WO2011109449A1 - Rotary compressor-expander systems and associated methods of use and manufacture - Google Patents
Rotary compressor-expander systems and associated methods of use and manufacture Download PDFInfo
- Publication number
- WO2011109449A1 WO2011109449A1 PCT/US2011/026762 US2011026762W WO2011109449A1 WO 2011109449 A1 WO2011109449 A1 WO 2011109449A1 US 2011026762 W US2011026762 W US 2011026762W WO 2011109449 A1 WO2011109449 A1 WO 2011109449A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- chamber
- passageway
- rotor
- port
- pressure
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01C—ROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
- F01C1/00—Rotary-piston machines or engines
- F01C1/22—Rotary-piston machines or engines of internal-axis type with equidirectional movement of co-operating members at the points of engagement, or with one of the co-operating members being stationary, the inner member having more teeth or tooth- equivalents than the outer member
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01C—ROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
- F01C1/00—Rotary-piston machines or engines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01C—ROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
- F01C1/00—Rotary-piston machines or engines
- F01C1/30—Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01C—ROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
- F01C11/00—Combinations of two or more machines or engines, each being of rotary-piston or oscillating-piston type
- F01C11/002—Combinations of two or more machines or engines, each being of rotary-piston or oscillating-piston type of similar working principle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01C—ROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
- F01C19/00—Sealing arrangements in rotary-piston machines or engines
- F01C19/10—Sealings for working fluids between radially and axially movable parts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01C—ROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
- F01C21/00—Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
- F01C21/06—Heating; Cooling; Heat insulation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49229—Prime mover or fluid pump making
- Y10T29/49236—Fluid pump or compressor making
- Y10T29/49245—Vane type or other rotary, e.g., fan
Definitions
- the present technology is directed generally to rotary compressor- expander systems, e.g., for compressing, storing, and/or releasing compressed fluids.
- CAES systems compress atmospheric air in a compressor driven by energy from the electric system.
- the compressed air is stored in a compressed air reservoir, e.g., a geological formation or other structure.
- a positive displacement machine such as a typical internal combustion engine, reciprocating air compressor, or rotary displacement device, can compress air for storage.
- PDM positive displacement machine
- One of the cost reduction methods for CAES systems is to use a PDM in a bidirectional manner for both the compression and expansion processes.
- bidirectional PDMs are often mechanically complicated and tend to operate at high pressure ratios, causing high temperature changes in the system. This can result in a relatively low amount of recovered energy.
- bidirectional (e.g., reversible) compressor/expander for use in a CAES system.
- Figure 1 is a partially schematic illustration of a compressed air energy storage system configured to store and release compressed fluids in accordance with several embodiments of the present disclosure.
- Figure 2 is a partially schematic front view of a two-lobed rotary displacement system configured in accordance with an embodiment of the disclosure.
- Figure 3 is a partially schematic front view of a three-lobed rotary displacement system configured in accordance with an embodiment of the disclosure.
- Figure 4A is a front isometric view of a compressor/expander system configured in accordance with embodiments of the disclosure.
- Figures 4B-4E are schematic views of the compressor/expander system of Figure 4A at representative points during operation.
- Figure 5 is an enlarged end view of an upper portion of the system 310 shown in Figure 3.
- Figure 6A is a partially schematic isometric view of a rotary displacement system having an integral heat exchanger configured in accordance with an embodiment of the disclosure.
- Figure 6B is a partially schematic, isometric side view of a multi-stage rotary displacement system having an integral heat exchanger configured in accordance with another embodiment of the disclosure.
- Figure 6C is a partially schematic isometric end view of an interior portion of the system of Figure 6B.
- Figure 6D is a partially schematic isometric end view of the system of Figure 6B.
- Figure 7 is a front view of a rotary displacement system having an insulator configured in accordance with an embodiment of the disclosure.
- Figure 8 is a partially schematic isometric view of a rotary displacement system having a generally hollow rotor configured in accordance with an embodiment of the disclosure.
- Figure 9 is a partially schematic isometric view of a rotary displacement system having a plurality of rotors operating in parallel in accordance with an embodiment of the disclosure.
- Figure 10 is an exploded side isometric view of a rotary displacement system configured in accordance with another embodiment of the disclosure.
- Figure 11 is an isometric view of a rotary displacement system configured in accordance with an embodiment of the disclosure.
- the present technology is directed generally to a rotary compressor- expander system for storing and releasing compressed fluids, and associated systems and methods.
- the system includes a pressure- modifying chamber, valveless fluid communication between the chamber and first and second passageways, an integral heat exchanger, and/or a rotor having three or fewer lobes (e.g., two lobes).
- the rotor is capable of operating bidirectionally, e.g., in a first configuration or mode in which flow is provided from the first passageway to the second passageway via the chamber, and in a second configuration or mode in which flow is provided from the second passageway to the first passageway via the chamber.
- the technology and associated systems and methods can have different configurations, modes, components, and/or procedures. Still other embodiments may eliminate particular components or procedures.
- renewable energy sources e.g., solar and wind
- many renewable energy sources e.g., solar and wind
- Combined compressor/expander systems in combination with a suitable reservoir provide an efficient mechanism by which to store energy and release energy at a later time.
- aspects of the presently disclosed technology can improve the efficiency with which energy from renewable sources is obtained, stored and used.
- FIG. 1 Many embodiments of the technology described below may take the form of computer-executable instructions, including routines executed by a programmable computer. Those skilled in the relevant art will appreciate that aspects of the technology can be practiced on computer systems other than those shown and described below.
- the technology can be embodied in a special-purpose computer or data processor that is specifically programmed, configured or constructed to perform one or more of the computer-executable instructions described below.
- the terms "computer” and “controller” as generally used herein refer to any data processor and can include Internet appliances and hand-held devices (including palm-top computers, wearable computers, cellular or mobile phones, multi-processor systems, processor-based or programmable consumer electronics, network computers, mini computers and the like). Information handled by these computers can be presented at any suitable display medium, including a CRT display or LCD.
- the technology can also be practiced in distributed environments, where tasks or modules are performed by remote processing devices that are linked through a communications network.
- program modules or subroutines may be located in local and remote memory storage devices.
- aspects of the technology described below may be stored or distributed on computer-readable media, including magnetic or optically readable or removable computer disks, as well as distributed electronically over networks. Data structures and transmissions of data particular to aspects of the technology are also encompassed within the scope of the technology.
- FIG. 1 schematically illustrates a representative overall system 100 for storing energy generated at one time for use at a later time.
- the overall system 100 can include one or more energy supply sources 102 which supply energy in the direction of arrow A toward an energy storage device (e.g., a reservoir) 108, via electrical lines on a power grid 104.
- the supplied energy can be generated from a number of suitable sources, including, for example, wind, solar, natural gas, oil, coal, hydro, nuclear, and/or others.
- a power device 106 uses energy from the supply source 102 to electrically or mechanically drive a bidirectional compressor/expander 110 to operate in a first configuration or mode.
- the compressor/expander compresses a fluid, e.g., atmospheric air. Heat generated during compression may be dissipated or retained for later use in an expansion process. After the air has been compressed, the air is directed toward a compressor/expander fluid storage volume 101 of the energy storage device 108.
- the energy storage device 108 can include a geological formation, underwater compressed fluid storage vessels, a high-pressure tank, and/or other suitable volume.
- the energy storage device 108 is an underwater device as described in U.S. Provisional Patent Application No. 61/309,415, UNDERWATER COMPRESSED AIR ENERGY STORAGE, which has been incorporated by reference herein.
- the energy storage device 108 includes the compressor/expander fluid storage volume 101 and a thermal storage volume 103.
- the compressor/expander fluid storage volume 101 can store working fluid processed by the bi-directional compressor/expander 110.
- the thermal storage volume 103 can store heated or cooled fluid used by the bidirectional compressor/expander 110 or by other processes or machines.
- the energy storage device 108 can supply compressed air or another fluid to the bidirectional compressor/expander 110 which operates in a second mode to expand the compressed air or other fluid.
- heat can be added to the compressor/expander 110 during the expansion process.
- the heat can be a product of the compression process or can come from another heat source (e.g., a warm liquid reservoir, exhaust from a gas turbine, and/or other suitable sources).
- Expanding air in the compressor/expander 110 drives the power device 106 to supply electricity to the grid 104 in the direction of arrow B. The electricity is thus provided to the energy consumers 112.
- the compressor/expander 110 can operate at various speeds based on energy demand and other factors.
- the compressor/expander 110 operates at a low speed, producing a low amount of power, but at a high efficiency. In other embodiments, the compressor/expander 110 operates at a higher speed, producing a higher amount of power, at a lower efficiency.
- the system 100 can also include a controller 148 that directs the operation of one or more system components, e.g., the power device 106, the compressor/expander 110 and/or the energy storage device 108.
- the controller 148 can receive inputs 117 (e.g., sensor inputs) and direct outputs 119 (e.g., control signals) via computer implemented instructions.
- the controller 148 can receive inputs corresponding to energy levels produced by the supply source 102 and demanded by the consumers 112 and, based on the differences between these levels, control the direction of fluid flow through the compressor/expander 110, e.g.
- controller 148 can be responsive to operator input or other factors, in addition to or in lieu of responding to supply and demand levels.
- FIG. 2 is a partially schematic front view of a two-lobed rotary displacement system 210 configured in accordance with an embodiment of the disclosure.
- the system 210 can include a first fluid passageway 214, a second fluid passageway 216, and chamber housing 218 having an inner wall 220 and an outer wall 222.
- the first fluid passageway 214 can have working fluid at a first pressure and the second passageway 216 can have working fluid at a second pressure higher or lower than the first pressure.
- the chamber housing 218 at least partially surrounds a pressure-modifying chamber 224.
- the pressure-modifying chamber 224 is generally circular, but in other embodiments can have a modified oval, oblong, trochoidal, or other curved shape.
- the pressure-modifying chamber 224 can further include a first port 226 connecting the first passageway 214 to the pressure-modifying chamber 224 and a second port 228 connecting the second passageway 216 to the pressure-modifying chamber 224. Accordingly, the first and second ports 226, 228 extend through the chamber housing 218. In several embodiments of the present disclosure, there is no valve between the pressure-modifying chamber 224 and the first passageway 214 and/or between the pressure-modifying chamber 224 and the second passageway 216, as will be discussed in further detail later.
- the system 210 includes a bidirectional compressor/expander, configured to operate as a compressor in a first mode and an expander in a second mode.
- the first port 226 operates as an inlet port or an outlet port and the second port 228 performs the opposite function, e.g., it operates as an outlet port or an inlet port.
- the rotor 232 rotates in a first direction, the first port 226 functions as an inlet port (feeding low-pressure working fluid, or flow, into the compression chamber 224), and the second port 228 functions as an outlet port (accepting compressed working fluid and feeding it to the first passageway 214).
- the second mode in which the system is running as an expander, the rotor 232 rotates in a second direction opposite the first direction, the first port 226 operates as an outlet port, the second port 228 operates as an inlet port, and the direction of flow through the system 210 is reversed.
- the system 210 operates as a dedicated compressor or expander, and does not run bidirectionally.
- the system 210 can have more than two ports.
- the system 210 can have two inlet ports and two outlet ports.
- the ports 226, 228 can be rectangular with rounded corners or otherwise shaped.
- the ports 226, 228 are positioned in the chamber housing 218 in manners that differ in different embodiments of the disclosure, as will be described in further detail later.
- individual ports e.g., the first port 226 and the second port 228, are separated from each other by a separation portion 230 of the chamber housing 218.
- the system 210 can further include a rotor 232 coupled to and eccentrically rotatable relative to a shaft 234 which runs through a center portion 236 of the rotor 232.
- An eccentric cam 268 is further coupled to the shaft 234 and is positioned in the center portion 236 of the rotor 232.
- the rotor 232 can have a plurality of lobes 238. While the rotor 232 illustrated in Figure 2 includes two lobes 238, in other embodiments it can have three or more lobes.
- the lobes 238 can have various shapes, curvatures, and dimensions in different embodiments of the disclosure.
- each lobe 238 extends radially outwardly from the center 236 of the rotor 232 by a greater amount than do the neighboring regions of the rotor 232, so that a peripheral boundary 233 of the rotor 232 is non-circular.
- Each lobe has a tip 239 at the radially-outermost point of the lobe 238.
- the shaft 234 extends into (e.g., traverses) the chamber 224 along a rotational axis RA normal to the plane of Figure 2.
- the shaft 234 can be electrically and/or mechanically connected to a motor, a generator, or a motor/generator (shown schematically in Figure 1 ).
- the rotor 232 is actuated by rotating the shaft 234 and the cam 268.
- the rotation direction of the shaft 234 determines the rotation direction of the rotor 232 and whether the system 210 is operating as a compressor or expander.
- gears can be added in some embodiments to effect rotor rotation.
- both the first port 226 and the second port 228 are radially positioned.
- the ports 226, 228 are positioned on a surface 221 of the chamber housing 218 that is generally parallel to the rotational axis R A .
- the lobe tips 239 rotate past the first and second ports 226, 228 and cyclically cover and uncover the first and second ports 226, 228.
- Seals e.g., tip rollers 240
- the tip rollers 240 can be generally cylindrical and are mounted to the lobes 238 via a roller-mount 24 , such as a gear- free wheel-and-axle apparatus or a spherical wheel system.
- the rollers 240 can be forced against the rotor walls in a modulated manner by springs or other pressure devices (e.g., as disclosed in US Patent 3,899,272), to provide low-friction contact with the chamber housing inner wall 220, and can also guide the rotor position.
- the rollers 240 can also help ensure that pressurized fluid does not escape from a chamber zone 242 bounded by the rotor 232 and the housing inner wall 220.
- other tip-sealing features such as sliding seals, liquid films, and/or a purposefully placed gap space between the lobe 238 and the inner wall 220 of the chamber housing 218 can be used.
- a thin film of liquid can be applied to the chamber housing 218 or the lobe tips 239.
- the thin film can comprise seawater, freshwater, oil, glycol, glycerin, and/or another material, or a combination of materials.
- the thin film can provide a higher flow resistance across a gap between the tip 239 and the chamber housing inner wall 220.
- air bearings can be applied to the tip 239 to seal the chamber zone 242 with minimal friction.
- the inner wall 220 of the pressure-modifying chamber 224 and/or portions of the rotor 232 can include one or more low-friction coatings 244.
- the coating 244 can include plastic, ceramic, or other materials.
- a low-friction coating e.g., Teflon, epoxy, polycarbonate, cross-linked polyethylene, and/or other material
- Teflon epoxy, polycarbonate, cross-linked polyethylene, and/or other material
- the separation portion 230 between the first port 226 and the second port 228 can carry a seal, e.g., a variable geometry seal 246.
- the variable geometry seal 246 can engage with the peripheral boundary 233 of the rotor 232 as the rotor 232 eccentrically rotates in the chamber 224.
- the orbital position of the rotating rotor 232 with respect to the chamber housing inner wall 220 can determine the size of the chamber zones 242 and the pressure of the fluid within the zones 242.
- the rotor 232 illustrated in Figure 2 is oriented in the equivalent of a bottom dead center position.
- the rotor 232 rotates in a first rotation direction (e.g., clockwise) about the eccentric shaft 234 to deliver compressed working fluid to a high-pressure passageway (e.g., the second passageway 216).
- the rotor 232 rotates in the opposite direction to deliver expanded working fluid to a low- pressure passageway (e.g., the first passageway 214).
- the system 210 can include a controller 148 to control the rotation direction of the rotor 232, which in turn determines whether the system 210 operates to compress or expand.
- the controller 148 may accordingly receive inputs 1 17 (e.g., from sensors and/or an operator) and provide outputs 1 19 to direct the rotor 232.
- the controller 148 can redirect the rotation of the rotor 232 by mechanical, electrical, electromechanical and/or other suitable devices.
- the controller 148 controls the rotation direction and torque of the shaft 234.
- the controller 148 can perform functions in addition to controlling the bidirectionality of the system 210.
- the controller 148 can include any suitable computer-readable medium programmed with instructions to direct the operation of the system 210.
- the system 210 can further include a heat exchanger 258 positioned outside the chamber housing 218.
- the heat exchanger 258 can include a heat exchanger passageway 256 in fluid communication with one or more of the first and second passageways 214, 216 and/or the chamber 224.
- a heat exchanger housing wall 261 positioned between the heat exchanger passageway 256 and the first and/or second passageways 214, 216 channels flow between the heat exchanger passageway 256 and the first and/or second passageways 214, 216. Flow can be channeled to enhance working fluid contact with the heat exchanger 258.
- the heat exchanger 258 can be dedicated to providing heating or cooling, or can be bidirectional so as to cool fluid processed by the chamber 224 during compression and add heat during expansion.
- fluid is injected directly into the chamber 224 and/or a passageway 214, 216, or 256 by one or more nozzles 231 , such as an atomizing spray nozzle.
- the injected fluid can be colder or hotter than the working fluid in the chamber 224, and can accordingly cool or heat the working fluid in addition to or in lieu of the heat transfer effect provided by the heat exchanger 258. Further aspects of the heat exchanger 258 will be discussed later with reference to Figures 6A-6D.
- An outer housing 250 can at least partially surround or encase the chamber housing 218, the first passageway 214, and the second passageway 216.
- the outer housing 250 can have an inwardly facing inner surface 252 and an outwardly facing outer surface 254.
- the outer housing 250 can be radially spaced apart from the chamber housing 218, providing room for the passageways 214, 216, 256, the heat exchanger 258, stabilizing features 260 (e.g., standoffs), an insulator material (not shown in Figure 2, but discussed in further detail later with reference to Figure 7), and/or other components.
- the outer vessel 250 is illustrated as being generally cylindrical, but in other embodiments can be other shapes and/or can only partially surround the chamber housing 218.
- the outer housing 250 can be axially adjacent to one or more bulkheads 262. In the illustrated embodiment, only one axial bulkhead 262 is shown so as to not obscure the inner-workings of the system 210, but in other embodiments the outer housing 250 can be sandwiched between two axial bulkheads 262. In this manner, the outer housing 250 and the bulkheads 262 can form a pressure vessel for the flow within the system 210. Accordingly, the inner surface 252 of the outer housing 250 and the bulkheads 262 contact and/or contain pressurized flow passing through the system 210. Using the outer housing 250 as a pressure vessel can reduce the material requirements for the overall system 210.
- the inner surface 220 of the chamber housing 218 can have one or more coatings 244 to reduce friction and/or manage wear.
- the coating 244 can be applied to other surfaces of the system 210 (in addition to or in lieu of the inner surface 220), e.g., other surfaces of the chamber housing 218, the outer housing 250, the rotor 232, the passageways 214, 216, the fluid passageways 256, the heat exchanger 258, the bulkheads 262 and/or the shaft 234, in order to achieve desired functional or material characteristics such as heat resistance or corrosion resistance.
- high-temperature coatings such as ceramics, can be used to protect the surfaces from hot fluids.
- plastic coatings can be used to improve corrosion resistance and reduce friction at lower cost. W
- Figure 3 is a partially schematic front view of a three-lobed rotary displacement system 310 configured in accordance with another embodiment of the disclosure.
- the system 310 includes many features that were discussed above with reference to Figure 2, including a chamber housing 218 having an inner surface 220 and an outer surface 222, a compression/expansion chamber 224, a rotor 332, a shaft 234, and an outer housing 250 having an inner wall 252 and an outer wall 254.
- the system 310 further includes first and second passageways 214, 216 and first and second ports 226, 228 connecting the passageways 214, 216 to the chamber 224. In the illustrated embodiment, there are four ports, but in other embodiments the system 310 can include more or fewer ports. In several embodiments, there are no valves in the ports 226, 228 or between the passageways 214, 216 and the chamber 224.
- a ring gear 366 (e.g., a planetary gear) is disposed on the inner periphery of a central portion 336 of the rotor 332 and is positioned to mesh with a pinion 364 disposed on the outer periphery of the shaft 234.
- An eccentric cam 368 is mounted on the shaft 234 and is positioned in the center portion 336 of the rotor 336.
- the rotor gear 366 meshes with the pinion 264 to eccentrically orbit the rotor 332 around the chamber 224.
- other mechanisms such as the cam described above with reference to Figure 2, rotate the rotor 332 without the need for gears.
- the rotor 332 has a rotor periphery 333 that is generally triangular, comprising three curved lobes 338. Each lobe 338 has a tip 339, and each tip 339 has a tip-widener feature 370. In other embodiments, the rotor 332 can have more or fewer than three lobes 338 and the lobes 338 can have different degrees of curvature.
- the tip wideners 370 radially and circumferentially extend from the lobe tips 339 and contact the inner wall 220 of the chamber housing 218. The wideners 370 divide the chamber 224 into multiple (e.g., three) chamber zones 342.
- the lobes 338 and tip wideners 370 of the turning rotor 332 cyclically cover and uncover the first and second ports 226, 228.
- the location of the rotating rotor 332 with respect to the chamber housing inner wall 220 determines the sizes of the chamber zones 342 and the corresponding flow pressures within the zones 342.
- the tip wideners 370 can be attached to fewer than every lobe 338 or may be absent altogether. The tip wideners 370 will be discussed in further detail later with reference to Figure 5.
- the compressor/expander can be placed in proximity to a large body of water that provides a constant source of heat or cooling energy. Additionally or alternatively, the body of water can provide a repository for water warmed by the compression process. If the warmed water is contained, the warmed water can later be used during the expansion process, using the same heat exchange method used to collect the heat of compression. Furthermore, the reduced lobe designs generally require less mass and thus less cost for the volume of gas that they compress. Valveless, bidirectional operation of the compressor/expander can offer further efficiency and can reduce device complexity and material costs. The following sections describe several of these features and advantages in more detail and will introduce additional related features and advantages.
- FIG 4A is a front isometric view of a compressor/expander system 410 configured in accordance with an embodiment of the disclosure.
- the system 410 includes several features generally similar to those described above with reference to Figures 2 and 3.
- the system 410 includes a rotor 232 carried by and rotatable relative to a shaft 234, with the rotor 232 and the shaft 234 positioned within a pressure-modifying chamber 224 which is at least partially surrounded by chamber housing 218.
- the rotor comprises two lobes including a first lobe 238a and a second lobe 238b.
- the chamber housing 218 has an inner wall 220 and an outer wall 222.
- the chamber 224 includes a first port 226 and a second port 228 which connect the chamber to low- and high-pressure passageways (not shown). In several embodiments, there are no valves in the ports 226, 228 or between the ports and the passageways.
- the system 410 can further include a variable geometry seal 246 slideabiy coupled to a portion 230 of the chamber housing 218 between the first port 226 and the second port 228.
- the variable geometry seal 246 can include an internal spring 447 to bias the variable geometry seal 246 into engagement with a peripheral boundary 243 of the rotor 232 as the rotor 232 eccentrically rotates in the chamber 224.
- variable geometry seal 246 can maintain a continuous sealing engagement with the periphery 233 of the rotor 232 by radially reciprocating between a forward position in which the variable geometry seal 246 extends into the compression/expansion chamber 224 and a retracted or recessed position in which the variable geometry seal 246 is generally flush with an inner wall 220 of the chamber housing 218.
- a first portion of the variable geometry seal 246 can be fixed relative to the chamber housing 218 while a second portion can be radially and/or circumferentially moveable relative to the chamber housing 218.
- the seal 246 can include a seat that is fixed relative to the chamber housing 218, and a sealing surface that moves (e.g., radially reciprocates) relative to the chamber 218.
- the system 410 can include multiple variable geometry seals 246.
- the rotor 432 illustrated in Figure 4A includes tip rollers 240.
- the rollers 240 can decrease the friction between the rotor lobes 238 and the inner wall 220 of the chamber housing 218 and between the rotor lobes 238 and the variable geometry seal 246.
- the rollers 240 can also better enable the rotor 232 to follow the contours of the chamber housing 218.
- Figures 4B-4E are schematic views of the compressor/expander system 410 shown in Figure 4A, at representative points during operation. Referring first to IS
- the rotor 232 is positioned to cover the first and second ports 226, 228.
- a first chamber zone 442a contains a fluid and in this position of the rotor's orbit, the volume of the first zone 442a is maximized.
- low-pressure fluid enters a second zone 442b via the first port 226.
- the volume of the first zone 442a has decreased, compressing the fluid in the first zone 442a.
- the spring 447 coupled to the variable geometry seal 246 pushes the variable geometry seal 246 radially inward to remain engaged with the rotor periphery 233.
- An interstitial zone 442c is formed between the variable geometry seal 246 and the approaching first lobe 238a.
- the interstitial zone 442c is filled with high- pressure fluid via the second port 228, but in some embodiments this small volume of fluid will simply discharge from the second port 228 with low losses as the first lobe 238a approaches the variable geometry seal 246.
- the system 410 includes grooves (not visible in Figure 4C) in the inner wall 220 of the chamber housing 218 between the variable geometry seal 246 and the second port 228, thus allowing the interstitial volume 442c to be vented into a high-pressure passageway at any rotor position.
- the rotor 232 then continues to rotate to the position shown in Figure 4B, but now with the second zone 442b filled with fluid and the first and second lobes 238a, 238b in opposite positions.
- the foregoing sequence was described in the context of a representative compression mode. It will be understood that the rotor 432 can rotate in the opposite direction to expand the fluid in an expansion mode. As described above, the change between compression and expansion modes can be controlled by the controller 148 (shown schematically in Figure 2).
- the pressure ratio between the ports 226, 228 can be designed to be modest, e.g. on the order of 1.2 in particular embodiments.
- An advantage of the arrangement is that it reduces the temperature increase during compression, which allows the system to be manufactured with relatively low temperature materials. This in turn can reduce the overall cost of the systems.
- the system can include multiple stages arranged in series, as described later with reference to Figure 6B.
- Another feature of the foregoing arrangement is that it includes a rotor with only two lobes.
- An advantage of this feature is that it can allow greater flexibility in positioning and/or sizing the first and second ports. This in turn can facilitate larger ports which can improve the efficiency of the system, as described, further later.
- FIG. 5 is an enlarged end view of an upper portion of the system 310 shown in Figure 3.
- the system 310 has several features generally similar to those described above with reference to Figures 2 and 3.
- the system 310 includes a chamber housing 218 surrounding a pressure-modifying chamber 224.
- the chamber 224 has a first port 226 and a second port 228 connected to a first passageway 214 and a second passageway 216, respectively.
- the system 310 further includes an outer housing 250 surrounding the pressure-modifying chamber 224 and the passageways 214, 216.
- a rotor 332 having a lobe 338 with a tip 339 is positioned in the chamber 224.
- the illustrated portion of the system 310 highlights a tip widener 370 that can be moveably coupled to the lobe tip 339.
- the tip widener 370 can include independently flexing arms 592a and 592b that are forced radially outwardly, e.g., by a torsion spring (not visible in Figure 5) located at an attachment point 594 and/or by the resilient structure of the arms 592a, 592b.
- the arms 592a, 592b can be independently flexible so as to continuously contact the varying angles along an inner wall 220 of the chamber housing 218 as the rotor 332 rotates.
- the tip widener 370 can comprise a resiliently bendable, pre-formed material, such as a plastic or spring steel.
- the tip widener 370 can have more or fewer than two arms 592a, 592b and can tend radially outwardly under a force other than a spring force.
- the tip widener 370 can be attached to the lobe 338 by a number of suitable mechanisms, including, for example, welding, frictionally securing, gluing, and/or fasteners.
- the tip widener 371 can be mounted to the lobe 338 at an attachment point 594 that includes a pivot joint so as to pivot relative to the lobe 338, as indicated by arrow P.
- the tip widener 370 can be flexible, as discussed above, or more rigid. If it is more rigid, it can be positioned on a slot 595 so as to translate toward and away from the inner wall 220 (as indicated by arrow T) as it pivots.
- the tip widener 370 can have a circumferential extent Ci that is larger than a circumferential extent C 2 of the first and second ports 226, 228.
- the tip widener arms 592a, 592b effectively seal the port from fluid communication with the chamber 224.
- the tip wideners 370 can decrease the circumferential spacing required between the input and output ports 226, 228.
- the spacing between conventional lobe tips is approximately 120°, resulting in ports that need to be fairly evenly spaced around the circumference of the housing.
- the tip widener 370 allows the ports 226, 228 to be placed at points less than 120° apart, in effect increasing the circumferential spread of the lobe 338. This flexibility of port placement allows for greater displacement efficiency of the device 310.
- the circumferential extent Ci of the tip widener 370 can vary depending on the number and spacing of the ports 226, 228 and the desired timing of port openings and closings.
- the circumferential extent Ci of the tip widener 370 can vary to provide the desired circumferential space between lobes 338.
- the circumferential extent between each proximate pair of high pressure and low pressure ports can be approximately 89°
- the circumferential extent between tip wideners can be approximately 51°
- the opening sizes of the low pressure ports can be approximately 28°
- the opening sizes of the high pressure port can be approximately 17.5°.
- both the tip wideners and the variable geometry seals can significantly reduce reverse flow conditions while still accommodating large port sizes.
- the tip wideners can reduce or minimize reverse flow by effectively narrowing the effective circumferential spacing between ports along the inner wall of the chamber.
- variable geometry seals dynamically separate high- and low- pressure sides of the chamber, reducing the chance that high- and low- pressure ports will be simultaneously open within a single zone.
- the system can benefit from reduced tip bypass flow and allows port opening and closing timing to be optimized, thereby improving system efficiency. While these features were described above in the context of a three-lobed rotor, they can be applied alone or in combination to a two- lobed rotor.
- ports can be sized to be from about 3% to about 15% or more of the circumference of the chamber inner surface without the system encountering large reverse flow conditions during operation.
- ports can be sized to be from about 4% to about 15% of the circumference of the chamber inner surface without encountering large reverse flow conditions in operation.
- Figure 6A is a partially schematic isometric view of a rotary displacement system 610a having an integral heat exchanger 658a configured in accordance with an embodiment of the disclosure.
- the system 610a includes several features generally similar to those described above with reference to Figures 2 and 3.
- the system 610a includes a chamber housing 218 having an inner wall 220 and an outer wall 222, a pressure-modifying chamber 224, a rotor 332 rotatably coupled to a shaft 234, first and second passageways 214, 216, and first and second ports 226, 228 in the chamber 224 providing fluid communication between the chamber 224 and the individual passageways 214, 216.
- the heat exchanger 658a is positioned radially outside the chamber housing 218 and the passageways 214, 216.
- the heat exchanger 658a includes one or more heat exchanger supply tubes 659 which convey a heated or cooled heat exchanger fluid.
- the heat exchanger 658a surrounds a portion of the chamber housing 218 and is in fluid communication with working fluid from the pressure-modifying chamber 224. Specifically, working fluid exiting the chamber 224 via the second port 228 flows radially outwardly in the direction of arrows Fi through the second passageway 216, and into a heat exchanger passageway 256 to make contact with the heat exchanger 658a.
- the working fluid exchanges heat with the heated or cooled heat exchanger fluid in the supply tube 659.
- the system further comprises an outer housing 250 (a portion of which is shown in Figure 6A) having an inner surface 252 and an outer surface 254.
- the outer housing 250 can at least partially surround and/or encase the chamber housing 218, the pressure-modifying chamber 224, the passageways 214, 216, and the heat exchanger 658a.
- pressurized working fluid passing through the heat exchanger 658a contacts the inner surface 252 of the outer housing 250, which acts as a pressure vessel to contain the working fluid.
- the interior of the outer housing 250 as a pressure vessel eliminates the need for several pipe-fittings and passageways between the pressure-modifying chamber 224 and the ports 226, 228, the passageways 214, 216, and the heat exchanger 658a, and between one stage and the next in multi-stage systems.
- the heat exchanger 658a illustrated in Figure 6A is a finned-tube heat exchanger.
- Other embodiments can include other types of heat exchangers such as shell-and-tube heat exchangers, plate heat exchangers, gas-to-gas heat exchangers, direct contact heat exchangers, fluid heat exchangers, phase-change heat exchangers, waste heat recovery units, or other types of heat exchangers.
- the heat exchanger 658a can comprise a waste heat recovery unit (not shown) that transfers heat from a hot gas stream to the heat exchange fluid.
- the hot gas stream can be an exhaust gas stream from a gas turbine or a diesel engine, or a waste gas stream from a refinery, or other industrial system.
- the heat exchanger fluid can comprise freshwater, seawater, steam, coolant, oil, or other suitable gaseous liquid and/or biphasic fluids.
- the heat exchanger 658a can operate in both the compression and expansion modes to support a bidirectional compressor/expander, and may interact with the compressed/expanded flow before or after the flow enters the chamber 224.
- the heat exchanger fluid is the same for both the compression and expansion modes of operation of the device, while in other embodiments different heat exchanger fluids are used.
- heat exchanger fluid that is heated during operation in the compression mode can be stored, e.g., in an exterior thermal storage reservoir for use during operation in the expansion stage.
- the heat exchanger 658a can be made of a number of suitable materials or combinations of materials, including metals, ceramics, or plastics.
- the heat exchanger is at least partially made of corrosion-resistant materials (e.g. copper, cupro-nickel, titanium, stainless steel and others) in order to allow for the use of a wide variety of heat exchange fluids.
- multiple pressure-modifying chambers 224 can be fluidly connected and can operate in series.
- the radial heat exchanger 658a axially extends along the outer wall 222 of multiple chamber housings 218.
- the compressed/expanded working fluid travels radially outwardly from a first port 228 of a first stage (as indicated by arrows Fi), into the heat exchanger 658a, axially along the heat exchanger 658a, and then radially inwardly to enter a second port of a second pressure-modifying chamber (not shown).
- the working fluid When the system operates in the compression mode, the working fluid can be cooled between stages. When the system operates in the expansion mode, the working fluid can be heated between stages. Interstage heating and cooling can reduce (e.g., minimize) the temperature changes between stages that can rob the system 610a of operating efficiency. By directing the working fluid in the passageways 214, 216 radially outwardly from the chamber housing 218 the system can reduce pressure oscillations between stages and allow for significant heat exchanger length.
- FIG. 6B is a partially schematic, isometric side view of a multi-stage rotary displacement system 6 0b having multiple integral heat exchangers 658b in accordance with another embodiment of the disclosure.
- the system 610b includes multiple stages (numbered individually as stages 672-675) axially aligned along a shaft 234. For purposes of clarity, the rotors carried by the shaft 234 are not shown in Figure 6B.
- Each stage can include a chamber housing 218 having first and second ports 226, 228, a first passageway 214, and a second passageway 216.
- Each stage 672-675 can additionally include one or more bulkheads 662 positioned axially adjacent to the corresponding chamber housing 218.
- the system 610b further includes multiple axial heat exchangers 658b axially aligned between compression/expansion stages 672-675.
- the heat exchangers 658b are in fluid communication with working fluid in the first and/or second passageways 214, 216. Specifically, the working fluid travels from one stage to the next in the direction of arrows F 2 .
- the working fluid can exit a first stage 672 through a corresponding second port 228 and then flow axially into an axially adjacent heat exchanger 658b. The working fluid then enters the first port 226 of the adjacent stage 673 and the process is repeated as the working fluid travels from right to left in Figure 6B.
- the working fluid travels directly from the second passageway 216 into the heat exchanger 658b and in other embodiments the working fluid traverses through one or more apertures in the adjacent bulkhead 662 (discussed in further detail below with reference to Figure 6C) and then into the adjacent heat exchanger 658b.
- the working fluid transfers thermal energy in the heat exchanger 658b and continues axially into the first passageway 214 and first port 226 of the adjacent second stage 673.
- the first port 226 and second port 228 of sequential stages may be offset clockwise or counterclockwise relative to each other in order to better direct the working fluid through the system 610b.
- the axial heat exchanger 658b can operate in both compression and expansion modes to support a bidirectional compressor/expander. Any of the types of heat exchangers and heat exchanger fluids described above can be used in the axial heat exchanger 658b as well. While three heat exchangers 658b and four compression/expansion stages 672-675 are illustrated in Figure 6B, other embodiments can include more or fewer stages and/or heat exchangers 658b, and the arrangement of the stages 672-675 and heat exchangers 658b can vary. For example, a multi-staged design can be used in systems not having an integral heat exchanger.
- the axial length of the compression/expansion stages 672- 675 and the heat exchangers can vary within a system 610b.
- differing axial lengths can be used to maintain generally consistent pressure ratios from one stage to the next due to the changing density of the working fluid from stage to stage.
- the system 610b can further include perforated bulkheads 662 having reinforcing ribs 684.
- An individual bulkhead 662 includes one or more apertures 682 that allows the working fluid to flow into the passageways and corresponding chamber ports of an adjacent stage.
- the bulkheads 662 can experience a significant bending force from the internal pressure, particularly around the apertures 682 located near the periphery of the bulkhead 662 where the bulkhead 662 is coupled to the outer housing.
- the reinforcing ribs 684 can be welded or otherwise affixed across the apertures 682 to prevent or limit bulkhead deformation due to internal pressure, while still allowing fluid flow to the internal heat exchanger 658b. While the reinforced ribs 684 are illustrated on a system 610b having an axial heat exchanger 658b, they can be used in embodiments having a radial heat exchanger (e.g., the heat exchanger 658a shown in Figure 6A) or in embodiments having no heat exchanger.
- the system 610b can further include a distribution plate 686 positioned between an individual pressure-modifying chamber 224 and the adjacent heat exchanger 658b.
- the distribution plate 686 can span all or a portion of the pressure-modifying chamber 224 and can include a plurality of openings 685.
- the distribution plate 686 is positioned to disseminate working fluid over the heat exchanger 658b more effectively. Specifically, as the working fluid exits the second port 228 in a radial direction, it passes circumferentially around the outside of the chamber 224, as indicated by arrows C3 and then axially through the openings 685 and through the heat exchanger 658b.
- the openings 685 on the distribution plate 686 can have different sizes and shapes, the distribution plate 686 can have more or fewer openings 685, and/or the openings 685 can be arranged in other configurations.
- the plate 686 can accommodate working fluid flowing in either direction, as appropriate for a bidirectional compressor/expander system. While the distribution plate 686 is illustrated in the context of a system 610b having an axial heat exchanger 658b, an analogous plate can be used with a radial heat exchanger similar to that depicted in Figure 6A.
- the distribution plate 686 can be curved to match the curve of the heat exchanger, and can be positioned radially between a passageway and a corresponding radial heat exchanger.
- rotor 332 is illustrated as a three-lobed rotor 332, in other embodiments integral heat exchanger designs and/or multi-stage designs can be used with rotors having more or fewer (e.g., two) rotor lobes.
- Radial and axial heat exchangers can be used separately or in combination in rotary displacement systems. Dimensional characteristics can influence which type of integral heat exchanger to use in a particular system. For example, axial heat exchangers provide for narrow, lengthened, systems while radial heat exchangers provide for wider, but shorter systems which require fewer interstage bulkheads (as two adjacent stages can share a common divider bulkhead). Regardless of what type of heat exchanger is chosen, integrating the heat exchanger into the device can provide for more constant temperature operation of the rotary displacement device. In bidirectional systems, the integral heat exchanger allows for efficient restoration of the heat produced during compression to the expansion cycle.
- Fluid injection can additionally or alternatively be used to exchange heat in rotary displacement devices.
- fluid injection comprises introducing an injection fluid (typically a liquid) to the pressure- modifying chamber 224 to cause a thermal transfer between the fluid and the flow within the chamber 224.
- the injection fluid can include seawater, fresh water, oils (such as vegetable oil or mineral oil), or refrigerants such as a fluorocarbon.
- injection fluid can depend on a number of injection fluid characteristics, including, for example, the injection fluid's surface tension, specific heat, heat transfer coefficient, costs to atomize the injection fluid, lubricative properties, and environmental friendliness.
- the injection fluid is non-combustible and/or is specifically selected to be injected into chamber 224 or other region without combusting.
- the fluid can be introduced via the first port 226, via one or more separate fluid-delivery ports in the chamber housing, and/or via one or more fluid ports in the rotor (discussed in further detail below with reference to Figure 8).
- the injection fluid is introduced in the first or second passageways 214, 216 or in the heat exchanger passageway 256.
- injection fluid is introduced from multiple locations to provide more even injection fluid distribution into the pressure-varied fluid.
- the injection fluid is introduced via a nozzle (shown schematically in Figure 2) such as an atomizing spray nozzle.
- the injection fluid is atomized to increase surface area and injection fluid suspension in the working fluid.
- the injection fluid is about 500 microns or smaller.
- the injection fluid is atomized to be sized from about 20 to about 100 microns.
- the injection fluid can absorb heat of compression or can provide heat for expansion by direct contact with the working fluid in the chamber.
- the heat exchange injection fluid may be injected into the gas stream prior to either expansion or compression, or the gas stream may be allowed to percolate through the heat exchange fluid.
- feedback from one or more temperature sensors monitoring either the working fluid or injection fluid output temperature can be used by the controller, possibly along with information about the thermal energy storage and other parameters, to adjust the quantity of liquid and the method of injection to achieve various objectives which may include a high efficiency of operation or a desired temperature range.
- the injection fluid can be extracted via the discharge port 228 with the pressure-modified fluid or it can be separately extracted with various mechanisms such as sump-like devices, condensation (such as condensation off a heat exchanger 658a or 658b), centrifugal separation, or baffle plates in passageways 214, 216, 256.
- the heat-exchange liquid can be stored in a thermal reservoir.
- the injection fluid may go through a liquid-to-liquid heat exchanger which will either extract heat from the fluid after compression or provide heat to the fluid prior to expansion.
- liquid injection may eliminate or reduce the need for a separate heat exchange mechanism.
- Fluid injection heat exchange can be inexpensive and can allow for closer approach temperatures between the working fluid and the injection fluid.
- a number of liquids can be used for liquid injection heat exchange, including any of those mentioned above with reference to Figures 6A-6D.
- fog e.g., a suspension of liquid droplets or condensed vapor
- the heat exchange fluid can be used as the heat exchange fluid.
- One feature of the foregoing heat exchangers is that they can re-use heat generated at one location in the system and/or during one mode of operation in another portion of the system and/or during another mode of operation.
- This arrangement can enhance the overall thermodynamic efficiency of the system and can thereby reduce the cost of operating the system.
- the heat can be exchanged between the rotary displacement device and the ambient environment, or a separate thermal reservoir, or both.
- the greater the temperature rise permitted in the exchange fluid the greater the advantage of storing the heat for later retrieval.
- Figure 7 is a front view of a rotary displacement system 710 having an insulator 798 configured in accordance with an embodiment of the disclosure.
- the system 710 includes several features generally similar to those described above with reference to Figures 2 and 3.
- the system 710 includes a chamber housing 218 having a first passageway 214 and a second passageway 216 and surrounding a pressure-modifying chamber 224 and a rotor 232 carried by and rotatable relative to a shaft 234.
- the system also includes a heat exchanger 258 and an outer housing 250 having an inner surface 252 and an outer surface 254.
- the insulator 798 is positioned radially outside the outer housing 250.
- the insulator 798 circumferentially contacts and surrounds the outer surface 254 of the outer housing 250, but in other embodiments may surround only a portion of the outer housing 250.
- the insulator 798 can be internal to the outer housing 250 and can contact the inner surface 252 of the outer housing 250.
- the insulator 798 can contact the chamber housing 224, the heat exchanger 258, and/or a passageway 214, 216 and the outer housing can be absent or radially outward of the insulator 798.
- the insulator 798 can include an outer shell that is spaced apart from the outer housing by an air gap or, as illustrated, the gap can be filled with a suitable insulating filler material 797.
- the filler material 797 can be fiberglass filler or other materials.
- the gap can be evacuated to provide an insulating effect.
- the insulator 798 can contribute to maintaining fluid temperatures within the system 710, particularly within the integral heat exchanger 258.
- Figure 8 is a partially schematic isometric view of a rotary displacement system 810 having a generally hollow rotor 832 configured in accordance with an embodiment of the disclosure.
- the system 8 0 includes several features generally similar to those described above with reference to Figures 2 and 3.
- the system 8 0 includes an outer housing 250, a chamber housing 218, and a pressure- modifying chamber 224.
- an end surface of the rotor 832 is cut away to illustrate that the rotor 832 has a generally hollow interior portion 891 framed by rotor walls 890.
- only a small portion of the volume of the rotor 832 comprises rotor walls 890, leaving the rest of the rotor 832 at least partially, and in some embodiments predominantly, hollow.
- the rotor walls 890 comprise five percent or less of the rotor volume.
- the rotor walls 890 can be locally thickened to balance the rotor as it spins.
- the rotor walls 890 may be made of more than one layer of material stiffened with a honeycomb structure or filler separating the layers.
- the rotor 832 can include various internal features.
- the rotor interior 891 includes a stiffening structure 888 to add support to the rotor 832 structure.
- the stiffening structure 888 can also include a center structure 836 for mating with the shaft and cam.
- the center structure 836 can support the ring gear 366.
- the rotor 832 can additionally or alternately include internal cavities 889.
- an internal cavity 889 is filled with filler material to achieve a desired rotor 832 weight.
- the internal cavity 889 includes an internal fluid passageway 889 and an output port 883 for supplying heat injection fluid to the pressure-modifying chamber 224 as a method of heat exchange.
- the rotor 832 can be cast or fabricated from plate materials.
- the rotor 832 can be fabricated from cut, formed, and welded plate materials. While the rotor 832 illustrated in Figure 8 is a two-lobed rotor 832, in other embodiments the rotor 832 can have three or more lobes.
- One feature of the hollow rotor 832 is that is can be easily fabricated, inexpensive, and lightweight. Accordingly, the hollow rotor 832 can reduce the cost and complexity of the system in which it is installed. Another feature of the hollow rotor 832 is that it can reduce eccentric loading on the shaft due to inertial accelerations. Accordingly, it can reduce fatigue loads and therefore increase the life of the systems in which it is installed.
- Figure 9 is a partially schematic isometric view of a rotary displacement system 910 having a plurality of rotors 932 (e.g., three) operating in parallel in accordance with an embodiment of the disclosure.
- the system 910 includes several features generally similar to those described above with reference to Figures 2 and 3.
- the system 910 includes a chamber housing 218, a pressure- modifying chamber 224, and a shaft 234.
- the chamber housing 218 is illustrated as transparent in Figure 9 for purposes of clarity, but in several embodiments the chamber housing 218 is not transparent.
- the three rotors 932 operate in parallel within the chamber housing 218.
- the rotors 932 can share a common first port 226 and a common second port 228 which each run axially along the chamber housing 218.
- the rotors 932 can further share common first and second passageways (not shown in Figure 9).
- the system 910 further comprises bulkheads (which have been hidden for purposes of clarity) axially positioned between each rotor 932, so that each rotor 932 is positioned in a separate chamber 224.
- the rotors 932 can be offset clockwise or counterclockwise relative to each other, so that each rotor 932 is positioned in a different orbital location within its chamber 224 at a given moment.
- Operating the offset rotors 932 in parallel offers several advantages.
- the offset angles of the rotors 932 can balance the torque on a motor/generator that is coupled to the shaft 234. Specifically, vibrations and shaft-bending loads that arise from the eccentric motion of a single rotor 932 are balanced by the counter-movement of the additional rotors 932.
- the offset angles further limit pressure oscillations in the first and second passageways by averaging the intake and discharge pulsations across rotors operating at different phase angles and also by increasing the volume in these flow channels.
- the higher volume in the flow channels reduces the risk that there will be an undesirably high discharge pressure or an undesirably low intake pressure.
- discharge from one stage can be timed to coincide with the intake of the next stage, which can smooth the overall flow and avoid undesirable pressure oscillations.
- FIG 10 is an exploded side isometric view of a rotary displacement system 1010 configured in accordance with another embodiment of the disclosure.
- the system 1010 is constructed using a "ring and plate” technique that reduces construction costs and materials.
- the method of construction includes forming a chamber housing 1018 and an outer housing 1050 into cylindrical sections. This can be done by various methods, including rolling and welding a plate material or by forging the material into the cylindrical shape. Port openings 1026 can be pre-cut into the plate material used to form the chamber housing 1018. Standoffs 1045 can be formed or coupled to the chamber housing 1018 to create separation between passageways in the resulting system 1010.
- the method can include coating one or more of the materials or structures, e.g., the heat exchanger, the distribution plate, the chamber housing 018, and/or the outer housing 1050.
- the method can include flame-spraying coatings, such as plastic, onto structural materials, such as steel, for corrosion resistance.
- dry lubricants such as molybdenum sulfide or graphite can be applied.
- low friction coatings such as Teflon, epoxy, or polycarbonate, may be applied to certain surfaces.
- one or more elements of the system 1010 can be coated with a ceramic material.
- the method can further include axially aligning a shaft 234, a rotor 332, the chamber housing 1018, and the outer housing 1050.
- the shaft, rotor, and chamber housing 1018 radially nest within the outer housing 1050.
- the shaft 234 comprises several segmented portions which are mated with separable joints, such as male- female spline features or pinned socket joints.
- the shaft can be hollow.
- the method can further comprise positioning a first bulkhead 1062a on a first axial side 1053 of the outer housing 1050 and positioning a second bulkhead 1062b on a second axial side 1055 of the outer housing 1050.
- the first and second bulkheads 1062a, 1062b have first and second bulkhead diameters, respectively, with the first and second bulkhead diameters greater than a diameter of the outer housing 1050 and/or a diameter of the chamber housing 1018.
- the bulkheads 1062a, 1062b can include one or more flow apertures 682, as discussed in more detail above with reference to Figure 6C.
- the method of construction can additionally include connecting the first bulkhead 1062a to the second bulkhead 1062b with a plurality of tension members 1096 (identified as multi-part tension members 1096a, 1096b, and 1096c), thereby securing the outer housing 1050 between the first bulkhead 1062a and the second bulkhead 1062b and enclosing an internal pressurizable volume.
- the tension members 1096 can comprise rods and bolts, latches, fasteners, and/or other connectors.
- the tension members 1096 secure the first bulkhead 1062a to the second bulkhead 1062b radially exterior to the outer housing 1050.
- the bulkheads 1096 can additionally be sealed to the outer housing 1050.
- the outer housing 1050 can be absent and the bulkheads 1062 can be positioned on first and second axial sides of the chamber housing 1018.
- adjacent stages can share a common bulkhead, with gasket seals between axial stages to assist carrying internal pressure loads. Gasket or o-ring seals compressed by the tension members 1096 can create robust and removable joints.
- the bulkheads 1062 can be welded or sealed to at least one of the chamber housing 018 or outer housing 1050.
- Embodiments of the ring-and-plate construction offer several advantages, including easy assembly and disassembly, and quick and direct maintenance access to the interior cavities.
- Another feature of the design is that it can be modular. For example, different stages can use the same or similar common parts, reducing production and machining costs.
- a multi-stage system similar to that illustrated in Figure 6B can incorporate identical bulkheads having identical perforations and shaft-openings for multiple stages.
- stage lengths can differ in order to maintain a similar pressure ratio from one stage to the next and to compress or expand air in small increments.
- the same tools and assemblies can be used to form the chamber housing and the outer housing cylinders of different stages. Using the modular design described above, the number of stages can be easily adjusted.
- FIG. 11 is an isometric view of the interior of a rotary displacement system 1110 having a dedicated compressor 1176 and a dedicated expander 177 configured in accordance with an embodiment of the disclosure.
- the system 1 1 10 is configured for use as a Brayton cycle heat engine, in which the working fluid is compressed as a gas, heated, and then expanded.
- the system 1 1 10 includes a dedicated compressor 1 176, a heat supply 1178, and a dedicated expander 1177 in axial alignment along a shaft 234.
- the compressor 176, heat source 1178, and expander 1177 can fluidly communicate through perforated bulkheads 262 or other types of fluid passageways.
- the system 1 110 comprises multiple stages of compressors and/or expanders.
- the individual compressors 1176 and expanders 1177 can include any of the features described herein.
- the iifustrated compressor 1176 includes a compression chamber 1179 having input and discharge ports (not visible in Figure 11), a two-lobed rotor 232 rotatably coupled to the shaft 234, a low- pressure passageway 1116, a high-pressure passageway 1114, a heat exchanger 158, and an outer housing 250.
- the compressor 1 176 is configured to introduce flow from low-pressure passageway 11 6 into the compression chamber 1179 where the fluid is compressed and then discharged into a high-pressure passageway 1 114.
- the heat exchanger 1158 integral to the compressor 1 176, can be similar to those described above with reference to Figures 6A-6D and, in a multi-stage compressor, can cool the flow between stages, further increasing the efficiency of the compression process.
- the system 1 1 10 is connected to a thermal distribution system, or fluid distributor (not shown), configured to distribute heat generated during compression for space conditioning (e.g., heating and heat- driven cooling).
- the compressor 1 176 can have alternate features, such as a three-or-more-lobed rotor, a variable geometry seal, tip wideners, an axial heat exchanger, or other features.
- the heat source 1178 can vary from one embodiment to another.
- the heat source 1178 in the illustrated embodiment comprises a plurality of combustion chambers 1 181.
- the heat source 1178 may be a single combustion chamber.
- the heat source can use solid fuels, such as biomass or coal, liquid fuels, such as gasoline or diesel, or gaseous fuels, such as natural gas or hydrogen.
- the heat source 1178 can comprise one or more heat exchangers, e.g., any of the types of heat exchangers described a move with reference with Figures 6A-6D above.
- the heat source 1178 can include a "waste heat recovery" heat exchanger with heat exchanger fluid heated by the exhaust of an automobile engine or power plant gas turbine.
- heat source 1178 shares a common outer housing with the compressor and the expander.
- the heat source outer housing is not shown in Figure 11 for purposes of clarity.
- the expander 177 can be structurally similar or identical to the compressor 1176, except the expander 1177 is configured to introduce flow from a high-pressure passageway into an expansion chamber where the fluid is expanded and then discharged into the low-pressure passageway.
- An integral expander heat exchanger can heat the flow between stages in a multi-stage expander.
- the expander 1177 has a longer axial length LE than a compressor axial length Lc to accommodate the increased volume of heated flow.
- the compressor 1176, heat supply 1 178, and expander 1177 are axially aligned but in other embodiments they may be radially or otherwise oriented.
- the compressor 1176, heat supply 1178, and/or expander 1177 can share a common shaft 234 or have separate shafts.
- the various embodiments of rotary displacement devices disclosed herein offer numerous benefits, some of which have been discussed above with reference to particular features.
- the two-and three-lobed embodiments utilize various mechanisms (e.g., the variable geometry seal and/or the tip wideners) to eliminate the need for a check valve between the pressure-modifying chamber and the passageways.
- the systems can reduce or eliminate reverse flow conditions and the time that neither port is open. These mechanisms can also reduce system cost and complexity, which in turn reduces initial system cost and subsequent maintenance costs.
- the foregoing arrangement can also allow the systems to more quickly and dynamically alternate between the compression and expansion modes.
- the relatively large port sizes in several of the devices reduce pressure losses through the intake and exhaust ports, again increasing the overall efficiency of the device.
- the foregoing features can be particularly advantageous in the context of a compressor/expander system that is used to both store and release energy, as shown in Figure 1.
- the foregoing features can reduce the cost of storing and releasing energy supplied by sources that may provide energy on an intermittent, non-continuous or other variable basis.
- sources that may provide energy on an intermittent, non-continuous or other variable basis.
- sources that may provide energy on an intermittent, non-continuous or other variable basis.
- sources e.g., solar energy and wind energy
- Systems and methods that reduce the cost of using such energy sources efficiently and effectively can create significant benefits, including reducing the use of fossil fuels and therefore reducing global warming and dependence on foreign energy sources.
- some or all of the features can be used in the context of two-lobed rotors and/or rotors having more than two lobes, multistage systems, and/or parallel intake and output arrangements, with or without integral heat exchangers.
- Certain aspects of the technology described in the context of particular embodiments may be combined or eliminated in other embodiments.
- some embodiments may not include one or more of the following features: tip rollers or other sealing features, tip wideners, a variable geometry seal, multiple stages, material coatings, ring-and-plate construction techniques, a hollow rotor, or other features disclosed herein.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
- Hydraulic Motors (AREA)
Abstract
Description
Claims
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012556190A JP2013521433A (en) | 2010-03-01 | 2011-03-01 | Rotary compressor-expander system and related uses and manufacturing methods |
CA2805220A CA2805220A1 (en) | 2010-03-01 | 2011-03-01 | Rotary compressor-expander systems and associated methods of use and manufacture |
KR1020127025499A KR20130064724A (en) | 2010-03-01 | 2011-03-01 | Rotary compressor-expander systems and associated methods of use and manufacture |
CN2011800204291A CN102859118A (en) | 2010-03-01 | 2011-03-01 | Rotary compressor-expander systems and associated methods of use and manufacture |
EP11751241.8A EP2542761A4 (en) | 2010-03-01 | 2011-03-01 | Rotary compressor-expander systems and associated methods of use and manufacture |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US30941510P | 2010-03-01 | 2010-03-01 | |
US61/309,415 | 2010-03-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011109449A1 true WO2011109449A1 (en) | 2011-09-09 |
Family
ID=44504535
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2011/026762 WO2011109449A1 (en) | 2010-03-01 | 2011-03-01 | Rotary compressor-expander systems and associated methods of use and manufacture |
Country Status (7)
Country | Link |
---|---|
US (3) | US9057265B2 (en) |
EP (1) | EP2542761A4 (en) |
JP (1) | JP2013521433A (en) |
KR (1) | KR20130064724A (en) |
CN (1) | CN102859118A (en) |
CA (1) | CA2805220A1 (en) |
WO (1) | WO2011109449A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9057265B2 (en) | 2010-03-01 | 2015-06-16 | Bright Energy Storage Technologies LLP. | Rotary compressor-expander systems and associated methods of use and manufacture |
US9551292B2 (en) | 2011-06-28 | 2017-01-24 | Bright Energy Storage Technologies, Llp | Semi-isothermal compression engines with separate combustors and expanders, and associated systems and methods |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1979622B1 (en) * | 2006-02-03 | 2010-07-07 | Siemens Aktiengesellschaft | Compressor unit |
JP5272009B2 (en) * | 2007-10-03 | 2013-08-28 | アイゼントロピック リミテッド | Energy storage |
US10012107B2 (en) | 2011-05-11 | 2018-07-03 | Dresser-Rand Company | Compact compression system with integral heat exchangers |
GB201118247D0 (en) * | 2011-10-23 | 2011-12-07 | Compound Rotary Engines Ltd | Rotary piston internal combustion engine |
DE102012206296A1 (en) * | 2012-04-17 | 2013-10-17 | Siemens Aktiengesellschaft | Plant for storage and delivery of thermal energy and method of operation thereof |
UA119134C2 (en) | 2012-08-08 | 2019-05-10 | Аарон Фьюстел | Rotary expansible chamber devices having adjustable working-fluid ports, and systems incorporating the same |
WO2014028405A1 (en) * | 2012-08-13 | 2014-02-20 | Bright Energy Storage Technologies, Llp | Semi-isothermal compression engines with separate combustors and expanders, and associated systems and methods |
WO2016128926A1 (en) * | 2015-02-12 | 2016-08-18 | Messori Ledis | Driving or operating machine with balancing arrangement |
DE102015205533A1 (en) * | 2015-03-26 | 2016-09-29 | Rwe Deutschland Ag | Method for regulating the gas pressure in a gas pipeline network, gas pressure regulating stations in a gas pipeline network and rotary piston machine |
US10285310B2 (en) | 2016-03-20 | 2019-05-07 | Robert Bonar | Computer data center cooling and electricity generation using recovered heat |
CZ308430B6 (en) * | 2016-11-08 | 2020-08-19 | České vysoké učenà technické v Praze | A machine with a circular moving piston in a curved cylinder |
CN107939450A (en) * | 2017-11-24 | 2018-04-20 | 李四屯 | Multipurpose vane Mechanical-power-producing mechanism |
CN112324511B (en) * | 2020-11-13 | 2021-08-31 | 珠海格力电器股份有限公司 | Air suction structure of expansion machine, expansion machine and air conditioner |
DE102020134889A1 (en) | 2020-12-23 | 2022-06-23 | Westenergie Ag | Rotary piston machine for controlling gas pressures in a gas line network and method for operating a gas pressure control system with the rotary piston machine |
CN117985321B (en) * | 2024-04-03 | 2024-06-04 | 山东妙迪食品有限公司 | Marine product transport container capable of changing volume |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3533716A (en) * | 1968-05-02 | 1970-10-13 | Leybold Heraeus Verwaltung | Pump seal |
US3791352A (en) * | 1972-10-25 | 1974-02-12 | A Takacs | Rotary expansible chamber device |
US3891357A (en) * | 1974-05-03 | 1975-06-24 | Curtiss Wright Corp | Rotary mechanism of the type having a planetating rotor |
US4367638A (en) * | 1980-06-30 | 1983-01-11 | General Electric Company | Reversible compressor heat pump |
US5391067A (en) | 1993-07-20 | 1995-02-21 | Saunders; James E. | Rotary fluid displacement device |
US20020114706A1 (en) * | 2000-06-16 | 2002-08-22 | Stuart Bassine | Reversible pivoting vane rotary compressor for a valve-free oxygen concentrator |
US20040129018A1 (en) * | 2002-09-24 | 2004-07-08 | Rini Daniel P. | Method and apparatus for highly efficient compact vapor compression cooling |
US20090081061A1 (en) * | 2007-09-21 | 2009-03-26 | Chomyszak Stephen M | Peripherally pivoted oscillating vane machine |
Family Cites Families (140)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US125166A (en) * | 1872-04-02 | Improvement in gas-engines | ||
US226052A (en) * | 1880-03-30 | ericsson | ||
US1310157A (en) | 1919-07-15 | Planoorapii co | ||
US1297363A (en) * | 1917-03-03 | 1919-03-18 | Buel Couch | Heat and power producing apparatus. |
US1641121A (en) * | 1918-02-13 | 1927-08-30 | Edwin J Creel | Method and apparatus for the compression or expansion of a gas |
US1782314A (en) | 1929-10-05 | 1930-11-18 | Poirmeur Louis Ildevert | Rotary pump of the oscillating-blade type |
US1895816A (en) * | 1930-04-15 | 1933-01-31 | Fuller Co | Compressor and vacuum pump |
US2298525A (en) | 1941-10-08 | 1942-10-13 | Arthur M Briggs | Rotary internal combustion engine |
US2693031A (en) | 1945-05-09 | 1954-11-02 | Clark Kendall | Computing sight |
US2929505A (en) * | 1958-04-04 | 1960-03-22 | Natco Corp | Filter blocks |
US3295505A (en) | 1963-05-31 | 1967-01-03 | Jordan Alfred | Rotary piston apparatus |
US3225661A (en) | 1964-03-10 | 1965-12-28 | Smyser Fluid Motors | Rotary fluid motors |
US3190227A (en) * | 1964-09-04 | 1965-06-22 | Marquardt Corp | Fluid device |
SE340198B (en) | 1967-05-09 | 1971-11-08 | R Schmidt | |
US3426525A (en) * | 1967-08-10 | 1969-02-11 | Gotthard G Rubin | Rotary piston external combustion engine |
US3959907A (en) * | 1969-10-14 | 1976-06-01 | Microseal Corporation | Film record card |
DE2017239A1 (en) | 1970-04-10 | 1971-10-28 | Daimler-Benz AG, 7000 Stuttgart-Untertürkheim | Hot gas rotary piston machine |
US3621654A (en) | 1970-06-15 | 1971-11-23 | Francis R Hull | Regenerative gas turbine power plant |
NL153638B (en) * | 1970-10-29 | 1977-06-15 | Hubers Cornelius | EXPANSION MACHINE OF THE TROCHOIDAL TYPE. |
US3677008A (en) * | 1971-02-12 | 1972-07-18 | Gulf Oil Corp | Energy storage system and method |
GB1367901A (en) * | 1971-04-02 | 1974-09-25 | Knee G J | Rotary-piston internal combustion engine |
US3744245A (en) * | 1971-06-21 | 1973-07-10 | D Kelly | Closed cycle rotary engine system |
US3797973A (en) * | 1971-10-01 | 1974-03-19 | Ramsey Corp | Slipper type apex seal for rotary piston engine |
BE790672A (en) * | 1971-10-29 | 1973-04-27 | Copeland Corp | ROTARY CHAMBERS COMPRESSOR |
US3743454A (en) * | 1972-01-18 | 1973-07-03 | Gen Electric | Rotary compressor |
US3844692A (en) | 1973-05-16 | 1974-10-29 | Olin Corp | Protective shields for rotary internal combustion engine rotor tip seals |
US3986359A (en) * | 1973-05-29 | 1976-10-19 | Cryo Power, Inc. | Thermodynamic engine system and method |
US3899272A (en) * | 1974-05-13 | 1975-08-12 | Curtiss Wright Corp | Rotary mechanism having apex seals with low contact pressure |
US4009573A (en) * | 1974-12-02 | 1977-03-01 | Transpower Corporation | Rotary hot gas regenerative engine |
CA1066678A (en) * | 1975-01-14 | 1979-11-20 | Bendix Corporation (The) | Rotary compressor |
US3958907A (en) * | 1975-01-20 | 1976-05-25 | Caterpillar Tractor Co. | Isothermal apex seal for rotary engines |
US3970050A (en) | 1975-03-07 | 1976-07-20 | Hoadley Harry W | Two-stage rotary engines |
DE2510149C3 (en) * | 1975-03-08 | 1982-01-21 | Audi Nsu Auto Union Ag, 7107 Neckarsulm | Housing of a rotary piston machine in trochoid design |
US3945220A (en) * | 1975-04-07 | 1976-03-23 | Fedders Corporation | Injection cooling arrangement for rotary compressor |
US4023366A (en) * | 1975-09-26 | 1977-05-17 | Cryo-Power, Inc. | Isothermal open cycle thermodynamic engine and method |
JPS5284509A (en) * | 1975-12-30 | 1977-07-14 | Osaki Toshio | Rotary piston compressors |
US4058988A (en) * | 1976-01-29 | 1977-11-22 | Dunham-Bush, Inc. | Heat pump system with high efficiency reversible helical screw rotary compressor |
US4215533A (en) * | 1976-09-03 | 1980-08-05 | The United States Of America As Represented By The Secretary Of The Navy | Rotary expander engine |
US4106472A (en) * | 1976-11-08 | 1978-08-15 | Glenn Rusk | Rotary energy converter with respiring chambers |
US4133172A (en) | 1977-08-03 | 1979-01-09 | General Motors Corporation | Modified Ericsson cycle engine |
DE2909157C2 (en) * | 1978-03-10 | 1984-05-30 | Kabushiki Kaisha Toyoda Jidoshokki Seisakusho, Kariya, Aichi | ROTATIONAL COMPRESSORS |
US4187692A (en) * | 1978-05-03 | 1980-02-12 | Midolo Lawrence L | Liquid cooled rotary vane air cycle machine |
US4300874A (en) | 1978-06-12 | 1981-11-17 | Capella Inc. | Rotary machine with lenticular rotor and a circular guide member therefor |
US4224798A (en) | 1979-07-05 | 1980-09-30 | Brinkerhoff Verdon C | Split cycle engine and method |
NZ191548A (en) | 1979-09-12 | 1984-02-03 | Walker Engines Ltd | Rotary internal combustion engine-hinged shoes form combustion chambers |
CH659855A5 (en) * | 1981-11-16 | 1987-02-27 | Bbc Brown Boveri & Cie | AIR STORAGE POWER PLANT. |
US4760701A (en) * | 1984-03-06 | 1988-08-02 | David Constant V | External combustion rotary engine |
WO1986006437A1 (en) | 1985-04-26 | 1986-11-06 | White Michael C | Rotary engine |
US4773846A (en) * | 1985-07-30 | 1988-09-27 | Michael Munk | Combustion system and method with fog injection and heat exchange |
US4739632A (en) * | 1986-08-20 | 1988-04-26 | Tecumseh Products Company | Liquid injection cooling arrangement for a rotary compressor |
US4759325A (en) | 1987-01-28 | 1988-07-26 | Deere & Company | Rotary engine cooling system |
GB8709376D0 (en) | 1987-04-21 | 1987-05-28 | Ae Plc | Rotary valve |
US4885909A (en) | 1987-09-02 | 1989-12-12 | Sundstrand Corporation | Method of operating a multipurpose auxiliary power unit |
US5050570A (en) * | 1989-04-05 | 1991-09-24 | Thring Robert H | Open cycle, internal combustion Stirling engine |
US5199864A (en) * | 1990-09-28 | 1993-04-06 | Southwest Research Institute | Spherical fluid pump or motor with spherical ball comprising two parts |
US5212942A (en) | 1990-11-09 | 1993-05-25 | Tiernay Turbines, Inc. | Cogeneration system with recuperated gas turbine engine |
US5127377A (en) * | 1990-12-06 | 1992-07-07 | Yang Chung Chieh | Rotary machine with oval piston in triangular chamber |
JPH04347335A (en) * | 1991-05-23 | 1992-12-02 | Mitsubishi Heavy Ind Ltd | Compressed air storage generating device |
NL9101618A (en) * | 1991-09-25 | 1993-04-16 | Ir Arnold Willem Josephus Grup | UNDERGROUND STORAGE OF ENERGY. |
US5239833A (en) | 1991-10-07 | 1993-08-31 | Fineblum Engineering Corp. | Heat pump system and heat pump device using a constant flow reverse stirling cycle |
US6085506A (en) * | 1993-07-08 | 2000-07-11 | Megadyne Inc. | Quiet external combustion lawn mower |
JPH0742573A (en) * | 1993-07-30 | 1995-02-10 | Mitsubishi Heavy Ind Ltd | Compressed air energy storage type power leveling system |
US5590528A (en) * | 1993-10-19 | 1997-01-07 | Viteri; Fermin | Turbocharged reciprocation engine for power and refrigeration using the modified Ericsson cycle |
DE69411351T2 (en) * | 1993-10-27 | 1999-04-22 | Mitsubishi Denki K.K., Tokio/Tokyo | Switchable rotary compressor |
DE4341720C1 (en) * | 1993-12-03 | 1995-06-08 | Mannesmann Ag | Single-stage vane compressor |
IL108546A (en) * | 1994-02-03 | 1997-01-10 | Israel Electric Corp Ltd | Compressed air energy storage method and system |
US5894729A (en) * | 1996-10-21 | 1999-04-20 | Proeschel; Richard A. | Afterburning ericsson cycle engine |
US5839270A (en) | 1996-12-20 | 1998-11-24 | Jirnov; Olga | Sliding-blade rotary air-heat engine with isothermal compression of air |
US5832728A (en) | 1997-04-29 | 1998-11-10 | Buck; Erik S. | Process for transmitting and storing energy |
US6092365A (en) * | 1998-02-23 | 2000-07-25 | Leidel; James A. | Heat engine |
ATE305081T1 (en) * | 1998-07-31 | 2005-10-15 | Texas A & M Univ Sys | GEROTOR COMPRESSOR AND GEROTOR EXPANSION DEVICE |
US5960625A (en) | 1998-08-21 | 1999-10-05 | Zdvorak, Sr.; Edward H. | Constant volume combustion turbine with plurality flow turbine wheels |
US6718751B2 (en) * | 1999-10-08 | 2004-04-13 | Jeffrey S. Melcher | Engine having external combustion chamber |
US20010025478A1 (en) | 2000-03-14 | 2001-10-04 | Fineblum Solomon S. | Hot air power system with heated multi process expansion |
US6464467B2 (en) * | 2000-03-31 | 2002-10-15 | Battelle Memorial Institute | Involute spiral wrap device |
GB0007917D0 (en) * | 2000-03-31 | 2000-05-17 | Npower | An engine |
US6575719B2 (en) | 2000-07-27 | 2003-06-10 | David B. Manner | Planetary rotary machine using apertures, volutes and continuous carbon fiber reinforced peek seals |
US20060127264A1 (en) * | 2001-02-01 | 2006-06-15 | Giovanni Aquino | Multi-vane device |
US6606860B2 (en) * | 2001-10-24 | 2003-08-19 | Mcfarland Rory S. | Energy conversion method and system with enhanced heat engine |
US6499534B1 (en) | 2002-02-15 | 2002-12-31 | Aquacal | Heat exchanger with two-stage heat transfer |
US6604922B1 (en) * | 2002-03-14 | 2003-08-12 | Schlumberger Technology Corporation | Optimized fiber reinforced liner material for positive displacement drilling motors |
US6659065B1 (en) | 2002-08-12 | 2003-12-09 | David C Renegar | Flexible vane rotary engine |
US6672063B1 (en) | 2002-09-25 | 2004-01-06 | Richard Alan Proeschel | Reciprocating hot air bottom cycle engine |
US6796123B2 (en) | 2002-11-01 | 2004-09-28 | George Lasker | Uncoupled, thermal-compressor, gas-turbine engine |
US20060248886A1 (en) | 2002-12-24 | 2006-11-09 | Ma Thomas T H | Isothermal reciprocating machines |
GB2396887A (en) | 2003-01-06 | 2004-07-07 | Thomas Tsoi Hei Ma | Extended cycle reciprocating Stirling engine |
GB2396664A (en) | 2002-12-24 | 2004-06-30 | Thomas Tsoi Hei Ma | Extended cycle reciprocating Ericsson cycle engine |
US7249459B2 (en) * | 2003-06-20 | 2007-07-31 | Denso Corporation | Fluid machine for converting heat energy into mechanical rotational force |
US6926505B2 (en) * | 2003-07-23 | 2005-08-09 | Joaseph A. Sbarounis | Rotary machine housing with radially mounted sliding vanes |
TWM250353U (en) * | 2003-08-06 | 2004-11-11 | Hon Hai Prec Ind Co Ltd | Electrical connector |
MY142613A (en) * | 2003-08-27 | 2010-12-15 | Kcr Technologies Pty Ltd | Rotary mechanism |
WO2005024200A2 (en) * | 2003-09-04 | 2005-03-17 | Power Source Technologies | Planetary rotary internal combustion engine |
US6955052B2 (en) | 2003-12-11 | 2005-10-18 | Primlani Indru J | Thermal gas compression engine |
US20050135934A1 (en) | 2003-12-22 | 2005-06-23 | Mechanology, Llc | Use of intersecting vane machines in combination with wind turbines |
US7745946B2 (en) * | 2004-01-10 | 2010-06-29 | Gary Carter, Sr. | Multifunction integrated portable power and utility apparatus |
US7097436B2 (en) * | 2004-02-17 | 2006-08-29 | Wells David S | Apex split seal |
WO2005096769A2 (en) * | 2004-04-05 | 2005-10-20 | Mechanology, Inc. | Highly supercharged regenerative gas turbine |
US7028476B2 (en) * | 2004-05-22 | 2006-04-18 | Proe Power Systems, Llc | Afterburning, recuperated, positive displacement engine |
EP1809898A2 (en) | 2004-08-17 | 2007-07-25 | Hydro-Industries Tynat Ltd. | Rotary fluid-driven motor with sealing elements |
CN100480488C (en) * | 2004-12-28 | 2009-04-22 | 蒋子刚 | Kneading positive-displacement method of fluid machinery and mechanism and purpose thereof |
US8152989B2 (en) | 2005-01-18 | 2012-04-10 | Severn Trent De Nora, Llc | System and process for treating ballast water |
WO2006096850A2 (en) * | 2005-03-09 | 2006-09-14 | Zajac Optimum Output Motors, Inc. | Internal combustion engine and method |
JP2006300004A (en) * | 2005-04-22 | 2006-11-02 | Denso Corp | Expander |
US7509797B2 (en) | 2005-04-29 | 2009-03-31 | General Electric Company | Thrust vectoring missile turbojet |
WO2007025027A2 (en) * | 2005-08-24 | 2007-03-01 | Purdue Research Foundation | Thermodynamic systems operating with near-isothermal compression and expansion cycles |
US7185625B1 (en) * | 2005-08-26 | 2007-03-06 | Shilai Guan | Rotary piston power system |
US7765785B2 (en) * | 2005-08-29 | 2010-08-03 | Kashmerick Gerald E | Combustion engine |
US7549841B1 (en) * | 2005-09-03 | 2009-06-23 | Florida Turbine Technologies, Inc. | Pressure balanced centrifugal tip seal |
GB2435675B (en) * | 2006-03-02 | 2011-02-09 | Boc Group Plc | Rotor assembly |
US7856843B2 (en) | 2006-04-05 | 2010-12-28 | Enis Ben M | Thermal energy storage system using compressed air energy and/or chilled water from desalination processes |
CA2648135A1 (en) * | 2006-04-05 | 2007-10-11 | National Research Council Of Canada | Nucleotide sequences encoding enzymes in biosynthesis of dihydroartemisinic acid |
US8863547B2 (en) | 2006-04-05 | 2014-10-21 | Ben M. Enis | Desalination method and system using compressed air energy systems |
WO2008050654A1 (en) | 2006-10-25 | 2008-05-02 | Panasonic Corporation | Refrigeration cycle device and fluid machine used for the same |
US20080098652A1 (en) * | 2006-10-30 | 2008-05-01 | Kenneth Thomas Weinbel | Sport playing field |
US7784300B2 (en) * | 2006-12-22 | 2010-08-31 | Yiding Cao | Refrigerator |
US8261552B2 (en) | 2007-01-25 | 2012-09-11 | Dresser Rand Company | Advanced adiabatic compressed air energy storage system |
US20080226480A1 (en) | 2007-03-15 | 2008-09-18 | Ion Metrics, Inc. | Multi-Stage Trochoidal Vacuum Pump |
US20090211260A1 (en) | 2007-05-03 | 2009-08-27 | Brayton Energy, Llc | Multi-Spool Intercooled Recuperated Gas Turbine |
US7866962B2 (en) * | 2007-07-30 | 2011-01-11 | Tecumseh Products Company | Two-stage rotary compressor |
US7637234B2 (en) * | 2007-08-07 | 2009-12-29 | Scuderi Group, Llc | Split-cycle engine with a helical crossover passage |
JP5272009B2 (en) | 2007-10-03 | 2013-08-28 | アイゼントロピック リミテッド | Energy storage |
WO2009073406A2 (en) | 2007-11-30 | 2009-06-11 | Robert Scragg | Rotary mechanically reciprocated sliding metal vane air pump and boundary layer gas turbines integrated with a pulse gas turbine engine system |
WO2010017199A2 (en) | 2008-08-04 | 2010-02-11 | Liquidpiston, Inc. | Isochoric heat addition engines and methods |
US8006496B2 (en) * | 2008-09-08 | 2011-08-30 | Secco2 Engines, Inc. | Closed loop scroll expander engine |
US8156919B2 (en) | 2008-12-23 | 2012-04-17 | Darrow David S | Rotary vane engines with movable rotors, and engine systems comprising same |
CA2762980A1 (en) * | 2009-05-22 | 2010-11-25 | General Compression Inc. | Compressor and/or expander device |
US8247915B2 (en) * | 2010-03-24 | 2012-08-21 | Lightsail Energy, Inc. | Energy storage system utilizing compressed gas |
US8146354B2 (en) * | 2009-06-29 | 2012-04-03 | Lightsail Energy, Inc. | Compressed air energy storage system utilizing two-phase flow to facilitate heat exchange |
US8436489B2 (en) * | 2009-06-29 | 2013-05-07 | Lightsail Energy, Inc. | Compressed air energy storage system utilizing two-phase flow to facilitate heat exchange |
US8196395B2 (en) | 2009-06-29 | 2012-06-12 | Lightsail Energy, Inc. | Compressed air energy storage system utilizing two-phase flow to facilitate heat exchange |
CN102686879A (en) | 2009-09-23 | 2012-09-19 | 布莱特能源存储科技有限责任公司 | System for underwater compressed fluid energy storage and method of deploying same |
JP5589358B2 (en) | 2009-11-12 | 2014-09-17 | カルソニックカンセイ株式会社 | compressor |
RU2432474C2 (en) | 2010-01-11 | 2011-10-27 | Государственное образовательное учреждение высшего профессионального образования Самарский государственный технический университет | Reciprocating internal combustion engine operation method |
JP2013521433A (en) * | 2010-03-01 | 2013-06-10 | ブライト エナジー ストレージ テクノロジーズ,エルエルピー. | Rotary compressor-expander system and related uses and manufacturing methods |
WO2011109418A2 (en) * | 2010-03-01 | 2011-09-09 | Brightearth Technologies, Inc. | Apparatus for storage vessel deployment and method of making same |
US20110204064A1 (en) * | 2010-05-21 | 2011-08-25 | Lightsail Energy Inc. | Compressed gas storage unit |
RU2432471C1 (en) | 2010-05-25 | 2011-10-27 | Государственное образовательное учреждение высшего профессионального образования "Ульяновский государственный технический университет" | Device for fan switching on |
WO2012009584A1 (en) * | 2010-07-14 | 2012-01-19 | Brian Von Herzen | Pneumatic gearbox with variable speed transmission and associated systems and methods |
CA2804806C (en) | 2010-07-14 | 2018-10-30 | Bright Energy Storage Technologies, Llp | System and method for storing thermal energy |
US8171947B2 (en) * | 2010-08-24 | 2012-05-08 | Leslie Glenn Hardie | Automobile cover apparatus |
-
2011
- 2011-03-01 JP JP2012556190A patent/JP2013521433A/en active Pending
- 2011-03-01 KR KR1020127025499A patent/KR20130064724A/en not_active Application Discontinuation
- 2011-03-01 US US13/038,345 patent/US9057265B2/en not_active Expired - Fee Related
- 2011-03-01 CN CN2011800204291A patent/CN102859118A/en active Pending
- 2011-03-01 US US13/038,358 patent/US20110217197A1/en not_active Abandoned
- 2011-03-01 EP EP11751241.8A patent/EP2542761A4/en not_active Withdrawn
- 2011-03-01 US US13/038,360 patent/US9062548B2/en not_active Expired - Fee Related
- 2011-03-01 CA CA2805220A patent/CA2805220A1/en not_active Abandoned
- 2011-03-01 WO PCT/US2011/026762 patent/WO2011109449A1/en active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3533716A (en) * | 1968-05-02 | 1970-10-13 | Leybold Heraeus Verwaltung | Pump seal |
US3791352A (en) * | 1972-10-25 | 1974-02-12 | A Takacs | Rotary expansible chamber device |
US3891357A (en) * | 1974-05-03 | 1975-06-24 | Curtiss Wright Corp | Rotary mechanism of the type having a planetating rotor |
US4367638A (en) * | 1980-06-30 | 1983-01-11 | General Electric Company | Reversible compressor heat pump |
US5391067A (en) | 1993-07-20 | 1995-02-21 | Saunders; James E. | Rotary fluid displacement device |
US20020114706A1 (en) * | 2000-06-16 | 2002-08-22 | Stuart Bassine | Reversible pivoting vane rotary compressor for a valve-free oxygen concentrator |
US20040129018A1 (en) * | 2002-09-24 | 2004-07-08 | Rini Daniel P. | Method and apparatus for highly efficient compact vapor compression cooling |
US20090081061A1 (en) * | 2007-09-21 | 2009-03-26 | Chomyszak Stephen M | Peripherally pivoted oscillating vane machine |
Non-Patent Citations (1)
Title |
---|
See also references of EP2542761A4 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9057265B2 (en) | 2010-03-01 | 2015-06-16 | Bright Energy Storage Technologies LLP. | Rotary compressor-expander systems and associated methods of use and manufacture |
US9062548B2 (en) | 2010-03-01 | 2015-06-23 | Bright Energy Storage Technologies, Llp | Rotary compressor-expander systems and associated methods of use and manufacture, including integral heat exchanger systems |
US9551292B2 (en) | 2011-06-28 | 2017-01-24 | Bright Energy Storage Technologies, Llp | Semi-isothermal compression engines with separate combustors and expanders, and associated systems and methods |
Also Published As
Publication number | Publication date |
---|---|
US20110209477A1 (en) | 2011-09-01 |
EP2542761A4 (en) | 2014-10-15 |
EP2542761A1 (en) | 2013-01-09 |
JP2013521433A (en) | 2013-06-10 |
CN102859118A (en) | 2013-01-02 |
US9062548B2 (en) | 2015-06-23 |
KR20130064724A (en) | 2013-06-18 |
US20110209480A1 (en) | 2011-09-01 |
CA2805220A1 (en) | 2011-09-09 |
US9057265B2 (en) | 2015-06-16 |
US20110217197A1 (en) | 2011-09-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9057265B2 (en) | Rotary compressor-expander systems and associated methods of use and manufacture | |
JP3771561B2 (en) | Scroll expander having heating structure, and scroll-type heat exchange system using the same | |
EP3102790B1 (en) | A drive unit with its drive transmission system and connected operating heat cycles and functional configurations | |
CN103748323B (en) | The electromotor being with burner separately and the system and method being associated | |
US20080041056A1 (en) | External heat engine of the rotary vane type and compressor/expander | |
US10408214B2 (en) | Fluid pressure changing device | |
JP2013527355A (en) | Rotating piston steam engine with balanced rotary variable intake cutoff valve and second expansion with no back pressure in the first expansion | |
WO2014107407A1 (en) | Exhaust gas energy recovery system | |
EP2735703A2 (en) | Liquid ring system and applications thereof | |
RU2752114C1 (en) | Roticulating thermodynamic device | |
WO2017004422A1 (en) | Volumetric fluid expander with water injection | |
CN108699998B (en) | Rotary Stirling cycle apparatus and method | |
US20090241536A1 (en) | Stirling Engine Having a Rotary Power Piston in a Chamber that Rotates with the Output Drive | |
WO2017096280A2 (en) | Oil free organic rankine cycle roots expander | |
US9752485B2 (en) | Exhaust gas energy recovery system | |
WO2019046951A1 (en) | Engine with at least one of non-sinusoidal motion and embedded pistons | |
RU2362881C2 (en) | Multicylinder cubical expansion turbine | |
US11035364B2 (en) | Pressure changing device | |
RU2469203C2 (en) | Roll-vane stirling engine | |
US20040045290A1 (en) | Rotary crank-rod mechanism | |
KR20100125793A (en) | A stirling engine with hydrostatics pump | |
JP2004346864A (en) | Expansion engine for recovering waste heat | |
ITTO20120732A1 (en) | HEAT EXCHANGER FOR AN ENERGY CONVERSION GROUP, AND ENERGY CONVERSION GROUP PROVIDED WITH THIS HEAT EXCHANGER |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180020429.1 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11751241 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012556190 Country of ref document: JP |
|
ENP | Entry into the national phase |
Ref document number: 2805220 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20127025499 Country of ref document: KR Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2011751241 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011751241 Country of ref document: EP |