WO2011114681A1 - プラズマディスプレイパネル - Google Patents

プラズマディスプレイパネル Download PDF

Info

Publication number
WO2011114681A1
WO2011114681A1 PCT/JP2011/001452 JP2011001452W WO2011114681A1 WO 2011114681 A1 WO2011114681 A1 WO 2011114681A1 JP 2011001452 W JP2011001452 W JP 2011001452W WO 2011114681 A1 WO2011114681 A1 WO 2011114681A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide
particles
metal oxide
mgo
diffraction angle
Prior art date
Application number
PCT/JP2011/001452
Other languages
English (en)
French (fr)
Inventor
卓司 辻田
正範 三浦
後藤 真志
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to KR1020127023576A priority Critical patent/KR101194495B1/ko
Priority to US13/581,727 priority patent/US20120319560A1/en
Priority to JP2012505494A priority patent/JP5126452B2/ja
Priority to CN2011800137757A priority patent/CN102792414A/zh
Publication of WO2011114681A1 publication Critical patent/WO2011114681A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/34Vessels, containers or parts thereof, e.g. substrates
    • H01J11/40Layers for protecting or enhancing the electron emission, e.g. MgO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/10AC-PDPs with at least one main electrode being out of contact with the plasma
    • H01J11/12AC-PDPs with at least one main electrode being out of contact with the plasma with main electrodes provided on both sides of the discharge space

Definitions

  • the present invention relates to a plasma display panel used for a display device or the like.
  • PDPs Plasma display panels
  • 100-inch class televisions have been commercialized.
  • PDP has been applied to high-definition televisions that have more than twice the number of scanning lines compared to the conventional NTSC system.
  • efforts to further reduce power consumption and environmental issues There is also a growing demand for PDPs that do not contain lead components in consideration of the above.
  • the PDP is basically composed of a front plate and a back plate.
  • the front plate is a glass substrate of sodium borosilicate glass produced by the float process, a display electrode composed of a striped transparent electrode and a bus electrode formed on one main surface of the glass substrate, A dielectric layer that covers the display electrode and functions as a capacitor, and a protective layer made of magnesium oxide (MgO) formed on the dielectric layer.
  • MgO magnesium oxide
  • the back plate is a glass substrate, stripe-shaped address electrodes formed on one main surface thereof, a base dielectric layer covering the address electrodes, a partition formed on the base dielectric layer, The phosphor layer is formed between the barrier ribs and emits red, green and blue light.
  • the front plate and the back plate are hermetically sealed with their electrode forming surfaces facing each other, and a discharge gas of neon (Ne) -xenon (Xe) is 400 Torr to 600 Torr (5.3 ⁇ ) in a discharge space partitioned by a partition wall. 10 4 Pa to 8.0 ⁇ 10 4 Pa).
  • PDP discharges by selectively applying a video signal voltage to the display electrodes, and the ultraviolet rays generated by the discharge excite each color phosphor layer to emit red, green, and blue light, thereby realizing color image display is doing.
  • such a PDP driving method includes an initialization period in which wall charges are adjusted so that writing is easy, a writing period in which writing discharge is performed according to an input image signal, and a discharge space in which writing is performed.
  • a driving method having a sustain period in which display is performed by generating a sustain discharge is generally used.
  • a period (subfield) obtained by combining these periods is repeated a plurality of times within a period (one field) corresponding to one frame of an image, thereby performing PDP gradation display.
  • the role of the protective layer formed on the dielectric layer of the front plate is to protect the dielectric layer from ion bombardment due to discharge and to emit initial electrons for generating address discharge.
  • Etc. Protecting the dielectric layer from ion bombardment plays an important role in preventing an increase in discharge voltage, and emitting initial electrons for generating an address discharge is an address discharge error that causes image flickering. It is an important role to prevent.
  • the pulse applied to the address electrode It is necessary to reduce the width.
  • discharge delay since there is a time lag called discharge delay from the rise of the voltage pulse to the occurrence of discharge in the discharge space, if the pulse width is narrowed, the probability that the discharge can be completed within the writing period is lowered. . As a result, lighting failure occurs, and the problem of deterioration in image quality performance such as flickering occurs.
  • the content of xenon (Xe), which is one component of the discharge gas contributing to the light emission of the phosphor, in the entire discharge gas is also increased.
  • the discharge voltage becomes higher the discharge delay becomes larger, resulting in a problem that the image quality is deteriorated such as lighting failure.
  • magnesium oxide (MgO) crystal particles are formed on the magnesium oxide (MgO) protective layer, it is possible to reduce the discharge delay and reduce the lighting failure, but it is not possible to reduce the discharge voltage. There was a problem.
  • JP 2002-260535 A Japanese Patent Laid-Open No. 11-339665 JP 2006-59779 A JP-A-8-236028 JP-A-10-334809
  • the PDP of the present invention includes a front plate and a back plate disposed to face the front plate.
  • the front plate includes a dielectric layer and a protective layer covering the dielectric layer.
  • a base dielectric layer, a plurality of barrier ribs formed on the base dielectric layer, and a phosphor layer formed on the base dielectric layer and on a side surface of the barrier rib, and the protective layer is a dielectric layer
  • metal oxides selected from the group consisting of calcium oxide, strontium oxide, and barium oxide, and the diffraction angle peak of X-ray diffraction analysis in a specific orientation plane of the metal oxide particles
  • the discharge start voltage is reduced even when the xenon (Xe) gas partial pressure of the discharge gas is increased in order to improve the secondary electron emission characteristics in the protective layer and increase the luminance. It is possible to realize a PDP excellent in display performance that does not cause a lighting failure even in high-definition image display by reducing the delay, and can realize a PDP capable of driving with high brightness and low voltage even in a high-definition image.
  • FIG. 1 is a perspective view showing a structure of a PDP according to an embodiment.
  • FIG. 2 is a cross-sectional view showing the configuration of the front plate of the PDP.
  • FIG. 3 is a view showing an X-ray diffraction result in the underlayer of the PDP.
  • FIG. 4 is a diagram showing an X-ray diffraction result in the base layer having another configuration of the PDP.
  • FIG. 5 is an enlarged view for explaining the aggregated particles of the PDP.
  • FIG. 6 is a diagram showing the relationship between the discharge delay of the PDP and the calcium (Ca) concentration in the protective layer.
  • FIG. 7 is a diagram showing the results of examining the electron emission performance and the lighting voltage of the PDP.
  • FIG. 8 is a characteristic diagram showing the relationship between the grain size of the crystal particles used in the PDP and the electron emission performance.
  • FIG. 9 is a diagram showing the results of examining the electron emission performance and the lighting voltage of the PDP.
  • FIG. 1 is a perspective view showing a structure of a PDP in one embodiment.
  • the basic structure of the PDP 1 is the same as that of a general AC surface discharge type PDP.
  • the PDP 1 has a front plate 2 made of a front glass substrate 3 and a back plate 10 made of a back glass substrate 11 facing each other, and its outer peripheral portion is sealed with a glass frit or the like. The material is hermetically sealed.
  • discharge gases such as xenon (Xe) and neon (Ne) are applied at a pressure of 400 Torr to 600 Torr (5.3 ⁇ 10 4 Pa to 8.0 ⁇ 10 4 Pa). It is enclosed.
  • a pair of strip-shaped display electrodes 6 each composed of a scanning electrode 4 and a sustain electrode 5 and a plurality of black stripes (light shielding layers) 7 are arranged in parallel to each other.
  • a dielectric layer 8 is formed on the front glass substrate 3 so as to cover the display electrodes 6 and the light-shielding layer 7 so as to hold charges and function as a capacitor.
  • a protective layer 9 is further formed thereon. .
  • a plurality of strip-like address electrodes 12 are arranged in parallel to each other in a direction orthogonal to the scanning electrodes 4 and the sustain electrodes 5 of the front plate 2.
  • Layer 13 is covering.
  • a partition wall 14 having a predetermined height is formed on the base dielectric layer 13 between the address electrodes 12 to divide the discharge space 16.
  • a phosphor layer 15 that emits red, green, and blue light by ultraviolet rays is sequentially applied.
  • a discharge space is formed at a position where the scan electrode 4 and the sustain electrode 5 intersect with the address electrode 12, and a discharge space having red, green, and blue phosphor layers 15 arranged in the direction of the display electrode 6 is used for color display. Become a pixel.
  • FIG. 2 is a cross-sectional view showing the configuration of the front plate 2 of the PDP 1 in the present embodiment, and FIG. 2 is shown upside down with respect to FIG.
  • a display electrode 6 and a light shielding layer 7 including scanning electrodes 4 and sustain electrodes 5 are formed in a pattern on a front glass substrate 3 manufactured by a float method or the like.
  • Scan electrode 4 and sustain electrode 5 are made of transparent electrodes 4a and 5a made of indium tin oxide (ITO), tin oxide (SnO 2 ), etc., and metal bus electrodes 4b and 5b formed on transparent electrodes 4a and 5a, respectively. It is comprised by.
  • the metal bus electrodes 4b and 5b are used for the purpose of imparting conductivity in the longitudinal direction of the transparent electrodes 4a and 5a, and are formed of a conductive material whose main component is a silver (Ag) material.
  • the dielectric layer 8 includes a first dielectric layer 81 provided on the front glass substrate 3 so as to cover the transparent electrodes 4a and 5a, the metal bus electrodes 4b and 5b, and the light shielding layer 7, and a first dielectric.
  • the second dielectric layer 82 formed on the layer 81 has at least two layers, and the protective layer 9 is formed on the second dielectric layer 82.
  • the protective layer 9 includes a base layer 91 made of magnesium oxide formed on the dielectric layer 8, aggregated particles 92 in which a plurality of magnesium oxide (MgO) crystal particles 92 a are aggregated on the base layer 91, and magnesium oxide (
  • the metal oxide particles 93 are made of at least two oxides selected from MgO), calcium oxide (CaO), strontium oxide (SrO), and barium oxide (BaO).
  • the scan electrode 4, the sustain electrode 5, and the light shielding layer 7 are formed on the front glass substrate 3.
  • Transparent electrodes 4a and 5a and metal bus electrodes 4b and 5b constituting scan electrode 4 and sustain electrode 5 are formed by patterning using a photolithography method or the like.
  • the transparent electrodes 4a and 5a are formed using a thin film process or the like, and the metal bus electrodes 4b and 5b are solidified by baking a paste containing a silver (Ag) material at a predetermined temperature.
  • the light shielding layer 7 is also formed by screen printing a paste containing a black pigment or by forming a black pigment on the entire surface of the glass substrate and then patterning and baking using a photolithography method.
  • a dielectric paste (dielectric material) layer is formed by applying a dielectric paste on the front glass substrate 3 by a die coating method or the like so as to cover the scanning electrode 4, the sustain electrode 5 and the light shielding layer 7.
  • the surface of the applied dielectric paste is leveled by leaving it to stand for a predetermined time, so that a flat surface is obtained.
  • the dielectric paste layer is formed by baking and solidifying the dielectric paste layer to cover the scan electrode 4, the sustain electrode 5, and the light shielding layer 7.
  • the dielectric paste is a paint containing a dielectric material such as glass powder, a binder and a solvent.
  • a base layer 91 is formed on the dielectric layer 8.
  • the underlayer 91 is formed by a thin film deposition method using magnesium oxide (MgO) pellets.
  • MgO magnesium oxide
  • a known method such as an electron beam evaporation method, a sputtering method, or an ion plating method can be applied.
  • 1 Pa is considered as the upper limit of the pressure that can actually be taken in the sputtering method and 0.1 Pa in the electron beam evaporation method, which is an example of the evaporation method.
  • predetermined electron emission characteristics can be obtained by adjusting the atmosphere during film formation in a sealed state that is blocked from the outside in order to prevent moisture adhesion and impurity adsorption.
  • a base layer 91 made of a metal oxide having the above can be formed.
  • agglomerated particles 92 of the magnesium oxide (MgO) crystal particles 92a deposited on the base layer 91 will be described.
  • These crystal particles 92a can be manufactured by any one of the following vapor phase synthesis method or precursor baking method.
  • magnesium metal material having a purity of 99.9% or more is heated in an atmosphere filled with an inert gas, and a small amount of oxygen is introduced into the atmosphere to directly oxidize magnesium, thereby oxidizing the material.
  • Magnesium (MgO) crystal particles 92a can be produced.
  • the crystal particles 92a can be produced by the following method.
  • a magnesium oxide (MgO) precursor is uniformly fired at a high temperature of 700 ° C. or higher, and this is gradually cooled to obtain magnesium oxide (MgO) crystal particles 92a.
  • the precursor include magnesium alkoxide (Mg (OR) 2 ), magnesium acetylacetone (Mg (acac) 2 ), magnesium hydroxide (Mg (OH) 2 ), magnesium carbonate (MgCO 2 ), magnesium chloride (MgCl 2 ).
  • MgSO 4 Magnesium sulfate
  • Mg (NO 3 ) 2 magnesium nitrate
  • MgC 2 O 4 magnesium oxalate
  • it may usually take the form of a hydrate, but such a hydrate may be used.
  • MgO magnesium oxide
  • these compounds are adjusted so that the purity of magnesium oxide (MgO) obtained after firing is 99.95% or more, preferably 99.98% or more. If these compounds contain a certain amount or more of various impurity elements such as alkali metals, B, Si, Fe, and Al, unnecessary interparticle adhesion and sintering occur during heat treatment, and highly crystalline magnesium oxide ( This is because it is difficult to obtain MgO) crystal particles 92a. For this reason, it is necessary to adjust the precursor in advance by removing the impurity element.
  • impurity elements such as alkali metals, B, Si, Fe, and Al
  • the metal oxide particles 93 can be obtained by, for example, a gas phase synthesis method. In an atmosphere filled with an inert gas, two or more metal materials selected from magnesium (Mg), calcium (Ca), strontium (Sr), and barium (Ba) are simultaneously heated and sublimated to increase the temperature. When oxygen gas is introduced so as to form a gas region and wrap around the high temperature gas region, the metal oxide particles 93 can be produced by instantaneous cooling at the boundary surface between the high temperature gas region and the oxygen gas introduction region. .
  • the magnesium oxide (MgO) crystal particles 92a and the metal oxide particles 93 obtained by any one of the above methods are dispersed in a solvent, and the dispersion is dispersed by a spray method, a screen printing method, an electrostatic coating method, or the like. Disperse and spread over the surface of the formation 91. Thereafter, the solvent is removed through a drying / firing process, and the magnesium oxide (MgO) crystal particles 92 a and the metal oxide particles 93 can be fixed to the surface of the base layer 91.
  • the dispersion of the magnesium oxide (MgO) crystal particles 92a and the metal oxide particles 93 includes a method in which the particles are dispersed in the same solvent and applied simultaneously, and a method in which separate dispersions are prepared and sequentially applied. Either method may be applied.
  • predetermined components scanning electrode 4, sustaining electrode 5, light shielding layer 7, dielectric layer 8, and protective layer 9) are formed on front glass substrate 3, and front plate 2 is completed.
  • the back plate 10 is formed as follows. First, the structure for the address electrode 12 is formed by a method of screen printing a paste containing silver (Ag) material on the rear glass substrate 11 or a method of patterning using a photolithography method after forming a metal film on the entire surface. A material layer to be a material is formed. Thereafter, the address electrode 12 is formed by firing at a predetermined temperature. Next, a dielectric paste is applied on the rear glass substrate 11 on which the address electrodes 12 are formed by a die coating method or the like so as to cover the address electrodes 12 to form a dielectric paste layer. Thereafter, the base dielectric layer 13 is formed by firing the dielectric paste layer.
  • the dielectric paste is a paint containing a dielectric material such as glass powder, a binder and a solvent.
  • a barrier rib forming paste containing barrier rib material is applied on the base dielectric layer 13 and dried.
  • an adhesive layer forming paste containing an adhesive layer material is applied onto the dried partition wall forming paste, and patterned into a predetermined shape to form a partition material layer and an adhesive material layer.
  • the partition 14 and the adhesive layer are formed by firing at a predetermined temperature.
  • a photolithography method or a sand blast method can be used as a method of patterning the partition wall paste and the adhesive layer forming paste applied on the base dielectric layer 13.
  • the phosphor layer 15 is formed by applying and baking a phosphor paste containing a phosphor material on the base dielectric layer 13 between the adjacent barrier ribs 14 and on the side surfaces of the barrier ribs 14. Further, a glass frit for firmly bonding the front plate 2 and the back plate 10 is formed around the back plate 10. Through the above steps, the back plate 10 having predetermined components on the back glass substrate 11 is completed.
  • the front plate 2 and the back plate 10 provided with predetermined constituent members are arranged opposite to each other so that the scanning electrodes 4 and the address electrodes 12 are orthogonal to each other and fixed.
  • the fixed front plate 2 and back plate 10 are fired at a temperature not lower than the melting point of the glass frit and the adhesive material layer and not higher than the melting point of the partition wall material layer. Thereby, the front plate 2 and the back plate 10 are bonded to each other with the adhesive layer and the glass frit.
  • a discharge gas containing xenon (Xe), neon (Ne) and the like is sealed in the discharge space 16 to complete the PDP 1.
  • the dielectric material of the first dielectric layer 81 is composed of the following material composition. That is, 20% by weight to 40% by weight of bismuth oxide (Bi 2 O 3 ), 0.5% by weight to 12% of at least one selected from calcium oxide (CaO), strontium oxide (SrO), and barium oxide (BaO). Contains 0.1% by weight to 7% by weight of at least one selected from molybdenum oxide (MoO 3 ), tungsten oxide (WO 3 ), cerium oxide (CeO 2 ), and manganese dioxide (MnO 2 ). .
  • molybdenum oxide MoO 3
  • tungsten oxide WO 3
  • cerium oxide CeO 2
  • manganese dioxide MnO 2
  • copper oxide CuO
  • chromium oxide Cr 2 O 3
  • cobalt oxide At least one selected from (Co 2 O 3 ), vanadium oxide (V 2 O 7 ), and antimony oxide (Sb 2 O 3 ) may be contained in an amount of 0.1 wt% to 7 wt%.
  • zinc oxide (ZnO) is contained in an amount of 0 to 40% by weight, boron oxide (B 2 O 3 ) in an amount of 0 to 35% by weight, and silicon oxide (SiO 2 ) in an amount of 0 to 4% by weight.
  • a material composition that does not contain a lead component, such as 15 wt% and aluminum oxide (Al 2 O 3 ) 0 wt% to 10 wt% may be included.
  • a dielectric material powder is prepared by pulverizing a dielectric material composed of these composition components with a wet jet mill or a ball mill so that the particle diameter becomes 0.5 ⁇ m to 2.5 ⁇ m. Next, 55 wt% to 70 wt% of the dielectric material powder and 30 wt% to 45 wt% of the binder component are well kneaded with three rolls to paste for the first dielectric layer 81 for die coating or printing. Is made.
  • the binder component is ethyl cellulose, terpineol containing 1% to 20% by weight of acrylic resin, or butyl carbitol acetate.
  • dioctyl phthalate, dibutyl phthalate, triphenyl phosphate and tributyl phosphate are added to the paste as needed, and glycerol monooleate, sorbitan sesquioleate, homogenol (Kao Corporation) as a dispersant.
  • the printing property may be improved as a paste by adding a phosphate ester of an alkyl allyl group, etc.
  • the front glass substrate 3 is printed by a die coat method or a screen printing method so as to cover the display electrode 6 and dried, and then slightly higher than the softening point of the dielectric material.
  • the first dielectric layer 81 is formed by baking at a temperature of 575 ° C. to 590 ° C.
  • the dielectric material of the second dielectric layer 82 is composed of the following material composition. That is, bismuth oxide (Bi 2 O 3 ) is 11 wt% to 20 wt%, and at least one selected from calcium oxide (CaO), strontium oxide (SrO), and barium oxide (BaO) is 1.6 wt%. It contains ⁇ 21 wt%, and contains 0.1 wt% ⁇ 7 wt% of at least one selected from molybdenum oxide (MoO 3 ), tungsten oxide (WO 3 ), and cerium oxide (CeO 2 ).
  • MoO 3 molybdenum oxide
  • WO 3 tungsten oxide
  • CeO 2 cerium oxide
  • MoO 3 molybdenum oxide
  • tungsten oxide WO 3
  • cerium oxide CeO 2
  • copper oxide CuO
  • chromium oxide Cr 2 O 3
  • cobalt oxide Co 2 O 3
  • At least one selected from vanadium oxide (V 2 O 7 ), antimony oxide (Sb 2 O 3 ), and manganese oxide (MnO 2 ) may be contained in an amount of 0.1 wt% to 7 wt%.
  • zinc oxide (ZnO) is contained in an amount of 0 to 40% by weight, boron oxide (B 2 O 3 ) in an amount of 0 to 35% by weight, and silicon oxide (SiO 2 ) in an amount of 0 to 4% by weight.
  • a material composition that does not contain a lead component, such as 15 wt% and aluminum oxide (Al 2 O 3 ) 0 wt% to 10 wt% may be included.
  • a dielectric material powder is prepared by pulverizing a dielectric material composed of these composition components with a wet jet mill or a ball mill so that the particle diameter becomes 0.5 ⁇ m to 2.5 ⁇ m. Next, 55 wt% to 70 wt% of the dielectric material powder and 30 wt% to 45 wt% of the binder component are well kneaded with three rolls to form a second dielectric layer paste for die coating or printing. Make it.
  • the binder component is ethyl cellulose, terpineol containing 1% to 20% by weight of acrylic resin, or butyl carbitol acetate.
  • dioctyl phthalate, dibutyl phthalate, triphenyl phosphate, and tributyl phosphate are added as plasticizers as needed, and glycerol monooleate, sorbitan sesquioleate, and homogenol (Kao Corporation) as dispersants.
  • the printability may be improved by adding a phosphoric ester of an alkyl allyl group or the like.
  • the film thickness of the dielectric layer 8 is preferably set to 41 ⁇ m or less in total of the first dielectric layer 81 and the second dielectric layer 82 in order to ensure visible light transmittance.
  • the first dielectric layer 81 has a bismuth oxide (Bi 2 O 3 ) content of the second dielectric layer 82 in order to suppress the reaction of the metal bus electrodes 4b and 5b with silver (Ag). More than the content of (Bi 2 O 3 ), the content is 20 wt% to 40 wt%. Therefore, since the visible light transmittance of the first dielectric layer 81 is lower than the visible light transmittance of the second dielectric layer 82, the film thickness of the first dielectric layer 81 is set to the film thickness of the second dielectric layer 82. It is thinner.
  • the second dielectric layer 82 is less likely to be colored when the content of bismuth oxide (Bi 2 O 3 ) is 11 wt% or less, but bubbles are likely to be generated in the second dielectric layer 82. Therefore, it is not preferable. On the other hand, if the content exceeds 40% by weight, coloration tends to occur, and the transmittance decreases.
  • the thickness of the dielectric layer 8 is set to 41 ⁇ m or less, the first dielectric layer 81 is set to 5 ⁇ m to 15 ⁇ m, and the second dielectric layer 82 is set to 20 ⁇ m to 36 ⁇ m.
  • a low melting point material such as frit glass or water glass having a melting point lower than that of the partition wall 14 made of a material having a melting point of 500 ° C. to 600 ° C. is desirable. It is also possible to use a general sealing agent in a UV adhesive or a vacuum apparatus with low hygroscopicity and low outgas.
  • the front glass substrate 3 has little coloring phenomenon (yellowing), and bubbles are generated in the dielectric layer 8. It has been confirmed that the dielectric layer 8 excellent in withstand voltage performance is realized.
  • the reason why yellowing and bubble generation are suppressed in the first dielectric layer 81 by these dielectric materials will be considered. That is, by adding molybdenum oxide (MoO 3 ) or tungsten oxide (WO 3 ) to dielectric glass containing bismuth oxide (Bi 2 O 3 ), Ag 2 MoO 4 , Ag 2 Mo 2 O 7 , Ag 2 are added. It is known that compounds such as Mo 4 O 13 , Ag 2 WO 4 , Ag 2 W 2 O 7 , and Ag 2 W 4 O 13 are easily formed at a low temperature of 580 ° C. or lower. In the present embodiment, since the firing temperature of the dielectric layer 8 is 550 ° C.
  • silver ions (Ag + ) diffused into the dielectric layer 8 during firing are the molybdenum oxide in the dielectric layer 8. It reacts with (MoO 3 ), tungsten oxide (WO 3 ), cerium oxide (CeO 2 ), and manganese oxide (MnO 2 ) to produce a stable compound and stabilize it. That is, since silver ions (Ag + ) are stabilized without being reduced, they do not aggregate to form a colloid. Accordingly, the stabilization of silver ions (Ag + ) reduces the generation of oxygen associated with the colloidalization of silver (Ag), thereby reducing the generation of bubbles in the dielectric layer 8.
  • manganese (MnO 2 ) is preferably 0.1% by weight or more, more preferably 0.1% by weight or more and 7% by weight or less. In particular, when the amount is less than 0.1% by weight, the effect of suppressing yellowing is small.
  • the dielectric layer 8 of the PDP 1 in the present embodiment suppresses yellowing and bubble generation in the first dielectric layer 81 in contact with the metal bus electrodes 4b and 5b made of silver (Ag) material, and the first dielectric High light transmittance is realized by the second dielectric layer 82 provided on the body layer 81.
  • the PDP having a high transmittance with very few bubbles and yellowing as the entire dielectric layer 8.
  • the protective layer 9 includes a base layer 91 made of magnesium oxide (MgO) formed on the dielectric layer 8 and a magnesium oxide deposited on the base layer 91.
  • MgO magnesium oxide
  • crystal particles 92a are composed of agglomerated particles 92 and a plurality of metal oxide particles.
  • the metal oxide particles 93 are formed of a metal oxide composed of at least two oxides selected from magnesium oxide (MgO), calcium oxide (CaO), strontium oxide (SrO), and barium oxide (BaO).
  • the metal oxide has a peak between the minimum diffraction angle and the maximum diffraction angle generated from a single oxide constituting the metal oxide having a specific orientation plane. That is, the diffraction angle peak of the X-ray diffraction analysis on the specific orientation plane of the metal oxide particle 93 is the X-ray on the specific orientation plane of one of the two metal oxides contained in the metal oxide particle 93. It exists between the diffraction angle peak of diffraction analysis and the diffraction angle peak of X-ray diffraction analysis in a specific orientation plane of the other metal oxide.
  • FIG. 3 is a diagram showing an X-ray diffraction result on the surface of the base layer 91 constituting the protective layer 9 of the PDP 1 in the present embodiment.
  • FIG. 3 also shows the results of X-ray diffraction analysis of magnesium oxide (MgO) alone, calcium oxide (CaO) alone, strontium oxide (SrO) alone, and barium oxide (BaO) alone.
  • MgO magnesium oxide
  • CaO calcium oxide
  • SrO strontium oxide
  • BaO barium oxide
  • the horizontal axis represents the Bragg diffraction angle (2 ⁇ ), and the vertical axis represents the intensity of the X-ray diffraction wave.
  • the unit of the diffraction angle is shown in degrees when one round is 360 degrees, and the intensity is shown in an arbitrary unit (arbitrary unit).
  • the crystal orientation plane which is a specific orientation plane is shown in parentheses. As shown in FIG. 3, with respect to the crystal orientation plane (111), the diffraction angle is 32.2 degrees for calcium oxide (CaO) alone, the diffraction angle is 36.9 degrees for magnesium oxide (MgO) alone, and the diffraction angle for strontium oxide alone. It can be seen that 30.0 degrees and barium oxide alone has a peak at a diffraction angle of 27.9 degrees.
  • the metal oxide particles 93 of the protective layer 9 at least two or more selected from magnesium oxide (MgO), calcium oxide (CaO), strontium oxide (SrO), and barium oxide (BaO). It is formed of a metal oxide made of the oxide.
  • MgO magnesium oxide
  • CaO calcium oxide
  • SrO strontium oxide
  • BaO barium oxide
  • FIG. 3 shows an X-ray diffraction result when the single component constituting the metal oxide particles 93 is two components. That is, the X-ray diffraction result of the metal oxide particles 93 formed using magnesium oxide (MgO) and calcium oxide (CaO) alone is shown as point A, using magnesium oxide (MgO) and strontium oxide (SrO) alone.
  • the X-ray diffraction result of the formed metal oxide particle 93 is a point B, and the X-ray diffraction result of the metal oxide particle 93 formed using magnesium oxide (MgO) and barium oxide (BaO) alone is the C point. Show.
  • the point A is a diffraction angle of 36.9 degrees of the magnesium oxide (MgO) alone, which is the maximum diffraction angle of the single oxide, in the crystal orientation plane (111) as the specific orientation plane, and the oxidation which is the minimum diffraction angle.
  • MgO magnesium oxide
  • a peak exists at a diffraction angle of 36.1 degrees, which is between the diffraction angle of 32.2 degrees of calcium (CaO) alone.
  • peaks at points B and C exist at 35.7 degrees and 35.4 degrees between the maximum diffraction angle and the minimum diffraction angle, respectively.
  • FIG. 4 shows the X-ray diffraction result when the single component constituting the metal oxide particle 93 is three or more, as in FIG. That is, FIG. 4 shows the results when magnesium oxide (MgO), calcium oxide (CaO), and strontium oxide (SrO) are used as the single component, point D, magnesium oxide (MgO), calcium oxide (CaO), and oxidation.
  • MgO magnesium oxide
  • CaO calcium oxide
  • SrO barium oxide
  • the point D is a crystal orientation plane (111) as a specific orientation plane, and a diffraction angle of 36.9 degrees of magnesium oxide (MgO) as a maximum diffraction angle of a single oxide and an oxidation level as a minimum diffraction angle.
  • MgO magnesium oxide
  • a peak exists at a diffraction angle of 33.4 degrees, which is between the diffraction angle of 30.0 degrees of strontium (SrO) alone.
  • peaks at points E and F exist at 32.8 degrees and 30.2 degrees between the maximum diffraction angle and the minimum diffraction angle, respectively.
  • the metal oxide particles 93 of the PDP 1 in the present embodiment in the X-ray diffraction analysis of the metal oxides constituting the metal oxide particles 93, whether they are two components or three components as a single component, have a specific orientation plane.
  • a peak exists between the minimum diffraction angle and the maximum diffraction angle of a peak generated from a single oxide constituting the metal oxide. That is, the diffraction angle peak of the X-ray diffraction analysis on the specific orientation plane of the metal oxide particle 93 is the X-ray on the specific orientation plane of one of the two metal oxides contained in the metal oxide particle 93. It exists between the diffraction angle peak of diffraction analysis and the diffraction angle peak of X-ray diffraction analysis in a specific orientation plane of the other metal oxide.
  • (111) has been described as the crystal orientation plane as the specific orientation plane, but the peak position of the metal oxide is the same as described above even when other crystal orientation planes are targeted.
  • the metal oxide particles 93 in the present embodiment have a peak between the minimum diffraction angle and the maximum diffraction angle of the peak generated from a single oxide constituting the metal oxide. I have to.
  • metal oxides having the characteristics shown in FIGS. 3 and 4 have their energy levels between single oxides constituting them. Accordingly, the energy level of the metal oxide particles 93 is also present between the single oxides, and the number of electrons emitted by the Auger effect increases as compared with the case where transition is made from the energy level of magnesium oxide (MgO). Conceivable.
  • the metal oxide particles 93 can exhibit better secondary electron emission characteristics compared to magnesium oxide (MgO) alone, and as a result, the discharge sustaining voltage can be reduced. Therefore, particularly when the partial pressure of xenon (Xe) as the discharge gas is increased in order to increase the luminance, it is possible to reduce the discharge voltage and realize a low-voltage and high-luminance PDP.
  • Xe xenon
  • Table 1 shows the result of the discharge sustaining voltage when the mixed gas (Xe, 15%) of 450 Torr of xenon (Xe) and neon (Ne) is sealed in the PDP in the present embodiment. The result of PDP when the structure of is changed is shown.
  • the discharge sustaining voltage in Table 1 is expressed as a relative value when the comparative example is 100.
  • the metal oxide particles 93 of sample A are metal oxides of magnesium oxide (MgO) and calcium oxide (CaO)
  • the metal oxide particles 93 of sample B are metal oxides of magnesium oxide (MgO) and strontium oxide (SrO).
  • the metal oxide particles 93 of sample C are metal oxides of magnesium oxide (MgO) and barium oxide (BaO)
  • the metal oxide particles 93 of sample D are magnesium oxide (MgO), calcium oxide (CaO), and strontium oxide.
  • the metal oxide by (SrO) and the metal oxide particles 93 of sample E are made of metal oxide by magnesium oxide (MgO), calcium oxide (CaO), and barium oxide (BaO). Further, the comparative example shows a case where the metal oxide particles 93 are magnesium oxide (MgO) alone.
  • the partial pressure of the discharge gas xenon (Xe) is increased from 10% to 15%, the luminance increases by about 30%, but in the comparative example in which the metal oxide particles 93 are magnesium oxide (MgO) alone, The sustaining voltage increases by about 10%.
  • the discharge sustain voltage can be reduced by about 10% to 20% in all of the sample A, the sample B, the sample C, the sample D, and the sample E as compared with the comparative example. Therefore, the discharge start voltage can be set within the normal operation range, and a high-luminance and low-voltage drive PDP can be realized.
  • Calcium oxide (CaO), strontium oxide (SrO), and barium oxide (BaO) are highly reactive by themselves, so that they easily react with impurities, and thus have a problem that the electron emission performance is lowered. It was. However, in this embodiment mode, the structure of these metal oxides reduces the reactivity and forms a crystal structure with few impurities and oxygen vacancies. Therefore, excessive emission of electrons during driving of the PDP is suppressed, and in addition to the effect of achieving both low voltage driving and secondary electron emission performance, the effect of moderate electron retention characteristics is also exhibited. This charge retention characteristic is particularly effective for retaining wall charges stored in the initialization period and preventing a write failure in the write period and performing a reliable write discharge.
  • the agglomerated particles 92 provided on the underlayer 91 in the present embodiment and agglomerated a plurality of magnesium oxide (MgO) crystal particles 92a will be described in detail.
  • Aggregated particles 92 of magnesium oxide (MgO) have been confirmed to have mainly an effect of suppressing the discharge delay in the write discharge and an effect of improving the temperature dependence of the discharge delay. Therefore, in the present embodiment, the aggregated particles 92 are arranged as an initial electron supply unit required at the time of rising of the discharge pulse by utilizing the property that the advanced initial electron emission characteristics are superior to those of the base layer 91.
  • the discharge delay is mainly caused by a shortage of the amount of initial electrons that are triggered from the surface of the underlayer 91 being discharged into the discharge space 16 at the start of discharge. Therefore, in order to contribute to the stable supply of initial electrons to the discharge space 16, the aggregated particles 92 of magnesium oxide (MgO) are dispersedly arranged on the surface of the underlayer 91. As a result, abundant electrons are present in the discharge space 16 at the rise of the discharge pulse, and the discharge delay can be eliminated. Therefore, such initial electron emission characteristics enable high-speed driving with good discharge response even when the PDP 1 has a high definition. In the configuration in which the metal oxide aggregated particles 92 are disposed on the surface of the underlayer 91, in addition to the effect of mainly suppressing the discharge delay in the write discharge, the effect of improving the temperature dependence of the discharge delay is also obtained.
  • MgO magnesium oxide
  • the PDP 1 is constituted by the base layer 91 that exhibits both the low voltage driving and the charge retention effect, and the magnesium oxide (MgO) aggregated particles 92 that exhibits the discharge delay preventing effect.
  • MgO magnesium oxide
  • FIG. 5 is an enlarged view for explaining the aggregated particles 92.
  • the aggregated particles 92 are those in which crystal particles 92a having a predetermined primary particle size are aggregated or necked. In other words, it is not bonded as a solid with a large bonding force, but a plurality of primary particles form an aggregate body due to static electricity, van der Waals force, etc., and due to external stimuli such as ultrasound , Part or all of them are bonded to such a degree that they become primary particles.
  • the particle size of the agglomerated particles 92 is about 1 ⁇ m, and the crystal particles 92a preferably have a polyhedral shape having seven or more surfaces such as a tetrahedron and a dodecahedron.
  • the particle size of the primary particles of the crystal particles 92a can be controlled by the generation conditions of the crystal particles 92a.
  • the particle size can be controlled by controlling the calcining temperature and the calcining atmosphere.
  • the firing temperature can be selected in the range of 700 ° C. to 1500 ° C., but by setting the firing temperature to a relatively high 1000 ° C. or higher, the particle size can be controlled to about 0.3 ⁇ m to 2 ⁇ m. is there.
  • the crystal particles 92a by heating the MgO precursor, a plurality of primary particles are bonded to each other by a phenomenon called agglomeration or necking in the production process, whereby the agglomerated particles 92 can be obtained.
  • FIG. 6 is a diagram showing the relationship between the discharge delay of the PDP and the calcium (Ca) concentration in the protective layer in the present embodiment.
  • the discharge delay and the calcium (93) in the metal oxide particles 93 when the metal oxide particles 93 composed of metal oxides of magnesium oxide (MgO) and calcium oxide (CaO) are used. It shows the relationship with Ca) concentration.
  • the metal oxide particles 93 are composed of a metal oxide composed of magnesium oxide (MgO) and calcium oxide (CaO), and the metal oxide has a diffraction angle at which a peak of magnesium oxide (MgO) occurs in X-ray diffraction analysis. And a diffraction angle at which a peak of calcium oxide (CaO) is generated.
  • FIG. 6 shows a case where only the metal oxide particles 93 are disposed on the underlayer 91 as the protective layer 9 and a case where the metal oxide particles 93 and the agglomerated particles 92 are disposed on the underlayer 91.
  • the delay is shown based on the case where the metal oxide particles 93 are not installed on the base layer 91.
  • the discharge is performed as the calcium (Ca) concentration in the metal oxide particles 93 increases.
  • the discharge delay can be significantly reduced by disposing the aggregated particles 92 on the base layer 91, and the discharge is performed even if the calcium (Ca) concentration in the metal oxide particles 93 is increased. It can be seen that the delay hardly increases.
  • Prototype 1 is a PDP in which a protective layer 9 made only of an underlying layer 91 of magnesium oxide (MgO) is formed.
  • Prototype 2 is a protective layer 9 made only of an underlying layer 91 in which magnesium oxide (MgO) is doped with impurities such as Al and Si.
  • Prototype 3 is a PDP formed with a protective layer 9 in which only primary particles of magnesium oxide (MgO) crystal particles 92a are dispersed and deposited on a base layer 91 made of magnesium oxide (MgO).
  • the prototype 4 is the PDP 1 in the embodiment, and the above-described sample A is used as the protective layer 9.
  • the protective layer 9 includes a base layer 91 made of magnesium oxide (MgO), aggregated particles 92 obtained by aggregating crystal particles 92a on the base layer 91, and magnesium oxide (MgO) and calcium oxide (CaO).
  • the metal oxide particles 93 are attached so as to be distributed almost uniformly over the entire surface.
  • the metal oxide particle 93 is set so that a peak exists between the minimum diffraction angle and the maximum diffraction angle of the peak generated from a single oxide constituting the metal oxide particle 93 in the X-ray diffraction analysis. Yes.
  • the minimum diffraction angle in this case is 32.2 degrees for calcium oxide (CaO)
  • the maximum diffraction angle is 36.9 degrees for magnesium oxide (MgO)
  • the peak of the diffraction angle of the metal oxide particles 93 is 36.degree. It exists to be at once.
  • the electron emission performance is a numerical value indicating that the larger the electron emission amount, the greater the amount of electron emission.
  • the initial electron emission amount can be measured by a method of measuring the amount of electron current emitted from the surface by irradiating the surface with ions or an electron beam.
  • the evaluation of the surface of the front plate 2 of the PDP 1 can be performed nondestructively. With difficulty. Therefore, the method described in JP 2007-48733 A was used.
  • a numerical value called a statistical delay time which is a measure of the likelihood of occurrence of discharge, is measured, and when the reciprocal is integrated, a numerical value corresponding to the initial electron emission amount is obtained.
  • the delay time at the time of discharge means the time of discharge delay when the discharge is delayed from the rising edge of the pulse, and the discharge delay is the time when the initial electrons that trigger when the discharge is started are discharged from the surface of the protective layer 9 to the discharge space. It is considered as a main factor that it is difficult to be released into the inside.
  • a voltage value of a voltage (hereinafter referred to as a Vscn lighting voltage) applied to a scan electrode necessary for suppressing a charge emission phenomenon when manufactured as a PDP was used as an index. That is, a lower Vscn lighting voltage indicates a higher charge retention capability.
  • a voltage value of a voltage hereinafter referred to as a Vscn lighting voltage
  • an element having a withstand voltage of about 150 V is used as a semiconductor switching element such as a MOSFET for sequentially applying a scanning voltage to the panel, and the Vscn lighting voltage is 120 V or less in consideration of variation due to temperature. It is desirable to keep it at a minimum.
  • FIG. 7 is a diagram showing the results of examining the electron emission performance and lighting voltage of the PDP in the present embodiment.
  • the prototype 4 in which the aggregated particles 92 obtained by aggregating the magnesium oxide (MgO) crystal particles 92a are dispersed on the ground layer 91 in the present embodiment and uniformly distributed over the entire surface is as follows.
  • the Vscn lighting voltage can be reduced to 120 V or lower, and the electron emission performance is much better than that of the prototype 1 in the case of a protective layer made only of magnesium oxide (MgO). be able to.
  • the electron emission ability and the charge retention ability of the protective layer of the PDP are contradictory.
  • the Vscn lighting voltage also increases.
  • the electron emission capability is 8 times or more compared to the prototype 1 using the protective layer 9 made of only magnesium oxide (MgO). It has the characteristics, and the charge holding ability can be obtained with a Vscn lighting voltage of 120 V or less. Therefore, it is useful for PDPs with a large number of scanning lines and a small cell size due to high definition, satisfying both electron emission capability and charge retention capability, and reducing discharge delay and good image display Can be realized.
  • MgO magnesium oxide
  • the particle size of the magnesium oxide (MgO) crystal particles 92a used in the protective layer 9 of the PDP 1 according to the present embodiment will be described in detail.
  • the particle diameter means an average particle diameter
  • the average particle diameter means a volume cumulative average diameter (D50).
  • FIG. 8 is a characteristic diagram showing experimental results obtained by examining the electron emission performance by changing the grain size of the crystal particles 92a in the prototype 4 of the present embodiment described in FIG.
  • the particle size of the crystal particle 92a was measured by observing the crystal particle 92a with an SEM. As shown in FIG. 8, it can be seen that when the particle size is reduced to about 0.3 ⁇ m, the electron emission performance is lowered, and when it is approximately 0.9 ⁇ m or more, high electron emission performance is obtained.
  • the number of crystal particles 92a per unit surface on the base layer 91 is large, but it is in close contact with the protective layer 9 of the front plate 2.
  • the crystal particles 92a are present in the portion corresponding to the top of the partition wall 14 of the back plate 10, so that the top of the partition wall 14 is damaged, and the material rides on the phosphor layer 15, thereby the corresponding cell. It has been found that a phenomenon occurs in which the LED does not turn on and off normally. The phenomenon of the partition wall breakage is unlikely to occur unless the crystal particle 92a is present at the portion corresponding to the top of the partition wall 14.
  • the probability of the breakage of the partition wall 14 increases as the number of crystal particles 92a attached increases. From this point of view, when the crystal particle diameter is increased to about 2.5 ⁇ m, the probability of partition wall breakage increases rapidly, and when the crystal particle diameter is smaller than 2.5 ⁇ m, the probability of partition wall breakage is kept relatively small. be able to.
  • the electron emission performance is high, and the charge holding ability can be obtained with a Vscn lighting voltage of 120 V or less.
  • magnesium oxide (MgO) particles as the crystal particles 92a.
  • other single crystal particles have high electron emission performance similar to magnesium oxide (MgO). Since the same effect can be obtained even if crystal particles made of metal oxide such as Ba and Al are used, the particle type is not limited to magnesium oxide (MgO).
  • the base layer 91 made of magnesium oxide (MgO) is used, but in the PDP in the second embodiment, it is selected from the group consisting of magnesium oxide, calcium oxide, strontium oxide, and barium oxide.
  • the underlayer 91 containing at least two metal oxides is used.
  • the protective layer 9 is composed of an underlayer 91 formed on the dielectric layer 8, aggregated particles 92 in which a plurality of magnesium oxide (MgO) crystal particles 92 a deposited on the underlayer 91 are aggregated, and metal oxide particles 93. It is configured. Further, the base layer 91 and the metal oxide particles 93 are made of a metal composed of at least two oxides selected from magnesium oxide (MgO), calcium oxide (CaO), strontium oxide (SrO), and barium oxide (BaO). The metal oxide is formed by an oxide, and in the X-ray diffraction analysis, a peak is present between the minimum diffraction angle and the maximum diffraction angle generated from a single oxide constituting the metal oxide having a specific orientation plane. ing.
  • MgO magnesium oxide
  • CaO calcium oxide
  • SrO strontium oxide
  • BaO barium oxide
  • the diffraction angle peak of the X-ray diffraction analysis on the specific orientation plane of the metal oxide particle 93 is the X-ray on the specific orientation plane of one of the two metal oxides contained in the metal oxide particle 93. It exists between the diffraction angle peak of diffraction analysis and the diffraction angle peak of X-ray diffraction analysis in a specific orientation plane of the other metal oxide.
  • the diffraction angle peak of the X-ray diffraction analysis on the specific orientation plane of the base layer 91 shows that the X-ray diffraction analysis on the specific orientation plane of one of the two metal oxides included in the base layer 91. It exists between the folding peak and the diffraction peak of the X-ray diffraction analysis in the specific orientation plane of the other metal oxide.
  • the X-ray diffraction result when the single component constituting the base layer 91 and the metal oxide particles 93 is two components is the X-ray diffraction result of the metal oxide particles 93 as shown in FIG. The same.
  • FIG. 3 also shows the results of X-ray diffraction analysis of magnesium oxide (MgO) alone, calcium oxide (CaO) alone, strontium oxide (SrO) alone, and barium oxide (BaO) alone.
  • MgO magnesium oxide
  • CaO calcium oxide
  • SrO strontium oxide
  • BaO barium oxide
  • the horizontal axis represents the Bragg diffraction angle (2 ⁇ ), and the vertical axis represents the intensity of the X-ray diffraction wave.
  • the unit of the diffraction angle is shown in degrees when one round is 360 degrees, and the intensity is shown in an arbitrary unit (arbitrary unit).
  • the crystal orientation plane which is a specific orientation plane is shown in parentheses. As shown in FIG. 3, in the crystal orientation plane (111), the diffraction angle is 32.2 degrees for calcium oxide (CaO) alone, the diffraction angle is 36.9 degrees for magnesium oxide (MgO) alone, and strontium oxide (SrO) alone. Shows a peak at a diffraction angle of 30.0 degrees, and barium oxide (BaO) alone has a peak at a diffraction angle of 27.9 degrees.
  • the base layer 91 and the metal oxide particles 93 of the protective layer 9 are selected from magnesium oxide (MgO), calcium oxide (CaO), strontium oxide (SrO), and barium oxide (BaO).
  • the metal oxide is formed of at least two oxides.
  • FIG. 3 shows an X-ray diffraction result in the case where the single component constituting the base layer 91 and the metal oxide particles 93 is two components. That is, the X-ray diffraction results of the base layer 91 and the metal oxide particles 93 formed using a simple substance of magnesium oxide (MgO) and calcium oxide (CaO) are shown as A point, magnesium oxide (MgO) and strontium oxide (SrO).
  • the X-ray diffraction results of the base layer 91 and the metal oxide particles 93 formed using a simple substance are B points, and the base layer 91 and the metal oxide formed using a simple substance of magnesium oxide (MgO) and barium oxide (BaO).
  • An X-ray diffraction result of the object particle 93 is indicated by a C point.
  • the point A is a diffraction angle of 36.9 degrees of the magnesium oxide (MgO) alone, which is the maximum diffraction angle of the single oxide, in the crystal orientation plane (111) as the specific orientation plane, and the oxidation which is the minimum diffraction angle.
  • MgO magnesium oxide
  • a peak exists at a diffraction angle of 36.1 degrees, which is between the diffraction angle of 32.2 degrees of calcium (CaO) alone.
  • peaks at points B and C exist at 35.7 degrees and 35.4 degrees between the maximum diffraction angle and the minimum diffraction angle, respectively.
  • the X-ray diffraction result when the single component constituting the base layer 91 and the metal oxide particles 93 is three or more components is as follows. As shown in FIG. 4, the single component constituting the metal oxide particles 93 is three or more components. This is the same as the X-ray diffraction result for. That is, FIG. 4 shows the results when magnesium oxide (MgO), calcium oxide (CaO), and strontium oxide (SrO) are used as the single component, point D, magnesium oxide (MgO), calcium oxide (CaO), and oxidation. The results when barium (BaO) is used are indicated by point E, and the results when calcium oxide (CaO), strontium oxide (SrO) and barium oxide (BaO) are used are indicated by point F.
  • MgO magnesium oxide
  • CaO calcium oxide
  • BaO barium oxide
  • the point D is a crystal orientation plane (111) as a specific orientation plane, and a diffraction angle of 36.9 degrees of magnesium oxide (MgO) as a maximum diffraction angle of a single oxide and an oxidation level as a minimum diffraction angle.
  • MgO magnesium oxide
  • a peak exists at a diffraction angle of 33.4 degrees, which is between the diffraction angle of 30.0 degrees of strontium (SrO) alone.
  • peaks at points E and F exist at 32.8 degrees and 30.2 degrees between the maximum diffraction angle and the minimum diffraction angle, respectively.
  • the base layer 91 and the metal oxide particles 93 of the PDP 1 in the present embodiment may be two components or three components as a single component, and the X of the metal oxide constituting the base layer 91 and the metal oxide particles 93.
  • a peak exists between the minimum diffraction angle and the maximum diffraction angle of a peak generated from a single oxide constituting a metal oxide having a specific orientation plane.
  • the diffraction angle peak of the X-ray diffraction analysis on the specific orientation plane of the metal oxide particle 93 is the X-ray on the specific orientation plane of one of the two metal oxides contained in the metal oxide particle 93. It exists between the diffraction angle peak of diffraction analysis and the diffraction angle peak of X-ray diffraction analysis in a specific orientation plane of the other metal oxide.
  • the diffraction angle peak of the X-ray diffraction analysis on the specific orientation plane of the base layer 91 shows that the X-ray diffraction analysis on the specific orientation plane of one of the two metal oxides included in the base layer 91. It exists between the folding peak and the diffraction peak of the X-ray diffraction analysis in the specific orientation plane of the other metal oxide.
  • (111) has been described as the crystal orientation plane as the specific orientation plane, but the peak position of the metal oxide is the same as described above even when other crystal orientation planes are targeted.
  • the base layer 91 and the metal oxide particles 93 in the present embodiment have a peak between the minimum diffraction angle and the maximum diffraction angle of the peak generated from a single oxide constituting the metal oxide. Is to exist.
  • metal oxides having the characteristics shown in FIGS. 3 and 4 have their energy levels between single oxides constituting them. Accordingly, the energy levels of the base layer 91 and the metal oxide particles 93 are also present between the single oxides, and the number of electrons emitted by the Auger effect is compared with the case where the energy level transitions from the energy level of magnesium oxide (MgO). Will increase.
  • MgO magnesium oxide
  • the base layer 91 and the metal oxide particles 93 can exhibit better secondary electron emission characteristics compared to magnesium oxide (MgO) alone, and as a result, the discharge sustaining voltage can be reduced. it can. Therefore, particularly when the partial pressure of xenon (Xe) as the discharge gas is increased in order to increase the luminance, it is possible to reduce the discharge voltage and realize a low-voltage and high-luminance PDP.
  • Xe xenon
  • the underlayer 91 and the metal oxide particles 93 As shown in Table 1, the result of PDP when the configuration is changed is the same as when the configuration of the metal oxide particles 93 is changed.
  • Sample A underlayer 91 and metal oxide particles 93 are metal oxides of magnesium oxide (MgO) and calcium oxide (CaO), and sample B underlayer 91 and metal oxide particles 93 are oxidized with magnesium oxide (MgO).
  • the metal oxide of strontium (SrO), the base layer 91 of sample C and the metal oxide particles 93 are the metal oxide of magnesium oxide (MgO) and barium oxide (BaO), the base layer 91 of sample D and the metal oxide particles 93 Is a metal oxide of magnesium oxide (MgO), calcium oxide (CaO) and strontium oxide (SrO),
  • the underlayer 91 and metal oxide particles 93 of sample E are magnesium oxide (MgO), calcium oxide (CaO) and oxide Consists of metal oxides from barium (BaO)In the comparative example, the base layer 91 and the metal oxide particles 93 are made of magnesium oxide (MgO) alone.
  • the partial pressure of the discharge gas xenon (Xe) is increased from 10% to 15%, the luminance increases by about 30%.
  • the underlying layer 91 and the metal oxide particles 93 are magnesium oxide (MgO) alone.
  • the discharge sustaining voltage increases by about 10%.
  • the discharge sustain voltage can be reduced by about 10% to 20% in all of the sample A, the sample B, the sample C, the sample D, and the sample E as compared with the comparative example. Therefore, the discharge start voltage can be set within the normal operation range, and a high-luminance and low-voltage drive PDP can be realized.
  • Calcium oxide (CaO), strontium oxide (SrO), and barium oxide (BaO) are highly reactive by themselves, so that they easily react with impurities, and thus have a problem that the electron emission performance is lowered. It was. However, in this embodiment mode, the structure of these metal oxides reduces the reactivity and forms a crystal structure with few impurities and oxygen vacancies. Therefore, excessive emission of electrons during driving of the PDP is suppressed, and in addition to the effect of achieving both low voltage driving and secondary electron emission performance, the effect of moderate charge retention characteristics is also exhibited. This charge retention characteristic is particularly effective for retaining wall charges stored in the initialization period and preventing a write failure in the write period and performing a reliable write discharge.
  • the foundation layer 91 and the metal oxide particle 93 showed the thing of the same kind structure as an Example this time, it is not limited to these, The foundation layer 91 and the metal oxide particle 93 are a different kind of combination. Even if it is made, the same effect can be obtained.
  • the agglomerated particles 92 provided on the underlayer 91 in the present embodiment and agglomerated a plurality of magnesium oxide (MgO) crystal particles 92a will be described in detail.
  • Aggregated particles 92 of magnesium oxide (MgO) have been confirmed to have mainly an effect of suppressing the discharge delay in the write discharge and an effect of improving the temperature dependence of the discharge delay. Therefore, in the present embodiment, the aggregated particles 92 are arranged as an initial electron supply unit required at the time of rising of the discharge pulse by utilizing the property that the advanced initial electron emission characteristics are superior to those of the base layer 91.
  • the discharge delay is mainly caused by a shortage of the amount of initial electrons that are triggered from the surface of the underlayer 91 being discharged into the discharge space 16 at the start of discharge. Therefore, in order to contribute to the stable supply of initial electrons to the discharge space 16, the aggregated particles 92 of magnesium oxide (MgO) are dispersedly arranged on the surface of the underlayer 91. As a result, abundant electrons are present in the discharge space 16 at the rise of the discharge pulse, and the discharge delay can be eliminated. Therefore, such initial electron emission characteristics enable high-speed driving with good discharge response even when the PDP 1 has a high definition. In the configuration in which the metal oxide aggregated particles 92 are disposed on the surface of the underlayer 91, in addition to the effect of mainly suppressing the discharge delay in the write discharge, the effect of improving the temperature dependence of the discharge delay is also obtained.
  • MgO magnesium oxide
  • the PDP 1 includes the base layer 91 that achieves both low voltage driving and charge retention, and the magnesium oxide (MgO) agglomerated particles 92 that have the effect of preventing discharge delay. Therefore, as a whole PDP 1, high-definition PDP can be driven at a high speed with a low voltage, and high-quality image display performance with reduced lighting failure can be realized.
  • MgO magnesium oxide
  • the discharge delay of the PDP and the calcium (Ca) concentration in the protective layer 9 when the base layer 91 and the metal oxide particles 93 containing magnesium oxide (MgO) and calcium oxide (CaO) are used.
  • FIG. 6 shows the relationship between the discharge delay of the PDP and the calcium (Ca) concentration in the protective layer 9 when the base layer 91 and the metal oxide particles 93 made of magnesium oxide (MgO) are used. It is the same as the figure which shows the relationship.
  • the base layer 91 and the metal oxide particles 93 are composed of a metal oxide composed of magnesium oxide (MgO) and calcium oxide (CaO).
  • MgO magnesium oxide
  • CaO calcium oxide
  • FIG. 6 shows the case where only the base layer 91 and the metal oxide particles 93 are used as the protective layer 9, and the case where the aggregated particles 92 and the metal oxide particles 93 are arranged on the base layer 91.
  • the case where calcium (Ca) is not contained in the base layer 91 is shown as a reference.
  • the base layer 91 and the metal oxide particles 93 are arranged on the base layer 91.
  • the discharge delay increases as the calcium (Ca) concentration increases.
  • the discharge delay is greatly reduced. It can be seen that the discharge delay hardly increases even when the calcium (Ca) concentration increases.
  • Prototype 1 is a PDP in which a protective layer 9 made only of an underlying layer 91 of magnesium oxide (MgO) is formed.
  • Prototype 2 is a protective layer 9 made only of an underlying layer 91 in which magnesium oxide (MgO) is doped with impurities such as Al and Si.
  • Prototype 3 is a PDP formed with a protective layer 9 in which only primary particles of magnesium oxide (MgO) crystal particles 92a are dispersed and deposited on a base layer 91 made of magnesium oxide (MgO).
  • the prototype 4 is the PDP 1 in the present embodiment, and the above-described sample A is used as the protective layer 9. That is, the protective layer 9 includes an underlayer 91 composed of magnesium oxide (MgO) and calcium oxide (CaO), aggregated particles 92 obtained by aggregating crystal particles 92a on the underlayer 91, and magnesium oxide (MgO). Metal oxide particles 93 composed of calcium oxide (CaO) are adhered so as to be distributed almost uniformly over the entire surface. The underlayer 91 and the metal oxide particles 93 are between the minimum diffraction angle and the maximum diffraction angle of the peak generated from a single oxide constituting the underlayer 91 and the metal oxide particles 93 in the X-ray diffraction analysis.
  • MgO magnesium oxide
  • CaO calcium oxide
  • the minimum diffraction angle is 32.2 degrees of calcium oxide (CaO)
  • the maximum diffraction angle is 36.9 degrees of magnesium oxide (MgO)
  • the diffraction angles of the base layer 91 and the metal oxide particles 93 are A peak is present at 36.1 degrees.
  • FIG. 9 is a diagram showing the results of examining the electron emission performance and lighting voltage of the PDP in the present embodiment.
  • the aggregated particles 92 obtained by aggregating the magnesium oxide (MgO) crystal particles 92a and the metal oxide particles 93 are sprayed on the underlayer 91 in the present embodiment to be uniformly distributed over the entire surface.
  • the prototype 4 can be made to have a Vscn lighting voltage of 120 V or less, and the electron emission performance is much higher than that of the prototype 1 in the case of a protective layer made only of magnesium oxide (MgO). Excellent characteristics can be obtained.
  • the electron emission capability is 8 times or more compared to the prototype 1 using the protective layer 9 made of only magnesium oxide (MgO). It has the characteristics, and the charge holding ability can be obtained with a Vscn lighting voltage of 120 V or less. Therefore, it is useful for PDPs with a large number of scanning lines and a small cell size due to high definition, satisfying both electron emission capability and charge retention capability, and reducing discharge delay and good image display Can be realized.
  • MgO magnesium oxide
  • Prototype 4 in the present embodiment a characteristic diagram showing an experimental result of examining the electron emission performance by changing the grain size of crystal particle 92a is shown in FIG. 8 in Prototype 4 in Embodiment 1. This is the same as the characteristic diagram showing the experimental results of examining the electron emission performance by changing the grain size of the crystal particles 92a.
  • the aggregated particles 92 having a particle size in the range of 0.9 ⁇ m to 2 ⁇ m are used as the aggregated particles 92, the above-described effects can be stably obtained. all right.
  • the electron emission performance is high, and the charge holding ability can be obtained with a Vscn lighting voltage of 120 V or less.
  • magnesium oxide (MgO) particles as the crystal particles 92a.
  • other single crystal particles have high electron emission performance similar to magnesium oxide (MgO). Since the same effect can be obtained even if crystal particles made of metal oxide such as Ba and Al are used, the particle type is not limited to magnesium oxide (MgO).
  • the present invention is useful for realizing a PDP having high image quality display performance and low power consumption.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Gas-Filled Discharge Tubes (AREA)

Abstract

プラズマディスプレイパネルにおいて、保護層(9)の下地層(91)には、酸化マグネシウムの結晶粒子(92a)が複数個凝集した凝集粒子(92)及び金属酸化物粒子(93)が全面に亘って分散配置されている。金属酸化物粒子(93)は、酸化マグネシウム、酸化カルシウム、酸化ストロンチウム、及び酸化バリウムからなる群の中から選ばれる少なくとも2つの金属酸化物を含んでいる。金属酸化物粒子(93)の特定方位面におけるX線回折分析の回折角ピークが、金属酸化物粒子(93)に含まれる2つの金属酸化物の内、一方の金属酸化物の特定方位面におけるX線回折分析の回折角ピークと、他方の金属酸化物の特定方位面におけるX線回折分析の回折角ピークとの間にある。

Description

プラズマディスプレイパネル
 本発明は、表示デバイスなどに用いるプラズマディスプレイパネルに関する。
 プラズマディスプレイパネル(以下、PDPと呼ぶ)は、高精細化、大画面化の実現が可能であることから、100インチクラスのテレビなどが製品化されている。近年、PDPにおいては、従来のNTSC方式に比べて走査線数が2倍以上の高精細テレビへの適用が進められており、エネルギー問題に対応してさらなる消費電力低減への取り組みや、環境問題に配慮した鉛成分を含まないPDPへの要求なども高まっている。
 PDPは、基本的には、前面板と背面板とで構成されている。前面板は、フロート法により製造された硼硅酸ナトリウム系ガラスのガラス基板と、ガラス基板の一方の主面上に形成されたストライプ状の透明電極とバス電極とで構成される表示電極と、表示電極を覆ってコンデンサとしての働きをする誘電体層と、誘電体層上に形成された酸化マグネシウム(MgO)からなる保護層とで構成されている。
 一方、背面板は、ガラス基板と、その一方の主面上に形成されたストライプ状のアドレス電極と、アドレス電極を覆う下地誘電体層と、下地誘電体層上に形成された隔壁と、各隔壁間に形成された赤色、緑色及び青色それぞれに発光する蛍光体層とで構成されている。
 前面板と背面板とはその電極形成面側を対向させて気密封着され、隔壁によって仕切られた放電空間にネオン(Ne)-キセノン(Xe)の放電ガスが400Torr~600Torr(5.3×10Pa~8.0×10Pa)の圧力で封入されている。PDPは、表示電極に映像信号電圧を選択的に印加することによって放電させ、その放電によって発生した紫外線が各色蛍光体層を励起して赤色、緑色、青色の発光をさせてカラー画像表示を実現している。
 また、このようなPDPの駆動方法としては、書き込みをしやすい状態に壁電荷を調整する初期化期間と、入力画像信号に応じて書き込み放電を行う書き込み期間と、書き込みが行われた放電空間で維持放電を生じさせることによって表示を行う維持期間を有する駆動方法が一般的に用いられている。これらの各期間を組み合わせた期間(サブフィールド)が、画像の1コマに相当する期間(1フィールド)内で複数回繰り返されることによってPDPの階調表示を行っている。
 このようなPDPにおいて、前面板の誘電体層上に形成される保護層の役割としては、放電によるイオン衝撃から誘電体層を保護すること、アドレス放電を発生させるための初期電子を放出することなどがあげられる。イオン衝撃から誘電体層を保護することは、放電電圧の上昇を防ぐ重要な役割であり、またアドレス放電を発生させるための初期電子を放出することは、画像のちらつきの原因となるアドレス放電ミスを防ぐ重要な役割である。
 保護層からの初期電子の放出数を増加させて画像のちらつきを低減するために、例えば、酸化マグネシウム(MgO)保護層に不純物を添加する例や、酸化マグネシウム(MgO)粒子を酸化マグネシウム(MgO)保護層上に形成した例が開示されている(例えば、特許文献1、2、3、4、5など参照)。
 近年、テレビは高精細化が進んでおり、市場では低コスト・低消費電力・高輝度のフルHD(ハイ・ディフィニション)(1920×1080画素:プログレッシブ表示)PDPが要求されている。保護層からの電子放出特性はPDPの画質を決定するため、電子放出特性を制御することが非常に重要である。
 すなわち、高精細化された画像を表示するためには、1フィールドの時間が一定にもかかわらず書き込みを行う画素の数が増えるため、サブフィールド中の書き込み期間において、アドレス電極へ印加するパルスの幅を狭くする必要が生じる。しかしながら、電圧パルスの立ち上がりから放電空間内で放電が発生するまでには放電遅れと呼ばれるタイムラグの存在があるため、パルスの幅が狭くなれば書き込み期間内で放電が終了できる確率が低くなってしまう。その結果、点灯不良が生じ、ちらつきといった画質性能の低下という問題も生じてしまう。
 また、消費電力低減のために放電による発光効率を向上させることを目的として、蛍光体の発光に寄与する放電ガスの一成分であるキセノン(Xe)の放電ガス全体における含有率をあげると、やはり放電電圧が高くなるとともに、放電遅れが大きくなって点灯不良などの画質低下が発生するという問題が生じてしまう。
 このようにPDPの高精細化や低消費電力化を進めるにあたっては、放電電圧が高くならないようにすることと、さらに、点灯不良を低減して画質を向上させることを、同時に実現させなければならないという課題があった。
 保護層に不純物を混在させることで電子放出特性を改善しようとする試みが行われている。しかしながら、保護層に不純物を混在させて電子放出特性を改善した場合には、保護層表面に電荷を蓄積させてメモリー機能として使用しようとする際に、電荷が時間とともに減少する減衰率が大きくなってしまうため、これを抑えるための印加電圧を大きくする必要があるなどの対策が必要になる。
 一方、酸化マグネシウム(MgO)保護層上に酸化マグネシウム(MgO)結晶粒子を形成する例では、放電遅れを小さくして点灯不良を低減することは可能であるが、放電電圧を低減することができないといった課題を有していた。
特開2002-260535号公報 特開平11-339665号公報 特開2006-59779号公報 特開平8-236028号公報 特開平10-334809号公報
 本発明のPDPは、前面板と、この前面板と対向配置された背面板と、を備え、前面板は、誘電体層と、この誘電体層を覆う保護層とを有し、背面板は、下地誘電体層と、この下地誘電体層上に形成された複数の隔壁と、下地誘電体層上及び隔壁の側面に形成された蛍光体層とを有し、保護層は、誘電体層上に形成された下地層を含み、この下地層には、酸化マグネシウムの結晶粒子が複数個凝集した凝集粒子及び金属酸化物粒子が全面に亘って分散配置され、金属酸化物粒子は、酸化マグネシウム、酸化カルシウム、酸化ストロンチウム、及び酸化バリウムからなる群の中から選ばれる少なくとも2つの金属酸化物を含み、金属酸化物粒子の特定方位面におけるX線回折分析の回折角ピークが、金属酸化物粒子に含まれる2つの金属酸化物の内、一方の金属酸化物の特定方位面におけるX線回折分析の回折角ピークと、他方の金属酸化物の特定方位面におけるX線回折分析の回折角ピークとの間にある構成である。
 このような構成によれば、保護層における二次電子放出特性を向上させ、輝度を高めるために放電ガスのキセノン(Xe)ガス分圧を大きくした場合でも放電開始電圧を低減し、さらに、放電遅れを低減して高精細画像表示でも点灯不良など発生しない、表示性能に優れたPDPを実現することができ、高精細画像でも高輝度で低電圧駆動が可能なPDPを実現することができる。
図1は、一実施の形態におけるPDPの構造を示す斜視図である。 図2は、同PDPの前面板の構成を示す断面図である。 図3は、同PDPの下地層におけるX線回折結果を示す図である。 図4は、同PDPの他の構成の下地層におけるX線回折結果を示す図である。 図5は、同PDPの凝集粒子を説明するための拡大図である。 図6は、同PDPの放電遅れと保護層中のカルシウム(Ca)濃度との関係を示す図である。 図7は、同PDPの電子放出性能と点灯電圧について調べた結果を示す図である。 図8は、同PDPに用いた結晶粒子の粒径と電子放出性能の関係を示す特性図である。 図9は、同PDPの電子放出性能と点灯電圧について調べた結果を示す図である。
 以下、一実施の形態におけるPDPについて図面を用いて説明する。
 (実施の形態1)
 以下、実施の形態1におけるPDPについて説明する。
 図1は一実施の形態におけるPDPの構造を示す斜視図である。PDP1の基本構造は、一般的な交流面放電型PDPと同様である。図1に示すように、PDP1は前面ガラス基板3などよりなる前面板2と、背面ガラス基板11などよりなる背面板10とが対向して配置され、その外周部をガラスフリットなどからなる封着材によって気密封着されている。封着されたPDP1内部の放電空間16には、キセノン(Xe)とネオン(Ne)などの放電ガスが400Torr~600Torr(5.3×10Pa~8.0×10Pa)の圧力で封入されている。
 前面板2の前面ガラス基板3上には、走査電極4及び維持電極5よりなる一対の帯状の表示電極6とブラックストライプ(遮光層)7が互いに平行にそれぞれ複数列配置されている。前面ガラス基板3上には表示電極6と遮光層7とを覆うように電荷を保持してコンデンサとしての働きをする誘電体層8が形成され、さらにその上に保護層9が形成されている。
 また、背面板10の背面ガラス基板11上には、前面板2の走査電極4及び維持電極5と直交する方向に、複数の帯状のアドレス電極12が互いに平行に配置され、これを下地誘電体層13が被覆している。さらに、アドレス電極12間の下地誘電体層13上には放電空間16を区切る所定の高さの隔壁14が形成されている。隔壁14間の溝ごとに、紫外線によって赤色、緑色及び青色にそれぞれ発光する蛍光体層15が順次塗布して形成されている。走査電極4及び維持電極5とアドレス電極12とが交差する位置に放電空間が形成され、表示電極6方向に並んだ赤色、緑色、青色の蛍光体層15を有する放電空間がカラー表示のための画素になる。
 図2は、本実施の形態におけるPDP1の前面板2の構成を示す断面図であり、図2は図1と上下反転させて示している。図2に示すように、フロート法などにより製造された前面ガラス基板3に、走査電極4と維持電極5よりなる表示電極6と遮光層7がパターン形成されている。走査電極4と維持電極5はそれぞれインジウムスズ酸化物(ITO)や酸化スズ(SnO2)などからなる透明電極4a、5aと、透明電極4a、5a上に形成された金属バス電極4b、5bとにより構成されている。金属バス電極4b、5bは透明電極4a、5aの長手方向に導電性を付与する目的として用いられ、銀(Ag)材料を主成分とする導電性材料によって形成されている。
 誘電体層8は、前面ガラス基板3上に形成されたこれらの透明電極4a、5aと金属バス電極4b、5bと遮光層7を覆って設けた第1誘電体層81と、第1誘電体層81上に形成された第2誘電体層82の少なくとも2層構成とし、さらに第2誘電体層82上に保護層9が形成されている。
 保護層9は、誘電体層8上に形成した酸化マグネシウムからなる下地層91と、下地層91上に酸化マグネシウム(MgO)の結晶粒子92aが複数個凝集させた凝集粒子92、及び酸化マグネシウム(MgO)、酸化カルシウム(CaO)、酸化ストロンチウム(SrO)、及び酸化バリウム(BaO)から選ばれる少なくとも2つ以上の酸化物からなる金属酸化物粒子93により構成している。
 次に、このようなPDP1の製造方法について説明する。まず、前面ガラス基板3上に、走査電極4及び維持電極5と遮光層7とを形成する。走査電極4と維持電極5とを構成する透明電極4a、5aと金属バス電極4b、5bは、フォトリソグラフィ法などを用いてパターニングして形成される。透明電極4a、5aは薄膜プロセスなどを用いて形成され、金属バス電極4b、5bは銀(Ag)材料を含むペーストを所定の温度で焼成して固化している。また、遮光層7も同様に、黒色顔料を含むペーストをスクリーン印刷する方法や黒色顔料をガラス基板の全面に形成した後、フォトリソグラフィ法を用いてパターニングし、焼成することにより形成される。
 次に、走査電極4、維持電極5及び遮光層7を覆うように前面ガラス基板3上に誘電体ペーストをダイコート法などにより塗布して誘電体ペースト(誘電体材料)層を形成する。誘電体ペーストを塗布した後、所定の時間放置することによって塗布された誘電体ペースト表面がレベリングされて平坦な表面になる。その後、誘電体ペースト層を焼成固化することにより、走査電極4、維持電極5及び遮光層7を覆う誘電体層8が形成される。なお、誘電体ペーストはガラス粉末などの誘電体材料、バインダ及び溶剤を含む塗料である。
 次に、誘電体層8上に下地層91を形成する。
 下地層91は、酸化マグネシウム(MgO)のペレットを用いて薄膜成膜方法によって形成される。薄膜成膜方法としては、電子ビーム蒸着法、スパッタリング法、イオンプレーティング法などの公知の方法を適用できる。一例として、スパッタリング法では1Pa、蒸着法の一例である電子ビーム蒸着法では0.1Paが実際上取り得る圧力の上限と考えられる。
 また、下地層91の成膜時の雰囲気としては、水分付着や不純物の吸着を防止するために外部と遮断された密閉状態で、成膜時の雰囲気を調整することにより、所定の電子放出特性を有する金属酸化物よりなる下地層91を形成することができる。
 次に、下地層91上に付着形成する酸化マグネシウム(MgO)の結晶粒子92aの凝集粒子92について述べる。これらの結晶粒子92aは、以下に示す気相合成法または前駆体焼成法のいずれかで製造することができる。
 気相合成法では、不活性ガスが満たされた雰囲気下で純度が99.9%以上のマグネシウム金属材料を加熱し、さらに、雰囲気に酸素を少量導入することによって、マグネシウムを直接酸化させ、酸化マグネシウム(MgO)の結晶粒子92aを作製することができる。
 一方、前駆体焼成法では、以下の方法によって結晶粒子92aを作製することができる。前駆体焼成法では、酸化マグネシウム(MgO)の前駆体を700℃以上の高温で均一に焼成し、これを徐冷して酸化マグネシウム(MgO)の結晶粒子92aを得ることができる。前駆体としては、例えば、マグネシウムアルコキシド(Mg(OR)2)、マグネシウムアセチルアセトン(Mg(acac)2)、水酸化マグネシウム(Mg(OH)2)、炭酸マグネシウム(MgCO2)、塩化マグネシウム(MgCl2)、硫酸マグネシウム(MgSO4)、硝酸マグネシウム(Mg(NO32)、シュウ酸マグネシウム(MgC24)のうちのいずれか1種以上の化合物を選ぶことができる。なお選択した化合物によっては、通常、水和物の形態をとることもあるがこのような水和物を用いてもよい。
 これらの化合物は、焼成後に得られる酸化マグネシウム(MgO)の純度が99.95%以上、望ましくは99.98%以上になるように調整する。これらの化合物中に、各種アルカリ金属、B、Si、Fe、Alなどの不純物元素が一定量以上混じっていると、熱処理時に不要な粒子間癒着や焼結を生じ、高結晶性の酸化マグネシウム(MgO)の結晶粒子92aを得にくいためである。このため、不純物元素を除去することなどにより予め前駆体を調整することが必要となる。
 次に、下地層91上に付着形成する酸化マグネシウム(MgO)、酸化カルシウム(CaO)、酸化ストロンチウム(SrO)、及び酸化バリウム(BaO)から選ばれる少なくとも2つ以上の酸化物からなる金属酸化物粒子93について述べる。金属酸化物粒子93は、例えば、気相合成法により得ることが出来る。不活性ガスが満たされた雰囲気下で、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)、及びバリウム(Ba)から選ばれる2種以上の金属材料を同時に加熱し、昇華させることで高温ガス領域を形成し、その高温ガス領域を包みこむように、酸素ガスを導入すると、高温ガス領域と酸素ガス導入領域の境界面で、瞬時に冷却され、金属酸化物粒子93を作製することができる。
 上記いずれかの方法で得られた酸化マグネシウム(MgO)の結晶粒子92a、及び金属酸化物粒子93を、溶媒に分散させ、その分散液をスプレー法やスクリーン印刷法、静電塗布法などによって下地層91の表面に分散散布させる。その後、乾燥・焼成工程を経て溶媒除去を図り、酸化マグネシウム(MgO)の結晶粒子92a及び金属酸化物粒子93を下地層91の表面に定着させることができる。なお、酸化マグネシウム(MgO)の結晶粒子92a及び金属酸化物粒子93の分散には、同一の溶媒に分散させて同時に塗布する方法、及び別々の分散液を準備して順次塗布する方法があるが、どちらの方法で塗布しても良い。
 このような一連の工程により前面ガラス基板3上に所定の構成物(走査電極4、維持電極5、遮光層7、誘電体層8、保護層9)が形成されて前面板2が完成する。
 一方、背面板10は次のようにして形成される。まず、背面ガラス基板11上に、銀(Ag)材料を含むペーストをスクリーン印刷する方法や、金属膜を全面に形成した後、フォトリソグラフィ法を用いてパターニングする方法などによりアドレス電極12用の構成物となる材料層を形成する。その後、所定の温度で焼成することによりアドレス電極12を形成する。次に、アドレス電極12が形成された背面ガラス基板11上にダイコート法などにより、アドレス電極12を覆うように誘電体ペーストを塗布して誘電体ペースト層を形成する。その後、誘電体ペースト層を焼成することにより下地誘電体層13を形成する。なお、誘電体ペーストはガラス粉末などの誘電体材料とバインダ及び溶剤を含んだ塗料である。
 次に、下地誘電体層13上に隔壁材料を含む隔壁形成用ペーストを塗布し、乾燥させる。その後、乾燥した隔壁形成用ペーストの上に接着層材料を含む接着層形成用ペーストを塗布し、所定の形状にパターニングすることにより隔壁材料層と接着材料層を形成する。その後、所定の温度で焼成することにより隔壁14と接着層を形成する。ここで、下地誘電体層13上に塗布した隔壁用ペーストと接着層形成用ペーストをパターニングする方法としては、フォトリソグラフィ法やサンドブラスト法を用いることができる。次に、隣接する隔壁14間の下地誘電体層13上及び隔壁14の側面に蛍光体材料を含む蛍光体ペーストを塗布し、焼成することにより蛍光体層15が形成される。さらに、前面板2と背面板10を強固に接着するためのガラスフリットを背面板10の周囲に形成する。以上の工程により、背面ガラス基板11上に所定の構成部材を有する背面板10が完成する。
 次に、所定の構成部材を備えた前面板2と背面板10とを走査電極4とアドレス電極12とが直交するように対向配置し、固定する。固定した前面板2と背面板10は、ガラスフリットと接着材料層の融点以上、かつ、隔壁材料層の融点以下の温度で焼成する。これにより、前面板2と背面板10は、接着層とガラスフリットで接着される。最後に、放電空間16にキセノン(Xe)とネオン(Ne)などを含む放電ガスを封入してPDP1が完成する。
 ここで、前面板2の誘電体層8を構成する第1誘電体層81と第2誘電体層82について詳細に説明する。第1誘電体層81の誘電体材料は、次の材料組成より構成されている。すなわち、酸化ビスマス(Bi23)を20重量%~40重量%、酸化カルシウム(CaO)、酸化ストロンチウム(SrO)、酸化バリウム(BaO)から選ばれる少なくとも1種を0.5重量%~12重量%含み、酸化モリブデン(MoO3)、酸化タングステン(WO3)、酸化セリウム(CeO2)、二酸化マンガン(MnO2)から選ばれる少なくとも1種を0.1重量%~7重量%含んでいる。
 なお、酸化モリブデン(MoO3)、酸化タングステン(WO3)、酸化セリウム(CeO2)、二酸化マンガン(MnO2)に代えて、酸化銅(CuO)、酸化クロム(Cr23)、酸化コバルト(Co23)、酸化バナジウム(V27)、酸化アンチモン(Sb23)から選ばれる少なくとも1種を0.1重量%~7重量%含ませてもよい。
 また、上記以外の成分として、酸化亜鉛(ZnO)を0重量%~40重量%、酸化硼素(B23)を0重量%~35重量%、酸化硅素(SiO2)を0重量%~15重量%、酸化アルミニウム(Al23)を0重量%~10重量%など、鉛成分を含まない材料組成が含まれていてもよい。
 これらの組成成分からなる誘電体材料を、湿式ジェットミルやボールミルで粒径が0.5μm~2.5μmとなるように粉砕して誘電体材料粉末を作製する。次にこの誘電体材料粉末55重量%~70重量%と、バインダ成分30重量%~45重量%とを三本ロールでよく混練してダイコート用、または印刷用の第1誘電体層81用ペーストを作製する。
 バインダ成分はエチルセルロース、またはアクリル樹脂1重量%~20重量%を含むターピネオール、またはブチルカルビトールアセテートである。また、ペースト中には、必要に応じて可塑剤としてフタル酸ジオクチル、フタル酸ジブチル、リン酸トリフェニル、リン酸トリブチルを添加し、分散剤としてグリセロールモノオレート、ソルビタンセスキオレヘート、ホモゲノール(Kaoコーポレーション社製品名)、アルキルアリル基のリン酸エステルなどを添加してペーストとして印刷特性を向上させてもよい。
 次に、この第1誘電体層用ペーストを用い、表示電極6を覆うように前面ガラス基板3にダイコート法あるいはスクリーン印刷法で印刷して乾燥させ、その後、誘電体材料の軟化点より少し高い温度の575℃~590℃で焼成して第1誘電体層81を形成する。
 次に、第2誘電体層82について説明する。第2誘電体層82の誘電体材料は、次の材料組成より構成されている。すなわち、酸化ビスマス(Bi23)を11重量%~20重量%、さらに、酸化カルシウム(CaO)、酸化ストロンチウム(SrO)、酸化バリウム(BaO)から選ばれる少なくとも1種を1.6重量%~21重量%含み、酸化モリブデン(MoO3)、酸化タングステン(WO3)、酸化セリウム(CeO2)から選ばれる少なくとも1種を0.1重量%~7重量%含んでいる。
 なお、酸化モリブデン(MoO3)、酸化タングステン(WO3)、酸化セリウム(CeO2)に代えて、酸化銅(CuO)、酸化クロム(Cr23)、酸化コバルト(Co23)、酸化バナジウム(V27)、酸化アンチモン(Sb23)、酸化マンガン(MnO2)から選ばれる少なくとも1種を0.1重量%~7重量%含ませてもよい。
 また、上記以外の成分として、酸化亜鉛(ZnO)を0重量%~40重量%、酸化硼素(B23)を0重量%~35重量%、酸化硅素(SiO2)を0重量%~15重量%、酸化アルミニウム(Al23)を0重量%~10重量%など、鉛成分を含まない材料組成が含まれていてもよい。
 これらの組成成分からなる誘電体材料を、湿式ジェットミルやボールミルで粒径が0.5μm~2.5μmとなるように粉砕して誘電体材料粉末を作製する。次にこの誘電体材料粉末55重量%~70重量%と、バインダ成分30重量%~45重量%とを三本ロールでよく混練してダイコート用、または印刷用の第2誘電体層用ペーストを作製する。バインダ成分はエチルセルロース、またはアクリル樹脂1重量%~20重量%を含むターピネオール、またはブチルカルビトールアセテートである。また、ペースト中には、必要に応じて可塑剤としてフタル酸ジオクチル、フタル酸ジブチル、リン酸トリフェニル、リン酸トリブチルを添加し、分散剤としてグリセロールモノオレート、ソルビタンセスキオレヘート、ホモゲノール(Kaoコーポレーション社製品名)、アルキルアリル基のリン酸エステルなどを添加して印刷性を向上させてもよい。
 次にこの第2誘電体層用ペーストを用いて第1誘電体層81上にスクリーン印刷法あるいはダイコート法で印刷して乾燥させ、その後、誘電体材料の軟化点より少し高い温度の550℃~590℃で焼成する。
 なお、誘電体層8の膜厚としては、可視光透過率を確保するために第1誘電体層81と第2誘電体層82とを合わせ41μm以下とすることが好ましい。また、第1誘電体層81は、金属バス電極4b、5bの銀(Ag)との反応を抑制するために酸化ビスマス(Bi23)の含有量を第2誘電体層82の酸化ビスマス(Bi23)の含有量よりも多くして20重量%~40重量%としている。そのため、第1誘電体層81の可視光透過率が第2誘電体層82の可視光透過率よりも低くなるので、第1誘電体層81の膜厚を第2誘電体層82の膜厚よりも薄くしている。
 なお、第2誘電体層82においては、酸化ビスマス(Bi23)の含有量が11重量%以下であると着色は生じにくくなるが、第2誘電体層82中に気泡が発生しやすくなるため好ましくない。一方、含有率が40重量%を超えると着色が生じやすくなるため透過率が低下する。
 また、誘電体層8の膜厚が小さいほど輝度の向上と放電電圧を低減するという効果は顕著になるので、絶縁耐圧が低下しない範囲内であればできるだけ膜厚を小さく設定するのが望ましい。このような観点から、本実施の形態では、誘電体層8の膜厚を41μm以下に設定し、第1誘電体層81を5μm~15μm、第2誘電体層82を20μm~36μmとしている。
 次に接着層の形成材料について述べる。接着層の形成材料としては、融点が500℃~600℃の材料からなる隔壁14よりも融点の低いフリットガラスや水ガラスなどのような、低融点材料が望ましい。また吸湿性及びアウトガスの低い紫外線接着剤や真空装置で一般的なシール剤を用いることも可能である。
 このようにして製造されたPDP1は、表示電極6に銀(Ag)材料を用いても、前面ガラス基板3の着色現象(黄変)が少なくて、なおかつ、誘電体層8中に気泡の発生などがなく、絶縁耐圧性能に優れた誘電体層8を実現することを確認している。
 次に、本実施の形態におけるPDP1において、これらの誘電体材料によって第1誘電体層81において黄変や気泡の発生が抑制される理由について考察する。すなわち、酸化ビスマス(Bi23)を含む誘電体ガラスに酸化モリブデン(MoO3)、または酸化タングステン(WO3)を添加することによって、Ag2MoO4、Ag2Mo27、Ag2Mo413、Ag2WO4、Ag227、Ag2413といった化合物が580℃以下の低温で生成しやすいことが知られている。本実施の形態では、誘電体層8の焼成温度が550℃~590℃であることから、焼成中に誘電体層8中に拡散した銀イオン(Ag+)は誘電体層8中の酸化モリブデン(MoO3)、酸化タングステン(WO3)、酸化セリウム(CeO2)、酸化マンガン(MnO2)と反応し、安定な化合物を生成して安定化する。すなわち、銀イオン(Ag+)が還元されることなく安定化されるため、凝集してコロイドを生成することがない。したがって、銀イオン(Ag+)が安定化することによって、銀(Ag)のコロイド化に伴う酸素の発生も少なくなるため、誘電体層8中への気泡の発生も少なくなる。
 一方、これらの効果を有効にするためには、酸化ビスマス(Bi23)を含む誘電体ガラス中に酸化モリブデン(MoO3)、酸化タングステン(WO3)、酸化セリウム(CeO2)、酸化マンガン(MnO2)の含有量を0.1重量%以上にすることが好ましいが、0.1重量%以上7重量%以下がさらに好ましい。特に、0.1重量%未満では黄変を抑制する効果が少なく、7重量%を超えるとガラスに着色が起こり好ましくない。
 すなわち、本実施の形態におけるPDP1の誘電体層8は、銀(Ag)材料よりなる金属バス電極4b、5bと接する第1誘電体層81では黄変現象と気泡発生を抑制し、第1誘電体層81上に設けた第2誘電体層82によって高い光透過率を実現している。その結果、誘電体層8全体として、気泡や黄変の発生が極めて少なく透過率の高いPDPを実現することが可能となる。
 次に本実施の形態における保護層9の詳細について説明する。
 本実施の形態におけるPDPでは、図2に示すように、保護層9は、誘電体層8上に形成した酸化マグネシウム(MgO)からなる下地層91と、下地層91上に付着させた酸化マグネシウム(MgO)の結晶粒子92aが複数個凝集した凝集粒子92及び金属酸化物粒子により構成されている。また、金属酸化物粒子93は、酸化マグネシウム(MgO)、酸化カルシウム(CaO)、酸化ストロンチウム(SrO)、及び酸化バリウム(BaO)から選ばれる少なくとも2つ以上の酸化物からなる金属酸化物により形成し、金属酸化物はX線回折分析において、特定方位面の金属酸化物を構成する酸化物の単体より発生する最小回折角と最大回折角との間にピークが存在するようにしている。すなわち、金属酸化物粒子93の特定方位面におけるX線回折分析の回折角ピークが、金属酸化物粒子93に含まれる2つの金属酸化物の内、一方の金属酸化物の特定方位面におけるX線回折分析の回折角ピークと、他方の金属酸化物の特定方位面におけるX線回折分析の回折角ピークとの間に存在するものである。
 図3は、本実施の形態におけるPDP1の保護層9を構成する下地層91面におけるX線回折結果を示す図である。また、図3中には、酸化マグネシウム(MgO)単体、酸化カルシウム(CaO)単体、酸化ストロンチウム(SrO)単体、及び酸化バリウム(BaO)単体のX線回折分析の結果も示す。
 図3において、横軸はブラッグの回折角(2θ)であり、縦軸はX線回折波の強度である。回折角の単位は1周を360度とする度で示し、強度は任意単位(arbitrary unit)で示している。図3中には特定方位面である結晶方位面を括弧付けで示している。図3に示すように、結晶方位面の(111)では、酸化カルシウム(CaO)単体では回折角32.2度、酸化マグネシウム(MgO)単体では回折角36.9度、酸化ストロンチウム単体では回折角30.0度、酸化バリウム単体では回折角27.9度にピークを有していることがわかる。
 本実施の形態におけるPDP1では、保護層9の金属酸化物粒子93として、酸化マグネシウム(MgO)、酸化カルシウム(CaO)、酸化ストロンチウム(SrO)、及び酸化バリウム(BaO)から選ばれる少なくとも2つ以上の酸化物からなる金属酸化物により形成している。
 図3には、金属酸化物粒子93を構成する単体成分が2成分の場合についてのX線回折結果を示している。すなわち、酸化マグネシウム(MgO)と酸化カルシウム(CaO)の単体を用いて形成した金属酸化物粒子93のX線回折結果をA点、酸化マグネシウム(MgO)と酸化ストロンチウム(SrO)の単体を用いて形成した金属酸化物粒子93のX線回折結果をB点、さらに、酸化マグネシウム(MgO)と酸化バリウム(BaO)の単体を用いて形成した金属酸化物粒子93のX線回折結果をC点で示している。
 すなわち、A点は特定方位面としての結晶方位面の(111)において、単体の酸化物の最大回折角となる酸化マグネシウム(MgO)単体の回折角36.9度と、最小回折角となる酸化カルシウム(CaO)単体の回折角32.2度との間である回折角36.1度にピークが存在している。同様に、B点、C点もそれぞれ最大回折角と最小回折角との間の35.7度、35.4度にピークが存在している。
 また、図4には、図3と同様に、金属酸化物粒子93を構成する単体成分が3成分以上の場合のX線回折結果を示している。すなわち、図4には、単体成分として酸化マグネシウム(MgO)、酸化カルシウム(CaO)及び酸化ストロンチウム(SrO)を用いた場合の結果をD点、酸化マグネシウム(MgO)、酸化カルシウム(CaO)及び酸化バリウム(BaO)を用いた場合の結果をE点、酸化カルシウム(CaO)、酸化ストロンチウム(SrO)及び酸化バリウム(BaO)を用いた場合の結果をF点で示している。
 すなわち、D点は特定方位面としての結晶方位面の(111)において、単体の酸化物の最大回折角となる酸化マグネシウム(MgO)単体の回折角36.9度と、最小回折角となる酸化ストロンチウム(SrO)単体の回折角30.0度との間である回折角33.4度にピークが存在している。同様に、E点、F点もそれぞれ最大回折角と最小回折角との間の32.8度、30.2度にピークが存在している。
 したがって、本実施の形態におけるPDP1の金属酸化物粒子93は、単体成分として2成分であれ、3成分であれ、金属酸化物粒子93を構成する金属酸化物のX線回折分析において、特定方位面の金属酸化物を構成する酸化物の単体より発生するピークの最小回折角と最大回折角との間にピークが存在するようにしている。すなわち、金属酸化物粒子93の特定方位面におけるX線回折分析の回折角ピークが、金属酸化物粒子93に含まれる2つの金属酸化物の内、一方の金属酸化物の特定方位面におけるX線回折分析の回折角ピークと、他方の金属酸化物の特定方位面におけるX線回折分析の回折角ピークとの間に存在するものである。
 なお、上記の説明では特定方位面としての結晶方位面として(111)を対象として説明したが、他の結晶方位面を対象とした場合も金属酸化物のピークの位置が上記と同様である。
 酸化カルシウム(CaO)、酸化ストロンチウム(SrO)、及び酸化バリウム(BaO)では、酸化マグネシウム(MgO)と比較して、真空準位からの深さが浅い領域に電子が存在する。そのため、PDP1を駆動する場合において、酸化カルシウム(CaO)、酸化ストロンチウム(SrO)、酸化バリウム(BaO)のエネルギー準位に存在する電子がキセノン(Xe)イオンの基底状態に遷移する際に、オージェ効果により放出される電子数が、酸化マグネシウム(MgO)のエネルギー準位から遷移する場合と比較して多くなると考えられる。
 また、上述のように、本実施の形態における金属酸化物粒子93は、金属酸化物を構成する酸化物の単体より発生するピークの最小回折角と最大回折角との間にピークが存在するようにしている。X線回折分析の結果が、図3及び図4に示す特徴を有する金属酸化物はそのエネルギー準位もそれらを構成する単体の酸化物の間に存在する。したがって、金属酸化物粒子93のエネルギー準位も単体の酸化物の間に存在し、オージェ効果により放出される電子数が酸化マグネシウム(MgO)のエネルギー準位から遷移する場合と比較して多くなると考えられる。
 その結果、金属酸化物粒子93では、酸化マグネシウム(MgO)単体と比較して、良好な二次電子放出特性を発揮することができ、結果として、放電維持電圧を低減することができる。そのため、特に輝度を高めるために放電ガスとしてのキセノン(Xe)分圧を高めた場合に、放電電圧を低減し、低電圧でなおかつ高輝度のPDPを実現することが可能となる。
 表1には、本実施の形態におけるPDPにおいて、450Torrのキセノン(Xe)及びネオン(Ne)の混合ガス(Xe、15%)を封入した場合の放電維持電圧の結果で、金属酸化物粒子93の構成を変えた場合の、PDPの結果を示す。
Figure JPOXMLDOC01-appb-T000001
 なお、表1の放電維持電圧は比較例を100とした場合の相対値で表している。サンプルAの金属酸化物粒子93は、酸化マグネシウム(MgO)と酸化カルシウム(CaO)による金属酸化物、サンプルBの金属酸化物粒子93は酸化マグネシウム(MgO)と酸化ストロンチウム(SrO)による金属酸化物、サンプルCの金属酸化物粒子93は酸化マグネシウム(MgO)と酸化バリウム(BaO)による金属酸化物、サンプルDの金属酸化物粒子93は、酸化マグネシウム(MgO)、酸化カルシウム(CaO)及び酸化ストロンチウム(SrO)による金属酸化物、サンプルEの金属酸化物粒子93は酸化マグネシウム(MgO)、酸化カルシウム(CaO)及び酸化バリウム(BaO)による金属酸化物によって構成されている。また、比較例は、金属酸化物粒子93が酸化マグネシウム(MgO)単体である場合について示している。
 放電ガスのキセノン(Xe)の分圧を10%から15%に高めた場合には輝度が約30%上昇するが、金属酸化物粒子93が酸化マグネシウム(MgO)単体の場合の比較例では、放電維持電圧が約10%上昇する。
 一方、本実施の形態におけるPDPでは、サンプルA、サンプルB、サンプルC、サンプルD、サンプルEいずれも、放電維持電圧を比較例に比較して約10%~20%低減することができる。そのため、通常動作範囲内の放電開始電圧とすることができ、高輝度で低電圧駆動のPDPを実現することができる。
 なお、酸化カルシウム(CaO)、酸化ストロンチウム(SrO)、酸化バリウム(BaO)は、単体では反応性が高いため不純物と反応しやすく、そのために電子放出性能が低下してしまうという課題を有していた。しかしながら、本実施の形態においては、それらの金属酸化物の構成とすることにより、反応性を低減し、不純物の混入や酸素欠損の少ない結晶構造で形成されている。そのため、PDPの駆動時に電子が過剰放出されるのが抑制され、低電圧駆動と二次電子放出性能の両立効果に加えて、適度な電子保持特性の効果も発揮される。この電荷保持特性は、特に初期化期間に貯めた壁電荷を保持しておき、書き込み期間において書き込み不良を防止して確実な書き込み放電を行う上で有効である。
 次に、本実施の形態における下地層91上に設けた、酸化マグネシウム(MgO)の結晶粒子92aが複数個凝集した凝集粒子92について詳細に説明する。酸化マグネシウム(MgO)の凝集粒子92は、主として書き込み放電における放電遅れを抑制する効果と、放電遅れの温度依存性を改善する効果が確認されている。そこで本実施の形態では、凝集粒子92が下地層91に比べて高度な初期電子放出特性に優れる性質を利用して、放電パルス立ち上がり時に必要な初期電子供給部として配設している。
 放電遅れは、放電開始時において、トリガーとなる初期電子が下地層91表面から放電空間16中に放出される量が不足することが主原因と考えられる。そこで、放電空間16に対する初期電子の安定供給に寄与するため、酸化マグネシウム(MgO)の凝集粒子92を下地層91の表面に分散配置する。これによって、放電パルスの立ち上がり時に放電空間16中に電子が豊富に存在し、放電遅れの解消が図られる。したがって、このような初期電子放出特性により、PDP1が高精細の場合などにおいても放電応答性の良い高速駆動ができるようになっている。なお下地層91の表面に金属酸化物の凝集粒子92を配設する構成では、主として書き込み放電における放電遅れを抑制する効果に加え、放電遅れの温度依存性を改善する効果も得られる。
 以上のように実施の形態におけるPDP1では、低電圧駆動と電荷保持の両立効果を奏する下地層91と、放電遅れの防止効果を奏する酸化マグネシウム(MgO)の凝集粒子92とにより構成することによって、PDP1全体として、高精細なPDPでも高速駆動を低電圧で駆動でき、かつ、点灯不良を抑制した高品位な画像表示性能を実現できる。
 本実施の形態では、下地層91上に、結晶粒子92aが数個凝集した凝集粒子92を離散的に散布させ、全面に亘ってほぼ均一に分布するように複数個付着させることにより構成している。図5は凝集粒子92を説明するための拡大図である。
 凝集粒子92とは、図5に示すように、所定の一次粒径の結晶粒子92aが凝集またはネッキングした状態のものである。すなわち、固体として大きな結合力を持って結合しているのではなく、静電気やファンデルワールス力などによって複数の一次粒子が集合体の体をなしているもので、超音波などの外的刺激により、その一部または全部が一次粒子の状態になる程度で結合しているものである。凝集粒子92の粒径としては、約1μm程度のもので、結晶粒子92aとしては、14面体や12面体などの7面以上の面を持つ多面体形状を有するのが望ましい。
 また、結晶粒子92aの一次粒子の粒径は、結晶粒子92aの生成条件によって制御できる。例えば、炭酸マグネシウムや水酸化マグネシウムなどのMgO前駆体を焼成して生成する場合、焼成温度や焼成雰囲気を制御することで粒径を制御することができる。一般的に、焼成温度は700℃から1500℃の範囲で選択できるが、焼成温度を比較的高い1000℃以上にすることで、その粒径を0.3μm~2μm程度に制御することが可能である。さらに、結晶粒子92aをMgO前駆体を加熱して得ることにより、その生成過程において、複数個の一次粒子同士が凝集またはネッキングと呼ばれる現象により結合して凝集粒子92を得ることができる。
 図6は、本実施の形態におけるPDPの放電遅れと保護層中のカルシウム(Ca)濃度の関係を示す図である。具体的には、PDP1のうち、酸化マグネシウム(MgO)と酸化カルシウム(CaO)との金属酸化物で構成した金属酸化物粒子93を用いた場合の放電遅れと金属酸化物粒子93中のカルシウム(Ca)濃度との関係を示している。金属酸化物粒子93として酸化マグネシウム(MgO)と酸化カルシウム(CaO)とからなる金属酸化物で構成し、金属酸化物は、X線回折分析において、酸化マグネシウム(MgO)のピークが発生する回折角と酸化カルシウム(CaO)のピークが発生する回折角との間にピークが存在するようにしている。
 なお、図6には、保護層9として下地層91上に金属酸化物粒子93のみ設置した場合と、下地層91上に金属酸化物粒子93及び凝集粒子92を配置した場合とについて示し、放電遅れは、下地層91上に金属酸化物粒子93を設置していない場合を基準として示している。
 図6より明らかなように、下地層91上に凝集粒子92を配置した場合と設置しない場合において、凝集粒子92を配置しない場合は金属酸化物粒子93中のカルシウム(Ca)濃度の増加とともに放電遅れが大きくなるのに対し、下地層91上に凝集粒子92を配置することによって放電遅れを大幅に小さくすることができ、金属酸化物粒子93中のカルシウム(Ca)濃度が増加しても放電遅れはほとんど増大しないことがわかる。
 次に、実施の形態における凝集粒子92を有する保護層9の効果を確認するために行った実験結果について説明する。まず、構成の異なる下地層91と下地層91上に設けた凝集粒子92を有するPDPを試作した。試作品1は酸化マグネシウム(MgO)の下地層91のみの保護層9を形成したPDP、試作品2は酸化マグネシウム(MgO)にAl、Siなどの不純物をドープした下地層91のみの保護層9を形成したPDP、試作品3は酸化マグネシウム(MgO)による下地層91上に酸化マグネシウム(MgO)の結晶粒子92aの一次粒子のみを散布し付着させた保護層9を形成したPDPである。
 一方、試作品4は実施の形態におけるPDP1であり、保護層9として、前述のサンプルAを用いている。すなわち、保護層9は、酸化マグネシウム(MgO)で構成した下地層91と、下地層91上に結晶粒子92aを凝集させた凝集粒子92、及び酸化マグネシウム(MgO)、酸化カルシウム(CaO)からなる金属酸化物粒子93を全面に亘ってほぼ均一に分布するように付着させている。なお、金属酸化物粒子93は、X線回折分析において、金属酸化物粒子93を構成する酸化物の単体より発生するピークの最小回折角と最大回折角との間にピークが存在するようにしている。すなわち、この場合の最小回折角は酸化カルシウム(CaO)の32.2度、最大回折角は酸化マグネシウム(MgO)の36.9度であり、金属酸化物粒子93の回折角のピークが36.1度に存在するようにしている。
 これらのPDPについて、その電子放出性能と電荷保持性能を調べ、その結果を図7に示す。なお、電子放出性能は、大きいほど電子放出量が多いことを示す数値で、表面状態及びガス種とその状態によって定まる初期電子放出量によって表現する。初期電子放出量については表面にイオン、あるいは電子ビームを照射して表面から放出される電子電流量を測定する方法で測定できるが、PDP1の前面板2表面の評価を非破壊で実施することは困難を伴う。そこで、特開2007-48733号公報に記載されている方法を用いた。すなわち、放電時の遅れ時間のうち、統計遅れ時間と呼ばれる放電の発生しやすさの目安となる数値を測定し、その逆数を積分すると初期電子の放出量と線形に対応する数値になる。
 そこで、この数値を用いて評価している。放電時の遅れ時間とは、パルスの立ち上がりから放電が遅れて行われる放電遅れの時間を意味し、放電遅れは、放電が開始される際にトリガーとなる初期電子が保護層9表面から放電空間中に放出されにくいことが主要な要因として考えられている。
 電荷保持性能は、その指標として、PDPとして作製した場合に電荷放出現象を抑えるために必要とする走査電極に印加する電圧(以下、Vscn点灯電圧と呼称する)の電圧値を用いた。すなわち、Vscn点灯電圧の低い方が電荷保持能力の高いことを示す。このことは、PDPを設計する上で、電源や各電気部品として、耐圧及び容量の小さい部品を使用することが可能となる。現状の製品において、走査電圧を順次パネルに印加するためのMOSFETなどの半導体スイッチング素子には、耐圧150V程度の素子が使用されており、Vscn点灯電圧としては、温度による変動を考慮して120V以下に抑えるのが望ましい。
 図7は本実施の形態におけるPDPの電子放出性能と点灯電圧について調べた結果を示す図である。図7から明らかなように、本実施の形態における下地層91に酸化マグネシウム(MgO)の結晶粒子92aを凝集させた凝集粒子92を散布して全面に亘って均一に分布させた試作品4は、電荷保持性能の評価において、Vscn点灯電圧を120V以下にすることができ、なおかつ電子放出性能が酸化マグネシウム(MgO)のみの保護層の場合の試作品1に比べて格段に良好な特性を得ることができる。
 一般的にはPDPの保護層の電子放出能力と電荷保持能力は相反する。例えば、保護層の製膜条件を変更することや、保護層中にAlやSi、Baなどの不純物をドーピングして製膜することにより電子放出性能を向上することは可能であるが、副作用としてVscn点灯電圧も上昇してしまう。
 本実施の形態における保護層9を形成した試作品4のPDP1においては、電子放出能力としては、酸化マグネシウム(MgO)のみの保護層9を用いた試作品1の場合に比べて8倍以上の特性を有し、電荷保持能力としてはVscn点灯電圧が120V以下のものを得ることができる。したがって、高精細化により走査線数が増加し、かつセルサイズが小さいPDPに対しては有用で、電子放出能力と電荷保持能力の両方を満足させて、放電遅れを低減して良好な画像表示を実現することができる。
 次に、本実施の形態によるPDP1の保護層9に用いた酸化マグネシウム(MgO)の結晶粒子92aの粒径について詳細に説明する。なお、以下の説明において、粒径とは平均粒径を意味し、平均粒径とは、体積累積平均径(D50)のことを意味している。
 図8は、上記図7で説明した本実施の形態の試作品4において、結晶粒子92aの粒径を変化させて電子放出性能を調べた実験結果を示す特性図である。なお、図8において、結晶粒子92aの粒径は、結晶粒子92aをSEM観察することで測長した。図8に示すように、粒径が0.3μm程度に小さくなると、電子放出性能が低くなり、ほぼ0.9μm以上であれば、高い電子放出性能が得られることがわかる。
 ところで、放電セル内での電子放出数を増加させるためには、下地層91上の単位面あたりの結晶粒子92aの数は多い方が望ましいが、前面板2の保護層9と密接に接触する背面板10の隔壁14の頂部に相当する部分に結晶粒子92aが存在することで、隔壁14の頂部を破損させ、その材料が蛍光体層15の上に乗るなどし、それによって、該当するセルが正常に点灯消灯しなくなる現象が発生することがわかった。この隔壁破損の現象は、結晶粒子92aが隔壁14頂部に対応する部分に存在しなければ発生しにくいことから、付着させる結晶粒子92aの数が多くなれば隔壁14の破損発生確率が高くなる。このような観点からは、結晶粒子径が2.5μm程度に大きくなると、隔壁破損の確率が急激に高くなり、2.5μmより小さい結晶粒子径であれば、隔壁破損の確率は比較的小さく抑えることができる。
 以上の結果より、本実施の形態におけるPDP1においては、凝集粒子92として、粒径が0.9μm~2μmの範囲にある凝集粒子92を使用すれば、効果を安定的に得られることがわかった。
 以上のように本実施の形態におけるPDPによれば、電子放出性能が高く、電荷保持能力としてはVscn点灯電圧が120V以下のものを得ることができる。
 なお、本実施の形態では、結晶粒子92aとして酸化マグネシウム(MgO)粒子を用いて説明したが、この他の単結晶粒子でも、酸化マグネシウム(MgO)同様に高い電子放出性能を持つSr、Ca、Ba、Alなどの金属酸化物による結晶粒子を用いても同様の効果を得ることができるため、粒子種としては酸化マグネシウム(MgO)に限定されるものではない。
 (実施の形態2)
 以下、実施の形態2におけるPDPについて説明する。なお、実施の形態1と同一の構成については、説明を省略する。
 実施の形態1におけるPDPでは、酸化マグネシウム(MgO)からなる下地層91を用いたが、実施の形態2におけるPDPでは、酸化マグネシウム、酸化カルシウム、酸化ストロンチウム、及び酸化バリウムからなる群の中から選ばれる少なくとも2つの金属酸化物を含む下地層91を用いたものである。
 次に本実施の形態における保護層9の詳細について説明する。
 保護層9は、誘電体層8上に形成した下地層91と、下地層91上に付着させた酸化マグネシウム(MgO)の結晶粒子92aが複数個凝集した凝集粒子92及び金属酸化物粒子93により構成されている。また、下地層91及び金属酸化物粒子93を、酸化マグネシウム(MgO)、酸化カルシウム(CaO)、酸化ストロンチウム(SrO)、及び酸化バリウム(BaO)から選ばれる少なくとも2つ以上の酸化物からなる金属酸化物により形成し、金属酸化物はX線回折分析において、特定方位面の金属酸化物を構成する酸化物の単体より発生する最小回折角と最大回折角との間にピークが存在するようにしている。
 すなわち、金属酸化物粒子93の特定方位面におけるX線回折分析の回折角ピークが、金属酸化物粒子93に含まれる2つの金属酸化物の内、一方の金属酸化物の特定方位面におけるX線回折分析の回折角ピークと、他方の金属酸化物の特定方位面におけるX線回折分析の回折角ピークとの間に存在するものである。また、下地層91の特定方位面におけるX線回折分析の回折角ピークが、下地層91に含まれる2つの金属酸化物の内、一方の金属酸化物の特定方位面におけるX線回折分析の回折角ピークと、他方の金属酸化物の特定方位面におけるX線回折分析の回折角ピークとの間に存在するものである。
 本実施の形態において、下地層91及び金属酸化物粒子93を構成する単体成分が2成分の場合のX線回折結果は、図3に示すような、金属酸化物粒子93のX線回折結果と同じである。
 図3中には、酸化マグネシウム(MgO)単体、酸化カルシウム(CaO)単体、酸化ストロンチウム(SrO)単体、及び酸化バリウム(BaO)単体のX線回折分析の結果も示す。
 図3において、横軸はブラッグの回折角(2θ)であり、縦軸はX線回折波の強度である。回折角の単位は1周を360度とする度で示し、強度は任意単位(arbitrary unit)で示している。図3中には特定方位面である結晶方位面を括弧付けで示している。図3に示すように、結晶方位面の(111)では、酸化カルシウム(CaO)単体では回折角32.2度、酸化マグネシウム(MgO)単体では回折角36.9度、酸化ストロンチウム(SrO)単体では回折角30.0度、酸化バリウム(BaO)単体では回折角27.9度にピークを有していることがわかる。
 本実施の形態におけるPDP1では、保護層9の下地層91及び金属酸化物粒子93として、酸化マグネシウム(MgO)、酸化カルシウム(CaO)、酸化ストロンチウム(SrO)、及び酸化バリウム(BaO)から選ばれる少なくとも2つ以上の酸化物からなる金属酸化物により形成している。
 図3には、下地層91及び金属酸化物粒子93を構成する単体成分が2成分の場合についてのX線回折結果を示している。すなわち、酸化マグネシウム(MgO)と酸化カルシウム(CaO)の単体を用いて形成した下地層91及び金属酸化物粒子93のX線回折結果をA点、酸化マグネシウム(MgO)と酸化ストロンチウム(SrO)の単体を用いて形成した下地層91及び金属酸化物粒子93のX線回折結果をB点、さらに、酸化マグネシウム(MgO)と酸化バリウム(BaO)の単体を用いて形成した下地層91及び金属酸化物粒子93のX線回折結果をC点で示している。
 すなわち、A点は特定方位面としての結晶方位面の(111)において、単体の酸化物の最大回折角となる酸化マグネシウム(MgO)単体の回折角36.9度と、最小回折角となる酸化カルシウム(CaO)単体の回折角32.2度との間である回折角36.1度にピークが存在している。同様に、B点、C点もそれぞれ最大回折角と最小回折角との間の35.7度、35.4度にピークが存在している。
 また、下地層91及び金属酸化物粒子93を構成する単体成分が3成分以上の場合のX線回折結果は、図4に示すように、金属酸化物粒子93を構成する単体成分が3成分以上の場合のX線回折結果と同じである。すなわち、図4には、単体成分として酸化マグネシウム(MgO)、酸化カルシウム(CaO)及び酸化ストロンチウム(SrO)を用いた場合の結果をD点、酸化マグネシウム(MgO)、酸化カルシウム(CaO)及び酸化バリウム(BaO)を用いた場合の結果をE点、酸化カルシウム(CaO)、酸化ストロンチウム(SrO)及び酸化バリウム(BaO)を用いた場合の結果をF点で示している。
 すなわち、D点は特定方位面としての結晶方位面の(111)において、単体の酸化物の最大回折角となる酸化マグネシウム(MgO)単体の回折角36.9度と、最小回折角となる酸化ストロンチウム(SrO)単体の回折角30.0度との間である回折角33.4度にピークが存在している。同様に、E点、F点もそれぞれ最大回折角と最小回折角との間の32.8度、30.2度にピークが存在している。
 したがって、本実施の形態におけるPDP1の下地層91及び金属酸化物粒子93は、単体成分として2成分であれ、3成分であれ、下地層91及び金属酸化物粒子93を構成する金属酸化物のX線回折分析において、特定方位面の金属酸化物を構成する酸化物の単体より発生するピークの最小回折角と最大回折角との間にピークが存在するようにしている。
 すなわち、金属酸化物粒子93の特定方位面におけるX線回折分析の回折角ピークが、金属酸化物粒子93に含まれる2つの金属酸化物の内、一方の金属酸化物の特定方位面におけるX線回折分析の回折角ピークと、他方の金属酸化物の特定方位面におけるX線回折分析の回折角ピークとの間に存在するものである。また、下地層91の特定方位面におけるX線回折分析の回折角ピークが、下地層91に含まれる2つの金属酸化物の内、一方の金属酸化物の特定方位面におけるX線回折分析の回折角ピークと、他方の金属酸化物の特定方位面におけるX線回折分析の回折角ピークとの間に存在するものである。
 なお、上記の説明では特定方位面としての結晶方位面として(111)を対象として説明したが、他の結晶方位面を対象とした場合も金属酸化物のピークの位置が上記と同様である。
 酸化カルシウム(CaO)、酸化ストロンチウム(SrO)、及び酸化バリウム(BaO)では、酸化マグネシウム(MgO)と比較して、真空準位からの深さが浅い領域に電子が存在する。そのため、PDP1を駆動する場合において、酸化カルシウム(CaO)、酸化ストロンチウム(SrO)、酸化バリウム(BaO)のエネルギー準位に存在する電子がキセノン(Xe)イオンの基底状態に遷移する際に、オージェ効果により放出される電子数が、酸化マグネシウム(MgO)のエネルギー準位から遷移する場合と比較して多くなると考えられる。
 また、上述のように、本実施の形態における下地層91及び金属酸化物粒子93は、金属酸化物を構成する酸化物の単体より発生するピークの最小回折角と最大回折角との間にピークが存在するようにしている。X線回折分析の結果が、図3及び図4に示す特徴を有する金属酸化物はそのエネルギー準位もそれらを構成する単体の酸化物の間に存在する。したがって、下地層91及び金属酸化物粒子93のエネルギー準位も単体の酸化物の間に存在し、オージェ効果により放出される電子数が酸化マグネシウム(MgO)のエネルギー準位から遷移する場合と比較して多くなると考えられる。
 その結果、下地層91及び金属酸化物粒子93では、酸化マグネシウム(MgO)単体と比較して、良好な二次電子放出特性を発揮することができ、結果として、放電維持電圧を低減することができる。そのため、特に輝度を高めるために放電ガスとしてのキセノン(Xe)分圧を高めた場合に、放電電圧を低減し、低電圧でなおかつ高輝度のPDPを実現することが可能となる。
 本実施の形態におけるPDPにおいて、450Torrのキセノン(Xe)及びネオン(Ne)の混合ガス(Xe、15%)を封入した場合の放電維持電圧の結果で、下地層91及び金属酸化物粒子93の構成を変えた場合の、PDPの結果は、表1に示すように、金属酸化物粒子93の構成を変えた場合と同じである。
 サンプルAの下地層91及び金属酸化物粒子93は、酸化マグネシウム(MgO)と酸化カルシウム(CaO)による金属酸化物、サンプルBの下地層91及び金属酸化物粒子93は酸化マグネシウム(MgO)と酸化ストロンチウム(SrO)による金属酸化物、サンプルCの下地層91及び金属酸化物粒子93は酸化マグネシウム(MgO)と酸化バリウム(BaO)による金属酸化物、サンプルDの下地層91及び金属酸化物粒子93は、酸化マグネシウム(MgO)、酸化カルシウム(CaO)及び酸化ストロンチウム(SrO)による金属酸化物、サンプルEの下地層91及び金属酸化物粒子93は酸化マグネシウム(MgO)、酸化カルシウム(CaO)及び酸化バリウム(BaO)による金属酸化物によって構成されている。また、比較例は、下地層91及び金属酸化物粒子93が酸化マグネシウム(MgO)単体である場合について示している。
 放電ガスのキセノン(Xe)の分圧を10%から15%に高めた場合には輝度が約30%上昇するが、下地層91及び金属酸化物粒子93が酸化マグネシウム(MgO)単体の場合の比較例では、放電維持電圧が約10%上昇する。
 一方、本実施の形態におけるPDPでは、サンプルA、サンプルB、サンプルC、サンプルD、サンプルEいずれも、放電維持電圧を比較例に比較して約10%~20%低減することができる。そのため、通常動作範囲内の放電開始電圧とすることができ、高輝度で低電圧駆動のPDPを実現することができる。
 なお、酸化カルシウム(CaO)、酸化ストロンチウム(SrO)、酸化バリウム(BaO)は、単体では反応性が高いため不純物と反応しやすく、そのために電子放出性能が低下してしまうという課題を有していた。しかしながら、本実施の形態においては、それらの金属酸化物の構成とすることにより、反応性を低減し、不純物の混入や酸素欠損の少ない結晶構造で形成されている。そのため、PDPの駆動時に電子が過剰放出されるのが抑制され、低電圧駆動と二次電子放出性能の両立効果に加えて、適度な電荷保持特性の効果も発揮される。この電荷保持特性は、特に初期化期間に貯めた壁電荷を保持しておき、書き込み期間において書き込み不良を防止して確実な書き込み放電を行う上で有効である。
 なお、今回は実施例として下地層91と金属酸化物粒子93が同種の構成のものを示したが、これらに限定されるものではなく、下地層91と金属酸化物粒子93が異種の組み合わせに成っても同様の効果が得られる。
 次に、本実施の形態における下地層91上に設けた、酸化マグネシウム(MgO)の結晶粒子92aが複数個凝集した凝集粒子92について詳細に説明する。酸化マグネシウム(MgO)の凝集粒子92は、主として書き込み放電における放電遅れを抑制する効果と、放電遅れの温度依存性を改善する効果が確認されている。そこで本実施の形態では、凝集粒子92が下地層91に比べて高度な初期電子放出特性に優れる性質を利用して、放電パルス立ち上がり時に必要な初期電子供給部として配設している。
 放電遅れは、放電開始時において、トリガーとなる初期電子が下地層91表面から放電空間16中に放出される量が不足することが主原因と考えられる。そこで、放電空間16に対する初期電子の安定供給に寄与するため、酸化マグネシウム(MgO)の凝集粒子92を下地層91の表面に分散配置する。これによって、放電パルスの立ち上がり時に放電空間16中に電子が豊富に存在し、放電遅れの解消が図られる。したがって、このような初期電子放出特性により、PDP1が高精細の場合などにおいても放電応答性の良い高速駆動ができるようになっている。なお下地層91の表面に金属酸化物の凝集粒子92を配設する構成では、主として書き込み放電における放電遅れを抑制する効果に加え、放電遅れの温度依存性を改善する効果も得られる。
 以上のように、本実施の形態におけるPDP1では、低電圧駆動と電荷保持の両立効果を奏する下地層91と、放電遅れの防止効果を奏する酸化マグネシウム(MgO)の凝集粒子92とにより構成することによって、PDP1全体として、高精細なPDPでも高速駆動を低電圧で駆動でき、かつ、点灯不良を抑制した高品位な画像表示性能を実現できる。
 本実施の形態において、酸化マグネシウム(MgO)と酸化カルシウム(CaO)を含む下地層91及び金属酸化物粒子93を用いた場合におけるPDPの放電遅れと保護層9中のカルシウム(Ca)濃度との関係を示す図は、図6に示すように、酸化マグネシウム(MgO)からなる下地層91及び金属酸化物粒子93を用いた場合におけるPDPの放電遅れと保護層9中のカルシウム(Ca)濃度との関係を示す図と同じである。
 下地層91及び金属酸化物粒子93として酸化マグネシウム(MgO)と酸化カルシウム(CaO)とからなる金属酸化物で構成し、金属酸化物は、下地層91面におけるX線回折分析において、酸化マグネシウム(MgO)のピークが発生する回折角と酸化カルシウム(CaO)のピークが発生する回折角との間にピークが存在するようにしている。
 なお、図6には、保護層9として下地層91及び金属酸化物粒子93のみの場合と、下地層91上に凝集粒子92及び金属酸化物粒子93を配置した場合とについて示し、放電遅れは、下地層91中にカルシウム(Ca)が含有されていない場合を基準として示している。
 図6より明らかなように、下地層91及び金属酸化物粒子93のみの場合と、下地層91上に凝集粒子92及び金属酸化物粒子93を配置した場合とにおいて、下地層91及び金属酸化物粒子93のみの場合はカルシウム(Ca)濃度の増加とともに放電遅れが大きくなるのに対し、下地層91上に凝集粒子92及び金属酸化物粒子93を配置することによって放電遅れを大幅に小さくすることができ、カルシウム(Ca)濃度が増加しても放電遅れはほとんど増大しないことがわかる。
 次に、本実施の形態における凝集粒子92を有する保護層9の効果を確認するために行った実験結果について説明する。まず、構成の異なる下地層91と下地層91上に設けた凝集粒子92を有するPDPを試作した。試作品1は酸化マグネシウム(MgO)の下地層91のみの保護層9を形成したPDP、試作品2は酸化マグネシウム(MgO)にAl、Siなどの不純物をドープした下地層91のみの保護層9を形成したPDP、試作品3は酸化マグネシウム(MgO)による下地層91上に酸化マグネシウム(MgO)の結晶粒子92aの一次粒子のみを散布し付着させた保護層9を形成したPDPである。
 一方、試作品4は本実施の形態におけるPDP1であり、保護層9として、前述のサンプルAを用いている。すなわち、保護層9は、酸化マグネシウム(MgO)と酸化カルシウム(CaO)とで構成した下地層91と、下地層91上に結晶粒子92aを凝集させた凝集粒子92、及び酸化マグネシウム(MgO)と酸化カルシウム(CaO)とで構成した金属酸化物粒子93を全面に亘ってほぼ均一に分布するように付着させている。なお、下地層91及び金属酸化物粒子93は、X線回折分析において、下地層91及び金属酸化物粒子93を構成する酸化物の単体より発生するピークの最小回折角と最大回折角との間にピークが存在するようにしている。すなわち、この場合の最小回折角は酸化カルシウム(CaO)の32.2度、最大回折角は酸化マグネシウム(MgO)の36.9度であり、下地層91及び金属酸化物粒子93の回折角のピークが36.1度に存在するようにしている。
 これらのPDPについて、その電子放出性能と電荷保持性能を調べた結果は、図8に示すように、実施の形態1と同様である。
 図9は本実施の形態におけるPDPの電子放出性能と点灯電圧について調べた結果を示す図である。図9から明らかなように、本実施の形態における下地層91に酸化マグネシウム(MgO)の結晶粒子92aを凝集させた凝集粒子92及び金属酸化物粒子93を散布して全面に亘って均一に分布させた試作品4は、電荷保持性能の評価において、Vscn点灯電圧を120V以下にすることができ、なおかつ電子放出性能が酸化マグネシウム(MgO)のみの保護層の場合の試作品1に比べて格段に良好な特性を得ることができる。
 本実施の形態における保護層9を形成した試作品4のPDP1においては、電子放出能力としては、酸化マグネシウム(MgO)のみの保護層9を用いた試作品1の場合に比べて8倍以上の特性を有し、電荷保持能力としてはVscn点灯電圧が120V以下のものを得ることができる。したがって、高精細化により走査線数が増加し、かつセルサイズが小さいPDPに対しては有用で、電子放出能力と電荷保持能力の両方を満足させて、放電遅れを低減して良好な画像表示を実現することができる。
 本実施の形態における試作品4において、結晶粒子92aの粒径を変化させて電子放出性能を調べた実験結果を示す特性図は、図8に示すように、実施の形態1における試作品4において、結晶粒子92aの粒径を変化させて電子放出性能を調べた実験結果を示す特性図と同じである。
 以上の結果より、本実施の形態におけるPDP1においては、凝集粒子92として、粒径が0.9μm~2μmの範囲にある凝集粒子92を使用すれば、上述した効果を安定的に得られることがわかった。
 以上のように本実施の形態におけるPDPによれば、電子放出性能が高く、電荷保持能力としてはVscn点灯電圧が120V以下のものを得ることができる。
 なお、本実施の形態では、結晶粒子92aとして酸化マグネシウム(MgO)粒子を用いて説明したが、この他の単結晶粒子でも、酸化マグネシウム(MgO)同様に高い電子放出性能を持つSr、Ca、Ba、Alなどの金属酸化物による結晶粒子を用いても同様の効果を得ることができるため、粒子種としては酸化マグネシウム(MgO)に限定されるものではない。
 以上のように本発明は、高画質の表示性能を備え、かつ低消費電力のPDPを実現する上で有用な発明である。
 1  PDP
 2  前面板
 3  前面ガラス基板
 4  走査電極
 4a,5a  透明電極
 4b,5b  金属バス電極
 5  維持電極
 6  表示電極
 7  ブラックストライプ(遮光層)
 8  誘電体層
 9  保護層
 10  背面板
 11  背面ガラス基板
 12  アドレス電極
 13  下地誘電体層
 14  隔壁
 15  蛍光体層
 16  放電空間
 81  第1誘電体層
 82  第2誘電体層
 91  下地層
 92  凝集粒子
 92a  結晶粒子
 93  金属酸化物粒子

Claims (3)

  1. 前面板と、
    前記前面板と対向配置された背面板と、を備え、
     前記前面板は、誘電体層と前記誘電体層を覆う保護層とを有し、
     前記背面板は、下地誘電体層と、前記下地誘電体層上に形成された複数の隔壁と、前記下地誘電体層上及び前記隔壁の側面に形成された蛍光体層と、を有し、
      前記保護層は、前記誘電体層上に形成された下地層を含み、
      前記下地層には、酸化マグネシウムの結晶粒子が複数個凝集した凝集粒子及び金属酸化物粒子が全面に亘って分散配置され、
      前記金属酸化物粒子は、酸化マグネシウム、酸化カルシウム、酸化ストロンチウム、及び酸化バリウムからなる群の中から選ばれる少なくとも2つの金属酸化物を含み、
    前記金属酸化物粒子の特定方位面におけるX線回折分析の回折角ピークが、前記金属酸化物粒子に含まれる2つの前記金属酸化物の内、一方の前記金属酸化物の特定方位面におけるX線回折分析の回折角ピークと、他方の前記金属酸化物の特定方位面におけるX線回折分析の回折角ピークとの間にあり、
    前記下地層は、酸化マグネシウム、酸化カルシウム、酸化ストロンチウム、及び酸化バリウムからなる群の中から選ばれる少なくとも2つの金属酸化物を含み、
    前記下地層の特定方位面におけるX線回折分析の回折角ピークが、前記下地層に含まれる2つの前記金属酸化物の内、一方の前記金属酸化物の特定方位面におけるX線回折分析の回折角ピークと、他方の前記金属酸化物の特定方位面におけるX線回折分析の回折角ピークとの間にある
    プラズマディスプレイパネル。
  2. 前記金属酸化物粒子の被覆率が5~50%であることを特徴とする請求項1に記載のプラズマディスプレイパネル。
  3. 前記金属酸化物粒子の被覆率が5~25%であることを特徴とする請求項1に記載のプラズマディスプレイパネル。
PCT/JP2011/001452 2010-03-17 2011-03-14 プラズマディスプレイパネル WO2011114681A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020127023576A KR101194495B1 (ko) 2010-03-17 2011-03-14 플라즈마 디스플레이 패널
US13/581,727 US20120319560A1 (en) 2010-03-17 2011-03-14 Plasma display panel
JP2012505494A JP5126452B2 (ja) 2010-03-17 2011-03-14 プラズマディスプレイパネル
CN2011800137757A CN102792414A (zh) 2010-03-17 2011-03-14 等离子显示面板

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010060591 2010-03-17
JP2010-060591 2010-03-17
JP2010071983 2010-03-26
JP2010-071983 2010-03-26

Publications (1)

Publication Number Publication Date
WO2011114681A1 true WO2011114681A1 (ja) 2011-09-22

Family

ID=44648777

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2011/001392 WO2011114661A1 (ja) 2010-03-17 2011-03-10 プラズマディスプレイパネル
PCT/JP2011/001452 WO2011114681A1 (ja) 2010-03-17 2011-03-14 プラズマディスプレイパネル

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/001392 WO2011114661A1 (ja) 2010-03-17 2011-03-10 プラズマディスプレイパネル

Country Status (5)

Country Link
US (2) US20120319577A1 (ja)
JP (2) JP5126451B2 (ja)
KR (2) KR101192913B1 (ja)
CN (2) CN102804324A (ja)
WO (2) WO2011114661A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009044456A1 (ja) * 2007-10-02 2009-04-09 Hitachi, Ltd. プラズマディスプレイパネル及びその製造方法、並びに放電安定化粉体
JP2009129616A (ja) * 2007-11-21 2009-06-11 Panasonic Corp プラズマディスプレイパネル
WO2009090740A1 (ja) * 2008-01-17 2009-07-23 Hitachi, Ltd. プラズマディスプレイパネルの製造方法およびプラズマディスプレイパネル
JP2010212171A (ja) * 2009-03-12 2010-09-24 Panasonic Corp プラズマディスプレイパネルの製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004049375A1 (ja) * 2002-11-22 2004-06-10 Matsushita Electric Industrial Co., Ltd. プラズマディスプレイパネルとその製造方法
US7218050B2 (en) * 2003-09-26 2007-05-15 Matsushita Electric Industrial Co., Ltd. Plasma display panel
JPWO2005098889A1 (ja) * 2004-04-08 2007-08-16 松下電器産業株式会社 ガス放電表示パネル
US7713639B2 (en) * 2004-12-17 2010-05-11 Samsung Sdi Co., Ltd. Protective layer, composite for forming the protective layer, method of forming the protective layer, and plasma display panel including the protective layer
US7728523B2 (en) * 2005-05-17 2010-06-01 Panasonic Corporation Plasma display panel with stabilized address discharge and low discharge start voltage
JP2007095436A (ja) * 2005-09-28 2007-04-12 Matsushita Electric Ind Co Ltd プラズマディスプレイパネル
KR100980069B1 (ko) * 2005-09-29 2010-09-03 삼성에스디아이 주식회사 플라즈마 디스플레이 패널 및 그 구동 방법
WO2007139183A1 (ja) * 2006-05-31 2007-12-06 Panasonic Corporation プラズマディスプレイパネルとその製造方法
US20090160338A1 (en) * 2006-07-19 2009-06-25 Hitachi Plasma Display Limited Plasma display panel and front panel thereof
EP2063447B1 (en) * 2006-10-20 2012-05-16 Panasonic Corporation Plasma display panel and method for manufacture thereof
JP4875976B2 (ja) * 2006-12-27 2012-02-15 パナソニック株式会社 プラズマディスプレイパネル
JP2008293772A (ja) * 2007-05-24 2008-12-04 Panasonic Corp プラズマディスプレイパネル及びその製造方法、並びにプラズマディスプレイパネル
KR100943194B1 (ko) * 2007-12-14 2010-02-19 삼성에스디아이 주식회사 마그네슘 산화물 입자가 표면에 부착된 플라즈마디스플레이 패널용 보호막, 이의 제조 방법 및 상기보호막을 구비한 플라즈마 디스플레이 패널
JP2009170192A (ja) * 2008-01-15 2009-07-30 Panasonic Corp プラズマディスプレイパネル
JP5174634B2 (ja) * 2008-11-28 2013-04-03 タテホ化学工業株式会社 酸化マグネシウム固溶体粒子及びその製法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009044456A1 (ja) * 2007-10-02 2009-04-09 Hitachi, Ltd. プラズマディスプレイパネル及びその製造方法、並びに放電安定化粉体
JP2009129616A (ja) * 2007-11-21 2009-06-11 Panasonic Corp プラズマディスプレイパネル
WO2009090740A1 (ja) * 2008-01-17 2009-07-23 Hitachi, Ltd. プラズマディスプレイパネルの製造方法およびプラズマディスプレイパネル
JP2010212171A (ja) * 2009-03-12 2010-09-24 Panasonic Corp プラズマディスプレイパネルの製造方法

Also Published As

Publication number Publication date
JPWO2011114681A1 (ja) 2013-06-27
US20120319560A1 (en) 2012-12-20
JP5126451B2 (ja) 2013-01-23
WO2011114661A1 (ja) 2011-09-22
KR101192913B1 (ko) 2012-10-18
CN102792414A (zh) 2012-11-21
KR20120107144A (ko) 2012-09-28
KR101194495B1 (ko) 2012-10-24
CN102804324A (zh) 2012-11-28
US20120319577A1 (en) 2012-12-20
KR20120104447A (ko) 2012-09-20
JPWO2011114661A1 (ja) 2013-06-27
JP5126452B2 (ja) 2013-01-23

Similar Documents

Publication Publication Date Title
WO2010035488A1 (ja) プラズマディスプレイパネル
WO2010035493A1 (ja) プラズマディスプレイパネル
WO2010035487A1 (ja) プラズマディスプレイパネル
WO2010070861A1 (ja) プラズマディスプレイパネル
JP2010186665A (ja) プラズマディスプレイパネル
JP2010192356A (ja) プラズマディスプレイパネルの製造方法
JP5126452B2 (ja) プラズマディスプレイパネル
JP2011181317A (ja) プラズマディスプレイ装置
WO2011114662A1 (ja) プラズマディスプレイパネル
JP2010192355A (ja) プラズマディスプレイパネルの製造方法
WO2010070848A1 (ja) プラズマディスプレイパネル
WO2010070847A1 (ja) プラズマディスプレイパネル
WO2011102145A1 (ja) プラズマディスプレイパネルの製造方法
JP2011192573A (ja) プラズマディスプレイパネル
JP2011204536A (ja) プラズマディスプレイパネルの製造方法
JP2011192570A (ja) プラズマディスプレイパネル
JP2011181320A (ja) プラズマディスプレイパネル
JP2011198481A (ja) プラズマディスプレイパネル
JP2011192571A (ja) プラズマディスプレイパネル
JP2011181318A (ja) プラズマディスプレイパネル
JP2011180333A (ja) プラズマディスプレイ装置
JP2011192437A (ja) プラズマディスプレイパネル
JP2011192508A (ja) プラズマディスプレイパネル
JP2011192511A (ja) プラズマディスプレイパネル
JP2011192509A (ja) プラズマディスプレイパネル

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180013775.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11755874

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012505494

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13581727

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20127023576

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11755874

Country of ref document: EP

Kind code of ref document: A1