WO2011114991A1 - 電子膨張弁 - Google Patents

電子膨張弁 Download PDF

Info

Publication number
WO2011114991A1
WO2011114991A1 PCT/JP2011/055676 JP2011055676W WO2011114991A1 WO 2011114991 A1 WO2011114991 A1 WO 2011114991A1 JP 2011055676 W JP2011055676 W JP 2011055676W WO 2011114991 A1 WO2011114991 A1 WO 2011114991A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
electronic expansion
valve
expansion valve
valve body
Prior art date
Application number
PCT/JP2011/055676
Other languages
English (en)
French (fr)
Inventor
育孝 讃岐
幸裕 高野
尚紀 井下
滝口 浩司
齋藤 秀介
伸敏 右島
Original Assignee
富士電機株式会社
富士電機リテイルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社, 富士電機リテイルシステムズ株式会社 filed Critical 富士電機株式会社
Priority to EP11756177.9A priority Critical patent/EP2549162A4/en
Priority to CN201180003410.6A priority patent/CN102483178B/zh
Priority to US13/389,748 priority patent/US8857788B2/en
Publication of WO2011114991A1 publication Critical patent/WO2011114991A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • F25B41/345Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators by solenoids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to an electronic expansion valve attached to a refrigeration cycle of a vending machine or the like, and more particularly to an electronic expansion valve that controls a refrigerant by opening and closing a valve body by electromagnetic force by applying a pulse to a solenoid.
  • this pulse-driven expansion valve (refrigerant flow control device)
  • the refrigeration cycle is operated with high efficiency by controlling the solenoid valve on and off so that the degree of superheat of the refrigerant at the outlet of the evaporator becomes a predetermined value. It is something that can be done.
  • the operation configuration of this pulse drive type expansion valve is such that the valve body is opened by a solenoid and the valve body is closed by a coil spring.
  • JP 2003-329698 A Japanese Patent Laid-Open No. 53-1352
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide an electronic expansion valve for a low-cost refrigeration cycle that solves the above-described problems and is stably operated for a long period of time.
  • an electronic expansion valve is a valve body in a mode in which a small hole for expanding a refrigerant, a valve body for opening and closing the small hole, and a closed state for the small hole.
  • An electronic expansion valve that expands the refrigerant by opening and closing the valve body by opening and closing the valve body, and the elastic member is a disk It is a disk spring which has a plurality of slits which are formed in a spiral shape on a disk-shaped disk surface and are arranged at an equal pitch.
  • An electronic expansion valve according to a second aspect of the present invention is characterized in that in the electronic expansion valve according to the first aspect, the valve body is opened and closed in a constant cycle.
  • an electronic expansion valve having an elastic member that urges the valve body in a mode of closing a small hole for expanding the refrigerant, and a solenoid that sucks the valve body in a mode of opening the small hole.
  • a disk spring having a plurality of slits that are formed in a spiral shape on the disk-shaped disk surface and arranged at equal pitches with each other, By doing so, the valve body is driven in the axial direction preferably with increased rigidity in the radial direction, so that a guide guide for regulating the axial direction is not required, and the generation of sludge due to sliding is suppressed.
  • FIG. 1 is a refrigerant circuit diagram using an electronic expansion valve according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of an electronic expansion valve according to an embodiment of the present invention.
  • FIG. 3 is a cross-sectional view of the electronic expansion valve of FIG. 2 along AA.
  • 4 is a cross-sectional view showing an opened state of the electronic expansion valve of FIG.
  • FIG. 5 is a block diagram of a control device that operates the refrigeration circuit shown in FIG. 1.
  • FIG. 6 is a refrigerant circuit diagram illustrating a refrigerant flow in the operation of cooling all three chambers according to the embodiment.
  • FIG. 7 is a refrigerant circuit diagram illustrating a refrigerant flow in an operation of heating two chambers and cooling one chamber according to the embodiment.
  • FIG. 1 is a refrigerant circuit diagram for heat pump operation of a vending machine having three product storage rooms in which one room is dedicated to cooling and two rooms are also used for cooling and heating.
  • the dotted line enclosure in a figure has shown typically the product storage chamber 40a only for cooling, and the product storage capacity 40b, 40c combined with cooling and heating.
  • the cooling / heating unit 10 of the heat pump vending machine includes a compressor 11, a condenser 12, electronic expansion valves 50 a, 50 b, 50 c, an accumulator 18, and an outdoor auxiliary heat exchanger 19 in a machine room provided at the lower part of the vending machine.
  • the cooling / heating unit 10 is installed in a product storage rack installed indoors by circulating air cooled or heated indoors by an evaporator 15a and indoor heat exchangers 15b and 15c in accordance with an operation setting mode for cooling and heating.
  • the product is cooled or heated.
  • the compressor 11 for cooling and heating is used to compress the refrigerant and circulate it in the circuit.
  • the evaporation temperature is about ⁇ 10 ° C. and the condensation temperature is about 40 ° C.
  • the evaporation temperature is about ⁇ 10 ° C. and the condensation temperature is about 70 ° C.
  • the low pressure is about 0.2 MPa
  • the high pressure is about 1 MPa during the cooling single operation, and about 2 MPa during the cooling heating operation.
  • the condenser 12 is a fin tube type heat exchanger, and a fan 12f is installed at the rear part thereof to discharge excess condensation heat during the cooling operation.
  • the flow divider 14 is for distributing the refrigerant to the evaporator 15a and the indoor heat exchangers 15b and 15c.
  • the evaporator 15a is for cooling the product storage chamber 40a, and the indoor heat exchangers 15b and 15c are for cooling or heating the product storage chambers 40b and 40c. Moreover, the evaporator 15a and the indoor heat exchangers 15b and 15c are installed in the lower part of each product storage room, the fan 15f is installed in the back, and the duct is installed in the back. Cooling and heating in the product storage chamber are performed by blowing the air cooled or heated by the evaporator 15a and the indoor heat exchangers 15b and 15c to the product in the product storage chamber and circulatingly collecting it from the duct.
  • the collector 17 collects the refrigerant evaporated from the evaporator 15 a and the indoor heat exchangers 15 b and 15 c and returns the refrigerant to the compressor 11.
  • the accumulator 18 is a sealed container for allowing the evaporated refrigerant from the collector 17 to flow in, gas-liquid separation to store the liquid refrigerant, and returning the gas refrigerant to the compressor 11.
  • the accumulator 18 is also a container for storing the refrigerant remaining in the refrigerant circulation of the circuit.
  • the outdoor auxiliary heat exchanger 19 is a fin tube type heat exchanger for discharging excess condensation heat during heating operation.
  • the condenser solenoid valve 21 is a three-way solenoid valve for switching the flow of the refrigerant discharged from the compressor 11 to the condenser 12 or the indoor heat exchangers 15b and 15c.
  • the heater solenoid valves 21b and 21c open and close the passages of the compressed refrigerant flowing from the compressor 11 to the indoor heat exchangers 15b and 15c.
  • the cooler outlet solenoid valves 23 b and 23 c open and close the passage of the evaporated refrigerant between the indoor heat exchangers 15 b and 15 c and the compressor 11.
  • the check valves 24 and 24 are respectively connected between the indoor heat exchangers 15b and 15c and the outdoor auxiliary heat exchanger 19, and prevent high-pressure refrigerant from flowing into the indoor heat exchangers 15b and 15c during the cooling heating operation. belongs to.
  • the check valves 24b and 24c are respectively connected between the electronic expansion valves 50b and 50c and the heater electromagnetic valves 21b and 21c, and the high-pressure refrigerant from the heater electromagnetic valves 21b and 21c flows to the electronic expansion valves 50b and 50c. This is to prevent this.
  • the check valve 25 is connected between the outlet portion of the condenser 12 and the inlet portion of the flow divider 14, and prevents the high-pressure refrigerant from flowing to the condenser 12 during the cooling and heating operation.
  • the evaporator temperature sensors 26a, 26b, and 26c are installed in the evaporator 15a and the indoor heat exchangers 15b and 15c, and are for detecting the evaporation temperatures of the evaporator 15a and the indoor heat exchangers 15b and 15c.
  • the indoor temperature sensors 41a, 41b, 41c are installed in the product storage chambers 40a, 40b, 40c, and are for detecting the indoor temperature of the product storage chambers 40a, 40b, 40c.
  • the electronic expansion valve 50 (50a, 50b, 50c) depressurizes the refrigerant passing during the cooling operation and adiabatically expands it, and the passage of the expanded refrigerant flowing to the evaporator 15a and the indoor heat exchangers 15b, 15c. It also serves as a solenoid valve that opens and closes. This will be described with reference to FIGS.
  • the electronic expansion valve 50 includes a main body upper portion 51, a main body lower portion 52, a main body side portion 53, a valve seat 54, an armature 55, a spacer 56, a pin 57, a solenoid 61, fixing brackets 63a and 63b, a nut 64, and a disk spring (elastic member). 70.
  • the upper part 51 of the main body is a ferromagnetic cylindrical member.
  • the inflow part 51a for inserting the refrigerant inlet pipe 58 in the upper part, the suction part 51b for sucking the armature 55 in the lower part, and the vertical part communicating with the refrigerant inlet pipe 58 on the central axis.
  • the hole 51c has a horizontal hole 51d that communicates with the vertical hole 51c and extends to a radius and communicates with the inside 60 of the main body of the electronic expansion valve 50.
  • the refrigerant flowing in from the refrigerant inlet pipe 58 flows out radially into the main body interior 60 of the electronic expansion valve 50 through the vertical holes 51c and the horizontal holes 51d.
  • the main body lower portion 52 is a ferromagnetic cylindrical member.
  • the lower portion is an outflow portion 52a into which the refrigerant outlet pipe 59 is inserted, the upper portion is a valve seat 54, the inner space 52b in which the armature 55 is housed, and the central portion is the valve seat 54.
  • the hole (52c) which connects the orifice (small hole) 54a and the refrigerant
  • the main body side portion 53 is a non-magnetic cylindrical member, and engages with the main body upper portion 51 and the main body lower portion 52 to form the main body interior 60.
  • the valve seat 54 is a non-magnetic cylindrical member fixed to the main body lower part 52, has a flat upper surface, and has an orifice (small hole) 54a drilled on the central axis.
  • the armature 55 is a columnar member having a three-stage structure with a large central diameter of the ferromagnetic material, and the upper portion is a side that holds a sufficient gap between the suction portion 55a having a flat upper end surface and the inner portion between the inner space 52b.
  • the portion 55b and the lower portion have a valve body 55c that has a flat lower end surface and is in close contact with the upper portion of the valve seat 54 to close the orifice 54a.
  • the armature 55 is attached with the upper end surface of the side portion 55b and the disc spring 70 fixed by caulking, and is provided with a gap 60a between the suction portion 55a and the suction portion 51b. It is attached in such a manner that it is biased. Further, as shown in FIG. 3, a groove 55d serving as a coolant passage is formed on the peripheral surface of the side portion 55b of the armature 55 in a manner facing the axial direction.
  • the spacer 56 is a non-magnetic cylindrical member, and is used to regulate the distance between the main body upper portion 51 and the main body lower portion 52.
  • the four pins 57 are fixing members for fixing the disc spring 70 at four positions on the periphery.
  • the refrigerant inlet pipe 58 is a pipe for allowing the condensed refrigerant to flow into the electronic expansion valve 50
  • the refrigerant outlet pipe 59 is a pipe for allowing the refrigerant expanded by the electronic expansion valve 50 to flow out from the electronic expansion valve 50. is there.
  • the solenoid 61 is for attracting the armature 55 and opening the valve body 55c from the orifice 54a, and is composed of an iron core 61a and a coil 61b.
  • the solenoid 61 has a threaded portion at the top and is fixed by a nut 64 via fixing brackets 63a and 63b.
  • the fixing metal fittings 63a and 63b are ferromagnetic flat plate members, and both ends of the plane are formed on a semicircle.
  • the fixing metal fittings 63a and 63b are for fixing the solenoid 61 and fixing the upper body 51 and the lower body 52 with screws. .
  • the magnetic flux generated from the coil 61b flows through a magnetic circuit returning from the iron core 61a, the fixing metal 63a, the main body upper part 51, the gap 60a, the armature 55, the main body lower part 52, and the fixing metal 63b to the iron core 61a.
  • the disc spring 70 is composed of a main plate (disc-shaped disc surface) 71 made of a disc-like thin plate material, a fixing hole 72 for fixing the disc spring 70 to the lower portion 52 of the main unit, and the main plate 71 at an equal pitch. And a slit 73 formed in a spiral shape and a center hole 74 for engaging with the armature 55 at the center. Since the slits 73 formed in a spiral shape are formed on the body plate 71 at four equal pitches, the linearity in the axial direction is high and the rigidity in the radial direction is high. Therefore, unlike the coil spring, when the armature 55 is sucked by the suction portion 51b, a guide guide for restricting driving in the axial direction is not necessary.
  • the suction portion 55a of the armature 55 is attracted to the suction portion 51b of the upper body 51 as shown in FIG. 4, and a gap 60b is formed between the valve body 55c and the valve seat 54.
  • the condensed refrigerant flowing from the refrigerant inlet pipe 58 is, as shown by the arrows in the figure, the vertical hole 51c, the horizontal hole 51d, the main body inside 60, the slit 73 of the disc spring 70, and the armature 55d 55d of the main body upper part 51.
  • the refrigerant flow rate and the degree of superheat of the refrigeration cycle can be controlled by repeatedly energizing the solenoid 61 in a constant cycle.
  • the refrigerant circuit includes a single cooling circuit 10A that performs only indoor cooling and a cooling and heating circuit (heat pump operation circuit) 10B that simultaneously performs indoor cooling and heating.
  • the single cooling circuit 10A is connected to the flow divider 14 from the compressor 11 via the condenser solenoid valve 21, the condenser 12, and the check valve 25, and one of the flow dividers 14 is an electronic expansion valve 50a and an evaporator 15a. And the other of the flow divider 14 is connected to electronic expansion valves 50b and 50c, check valves 24b and 24c, indoor heat exchangers 15b and 15c, and cooler outlet electromagnetic valves 23b and 23c.
  • the circuit is connected to the collector 17 via the accumulator 17 and returns to the compressor 11 via the accumulator 18.
  • the cooling heating circuit 10B includes check valves 24b and 24c and room heat via heater electromagnetic valves 21b and 21c connected in parallel from one outlet of the condenser electromagnetic valve 21.
  • Pipe lines connected to the connection points 121b and 121c between the exchangers 15b and 15c, respectively, and from the outlet side (right side in the figure) of the indoor heat exchangers 15b and 15c via check valves 24 and 24, respectively. After the coupling, a pipe line connected to the flow divider 14 via the outdoor auxiliary heat exchanger 19 is provided.
  • the cooling heating circuit 10B is connected to the indoor heat exchangers 15b and 15c from the compressor 11 via the condenser solenoid valve 21 and the heater solenoid valves 21b and 21c, and reversely from the indoor heat exchangers 15b and 15c.
  • the circuit returns to the compressor 11.
  • the control device 90 controls the cooling or heating of the product storage chambers 40a, 40b, and 40c according to the cooling / heating setting operation mode.
  • a CPU and a memory are provided therein, the cooling operation mode setting SW91 setting operation mode, the temperature of each chamber, the compressor operation of the refrigerant circuit corresponding to the evaporation temperature, the solenoid valve opening and closing, the electronic expansion valve Control such as.
  • the control device 90 includes the compressor 11, the condenser solenoid valve 21, the electronic expansion valves 50a, 50b, and 50c, and the cooler outlet solenoid valve 23b according to the temperatures detected by the indoor temperature sensors 41a, 41b, and 41c. , 23c, heater solenoid valves 21b, 21c, etc., and the room temperature is maintained at an appropriate temperature by performing a thermocycle operation in which the room is turned ON / OFF within a certain temperature range.
  • the control device 90 controls the electronic expansion valves 50a, 50b, and 50c by pulse driving based on the temperatures detected by the evaporator temperature sensors 26a, 26b, and 26c, thereby controlling the refrigerant flow rate and the evaporation temperature. Control. Specifically, the control device 90 sends a pulse signal with a duty ratio (ratio of ON time to the cycle time) in a range of 30 to 100% every predetermined cycle time (for example, 10 seconds), and the electronic expansion valve 50a, By opening and closing the valve body 55c in the 50b and 50c, the evaporation temperature of the evaporator 15a and the indoor heat exchangers 15c and 15b is controlled to a predetermined temperature.
  • a duty ratio ratio of ON time to the cycle time
  • the control device 90 opens the cooler outlet solenoid valves 23b and 23c and closes the heater solenoid valves 21b and 21c. Then, the passage is switched in such a manner that the refrigerant flows through the condenser solenoid valve 21 to the condenser 12 side. At this time, the refrigerant flows as shown by a thick line in FIG. 6.
  • the high-temperature refrigerant compressed by the compressor 11 is condensed by the condenser 12 via the condenser electromagnetic valve 21 and becomes a liquid, It is divided into three directions by the evaporator 14 and expanded by the electronic expansion valves 50a, 50b, 50c to form a low-temperature gas-liquid two-phase flow, and flows into the evaporator 15a and the indoor heat exchangers 15b, 15c.
  • the refrigerant that has flowed in is evaporated in the evaporator 15a and the indoor heat exchangers 15b and 15c to cool the product storage chambers 40a, 40b, and 40c.
  • the evaporated refrigerant is collected in the collector 17 and is gas-liquid via the accumulator 18. After separation, the gas phase returns to the compressor 11.
  • the controller 90 controls the room temperature to an appropriate temperature by the thermocycle operation by the room temperature sensors 41a, 41b, and 41c.
  • the control device 90 sends a pulse signal to the electronic expansion valves 50a, 50b, and 50c while changing the duty ratio so that the evaporation temperature of the evaporator 15a and the indoor heat exchangers 15b and 15c becomes a predetermined temperature. That is, the control device 90 sends a pulse signal having a large duty ratio when the evaporation temperature is higher than a predetermined temperature.
  • this operation is continued until the room temperature reaches an appropriate temperature.
  • the energization to the electronic expansion valve 50 corresponding to the product storage chamber is interrupted, and the valve body 55c. Close. And the above-mentioned control is continued until all the product storage rooms become suitable temperature.
  • the control device 90 performs heating.
  • the electromagnetic valve 21b, 21c is opened, the electronic expansion valve 50b, 50c, the cooler outlet electromagnetic valve 23b, 23c is closed, and the refrigerant flows through the condenser electromagnetic valve 21 to the heater electromagnetic valve 21b, 21c side. Change the passage.
  • the high-temperature refrigerant compressed by the compressor 11 passes through the condenser solenoid valve 21, the heater solenoid valves 21b and 21c, and the connection points 121b and 121c, as shown by the thick line in FIG.
  • the refrigerant flowing into the indoor heat exchangers 15b and 15c condenses and heats the product storage chambers 40b and 40c, collects through the check valves 24 and 24, and further condenses in the outdoor auxiliary heat exchanger 19 to be shunted.
  • 14 flows into the electronic expansion valve 50a.
  • the refrigerant flowing into the electronic expansion valve 50a expands to become a low-temperature and low-pressure gas-liquid two-phase flow and flows into the evaporator 15a.
  • the refrigerant that has flowed into the evaporator 15 a evaporates and cools the product storage chamber 40 a, and returns to the compressor 11 via the collector 17 and the accumulator 18.
  • the electronic expansion valve 50a is controlled so that the evaporation temperature of the evaporator 15a becomes a predetermined temperature, and the room is maintained at an appropriate temperature by the thermocycle operation.
  • the electronic expansion valves 50a, 50b, and 50c described above include the disc spring 70 that biases the valve body 55c in a mode that closes the orifice 54a that expands the refrigerant, and the valve body 55c that opens the orifice 54a.
  • the valve body 55c By opening and closing the valve body 55c to open and close the valve body 55c, the refrigerant is expanded, and a plurality of slits 73 formed in a spiral shape in the disc spring 70 are provided at equal pitches on the circumference. Since the valve body 55c is driven in the axial direction with high rigidity in the radial direction, a guide guide for restricting the axial direction is unnecessary, and as a result, the generation of sludge due to sliding is suppressed. Thus, it is possible to provide a low-cost refrigeration cycle electronic expansion valve that operates stably for a long period of time.
  • the electronic expansion valve according to the present invention is suitable for use in equipment having a refrigerant circuit for cooling or heating, such as vending machines and air conditioning equipment.
  • Cooling / heating unit 11 Compressor 12 Condenser 15a Evaporator 15b, 15c Indoor heat exchanger 21 Condenser solenoid valve 21b, 21c Heater solenoid valve 23b, 23c Cooler exit solenoid valve 40a, 40b, 40c Product storage chamber 50a , 50b, 50c Electronic expansion valve 54 Valve seat 54a Orifice (small hole) 55 Armature 55c Valve body 61 Solenoid 90 Controller 91 Cooling / heating mode setting SW

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Magnetically Actuated Valves (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

 冷媒を膨張させる小孔(54a)と、当該小孔を開閉する弁体(55c)と、小孔を閉止する態様で弁体を付勢する弾性部材(70)と、小孔を開成する態様で弁体を吸引するソレノイド(61)とを有し、弁体を開閉することにより、冷媒を膨張させる電子膨張弁(50)において、弾性部材を渦巻き状に形成された複数のスリット(73)を円周上互いに等ピッチに設けた円盤バネとすることにより、案内ガイドを不要として摺動によるスラッジの発生を抑制して長期間安定をして作動をさせる。

Description

電子膨張弁
 本発明は、自動販売機等の冷凍サイクルに付設される電子膨張弁に係り、特にソレノイドをパルス通電して電磁力により弁体を開閉させて冷媒を制御する電子膨張弁に関する。
 電子膨張弁としては、ステッピングモータを使用して膨張通路の開度を変更して冷媒の膨張度を調整する制御性の高い電子膨張弁が知られている(例えば、特許文献1参照)が、ステッピングモータを使用するため高価となる。これに対して電磁弁を開閉することにより冷媒の膨張度を調整する安価なパルス駆動形膨張弁が知られている(例えば、特許文献2参照)。
 このパルス駆動形膨張弁(冷媒流量制御装置)では、電磁弁をオン、オフ制御することにより蒸発器の出口冷媒の過熱度が所定の値となるようにして冷凍サイクルを高効率で運転することができるものである。このパルス駆動形膨張弁の作動構成は、ソレノイドにより弁体を開成し、コイルスプリングにより弁体を閉止するものである。
特開2003-329698号公報 特開昭53-1352号公報
 しかしながら、特許文献2に記載されたような冷媒流量制御装置(電子膨張弁)では、復帰用の弾性部材として螺旋形状に曲折されて成形されているコイルスプリングが使用されているので、軸方向に荷重が加わると半径方向にも力が作用する結果、軸方向に駆動を規制する案内ガイドが必要となり、案内ガイドとプランジャー、スプリングの間で摺動することになる。その時、摺動する接面より発生するスラッジは、冷媒内を移送され弁座部、隙間部などに徐々に詰まり、開閉動作回数が数億回レベルに達するような長期間の使用時には、冷凍サイクルに動作不良を起こす虞がある。
 本発明は、上記実情に鑑みなされたもので、上記の課題を解決して、長期間安定をして作動をさせる低コストの冷凍サイクルの電子膨張弁を提供することを目的とする。
 上記の目的を達成するために、本発明の請求項1に係る電子膨張弁は、冷媒を膨張させる小孔と、当該小孔を開閉する弁体と、前記小孔を閉止する態様で弁体を付勢する弾性部材と、前記小孔を開成する態様で弁体を吸引するソレノイドとを有し、前記弁体を開閉することにより、冷媒を膨張させる電子膨張弁において、前記弾性部材が円盤状の盤面に渦巻き状に形成されるとともに互いに等ピッチで配設された複数のスリットを有する円盤バネであることを特徴とする。
 本発明の請求項2に係る電子膨張弁は、請求項1に記載の電子膨張弁において、前記弁体を一定のサイクルで開閉することを特徴とする。
 本発明に係る請求項1の電子膨張弁は、冷媒を膨張させる小孔を閉止する態様で弁体を付勢する弾性部材と、小孔を開成する態様で弁体を吸引するソレノイドとを有し、弁体を開閉することにより、冷媒を膨張させる電子膨張弁において、弾性部材が円盤状の盤面に渦巻き状に形成されるとともに互いに等ピッチで配設された複数のスリットを有する円盤バネとすることにより、弁体を半径方向には剛性を高くして好適に軸方向に駆動させるので、軸方向を規制する案内ガイドを不要とする結果、摺動によるスラッジの発生が抑制される。このことにより、長期間安定をして作動をさせる低コストの冷凍サイクルの電子膨張弁を提供することができる。
図1は、本発明の実施例に係る電子膨張弁を用いた冷媒回路図。 図2は、本発明の実施例に係る電子膨張弁の断面図。 図3は、図2の電子膨張弁のA-A断面図。 図4は、図2の電子膨張弁の開成状態を示す断面図。 図5は、図1に示す冷凍回路を運転する制御装置のブロック図。 図6は、実施例に係る、3室を全て冷却する運転における冷媒の流れを示す冷媒回路図。 図7は、実施例に係る、2室を加熱し1室を冷却する運転における冷媒の流れを示す冷媒回路図。
 以下に添付図面を参照して、ヒートポンプ運転を行う自動販売機の冷媒回路に用いた本発明に係る電子膨張弁の好適な実施例を詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。
 図1は、1室は冷却専用で2室が冷却加熱兼用である3室の商品収納室を有する自動販売機のヒートポンプ運転用冷媒回路図である。なお、図中の点線の囲いは、冷却専用の商品収納室40aと、冷却加熱兼用の商品収納量40b、40cを模式的に示している。
 ヒートポンプ自動販売機の冷却/加熱ユニット10は、自動販売機の下部に設けられた機械室内に圧縮機11、凝縮器12、電子膨張弁50a、50b、50c、アキュムレータ18、室外補助熱交換器19を取設し、自動販売機の上部に設けられた商品収納室40a、40b、40c内に蒸発器15a、室内熱交換器15b、15cを取設して各機器を冷媒配管で接続することにより構成されている。冷却/加熱ユニット10は、冷却加熱の運転設定モードに応じて、蒸発器15a、室内熱交換器15b、15cにより室内に冷却または加熱した空気を循環させて室内に取設された商品収納ラック内の商品を冷却または加熱するものである。
 冷却加熱用の圧縮機11は、冷媒を圧縮して回路内を循環させるためのもので、冷却単独運転時には、蒸発温度が約-10℃、凝縮温度が約40℃で使用され、冷却加熱運転(ヒートポンプ運転)時には、蒸発温度が約-10℃、凝縮温度が約70℃で使用される。例えば、冷媒にR134aを使用した場合には、低圧は、約0.2MPa、高圧は冷却単独運転時には、約1MPa、冷却加熱運転時には、約2MPaにて運転される。
 凝縮器12は、フィンチューブ型の熱交換器であり、その後部にはファン12fが取設され、冷却運転時に余剰な凝縮熱を排出するためのものである。
 分流器14は、冷媒を蒸発器15a,室内熱交換器15b、15cに分配するためのものである。
 蒸発器15aは、商品収納室40aを冷却するためのものであり、室内熱交換器15b、15cは、商品収納室40b、40cを冷却もしくは加熱するためのものである。また、蒸発器15a、室内熱交換器15b、15cは、各商品収納室の下部に取設され、その後方にファン15fが取設され、その後方にダクトが取設されている。商品収納室内の冷却と加熱は、蒸発器15a、室内熱交換器15b、15cにより冷却もしくは加熱された空気を商品収納室内の商品に送風し、ダクトより循環回収することで行われる。
 集合器17は、蒸発器15a,室内熱交換器15b、15cから蒸発した冷媒を集合させて圧縮機11へ戻すためのものである。
 アキュムレータ18は、集合器17からの蒸発冷媒を流入し、気液分離させて液冷媒を貯留し、気体冷媒を圧縮機11に戻すための密閉した容器である。また、アキュムレータ18は、回路の冷媒循環に余った冷媒を貯留するための容器でもある。
 室外補助熱交換器19は、フィンチューブ型の熱交換器であり、加熱運転時に余剰な凝縮熱を排出するためのものである。
 凝縮器電磁弁21は、圧縮機11から吐出される冷媒を凝縮器12または室内熱交換器15b、15cへ流れを切替えるための3方電磁弁である。加熱器電磁弁21b、21cは、圧縮機11から室内熱交換器15b、15cへ流れる圧縮された冷媒の通路を開閉するものである。冷却器出口電磁弁23b,23cは、室内熱交換器15b、15cと圧縮機11と間の蒸発された冷媒の通路を開閉するものである。
 逆止弁24、24は、それぞれ室内熱交換器15b、15cと室外補助熱交換器19と間に接続され、冷却加熱運転時に高圧冷媒が室内熱交換器15b、15cに流れることを阻止するためのものである。
 逆止弁24b、24cは、それぞれ電子膨張弁50b、50cと加熱器電磁弁21b、21cとの間に接続され、加熱器電磁弁21b、21cからの高圧冷媒が電子膨張弁50b、50cに流れることを阻止するためのものである。
 逆止弁25は、凝縮器12の出口部と分流器14の入口部との間に接続され、冷却加熱運転時に高圧冷媒が凝縮器12へ流れることを阻止するためのものである。
 蒸発器温度センサ26a、26b、26cは蒸発器15a、室内熱交換器15b、15cに取設され、蒸発器15a、室内熱交換器15b、15cの蒸発温度を検知するためのものである。
 室内温度センサ41a、41b、41cは、商品収納室40a、40b、40c内に取設され、商品収納室40a、40b、40cの室内温度を検知するためのものである。
 電子膨張弁50(50a、50b、50c)は、冷却運転時に通過する冷媒を減圧して断熱膨張させるものであり、また、蒸発器15a、室内熱交換器15b、15cへ流れる膨張した冷媒の通路を開閉する電磁弁を兼用している。図2、3を参照しつつ説明をする。電子膨張弁50は、本体上部51、本体下部52、本体側部53、弁座54、アーマチャア55、スペーサ56、ピン57、ソレノイド61、固定金具63a、63b、ナット64および円盤バネ(弾性部材)70を有して構成されている。
 本体上部51は、強磁性体の円柱部材であり、上部に冷媒入口管58を挿入する流入部51a、下部にアーマチャア55を吸引する吸引部51b、中心軸上に冷媒入口管58と連通した縦孔51c、その縦孔51cと連通し半径に延在して電子膨張弁50の本体内部60に通じる横孔51dを有している。冷媒入口管58より流入される冷媒は、縦孔51c、横孔51dを経由して電子膨張弁50の本体内部60に半径方向に流出される。
 本体下部52は、強磁性体の円柱部材であり、下部に冷媒出口管59を挿入する流出部52a、上部に弁座54、アーマチャア55を内装する内空間52b、中心軸上には弁座54に形成されたオリフィス(小孔)54aと冷媒出口管59とを連通させる孔52cを有している。
 本体側部53は、非磁性体の円筒部材であり、本体上部51、本体下部52と係合して本体内部60を形成している。
 弁座54は、非磁性体の円柱部材で本体下部52と固着してあり、上面は平坦であり、中心軸上にオリフィス(小孔)54aが穿孔されている。
 アーマチャア55は、強磁性体の中央の径が大きな3段構造の円柱部材であり、上部は上端面が平坦な吸着部55aと、中部は内空間52bとの間で十分な隙間を保持する側部55bと、下部は下端面が平坦で弁座54の上部と密着してオリフィス54aを閉止させる弁体55cを有している。アーマチャア55は、側部55bの上端面と円盤バネ70とをカシメにて固着されて、吸着部55aと吸引部51bとの間に間隙60aを設けて取り付けられるとともに、円盤バネ70により弁座54に付勢される態様で取り付けられている。また、アーマチャア55の側部55bの周面には図3で示すように冷媒の通路となる溝55dが軸方向に対向する態様で形成されている。
 スペーサ56は、非磁性体の円筒部材であり、本体上部51、本体下部52との間隔を規制するためのものである。
 4個のピン57は、円盤バネ70を周縁4箇所で固定するための固定部材である。
 冷媒入口管58は、凝縮した冷媒を電子膨張弁50に流入させるための配管であり、冷媒出口管59は、電子膨張弁50にて膨張した冷媒を電子膨張弁50より流出させるための配管である。
 ソレノイド61は、アーマチャア55を吸引して弁体55cをオリフィス54aから開成するためのものであり、鉄芯61aとコイル61bにより構成されている。ソレノイド61は上部にネジ部を有し固定金具63a、63bを介してナット64にて固定されている。
 固定金具63a、63bは、強磁性体の平板部材であり、平面両端が半円上に形成され、ソレノイド61を固定するとともに、本体上部51、本体下部52ともネジで固定するためのものである。
 コイル61bより発生する磁束は、鉄芯61a、固定金具63a、本体上部51、間隙60a、アーマチャア55、本体下部52、固定金具63bから鉄芯61aに戻る磁気回路を流れる。
 円盤バネ70は、円盤状の薄板材にて構成された本体板(円盤状の盤面)71と、円盤バネ70を本体下部52に固定するための固定孔72と、本体板71に互いに等ピッチで渦巻き状に形成されたスリット73と、中心にアーマチャア55と係合させるための中心孔74を有して構成されている。渦巻き状に形成されたスリット73は本体板71上に4箇所等ピッチで形成されているので、軸方向の直進性が高く、かつ、半径方向への剛性が高い。そのため、コイルスプリングとは異なりアーマチャア55が吸引部51bに吸引される場合に、軸方向に駆動を規制する案内ガイドが不要となる。
 かかる構成で、ソレノイド61を通電すると、図4に示すようにアーマチャア55の吸着部55aは本体上部51の吸引部51bに吸着し、弁体55cと弁座54との間に間隙60bが形成される。このとき、冷媒入口管58から流入する凝縮冷媒は、図中の矢印に示すように本体上部51の縦孔51c、横孔51d、本体内部60、円盤バネ70のスリット73、アーマチャア55の構55dを経由して間隙60bに流入し、オリフィス54aにて膨張され、気液二相の冷媒となり冷媒出口管59より流出する。また、ソレノイド61を一定のサイクルで通電を繰り返すことにより冷媒流量および冷凍サイクルの過熱度を制御することが出来る。
 次に、冷却/加熱ユニット10の冷媒回路構成について、図1を参照しつつ詳述する。冷媒回路は、室内の冷却のみを行う冷却単独回路10Aと、室内の冷却加熱を同時に行う冷却加熱回路(ヒートポンプ運転回路)10Bと、を有している。
 冷却単独回路10Aは、圧縮機11より、凝縮器電磁弁21、凝縮器12、逆止弁25を経由して分流器14に接続し、分流器14より一方は電子膨張弁50a、蒸発器15aを経由して集合器17に接続し、また、分流器14より他方は電子膨張弁50b、50c、逆止弁24b、24c、室内熱交換器15b、15c、冷却器出口電磁弁23b、23cを経由して集合器17に接続し、集合器17よりアキュムレータ18を経由して圧縮機11に戻る回路である。
 一方、冷却加熱回路10Bには、冷却単独回路10Aに加えて、凝縮器電磁弁21の一の出口より並列接続された加熱器電磁弁21b、21cを介して逆止弁24b、24cと室内熱交換器15b、15c入口側との間の接続点121b、121cとそれぞれ接続する管路と、室内熱交換器15b、15cの出口側(図中右側)からそれぞれ逆止弁24、24を介して結合した後、室外補助熱交換器19を経由して分流器14へ接続する管路とが設けられている。
 しかして、冷却加熱回路10Bは、圧縮機11から凝縮器電磁弁21、加熱器電磁弁21b、21cを経由して室内熱交換器15b、15cに接続され、室内熱交換器15b、15cから逆止弁24、24、室外補助熱交換器19を経由して分流器14に接続され、分流器14から電子膨張弁50aを経由して蒸発器15aに接続され、集合器17、アキュムレータ18を経由して圧縮機11に戻る回路である。
 制御装置90は、商品収納室40a、40b、40cを冷却加熱の設定運転モードにより冷却もしくは加熱の制御をするものである。図5に示すように内部にCPU、メモリを有し、冷却加熱モード設定SW91の設定運転モード、各室の温度、蒸発温度に対応して冷媒回路の圧縮機運転、電磁弁開閉、電子膨張弁などの制御を行う。室内の温度制御において、制御装置90は、室内温度センサ41a、41b、41cにより検知した温度により、圧縮機11、凝縮器電磁弁21、電子膨張弁50a、50b、50c、冷却器出口電磁弁23b、23c、加熱器電磁弁21b、21cなどを制御し、室内を一定温度範囲内でON・OFF制御するサーモサイクル運転を行うことにより室内温度を適温に維持する。
 また、電子膨張弁50の制御において、制御装置90は、蒸発器温度センサ26a、26b、26cにより検知した温度により、電子膨張弁50a、50b、50cをパルス駆動制御して冷媒流量、蒸発温度を制御する。具体的には、制御装置90は、一定のサイクル時間(例えば10秒)毎にデューティー比(サイクル時間に対するON時間の割合)を30~100%の範囲でパルス信号を送り、電子膨張弁50a、50b、50c内の弁体55cを開閉することにより、蒸発器15a、室内熱交換器15c、15bの蒸発温度を所定の温度に制御する。
 かかる構成で冷却加熱モード設定SW91の操作によりすべての商品収納室を冷却する運転モードに設定すると、制御装置90は冷却器出口電磁弁23b、23cを開成し、加熱器電磁弁21b、21cを閉止し、凝縮器電磁弁21を冷媒が凝縮器12側に流通する態様で通路切替えを行う。このとき、冷媒は図6の太線で示すように流れ、具体的には、圧縮機11で圧縮された高温冷媒は、凝縮器電磁弁21を介して凝縮器12にて凝縮され液体となり、分流器14で三方に分流され電子膨張弁50a、50b、50cで膨張して低温の気液二相流となり、蒸発器15a、室内熱交換器15b、15cに流入する。流入した冷媒は、蒸発器15a、室内熱交換器15b、15cで蒸発して商品収納室40a、40b、40cを冷却し、蒸発した冷媒は集合器17にて集合しアキュムレータ18を介して気液分離されて、気相が圧縮機11に戻る。
 なお、この冷却は、制御装置90にて室内温度センサ41a、41b、41cによるサーモサイクル運転により室内温度が適温に制御される。また、制御装置90は、蒸発器15a、室内熱交換器15b、15cの蒸発温度が所定の温度となるように電子膨張弁50a、50b、50cにデューティー比を変えてパルス信号を送る。すなわち、制御装置90は、蒸発温度が所定の温度よりも高い場合には、デューティー比の大きいパルス信号を送る。
 上述の制御は、室内温度が適温になるまでこの運転が継続され、一の商品収納室が適温となれば、その商品収納室に対応した電子膨張弁50への通電を遮断して弁体55cを閉止する。そして、上述の制御は、すべての商品収納室が適温となるまで継続される。
 次に、冷却加熱モード設定SW91の換作により設定モードを左側の商品収納室40aを冷却し、中、右側の商品収納室40b、40cを加熱する運転モードに設定すると、制御装置90は、加熱器電磁弁21b、21cを開成し、電子膨張弁50b、50c、冷却器出口電磁弁23b、23cを閉止し、凝縮器電磁弁21を冷媒が加熱器電磁弁21b、21c側に流通する態様に通路切替えを行う。このとき圧縮機11で圧縮された高温冷媒は、図7の太線で示すように、凝縮器電磁弁21、加熱器電磁弁21b、21c、接続点121b、121cを経由して室内熱交換器15b、15cに流入する。室内熱交換器15b、15cに流入した冷媒は凝縮して商品収納室40b、40cを加熱し、逆止弁24、24を介して集合し、室外補助熱交換器19でさらに凝縮して分流器14を経由して電子膨張弁50aに流入する。電子膨張弁50aに流入した冷媒は、膨張して低温低圧の気液二相流となり蒸発器15aに流入する。蒸発器15aに流入した冷媒は、蒸発して商品収納室40aを冷却し、集合器17、アキュムレータ18を経由して圧縮機11に戻る。このヒートポンプ運転も前述のように蒸発器15aの蒸発温度が所定の温度となるように電子膨張弁50aを制御し、サーモサイクル運転で室内が適温に維持される。
 このように、上述の電子膨張弁50a、50b、50cは、冷媒を膨張させるオリフィス54aを閉止する態様で弁体55cを付勢する円盤バネ70と、オリフィス54aを開成する態様で弁体55cを吸引するソレノイド61とを有し、弁体55cを開閉することにより、冷媒を膨張させ、円盤バネ70に渦巻き状に形成された複数のスリット73を円周上互いに等ピッチに設けたことにより、弁体55cを半径方向には剛性を高くして好適に軸方向に駆動させるので、軸方向を規制する案内ガイドを不要とする結果、摺動によるスラッジの発生が抑制される。このことにより、長期間安定をして作動をさせる低コストの冷凍サイクルの電子膨張弁を提供することができる。
 以上のように、本発明に係る電子膨張弁は、自動販売機、空調機器等の冷却または加熱をする冷媒回路を有する機器に使用することに適している。
 10  冷却/加熱ユニット
 11  圧縮機
 12  凝縮器
 15a  蒸発器
 15b、15c  室内熱交換器
 21  凝縮器電磁弁
 21b、21c  加熱器電磁弁
 23b、23c  冷却器出口電磁弁
 40a、40b、40c  商品収納室
 50a、50b、50c  電子膨張弁
 54  弁座
 54a  オリフィス(小孔)
 55  アーマチャア
 55c  弁体
 61  ソレノイド
 90  制御装置
 91  冷却加熱モード設定SW

Claims (2)

  1.  冷媒を膨張させる小孔と、当該小孔を開閉する弁体と、前記小孔を閉止する態様で弁体を付勢する弾性部材と、前記小孔を開成する態様で弁体を吸引するソレノイドとを有し、前記弁体を開閉することにより、冷媒を膨張させる電子膨張弁において、
     前記弾性部材が円盤状の盤面に渦巻き状に形成されるとともに互いに等ピッチで配設された複数のスリットを有する円盤バネであることを特徴とする電子膨張弁。
  2.  前記弁体を一定のサイクルで開閉することを特徴とする請求項1に記載の電子膨張弁。
PCT/JP2011/055676 2010-03-18 2011-03-10 電子膨張弁 WO2011114991A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP11756177.9A EP2549162A4 (en) 2010-03-18 2011-03-10 ELECTRONIC EXPANSION VALVE
CN201180003410.6A CN102483178B (zh) 2010-03-18 2011-03-10 电子膨胀阀
US13/389,748 US8857788B2 (en) 2010-03-18 2011-03-10 Electronic expansion valve

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010062406A JP2011196428A (ja) 2010-03-18 2010-03-18 電子膨張弁
JP2010-062406 2010-03-18

Publications (1)

Publication Number Publication Date
WO2011114991A1 true WO2011114991A1 (ja) 2011-09-22

Family

ID=44649086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/055676 WO2011114991A1 (ja) 2010-03-18 2011-03-10 電子膨張弁

Country Status (5)

Country Link
US (1) US8857788B2 (ja)
EP (1) EP2549162A4 (ja)
JP (1) JP2011196428A (ja)
CN (1) CN102483178B (ja)
WO (1) WO2011114991A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111412684A (zh) * 2020-04-20 2020-07-14 珠海格力电器股份有限公司 节流元件失效的控制方法及空调

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202015006366U1 (de) * 2015-09-07 2016-12-08 Gebr. Kemper Gmbh + Co. Kg Metallwerke Trink- und Brauchwasserversorgungseinrichtung eines Gebäudes und Regulierventil hierfür
US10670305B2 (en) * 2016-04-11 2020-06-02 Mitsubishi Electric Corporation Refrigeration apparatus and method for controlling the same
CN111623126A (zh) * 2019-02-28 2020-09-04 浙江盾安禾田金属有限公司 电子膨胀阀

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS531352A (en) 1976-06-28 1978-01-09 Hitachi Ltd Cooling medium flow control means
JPH11316068A (ja) * 1998-05-07 1999-11-16 Tgk Co Ltd 膨張弁
JP2002071045A (ja) * 2000-08-29 2002-03-08 Saginomiya Seisakusho Inc 電磁比例弁
JP2003329698A (ja) 2002-05-16 2003-11-19 Saginomiya Seisakusho Inc 電動弁、電動弁の駆動装置、電動弁の制御装置、及び冷凍サイクル装置並びに空気調和機
JP2005090762A (ja) * 2003-09-12 2005-04-07 Tgk Co Ltd 定差圧弁
JP2005249191A (ja) * 2004-02-06 2005-09-15 Kofurotsuku Kk 比例ソレノイド制御バルブ
JP2009167924A (ja) * 2008-01-17 2009-07-30 Nikki Co Ltd インジェクタ

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3589672A (en) * 1969-02-18 1971-06-29 Trans Lux Corp Solenoid controlled valve and armature with adjustable bias
JPS51117226U (ja) * 1975-03-19 1976-09-22
JPS57167972U (ja) * 1981-04-16 1982-10-22
JPH06147350A (ja) * 1991-12-03 1994-05-27 Ckd Corp 差動式比例制御弁
CN2200083Y (zh) * 1994-04-08 1995-06-07 西安交通大学 电子膨胀阀
US5785297A (en) * 1996-07-16 1998-07-28 Millipore Corporation Valve mechanism
JP3557837B2 (ja) * 1997-03-25 2004-08-25 東海ゴム工業株式会社 流体封入式防振装置
JP4042184B2 (ja) * 1997-08-06 2008-02-06 アイシン精機株式会社 電磁弁
JPH1182801A (ja) * 1997-09-16 1999-03-26 Fuji Koki Corp 電磁弁
JP3786518B2 (ja) * 1998-04-23 2006-06-14 株式会社テージーケー 電磁弁付膨張弁
US6336621B1 (en) * 1999-02-23 2002-01-08 Aisan Kogyo Kabushiki Kaisha Electromagnetic fuel injection valve
JP2003156268A (ja) * 2001-11-16 2003-05-30 Tgk Co Ltd 電磁膨張装置およびその制御方法
DE60328064D1 (de) * 2002-04-12 2009-08-06 Seiko Epson Corp Ventilanordnung
JP5022120B2 (ja) * 2007-07-03 2012-09-12 株式会社不二工機 冷暖房システム用の電動弁
ITBS20070120A1 (it) * 2007-08-08 2009-02-09 Camozzi S P A Societa Uniperso Elettrovalvola e relativo metodo di montaggio
US8430378B2 (en) * 2008-05-30 2013-04-30 South Bend Controls Holdings Llc High flow proportional valve
CN101691890B (zh) * 2009-10-13 2011-08-31 金仁召 一种节流阀
EP2400193B1 (de) * 2010-06-23 2019-08-28 Asco Numatics GmbH Vorrichtung zur Durchflussregelung eines flüssigen oder gasförmigen Mediums

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS531352A (en) 1976-06-28 1978-01-09 Hitachi Ltd Cooling medium flow control means
JPH11316068A (ja) * 1998-05-07 1999-11-16 Tgk Co Ltd 膨張弁
JP2002071045A (ja) * 2000-08-29 2002-03-08 Saginomiya Seisakusho Inc 電磁比例弁
JP2003329698A (ja) 2002-05-16 2003-11-19 Saginomiya Seisakusho Inc 電動弁、電動弁の駆動装置、電動弁の制御装置、及び冷凍サイクル装置並びに空気調和機
JP2005090762A (ja) * 2003-09-12 2005-04-07 Tgk Co Ltd 定差圧弁
JP2005249191A (ja) * 2004-02-06 2005-09-15 Kofurotsuku Kk 比例ソレノイド制御バルブ
JP2009167924A (ja) * 2008-01-17 2009-07-30 Nikki Co Ltd インジェクタ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111412684A (zh) * 2020-04-20 2020-07-14 珠海格力电器股份有限公司 节流元件失效的控制方法及空调

Also Published As

Publication number Publication date
US8857788B2 (en) 2014-10-14
CN102483178B (zh) 2014-08-06
JP2011196428A (ja) 2011-10-06
EP2549162A1 (en) 2013-01-23
CN102483178A (zh) 2012-05-30
EP2549162A4 (en) 2013-07-24
US20120326064A1 (en) 2012-12-27

Similar Documents

Publication Publication Date Title
US20240247841A1 (en) Integrated demand water heating using a capacity modulated heat pump with desuperheater
JP6248499B2 (ja) エジェクタ式冷凍サイクル
CN101002062A (zh) 制冷系统
US9086062B2 (en) Linear compressor with an electro-magnetic spring
WO2011114991A1 (ja) 電子膨張弁
JP5786156B2 (ja) 車両用冷暖房装置
EP3112777B1 (en) Air conditioner and operation method of the same
US20230366597A1 (en) Heat exchanger assembly with valve
WO2011114992A1 (ja) 電子膨張弁
JP6069924B2 (ja) 膨張弁
US10739044B2 (en) Method for installing expansion device in a sealed system
JP2012031898A (ja) 電子膨張弁
JP2013145090A (ja) 膨張弁
KR20130090133A (ko) 공기조화장치
KR20110117974A (ko) 히트펌프식 급탕장치
JP2013084073A (ja) 自動販売機
JP2012021745A (ja) 電子膨張弁
JP5625587B2 (ja) 冷媒回路装置
JP5266960B2 (ja) 自動販売機
JP2012021746A (ja) 電子膨張弁
JP5910054B2 (ja) 膨張弁
JP2023544331A (ja) バイパス導管を有するhvacシステム
JP2013225341A (ja) 冷却加熱装置の運転方法
JP2003042519A (ja) 空調装置
JP5786212B2 (ja) 車両用冷暖房装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180003410.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11756177

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011756177

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13389748

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE