WO2011119019A1 - Method of communicating signals in 6lowpan network to ipv6 network - Google Patents

Method of communicating signals in 6lowpan network to ipv6 network Download PDF

Info

Publication number
WO2011119019A1
WO2011119019A1 PCT/MY2011/000031 MY2011000031W WO2011119019A1 WO 2011119019 A1 WO2011119019 A1 WO 2011119019A1 MY 2011000031 W MY2011000031 W MY 2011000031W WO 2011119019 A1 WO2011119019 A1 WO 2011119019A1
Authority
WO
WIPO (PCT)
Prior art keywords
packet
network
ipv6
6l0wpan
address
Prior art date
Application number
PCT/MY2011/000031
Other languages
French (fr)
Inventor
Suryady Zeldi
Rao Sinniah Gopinath
Sarwar Usman
M. Sulaiman Aus
Original Assignee
Mimos Berhad
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mimos Berhad filed Critical Mimos Berhad
Publication of WO2011119019A1 publication Critical patent/WO2011119019A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L61/00Network arrangements, protocols or services for addressing or naming
    • H04L61/09Mapping addresses
    • H04L61/10Mapping addresses of different types
    • H04L61/106Mapping addresses of different types across networks, e.g. mapping telephone numbers to data network addresses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/16Implementation or adaptation of Internet protocol [IP], of transmission control protocol [TCP] or of user datagram protocol [UDP]
    • H04L69/161Implementation details of TCP/IP or UDP/IP stack architecture; Specification of modified or new header fields
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/16Implementation or adaptation of Internet protocol [IP], of transmission control protocol [TCP] or of user datagram protocol [UDP]
    • H04L69/167Adaptation for transition between two IP versions, e.g. between IPv4 and IPv6
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/16Implementation or adaptation of Internet protocol [IP], of transmission control protocol [TCP] or of user datagram protocol [UDP]
    • H04L69/169Special adaptations of TCP, UDP or IP for interworking of IP based networks with other networks 
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/22Parsing or analysis of headers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/16Implementation or adaptation of Internet protocol [IP], of transmission control protocol [TCP] or of user datagram protocol [UDP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/18Information format or content conversion, e.g. adaptation by the network of the transmitted or received information for the purpose of wireless delivery to users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/26Network addressing or numbering for mobility support
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/04Network layer protocols, e.g. mobile IP [Internet Protocol]
    • H04W80/045Network layer protocols, e.g. mobile IP [Internet Protocol] involving different protocol versions, e.g. MIPv4 and MIPv6
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/16Gateway arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/02Inter-networking arrangements

Definitions

  • the present invention relates generally to enterprise gateway of network communications, more particularly to a gateway for 6L0WPAN and IPv6 network.
  • 6L0WPAN is an acronym of IPv6 over Low power Wireless Personal Area Networks and specified in IEEE 802.15.4 standard.
  • An enterprise gateway for 6L0WPAN usually consists of an interface module which consist of media access technology for 6L0WPAN network, a back-end module which consists of multiple media access technologies connecting to the IP network, and a service module, also known as gateway controller, which bridges the network module and back end module.
  • the service module plays a role for enabling interconnectivity between 6L0WPAN network and IP network.
  • US patent application 2009/0073983 describes a gateway for IPv6 packet transmission in a wireless LAN system.
  • the gateway takes over the TCP/IP protocol stack from a legacy 6L0WPAN node for providing a gateway for IPv6 packet transmission in a wireless LAN system.
  • a virtual interface is generated for allocating IPv6 addresses to the 6L0WPAN nodes by adding a predetermined IPv6 address prefix to addresses of the 6L0WPAN nodes set in the service request messages.
  • US patent application 2009/0146833 provides a coordinator, gateway, and transmission method for applying IPv6 in a wireless sensor network. Dual addressing of a link local address using short address and a global unicast address is provided to support data communication with an external network. Till now there is no decision module to select the best interface for heterogeneous network. It is an object of the invention to provide a decision module to forward relevant packets to heterogeneous networks including 6L0WPAN network.
  • the present invention proposes a solution which comprises a service module integrated in an enterprise gateway which consists of a set of component for packet handling so that it can ensure connectivity between 6L0WPAN gateway and IP network.
  • the service module consists of a component which has the ability to select the best interface to route the packets. The selection of interface is based on dynamic priority based routing. This mechanism gives different priority for different interfaces to route the packet to backhaul based on current condition of the links.
  • the module includes a capability of handling IPv6 traffic from multiple different access technologies, and differentiating between incoming 6L0WPAN request and normal IPv6 packet. It also includes the capability of handling traffic originating from 6L0WPAN network towards various enterprise IP subnets. Hence, it allows nodes in 6L0WPAN network to communicate natively with any other IP devices in the enterprise network regardless of media interface.
  • the packet handling component has the ability to listen, analyze and handle traffic from 6L0WPAN network.
  • the packet handling component also handles IPv6 traffic from multiple different media links. Hence, 6L0WPAN packet can be translated into IPv6 packet format or vice versa.
  • This architecture can be used for pull-based communication system or push-based communication system.
  • pull-based communication system when IPv6 client requests sensor data form a particular 6L0WPAN node, the node reactively replies the request with sensor data to IPv6 client.
  • push-based communication system the 6L0WPAN nodes proactively initiate communication by sending sensor data to IPv6 remote station.
  • Fig. 1 shows an overview of 6LowPAN gateway connecting 6L0WPAN network with IPv6 network
  • Fig. 2 shows a diagram of 6L0WPAN gateway dual stack protocol
  • Fig. 3 shows a diagram of general enterprise gateway architecture
  • Fig. 4 shows a diagram of 6L0WPAN gateway architecture
  • Fig. 5 shows a diagram of IPv6 address assignment to 6L0WPAN nodes
  • Fig. 6 shows examples of sensor node mapping table
  • Fig. 7 shows a diagram of IPv6 packet transformation
  • Fig. 8 shows a flow chart of packet transformation from external network to 6L0WPAN network
  • Fig. 9 shows a flow chart of packet transformation from 6L0WPAN network to sensor node
  • Fig. 10 shows a diagram of pull-based communication system
  • Fig. 11 shows a diagram of push-based communication system.
  • 6L0WPAN network It is desirable to connect 6L0WPAN network with other IP networks in order to maximize utilization of information and resources. This integration allows access across 6L0WPAN and IP networks.
  • a typical architecture of 6L0WPAN comprises IPv6 user, 6L0WPAN gateway and 6L0WPAN wireless sensor nodes.
  • the gateway placed in an interconnection, resides between external IP network and 6L0WPAN network.
  • the gateway plays an important role for providing IP connectivity to 6L0WPAN nodes.
  • the gateway has two main roles. Firstly, it provides a sink node for a particular 6L0WPAN network. Secondly, it simultaneously provides gateway nodes for both 6L0WPAN network and IPv6 network.
  • the gateway enables the forwarding of sensor data between 6L0WPAN and external IPv6 network. For this reason, two protocol stacks, as shown in Fig. 2, should be present in 6L0WPAN gateway.
  • the 6L0WPAN gateway is integrated with enterprise gateway which provides multiple access links for IP network.
  • Ethernet, WiFi and WiMAX are some of the technologies that can be integrated with 6L0WPAN to achieve a ubiquitous wireless sensor network.
  • the enterprise gateway for 6L0WPAN must have dual stack representing multiple PHY/MAC, eg. Ethernet, WiFi and WiMAX, for connecting external IP network and PHY/MAC of 6L0WPAN 802.15.4 standard.
  • the enterprise gateway for 6L0WPAN is designed to have three modules, as shown in Fig. 3.
  • the PHY/MAC for multiple interfaces that connects to external IP network is defined in back-end module.
  • 6L0WPAN PHY and MAC layer are defined in 6L0WPAN module. All services that might be implemented on top of adaptation layer which includes network layer, transport layer and application layer resides in service module of the architecture.
  • the 6L0WPAN module consists of IEEE 802.15.4 compliance hardware which includes 6L0WPAN stack.
  • the module is responsible for handling connectivity to 6L0WPAN network using IEEE 802.15.4 standard.
  • the back end module defines the Physical and MAC layer of any interface that might provide connectivity to external IP network. This module offers functionalities required to ensure connectivity to external IP network. Some of the interfaces are LAN, WiFi, Ethernet and WiMAX.
  • the service module handles both 6L0WPAN and IPv6 packet.
  • the services inside this module can be implemented on adaptation layer, network layer, transport layer or application layer.
  • the invention is mainly about the service module, which will now be described.
  • a node discovery component is used as a service that discovers a list of node as well as telling nodes in 6L0WPAN network about their gateway.
  • the node discovery can be active or passive.
  • the gateway will periodically broadcast gateway advertisement packet from 6L0WPAN module to 6L0WPAN network.
  • the nodes will provide advertisement response packet to this advertisement.
  • the gateway can retrieve any existing sensor node available within 6L0WPAN network.
  • the nodes will also know their gateway to IP network.
  • the cycle of advertisement and advertisement response packet is defined as a network joining process where the nodes join in the network by sending advertisement respond packet to the gateway.
  • advertisement response packet can also be used to translate all sensor nodes of 6L0WPAN address to IPv6 address and store them into a mapping table.
  • the mapping table for address translation purposes will be generated through network joining process.
  • the translation is performed after receiving advertisement respond packet by adding predetermined 64-bit IPv6 prefix to MAC address of sensor node. So, the gateway manages the pseudo IPv6 address of the sensor node. Therefore, the gateway can ignore the process of sending out prefix advertisement to 6L0WPAN network.
  • the IEEE defined 64-bit extended unique identifier (EUI-64) of a 6L0WPAN device can be used as interface identifier of IPv6 address while predefined IPv6 prefix is used as network identifier.
  • EUI-64 address is globally unique so that the mapping of address is unique.
  • Fig. 5 shows the address translation described. Examples of IPv6 address and EUI-64 address is shown in Fig. 6.
  • a periodical data logger is used during the logging process of sensor data in a remote station or database server.
  • the process involves receiving sensor data from sensor nodes and updating the database with this data periodically, such as 1 hour.
  • a predefined remote station is defined manually on the gateway to manage IPv6 address of a dedicated remote station. This process can be used to update the database server.
  • An IPv6 router advertisement component is used to advertise IPv6 prefix into a private network so that any terminal within the private network can have connectivity with 6L0WPAN network.
  • the IPv6 packet handler which has a packet analyzer capability will handle the IPv6 packet received by any network interface in back-end module.
  • the analyzer verifies the header of the packet if it is addressed to 6L0WPAN network.
  • One IPv6 packet can be recognized to be routed into 6L0WPAN network by comparing the prefix of destination address for predefined prefix of 6L0WPAN network.
  • An example of sensor's IPv6 prefix as assigned by the gateway is 2001 :2B8:F2:1:/64, as shown in Fig. 1.
  • the packet If the packet is addressed to 6L0WPAN network, it will map the IPv6 address into 6L0WPAN address by using mapping table.
  • the packet is transformed into 6L0WPAN through packet transformation process, so that it can be understood by nodes in 6L0WPAN network. After these processes the packet handler through packet forwarder component will relay the packet to Personal Area Network (PAN) Coordinator at 6L0WPAN modules which will later be forwarded to 6L0WPAN network.
  • PAN Personal Area Network
  • Packet transformation is performed, as shown in Fig. 7, by taking payload of the packet and combine with necessary packet headers which are either IPv6 header or 6L0WPAN header.
  • 6L0WPAN packet coming to 6L0WPAN module will be passed to packet handler through packet analyzer.
  • the packet analyzer is actually a decision module which identify network join packet, response to IPv6 packet or periodical packet which push data into dedicated IPv6 remote station. After identifying the packet, translation of 6L0WPAN packet to IPv6 packet is performed. After this process, the packet handler will decide to forward the packet to one of network interface at back-end module.
  • the packet will be forwarded to LAN/WLAN interface-1 eg. WiFi, otherwise it will be forwarded to internet backhaul connection, lnterface-2 is a priority connection to internet backhaul, if interface-2 is inactive, interface-3 eg. WiMAX will be used to forward the packet to internet.
  • LAN/WLAN interface-1 eg. WiFi
  • lnterface-2 is a priority connection to internet backhaul
  • interface-3 eg. WiMAX will be used to forward the packet to internet.
  • Fig. 8 shows a flow chart explaining the process when packets from external IPv6 network network arrive at gateway requesting sensor data from 6L0WPAN node.
  • the packet is analyzed if it is IPv6 packet. If it is IPv6 packet, then it is analyzed if it is addressed to 6L0WPAN network. The packet is discarded if it is not IPv6 packet or addressed to 6L0WPAN network.
  • the mapping table is checked if destination address exists in the table. The packet is discarded if there is no match. If a match exists, the destination IPv6 address is mapped to EUI-64 address. Then, the IPv6 requestor address is kept. The header of IPv6 packet is next changed to 6L0WPAN packet. Finally, the packet is ready to be forwarded to 6L0WPAN network.
  • Fig. 9 shows another flow chart detailing the process when a packet from 6L0WPAN node is received by gateway.
  • the packet arrives at 6L0WPAN module which is compatible with IEEE 802.15.4 interface.
  • the 6L0WPAN packet is analyzed if it is a network join packet, said network join packet having EUI-64 address of node. If it is a network join packet, predetermined IPv6 prefix is added to EUI-64 address of the node. Then, a mapping table of IPv6 prefix to EUI-64 address of node is generated for address translation.
  • the data is updated in IPv6-EUI mapping table.
  • the packet is analyzed if it is a response packet to a requestor. If it is a response packet from requestor, the IPv6 requestor address is obtained and set as destination address. A matching IPv6 address of EUI-64 source address is retrieved from mapping table. The header is then changed from 6L0WPAN packet to IPv6 packet.
  • the packet is verified if it is a periodical packet sending data to remote station. If it is a periodical packet, the predefined remote station's IPv6 address is obtained from the gateway and set as destination address. Similar as previous header change, the header is changed from 6L0WPAN packet to IPv6 packet. The packet is discarded if it is not a periodical packet to the remote station. The changed IPv6 packet is forwarded to external IP network. The packet is analyzed if it is addressed to WLAN or WiFi network. The packet is forwarded to WLAN or WiFi network if it matches. Next, the packet is analyzed to select the best interface to route the packet to backhaul based on priority based mechanism. The best is selected among interface 1 of WiMAX, interface 2 of Ethernet or interface 3 of WiFi.
  • the gateway supports pull-based and push-based communication system.
  • Pull- based communication is used in a scenario when IPv6 client request sensor data from a particular 6L0WPAN node. The node reactively replies the request with sensor data to IPv6 client.
  • Push-based communication is used when 6L0WPAN nodes proactively sends data to a dedicated IPv6 remote station.
  • Fig. 10 shows a pull-based communication system which shows the process of IPv6 user A, residing in IPv6 network, communicating with node B located at 6L0WPAN network through gateway G, the 6L0WPAN coordinator.
  • the network join process is an initiation step to form a 6L0WPAN network.
  • Gateway performs node discovery through gateway advertisement packet GW_ADV. This process lets node B to join the 6L0WPAN network by responding with advertisement response packet ADV_RESPONSE.
  • the advertisement packet is translated by adding predetermined IPv6 prefix to EUI-64 address of node and stored in a mapping table.
  • IPv6 user can directly access or request data from 6L0WPAN nodes through gateway.
  • IPv6 user A sends a request in IPv6 packet to node B through gateway G.
  • gateway G receives the packet, it then translates IPv6 destination address IP B to EUI B which is 64-bit length.
  • the gateway transforms IPv6 packet into 6L0WPAN packet and forward the packet to node B.
  • EUI B will be translated into IP B before transforming the packet into IPv6 packet and send the sensor data out to IPv6 user A.
  • the push-based communication system is shown in Fig. 11.
  • the communication is initiated by Node B through gateway G to user A of a remote station using IPv6 network.
  • Sensor nodes need to send periodical data to remote station.
  • the gateway must be manually predefined with dedicated remote station IPv6 address.
  • push-based communication has the same network join process.
  • sensor node B After a 6L0WPAN network is established, sensor node B generates and sends periodical data to gateway G.
  • the gateway After analyzing the packet header, the gateway should know that it is periodical packet that must be forwarded to a dedicated remote station. Since the gateway is already predefined with IPv6 address of remote station, the process is then followed by replacing 6L0WPAN header with IPv6 header which transforms the 6L0WPAN packet into IPv6 packet. The IPv6 packet is then relayed to remote station. This operation is used when database server needs to be updated periodically. Accordingly, the invention disclosed a service module for a gateway. Initial connection is established by network join method described.
  • the communication systems comprises a 6L0WPAN network at a first site, a gateway using methods described; and an IPv6 network at a third site. Signals at the first site are connected to the second site and signals at the second site are connected to the third site.

Abstract

A service module of a gateway for communicating 6LoWPAN network to IPv6 network is described. The module describes a network join packet to establish initial connection between 6LoWPAN network and IPv6 network. Predetermined IPv6 prefix is added to EUI-64 address to generate a mapping table of IPv6 prefix to EUI-64 address. The gateway supports pull-based and push-based communication system. In pull-based communication system, an IPv6 client request data from a particular node. The node replies the request with sensor data to IPv6 client. Push-based communication is used when 6LoWPAN nodes proactively sends data to a dedicated IPv6 remote station.

Description

METHOD OF COMMUNICATING SIGNALS IN 6LOWPAN NETWORK TO IPV6
NETWORK
The present invention relates generally to enterprise gateway of network communications, more particularly to a gateway for 6L0WPAN and IPv6 network.
BACKGROUND OF THE INVENTION
6L0WPAN is an acronym of IPv6 over Low power Wireless Personal Area Networks and specified in IEEE 802.15.4 standard. An enterprise gateway for 6L0WPAN usually consists of an interface module which consist of media access technology for 6L0WPAN network, a back-end module which consists of multiple media access technologies connecting to the IP network, and a service module, also known as gateway controller, which bridges the network module and back end module. The service module plays a role for enabling interconnectivity between 6L0WPAN network and IP network.
However, there are several unresolved issues for connecting 6L0WPAN network to external IP network. There is no detail architecture that connects 6L0WPAN network with external IP network. There is no architecture to support both 6L0WPAN packet and IPv6 packet at the same time. Current 6L0WPAN uses general routing table mechanism to route the packet to external IP network. This mechanism introduces routing complexity such as complex routing protocols, higher processing usage and higher latency.
US patent application 2009/0073983 describes a gateway for IPv6 packet transmission in a wireless LAN system. The gateway takes over the TCP/IP protocol stack from a legacy 6L0WPAN node for providing a gateway for IPv6 packet transmission in a wireless LAN system. A virtual interface is generated for allocating IPv6 addresses to the 6L0WPAN nodes by adding a predetermined IPv6 address prefix to addresses of the 6L0WPAN nodes set in the service request messages.
US patent application 2009/0146833 provides a coordinator, gateway, and transmission method for applying IPv6 in a wireless sensor network. Dual addressing of a link local address using short address and a global unicast address is provided to support data communication with an external network. Till now there is no decision module to select the best interface for heterogeneous network. It is an object of the invention to provide a decision module to forward relevant packets to heterogeneous networks including 6L0WPAN network. SUMMARY OF THE INVENTION
The present invention proposes a solution which comprises a service module integrated in an enterprise gateway which consists of a set of component for packet handling so that it can ensure connectivity between 6L0WPAN gateway and IP network. The service module consists of a component which has the ability to select the best interface to route the packets. The selection of interface is based on dynamic priority based routing. This mechanism gives different priority for different interfaces to route the packet to backhaul based on current condition of the links. The module includes a capability of handling IPv6 traffic from multiple different access technologies, and differentiating between incoming 6L0WPAN request and normal IPv6 packet. It also includes the capability of handling traffic originating from 6L0WPAN network towards various enterprise IP subnets. Hence, it allows nodes in 6L0WPAN network to communicate natively with any other IP devices in the enterprise network regardless of media interface.
The packet handling component has the ability to listen, analyze and handle traffic from 6L0WPAN network. The packet handling component also handles IPv6 traffic from multiple different media links. Hence, 6L0WPAN packet can be translated into IPv6 packet format or vice versa.
This architecture can be used for pull-based communication system or push-based communication system. In pull-based communication system, when IPv6 client requests sensor data form a particular 6L0WPAN node, the node reactively replies the request with sensor data to IPv6 client. In push-based communication system, the 6L0WPAN nodes proactively initiate communication by sending sensor data to IPv6 remote station.
BRIEF DESCRIPTION OF THE DRAWINGS
The invention will now be described in greater detail, by way of an example, with reference to the accompanying drawings, in which: Fig. 1 shows an overview of 6LowPAN gateway connecting 6L0WPAN network with IPv6 network; Fig. 2 shows a diagram of 6L0WPAN gateway dual stack protocol; Fig. 3 shows a diagram of general enterprise gateway architecture; Fig. 4 shows a diagram of 6L0WPAN gateway architecture;
Fig. 5 shows a diagram of IPv6 address assignment to 6L0WPAN nodes;
Fig. 6 shows examples of sensor node mapping table; Fig. 7 shows a diagram of IPv6 packet transformation;
Fig. 8 shows a flow chart of packet transformation from external network to 6L0WPAN network; Fig. 9 shows a flow chart of packet transformation from 6L0WPAN network to sensor node;
Fig. 10 shows a diagram of pull-based communication system; and Fig. 11 shows a diagram of push-based communication system.
DETAILED DESCRIPTION OF THE DRAWINGS
It is desirable to connect 6L0WPAN network with other IP networks in order to maximize utilization of information and resources. This integration allows access across 6L0WPAN and IP networks.
As shown in Fig. 1 , a typical architecture of 6L0WPAN comprises IPv6 user, 6L0WPAN gateway and 6L0WPAN wireless sensor nodes. The gateway, placed in an interconnection, resides between external IP network and 6L0WPAN network. The gateway plays an important role for providing IP connectivity to 6L0WPAN nodes. The gateway has two main roles. Firstly, it provides a sink node for a particular 6L0WPAN network. Secondly, it simultaneously provides gateway nodes for both 6L0WPAN network and IPv6 network. The gateway enables the forwarding of sensor data between 6L0WPAN and external IPv6 network. For this reason, two protocol stacks, as shown in Fig. 2, should be present in 6L0WPAN gateway.
To provide access to 6L0WPAN network, the 6L0WPAN gateway is integrated with enterprise gateway which provides multiple access links for IP network. Ethernet, WiFi and WiMAX are some of the technologies that can be integrated with 6L0WPAN to achieve a ubiquitous wireless sensor network. The enterprise gateway for 6L0WPAN must have dual stack representing multiple PHY/MAC, eg. Ethernet, WiFi and WiMAX, for connecting external IP network and PHY/MAC of 6L0WPAN 802.15.4 standard.
Based on the above dual stack protocol, the enterprise gateway for 6L0WPAN is designed to have three modules, as shown in Fig. 3. The PHY/MAC for multiple interfaces that connects to external IP network is defined in back-end module. 6L0WPAN PHY and MAC layer are defined in 6L0WPAN module. All services that might be implemented on top of adaptation layer which includes network layer, transport layer and application layer resides in service module of the architecture.
The 6L0WPAN module consists of IEEE 802.15.4 compliance hardware which includes 6L0WPAN stack. The module is responsible for handling connectivity to 6L0WPAN network using IEEE 802.15.4 standard.
The back end module defines the Physical and MAC layer of any interface that might provide connectivity to external IP network. This module offers functionalities required to ensure connectivity to external IP network. Some of the interfaces are LAN, WiFi, Ethernet and WiMAX.
The service module handles both 6L0WPAN and IPv6 packet. The services inside this module can be implemented on adaptation layer, network layer, transport layer or application layer. The invention is mainly about the service module, which will now be described. As shown in Fig. 4, the architecture and relationship among the gateway modules is further expanded. A node discovery component is used as a service that discovers a list of node as well as telling nodes in 6L0WPAN network about their gateway. The node discovery can be active or passive. For active discovery, the gateway will periodically broadcast gateway advertisement packet from 6L0WPAN module to 6L0WPAN network. The nodes will provide advertisement response packet to this advertisement. Using this option, the gateway can retrieve any existing sensor node available within 6L0WPAN network. Moreover, the nodes will also know their gateway to IP network. The cycle of advertisement and advertisement response packet is defined as a network joining process where the nodes join in the network by sending advertisement respond packet to the gateway. In addition advertisement response packet can also be used to translate all sensor nodes of 6L0WPAN address to IPv6 address and store them into a mapping table. Thus, the mapping table for address translation purposes will be generated through network joining process.
The translation is performed after receiving advertisement respond packet by adding predetermined 64-bit IPv6 prefix to MAC address of sensor node. So, the gateway manages the pseudo IPv6 address of the sensor node. Therefore, the gateway can ignore the process of sending out prefix advertisement to 6L0WPAN network. The IEEE defined 64-bit extended unique identifier (EUI-64) of a 6L0WPAN device can be used as interface identifier of IPv6 address while predefined IPv6 prefix is used as network identifier. Moreover, EUI-64 address is globally unique so that the mapping of address is unique. Fig. 5 shows the address translation described. Examples of IPv6 address and EUI-64 address is shown in Fig. 6.
A periodical data logger is used during the logging process of sensor data in a remote station or database server. The process involves receiving sensor data from sensor nodes and updating the database with this data periodically, such as 1 hour. Unlike the mapping table which is generated automatically through node discovery process, a predefined remote station is defined manually on the gateway to manage IPv6 address of a dedicated remote station. This process can be used to update the database server. An IPv6 router advertisement component is used to advertise IPv6 prefix into a private network so that any terminal within the private network can have connectivity with 6L0WPAN network. Once an IPv6 user sends a request to a sensor node in 6L0WPAN network, the IPv6 packet handler which has a packet analyzer capability will handle the IPv6 packet received by any network interface in back-end module. The analyzer verifies the header of the packet if it is addressed to 6L0WPAN network. One IPv6 packet can be recognized to be routed into 6L0WPAN network by comparing the prefix of destination address for predefined prefix of 6L0WPAN network. An example of sensor's IPv6 prefix as assigned by the gateway is 2001 :2B8:F2:1:/64, as shown in Fig. 1.
If the packet is addressed to 6L0WPAN network, it will map the IPv6 address into 6L0WPAN address by using mapping table. The packet is transformed into 6L0WPAN through packet transformation process, so that it can be understood by nodes in 6L0WPAN network. After these processes the packet handler through packet forwarder component will relay the packet to Personal Area Network (PAN) Coordinator at 6L0WPAN modules which will later be forwarded to 6L0WPAN network.
Packet transformation is performed, as shown in Fig. 7, by taking payload of the packet and combine with necessary packet headers which are either IPv6 header or 6L0WPAN header. 6L0WPAN packet coming to 6L0WPAN module will be passed to packet handler through packet analyzer. The packet analyzer is actually a decision module which identify network join packet, response to IPv6 packet or periodical packet which push data into dedicated IPv6 remote station. After identifying the packet, translation of 6L0WPAN packet to IPv6 packet is performed. After this process, the packet handler will decide to forward the packet to one of network interface at back-end module. If the prefix of IPv6 destination address of packet is similar to the prefix configured in router advertisement, the packet will be forwarded to LAN/WLAN interface-1 eg. WiFi, otherwise it will be forwarded to internet backhaul connection, lnterface-2 is a priority connection to internet backhaul, if interface-2 is inactive, interface-3 eg. WiMAX will be used to forward the packet to internet.
Fig. 8 shows a flow chart explaining the process when packets from external IPv6 network network arrive at gateway requesting sensor data from 6L0WPAN node. The packet is analyzed if it is IPv6 packet. If it is IPv6 packet, then it is analyzed if it is addressed to 6L0WPAN network. The packet is discarded if it is not IPv6 packet or addressed to 6L0WPAN network. Next, the mapping table is checked if destination address exists in the table. The packet is discarded if there is no match. If a match exists, the destination IPv6 address is mapped to EUI-64 address. Then, the IPv6 requestor address is kept. The header of IPv6 packet is next changed to 6L0WPAN packet. Finally, the packet is ready to be forwarded to 6L0WPAN network.
Fig. 9 shows another flow chart detailing the process when a packet from 6L0WPAN node is received by gateway. The packet arrives at 6L0WPAN module which is compatible with IEEE 802.15.4 interface. Next, the 6L0WPAN packet is analyzed if it is a network join packet, said network join packet having EUI-64 address of node. If it is a network join packet, predetermined IPv6 prefix is added to EUI-64 address of the node. Then, a mapping table of IPv6 prefix to EUI-64 address of node is generated for address translation. The data is updated in IPv6-EUI mapping table.
If the 6L0WPAN packet is not a network join packet, the packet is analyzed if it is a response packet to a requestor. If it is a response packet from requestor, the IPv6 requestor address is obtained and set as destination address. A matching IPv6 address of EUI-64 source address is retrieved from mapping table. The header is then changed from 6L0WPAN packet to IPv6 packet.
If the 6L0WPAN packet is not a response packet to requestor, the packet is verified if it is a periodical packet sending data to remote station. If it is a periodical packet, the predefined remote station's IPv6 address is obtained from the gateway and set as destination address. Similar as previous header change, the header is changed from 6L0WPAN packet to IPv6 packet. The packet is discarded if it is not a periodical packet to the remote station. The changed IPv6 packet is forwarded to external IP network. The packet is analyzed if it is addressed to WLAN or WiFi network. The packet is forwarded to WLAN or WiFi network if it matches. Next, the packet is analyzed to select the best interface to route the packet to backhaul based on priority based mechanism. The best is selected among interface 1 of WiMAX, interface 2 of Ethernet or interface 3 of WiFi.
The gateway supports pull-based and push-based communication system. Pull- based communication is used in a scenario when IPv6 client request sensor data from a particular 6L0WPAN node. The node reactively replies the request with sensor data to IPv6 client. Push-based communication is used when 6L0WPAN nodes proactively sends data to a dedicated IPv6 remote station.
Fig. 10 shows a pull-based communication system which shows the process of IPv6 user A, residing in IPv6 network, communicating with node B located at 6L0WPAN network through gateway G, the 6L0WPAN coordinator.
The network join process is an initiation step to form a 6L0WPAN network. Gateway performs node discovery through gateway advertisement packet GW_ADV. This process lets node B to join the 6L0WPAN network by responding with advertisement response packet ADV_RESPONSE. The advertisement packet is translated by adding predetermined IPv6 prefix to EUI-64 address of node and stored in a mapping table.
After the network join process is complete, IPv6 user can directly access or request data from 6L0WPAN nodes through gateway. IPv6 user A sends a request in IPv6 packet to node B through gateway G. The IP address is a pseudo IPv6 address of node B (IPB = IPv6 prefix + EUI-64). When gateway G receives the packet, it then translates IPv6 destination address IPB to EUIB which is 64-bit length. The gateway transforms IPv6 packet into 6L0WPAN packet and forward the packet to node B. The extended address for both source (SRC = EUIG) and destination address (DST = EUIB) is also communicated. After retrieving sensor data, node B (SRC = EUIB) will send sensor data to gateway EUI address EUIG (DST = EUIG). At gateway, EUIB will be translated into IPB before transforming the packet into IPv6 packet and send the sensor data out to IPv6 user A.
The push-based communication system is shown in Fig. 11. The communication is initiated by Node B through gateway G to user A of a remote station using IPv6 network. Sensor nodes need to send periodical data to remote station. In this case, the gateway must be manually predefined with dedicated remote station IPv6 address.
Similar as pull-based communication system, push-based communication has the same network join process. After a 6L0WPAN network is established, sensor node B generates and sends periodical data to gateway G. After analyzing the packet header, the gateway should know that it is periodical packet that must be forwarded to a dedicated remote station. Since the gateway is already predefined with IPv6 address of remote station, the process is then followed by replacing 6L0WPAN header with IPv6 header which transforms the 6L0WPAN packet into IPv6 packet. The IPv6 packet is then relayed to remote station. This operation is used when database server needs to be updated periodically. Accordingly, the invention disclosed a service module for a gateway. Initial connection is established by network join method described. Approaches were described for IPv6 network to retrieve data from 6L0WPAN network. The communication systems, comprises a 6L0WPAN network at a first site, a gateway using methods described; and an IPv6 network at a third site. Signals at the first site are connected to the second site and signals at the second site are connected to the third site.
It is the combination of the above features and its technical advantages give rise to the uniqueness of such invention. Although the descriptions above contain much specificity, these should not be construed as limiting the scope of the embodiment but as merely providing illustrations of some of the presently preferred embodiments.

Claims

A method of communicating signals in 6L0WPAN network to IPv6 network, comprising:
providing network join packet in 6L0WPAN packet, said network join packet having EUI-64 address of node;
adding predetermined IPv6 prefix to EUI-64 address of node;
generating a mapping table of IPv6 prefix to EUI-64 address of node for address translation;
providing a 6L0WPAN packet from 6L0WPAN node;
retrieving destination address in IPv6 address;
changing the header of 6L0WPAN packet to IPv6 packet; and
forwarding the IPv6 packet to destination address.
A method according to claim 1 , further comprising discovering a list of 6L0WPAN node in the network.
A method according to claim 1 , wherein network join packet is provided after broadcasting gateway advertisement packet to 6L0WPAN nodes and receiving advertisement response packet if node is available.
A method according to claim 1 , wherein network join packet is provided by periodically broadcasting gateway advertisement packet to 6L0WPAN nodes and receiving advertisement response if node is available.
A method according to claim 1 , further comprising:
providing IPv6 packet addressed to 6L0WPAN network, having destination address that match with EUI-64 address of mapping table;
mapping destination IPv6 address to matching EUI-64 address;
keeping IPv6 requestor address;
changing the header of IPv6 packet to 6L0WPAN packet;
forwarding the packet to 6L0WPAN network.
A method according to claim 5, further comprising:
providing a response packet in 6L0WPAN packet;
getting IPv6 requestor address and setting it as destination address; and retrieving matching IPv6 address of EUI-64 address source from mapping table.
7. A method according to claim 1, further comprising:
defining remote station access to receive 6L0WPAN packet;
providing periodical packet sending data in 6L0WPAN packet to remote station; and
providing predefined remote station IPv6 address as destination address in periodical packet.
8. A method according to claim 1 , further comprising forwarding the packet to wireless LAN network if it is addressed to the network.
A method according to claim 1 , further comprising forwarding the packet to Ethernet network.
10. A method according to claim 1 , further comprising forwarding the packet to WiMAX network.
11. A communication systems, comprising:
a 6L0WPAN network at a first site;
a gateway using methods as claimed in any of the preceding claim at a second site; and
an IPv6 network at a third site;
signals at the first site being connected to the second site and signals at the second site being connected to the third site.
PCT/MY2011/000031 2010-03-24 2011-04-07 Method of communicating signals in 6lowpan network to ipv6 network WO2011119019A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
MYPI2010700018 2010-03-24
MYPI2010700018A MY174984A (en) 2010-03-24 2010-03-24 Method of communicating signals in 6lowpan network to ipv6 network

Publications (1)

Publication Number Publication Date
WO2011119019A1 true WO2011119019A1 (en) 2011-09-29

Family

ID=44673420

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MY2011/000031 WO2011119019A1 (en) 2010-03-24 2011-04-07 Method of communicating signals in 6lowpan network to ipv6 network

Country Status (2)

Country Link
MY (1) MY174984A (en)
WO (1) WO2011119019A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103176467A (en) * 2013-04-02 2013-06-26 哈尔滨工业大学 Intelligent housing system based on 6LoWPAN (IPv6 Low-Power Wireless Personal Area Network) technology and user datagram protocol (UDP) message transceiving method based on 6LoWPAN technology
WO2014075472A1 (en) * 2012-11-14 2014-05-22 中兴通讯股份有限公司 Information processing method and system for 6lowpan extension field
CN105577842A (en) * 2014-10-14 2016-05-11 中国电信股份有限公司 Method and system for sharing IPv6 address
WO2017031699A1 (en) * 2015-08-25 2017-03-02 华为技术有限公司 Data transmission method, relevant device and system
CN106612337A (en) * 2015-10-23 2017-05-03 中国电信股份有限公司 Method, gateway and system for suppressing 6LoWPAN address conflict in heterogeneous environment
CN107911392A (en) * 2017-12-15 2018-04-13 苏州工业职业技术学院 Internet of things lightweight addressing system based on 6LoWPAN
GB2559310A (en) * 2016-03-11 2018-08-08 Tridonic Gmbh & Co Kg Building technology device communication system with IoT-network devices
CN108900988A (en) * 2018-06-06 2018-11-27 天津大学 A kind of indoor electronic instrument temperature monitoring method based on 6LoWPAN
US10499226B2 (en) * 2017-07-06 2019-12-03 Dell Products, Lp Method and apparatus for compatible communication between access points in a 6LoWPAN network
CN112134859A (en) * 2020-09-09 2020-12-25 上海沈德医疗器械科技有限公司 Control method of focused ultrasound treatment equipment based on ARM architecture
US11115381B1 (en) 2020-11-30 2021-09-07 Vmware, Inc. Hybrid and efficient method to sync NAT sessions
US11303609B2 (en) 2020-07-02 2022-04-12 Vmware, Inc. Pre-allocating port groups for a very large scale NAT engine
WO2022115915A1 (en) * 2020-12-04 2022-06-09 Commonwealth Scientific And Industrial Research Organisation Secure data connections in low data rate networks
RU2809768C1 (en) * 2020-09-09 2023-12-18 Шанхай Шэндэ Гриин Медикал Эра Хелскэа Технолоджи Ко., Лтд. Method of controlling focused ultrasonic therapy device based on arm architecture

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090161581A1 (en) * 2007-12-20 2009-06-25 Jin Hyoung Kim ADDRESS AUTOCONFIGURATION METHOD AND SYSTEM FOR IPv6-BASED LOW-POWER WIRELESS PERSONAL AREA NETWORK
US20090185549A1 (en) * 2008-01-17 2009-07-23 Tae Shik Shon Mobility header compression method and system for internet protocol-based low power wireless network

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090161581A1 (en) * 2007-12-20 2009-06-25 Jin Hyoung Kim ADDRESS AUTOCONFIGURATION METHOD AND SYSTEM FOR IPv6-BASED LOW-POWER WIRELESS PERSONAL AREA NETWORK
US20090185549A1 (en) * 2008-01-17 2009-07-23 Tae Shik Shon Mobility header compression method and system for internet protocol-based low power wireless network

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WANG, R-C ET AL.: "Internetworking between Zigbee/802.15.4 and IPv6/802.3 Network", SIGCOMM WORKSHOP, 31 August 2007 (2007-08-31), KYOTO, JAPAN *

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014075472A1 (en) * 2012-11-14 2014-05-22 中兴通讯股份有限公司 Information processing method and system for 6lowpan extension field
CN103176467A (en) * 2013-04-02 2013-06-26 哈尔滨工业大学 Intelligent housing system based on 6LoWPAN (IPv6 Low-Power Wireless Personal Area Network) technology and user datagram protocol (UDP) message transceiving method based on 6LoWPAN technology
CN105577842B (en) * 2014-10-14 2018-09-11 中国电信股份有限公司 Method and system for sharing the addresses IPv6
CN105577842A (en) * 2014-10-14 2016-05-11 中国电信股份有限公司 Method and system for sharing IPv6 address
WO2017031699A1 (en) * 2015-08-25 2017-03-02 华为技术有限公司 Data transmission method, relevant device and system
CN107005536A (en) * 2015-08-25 2017-08-01 华为技术有限公司 A kind of method of data transfer, relevant device and system
EP3324595A4 (en) * 2015-08-25 2018-06-27 Huawei Technologies Co., Ltd. Data transmission method, relevant device and system
CN106612337A (en) * 2015-10-23 2017-05-03 中国电信股份有限公司 Method, gateway and system for suppressing 6LoWPAN address conflict in heterogeneous environment
CN106612337B (en) * 2015-10-23 2019-12-06 中国电信股份有限公司 Method, gateway and system for inhibiting 6LoWPAN address conflict in heterogeneous environment
GB2559310A (en) * 2016-03-11 2018-08-08 Tridonic Gmbh & Co Kg Building technology device communication system with IoT-network devices
GB2559310B (en) * 2016-03-11 2021-10-06 Tridonic Gmbh & Co Kg Building technology device communication system with IoT-network devices
US10841382B2 (en) 2016-03-11 2020-11-17 Tridonic Gmbh & Co Kg Building technology device communication system with IoT-network devices
US10499226B2 (en) * 2017-07-06 2019-12-03 Dell Products, Lp Method and apparatus for compatible communication between access points in a 6LoWPAN network
CN107911392A (en) * 2017-12-15 2018-04-13 苏州工业职业技术学院 Internet of things lightweight addressing system based on 6LoWPAN
CN108900988A (en) * 2018-06-06 2018-11-27 天津大学 A kind of indoor electronic instrument temperature monitoring method based on 6LoWPAN
US11303609B2 (en) 2020-07-02 2022-04-12 Vmware, Inc. Pre-allocating port groups for a very large scale NAT engine
US11689493B2 (en) * 2020-07-02 2023-06-27 Vmware, Inc. Connection tracking records for a very large scale NAT engine
CN112134859A (en) * 2020-09-09 2020-12-25 上海沈德医疗器械科技有限公司 Control method of focused ultrasound treatment equipment based on ARM architecture
WO2022052442A1 (en) * 2020-09-09 2022-03-17 上海沈德医疗器械科技有限公司 Control method for focused ultrasonic treatment device based on arm architecture
RU2809768C1 (en) * 2020-09-09 2023-12-18 Шанхай Шэндэ Гриин Медикал Эра Хелскэа Технолоджи Ко., Лтд. Method of controlling focused ultrasonic therapy device based on arm architecture
US11115381B1 (en) 2020-11-30 2021-09-07 Vmware, Inc. Hybrid and efficient method to sync NAT sessions
US11316824B1 (en) 2020-11-30 2022-04-26 Vmware, Inc. Hybrid and efficient method to sync NAT sessions
WO2022115915A1 (en) * 2020-12-04 2022-06-09 Commonwealth Scientific And Industrial Research Organisation Secure data connections in low data rate networks

Also Published As

Publication number Publication date
MY174984A (en) 2020-05-31

Similar Documents

Publication Publication Date Title
WO2011119019A1 (en) Method of communicating signals in 6lowpan network to ipv6 network
EP2364543B1 (en) Broadband network access
JP5368459B2 (en) Support for triple operation services in user equipment
US8743879B2 (en) Label switched routing to connect low power network domains
US7769033B2 (en) Radio bridge communication apparatus
US8103784B2 (en) Communication device and communication control method using efficient echonet address determination scheme
US6771666B2 (en) System and method for trans-medium address resolution on an ad-hoc network with at least one highly disconnected medium having multiple access points to other media
US20070060147A1 (en) Apparatus for transmitting data packets between wireless sensor networks over internet, wireless sensor network domain name server, and data packet transmission method using the same
US8750197B2 (en) Method, apparatus and system for pushing information, and method and apparatus for obtaining information
US20040071148A1 (en) Information device, gateway device and control method
US20130215810A1 (en) Method and device for transmitting an ipv6 over low power wireless personal area network data packet
US20060280138A1 (en) Wireless access point repeater
JP2011515945A (en) Method and apparatus for communicating data packets between local networks
US20040264503A1 (en) Method and system for providing a virtual protocol interlayer
WO2021052399A1 (en) Interface extension method, apparatus and system
WO2008096909A1 (en) Method for routing a path setting in a wireless sensor network and apparatus for performing the same
KR20040048143A (en) A location management server and ethernet based wireless local area network system and embodiment method with location management server
WO2019119346A1 (en) Method and network device for determining communication path
US8547998B2 (en) Tunneling IPv6 packet through IPv4 network using a tunnel entry based on IPv6 prefix and tunneling IPv4 packet using a tunnel entry based on IPv4 prefix
CN114125995B (en) Data transmission method and device
WO2005094019A1 (en) Transparent link layer mesh router
WO2013097400A1 (en) Method for binding network apparatus, and communication method, device and system
WO2014110737A1 (en) Method, device, and system for configuring device in network
US20150032898A1 (en) Method for establishing a virtual community network connection and a system for implementing said method
US20160218958A1 (en) Method and system for forwarding packet in id/locator separation environment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11759765

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11759765

Country of ref document: EP

Kind code of ref document: A1