお、本実施の形態では、切替制御部13が、選択系の経路が混雑しているか否を判定する混雑判定手段の機能も備えることとしたが、混雑判定手段を切替制御部13とは別に備えるようにしてもよい。この場合、混雑判定手段が、使用経路情報に基づいて、ステップS1~ステップS12までの処理を実施し、切替制御部13が、使用経路情報に基づいてステップS13、S14の処理を行う。 In the present embodiment, the switching control unit 13 is also provided with a function of a congestion determination unit that determines whether the route of the selected system is congested. However, the congestion determination unit is separated from the switching control unit 13. You may make it prepare. In this case, the congestion determination unit performs the processing from step S1 to step S12 based on the usage route information, and the switching control unit 13 performs the processing of steps S13 and S14 based on the usage route information.
 また、ここでは、優先度の高い方が通信断に対する要求が厳しいことを仮定し、選択系でトラフィック流量が閾値を超過したVLANについてある優先度以下のトラフィックを非選択系の経路に切替えるようにしたが、たとえば優先度の低い通信でも通信断に対する要求が厳しいトラフィックが存在することもある。このような場合に対応するため、優先度ごとに閾値を設定して、切替を実施するか否かを判断するようにしてもよい。 Also, here, it is assumed that the higher the priority, the severer the request for communication disconnection, and the traffic below a certain priority for a VLAN whose traffic flow exceeds the threshold in the selected system is switched to a non-selected system path. However, for example, there is a case where there is severe traffic demand for communication interruption even in low priority communication. In order to cope with such a case, a threshold value may be set for each priority level to determine whether to perform switching.
 図10は、優先度ごとに閾値を設定する場合の使用経路情報の一例を示す図である。優先度ごとに閾値を設定する場合には、たとえば、図10のように、VLANと優先度ごとに現用系のポート番号、閾値、予備系のポート番号および選択系の情報を保持しておき、ステップS10では、閾値を超過しているVLANおよび優先度の組み合わせを判別する。そして、以降のステップS11~ステップS14をVLANおよび優先度の組み合わせごとに実施する。 FIG. 10 is a diagram illustrating an example of use route information when a threshold is set for each priority. When setting a threshold value for each priority, for example, as shown in FIG. 10, the active system port number, threshold value, standby system port number, and selection system information are stored for each VLAN and priority level. In step S10, the combination of the VLAN exceeding the threshold and the priority is determined. Then, the following steps S11 to S14 are performed for each combination of VLAN and priority.
 なお、図3で例示した最高優先度を用いて切替えを判断する方法も、優先度ごとに切替えの実施を判断する方法の一例と考えることができる。たとえば、図10に示した形式の使用経路情報として、VLANと最高優先度以下の優先度のエントリを格納しておき、閾値として優先度によらない同じ値を設定しておくと、最高優先度を用いた場合と同様の動作を行うことができる。 Note that the method of determining switching using the highest priority illustrated in FIG. 3 can also be considered as an example of a method of determining whether to perform switching for each priority. For example, as the usage route information in the format shown in FIG. 10, VLANs and entries with a priority lower than the highest priority are stored, and the same value that does not depend on the priority is set as the threshold. It is possible to perform the same operation as when using.
 また、本実施の形態では、選択系が混雑した場合に、優先度を用いて選択系と非選択系の経路にトラフィックを分配するようにしたが、これに限らず、優先度以外の他の基準を用いてトラフィックを分配するようにしてもよい。 In this embodiment, when the selection system is congested, the traffic is distributed to the selection system and the non-selection path using the priority. However, the present invention is not limited to this. Traffic may be distributed using criteria.
 また、本実施の形態では、選択系が混雑している場合にトラフィックの優先度に基づいて経路切替を行なうようにしたが、障害発生時に、優先度を用いた経路切替を行なうこともできる。たとえば、図3に示す使用経路情報を保持している場合に、現用系の経路で障害が発生した場合、最高優先度以下のトラフィックのデータを転送せずに破棄し、最高優先度を超えるトラフィックを予備系の経路に切替えて転送する。具体的には、図9のステップS6で、選択系を予備系とする際に、最高優先度を超えるトラフィックを予備系の経路に切替え、最高優先度以下のトラフィックのデータを破棄するように転送ルールを生成する。このようにすることにより、予備系の通信経路に通信容量の低い経路を用いることができる。なお、上述の混在時切替えと、障害発生時の優先度を用いた経路切替の両方を行なう場合には、各々に対応する最高優先度を別に設定しておいてもよい。 In the present embodiment, when the selection system is congested, the route is switched based on the priority of traffic. However, when a failure occurs, the route can be switched using the priority. For example, in the case where the usage route information shown in FIG. 3 is retained, if a failure occurs in the active route, the traffic exceeding the highest priority is discarded without transferring the traffic data below the highest priority without transferring it. Is switched to the backup path and transferred. Specifically, in step S6 of FIG. 9, when the selected system is set as the backup system, the traffic exceeding the highest priority is switched to the backup path, and the traffic data below the highest priority is transferred so as to be discarded. Generate rules. By doing so, a route having a low communication capacity can be used as the standby communication route. When both the above-described switching at the time of mixing and path switching using the priority at the time of failure occurrence are performed, the highest priority corresponding to each may be set separately.
 なお、本実施の形態では、ポートごとのトラフィック流量に基づいて、選択系が混雑しているか否かを判断するようにしたが、遅延時間の検出など別の手段により混雑の発生が検出できる場合には、他の手段により混雑しているか否かを判断するようにしてもよい。 In this embodiment, whether or not the selection system is congested is determined based on the traffic flow rate for each port. However, when the occurrence of congestion can be detected by another means such as detection of a delay time. Alternatively, it may be determined whether or not it is crowded by other means.
 また、本実施の形態では、複数のVLANが設定されている場合を例に説明したが、現用系と予備系の2つの通信経路が設定されている場合であれば、VLANを設定していない通信システムにも本実施の形態の混雑時切替方法を適用することができる。この場合、優先度情報は、VLANタグの値を用いることができないため、他の優先度情報を用いて、非選択系へ経路を切替えるトラフィックを選択する。 In this embodiment, the case where a plurality of VLANs are set has been described as an example. However, if two communication paths of the active system and the standby system are set, no VLAN is set. The switching method at the time of congestion of the present embodiment can also be applied to a communication system. In this case, since the VLAN tag value cannot be used as the priority information, the traffic whose path is switched to the non-selected system is selected using other priority information.
 また、あらかじめ2つ以上の経路を設定している場合に、本実施の形態の混雑時切替方法を適用してもよい。この場合、選択系以外の経路が複数となるが、それらのうちから1つを最高優先度以下のトラフィックの転送経路として用いてもよいし、2つ以上の経路を最高優先度以下のトラフィックの転送経路として用いてもよい。 In addition, when two or more routes are set in advance, the switching method at the time of congestion of this embodiment may be applied. In this case, although there are a plurality of routes other than the selected system, one of them may be used as a forwarding route for traffic with the highest priority or lower, and two or more routes may be used for traffic with the highest priority or lower. It may be used as a transfer path.
 このように、本実施の形態では、切替制御部13が、VLANごとに選択系のトラフィック流量に対する閾値と、その閾値を超えた場合に非選択系へ切替える優先度を格納した使用経路情報を保持し、使用経路情報とポートごとのトラフィック流量に基づいて経路切替えを指示し、転送処理部12が経路切替えの指示に従って切替え後の経路で転送を行うようにした。そのため、優先度の高いトラフィックの通信断を伴わずに選択系経路(使用中の経路)の混雑を低減することができる。 As described above, in the present embodiment, the switching control unit 13 holds the use route information storing the threshold for the traffic flow of the selected system for each VLAN and the priority for switching to the non-selected system when the threshold is exceeded. Then, the path switching is instructed based on the used path information and the traffic flow rate for each port, and the transfer processing unit 12 performs the transfer on the switched path according to the path switching instruction. For this reason, it is possible to reduce the congestion of the selected route (route in use) without disconnecting high-priority traffic.
実施の形態2.
 つぎに、本実施の形態の実施の形態2の経路切替方法について説明する。本実施の形態の通信システムの構成は実施の形態1と同様である。また、本実施の形態の通信装置1の構成は実施の形態1と同様である。実施の形態1と同様の機能を有する構成要素は、実施の形態1と同一の符号を付して説明を省略する。
Embodiment 2. FIG.
Next, a route switching method according to the second embodiment of the present embodiment will be described. The configuration of the communication system of the present embodiment is the same as that of the first embodiment. Further, the configuration of the communication apparatus 1 of the present embodiment is the same as that of the first embodiment. Components having the same functions as those of the first embodiment are denoted by the same reference numerals as those of the first embodiment, and description thereof is omitted.
 実施の形態1では、通信装置1から通信装置2の片方向通信の経路切替方法を説明した。本実施の形態では、通信装置1から通信装置2の方向と、通信装置2から通信装置1と、の双方向通信を行う場合に、双方向で同一経路(ただし向きは逆向き)を用いる場合について説明する。本実施の形態では、通信装置2は通信装置1と同様の構成とする。なお、双方向通信で、方向ごとに経路を設定する場合は、実施の形態1の動作を、通信装置1,通信装置2がそれぞれ実施すればよい。 In Embodiment 1, the method of switching the one-way communication path from the communication device 1 to the communication device 2 has been described. In the present embodiment, when bidirectional communication is performed between the communication device 1 and the communication device 2 and between the communication device 2 and the communication device 1, the same route (however, the direction is opposite) is used in both directions. Will be described. In the present embodiment, the communication device 2 has the same configuration as the communication device 1. In the case of setting a route for each direction in bidirectional communication, the communication device 1 and the communication device 2 may perform the operation of the first embodiment.
 双方向で同一経路を使用する場合、通信装置1が経路を切替えた場合に、経路を切替えたVLANと優先度とを通信装置2へ通知する必要がある。そして、通信装置2がその通知に基づいて、通信装置1へデータを転送する経路を設定する。この通知方法はどのような方法を用いてもよいが、ここでは、たとえば、ITU-T G.8031で規定されているAPS(Automatic Protection Switching)プロトコルを用いる場合を例に以下の説明を行なう。 When the same route is used in both directions, when the communication device 1 switches the route, it is necessary to notify the communication device 2 of the VLAN and the priority of which the route has been switched. Then, the communication device 2 sets a route for transferring data to the communication device 1 based on the notification. Any method may be used as this notification method. Here, for example, ITU-T G. The following description will be given by taking as an example the case of using the APS (Automatic Protection Switching) protocol defined in 8031.
 図11は、APSプロトコルのメッセージ(APSメッセージ)フォーマットの構成例を示す図である。図12は、APSプロトコルのデータフォーマットに含まれる情報を示す図である。図11に示すように、APSプロトコルが用いるデータは、Request/Stateと、プロテクションのタイプを示すProtection Typeと、Requested Signalと、Bridged Signalと、を含む。 FIG. 11 is a diagram illustrating a configuration example of an APS protocol message (APS message) format. FIG. 12 is a diagram showing information included in the data format of the APS protocol. As shown in FIG. 11, the data used by the APS protocol includes Request / State, Protection Type indicating the type of protection, Requested Signal, and Bridged Signal.
 図12は、図11に示したAPSメッセージのフォーマットの各項目の値と意味を示す図である。図13は、APSメッセージを用いる場合の経路切替手順の一例を示すシーケンス図である。図13では障害発生時の切替手順を示しており、この手順は従来の線形プロテクション切替技術と同様である。 FIG. 12 is a diagram showing the value and meaning of each item in the format of the APS message shown in FIG. FIG. 13 is a sequence diagram illustrating an example of a route switching procedure when an APS message is used. FIG. 13 shows a switching procedure when a failure occurs, and this procedure is the same as the conventional linear protection switching technique.
 図13のNRは、Request/StateにNR(No Request)が設定されたAPSメッセージを示し、SFは、Request/StateにSF(Signal Fail)が設定されたAPSメッセージを示している。また、r/bは、Request/Bridged Signalの略である。 NR in FIG. 13 indicates an APS message in which NR (No Request) is set in Request / State, and SF indicates an APS message in which SF (Signal Fail) is set in Request / State. R / b is an abbreviation for Request / Bridged Signal.
 図13では、WESTとEASTの2つの通信装置が、双方向通信を行っている例を示している。WESTおよびEASTは、実施の形態1で示した通信装置1と同様の構成とする。ただし、実施の形態1では、送信の際の経路の切替を制御していたのに対し、本実施の形態では、双方向で同一の経路を用いることを前提とするため、送信経路が変更になると受信経路も同様に変更になる。本実施の形態では、通信インタフェース16は、送受信機能を有することとし、切替制御部13は、受信経路の切替(通信インタフェース16のどのポートから受信するか)についても制御し、選択した経路で受信するよう転送ルールを生成する。 FIG. 13 shows an example in which two communication devices, WEST and EAST, are performing bidirectional communication. WEST and EAST have the same configuration as that of communication apparatus 1 shown in the first embodiment. However, in the first embodiment, the path switching at the time of transmission is controlled, but in this embodiment, since the same path is used in both directions, the transmission path is changed. Then, the reception path is changed as well. In the present embodiment, the communication interface 16 has a transmission / reception function, and the switching control unit 13 also controls switching of the reception path (from which port of the communication interface 16 is received), and reception is performed on the selected path. Generate a transfer rule to
 図13のSELは、受信のための経路を現用系と予備系とで切替えるセレクタの状態を示しており、白部分は現用系から受信している状態を示し、塗りつぶし部分は、予備系から受信している状態を示している。BRGは、送信のための経路を現用系と予備系とで切替えるブリッジの状態を示しており、白部分は現用系に送信している状態を示し、塗りつぶし部分は、予備系に送信している状態を示している。また、左側に示したSELおよびBRGは、WESTの状態を示し、右側に示したSELおよびBRGは、EASTの状態を示している。なお、ここでは、切替制御部13が、APSプロトコル処理を実施することとする。すなわち、切替制御部13が、APSメッセージの生成およびAPSメッセージを受信した際のAPSプロトコルにしたがって処理(切替処理等)は、切替制御部13が実施することとする。また、生成されたAPSメッセージは、転送処理部12および通信インタフェース経由で送信され、転送処理部12および通信インタフェース経由で切替制御部13が受信する。 SEL in FIG. 13 shows the state of the selector for switching the reception path between the active system and the standby system, the white part shows the state of receiving from the active system, and the filled part is received from the standby system It shows the state. BRG indicates the state of the bridge that switches the transmission path between the active system and the standby system, the white part indicates the state of transmission to the active system, and the filled part transmits to the standby system Indicates the state. Further, SEL and BRG shown on the left side indicate the WEST state, and SEL and BRG shown on the right side indicate the EAST state. Here, it is assumed that the switching control unit 13 performs APS protocol processing. That is, the switching control unit 13 performs processing (switching processing and the like) according to the APS protocol when the switching control unit 13 generates an APS message and receives the APS message. The generated APS message is transmitted via the transfer processing unit 12 and the communication interface, and is received by the switching control unit 13 via the transfer processing unit 12 and the communication interface.
 図13のはじめの状態では、WESTからEAST方向、EASTからWEST方向の両方向とも現用系の通信経路を用いているとする。WESTおよびEASTは、それぞれ相手装置に向けて定期的なAPSメッセージの送信(APS定期送信)を行なっている(ステップS21,S22)。障害が発生しておらず現用系の通信経路を用いている場合には、WESTおよびEASTは、定期的なAPSメッセージとして、予備系で何も送受信しないことを示すNR(r/b=null)メッセージを送信する。NR(r/b=null)メッセージは、Request/StateにNRを設定し、RequestとBridged SignalをそれぞれNull Signalとして設定したAPSメッセージである。 In the initial state of FIG. 13, it is assumed that the working communication path is used in both the west-to-east direction and the east-to-west direction. WEST and EAST each periodically transmit an APS message (APS periodic transmission) to the counterpart device (steps S21 and S22). In the case where no failure has occurred and the working communication path is used, the EST and the EAST are NR (r / b = null) indicating that nothing is transmitted / received in the backup system as a periodic APS message. Send a message. The NR (r / b = null) message is an APS message in which NR is set in Request / State and Request and Bridged Signal are set as Null Signal.
 つぎに、現用系の通信経路で片方向(WESTからEASTの方向)の通信断が発生したとする。EASTは、その通信断を検出すると、自局の経路(送受信の経路)を予備系に切替え、APSメッセージを送信する(ステップS23)。このAPSメッセージは、Signal Fail(通信断)を検出し、予備系で送受信することを示すSF(r/b=normal)メッセージとして送信される(ステップS24)。SF(r/b=normal)メッセージは、Request/StateにSFを設定し、RequestとBridged SignalをそれぞれNormal Traffic Signalとして設定したAPSメッセージである。 Next, it is assumed that a communication disconnection in one direction (from WEST to EAST) occurs in the active communication path. When detecting the communication disconnection, the EAST switches its own route (transmission / reception route) to the standby system and transmits an APS message (step S23). This APS message is transmitted as an SF (r / b = normal) message indicating that Signal Fail (communication disconnection) is detected and transmitted / received in the standby system (step S24). The SF (r / b = normal) message is an APS message in which SF is set in Request / State, and Request and Bridged Signal are set as Normal Traffic Signal.
 WESTは、EASTが片方向の通信断を検出した後でも、その旨が通知されるまでは、定期送信としてNR(r/b=null)メッセージを送信する(ステップS25)。そして、WESTは、SF(r/b=normal)メッセージを受信すると、自局の送受信の経路を予備系に切替える(ステップS26)。そして、WESTは、No Request(自局では通信断を検出していない)ではあるが対向装置(EAST)からの要求に応じて予備系で送受信することを示すNR(r/b=normal)メッセージを送信する(ステップS27)。 WEST transmits an NR (r / b = null) message as a regular transmission until it is notified even after EAST detects a one-way communication disconnection (step S25). When the WEST receives the SF (r / b = normal) message, the WEST switches the transmission / reception route of its own station to the standby system (step S26). Then, the EST is an NR (r / b = normal) message indicating that transmission / reception is performed in the standby system in response to a request from the opposite device (EAST) although it is a No Request (the communication is not detected by the own station). Is transmitted (step S27).
 WESTは、その後のAPS定期送信では、NR(r/b=normal)メッセージを送信する(ステップS29)。また、EASTは、APSの定期送信として、SF(r/b=normal)メッセージを送信する(ステップS28,S30)。 WEST transmits an NR (r / b = normal) message in the subsequent APS periodic transmission (step S29). In addition, the EAST transmits an SF (r / b = normal) message as APS regular transmission (steps S28 and S30).
 なお、上記の処理で用いるAPSメッセージ内のProtection Typeについては、その通信システムで設定されている切替方法に従った値を設定する。本実施の形態では、双方向通信(対向装置との経路の合意が必要な通信)を前提としているため、Protection Typeは双方向通信に対応する値が設定されていることになる。また、経路切替はVLANごとに実施するため、以上のステップS21~ステップS30を、VLANごとに実施する。 Note that, for the Protection Type in the APS message used in the above process, a value according to the switching method set in the communication system is set. Since the present embodiment is premised on two-way communication (communication that requires a route agreement with the opposite device), the value corresponding to the two-way communication is set in Protection Type. Further, since the path switching is performed for each VLAN, the above steps S21 to S30 are performed for each VLAN.
 つぎに、本実施の形態の混雑時の経路切替について説明する。本実施の形態では、双方向通信であるため、送信側の通信装置1が実施の形態1で述べたように混雑時に優先度情報に基づいてトラフィックごとに経路を選択した場合、対向装置もトラフィックごとに同一の経路(向きは逆向き)となるよう送信経路を切替える。したがって、本実施の形態では、通信装置1の切替制御部13は、対向装置へ切替えの基準として用いる優先度情報を
経路対向へ通知する。ここでは、図1で示したように通信装置1が通信装置2と通信を行う場合を例に説明する。
Next, route switching at the time of congestion according to the present embodiment will be described. In this embodiment, since communication is bidirectional, when the communication device 1 on the transmission side selects a route for each traffic based on the priority information at the time of congestion as described in the first embodiment, the opposite device also receives traffic. Each time the transmission path is switched so that the same path (direction is reversed) is obtained. Therefore, in the present embodiment, the switching control unit 13 of the communication device 1 notifies priority information used as a reference for switching to the opposite device to the opposite route. Here, the case where the communication apparatus 1 communicates with the communication apparatus 2 as illustrated in FIG. 1 will be described as an example.
 本実施の形態では、優先度情報をAPSメッセージに格納して送信する。図14は、優先度情報を格納したAPSメッセージの構成例を示す図である。図14に示すAPSメッセージでは、図11に示したAPSメッセージのReservedの領域の一部を優先度情報の領域として用いる。図14では、実施の形態1で例示したようにVLANタグに含まれるPCP(またはI-PCP)を優先度情報として用いるとし、あらたにPCPを格納する領域が定義されている。そして、実施の形態1で説明した最高優先度に対応するPCPの値をこの領域に格納する。なお、APSメッセージに格納する優先度情報はPCPに限らず、対向装置との間であらかじめ合意した優先度情報であればどのような情報を用いてもよい。なお、優先度情報を格納したAPSメッセージのRequest/Stateは混雑時切替を実施中であることを示す値を定義してその値を用いてもよいし、SF等の既存の値を用いてもよい。r/sは、混雑時切替を実施中に対応する値を定義しても用いてもよいし、たとえばNormal Traffic Signalを用いてもよい。 In this embodiment, priority information is stored in an APS message and transmitted. FIG. 14 is a diagram illustrating a configuration example of an APS message storing priority information. In the APS message shown in FIG. 14, a part of the Reserved area of the APS message shown in FIG. 11 is used as the priority information area. In FIG. 14, it is assumed that PCP (or I-PCP) included in the VLAN tag is used as priority information as exemplified in the first embodiment, and a new area for storing PCP is defined. Then, the PCP value corresponding to the highest priority described in the first embodiment is stored in this area. The priority information stored in the APS message is not limited to PCP, and any information may be used as long as the priority information is agreed in advance with the opposite device. The Request / State of the APS message that stores the priority information may be defined by using a value indicating that switching at the time of congestion is being performed, or an existing value such as SF may be used. Good. r / s may be used even if a corresponding value is defined during switching at the time of congestion. For example, Normal Traffic Signal may be used.
 なお、APSメッセージはVLANごとに送付されるため、APSメッセージの送信側の通信装置1は、そのVLANに対応する最高優先度を格納してAPSメッセージを送信する。送信側の通信装置1は混雑時切替を実施している(予備系と現用系と両方を用いている)場合に、APSメッセージにPCPを格納して送信し、従来と同様に予備系または現用系のいずれかの経路のみで送信を行なっている場合には、APSメッセージにPCPを格納しない。これにより、通信装置2は、対向する通信装置1が混雑時切替による送信を行なっているか否かの情報と、最高優先度と、を得ることができる。なお、通信装置1は混雑時切替を実施している(予備系と現用系と両方を用いている)か否かは、別途通知することとし、APSメッセージには常時PCPを格納するようにしてもよい。 Since the APS message is sent for each VLAN, the communication device 1 on the APS message transmission side stores the highest priority corresponding to the VLAN and transmits the APS message. When the communication device 1 on the transmission side performs switching at the time of congestion (both the standby system and the active system are used), the PCP is stored in the APS message and transmitted, and the standby system or the active system is transmitted as in the past. When transmission is performed only through one of the routes of the system, PCP is not stored in the APS message. Thereby, the communication apparatus 2 can obtain information on whether or not the opposite communication apparatus 1 is performing transmission by switching at the time of congestion and the highest priority. Note that the communication device 1 separately notifies whether or not switching is performed during congestion (uses both the standby system and the active system), and always stores the PCP in the APS message. Also good.
 通信装置2では、対向する通信装置1が混雑時切替による送信を行なっていることを認識すると、その時点での送信用の選択系の経路(送信に使用している経路)に混雑が発生したと判断し、実施の形態1で述べたステップS13およびステップS14と同様の処理を実施する。この際に、参照する最高優先度はAPSメッセージで通知されたPCPとする。ステップS14で転送ルールが更新され、通信装置2は、通信装置1からの送信経路と逆の送信経路で、各優先度のトラフィックを送信することになる。通信装置2が、混雑を検出した場合には、上記の通信装置1と同様の動作を実施し、通信装置1が上記の通信装置2と同様の動作を実施する。 When the communication device 2 recognizes that the opposite communication device 1 is performing transmission by switching at the time of congestion, congestion has occurred in the route of the selection system for transmission (route used for transmission) at that time. And the same processing as that in step S13 and step S14 described in the first embodiment is performed. At this time, the highest priority to be referred to is the PCP notified by the APS message. In step S14, the transfer rule is updated, and the communication device 2 transmits traffic of each priority through a transmission route opposite to the transmission route from the communication device 1. When the communication device 2 detects congestion, the operation similar to that of the communication device 1 is performed, and the communication device 1 performs the same operation as that of the communication device 2 described above.
 図15は、優先度情報を格納したAPSメッセージの別の構成例を示す図である。図14では、APSメッセージに最高優先度に対応するPCPを格納したが、図15の例では、切替対象の(非選択系で送信する)トラフィックに対応する優先度(切替対象優先度)をAPSメッセージに格納する。実施の形態1の図10で例示したように、優先度ごとに閾値を設定する場合に、混雑時切替を行った場合は、たとえば、図15の形式で非選択系で送信する優先度を通信装置2へ通知することができる。 FIG. 15 is a diagram showing another configuration example of an APS message storing priority information. In FIG. 14, the PCP corresponding to the highest priority is stored in the APS message, but in the example of FIG. 15, the priority (switching target priority) corresponding to the traffic to be switched (transmitted in the non-selection system) is set to APS. Store in message. As illustrated in FIG. 10 of the first embodiment, when a threshold value is set for each priority level, when switching is performed at the time of congestion, for example, the priority level transmitted in a non-selected system is communicated in the format of FIG. The device 2 can be notified.
 なお、ここでは、優先度情報をAPSメッセージに格納して通知する例を説明したが、優先度情報はこの方法に限らず、どのような方法で通知してもよい。 In addition, although the example which stores and notifies priority information in an APS message was demonstrated here, priority information may be notified not only by this method but by what kind of method.
 図16は、混雑時切替を実施する場合のシーケンス例を示す図である。図16では、WESTとEASTをそれぞれ通信装置1と同様の通信装置とする。ここでは、混雑時切替の実施中は、APSメッセージのRequest/Stateを混雑時切替実施中であることを示す値(以下の説明では、この値をCONとする)を用いることとする。また、図16では、SELおよびBRGの塗りつぶし部分は、予備系と現用系の両方を用いた通信を行っている期間とする。 FIG. 16 is a diagram illustrating an example of a sequence in the case of switching during congestion. In FIG. 16, WEST and EAST are communication apparatuses similar to the communication apparatus 1. Here, during the congestion switching, a value indicating that the APS message Request / State is being switched is used (in the following description, this value is referred to as CON). In FIG. 16, the SEL and BRG fill portions are periods during which communication using both the standby system and the active system is performed.
 WESTおよびEASTは、図13の例と同様にAPS定期送信を行なう(ステップS21,ステップS22)。そこで、EASTが、あるポートのトラフィック流量が閾値を超えたことによりその混雑を検出すると、実施の形態1で述べた手順により、そのポートを選択系として用いているVLAN(切替対象VLANとする)について、最高優先度以下のトラフィックを非選択系の経路に切替える(ステップS31)。 WEST and EAST perform APS regular transmission as in the example of FIG. 13 (steps S21 and S22). Therefore, when the EAST detects the congestion due to the traffic flow rate of a certain port exceeding the threshold value, the VLAN using that port as the selection system (set as a switching target VLAN) according to the procedure described in the first embodiment. Is switched to a non-selection route (step S31).
 そして、EASTは、切替対象VLANごとに、最高優先度を格納した混雑時切替実施中であることを示すAPSメッセージ(CON(優先度))を送信する(ステップS32)。ステップS25は、図13の例と同様である。WESTの切替制御部13は、混雑時切替実施中であることを示すAPSメッセージを受信すると、最高優先度に基づいて最高優先度以下のトラフィックを非選択系で送信するよう切替を行なう(ステップS33)。この場合、WESTの切替制御部13は、EASTからの指示に基づいて、経路切替を行うことになる。したがって、WESTは、EASTが混雑を検出した場合にEASTから通知される最高優先度を含む指示に基づいて経路を切替える指示切替制御手段、としての機能も有する。 Then, the EAST transmits an APS message (CON (priority)) indicating that the switching at the time of congestion storing the highest priority is being performed for each switching target VLAN (step S32). Step S25 is similar to the example of FIG. When receiving the APS message indicating that switching at the time of congestion is being performed, the WEST switching control unit 13 performs switching so that traffic below the highest priority is transmitted in a non-selected system based on the highest priority (step S33). ). In this case, the WEST switching control unit 13 performs path switching based on an instruction from the EAST. Therefore, WEST also has a function as instruction switching control means for switching a route based on an instruction including the highest priority notified from EAST when EAST detects congestion.
 ステップS27,29は図13の例と同様である。なお、ここでは、対向装置の混雑時切替実施中の通知により切替を実施した場合も、NR(r/b=normal)を送信することとしているが、対向装置の混雑時切替実施中の通知により切替を実施していることを示す値を別途定めて、その値を格納したAPSメッセージを送信するようにしてもよい。また、EASTは、CON(優先度)をAPS定期送信として送信する(ステップS34,S35)。 Steps S27 and S29 are the same as in the example of FIG. Note that, here, NR (r / b = normal) is transmitted even when switching is performed by the notification during switching of the opposite device during congestion, but by notification during switching of the opposite device during congestion. A value indicating that the switching is performed may be separately determined and an APS message storing the value may be transmitted. In addition, the EAST transmits CON (priority) as APS regular transmission (steps S34 and S35).
 なお、EASTは、混雑が解消して、通常の予備系のみまたは現用系のみの送信に切替える場合は、APSメッセージを用いて、その旨を通知する。 Note that when the congestion is resolved and the transmission is switched to the transmission of only the normal standby system or the active system only, the EAST notifies the fact using the APS message.
 このように、本実施の形態では、双方向通信を行う場合に、実施の形態1と同様の混雑時切替を実施した場合に、切替制御部13が、APSメッセージに最高優先度を格納して送信するようにした。そして、対向装置が、受信したAPSメッセージに格納された最高優先度に基づいて送信経路の切替を実施するようにした。そのため、往復の転送経路を同一とする場合にも、優先度の高いトラフィックの通信断を伴わずに現用系経路の混雑を低減することができる。 As described above, in this embodiment, when performing bidirectional communication, when switching during congestion is performed as in Embodiment 1, the switching control unit 13 stores the highest priority in the APS message. I sent it. Then, the opposite device switches the transmission path based on the highest priority stored in the received APS message. Therefore, even when the round-trip transfer paths are the same, congestion of the working path can be reduced without interruption of traffic with high priority traffic.
 以上のように、本発明にかかる通信装置、通信システムおよび経路切替方法は、通信相手の装置との間にポイント-トゥ-ポイントの現用系および予備系の2経路をあらかじめ設定された通信装置に有用であり、特に、多様な優先度のトラフィックを転送する通信装置に適している。 As described above, the communication apparatus, the communication system, and the path switching method according to the present invention provide a communication apparatus in which two paths of a point-to-point active system and a standby system are set in advance with a communication partner apparatus. It is useful and is particularly suitable for communication devices that transfer traffic of various priorities.
 1,2 通信装置
 3,4 通信経路
 11,16 通信インタフェース
 12 転送処理部
 13 切替制御部
 14 障害監視部
 15 トラフィック流量測定部
DESCRIPTION OF SYMBOLS 1, 2 Communication apparatus 3, 4 Communication path 11, 16 Communication interface 12 Transfer processing part 13 Switching control part 14 Fault monitoring part 15 Traffic flow measurement part

Claims (19)

  1.  対向する通信装置との間に複数の通信経路を設定している通信装置であって、
     前記通信経路のうちの1つを選択経路とし、前記選択経路を用いてデータ送信を行っている場合に、前記選択経路が混雑しているか否かを判定する混雑判定手段と、
     前記混雑判定手段が、前記選択経路が混雑していると判定した場合に、送信データのうちの一部を切替対象データとして選択し、前記切替対象データの送信経路を前記選択経路以外の通信経路に切替える切替制御手段と、
     を備えることを特徴とする通信装置。
    A communication device that sets a plurality of communication paths with a facing communication device,
    One of the communication paths is a selected path, and when data transmission is performed using the selected path, a congestion determination unit that determines whether the selected path is congested;
    When the congestion determination unit determines that the selected route is congested, a part of transmission data is selected as switching target data, and the transmission route of the switching target data is a communication route other than the selected route. Switching control means for switching to,
    A communication apparatus comprising:
  2.  前記通信経路の障害を検出する障害検出手段、
     をさらに備え、
     前記切替制御手段は、前記障害検出手段が前記選択経路で障害を検出した場合に、送信データの送信経路を前記選択経路以外の前記通信経路へ切替える、
     ことを特徴とする請求項1に記載の通信装置。
    Failure detection means for detecting a failure in the communication path;
    Further comprising
    The switching control means switches the transmission path of transmission data to the communication path other than the selected path when the fault detecting means detects a fault on the selected path.
    The communication apparatus according to claim 1.
  3.  前記切替制御手段は、前記切替対象データを、送信データに含まれる優先度に基づいて選択する、
     ことを特徴とする請求項1または2に記載の通信装置。
    The switching control means selects the switching target data based on a priority included in transmission data.
    The communication apparatus according to claim 1 or 2, wherein
  4.  前記切替制御手段は、あらかじめ定めた最高優先度を保持し、前記最高優先度以下の優先度に対応する送信データを前記切替対象データとして選択する、
     ことを特徴とする請求項3に記載の通信装置。
    The switching control means holds a predetermined highest priority and selects transmission data corresponding to a priority equal to or lower than the highest priority as the switching target data.
    The communication apparatus according to claim 3.
  5.  前記混雑判定手段は、前記選択経路のトラフィック流量が所定の閾値を超えた場合に、前記選択経路が混雑していると判定する、
     ことを特徴とする請求項4に記載の通信装置。
    The congestion determination unit determines that the selected route is congested when the traffic flow of the selected route exceeds a predetermined threshold.
    The communication apparatus according to claim 4.
  6.  前記混雑判定手段は、あらかじめ定めた優先度ごとのトラフィック流量の閾値を保持し、前記選択経路のトラフィック流量が送信データの優先度に対応する前記閾値を超えた場合に、その送信データを前記切替対象データとして選択する、
     ことを特徴とする請求項3に記載の通信装置。
    The congestion determination means holds a traffic flow rate threshold for each predetermined priority, and when the traffic flow of the selected route exceeds the threshold corresponding to the priority of transmission data, the transmission data is switched to Select as target data,
    The communication apparatus according to claim 3.
  7.  VLANごとに、複数の通信経路を設定しているとし、
     前記混雑判定手段は、VLANごとに前記選択経路が混雑しているか否かを判定し、
     前記切替制御手段は、前記送信経路をVLANごとに切替える、
     ことを特徴とする請求項1または2に記載の通信装置。
    Assume that multiple communication paths are set for each VLAN.
    The congestion determination means determines whether the selected route is congested for each VLAN,
    The switching control means switches the transmission path for each VLAN.
    The communication apparatus according to claim 1 or 2, wherein
  8.  VLANごとに、複数の通信経路を設定しているとし、
     前記混雑判定手段は、VLANごとに前記選択経路が混雑しているか否かを判定し、
     前記切替制御手段は、前記送信経路をVLANごとに切替える、
     ことを特徴とする請求項3に記載の通信装置。
    Assume that multiple communication paths are set for each VLAN.
    The congestion determination means determines whether the selected route is congested for each VLAN,
    The switching control means switches the transmission path for each VLAN.
    The communication apparatus according to claim 3.
  9.  前記切替制御手段は、VLANごとにあらかじめ定めた最高優先度を保持し、前記最高優先度以下の優先度に対応する送信データを前記切替対象データとして選択する、
     ことを特徴とする請求項8に記載の通信装置。
    The switching control means holds a highest priority predetermined for each VLAN, and selects transmission data corresponding to a priority equal to or lower than the highest priority as the switching target data.
    The communication apparatus according to claim 8.
  10.  前記混雑判定手段は、あらかじめ定めたVLANごとのトラフィック流量の閾値を保持し、VLANごとに、前記選択経路のトラフィック流量が所定の閾値を超えた場合に、前記選択経路が混雑していると判定する、
     ことを特徴とする請求項9に記載の通信装置。
    The congestion determination unit holds a predetermined threshold of traffic flow for each VLAN, and determines that the selected route is congested when the traffic flow of the selected route exceeds a predetermined threshold for each VLAN. To
    The communication apparatus according to claim 9.
  11.  前記混雑判定手段は、あらかじめ定めたVLANと優先度の組み合わせごとのトラフィック流量の閾値を保持し、前記選択経路のトラフィック流量が送信データのVLANと優先度との組み合わせに対応する前記閾値を超えた場合に、その送信データを前記切替対象データとして選択する、
     ことを特徴とする請求項10に記載の通信装置。
    The congestion determination unit holds a traffic flow rate threshold value for each predetermined combination of VLAN and priority, and the traffic flow rate of the selected route exceeds the threshold value corresponding to the combination of VLAN and priority of transmission data. In this case, the transmission data is selected as the switching target data.
    The communication apparatus according to claim 10.
  12.  前記優先度をVLANタグのPCPとする、
     ことを特徴とする請求項8~11のいずれか1つに記載の通信装置。
    The priority is set to PCP of a VLAN tag.
    The communication device according to any one of claims 8 to 11, wherein:
  13.  前記切替制御手段は、前記最高優先度を前記対向する通信装置へ送信する、
     ことを特徴とする請求項4、5、9、10のいずれか1つに記載の通信装置。
    The switching control means transmits the highest priority to the opposing communication device;
    The communication device according to any one of claims 4, 5, 9, and 10.
  14.  前記切替制御手段は、前記切替対象データとして選択した送信データの優先度を前記対向する通信装置へ送信する、
     ことを特徴とする請求項6または11に記載の通信装置。
    The switching control means transmits the priority of the transmission data selected as the switching target data to the facing communication device.
    The communication apparatus according to claim 6 or 11, wherein
  15.  前記切替制御手段は、前記対向する通信装置から、前記対向する通信装置が送信経路の切替のために用いた最高優先度を受信した場合に、受信した最高優先度以下の優先度に対応する送信データを前記切替対象データとして選択する、
     ことを特徴とする請求項13に記載の通信装置。
    The switching control means, when receiving the highest priority used by the opposing communication device for switching the transmission path from the opposing communication device, the transmission corresponding to the priority below the received highest priority Selecting data as the switching target data,
    The communication apparatus according to claim 13.
  16.  前記切替制御手段は、前記対向する通信装置から、前記対向する通信装置が送信経路の切替のために用いた優先度を受信した場合に、受信した優先度に対応する送信データを前記切替対象データとして選択する、
     ことを特徴とする請求項14に記載の通信装置。
    The switching control means, when receiving the priority used by the opposing communication device for switching the transmission path from the opposing communication device, transmits the transmission data corresponding to the received priority to the switching target data Select as the
    The communication device according to claim 14.
  17.  第1の通信装置と、前記第1の通信装置に対向する第2の通信装置と、を備え、前記第1の通信装置と前記第2の通信装置との間に複数の通信経路を設定し、双方向通信を行う通信システムであって、
     前記第1の通信装置は、
     前記通信経路のうちの1つを選択経路とし、前記選択経路を用いてデータの送信および受信を行っている場合に、前記選択経路が混雑しているか否かを判定する混雑判定手段と、
     前記混雑判定手段が、前記選択経路が混雑していると判定した場合に、送信データのうちの一部を切替対象データとして選択し、前記切替対象データの送信経路を前記選択経路以外の通信経路に切替え、前記切替対象データの選択に用いた所定の条件を前記第2の通信装置へ送信する切替制御手段と、
     を備え、
     前記第2の通信装置は、
     前記第1の通信装置から、前記所定の条件を受信した場合に、前記所定の条件に基づいて、送信データの一部を指示切替データとして選択し、前記指示切替データの送信経路を前記選択経路以外の通信経路に切替える指示切替制御手段、
     を備える、
     ことを特徴とする通信システム。
    A first communication device and a second communication device facing the first communication device, wherein a plurality of communication paths are set between the first communication device and the second communication device. A communication system for performing bidirectional communication,
    The first communication device is:
    One of the communication paths is a selected path, and when transmitting and receiving data using the selected path, a congestion determination unit that determines whether the selected path is congested;
    When the congestion determination unit determines that the selected route is congested, a part of transmission data is selected as switching target data, and the transmission route of the switching target data is a communication route other than the selected route. Switching control means for transmitting the predetermined condition used for selecting the switching target data to the second communication device;
    With
    The second communication device is:
    When the predetermined condition is received from the first communication device, a part of transmission data is selected as instruction switching data based on the predetermined condition, and a transmission path of the instruction switching data is selected as the selection path Instruction switching control means for switching to a communication path other than
    Comprising
    A communication system characterized by the above.
  18.  対向する通信装置との間に複数の通信経路を設定している通信装置における経路切替方法であって、
     前記通信経路のうちの1つを選択経路とし、前記選択経路を用いてデータ送信を行っている場合に、前記選択経路が混雑しているか否かを判定する混雑判定ステップと、
     前記混雑判定ステップで、前記選択経路が混雑していると判定した場合に、送信データのうちの一部を切替対象データとして選択し、前記切替対象データの送信経路を前記選択経路以外の通信経路に切替える切替制御ステップと、
     を含むことを特徴とする経路切替方法。
    A path switching method in a communication apparatus in which a plurality of communication paths are set between opposite communication apparatuses,
    A congestion determination step for determining whether or not the selected route is congested when one of the communication routes is a selected route and data transmission is performed using the selected route;
    If it is determined in the congestion determination step that the selected route is congested, a part of the transmission data is selected as switching target data, and the transmission route of the switching target data is a communication route other than the selected route A switching control step for switching to
    A path switching method comprising:
  19.  第1の通信装置と、前記第1の通信装置に対向する第2の通信装置と、を備え、前記第1の通信装置と前記第2の通信装置との間に複数の通信経路を設定し、双方向通信を行う通信システムにおける経路切替方法であって、
     前記第1の通信装置が、前記通信経路のうちの1つを選択経路とし、前記選択経路を用いてデータの送信および受信を行っている場合に、前記選択経路が混雑しているか否かを判定する混雑判定ステップと、
     前記第1の通信装置が、前記混雑判定ステップで、前記選択経路が混雑していると判定した場合に、送信データのうちの一部を切替対象データとして選択し、前記切替対象データの送信経路を前記選択経路以外の通信経路に切替え、前記切替対象データの選択に用いた所定の条件を前記第2の通信装置へ送信する切替制御ステップと、
     前記第2の通信装置が、前記第1の通信装置から、前記所定の条件を受信した場合に、前記所定の条件に基づいて、送信データの一部を指示切替データとして選択し、前記指示切替データの送信経路を前記選択経路以外の通信経路に切替える指示切替制御ステップと、
     を含む、
     ことを特徴とする経路切替方法。
    A first communication device and a second communication device facing the first communication device, wherein a plurality of communication paths are set between the first communication device and the second communication device. A path switching method in a communication system for performing bidirectional communication,
    Whether or not the selected route is congested when the first communication device uses one of the communication routes as a selected route and transmits and receives data using the selected route. A congestion determination step for determining;
    When the first communication device determines that the selected route is congested in the congestion determination step, the first communication device selects a part of the transmission data as switching target data, and transmits the switching target data transmission route. Switching control step of switching to a communication path other than the selected path, and transmitting a predetermined condition used for selecting the switching target data to the second communication device;
    When the second communication device receives the predetermined condition from the first communication device, the second communication device selects a part of transmission data as instruction switching data based on the predetermined condition, and the instruction switching An instruction switching control step for switching a data transmission path to a communication path other than the selected path;
    including,
    A path switching method characterized by that.
PCT/JP2010/055586 2010-03-29 2010-03-29 Communication apparatus, communication system and path switching method WO2011121705A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2010/055586 WO2011121705A1 (en) 2010-03-29 2010-03-29 Communication apparatus, communication system and path switching method
TW100105030A TW201218685A (en) 2010-03-29 2011-02-16 Communication apparatus, communication system and route switching method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/055586 WO2011121705A1 (en) 2010-03-29 2010-03-29 Communication apparatus, communication system and path switching method

Publications (1)

Publication Number Publication Date
WO2011121705A1 true WO2011121705A1 (en) 2011-10-06

Family

ID=44711500

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/055586 WO2011121705A1 (en) 2010-03-29 2010-03-29 Communication apparatus, communication system and path switching method

Country Status (2)

Country Link
TW (1) TW201218685A (en)
WO (1) WO2011121705A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023199850A1 (en) * 2022-04-15 2023-10-19 株式会社日立製作所 Railway communication system and railway communication method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08186582A (en) * 1994-12-28 1996-07-16 Fujitsu Ltd Inter-digital exchange relay system and digital exchange
JP2007159005A (en) * 2005-12-08 2007-06-21 Fujitsu Ltd Wireless network system, communication traffic switching method in same, traffic processing apparatus used for same, line multiplexing device, and host device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08186582A (en) * 1994-12-28 1996-07-16 Fujitsu Ltd Inter-digital exchange relay system and digital exchange
JP2007159005A (en) * 2005-12-08 2007-06-21 Fujitsu Ltd Wireless network system, communication traffic switching method in same, traffic processing apparatus used for same, line multiplexing device, and host device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023199850A1 (en) * 2022-04-15 2023-10-19 株式会社日立製作所 Railway communication system and railway communication method

Also Published As

Publication number Publication date
TW201218685A (en) 2012-05-01

Similar Documents

Publication Publication Date Title
US7961602B2 (en) Method and device using a backup communication path to transmit excess traffic
US20070053302A1 (en) Fault tolerant network traffic management
JP4167072B2 (en) Selective protection against ring topology
US8830825B2 (en) Method and system for priority based (1:1)n ethernet protection
CN102227890A (en) In-band signalling for point-point packet protection switching
CN104980372A (en) Relay System And Switching Device
CN102007729A (en) Connectivity fault management traffic indication extension
JP2008160227A (en) Network apparatus and communication system
CN109691031A (en) Service message transmission method and node device
JP5092557B2 (en) Packet communication method and packet communication apparatus
WO2012097595A1 (en) Method and system for implementing shared-mesh protection
JP4948320B2 (en) Multi-ring RPR node device
JP5176623B2 (en) Ethernet transmission method, transmission apparatus and system
CN102055673A (en) Multi-route network and route switching method
WO2011121705A1 (en) Communication apparatus, communication system and path switching method
US20230017561A1 (en) Network Device, System and Method For Cycle-Based Load Balancing
KR20100119548A (en) Method and system for smart protection of ethernet virtual private-rooted multipoint service
CN101997751A (en) Realization method and device of protection switching in Ethernet
JP5006342B2 (en) Exchange system
WO2011062216A1 (en) Relay device, relay method, and program
US8457141B2 (en) Telecommunication network
JP2012129864A (en) Communication system and method for controlling user access device
JP4751817B2 (en) Packet transfer apparatus and network system
KR20140131480A (en) Method and apparatus of protection switching in rooted multipoint networks
WO2006082652A1 (en) Transmission device and transmission method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10848886

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10848886

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP