WO2011106039A1 - Arylpiperazone opioid receptor antagonists - Google Patents

Arylpiperazone opioid receptor antagonists Download PDF

Info

Publication number
WO2011106039A1
WO2011106039A1 PCT/US2010/052311 US2010052311W WO2011106039A1 WO 2011106039 A1 WO2011106039 A1 WO 2011106039A1 US 2010052311 W US2010052311 W US 2010052311W WO 2011106039 A1 WO2011106039 A1 WO 2011106039A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkyl
hydrogen
opioid receptor
receptor antagonist
independently
Prior art date
Application number
PCT/US2010/052311
Other languages
French (fr)
Inventor
Frank Ivy Carroll
Juan Pablo Cueva
James B. Thomas
S. Wayne Mascarella
Scott P. Runyon
Original Assignee
Research Triangle Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Triangle Institute filed Critical Research Triangle Institute
Priority to CA2787037A priority Critical patent/CA2787037C/en
Priority to ES10846785.3T priority patent/ES2533990T3/en
Priority to JP2012554983A priority patent/JP6173693B2/en
Priority to AU2010346633A priority patent/AU2010346633B2/en
Priority to EP10846785.3A priority patent/EP2539706B1/en
Priority to US13/574,179 priority patent/US9273027B2/en
Publication of WO2011106039A1 publication Critical patent/WO2011106039A1/en
Priority to US14/968,258 priority patent/US9750738B2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/496Non-condensed piperazines containing further heterocyclic rings, e.g. rifampin, thiothixene or sparfloxacin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/14Prodigestives, e.g. acids, enzymes, appetite stimulants, antidyspeptics, tonics, antiflatulents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • A61P15/08Drugs for genital or sexual disorders; Contraceptives for gonadal disorders or for enhancing fertility, e.g. inducers of ovulation or of spermatogenesis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/08Antiepileptics; Anticonvulsants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/18Antipsychotics, i.e. neuroleptics; Drugs for mania or schizophrenia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/20Hypnotics; Sedatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/22Anxiolytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/24Antidepressants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/30Drugs for disorders of the nervous system for treating abuse or dependence
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/30Drugs for disorders of the nervous system for treating abuse or dependence
    • A61P25/32Alcohol-abuse
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/30Drugs for disorders of the nervous system for treating abuse or dependence
    • A61P25/34Tobacco-abuse
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/30Drugs for disorders of the nervous system for treating abuse or dependence
    • A61P25/36Opioid-abuse
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/04Antihaemorrhagics; Procoagulants; Haemostatic agents; Antifibrinolytic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/04Inotropic agents, i.e. stimulants of cardiac contraction; Drugs for heart failure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/12Antihypertensives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D241/00Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings
    • C07D241/02Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings not condensed with other rings
    • C07D241/04Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings not condensed with other rings having no double bonds between ring members or between ring members and non-ring members
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D295/00Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
    • C07D295/04Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms
    • C07D295/08Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by singly bound oxygen or sulfur atoms
    • C07D295/096Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by singly bound oxygen or sulfur atoms with the ring nitrogen atoms and the oxygen or sulfur atoms separated by carbocyclic rings or by carbon chains interrupted by carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links

Definitions

  • the present invention relates to 4-arylpiperazine compounds. These compounds function as opioid receptor antagonists, and can be used to treat a variety of disease states.
  • the opioid receptors, ⁇ , ⁇ , ⁇ , and the opioid-like receptor ORL- 1 belong to the super family of G-protein coupled receptors (GPCRs) that possess seven helical trans-membrane spanning domains in their architecture. 1
  • GPCRs G-protein coupled receptors
  • the majority of research efforts focused upon this group of proteins has been directed toward the ⁇ receptor since it mediates the actions of both the opiate and opioid analgesics such as morphine and fentanyl, respectively.
  • the entire family of proteins is actively involved in a host of biological processes.
  • selective antagonists has demonstrated that pharmacotherapeutic opportunities exist via both negative and positive modulation of this receptor family.
  • the opioid receptor system has been extensively studied, and thousands of compounds have been synthesized and evaluated by in vitro binding and functional assays as well as by animal models.
  • An integral part of the effort to characterize the opioid receptor system has been the discovery of potent, pure antagonists.
  • Naloxone (la) and naltrexone (lb), both competitive antagonists at ⁇ , ⁇ , and ⁇ opioid receptors, 9 have been extensively used as pharmacological tools to identify and characterize opioid systems (see Figure 1 for structures). Additionally, naloxone is approved to treat heroin overdose and to reverse respiratory depression caused by morphine. 9 Naltrexone is used to treat heroin and alcohol abuse.
  • alvimopan (3) which is an FDA-approved drug for GI motility disorder, 1 5 LY255,582 (2d), 13 ' 16 which was developed to treat obesity, and the selective ⁇ opioid receptor antagonist
  • opioid receptor antagonists such as LY255582 have been found to increase metabolic energy consumption and reduce the weight in obese rats while maintaining muscle mass. These reports suggest that opioid receptor antagonists may be useful in preventing, treating, and/or ameliorating the effect of obesity. Eli Lilly and Company has developed new classes of opioid receptor antagonists that interact with the ⁇ , ⁇ , and K receptors (termed non-selective) as potential pharmacotherapies to treat obesity and related diseases.
  • Aryl-substituted piperazines (5) are a new class of opioid receptor antagonists (see the Examples section below for representative structures). Similar to the N-substituted 3,4- dimethyl-4-(3-hydroxyphenyl)piperidines, even the N-methyl substituted analog 5f is a pure opioid antagonist. Changing the N-substituent to an N-phenylpropyl group gives 5b, which has K c values of 0.88, 13.4, and 4.09 nM at the ⁇ , ⁇ , and ⁇ opioid receptors, which are similar to the c values of N-phenylpropyl 3,4-dimethyl-4-(3-hydroxyphenyl)piperidine 2c (RTI- 5989-264).
  • the JDTic-like analog from this class 5j has K e values of 22, 274, and 2.7 nM at the ⁇ , ⁇ , and k opioid receptors, respectively (see Table 1 ). All compounds of this class thus far synthesized are relatively nonselective opioid receptor antagonists. Thus, their opioid receptor properties are more like those of naloxone (l a), naltrexone (lb), and the originally reported N-substituted 3,4-dimethyl-4-(3-hydroxyphenyl)piperidines. 13
  • the present invention is directed to aryl-substituted piperazine opioid receptor antagonists represented by the formula (I):
  • R is hydrogen, OH, OCi_ alkyl, Ci -8 alkyl, C
  • Y 3 is hydrogen, Br, CI, F, CN, CF 3 , N0 2 , OR 8 , C0 2 R 9 , C , -6 alkyl, NR, 0 Rn , NHCOR, 2 , NHC0 2 R i 2, CONRi 3 R, 4 or CH 2 (CH 2 ) n Y 2 ;
  • Ri , R 2 , R 3 and R are each, independently, one of the following structures:
  • Ri and R 2 , R 2 and R 3 and/or R 3 and R4 are bonded together to form a cyclo alkyl group or a bridged heterocyclic ring;
  • each Yi is, independently, hydrogen, OH, Br, CI, F, CN, CF 3 , N0 2 , N 3 , OR 8 , C0 2 R 9 , Cue alkyl, NR 10 Rn , NHCOR, 2 , NHC0 2 R, 2 , CONRi 3 R, 4 , or CH 2 (CH 2 ) n Y 2 , or two adjacent Y, groups form a -0-CH 2 -0- or -0-CH 2 CH 2 -0- group;
  • each Y 2 is, independently, hydrogen, CF 3 , C0 2 R9, C
  • each n is, independently, 0, 1 , 2 or 3;
  • each o is, independently, 0, 1 , 2 or 3;
  • each R 8 , R9, Rio, Rn , Ri 2 , Ri 3 and R ) 4 is, independently, hydrogen, Ci -8 alkyl, CH 2 - aryl wherein the aryl group is substituted by one or more substituents OH, Br, CI, F, CN, CF 3 , N0 2 , N 3 , C ,. 6 alkyl, or CH 2 (CH 2 ) n Y 2 ' ;
  • each Y 2 ' is, independently, hydrogen, CF3, or Ci -6 alkyl
  • R-6 is C 1-8 alkyl, C 2 . 8 alkenyl, C alkyl substituted C 4-8 cycloalkyl, Ci -4 alkyl substituted C 4 . 8 cycloalkenyl, or thiophene;
  • X is a single bond, -C(O)- or -CH(ORi 5 )-;
  • Ri5 hydrogen, Cj- 6 alkyl, -(CH 2 ) q -phenyl or -C(0)-Ri 6 ;
  • Ri 6 is Ci-4 alkyl or -(CH 2 ) q -phenyl
  • each q is, independently, 1, 2 or 3;
  • Ri7 is hydrogen, Ci -8 alkyl, C0 2 Ci-8 alkylaryl substituted by one or more groups Yi, CH 2 -aryl substituted by one or more groups Yi, or C0 2 Ci -8 alkyl;
  • Rig is hydrogen, Ci -8 alkyl, C 2 _8 alkenyl, C3.8 alkynyl, CH 2 C0 2 C
  • each Y 4 is, independently, Br, CI, F, CN, CF 3 , N0 2 , N 3 , OR 22 , C0 2 R 23 , C ,. 6 alkyl, NR 24 R 25 , NHCOR 26 , NHC0 2 R 27 , CONR 28 R 29 , or CH 2 (CH 2 ) n Y 2 ,
  • Y 4 groups form a -0-CH 2 -0- or -0-CH 2 CH 2 -0- group;
  • p 0, 1 , 2, or 3 ;
  • R 2 o is hydrogen, C i_ 8 alkyl, C 2 _ 8 alkenyl, C 2-8 alkenyl, CH 2 OR 3 o, or CH 2 -aryl substituted by one or more substituents Yj ;
  • each R 2 i is, independently, hydrogen, Ci -8 alkyl, CH 2 -aryl substituted by one or more substituents Y, , NR 31 R 32 , NHCOR 33 , NHC0 2 R 34 , CONR 35 R 36 , CH 2 (CH 2 ) n Y 2 , or
  • R30 is hydrogen Ci_ 8 alkyl, C 2 _ 8 alkenyl, C 2 . 8 alkenyl, CH 2 0 2 C i_8 alkyl, C0 2 Ci -8 alkyl, or CH 2 -aryl substituted by one or more substituents Yj ;
  • R-22, R23, R24, R25, R26, R27, 28, R29, R31 , R32, R33» R-34, R35, R36, R37 and R 38 are, independently, hydrogen, Ci_ 8 alkyl, CH 2 -aryl substituted by one or more substituents OH, Br, CI, F, CN, CF 3 , N0 2 , N 3 , C,. 6 alkyl, or CH 2 (CH 2 ) n Y 2 ' ;
  • Z is N, O or S, wherein when Z is O or S, there is no Ri 8 ;
  • Xi is hydrogen, C i -8 alkyl, C 2-8 alkenyl, or C 2-8 alkynyl;
  • X 2 is hydrogen, C i -8 alkyl, C 2-8 alkenyl, or C 2-8 alkynyl;
  • At least one of Ri , R 2 , R 3 and R4 is other than hydrogen as defined above;
  • the present invention also includes pharmaceutical compositions, which comprise the opioid receptor antagonist described above and a pharmaceutically acceptable carrier.
  • the present invention also includes a method of antagonizing opioid receptors, comprising administering an effective amount of the opioid receptor antagonist discussed above to a subject in need thereof.
  • the present invention also includes a method of treating drug addiction, drug abuse, depression, anxiety, schizophrenia, obesity and eating disorders, comprising administering an effective amount of the opioid receptor antagonist discussed above to a subject in need thereof.
  • the present invention also includes a method of treating alcohol addiction, nicotine addiction, cocaine addition and methamphetamine addiction, comprising administering an effective amount of the opioid receptor antagonist discussed above to a subject in need thereof.
  • the present invention also includes a method of treating diabetes, diabetic complications, diabetic retinopathy, sexual/reproductive disorders, epileptic seizure, hypertension, cerebral hemorrhage, congestive heart failure, sleeping disorders,
  • Atherosclerosis rheumatoid arthritis
  • stroke hyperlipidemia
  • hypertriglycemia hypertriglycemia
  • hyperglycemia hyperlipoproteinemia, substance abuse, drug overdose, compulsive behavior disorders and addictive behaviors, comprising administering an effective amount of the opioid receptor antagonist discussed above to a subject in need thereof.
  • Figure 1 chemical structure of compounds 1 -6.
  • R is hydrogen, OH, OC 1.3 alkyl, Ci -4 alkyl, C
  • Y 3 is hydrogen, Br, CI, F, CN, CF 3 , N0 2 , OR 8 , C0 2 R 9 , C , -3 alkyl, NR, 0 Ri i ,
  • NHCOR 2 , NHC0 2 Ri 2, CONR 13 R, 4 or CH 2 (CH 2 ) n Y 2 ;
  • R ⁇ , R 2 , R 3 and R are each, independently, one of the following structures:
  • Ri and R 2 , R 2 and R 3 and/or R 3 and R4 are bonded together to 5 to 7 membered alkyl group or a bridged heterocyclic ring.
  • At least one of Ri , R 2 , R 3 and R4 is other than hydrogen.
  • R is hydrogen, OH, OC 1 - 2 alkyl, Q -2 alkyl, Q. 2 haloalkyl, C 2-3 alkenyl, C 2-3 alkynyl, aryl substituted by one or more groups Yi, C3 ⁇ 4-aryl wherein the aryl group is substituted by one or more groups Yi, COCi -2 alkyl, CONH 2 , NHCHO, NH 2 , NHSO 2 C 1 - 2 alkyl, or NHC0 2 Ci. 2 alkyl.
  • R is hydrogen, OH, OCH3, OCF3, COCH3, OCOCH 3 , CONH 2 , NHCHO, NH 2 , NHS0 2 CH 3 , or NHC0 2 CH 3 .
  • R is hydrogen, OH, OCH3, or OCF3.
  • Y 3 is hydrogen
  • Ri, R 2 , R3 and R 4 are each, independently, one of the following structures:
  • Ri and R 2 , R 2 and R3 and/or R3 and R4 are bonded together to 5 to 7 membered alkyl group or a bridged heterocyclic ring.
  • Ri , R 2 , R3 and R4 are each, independently, hydrogen, methyl or ethyl.
  • R] , R 2 , R 3 and R4 are each, independently, hydrogen or methyl.
  • Ri , R 2 , R 3 and R 4 are each, independently, hydrogen or methyl, wherein at least one of Ri , R 2 , R3 and R4 is methyl.
  • R 5 is hydrogen, Ci -4 alkyl or -(CH 2 ) n -phenyl.
  • R $ is
  • R is hydrogen, OH, OCH 3 , or OCF 3 ;
  • Y 3 is hydrogen
  • Ri , R.2, R 3 and R4 are each, independently, hydrogen, methyl or ethyl
  • R 5 is hydrogen, Ci -4 alkyl or -(CH 2 ) n -phenyl.
  • R 2 is other than hydrogen as defined above. This substitution may increase opioid efficacy by an order of magnitude.
  • the chiralty at the resulting stereocenter may be (R) or (S).
  • Preferred substituents are C i. 8 alkyl, preferably methyl, ethyl and propyl.
  • At least one of Ri , R 2 , R 3 and R4 is other than hydrogen as defined above when
  • the opioid receptor antagonists are as described in the following Examples section.
  • the present invention includes any and all combination of the different structural groups defined above, including those combinations not specifically set forth above.
  • alkyl group or “alkyl radical” encompass all structural isomers thereof, such as linear, branched and cyclic alkyl groups and moieties. Unless stated otherwise, all alkyl groups described herein may have 1 to 8 carbon atoms, inclusive of all specific values and subranges therebetween, such as 2, 3, 4, 5, 6, or 7 carbon atoms. Representative examples include methyl, ethyl, propyl and cyclohexyl.
  • haloalkyl group or “haloalkyl radical” encompass all structural isomers thereof, such as linear, branched and cyclic groups and moieties. Unless stated otherwise, all haloalkyl groups described herein may have 1 to 8 carbon atoms, inclusive of all specific values and subranges therebetween, such as 2, 3, 4, 5, 6, or 7 carbon atoms. A Ci -2 haloalkyl group is particularly preferred. At least one hydrogen atom is replaced by a halogen atom, i.e., fluorine, chlorine, bromine or iodine. In one embodiment, all of the hydrogen atoms are replaced with halogen atoms. Fluorine is preferred. Perfluoroalkyl groups are particularly preferred. Examples of haloalkyl groups include trifluoromethyl (-CF 3 ) and perfluoroethyl (-CF 2 CF3).
  • the alkenyl group or alkynyl group may have one or more double or triple bonds, respectively.
  • a double or triple bond is not formed with the carbon atom bonded directly to the heteroatom.
  • all alkenyl and alkynyl groups described herein may have 2 to 8 carbon atoms, inclusive of all specific values and subranges therebetween, such as 3, 4, 5, 6, or 7 carbon atoms.
  • the aryl group is a hydrocarbon aryl group, such as a phenyl, naphthyl, phenanthryl, anthracenyl group, which may have one or more C alkyl group substituents.
  • the compounds of the present invention may be in the form of a pharmaceutically acceptable salt via protonation of the amines with a suitable acid.
  • the acid may be an inorganic acid or an organic acid.
  • Suitable acids include, for example, hydrochloric, hydroiodic, hydrobromic, sulfuric, phosphoric, citric, acetic, fumaric, tartaric, and formic acids.
  • the opioid receptor selectivity may be determined based on the binding affinities at the receptors indicated or their selectivity in opioid functional assays.
  • the compounds of the present invention may be used to bind opioid receptors. Such binding may be accomplished by contacting the receptor with an effective amount of the inventive compound. Of course, such contacting is preferably conducted in an aqueous medium, preferably at physiologically relevant ionic strength, pH, etc. Receptor antagonism is the preferred mode of action of the compounds described herein.
  • the inventive compounds may also be used to treat patients having disease states which are ameliorated by binding opioid receptors or in any treatment wherein temporary suppression of the kappa opioid receptor system is desired.
  • diseases states include opiate addiction (such as heroin addiction), cocaine, nicotine, or ethanol addiction.
  • the compounds of the present invention may also be used as cytostatic agents, as antimigraine agents, as immunomodulators, as immunosuppressives, as antiarthritic agents, as antiallergic agents, as virucides, to treat diarrhea, as antipsychotics, as antischizophrenics, as
  • antidepressants as uropathic agents, as antitussives, as antiaddictive agents, as anti-smoking agents, to treat alcoholism, as hypotensive agents, to treat and/or prevent paralysis resulting from traumatic ischemia, general neuroprotection against ischemic trauma, as adjuncts to nerve growth factor treatment of hyperalgesia and nerve grafts, as anti-diuretics, as stimulants, as anti-convulsants, or to treat obesity.
  • the present compounds can be used in the treatment of Parkinson's disease as an adjunct to L-dopa for treatment of dyskinesia associated with the L-dopa treatment.
  • the compounds of the present invention are particularly useful for treating addiction, such as addiction to cocaine, alcohol, methamphetamine, nicotine, heroine, and other drugs of abuse. With respect to nicotine, the compounds of the present invention are also useful in treating nicotine withdrawal effects.
  • addiction such as addiction to cocaine, alcohol, methamphetamine, nicotine, heroine, and other drugs of abuse.
  • nicotine the compounds of the present invention are also useful in treating nicotine withdrawal effects.
  • the compounds may be administered orally, intraveneously, or intramuscularly.
  • inventive compounds may be combined with any of the well-known pharmaceutical carriers and additives that are customarily used in such pharmaceutical compositions.
  • the patient is preferably a mammal, with human patients especially preferred. Effective amounts are readily determined by those of ordinary skill in the art. Studies by the present inventors show no toxicity and no lethality for the present compounds at amounts up to 300 mg/kg in mice.
  • the compounds of the present invention can be administered as a single dosage per day, or as multiple dosages per day.
  • the dosages can be equal doses or doses of varying amount, based upon the time between the doses (i.e. when there will be a longer time between doses, such as overnight while sleeping, the dose administered will be higher to allow the compound to be present in the bloodstream of the patient for the longer period of time at effective levels).
  • the compound and compositions containing the compound are administered as a single dose or from 2-4 equal doses per day.
  • compositions containing the present compounds further comprise a physiologically acceptable carrier, such as water or conventional pharmaceutical solid carriers, and if desired, one or more buffers and other excipients.
  • a physiologically acceptable carrier such as water or conventional pharmaceutical solid carriers, and if desired, one or more buffers and other excipients.
  • the compounds of the invention may be synthesized by, for example, the schemes shown in the following Examples. Those skilled in the art will appreciate that the synthesis of the exemplified compounds can readily be adapted for the preparation of other compounds within the scope of formula I.
  • Compounds 5a-f of the present invention may be synthesized, for example, in accordance with the reaction sequence shown in Scheme 1.
  • the tefY-butoxycarbonyl- protected starting piperazines 7a-e were prepared by treating the appropriate piperazine with Boc 2 0 or Boc-ON using standard conditions.
  • the piperazines required for 7a-d were commercially available.
  • Piperazine needed for 7e was synthesized according to reported methods. 1 ' 2
  • the /er/-butoxycarbonyl-protected piperazines 7a-e were coupled to 3- bromoanisole under palladium-catalyzed conditions to give 8a-e.
  • Compounds 5g,h can be synthesized by the routes shown in Scheme 2.
  • Compound 10 was coupled to 3-bromoanisole under palladium-catalyzed conditions to give 11.
  • Subjection of 11 to palladium on carbon in refluxing aqueous acetic acid removed the N-allyl-protecting group to give 12.
  • Treatment of 12 with boron tribromide in methylene chloride at -78 °C affected demethylation of 12 to give the phenol 13.
  • Reductive alkylation of 13 using 3- phenylpropionaldehyde and sodium triacetoxyborohydride in 1 ,2-dichloroethane yielded 6h.
  • Measures of opioid receptor antagonism and specificity were obtained by monitoring the ability of selected test compounds to inhibit stimulation of [ S]GTPyS binding produced by the selective agonists (D-Ala 2 ,MePhe 4 ,Gly-ol 5 )enkephalin (DAMGO, mu receptor) cyclo[D-Pen 2 ,D-Pen 5 ]enkephalin (DPDPE, delta) and 5,7,8-(-)-N-methyl-N-[7-(l - pyrrolidinyl)- l -oxaspiro[4,5]dec-8-yl]benzeneacetamide (U69,593, kappa) in cloned human receptors (Table 1 ).
  • Compounds 5a-j show high efficacy (low K e values) for the kappa opioid receptor in the [-"SJGTPyS in vivo functional assay, particularly 5b-e, 5g, and 5j.
  • the compounds of the present invention are potent kappa opioid receptor antagonists in an in vitro functional test. Some compounds showed good selectivity for the kappa relative to the mu and delta opioid receptors.
  • Reagents (a) 3-bromoanisole, Pd 2 (dba) 3 , KOtBu, P(tBu) 3 , toluene, 100 °C, 18 h; (b) KN(Si(CH 3 ) 3 ) 2 , 3-bromoanisole, 1 ,4-dioxane 100 °C, 2 h; (c) BBr 3 , CH 2 CI 2 , -78 °C, 4 h; (d) HBr (48%) reflux; (e) C 6 H 5 (CH 2 ) 2 CHO, Na(OAc) 3 BH, Et 3 N, DCE; (f) Rany Ni, H 2 CO, H 2 EtOH.
  • Reagents (a) 3-bromoanisole, Pd 2 (dba) 3 , KOtBu, P(OtBu) 3 , toluene, 1 10 °C, sealed vessel; (b) Pd/C, CH 3 C0 2 H, H 2 0, reflux; (c) BBr 3 , CH 2 CI 2 , -78 °C; (d) C 6 H 5 (CH 2 ) 3 CHO,
  • Reagents (a) N-Boc-valine, BOP, Et 3 N, THF; (b) BH 3 , THF then cone. HCI; (c) BOP 7-HO-Boc-D-Tic, THF, Et 3 N; (d) CF 3 C0 2 H, CH 2 CI 2
  • the filtered solution was reduced to a fifth of its volume by evaporation under reduced pressure.
  • the remaining solution was subjected to column chromatography on silica gel eluting with hexanes-EtOAc (5 : 1 ).
  • the combined fractions containing the product were subjected to rotary evaporation, and the remaining oil was dried under high vacuum.
  • reaction mixture was added to a concentrated solution of NaHC0 3 (20 mL) and shaken vigorously. The layers were separated, and the organic layer was washed once with H 2 0 (5 mL) and once with brine (5 mL). The organic solution was dried (MgS0 4 ), filtered, and the solvents removed under reduced pressure to yield the product which was purified as specified.
  • Trihydrochloride In a round-bottom flask, 120 mg (0.432 mmol) of 5i and 133 mg (0.454 mmol) of 7-OH-Boc-D-Tic were dissolved in dry THF (15 mL), and the solution was cooled to 0 °C. Into this solution 0.06 mL of Et 3 N were added followed by 201 mg (0.454 mmol) of BOP. The solution was warmed up to room temperature, stirred for 3 h, and then added to an ice-cold concentrated NaHC0 3 solution. The mixture was extracted three times with 5 mL of EtOAc. The pooled organic extracts were washed once with cone.
  • JDTic A novel -opioid receptor antagonist. Eur. J. Pharmacol. 2004, 501, 1 1 1 - 1 19.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Neurosurgery (AREA)
  • Neurology (AREA)
  • Addiction (AREA)
  • Diabetes (AREA)
  • Psychiatry (AREA)
  • Hematology (AREA)
  • Cardiology (AREA)
  • Epidemiology (AREA)
  • Obesity (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Endocrinology (AREA)
  • Reproductive Health (AREA)
  • Pain & Pain Management (AREA)
  • Rheumatology (AREA)
  • Vascular Medicine (AREA)
  • Child & Adolescent Psychology (AREA)
  • Ophthalmology & Optometry (AREA)
  • Anesthesiology (AREA)
  • Emergency Medicine (AREA)
  • Immunology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Urology & Nephrology (AREA)
  • Nutrition Science (AREA)

Abstract

Provided are opioid receptor antagonists represented by the formula (I) where R, Y3, R1, R2, R3, R4 and R5 are as defined herein.

Description

TITLE OF THE INVENTION
Arylpiperazine Opioid Receptor Antagonists
RELATED APPLICATION INFORMATION
This application claims priority to U.S. provisional application serial Nos. 61/307,534, filed on February 24, 2010 and 61 /3 16,423, filed on March 23, 2010, both incorporated herein by reference.
BACKGROUND OF THE INVENTION FIELD OF THE INVENTION
The present invention relates to 4-arylpiperazine compounds. These compounds function as opioid receptor antagonists, and can be used to treat a variety of disease states.
DESCRIPTION OF THE BACKGROUND
The opioid receptors, μ, δ, κ, and the opioid-like receptor ORL- 1 belong to the super family of G-protein coupled receptors (GPCRs) that possess seven helical trans-membrane spanning domains in their architecture.1 The majority of research efforts focused upon this group of proteins has been directed toward the μ receptor since it mediates the actions of both the opiate and opioid analgesics such as morphine and fentanyl, respectively. However, over the years it has become increasingly clear that the entire family of proteins is actively involved in a host of biological processes. Furthermore, the advent of selective antagonists has demonstrated that pharmacotherapeutic opportunities exist via both negative and positive modulation of this receptor family. "
The opioid receptor system has been extensively studied, and thousands of compounds have been synthesized and evaluated by in vitro binding and functional assays as well as by animal models. An integral part of the effort to characterize the opioid receptor system has been the discovery of potent, pure antagonists. Naloxone (la) and naltrexone (lb), both competitive antagonists at μ, δ, and κ opioid receptors,9 have been extensively used as pharmacological tools to identify and characterize opioid systems (see Figure 1 for structures). Additionally, naloxone is approved to treat heroin overdose and to reverse respiratory depression caused by morphine.9 Naltrexone is used to treat heroin and alcohol abuse.
In 1978, Zimmerman and co-workers reported the discovery of a structurally unique series of opioid receptor pure antagonists based on N-substituted analogues of 3,4-dimethyl-4-(3- hydroxyphenyl)piperidine (2a, LY272922).10 Unlike naloxone (la) and naltrexone (lb) where the antagonist activity is dependent on the TV-allyl or TV-cyclopropylmethyl substituent, all TV- substituted /rara-3,4-dimethyl-4-(3-hydroxyphenyl)piperidines (2) including the TV-methyl analogue 2b are opioid receptor pure antagonists.10" 14 A few of the more interesting analogues include alvimopan (3), which is an FDA-approved drug for GI motility disorder,1 5 LY255,582 (2d),13'16 which was developed to treat obesity, and the selective κ opioid receptor antagonist
6 8 1 7 18 19
JDTic (4), " ' which shows activity in rat models of depression, anxiety, and stress- induced cocaine relapse.18 JDTic appears to be a promising therapeutic.
Komoto et al. reported structures like 6a-f in a paper entitled "New μ-Opioid Receptor Agonists with Piperazine Moiety." They do not describe that the compounds have opioid receptor antagonistic efficacy.20 The compounds are synthesized by a route similar to that used to prepare 5a-j. At present, the opiate class, represented by naloxone (la), naltrexone (l b), and the N-substituted 3,4-dimethyl-4-(3-hydroxyphenyl)piperidines, represented by alvimopan, LY255,582, and JDTic, are the only two classes of nonpeptide pure opioid receptor antagonists known. The discovery that 3-[4-(substituted piperazine-yl)]phenols (5) as described herein are pure opioid receptor antagonists adds a third example of this important class of compounds.
Studies with selective κ opioid antagonists have shown that this system is intimately involved in brain processes that relate to stress, fear, and anxiety as well as reward-seeking behavior. Studies have shown that JDTic (4) and nor-BNI, another κ opioid selective antagonist, dose-dependently reduce fear and stress-induced responses in multiple behavioral paradigms with rodents (immobility in the forced-swim assay,18'21 reduction of exploratory behavior in the elevated plus maze, and fear-potentiated startle).19 Furthermore, selective κ antagonists have been shown to reduce stress-induced reinstatement of cocaine self- administration in rats,18 to block the stress-induced potentiation of cocaine place preference conditioning,22"24 to decrease dependence-induced ethanol self-administration,25 to diminish
26
deprivation-induced eating in rats, and to prevent pre-pulse inhibition mediated by
U50,488.27 These observations regarding the behavioral consequences of receptor blockade in several animal tests suggest that κ antagonists will be useful for treating anxiety, depression, schizophrenia, addiction, and eating disorders.
Previously reported non-selective opioid receptor antagonists such as LY255582 have been found to increase metabolic energy consumption and reduce the weight in obese rats while maintaining muscle mass. These reports suggest that opioid receptor antagonists may be useful in preventing, treating, and/or ameliorating the effect of obesity. Eli Lilly and Company has developed new classes of opioid receptor antagonists that interact with the μ, δ, and K receptors (termed non-selective) as potential pharmacotherapies to treat obesity and related diseases.28,29 The Lilly patents suggest that such compounds will be useful for the treatment and/or prophylaxis of obesity and related diseases including eating disorders (bulimia, anorexia nervosa, etc.), diabetes, diabetic complications, diabetic retinopathy, sexual/reproductive disorders, depression, anxiety, epileptic seizure, hypertension, cerebral hemorrhage, congestive heart failure, sleeping disorders, atherosclerosis, rheumatoid arthritis, stroke, hyperlipidemia, hypertriglycemia, hyperglycemia, hyperlipoproteinemia, substance abuse, drug overdose, compulsive behavior disorders (such as paw licking in dog), and addictive behaviors such as for example gambling and alcoholism.
SUMMARY OF THE INVENTION
Aryl-substituted piperazines (5) are a new class of opioid receptor antagonists (see the Examples section below for representative structures). Similar to the N-substituted 3,4- dimethyl-4-(3-hydroxyphenyl)piperidines, even the N-methyl substituted analog 5f is a pure opioid antagonist. Changing the N-substituent to an N-phenylpropyl group gives 5b, which has Kc values of 0.88, 13.4, and 4.09 nM at the μ, δ, and κ opioid receptors, which are similar to the c values of N-phenylpropyl 3,4-dimethyl-4-(3-hydroxyphenyl)piperidine 2c (RTI- 5989-264). The JDTic-like analog from this class 5j has Ke values of 22, 274, and 2.7 nM at the μ, δ, and k opioid receptors, respectively (see Table 1 ). All compounds of this class thus far synthesized are relatively nonselective opioid receptor antagonists. Thus, their opioid receptor properties are more like those of naloxone (l a), naltrexone (lb), and the originally reported N-substituted 3,4-dimethyl-4-(3-hydroxyphenyl)piperidines.13
Thus, the present invention is directed to aryl-substituted piperazine opioid receptor antagonists represented by the formula (I):
Figure imgf000006_0001
(I)
wherein
R is hydrogen, OH, OCi_ alkyl, Ci-8 alkyl, C|.8 haloalkyl, C2-8 alkenyl, C2-8 alkynyl, aryl substituted by one or more groups Yi, CH2-aryl wherein the aryl group is substituted by one or more groups Y, , OCOC,.8 alkyl, COC,.8 alkyl, CONH2, NHCHO, NH2, NHS02C 1 -8 alkyl, or NHC02C ,.8 alkyl;
Y3 is hydrogen, Br, CI, F, CN, CF3, N02, OR8, C02R9, C ,-6 alkyl, NR,0Rn , NHCOR,2, NHC02R i 2, CONRi3R,4 or CH2(CH2)nY2;
Ri , R2, R3 and R are each, independently, one of the following structures:
Figure imgf000006_0002
or Ri and R2, R2 and R3 and/or R3 and R4 are bonded together to form a cyclo alkyl group or a bridged heterocyclic ring;
each Yi is, independently, hydrogen, OH, Br, CI, F, CN, CF3, N02, N3, OR8, C02R9, Cue alkyl, NR10Rn , NHCOR,2, NHC02R,2, CONRi3R,4, or CH2(CH2)nY2, or two adjacent Y, groups form a -0-CH2-0- or -0-CH2CH2-0- group;
each Y2 is, independently, hydrogen, CF3, C02R9, C|.8 alkyl, NR]0Ri 1 , NHCORi2, NHC02Ri2, C0NR,3R|4, CH2OH, CH2OR8, COCH2R9,
Figure imgf000007_0001
OH
or — C1 -8 alkyl;
each n is, independently, 0, 1 , 2 or 3;
each o is, independently, 0, 1 , 2 or 3;
each R8, R9, Rio, Rn , Ri2, Ri3 and R) 4 is, independently, hydrogen, Ci-8 alkyl, CH2- aryl wherein the aryl group is substituted by one or more substituents OH, Br, CI, F, CN, CF3, N02, N3, C ,.6 alkyl, or CH2(CH2)nY2' ;
each Y2' is, independently, hydrogen, CF3, or Ci-6 alkyl;
Figure imgf000008_0001
R-6 is C 1-8 alkyl, C2.8 alkenyl, C alkyl substituted C4-8 cycloalkyl, Ci-4 alkyl substituted C4.8 cycloalkenyl, or thiophene;
X is a single bond, -C(O)- or -CH(ORi5)-;
Ri5 hydrogen, Cj-6 alkyl, -(CH2)q-phenyl or -C(0)-Ri6;
Ri6 is Ci-4 alkyl or -(CH2)q-phenyl;
each q is, independently, 1, 2 or 3;
Ri7 is hydrogen, Ci-8 alkyl, C02Ci-8 alkylaryl substituted by one or more groups Yi, CH2-aryl substituted by one or more groups Yi, or C02Ci-8 alkyl;
Rig is hydrogen, Ci-8 alkyl, C2_8 alkenyl, C3.8 alkynyl, CH2C02C|_8 alkyl, C02Ci-8 alkyl or CH2-aryl substituted by one or more groups Yi; s a group selected from the group consisting of structures (a)-(p):
Figure imgf000009_0001
(g) (h) (i)
Figure imgf000010_0001
Q is NR2i , CH2, O, S, SO, or S02;
each Y4 is, independently, Br, CI, F, CN, CF3, N02, N3, OR22, C02R23, C ,.6 alkyl, NR24R25, NHCOR26, NHC02R27, CONR28R29, or CH2(CH2)nY2,
or two adjacent Y4 groups form a -0-CH2-0- or -0-CH2CH2-0- group;
p is 0, 1 , 2, or 3 ;
R2o is hydrogen, C i_8 alkyl, C2_8 alkenyl, C2-8 alkenyl, CH2OR3o, or CH2-aryl substituted by one or more substituents Yj ;
each R2i is, independently, hydrogen, Ci-8 alkyl, CH2-aryl substituted by one or more substituents Y, , NR31R32, NHCOR33, NHC02R34, CONR35R36, CH2(CH2)nY2, or
C(=NH)NR37R38;
R30 is hydrogen Ci_8 alkyl, C2_8 alkenyl, C2.8 alkenyl, CH202C i_8 alkyl, C02Ci-8 alkyl, or CH2-aryl substituted by one or more substituents Yj ;
R-22, R23, R24, R25, R26, R27, 28, R29, R31 , R32, R33» R-34, R35, R36, R37 and R38 are, independently, hydrogen, Ci_8 alkyl, CH2-aryl substituted by one or more substituents OH, Br, CI, F, CN, CF3, N02, N3, C,.6 alkyl, or CH2(CH2)nY2' ;
Z is N, O or S, wherein when Z is O or S, there is no Ri8;
Xi is hydrogen, C i-8 alkyl, C2-8 alkenyl, or C2-8 alkynyl;
X2 is hydrogen, C i-8 alkyl, C2-8 alkenyl, or C2-8 alkynyl;
or Xi and X2 together form =0, =S, or =NH,
with the proviso that when R5 is;
Figure imgf000011_0001
then at least one of Ri , R2, R3 and R4 is other than hydrogen as defined above;
or a pharmaceutically acceptable salt thereof.
The present invention also includes pharmaceutical compositions, which comprise the opioid receptor antagonist described above and a pharmaceutically acceptable carrier.
The present invention also includes a method of antagonizing opioid receptors, comprising administering an effective amount of the opioid receptor antagonist discussed above to a subject in need thereof.
The present invention also includes a method of treating drug addiction, drug abuse, depression, anxiety, schizophrenia, obesity and eating disorders, comprising administering an effective amount of the opioid receptor antagonist discussed above to a subject in need thereof.
The present invention also includes a method of treating alcohol addiction, nicotine addiction, cocaine addition and methamphetamine addiction, comprising administering an effective amount of the opioid receptor antagonist discussed above to a subject in need thereof.
The present invention also includes a method of treating diabetes, diabetic complications, diabetic retinopathy, sexual/reproductive disorders, epileptic seizure, hypertension, cerebral hemorrhage, congestive heart failure, sleeping disorders,
atherosclerosis, rheumatoid arthritis, stroke, hyperlipidemia, hypertriglycemia,
hyperglycemia, hyperlipoproteinemia, substance abuse, drug overdose, compulsive behavior disorders and addictive behaviors, comprising administering an effective amount of the opioid receptor antagonist discussed above to a subject in need thereof.
A more complete appreciation of the invention and many of the attendant advantages thereof will be readily obtained as the same becomes better understood by reference to the following Figures in conjunction with the detailed description below.
BRIEF DESCRIPTION OF THE FIGURES
Figure 1 : chemical structure of compounds 1 -6.
DETAILED DESCRIPTION OF THE INVENTION
A broad description of the invention is provided in the Summary section above. In another embodiment of the invention:
R is hydrogen, OH, OC 1.3 alkyl, Ci-4 alkyl, C|-4 haloalkyl, C2-4 alkenyl, C2-4 alkynyl, aryl substituted by one or more groups Yi , CH2-aryl wherein the aryl group is substituted by one or more groups Y , , OCOC ,-4 alkyl, COC ,.4 alkyl, CONH2, NHCHO, NH2, NHS02C ,.4 alkyl, or NHC02C ,.4 alkyl; and
Y3 is hydrogen, Br, CI, F, CN, CF3, N02, OR8, C02R9, C ,-3 alkyl, NR, 0Ri i ,
NHCOR,2, NHC02Ri 2, CONR13R,4 or CH2(CH2)nY2;
In another embodiment of the invention, R\ , R2, R3 and R are each, independently, one of the following structures:
Figure imgf000013_0001
or Ri and R2, R2 and R3 and/or R3 and R4 are bonded together to 5 to 7 membered alkyl group or a bridged heterocyclic ring.
Figure imgf000013_0002
In another embodiment of the invention, at least one of Ri , R2, R3 and R4 is other than hydrogen.
In another embodiment of the invention, R is hydrogen, OH, OC 1-2 alkyl, Q-2 alkyl, Q. 2 haloalkyl, C2-3 alkenyl, C2-3 alkynyl, aryl substituted by one or more groups Yi, C¾-aryl wherein the aryl group is substituted by one or more groups Yi, COCi-2 alkyl, CONH2, NHCHO, NH2, NHSO2C 1-2 alkyl, or NHC02Ci.2 alkyl.
In another embodiment of the invention, R is hydrogen, OH, OCH3, OCF3, COCH3, OCOCH3, CONH2, NHCHO, NH2, NHS02CH3, or NHC02CH3.
In another embodiment of the invention, R is hydrogen, OH, OCH3, or OCF3.
In another embodiment of the invention, Y3 is hydrogen.
In another embodiment of the invention, Ri, R2, R3 and R4 are each, independently, one of the following structures:
Figure imgf000014_0001
or Ri and R2, R2 and R3 and/or R3 and R4 are bonded together to 5 to 7 membered alkyl group or a bridged heterocyclic ring.
In another embodiment of the invention, Ri , R2, R3 and R4 are each, independently, hydrogen, methyl or ethyl.
In another embodiment of the invention, R] , R2, R3 and R4 are each, independently, hydrogen or methyl.
In another embodiment of the invention, Ri , R2, R3 and R4 are each, independently, hydrogen or methyl, wherein at least one of Ri , R2, R3 and R4 is methyl.
In another embodiment of the invention, R5 is hydrogen, Ci-4 alkyl or -(CH2)n-phenyl. In another embodiment of the invention, R$ is
Figure imgf000014_0002
In another embodiment of the invention:
R is hydrogen, OH, OCH3, or OCF3;
Y3 is hydrogen;
Ri , R.2, R3 and R4 are each, independently, hydrogen, methyl or ethyl; and
R5 is hydrogen, Ci-4 alkyl or -(CH2)n-phenyl.
In one preferred embodiment, R2 is other than hydrogen as defined above. This substitution may increase opioid efficacy by an order of magnitude. The chiralty at the resulting stereocenter may be (R) or (S). Preferred substituents are C i.8 alkyl, preferably methyl, ethyl and propyl.
In another embodiment of the invention at least one of Ri , R2, R3 and R4 is other than hydrogen as defined above when
Figure imgf000015_0001
In another preferred embodiment of the present invention, the opioid receptor antagonists are as described in the following Examples section.
The present invention includes any and all combination of the different structural groups defined above, including those combinations not specifically set forth above.
As used throughout this disclosure, the terms "alkyl group" or "alkyl radical" encompass all structural isomers thereof, such as linear, branched and cyclic alkyl groups and moieties. Unless stated otherwise, all alkyl groups described herein may have 1 to 8 carbon atoms, inclusive of all specific values and subranges therebetween, such as 2, 3, 4, 5, 6, or 7 carbon atoms. Representative examples include methyl, ethyl, propyl and cyclohexyl.
As used throughout this disclosure, the terms "haloalkyl group" or "haloalkyl radical" encompass all structural isomers thereof, such as linear, branched and cyclic groups and moieties. Unless stated otherwise, all haloalkyl groups described herein may have 1 to 8 carbon atoms, inclusive of all specific values and subranges therebetween, such as 2, 3, 4, 5, 6, or 7 carbon atoms. A Ci -2 haloalkyl group is particularly preferred. At least one hydrogen atom is replaced by a halogen atom, i.e., fluorine, chlorine, bromine or iodine. In one embodiment, all of the hydrogen atoms are replaced with halogen atoms. Fluorine is preferred. Perfluoroalkyl groups are particularly preferred. Examples of haloalkyl groups include trifluoromethyl (-CF3) and perfluoroethyl (-CF2CF3).
The alkenyl group or alkynyl group may have one or more double or triple bonds, respectively. As will be readily appreciated, when an alkenyl or alkynyl group is bonded to a heteroatom a double or triple bond is not formed with the carbon atom bonded directly to the heteroatom. Unless stated otherwise, all alkenyl and alkynyl groups described herein may have 2 to 8 carbon atoms, inclusive of all specific values and subranges therebetween, such as 3, 4, 5, 6, or 7 carbon atoms. Preferred examples include -CH=CH2, -CH2CH=CH2, -CCH and-CH2CCH.
The aryl group is a hydrocarbon aryl group, such as a phenyl, naphthyl, phenanthryl, anthracenyl group, which may have one or more C alkyl group substituents.
The compounds of the present invention may be in the form of a pharmaceutically acceptable salt via protonation of the amines with a suitable acid. The acid may be an inorganic acid or an organic acid. Suitable acids include, for example, hydrochloric, hydroiodic, hydrobromic, sulfuric, phosphoric, citric, acetic, fumaric, tartaric, and formic acids.
The opioid receptor selectivity may be determined based on the binding affinities at the receptors indicated or their selectivity in opioid functional assays.
The compounds of the present invention may be used to bind opioid receptors. Such binding may be accomplished by contacting the receptor with an effective amount of the inventive compound. Of course, such contacting is preferably conducted in an aqueous medium, preferably at physiologically relevant ionic strength, pH, etc. Receptor antagonism is the preferred mode of action of the compounds described herein.
The inventive compounds may also be used to treat patients having disease states which are ameliorated by binding opioid receptors or in any treatment wherein temporary suppression of the kappa opioid receptor system is desired. Such diseases states include opiate addiction (such as heroin addiction), cocaine, nicotine, or ethanol addiction. The compounds of the present invention may also be used as cytostatic agents, as antimigraine agents, as immunomodulators, as immunosuppressives, as antiarthritic agents, as antiallergic agents, as virucides, to treat diarrhea, as antipsychotics, as antischizophrenics, as
antidepressants, as uropathic agents, as antitussives, as antiaddictive agents, as anti-smoking agents, to treat alcoholism, as hypotensive agents, to treat and/or prevent paralysis resulting from traumatic ischemia, general neuroprotection against ischemic trauma, as adjuncts to nerve growth factor treatment of hyperalgesia and nerve grafts, as anti-diuretics, as stimulants, as anti-convulsants, or to treat obesity. Additionally, the present compounds can be used in the treatment of Parkinson's disease as an adjunct to L-dopa for treatment of dyskinesia associated with the L-dopa treatment.
The compounds of the present invention are particularly useful for treating addiction, such as addiction to cocaine, alcohol, methamphetamine, nicotine, heroine, and other drugs of abuse. With respect to nicotine, the compounds of the present invention are also useful in treating nicotine withdrawal effects.
The compounds may be administered in an effective amount by any of the
conventional techniques well-established in the medical field. For example, the compounds may be administered orally, intraveneously, or intramuscularly. When so administered, the inventive compounds may be combined with any of the well-known pharmaceutical carriers and additives that are customarily used in such pharmaceutical compositions. For a discussion of dosing forms, carriers, additives, pharmacodynamics, etc., see Kirk-Othmer Encyclopedia of Chemical Technology, Fourth Edition, Vol. 18, 1996, pp. 480-590, incorporated herein by reference. The patient is preferably a mammal, with human patients especially preferred. Effective amounts are readily determined by those of ordinary skill in the art. Studies by the present inventors show no toxicity and no lethality for the present compounds at amounts up to 300 mg/kg in mice.
The compounds of the present invention can be administered as a single dosage per day, or as multiple dosages per day. When administered as multiple dosages, the dosages can be equal doses or doses of varying amount, based upon the time between the doses (i.e. when there will be a longer time between doses, such as overnight while sleeping, the dose administered will be higher to allow the compound to be present in the bloodstream of the patient for the longer period of time at effective levels). Preferably, the compound and compositions containing the compound are administered as a single dose or from 2-4 equal doses per day.
Suitable compositions containing the present compounds further comprise a physiologically acceptable carrier, such as water or conventional pharmaceutical solid carriers, and if desired, one or more buffers and other excipients.
The compounds of the invention may be synthesized by, for example, the schemes shown in the following Examples. Those skilled in the art will appreciate that the synthesis of the exemplified compounds can readily be adapted for the preparation of other compounds within the scope of formula I.
EXAMPLES
Having generally described this invention, a further understanding can be obtained by reference to certain specific examples which are provided herein for purposes of illustration only and are not intended to be limiting unless otherwise specified.
Chemistry and Biology
Compounds 5a-f of the present invention may be synthesized, for example, in accordance with the reaction sequence shown in Scheme 1. The tefY-butoxycarbonyl- protected starting piperazines 7a-e were prepared by treating the appropriate piperazine with Boc20 or Boc-ON using standard conditions. The piperazines required for 7a-d were commercially available. Piperazine needed for 7e was synthesized according to reported methods.1'2 The /er/-butoxycarbonyl-protected piperazines 7a-e were coupled to 3- bromoanisole under palladium-catalyzed conditions to give 8a-e. Treatment of 8a-e with boron tribromide in methylene chloride at -78 °C effected removal of the /ert-butoxycarbonyl group and demethylation of the methyl ether to give 9a-e. Reductive alkylation of 9a-e using 3-phenylpropionaldehyde and sodium triacetoxyborohydride in 1 ,2-dichloroethane yielded the desired 5a-e. Reductive alkylation of 9b using formaldehyde and Raney nickel under a hydrogen atmosphere yielded 5f.
Compounds 5g,h can be synthesized by the routes shown in Scheme 2. Compound 10 was coupled to 3-bromoanisole under palladium-catalyzed conditions to give 11. Subjection of 11 to palladium on carbon in refluxing aqueous acetic acid removed the N-allyl-protecting group to give 12. Treatment of 12 with boron tribromide in methylene chloride at -78 °C affected demethylation of 12 to give the phenol 13. Reductive alkylation of 13 using 3- phenylpropionaldehyde and sodium triacetoxyborohydride in 1 ,2-dichloroethane yielded 6h. Treatment of 10 with (Boc2)0 in methylene chloride containing triethylamine gives the N- allyl, N-Boc-protected piperazine 14. Subjection of 14 to palladium on carbon in refluxing aqueous acetic acid selectively removed the N-allyl group to give 15. Compound 15 was coupled to 3-bromoanisole under palladium-catalyzed conditions to yield 16. Treatment of 16 with boron tribromide in methylene chloride at -78 °C effected removal of the tert- butoxycarbonyl group and demethylation of the methyl ether to give 17. Reductive alkylation of 17 using 3-phenylpropanaldehyde and sodium triacetoxyborohydride in 1 ,2-dichloroethane afforded the desired 5g.
Scheme 3 outlines the synthesis of 5i and 5j. Compound 9b is coupled with N-Boc- valine using BOP to give an amide which is not isolated but reduced directly to 5i using diborane in tetrahydrofuran. Coupling of 5i with 7-OH-Boc-D-Tic using BOP in
tetrahydrofuran followed by treatment with trifluoroacetic acid in methylene chloride yielded 5j.
Biology
Measures of opioid receptor antagonism and specificity were obtained by monitoring the ability of selected test compounds to inhibit stimulation of [ S]GTPyS binding produced by the selective agonists (D-Ala2,MePhe4,Gly-ol5)enkephalin (DAMGO, mu receptor) cyclo[D-Pen2,D-Pen5]enkephalin (DPDPE, delta) and 5,7,8-(-)-N-methyl-N-[7-(l - pyrrolidinyl)- l -oxaspiro[4,5]dec-8-yl]benzeneacetamide (U69,593, kappa) in cloned human receptors (Table 1 ).
Results
Compounds 5a-j show high efficacy (low Ke values) for the kappa opioid receptor in the [-"SJGTPyS in vivo functional assay, particularly 5b-e, 5g, and 5j. The compounds of the present invention are potent kappa opioid receptor antagonists in an in vitro functional test. Some compounds showed good selectivity for the kappa relative to the mu and delta opioid receptors.
Figure imgf000020_0001
5f (RTI-5989-263)
Reagents: (a) 3-bromoanisole, Pd2(dba)3, KOtBu, P(tBu)3, toluene, 100 °C, 18 h; (b) KN(Si(CH3)3)2, 3-bromoanisole, 1 ,4-dioxane 100 °C, 2 h; (c) BBr3, CH2CI2, -78 °C, 4 h; (d) HBr (48%) reflux; (e) C6H5(CH2)2CHO, Na(OAc)3BH, Et3N, DCE; (f) Rany Ni, H2CO, H2 EtOH.
Figure imgf000021_0001
5g (RTI-5989-262)
Reagents: (a) 3-bromoanisole, Pd2(dba)3, KOtBu, P(OtBu)3, toluene, 1 10 °C, sealed vessel; (b) Pd/C, CH3C02H, H20, reflux; (c) BBr3, CH2CI2, -78 °C; (d) C6H5(CH2)3CHO,
NA(OAc)3BH, Et3N, DCE.
Figure imgf000022_0001
5i (RTI-5989-273) 5j (RTI-5989-266)
Reagents: (a) N-Boc-valine, BOP, Et3N, THF; (b) BH3, THF then cone. HCI; (c) BOP 7-HO-Boc-D-Tic, THF, Et3N; (d) CF3C02H, CH2CI2
Experimental
General Procedures for the Preparation of 3-[4-(Substituted piperazin-l-yl)]phenols
(6a-e)
a. Palladium-catalyzed 3-Methoxyphenylation Procedure. In a thick-walled glass sealable tube, 1 eq of piperazine 7a-c was dissolved in 20 mL of dry toluene along with 1.5 eq of 3-bromoanisole, 0.005 eq of Pd2(dba)3, 1.5 eq of KO/Bu, and 0.01 eq of P(/Bu)3 as a 1 M solution in toluene. The tube was flushed with argon, sealed, and heated to 1 10 °C for 16 h. The vessel was cooled to room temperature, opened, and the contents filtered through celite. The filtered solution was reduced to a fifth of its volume by evaporation under reduced pressure. The remaining solution was subjected to column chromatography on silica gel eluting with hexanes-EtOAc (5 : 1 ). The combined fractions containing the product were subjected to rotary evaporation, and the remaining oil was dried under high vacuum.
b. Transition Metal-free 3-Methoxyphenylation.3 In a round-bottom flask equipped with a condenser under an argon dry atmosphere, 1 . 1 eq of KN(Si(CH3)3)2 was suspended in 7 mL of dry 1 ,4-dioxane. The piperazines 7d,e, 1 eq, was added followed by 1 eq of 3- bromoanisole. The reaction mixture was stirred at 100 °C for 2.5 h, cooled to room temperature, and quenched with H20 (10 mL). To the mixture was added Et20 (15 mL) and shaken vigorously. The layers were separated, and the aqueous layer was extracted twice with Et20 ( 10 mL). The pooled organic solution was concentrated by rotary evaporation, and the residue was subjected to column chromatography on silica gel eluting with hexane-EtOAc (5 : 1 ). The combined fractions containing the product were subjected to rotary evaporation, and the remaining oil was dried under high vacuum.
c. Removal of the /V-Boc and O-Me Protecting Groups with BBr3. Under an argon atmosphere, 1 eq of Boc-protected phenylpiperazine 8 was dissolved in CH2CI2 (20 mL), and the solution was cooled to -78 °C. Into this mixture, 4 eq of BBr3 as a 1 M solution in CH2CI2 were introduced. The reaction mixture was stirred for 4 h, warmed to 0 °C, and stirred for an additional 2 h. Into this solution dry MeOH (20 mL) was slowly added, and the solution was stirred for 5 min. The solvents were then removed under reduced pressure at 25 °C. The residue was redissolved in MeOH (20 mL), and the solvents were removed again under reduced pressure to afford a residue that was recrystallized or converted to the freebase and purified by column chromatography on silica gel to yield the product.
d. Removal of the TV-Boc and O-Me Protecting Groups with Cone. HBr. In a round-bottom flask 8 were dissolved in cone. HBr, and the solution was refluxed for 16 h. Removal of the solvents by rotary evaporation gave a residue that was dissolved in MeOH. This solution was stirred over excess NaHC03 for 10 min and then filtered. The solution was concentrated under reduced pressure and subjected to column chromatography on silica gel to afford the product.
e. Reductive Alkylation of 9a-e with 3-Phenylpropanaldehyde. In a dry flask 1 eq of phenylpiperazine 9a-e was dissolved in 1 ,2-dichloroethane (20 mL) along with 1 .5 eq of 3- phenylpropanaldehyde and 1 .5 eq of Et3N. The solution was cooled to 0 °C, and 1 .5 eq of Na(OAc)3BH was then added. The reaction mixture was stirred for 1 h at 0 °C, allowed to warm to 25 °C. After stirring for 2 h, the reaction mixture was added to a concentrated solution of NaHC03 (20 mL) and shaken vigorously. The layers were separated, and the organic layer was washed once with H20 (5 mL) and once with brine (5 mL). The organic solution was dried (MgS04), filtered, and the solvents removed under reduced pressure to yield the product which was purified as specified.
l- /^Butoxycarbonyl-4-(3-methoxyphenyl)piperazine (8a). General procedure a. was employed using 0.996 g (5.35 mmol) of commercially available Boc-piperazine 7a to obtain, after chromatography, 1.53 g (98%) of 8a as a yellowish solid: mp 62-63 °C. Ή NMR (CDC13) δ 7.18 (t, 1 H), 6.54 (m, 1 H), 6.46. (s, 1 H), 6.45 (m, 1 H), 3.79 (s, 3H), 3.57 (m, 4H), 3.13 (m, 4H), 1 .48 (s, 9H). ESIMS: m/z 293 (M+H+, 100).
(S)-ii?ri-ButyI-4-(3-methoxyphenyl)-3-methylpiperazine-l-carboxylate (8b).
General procedure a. was employed using 1.32 g (6.60 mmol) of Boc-piperazine 7b4 to obtain, after chromatography, 1 .19 g (59%) of 8b as a yellow oil with spectra identical to that of 8c.
(R)- rf-Butyl-4-(3-methoxyphenyl)-3-methylpiperazine-l-carboxylate (8c).
General procedure a. was employed using 1 .00 g (5.00 mmol) of Boc-piperazine 7b4 to obtain, after chromatography, 841 mg (55%) of 8c as a yellow oil. Ή NMR (CDC13) δ 7.17 (t, 1 H), 6.67 (d, 1 H), 6.43. (d, 1 H), 4.37 (bm, 1 H), 3.84, (m, 1 H), 3.79 (s, 3H), 3.77 (bd, 1 H), 3.33 (m, 1 H), 3. 1 8 (bm, 2H), 1 .48 (s, 9H), 1.01 (d, 3H). ESIMS: m/z 425 (M+Na+, 100).
(Z)-l-i-? *i-Butoxycarbonyl-4-(3-methoxyphenyl)-3,5-dimethylpiperazine (8d). General procedure b. was employed using 588 mg (2.74 mmol) of Boc-piperazine 7d to obtain, after chromatography, 407 mg (46%) of 8d as a yellow oil. Ή NMR (CDC13) δ 7.20 (t, 1 H), 6.69 (m, 3H), 4.15 (m, 0.7H), 3.89 (bm, 1 .3H), 3.79 (s, 3H), 3.06 (m, 2H), 2.88 (m, 2H), 1 .48 (d, 9H), 1 .20 (d, 2.1 H), 0.81 (d, 3.1 H). ESIMS: m/z 321 (M+H+, 50). (25,55)- 1 - rf-Butoxycarbony l-4-(3-methoxy pheny l)-2,5-dimethy Ipiperazine (8e).
General procedure b. was employed using 433 mg (2.02 mmol) of Boc-piperazine 7e to obtain, after chromatography, 397 mg (65%) of 8e as a yellow oil. Ή NMR (CDC13) δ 7.17 (t, IH), 6.52 (d, IH), 6.47-6.45 (m, IH), 4.15 (q, IH), 4.03-3.98 (m, IH), 3.41 (q, IH), 3.30 (dd, IH), 2.97-2.90 (dd, IH), 2.84 (dd, IH), 1.45 (s, 9H), 1.32 (d,3H), 1.04 (d, 3H). ESIMS: m/z321 (M+H\ 50).
(25,5R)-l-/e-f-Butoxycarbonyl-4-(3-methoxyphenyl)-2,5-dimethyIpiperazine (16).
General procedure a. was employed using 1.04 g (3.79 mmol) of Boc-piperazine 15 to obtain, after chromatography, 288 mg (24%) of 16 as a yellow oil. Ή NMR (CDC13) δ 7.12 (t, IH), 6.46 (d, IH), 6.37 (s, IH), 6.35 (d, IH), 4.39 (b, IH), 3.94 (bm, IH), 3.79 (s, 3H), 3.78 (m, IH), 3.40 (dd, IH), 3.25 (dd, IH), 3.11 (d, IH), 1.48 (s, 9H), 1.25 (d, 3H), 1.03 (d, 3H).
ESIMS: m/z 221 (M-Boc+H+, 95;), 321 (M+H+, 20).
(2R,55)-l-AHyl-4-(3-methoxyphenyl)-2,5-dimethylpiperazine (11). General procedure a. was employed using 1.00 g (6.48 mmol) of allyl-piperazine 105 to obtain, after chromatography, 715 mg (55% yield) of 11 as a a yellow oil. Ή NMR (CDC13) δ 7.19 (t, IH), 6.67 (dd, IH), 6.62 (m, IH), 6.56 (dd, IH), 5.91 (m, IH), 5.27-5.17 (m, 2H), 3.79 (s, 3H), 3.45-3.26 (m, 2H), 3.13 (dd, IH), 3.00-2.89 (m, 2H), 2.82-2.64 (m, 2H), 2.21 (dd, IH), 1.06 (d, 3H), 0.98 (d, 3H). ESIMS: m/z 261 (M+H\ 100).
3-Piperazine-phenol Dihydrobromide (9a). General procedure d. was employed using 1.39 of 8a and 20 mL of cone. HBr. Recrystallization from MeOH gave 1.05 (65%) of 9a as pink crystals: mp >220 °C. Ή NMR (i/6-DMSO) δ 8.75 (bs, 2H), 7.29 (bs, 2H), 7.16 (t, IH), 6.55 (d, IH), 6.51 (s, IH), 5.45 (d, IH), 3.36 (m, 2H), 3.22 (m, 4H), 2.50 (m, 2H).
ESIMS: m/z 179 (M+H+, 100).
(5)-3-(2-Methylpiperazin-l-yl)phenol (9b) Dihydrobromide. General procedure c. was employed using 714 mg (2.44 mmol) of 8b affording a tan solid that was triturated under cold MeOH and collected by filtration, 624 mg (76%): mp > 220 °C. This compound had identical spectral information as 9c (see below).
(R)-3-(2-Methylpiperazin-l-yl)phenol (9c) Dihydrobromide. General procedure c. was employed using 780 mg (2.54 mmol) of 8c affording a tan solid that was triturated under cold MeOH and collected by filtration, 685 mg (76%): mp >220 °C. Ή NMR (CD3OD) δ 7.33 (q, IH, ArH), 6.97 (d, IH, ArH), 6.94 (s, IH, ArH), 6.80 (d, IH, ArH), 4.15 (m, IH, NCH), 3.76 (m, IH, NCH), 3.71 (bd, 2H, NCH), 3.49 (dd, IH, NCH), 1.18 (d, 3H, CH3). ESIMS: m/z 193 (M+H+, 100). (Z)-3-(2,6-Dimethylpiperazin-l-yl)phenol (9d). General procedure d. was employed using 407 mg ( 1 .27 mmol) of 8d and 10 mL of cone. HBr. The dihydrobromide salt was dissolved in MeOH, stirred over 200 mg of NaHC03 for 10 min, and filtered. The solution was concentrated under reduced pressure and subjected to column chromatography on silica gel eluting with CMA80 to afford 180 mg (65%) of 9d as a brown solid: mp > 220 °C. Ή NMR (CDC13) 5 7.1 5 (t, I H), 6.68 (m, 2H), 3.14 (m, 4H), 2.71 (dd, 2H, J = 12 Hz), 0.80 (d, 3H). ESIMS: m/z 207 (M+H+, 100).
(2S,5S)-3-(2,5-Dimethylpiperazin-l-yl)phenol (9e). General procedure d. was employed using 397 mg (1 .80 mmol) of 8e and 10 mL of cone. HBr. The dihydrobromide salt was dissolved in MeOH, stirred over 200 mg of NaHC03 for 10 min and then filtered. The solution was concentrated under reduced pressure and subjected to silica-gel column chromatography eluting with CMA80-CH2C12 ( 1 : 1 ) to afford 522 mg (29%) of 9e as a grey solid: mp > 220 °C. Ή NMR (CDC13) δ 7.10 (q, I H), 6.52 (m, I H), 6.45 (s, I H), 6.41 (m, I H), 4.23 (m, 2H), 3.89-3.39 (m, 4H), 3.03 (dd, 2H), 1 .45 (d, 3H), 1 . 15 (d, 3H). ESIMS: m/z 207 (M+H\ 100).
3-[(25,5/f)-2,5-Dimethylpiperazin-l-yl]phenol (17) Dihydrobromide. General procedure c. was employed using 288 mg (0.90 mmol) of 16 affording a crimson-colored residue that was pure by NMR (100%). Ή NMR (CD3OD) δ 7.44 (t, I H), 7.23 (m, 2H), 6.97 (m, I H), 4.39 (m, I H), 4.22 (m, I H), 3.97-3.82 (m, 2H), 3.71 (m, I H), 3.29 (m, I H), 1.48 (d, 3H), 1 .25 (d, 3H). ESIMS: m/z 207 (M+H+, 100).
3-[(2R,5S)-2,5-Dimethylpiperazin-l-yl]phenol (13). In a round-bottom flask, 715 mg (2.74 mmol) of 12 was dissolved in 10 mL CH3COOH and 5 mL of H20. To this mixture was added 50 mg of 10% Pd on carbon, and the suspension was heated and stirred at reflux for 12 h. The mixture was cooled, filtered, and the solvents evaporated under reduced pressure. To the residue was added 20 mL of cone. NaHC03, and this mixture was extracted thoroughly with EtOAc. The pooled organic extracts were washed once with brine, dried over MgS04, and the solvents removed under reduced pressure to yield 605 mg of an orange oil that was pure (2/?,55 - l -(3-methoxyphenyl)-2,5-dimethylpiperazinium acetate by NMR. Ή NMR (CDC13) δ 7.21 (t, I H), 6.73 (dd, I H), 6.62 (m, I H), 6.67 (m, I H), 6.63 (m, I H), 3.79 (s, 3H), 3.12-2.90 (m, 4H), 2.70 (dd, I H), 2.46 (dd, I H), 1 .07 (d, 3H), 0.93 (d, 3H). ESIMS: m/z 221 (M+H+, 100). General procedure c. was employed using 363 mg (1.65 mmol) of this oil affording a residue that was dissolved in 5 mL of MeOH and stirred over excess NaHC03. The mixture was filtered, and the solvents subjected to rotary evaporation to afford a residue that was purified by chromatography affording 215 mg of 13 as a white solid (63% yield). Spectral information for this compound was found to be identical to 17.
3-(4-Phenylpropylpiperazin-l-yl)phenol (5a) Dihydrochloride. General procedure e. was employed with 250 mg (0.735 mmol) of 9a. The crude product was subjected to flash- column chromatography on silica gel eluting with CMA80-CH2C12 (1 : 1 ). The freebase thus recovered was converted to the dihydrochloride salt by dissolving in 2 mL of a 2 M HCl solution in EtOH and removing the solvents under reduced pressure. The solids were suspended in EtOAc and collected by filtration to yield 55 mg (20 %) of 5a«2HCl as a tan powder: mp 194-201 °C (dec). Ή NMR (CD3OD) δ 7.33-7.21 (m, 5H), 7.09 (t, 1 H), 6.52- 6.38 (m, 3H), 3.81-3.76 (bd, 2H), 3.67-3.63 (bd, 2H), 3.29-3.1 8 (m, 4H), 3.09-3.00 (bt, 2H), 2.75 (t, 2H), 2.13 (m, 2H). ESIMS: m/z 297 (M+H+, 100). Anal, calcd for C i9H26Cl2N20: C, 61 .79; H, 7.10; N, 7.55. Found: C, 61 .72; H, 7.10; N, 7.38.
(5)-3-(2-Methyl-4-phenylpropyIpiperazin-l-yl)phenol (5b) Dihydrochloride. General procedure e. was employed using 247 mg (0.886 mmol) of 9b. The dihydrochloride salt was made by dissolving the crude product in 5 mL of a 2 M solution of HCl in EtOH and removing the solvents under reduced pressure. This salt was recrystallized from EtOH-EtOAc to yield 126 mg (37%) of 5b'2HCl as a white powder: mp >220 °C. [a] = +2.17 (c 0.46, CH3OH). The spectral information gathered for this compound were identical as those obtained for 5c (see below). Anal, calcd for C20H28Cl2N2O: C, 62.66; H, 7.36; N, 7.31 .
Found: C, 62.45; H, 7.53 ; N, 7.29.
(R)-3-(2-Methyl-4-phenylpropylpiperazin-l-yl)phenol (5c) Dihydrochloride. General procedure e. was employed using 175 mg (0.886 mmol) of 9c. The dihydrochloride salt was made by dissolving the product in 5 mL of a 2 M solution of HCl in EtOH and removing the solvents under reduced pressure. This salt was recrystallized from EtOH-EtOAc to yield 55 mg ( 19%) of 5c-HCl as a white powder: mp >220 °C; [a] -2.17 (c 0.46, CH3OH). Ή NMR (CD3OD) δ 7.40-7.27 (m, 9H), 3.95-3.70 (b, 2H), 3.70-3.50 (b, 2H), 3.33 (m, 2H), 3.30 (m, 3H), 2.78 (t, 2H), 1 .17 (d, 3H). ESIMS: m/z 31 1 (M+H+, 100). Anal, calcd for C20H28Cl2N2O: C, 62.66; H, 7.36; N, 7.3 1. Found: C, 62.15; H, 7.36; N, 7.02.
(Z)-3-(2,6-Dimethyl-4-(3-phenylpropyl)piperazin-l-yl)phenol (5d)
Dihydrochloride. General procedure e. was employed using 65 mg (0.3 15 mmol) of 9d. The crude product was subjected to preparative TLC eluting with CMA80-CH2C12 ( 1 : 1 ) which afforded 20 mg (20%) of 5d as an amber-colored residue. The 5d*2HCl was prepared by dissolving this material in 5 mL of 2 M HCl in EtOH and removing the solvents under reduced pressure: mp 210-212 °C. Ή NMR (freebase in CDC13) δ 7.30-7.1 8 (m, 4H), 7.13 (t, 1 H), 6.67 (d, 1 H), 6.66 (s, 1 H), 6.59 (dd, 1 H), 3.19 (m, 2H), 2.81 (dd, 2H), 2.66 (t, 2H, J= 9 Hz), 2.41 (dd, 2H), 2.08 (dd, 2H, J = 9 Hz), 1.88 (m, 3H), 0.81 (d, 6H, J = 6 Hz). ESIMS: m/z 325 (M+H+, 100). Anal, calcd for C2iH30Cl2N2OH20: C, 60.72; H, 7.76; N, 6.74. Found: C, 61.10; H, 7.80; N, 6.63.
3-[(2S,5S)-2,5-DimethyI-4-(3-phenylpropyl)piperazin-l-yl]phenol (5e) Dihydro- chloride. General procedure e. was employed using 83 mg (0.225 mmol) of 9e. The crude product was subjected flash column chromatography on silica gel eluting with CMA80- CH2C12 (1 : 1 ) which afforded an amber-colored residue. The dihydrochloride was prepared by dissolving this residue in 5 mL of 2 M HCl in EtOH and removing the solvents under reduced pressure. The residue was dissolved in 1 mL of MeOH, and the white crystals of 5e»2HCl were collected by filtration to afford 8 mg (9%): mp >220 °C (dec). Ή NMR (freebase in CDC13) δ 7.30-7.18 (m, 4H), 7.13 (t, 1 H), 6.67 (d, 1 H), 6.66 (s, 1 H), 6.59 (dd, 1 H), 3.19 (m, 2H), 2.81 (dd, 2H), 2.66 (t, 2H, J = 9 Hz), 2.41 (dd, 2H), 2.08 (dd, 2H, J = 9 Hz), 1.88 (m, 3H), 0.81 (d, 6H, J = 6 Hz). ESIMS: m/z 325 (M+H+, 100). Anal, calcd for C21H30Cl2N2O: C, 60.72; H, 7.76; N, 6.74. Found: C, 61.01 ; H, 7.70; N, 6.80.
(5)-3-(2,4-Dimethylpiperazin-l-yl)phenol (5f) Dihydrochloride. At room temperature and under an atmosphere of H2 were stirred 109 mg (0.567 mmol) of the piperazine 9b, 0.5 mL of Raney nickel slurry, and formaldehyde (0.5 mL of 37% in H20) in EtOH for 8 h in 15 mL of EtOH. The suspension was filtered and the solvents evaporated to yield a crude residue that was separated by silica gel column chromatography eluting with CMA80-CH2C12 (1 : 1). The fractions containing the product were removed of solvent by rotary evaporation, acidified with a 2 M HCl solution in EtOH, and crystallized by addition of Et20 and cooling to give 5f-2HCl: mp 179-183 °C; [a]D +4.4° (c 0.18, MeOH). 'H NMR (freebase in CDC13) δ 7.09 (t, 1 H), 6.50 (dd, 1 H), 6.41 (t, 1 H), 6.34 (dd, 1 H), 3.75 (m, 1 H), 3.15 (m, 1 H), 2.76 (m, 1 H), 2.55 (m, 2H), 2.36 (m, 1 H), 2.32 (s, 3H), 1.06 (d, 3H). ESIMS: m/z 207 (M+l , 100). Anal, calcd for Ci2H20Cl2N2O: C, 51.62; H, 7.22, N, 10.03. Found: C, 51.88; H, 7.51 ; N, 9.89.
3-((2S,5R)-2,5-Dimethyl-4-(3-phenylpropyl)piperazin-l-yl)phenol (5g) Dihydrochloride. General procedure e. was employed using 175 mg (0.475 mmol) of 17. The dihydrochloride salt was made by dissolving the crude product in 5 mL of a 2 M solution of HCl in EtOH, and removing the solvents under reduced pressure. The salt was triturated under EtOH-iPrOH, collected by filtration, and dried under vacuum to afford 88 mg (47%) of pure 5g«HCl as a white powder: mp 199 °C (dec); [a]25 D -9.47 (c 0.57, MeOH). Ή NMR (CD3OD) δ 7.35-7.22 (m, 6H), 7.00-6.75 (m, 3H), 4.00-3.78 (m, 3H), 3.65-3.29 (m, 4H), 3.20 (dt, 1 H), 2.80 (m, 2H), 2.15 (m, 1 H), 1 .38 (d, 3H), 1 .1 1 (d, 3H). ESIMS: m/z 325 (M+H+, 1 00). Anal, calcd for C2i H3oCl2N20: C, 63.47; H, 7.61 ; N, 7.05. Found: C, 63.47; H, 7.67; N, 6.89.
3-((2/f ,5S)-2,5-Dimethyl-4-(3-phenylpropyl)piperazin-l -yl)phenol (5h) Dihydro- chloride. General procedure e. was employed using 47 mg (0.228 mmol) of 13. The dihydrochloride salt was made by dissolving the crude product in 5 mL of a 2 M solution of HC1 in EtOH, and removing the solvents under reduced pressure. The crude salt was triturated under EtOH-iPrOH, collected by filtration and dried under vacuum to afford 14 mg ( 15%) of pure 5h«2HCl as a white powder with identical melting point ( 199 °C dec) and spectra as those reported for 5g»2HCl: [a]25 D +9.5 (c 0.55, MeOH). Anal, calcd for
C2i H3oCl2N20: C, 63.47; H, 7.61 ; N, 7.05. Found: C, 63.3 1 ; H, 7.51 ; N, 7.29.
3-{(2S)-4-[(2S)-2-Amino-3-methylbutyl]-2-methylpiperazin-l-yl}phenol (5i) Trihydrochloride. In a round-bottom flask, 570 mg (2.49 mmol) of 9b were dissolved in dry THF (30 mL) along with 542 mg (2.49 mmol) of N-Boc-L-valine. The solution was cooled to 0 °C in an ice-bath and 1 .38 mL (9.97 mmol) of Et3N were added followed by 1 .10 g (2.49 mmol) of BOP. The flask was removed from the ice bath and the reaction was stirred for 2 h. The solution was then dumped on concentrated aqueous NaHC03 solution, and the mixture extracted three times with 15 mL of EtOAc. The pooled organic extracts were washed with brine, dried (MgS04), filtered, and the solution concentrated to leave a residue that was purified by flash column chromatography on silica gel to yield 415 mg (42%) of the intermediate amide. This amide was dissolved in 20 mL of THF, and 3.1 8 mL (3.18 mmol) of a 1 M solution of BH3 THF were added. The solution was stirred at reflux overnight cooled to RT and quenched with 5 mL of H20. Into this solution was added 10 mL of cone. HC1, and the mixture was stirred for 1 hr and 20 mL of water were added. Solid NaHC03 was then added to adjust the solution to a pH of 8. The mixture was extracted three times with 5 mL of CH2C12, washed with brine, and dried (MgS04). Rotary evaporation of the solution afforded a residue that was purified by flash-column chromatography on silica gel eluting with CMA80- hexanes-EtOAc (6:2: 1 ) to yield 241 mg (82%) of 5i as a white solid. An analytic sample of the trihydrochloride salt 5i*3HCl was prepared by recrystallization from EtOAc-hexanes: mp 210-212 °C; [a]25 D +48.8° (c 0.1 , MeOH). Ή NMR (CD3OD) δ 7.46-7.40 (t, 1 H), 7.16 (m, 2H), 6.98 (d, 1 H), 4.14 (m, 1 H), 3.96 (m, 1 H), 3.65 (m, 1 H), 3.30 (m, 3H) , 2.95 (m, 3H), 2.00 (m, 1 H) 1.23-1.03 (m, 9H). ESIMS: m/z 278 (M+H+, 100). Anal, calcd for C16H3oCl3N3OH20: C, 47.47; C, 7.97; N, 10.38. Found: C, 47.02; H, 7.96; N, 10.03.
(3R)-7-Hydroxy-N-[(15)-l-{[(3S)-4-(3-hydroxyphenyl)-3-methylpiperazin-l- yl]methyl}-2-methylpropyl]-l ,2,354-tetrahydroisoquinoline-3-carboxamide (5j)
Trihydrochloride. In a round-bottom flask, 120 mg (0.432 mmol) of 5i and 133 mg (0.454 mmol) of 7-OH-Boc-D-Tic were dissolved in dry THF (15 mL), and the solution was cooled to 0 °C. Into this solution 0.06 mL of Et3N were added followed by 201 mg (0.454 mmol) of BOP. The solution was warmed up to room temperature, stirred for 3 h, and then added to an ice-cold concentrated NaHC03 solution. The mixture was extracted three times with 5 mL of EtOAc. The pooled organic extracts were washed once with cone. NaHC03 solution, once with brine, and dried (MgS04). The filtrates were concentrated under reduced pressure to yield a residue that was dissolved in 5 mL of CH2CI2 and 3 mL of CF3C02H and stirred overnight. The solvents were reduced under reduced pressure to yield a residue, which was stirred with 10 mL of cone. NaHC03 solution and 10 mL of EtOAc. The layers were separated, and the aqueous layer was extracted three times with 3 mL of EtOAc. The pooled organic extracts were washed once with brine, dried (MgS04), and filtered. The filtrates were concentrated under reduced pressure to yield a residue that was purified by flash-column chromatography on silica gel eluting with CMA80-EtOAc-hexanes (2: 1 : 1) to yield a residue that was dissolved in 3 mL of a 2 M solution of HC1 in EtOH. The solvent was removed under reduced pressure to leave a solid that was triturated under MeOH to give 61 mg (31 %) of Sj HCl: mp >220 °C (dec); [a] +67.6 (c 0.21 , CH3OH). Ή NMR (CD3OD) δ 8.75 (d, 1 H), 7.38 (b, 1 H), 7.10 (b+d, 3H), 6.92 (b, 1 H), 6.76 (dd, 1 H), 6.67 (d, 1 H), 4.44-4.33 (m, 6H), 3.91-3.67 (m, 3H), 3.67-3.50 (m, 2H), 3.50-3.35 (m, 2H), 3.31-3.21 (m, 1 H), 2.81 (dd, 1 H) 1 .92 (m, 1 H), 1 .18 (b, 3H), 1 .05 (t, 6H). ESIMS: m/z 453 (M+H+, 100). Anal, calcd for C26H39C13N403'3H20: C, 50.69; H, 7.36; N, 9.09. Found: C, 50.66; H, 7.09; H, 8.95.
Table 1. Comparison of Inhibition of Agonist Stimulated [ SJGTPyS Binding in Cloned Human μ, δ, and κ-Opioid Receptors for Compounds
Figure imgf000031_0001
μ, DAMGO δ, DPDPE K, U69,593
compd Structure R. R R3 R4 R5 c (nM) ^(nM) e (nM) μ/κ δ/ norBNI 26 ±7 29 ± 8 0.05 ± 0.02 52i 580
JDTic A a 25.1 ±3.5 76.4 ±2.7 0.02 ±0.01 1255 3830
2b A CH3 29 ±3 680 ± 240 155 ±24
2c A C6H5(CH2)3 0.10 ±0.02 0.90 ± 0.3 0.88 ± 0.20
5a B H H H H C6H5(CH2)3 8.5 ± 1.4 34 ±6 15± 3
5b B H (S)CH3 H H C6H5(CH2)3 0.88 ± 0.03 13.4 ± 4.2 4.09 ± 0.79
5c B H (R)CH3 H H C6H5(CH2)3 1.0 ±0.2 7.0 ±2 1.5 ± 0.4
5d B (Z)CH3, CH3 H H C6H5(CH2)3 3 4300 3
5e B H (S)CH3 H (S)CH3 C6H5(CH)3 ~ 7 ±0.3
5f B H (S)CH3 H H CH3 508 ± 26 NA 193 ± 19
5g B H (S)CH3 H (R)CH3 C6H5(CH2)3 6.1 ± 1.7 55 ± 3 4.2 ± 0.8
5h B H (R)CH3 H (S)CH3 C6H5(CH2)3 18±4 179 ±68 26 ±7
5i B H (S)CH3 H H CH2CH[(CH3)2CH]NH2 2 55 10
Figure imgf000031_0002
Additional Examples
A. Compound 12 and intermediates:
Figure imgf000032_0001
(2R,5R)-l- /*^butoxycarbonyl-2,5-dimethylpiperazine (19). A solution of 1.43 g (5.19 mmol) of (2^?,5?)-2,5-dimethyl piperazine dihydrobromide 181 was dissolved in 30 mL of MeOH along with 262 mg (2.59 mmol) of Et3N. Into this solution was added 565 mg (2.59 mmol) of Boc20 and the solution was stirred overnight. The solution was subjected to rotary evaporation and added 20 mL of CH2C12 and 20 ml of cone. NaHC03. The mixture was shaken thoroughly and the layers separated. The organic layer was extracted twice with cone. NaHC03 and the organic layer dried over MgS04, filtered and the solvents removed. The residue was purified by silica-gel column chromatography eluting with 2:1 CMA80:CH2C12 to yield 497 mg (84%) of pure 19 as a clear oil. Ή NMR (CDC13): δ 4.28-4.02 (bd, IH); 3.90-3.63 (bdd, IH); 2.99-2.94 (dd, IH); 2.81-2.75 (d, IH); 2.71-2.62 (m, IH); 2.53-2.49 (d, 6H); 1.25 (d, 3H); 1.06 (d, 3H). ESIMS: m/z 215 (M+H+, 100).
(2/?,5R)-l-/er/-butoxycarbonyl-4-(3-methoxyphenyl)-2,5-dimethylpiperazine (20).
General procedure b. was employed using 546 mg (2.55 mmol) of Boc-piperazine 19g to obtain, after chromatography, 515 mg (63%) of 20 as a yellow oil. Ή NMR (CDC13): δ 7.17 (t, lH,J=9Hz); 6.52 (d, IH); 6.47-6.45 (m, lH);4.15(q, IH, J= 6 Hz); 4.03-3.98 (m, IH); 3.41 (m, lH);3.30(dd, IH, Ja = 6 Hz, Jb = 12 Hz ); 2.97-2.90 (dd, lH,Ja = 6HzJA= 12 Hz); 2.84 (dd, 1 H Ja = 12 Hz, J, = 3 Hz); 1.45 (s, 9H); 1.32 (d, 3H,J=6 Hz); 1.04 (d, 3H,J=6 Hz). ESIMS: m/z 321 (M+H+, 50). (2R,5R)-3-(2,5-dimethylpiperazin-l-yl)phenol (21). General procedure d. was employed using 515 mg (1.61 mmol) of 20 and 10 mL of cone. HBr. The dihydrobromide salt was dissolved in MeOH, stirred over 200 mg of NaHC03 for 10 minutes and then filtered. The solution was concentrated under reduced pressure and the crystallized from MeOH/Et20 to yield 407 mg (69%) of 21e as a white solid: mp > 220 °C. Ή NMR (CDC13): δ 7.10 (q, 1H); 6.52 (m, 1H); 6.45 (s, 1H); 6.41 (m, 1H); 4.23 (m, 2H); 3.89-3.39 (m, 4H); 3.03 (dd, 2H); 1.45 (d, 3H, J = 6 Hz); 1.15 (d, 3H, J= 6 Hz). ESIMS: m/z 207 (M+H+, 100).
3-[(2R,5R)-2,5-Dimethyl-4-(3-phenylpropyl)piperazin-l-yllphenol dihydrochloride (22).
General procedure f. was employed using 300 mg (0.225 mmol) of 21. The dihydrochloride was prepared by addition of a 2 M HC1 solution in EtOH and rotary evaporation. The crude HC1 salt was recrystallized from EtOH/Et20 to afford 260 mg (80%) of 22 as a white crystalline solid. MP >220 °C (dec). Ή NMR (CD3OD): δ 7.26-7.19 (m, 4H); 7.07 (m, 1H); 6.62 (m, 1H); 6.45 (d, 1H, J= 9 Hz); 6.37-6.33 (m, 2H); 4.26 (m, 1H); 3.58-3.30 (m, 4H); 3.22-3.03 (m,2H);2.75 (t, 2H, J= 5 Hz); 2.20-2.01 (m, 2H); 1.50 (d, lH,J=6Hz); 1.42 (d, 2H, J = 6 Hz); 1.14 (d, 2H, J = 6 Hz); 0.97 (d, 1 H, J = 6 Hz). ESIMS: m/z 325 (M+H+, 100). a]D 25-12.3°(c l,MeOH).
B. Process for the preparation of alkylpiperazines:
Figure imgf000034_0001
2 3
2-Ethyl-piperazine (25). The cyclic glycine-(2-ethyl-glycine) dipeptide 23 ' (0.1 1 g, 7.81 mmol) was supspended in 20 mL of dry THF and 31.2 mL of a 1 M solution of BH3 THF were added. This mixture was stirred at reflux overnight cooled, and quenched with 10 mL of MeOH. Into this solution, 5 mL of cone. HBr were added, and the solvents were removed by rotary evaporation. The residue was recrystallized from MeOH/Et20 giving 1 .08 g of the product as a white solid. The freebase was made by dissolving the salt in MeOH, stirring over NaHC03, adding Et02, filtering and removing the solvents to yield a clear oil, Ή NMR (CD3OD): δ 30.91 (t, J = 7 Hz, 3 H), 1 .20- 1 .30 (m, 2 H), 2.30-3.30 (m, 7 H). ESIMS: m/z 1 15 (M+H+, 100). l- rt-butoxycarbonyl-3-ethyl-piperazine (26). A solution of 1 .00 g (3.62 mmol) of 2- ethylpiperazine dihydrobromide 25 in 10 mL of MeOH. was cooled to 0 °C. Into this flask was added 0.50 mL (3.62 mmol) of Et3N followed by a solution of 790 mg of Boc20 in 10 mL added dropwise over 4 h. The mixture was stirred for 12 h and then subjected to rotary evaporation. The remaining residue was purified by silica-gel column chromatography eluting with 1 : 1 CMA80:CH2C12 affording 700 mg of 26 as a yellow oil. Ή NMR (CDC13): δ 3.95 (bs, 2H); 2.97 (d, 1H,J = 9 Hz); 2.77 (m, 2H); 2.48 (m, 2H); 1.46 (s, 9H); 1.40 (m, 2H); 0.95 (t, 3H, J= 6 Hz) ESIMS: m/z 215 (M+H+, 75); 115 (M-Boc+H+, 100). l- r/-butoxycarbonyl-3-ethyl-4-(3-methoxyphenyl)piperazine (27). General procedure b. was employed using 0.30 g (5.35 mmol) of 26 to obtain, after chromatography, 0.20 g (44%) of27asaclearoil.1HNMR (CDCI3): δ 7.17 (t, lH,J=9Hz); 6.47 (dd, IH, Ja = 3 Hz, Jb = 9 Hz); 6.38 (s, IH); 4.05 (s, 2H); 3.79 (s, 3H); 3.55 (m, IH); 3.24-3.06 (m, 4H); 1.48 (m, 1 IH); 0.92 (t, 3H, J= 9 Hz). ESIMS: m/z 321 (M+H+, 100).
3-(2-ethyIpiperazin-l-yl)phenol dihydrobromide (28). General procedure c. was employed using 200 mg (2.54 mmol) of 10c. The crude dihydrobromide was dissolved in 1 mL of MeOH stirred over NaHC03 and purified by silica-gel column chromatography eluting with 2:1 CMA80:CH2C12 to afford 105 mg of product was a clear oil. Ή NMR (CD3OD): δ 7.08 (t, IH, J=9Hz); 6.43 (d, IH); 6.34 (s, IH); 6.27 (d, IH, J= 9 Hz); 3.47 (m, lH);3.18(m, IH); 3.07-2.90 (m, 5H); 1.65 (m, IH); 1.47 (m, IH); 0.86 (t, 3H,J=6Hz). ESIMS: m/z 207 (M+H+, 100).
3-[2-ethyl-4-(3-phenylpropyl)piperazin-l-yl]phenol dihydrochloride (29). General procedure f. was employed using 100 mg (0.485 mmol) lOx to obtain, after salt formation, 55 mg of the dihydrochloride: mp 161-166 °C. Ή NMR (CD3OD): δ 7.35-7.15 (m, 7H); 7.12 (bs, 1H);6.91 (bs, IH); 4.11-3.50 (m, 5H); 2.77 (t, 2H, J= 6 Hz), 2.20 (m, 2H); 1.63 (m, 2H), 0.90 (t, 3H, J = 6 Hz). ESIMS: m/z 325 (M+H+, 100).
C. Process for the synthesis of N-alkylamino l-(3-hydroxyophenyl)-2-(S)-methylpiperazines
Synthesis of N-substituted (S)-3-(2-methylpiperazin-l-yl)phenols 30 and 31
Compounds bearing 4-N-substituents were synthesized in a manner similar to compounds in the /ram--3,4-dimethyl-4-(3-hydroxyphenyl)piperidines reported by Thomas et al4. (5 -3-(2-methylpiperazin-l-yl)phenol dihydrobromide was acylated using a series of amino acids and the peptide linking reagent HBTU. Without purification, the resulting amides were reduced with BH3 THF to yield the N-substituted compounds 14.
Figure imgf000036_0001
General Procedure:
Reductive alkylation using N-Boc-protected amino acids
(S)-3-(2-methylpiperazin- l -yl)phenol dihydrobromide ( 100 mg, 0.282 mmol) and the N-Boc- protected amino acid (0.3 1 1 mmol) were dissolved in 1 .5 mL of CH3CN and 0.12 mL (0.847 mmol) of Et3N. Into this mixture was added all at once, a solution of HBTU ( 1 1 8 mg, 0.31 1 mmol) in 2 mL of CH3CN. The reaction was stirred overnight. To the reaction mixture were added 0.5 mL of CH2C12 followed by 2 mL of a saturated aqueous solution of NaHC03. The mixture was shake, and the organic layer separated and washed again with 2 mL cone.
NaHC03. The solvents were dried over Na2S04, filtered and the solution was rotary evaporated and placed under vacuum to yield a brown foam. This material was dissolved in 2 mL of dry THF and 2 mL of a 1 M solution of BH3 THF and the solution stirred for 24 h. Carefully, 0.5 mL of cone. HCl were added and the mixture was stirred for 4 h, and subjected to rotary evaporation. The residue was purified by crystallization or silica-gel column chromatography.
3-{(2S)-4-[(2-amino-ethyl]-2-methylpiperazin-l-yl}phenol (31 a) The general procedure was employed using Boc-Glycine (54 mg, 0.3 1 1 mmol). The residue was crystallized from MeOH/Et20 to yield 25 mg of the product as a tan solid: mp > 230 °C. Ή NMR (CD3OD): δ 7.40 (t, l H, J = 6 Hz); 7.10 (m, 2H); 6.93 (bd, l H); 4.15 (m, 1 H); 3.98-3.88 (bt, 1 H); 3.75- 3.68 (m, 1 H); 3.60-3.50 (bd, 1 H); 3.50-3.39 (bd, 1 H); 3.15-3.01 (m, 2H); 1 .36 (d, 3H, J = 6 Hz). ESIMS: m/z 236 (M+H+, 100).
3-{(2S)-4-[(2R)-2-amino-propyl]-2-methylpiperazin-l-yl}phenol (31b). The general procedure was employed using Boc-D-Alanine (59 mg, 0.3 1 1 mmol). The residue was crystallized from MeOH/Et20 to yield 55 mg of the product as a white solid: mp 210-215 °C. Ή NMR (CD3OD): δ 7.44 (t, 1 H, J = 6 Hz); 7.16 (m, 2H); 6.98 (m, 1 H); 4.16 (bm, 1 H); 3.99 (bt, 1 H); 3.67 (m, 1 H); 3.50-3.30 (m, 2H) ; 3.12-2.85 (bm, 3H); 1 .36 (d, 3H, J = 6 Hz); 1 .17 (d, 3H, J = 6 Hz). ESIMS : m/z 250 (M+H+, 100).
1 . Tanatani, A.; Mio, M. J.; Moore, J. S., Chain Length-Dependent Affinity of Helical Foldamers for a Rodlike Guest. Journal of the American Chemical Society 2001, 123, (8), 1792- 1793.
2. Ognyanov, V. I.; Balan, C; Bannon, A. W.; Bo, Y.; Dominguez, C; Fotsch, C; Gore, V. K.; Klionsky, L.; Ma, V. V.; Qian, Y.-X.; Tamir, R.; Wang, X.; Xi, N.; Xu, S.; Zhu, D.; Gavva, N. R.; Treanor, J. J. S.; Norman, M. H., Design of Potent, Orally Available
Antagonists of the Transient Receptor Potential Vanilloid 1 . Structurea^'Activity
Relationships of 2-Piperazin- l -yl- l H-benzimidazoles. Journal of Medicinal Chemistry 2006, 49, ( 12), 3719-3742.
3. Smith, G. G.; Evans, R. C; Baum, R., Neighboring residue effects: evidence for intramolecular assistance to racemization or epimerization of dipeptide residues. Journal of the American Chemical Society 1986, 108, (23), 7327-7332.
4. Thomas, J. B.; Fall, M. J.; Cooper, J. B.; Rothman, R. B.; Mascarella, S. W.; Xu, H.; Partilla, J. S.; Dersch, C. M. ; McCullough, K. B.; Cantrell, B. E.; Zimmerman, D. M.;
Carroll, F. I., Identification of an Opioid Kappa Receptor Subtype-Selective N-Substituent for (+)-(3R,4R)-Dimethyl-4-(3-hydroxyphenyl)piperidine. Journal of Medicinal Chemistry 1998, 41 , (26), 5188-51 97.
Obviously, numerous modifications and variations of the present invention are possible in light of the above teachings. It is therefore to be understood that within the scope of the appended claims, the invention may be practiced otherwise than as specifically described herein. REFERENCES
(1 ) Dhawan, B. N.; Cesselin, F.; Raghubir, R.; Reisine, T.; Bradley, P. B.; Portoghese, P.
S.; Hamon, M. International Union of Pharmacology. XII. Classification of opioid receptors. Pharmacol. Rev. 1996, 48, 567-592.
(2) Aldrich, J. V.; Vigil-Cruz, S. C. Narcotic Analgesics. In Burger's Medicinal Chemistry and Drug Discovery, 6th ed.; Abraham, D. J., Ed. John Wiley & Sons: New York, NY, 2003 ; Vol. 6, Chapter 7, pp 329-481 .
(3) Husbands, S. M. Kappa-opioid receptor ligands. Expert Opin. Ther. Patents 2004, 14, 1725-1741 .
(4) Prisinzano, T. E.; Tidgewell, K.; Harding, W. W. Kappa opioids as potential treatments for stimulant dependence. AAPS J. 2005, 7, E592-E599.
(5) Metcalf, M. D.; Coop, A. Kappa opioid antagonists: past successes and future prospects. AAPS J. 2005, 7, E704-E722.
(6) Carroll, F. I.; Thomas, J. B.; Dykstra, L. A.; Granger, A. L.; Allen, R. M; Howard, J.
L.; Pollard, G. T.; Aceto, M. D.; Harris, L. S. Pharmacological properties of JDTic: A novel -opioid receptor antagonist. Eur. J. Pharmacol. 2004, 501, 1 1 1 - 1 19.
(7) Thomas, J. B.; Atkinson, R. N.; Vinson, N. A.; Catanzaro, J. L. ; Perretta, C. L.; Fix, S. E.; Mascarella, S. W.; Rothman, R. B.; Xu, H.; Dersch, C. M; Cantrell, B. E.; Zimmerman, D. M.; Carroll, F. I. Identification of (3 ?)-7-hydroxy-N-(( l S)- l - [[(3/?,4 ?)-4-(3-hydroxyphenyl)-3,4-dimethyl- l -piperidinyl]methyl]-2-methylpropyl)- l ,2,3,4-tetrahydro-3-isoquinolinecarboxamide as a novel potent and selective opioid kappa receptor antagonist. J. Med. Chem. 2003, 46, 3 127-3 137.
(8) Thomas, J. B.; Atkinson, R. N.; Rothman, R. B.; Fix, S. E. ; Mascarella, S. W.;
Vinson, N. A.; Xu, H.; Dersch, C. M.; Lu, Y.; Cantrell, B. E.; Zimmerman, D. M; Carroll, F. I. Identification of the first /rara-(3^,4 ?)-dimethyl-4-(3- hydroxyphenyl)piperidine derivative to possess highly potent and selective opioid kappa receptor antagonist activity. J. Med. Chem. 2001 , 44, 2687-2690.
(9) Kreek, M. J.; LaForge, K. S.; Butelman, E. Pharmacotherapy of addictions. Nat. Rev.
Drug Discov., 2002, 1, 710-726.
(10) Zimmerman, D. M.; Nickander, R.; Horng, J. S.; Wong, D. T. New structural concepts for narcotic antagonists defined in a 4-phenylpiperidine series. Nature 1978, 275, 332- 334. ( 1 1 ) Thomas, J. B.; Mascarella, S. W.; Rothman, R. B.; Partilla, J. S.; Xu, H.; McCullough, K. B.; Dersch, C. M.; Cantrell, B. E.; Zimmerman, D. M.; Carroll, F. I. Investigation of the N-substituent conformation governing potency and μ receptor subtype-selectivity in (+)-(3/?,47?)-dimethyl-4-(3-hydroxyphenyl)piperidine opioid antagonists. J. Med. Chem. 1998, 41, 1980- 1990.
( 12) Zimmerman, D. M; Leander, J. D.; Cantrell, B. E.; Reel, J. .; Snoddy, J.;
Mendelsohn, L. G.; Johnson, B. G.; Mitch, C. H. Structure-activity relationships of the trans-3,4-dimethyl-4-(3-hydroxyphenyl)piperidine antagonists for μ and opioid receptors. J. Med. Chem. 1993, 36, 2833-2841 .
( 1 3) Mitch, C. H.; Leander, J. D.; Mendelsohn, L. G.; Shaw, W. N.; Wong, D. T.; Cantrell, B. E.; Johnson, B. G.; Reel, J. K.; Snoddy, J. D.; Takemori, A. E.; Zimmerman, D. M. 3,4-Dimethyl-4-(3-hydroxyphenyl)piperidines: Opioid antagonists with potent anorectant activity. J. Med. Chem. 1993, 36, 2842-2850.
( 14) Zimmerman, D. M.; Gidda, J. S.; Cantrell, B. E.; Schoepp, D. D.; Johnson, B. G.;
Leander, J. D. Discovery of a potent, peripherally selective trans-3,4-dimethyl-4-(3- hydroxyphenyl)piperidine opioid antagonist for the treatment of gastrointestinal motility disorders. J. Med. Chem. 1994, 37, 2262-2265.
( 15) Delaney, C. P.; Yasothan, U.; irkpatrick, P. Alvimopan. Nat Rev Drug Discov 2008,
7, 727-8.
( 16) Statnick, M. A.; Suter, T. M.; Gackenheimer, S. L.; Emmerson, P. J.; Quimby, S. J.;
Gehlert, D. R.; Wheeler, W. J.; Mitch, C. H. Na+-dependent high affinity binding of [3H]LY51 5300, a 3,4-dimethyl-4-(3-hydroxyphenyl)piperidine opioid receptor inverse agonist. Eur. J. Pharmacol. 2003, 482, 139-50.
( 17) Thomas, J. B.; Fall, M. J.; Cooper, J. B.; Rothman, R. B.; Mascarella, S. W.; Xu, H.;
Partilla, J. S.; Dersch, C. M.; McCullough, K. B.; Cantrell, B. E.; Zimmerman, D. M.; Carroll, F. I. Identification of an opioid κ receptor subtype-selective N-substituent for (+)-(3^,4/?)-dimethyl-4-(3-hydroxyphenyl)piperidine. J. Med. Chem. 1998, 41, 5188- 5197.
( 1 8) Beardsley, P. M.; Howard, J. L.; Shelton, . L.; Carroll, F. I. Differential effects of the novel kappa opioid receptor antagonist, JDTic, on reinstatement of cocaine-seeking induced by footshock stressors vs cocaine primes and its antidepressant-like effects in rats. Psychopharmacology (Berl) 2005, 183, 1 18- 126. ( 19) Knoll, A. T.; Meloni, E. G.; Thomas, J. B.; Carroll, F. I.; Carlezon, W. A., Jr. Anxiolytic-Like Effects of κ-Opioid Receptor Antagonists in Models of Unlearned and Learned Fear in Rats. J. Pharmacol. Exp. Ther. 2007, 323, 838-845.
(20) Komoto, T.; Okada, T.; Sato, S.; Niino, Y.; Oka, T.; Sakamoto, T. New mu-opioid receptor agonists with piperazine moiety. Chem. Pharm. Bull. (Tokyo) 2001, 49, 1314- 1320.
(21 ) Mague, S. D.; Pliakas, A. M.; Todtenkopf, M. S.; Tomasiewicz, H. C; Zhang, Y.;
Stevens, W. C, Jr.; Jones, R. M.; Portoghese, P. S.; Carlezon, W. A., Jr. Antidepressant-like effects of kappa-opioid receptor antagonists in the forced swim test in rats. J. Pharmacol. Exp. Ther. 2003, 305, 323-330.
(22) McLaughlin, J. P.; Marton-Popovici, M.; Chavkin, C. Kappa opioid receptor antagonism and prodynorphin gene disruption block stress-induced behavioral responses. J. Neurosci. 2003, 23, 5674-5683.
(23) Redila, V. A.; Chavkin, C. Stress-induced reinstatement of cocaine seeking is mediated by the kappa opioid system. Psychopharmacology (Berl) 2008, 200, 59-70.
(24) Carey, A. N.; Borozny, K.; Aldrich, J. V.; McLaughlin, J. P. Reinstatement of cocaine place-conditioning prevented by the peptide kappa-opioid receptor antagonist arodyn. Eur. J. Pharmacol. 2007, 569, 84-89.
(25) Walker, B. M.; Koob, G. F. Pharmacological evidence for a motivational role of κ- opioid systems in ethanol dependence. Neuropsychopharmacology 2007, 1 - 10.
(26) Bodnar, R. J.; Glass, M. J.; Ragnauth, A.; Cooper, M. L. General, mu and kappa opioid antagonists in the nucleus accumbens alter food intake under deprivation, glucoprivic and palatable conditions. Brain Res. 1995, 700, 205-212.
(27) Bortolato, M.; Aru, G. N.; Frau, R.; Orru, M.; Fa, M.; Manunta, M.; Puddu, M.;
Mereu, G.; Gessa, G. L. Kappa opioid receptor activation disrupts prepulse inhibition of the acoustic startle in rats. Biol. Psychiatry 2005, 57, 1 550-1558.
(28) Benesh, D. R.; Blanco-Pillado, M.-J. Preparation of 4-(5-Aminomethyl)indole- l - ylmethyl)benzamide Derivatives as Opioid Receptor Antagonists for the Treatment of Obesity, PCT Int. Appl. WO 2005 90,303. 2005.
(29) McHardy, S.; Liras, S.; Guediche, S.; Coe, J. W. 4-Phenyl-piperidine Compounds and Their Use as Modulators of Opioid Receptors, US Patent Application Publication No. 204/0204453 A 1 . 2004.

Claims

1. An opioid receptor anta onist represented by the formula (I)
Figure imgf000041_0001
(I)
wherein
R is hydrogen, OH, OCi-6 alkyl, Q.g alkyl, C|-8 haloalkyl, C2-8 alkenyl, C2-8 alkynyl, aryl substituted by one or more groups Yi, CH2-aryl wherein the aryl group is substituted by one or more groups Y,, OCOC1-8 alkyl, COC,.8 alkyl, CONH2, NHCHO, NH2, NHS02C1-8 alkyl, orNHC02C,.8 alkyl;
Y3 is hydrogen, Br, CI, F, CN, CF3, N02, OR8, C02R9, C,-6 alkyl, NR,0Rn, NHCOR12, NHC02Ri2, CONR,3R,4 or CH2(CH2)nY2;
Ri, R2, R3 and R4 are each, independently, one of the following structures:
Figure imgf000042_0001
or Ri and R2, R2 and R3 and/or R3 and R4 are bonded together to form a cyclo alkyl group or a bridged heterocyclic ring;
each Y, is, independently, hydrogen, OH, Br, CI, F, CN, CF3, N02, N3, OR8, C02R9, Cue alkyl, NR,0Ri 1, NHCOR,2, NHC02R,2, CONR13R,4, or CH2(CH2)nY2, or two adjacent Y, groups form a -0-CH2-0- or -0-CH2CH2-0- group;
each Y2 is, independently, hydrogen, CF3, C02R9, C|-8 alkyl, NRi0Rn, NHCOR12, NHC02Ri2, C0NR,3R|4, CH2OH, CH2OR8, COCH2R9,
Figure imgf000042_0002
C1-8 alkyl,
yl
Figure imgf000043_0001
OH or — 1— C1-8 alkyl;
each n is, independently, 0, 1, 2 or 3;
each o is, independently, 0, 1, 2 or 3;
each R8, R9, Rio, Rii, R12, R-13 and R14 is, independently, hydrogen, Ci-8 alkyl, CH2- aryl wherein the aryl group is substituted by one or more substituents OH, Br, CI, F, CN, CF3, N02, N3, C-6 alkyl, or CH2(CH2)nY2';
each Y2' is, independently, hydrogen, CF3, or Ci_6 alkyl;
R5 is
Figure imgf000043_0002
-CH2CH2-X-R6, or
x1
Figure imgf000043_0003
R6 is Ci-8 alkyl, C2.8 alkenyl, C alkyl substituted C4-g cycloalkyl, Ci-4 alkyl substituted C4.8 cycloalkenyl, or thiophene;
X is a single bond, -C(O)- or -CH(OR,5)-;
Ri5 hydrogen, Ci-6 alkyl, -(CH2)q-phenyl or -C(0)-Ri6;
Ri6 is CM alkyl or -(CH2)q-phenyl;
each q is, independently, 1, 2 or 3;
Ri7 is hydrogen, Q.g alkyl, C02Ci-8 alkylaryl substituted by one or more groups Y|, CH2-aryl substituted by one or more groups Y], or C02Ci-8 alkyl;
Ri8 is hydrogen, Ci-8 alkyl, C2-8 alkenyl, C3_8 alkynyl, CH2C02Ci-8 alkyl, C02Ci_8 alkyl or CH2-aryl substituted by one or more groups Yi;
Ri9 is a group selected from the group consisting of structures (a)-(p):
Figure imgf000044_0001
(d) (c) (0
Figure imgf000045_0001
Figure imgf000045_0002
Figure imgf000045_0003
Figure imgf000046_0001
(p)
Q is NR21 , CH2, O, S, SO, or S02;
each Y4 is, independently, Br, CI, F, CN, CF3, N02, N3, OR22, C02R23, C ,.6 alkyl, NR24R25, NHCOR26, NHC02R27, C0NR28R29, or CH2(CH2)nY2,
or two adjacent Y4 groups form a -0-CH2-0- or -0-CH2CH2-0- group;
p is 0, 1 , 2, or 3;
R2o is hydrogen, C i_8 alkyl, C2_8 alkenyl, C2.8 alkenyl, CH2OR30, or CH2-aryl substituted by one or more substituents Yi ;
each R2i is, independently, hydrogen, C |.8 alkyl, CH2-ary l substituted by one or more substituents Y, , NR3 1 R32, NHCOR33, NHC02R34, CONR35R36, CH2(CH2)nY2, or
C(=NH)NR37R38;
R3o is hydrogen C i-8 alkyl, C2_8 alkenyl, C2-8 alkenyl, CH202Ci-8 alkyl, C02C i-8 alkyl, or CH2-aryl substituted by one or more substituents Yi ;
R22, R23, R24, R25, R-26, 27, R28, R29, R31 , R32, R33, R34, R35, R36, R37 and R38 are, independently, hydrogen, C i-8 alkyl, CH2-aryl substituted by one or more substituents OH, Br, CI, F, CN, CF3, N02, N3, C, .6 alkyl, or CH2(CH2)nY2' ;
Z is N, O or S, wherein when Z is O or S, there is no Ri8;
Xi is hydrogen, C i-8 alkyl, C2.8 alkenyl, or C2-8 alkynyl;
X2 is hydrogen, C i-8 alkyl, C2.8 alkenyl, or C2.8 alkynyl;
or Xi and X2 together form =0, =S, or =NH,
with the proviso that when R5 is;
Figure imgf000047_0001
then at least one of Ri , R2, R3 and R4 is other than hydrogen as defined above;
or a pharmaceutically acceptable salt thereof.
2. The opioid receptor antagonist of Claim 1 , wherein
R is hydrogen, OH, OCi-3 alkyl, Q.4 alkyl, Q-4 haloalkyl, C2-4 alkenyl, C2.4 alkynyl, aryl substituted by one or more groups Yi , CH2-aryl wherein the aryl group is substituted by one or more groups Y, , OCOC alkyl, COC,.4 alkyl, CONH2, NHCHO, NH2, NHS02C i-4 alkyl, or NHC02C,-4 alkyl; and
Y3 is hydrogen, Br, CI, F, CN, CF3, N02, OR8, C02R9, C ,.3 alkyl, NR,0Rn , NHCOR,2, NHC02R,2, CONR13R14 or CH2(CH2)nY2;
3. The opioid receptor antagonist of Claim 2, wherein
Ri , R2, R3 and R4 are each, independently, one of the following structures:
Figure imgf000047_0002
or Ri and R2, R2 and R3 and/or R3 and R4 are bonded together to 5 to 7 membered alkyl group or a bridged heterocyclic ring. The opioid receptor antagonist of Claim 3, wherein
Figure imgf000048_0001
5. The opioid receptor antagonist of Claim 4, wherein at least one of Ri, R2, R3 and R4 is other than hydrogen.
6. The opioid receptor antagonist of Claim 1 , wherein R is hydrogen, OH, OCi-2 alkyl, Q.2 alkyl, .2 haloalkyl, C2-3 alkenyl, C2.3 alkynyl, aryl substituted by one or more groups Yi , CH2-aryl wherein the aryl group is substituted by one or more groups Yi , COCi-2 alkyl, CONH2, NHCHO, NH2, NHS02C ,.2 alkyl, or NHC02CI -2 alkyl.
7. The opioid receptor antagonist of Claim 1 , wherein R is hydrogen, OH, OCH3, OCF3, COCH3, OCOCH3, CONH2, NHCHO, NH2, NHS02CH3, or NHC02CH3.
8. The opioid receptor antagonist of Claim 1 , wherein R is hydrogen, OH, OCH3, or
OCF3.
9. The opioid receptor antagonist of Claim 1 , wherein Y3 is hydrogen.
10. The opioid receptor antagonist of Claim 1 , wherein Ri , R2, R3 and R4 are each, independently, one of the following structures:
Figure imgf000049_0001
or Ri and R2, R2 and R3 and/or R3 and R4 are bonded together to 5 to 7 membered alkyl group or a bridged heterocyclic ring.
1 1 . The opioid receptor antagonist of Claim 1 , wherein Ri , R2, R3 and R4 are each, independently, hydrogen, methyl or ethyl.
12. The opioid receptor antagonist of Claim 1 , wherein Ri , R2, R3 and R4 are each, independently, hydrogen or methyl.
13. The opioid receptor antagonist of Claim 1 , wherein R\ , R2, R3 and R are each, independently, hydrogen or methyl, wherein at least one of Ri , R2, R3 and R4 is methyl.
14. The opioid receptor antagonist of Claim 1 , wherein R5 is hydrogen, C i-4 alkyl or - (CH2)n-phenyl.
15. The opioid receptor antagonist of Claim 1 , wherein R5 is
Figure imgf000050_0001
16. The opioid receptor antagonist of Claim 1 , wherein
R is hydrogen, OH, OCH3, or OCF3;
Y3 is hydrogen;
Ri , R2, R3 and R4 are each, independently, hydrogen, methyl or ethyl; and
R5 is hydrogen, C i-4 alkyl or -(CH2)n-phenyl.
17. The opioid receptor antagonist of Claim 1 , wherein at least one of Ri , R2, R3 and R4 is other than hydrogen as defin
Figure imgf000050_0002
18. The opioid receptor antagonist of Claim 1 , wherein R2 is other than hydrogen as defined above.
19. The opioid receptor antagonist of Claim 18, wherein R2 is C I -8 alkyl.
20. The opioid receptor antagonist of Claim 18, wherein R2 is methyl or ethyl.
21 . The opioid receptor antagonist of Claim 18, wherein R2 is methyl.
22. A pharmaceutical composition, comprising the opioid receptor antagonist of Claim 1 and a pharmaceutically acceptable carrier.
23. A method of antagonizing opioid receptors, comprising administering an effective amount of the opioid receptor antagonist of Claim 1 to a subject in need thereof.
24. A method of treating drug addiction, drug abuse, depression, anxiety, schizophrenia, obesity and eating disorders, comprising administering an effective amount of the opioid receptor antagonist of Claim 1 to a subject in need thereof.
25. A method of treating alcohol addiction, nicotine addiction, cocaine addition and methamphetamine addiction, comprising administering an effective amount of the opioid receptor antagonist of Claim 1 to a subject in need thereof.
26. A method of treating diabetes, diabetic complications, diabetic retinopathy, sexual/reproductive disorders, epileptic seizure, hypertension, cerebral hemorrhage, congestive heart failure, sleeping disorders, atherosclerosis, rheumatoid arthritis, stroke, hyperlipidemia, hypertriglycemia, hyperglycemia, hyperlipoproteinemia, substance abuse, drug overdose, compulsive behavior disorders and addictive behaviors, comprising administering an effective amount of the opioid receptor antagonist of Claim 1 to a subject in need thereof.
PCT/US2010/052311 2010-02-24 2010-10-12 Arylpiperazone opioid receptor antagonists WO2011106039A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CA2787037A CA2787037C (en) 2010-02-24 2010-10-12 Arylpiperazine opioid receptor antagonists
ES10846785.3T ES2533990T3 (en) 2010-02-24 2010-10-12 Arylpiperazine opioid receptor antagonists
JP2012554983A JP6173693B2 (en) 2010-02-24 2010-10-12 Aryl piperazine opioid receptor antagonist
AU2010346633A AU2010346633B2 (en) 2010-02-24 2010-10-12 Arylpiperazine opioid receptor antagonists
EP10846785.3A EP2539706B1 (en) 2010-02-24 2010-10-12 Arylpiperazine opioid receptor antagonists
US13/574,179 US9273027B2 (en) 2010-02-24 2010-10-12 Arylpiperazine opioid receptor antagonists
US14/968,258 US9750738B2 (en) 2010-02-24 2015-12-14 Arylpiperazine opioid receptor antagonists

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US30753410P 2010-02-24 2010-02-24
US61/307,534 2010-02-24
US31642310P 2010-03-23 2010-03-23
US61/316,423 2010-03-23

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/574,179 A-371-Of-International US9273027B2 (en) 2010-02-24 2010-10-12 Arylpiperazine opioid receptor antagonists
US14/968,258 Division US9750738B2 (en) 2010-02-24 2015-12-14 Arylpiperazine opioid receptor antagonists

Publications (1)

Publication Number Publication Date
WO2011106039A1 true WO2011106039A1 (en) 2011-09-01

Family

ID=44507137

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2010/052311 WO2011106039A1 (en) 2010-02-24 2010-10-12 Arylpiperazone opioid receptor antagonists

Country Status (7)

Country Link
US (2) US9273027B2 (en)
EP (1) EP2539706B1 (en)
JP (1) JP6173693B2 (en)
AU (1) AU2010346633B2 (en)
CA (1) CA2787037C (en)
ES (1) ES2533990T3 (en)
WO (1) WO2011106039A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013086496A3 (en) * 2011-12-09 2014-12-18 Research Triangle Institute 1-substituted 4-arylpiperazine as kappa opioid receptor antagonists

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3032046A1 (en) 2016-09-16 2018-03-22 Research Triangle Institute Tetrahydroisoquinoline kappa opioid antagonists
WO2018129393A1 (en) * 2017-01-06 2018-07-12 The Regents Of The University Of California Mu opioid receptor modulators
WO2019195634A1 (en) 2018-04-04 2019-10-10 Epiodyne, Inc. Opioid receptor modulators and products and methods related thereto
TW202304869A (en) 2021-04-05 2023-02-01 美商艾碧奧戴股份有限公司 Opioid receptor modulators

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5658908A (en) * 1992-02-03 1997-08-19 Delta Pharmaceuticals, Inc. Opioid diarylmethylpiperazines and piperdines
US20090264462A1 (en) * 2008-04-18 2009-10-22 Research Triangle Institute Kappa opioid receptor ligands

Family Cites Families (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB948766A (en) * 1959-10-20 1964-02-05 May & Baker Ltd Trifluoromethylphenylpiperazine derivatives
FI58126C (en) * 1973-02-03 1980-12-10 Thomae Gmbh Dr K FOERFARANDE FOER FRAMSTAELLNING AV KARDIOTONA OCH BLODTRYCKSSAENKANDE 2-PHENYL-1H-IMIDATSO (4,5-B) PYRIDINER
DE2456280A1 (en) * 1974-11-28 1976-08-12 Hoechst Ag Amino-substd phenol derivs prepn - by reacting unsaturated 5-oxo-carboxylic acid esters with amines
FR2353291A1 (en) * 1976-05-31 1977-12-30 Parcor NEW DERIVATIVES OF BENZOFURANNE
US6706880B2 (en) 1990-08-09 2004-03-16 Research Triangle Institute Cocaine receptor binding ligands
US5496953A (en) 1990-08-09 1996-03-05 Research Triangle Institute Cocaine receptor binding ligands
US6123917A (en) 1990-08-09 2000-09-26 Research Triangle Institute Method for making cocaine receptor binding ligands and intermediates therefor
US5736123A (en) 1990-08-09 1998-04-07 Research Triangle Institute Cocaine receptor binding ligands
US6531483B1 (en) 1990-08-09 2003-03-11 Research Triangle Institute Cocaine receptor binding ligands
US7011813B2 (en) 1990-08-09 2006-03-14 Research Triangle Institute Cocaine receptor binding ligands
US6329520B1 (en) 1990-08-09 2001-12-11 Research Triangle Institute Cocaine receptor binding ligands
US7189737B2 (en) 1991-08-09 2007-03-13 Research Triangle Institute Cocaine receptor binding ligands
US5380848A (en) 1990-08-09 1995-01-10 Research Triangle Institute Cocaine receptor binding ligands
US5128118A (en) 1990-08-09 1992-07-07 Research Triangle Institute Cocaine receptor binding ligands
US5935953A (en) 1990-08-09 1999-08-10 Research Triangle Institute Methods for controlling invertebrate pests using cocaine receptor binding ligands
US5141959A (en) 1990-09-21 1992-08-25 Bristol-Myers Squibb Company Isoprenoid phospholipase a2 inhibitors and preparations comprising same
US5159081A (en) * 1991-03-29 1992-10-27 Eli Lilly And Company Intermediates of peripherally selective n-carbonyl-3,4,4-trisubstituted piperidine opioid antagonists
WO1993000313A2 (en) * 1991-06-27 1993-01-07 Virginia Commonwealth University Sigma receptor ligands and the use thereof
US5298499A (en) 1991-07-05 1994-03-29 Research Triangle Institute S-2-(substituted ethylamino)ethyl phosphorothioates
FR2722788B1 (en) * 1994-07-20 1996-10-04 Pf Medicament NOVEL PIPERAZIDES DERIVED FROM ARYL PIPERAZINE, PROCESSES FOR THEIR PREPARATION, THEIR USE AS MEDICAMENTS AND PHARMACEUTICAL COMPOSITIONS COMPRISING THE SAME
US5831095A (en) 1995-09-26 1998-11-03 Research Triangle Institute Synthesis of 5-aminocarbonyl-5H-dibenzo a,d!cyclohepten-5,10-imine
ES2128266B1 (en) * 1997-07-08 2000-01-16 Vita Invest Sa THIOPHENE AND BENZOTIOFEN DERIVATIVE COMPOUNDS AND RELEVANT USE AND COMPOSITION.
US6358492B1 (en) 1997-10-07 2002-03-19 Research Triangle Institute Dopamine transporter imaging ligand
US6900228B1 (en) 1998-03-10 2005-05-31 Research Triangle Institute Opiate compounds, methods of making and methods of use
US7517884B2 (en) * 1998-03-30 2009-04-14 Kalypsys Inc. Sulfonyl-substituted bicyclic compounds as modulators of PPAR
JP3390744B2 (en) * 1998-09-22 2003-03-31 山之内製薬株式会社 Cyanophenyl derivative
GB9912417D0 (en) * 1999-05-28 1999-07-28 Pfizer Ltd Compounds useful in therapy
ATE241624T1 (en) * 1999-06-30 2003-06-15 Aventis Pharma Sa BENZO(F)NAPHTHYRIDINE DERIVATIVES, THEIR PREPARATION AND PHARMACEUTICAL COMPOSITIONS CONTAINING THEM
US6416735B1 (en) 1999-11-08 2002-07-09 Research Triangle Institute Ligands for α-7 nicotinic acetylcholine receptors based on methyllcaconitine
SE9904724D0 (en) * 1999-12-22 1999-12-22 Carlsson A Research Ab New modulators of dopamine neurotransmission I
US6479509B1 (en) 2000-05-22 2002-11-12 Research Triangle Institute Method of promoting smoking cessation
CN1469862A (en) 2000-10-12 2004-01-21 Ss制药株式会社 2,2-diphenyl butanamide derivatives and medicines containing the same
US6538010B1 (en) 2000-11-08 2003-03-25 Research Triangle Institute Compounds and methods for promoting smoking cessation
US6974824B2 (en) * 2001-01-08 2005-12-13 Research Triangle Institute Kappa opioid receptor ligands
US6559159B2 (en) 2001-02-01 2003-05-06 Research Triangle Institute Kappa opioid receptor ligands
DE60219521T2 (en) * 2001-12-20 2007-08-16 H. Lundbeck A/S ARYLOXYPHENYL AND ARYLSULFANYLPHENYL DERIVATIVES
DE10217006A1 (en) 2002-04-16 2003-11-06 Merck Patent Gmbh Substituted indoles
AU2003235256A1 (en) 2002-04-19 2003-11-03 Kyowa Hakko Kogyo Co., Ltd. Phenylalanine derivative
US7842693B2 (en) * 2002-06-12 2010-11-30 Chemocentryx, Inc. Substituted piperazines
US7589199B2 (en) 2002-06-12 2009-09-15 Chemocentryx, Inc. Substituted piperazines
ES2393333T3 (en) * 2002-07-12 2012-12-20 Astellas Pharma Inc. N-Phenyl- (2R, 5S) dimethylpiperazine derivative
KR101117061B1 (en) * 2003-05-21 2012-05-16 아스카 세이야쿠 가부시키가이샤 Cyclic aminophenyl sulfamate derivative
CA2529750A1 (en) * 2003-06-20 2005-02-24 Arena Pharmaceuticals, Inc. N-phenyl-piperazine derivatives and methods of prophylaxis or treatment of 5ht2c receptor associated diseases
US20050239791A1 (en) * 2004-04-07 2005-10-27 Hutchison Alan J Substituted 1-heteroaryl-4-substituted piperazine and piperidine analogues
KR101351209B1 (en) * 2004-12-03 2014-02-06 머크 샤프 앤드 돔 코포레이션 Substituted piperazines as CB1 antagonists
US7872023B2 (en) 2005-02-17 2011-01-18 Research Triangle Institute Kappa opioid receptor ligands
US7399762B2 (en) 2005-04-25 2008-07-15 Research Triangle Institute Opioid receptor agonist compounds and their use in treatment of pain
US7476679B2 (en) 2005-07-26 2009-01-13 Research Triangle Institute Octahydroisoquinoline compounds as opioid receptor modulators
ES2458615T3 (en) * 2006-02-03 2014-05-06 Taisho Pharmaceutical Co., Ltd. Triazole derivative
TW200804309A (en) * 2006-02-28 2008-01-16 Helicon Therapeutics Inc Therapeutic piperazines
FR2902327B1 (en) * 2006-06-20 2008-08-08 Oreal KERATIN FIBER COLORING COMPOSITION COMPRISING 2,3-DIAMINO-6,7-DIHYDRO-1H, 5H-PYRAZOLO-1,2-A PYRAZOL-1-ONE, PARA-PHENYLENEDIAMINE OR PARA-TOLUENEDIAMINE AND META-AMINOPHENOL SUBSTITUTES
WO2009001127A1 (en) * 2007-06-26 2008-12-31 Astrazeneca Ab Cyanocyclopropylcarboxamides as cathepsin inhibitors
US20110015137A1 (en) * 2007-07-05 2011-01-20 Trustees Of Boston University Reca inhibitors and their uses as microbial inhibitors or potentiators of antibiotic activity
AU2008345225A1 (en) * 2007-12-21 2009-07-09 University Of Rochester Method for altering the lifespan of eukaryotic organisms
JO2857B1 (en) * 2008-06-16 2015-03-15 سانوفي أفينتس Phenyl-alkylpiperazines with tnf-modulating activity
EP2149373A1 (en) * 2008-08-01 2010-02-03 Laboratorios Del. Dr. Esteve, S.A. 5HT7 receptor ligands and compositions comprising the same
WO2010022055A2 (en) * 2008-08-20 2010-02-25 Amgen Inc. Inhibitors of voltage-gated sodium channels
US20130158072A1 (en) * 2010-01-19 2013-06-20 Research Triangle Institute Kappa opioid receptor binding ligands
US9512105B2 (en) * 2011-12-09 2016-12-06 Research Triangle Institute 1-substituted 4-arylpiperazine as kappa opioid receptor antagonists

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5658908A (en) * 1992-02-03 1997-08-19 Delta Pharmaceuticals, Inc. Opioid diarylmethylpiperazines and piperdines
US20090264462A1 (en) * 2008-04-18 2009-10-22 Research Triangle Institute Kappa opioid receptor ligands

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2539706A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013086496A3 (en) * 2011-12-09 2014-12-18 Research Triangle Institute 1-substituted 4-arylpiperazine as kappa opioid receptor antagonists
JP2015509077A (en) * 2011-12-09 2015-03-26 リサーチ トライアングル インスティテュート 1-Substituted 4-arylpiperazines as kappa opioid receptor antagonists
EP2773352A4 (en) * 2011-12-09 2015-12-16 Res Triangle Inst Int 1-substituted 4-arylpiperazine as kappa opioid receptor antagonists
US9512105B2 (en) 2011-12-09 2016-12-06 Research Triangle Institute 1-substituted 4-arylpiperazine as kappa opioid receptor antagonists

Also Published As

Publication number Publication date
EP2539706A4 (en) 2013-07-31
ES2533990T3 (en) 2015-04-16
US20160095854A1 (en) 2016-04-07
US9750738B2 (en) 2017-09-05
JP2013520497A (en) 2013-06-06
US9273027B2 (en) 2016-03-01
AU2010346633B2 (en) 2015-12-03
EP2539706B1 (en) 2015-03-04
EP2539706A1 (en) 2013-01-02
US20120295919A1 (en) 2012-11-22
AU2010346633A1 (en) 2012-07-19
CA2787037A1 (en) 2011-09-01
CA2787037C (en) 2018-04-10
JP6173693B2 (en) 2017-08-02

Similar Documents

Publication Publication Date Title
US5854249A (en) Opioid diarylmethylpiperazines and piperidines
US5574159A (en) Opioid compounds and methods for making therefor
AU692788B2 (en) Piperazine compounds used in therapy
US9750738B2 (en) Arylpiperazine opioid receptor antagonists
JP3205343B2 (en) Diaryldiamine derivatives and their use as delta opioid (ant) -agonists
US5681830A (en) Opioid compounds
RU2386614C2 (en) Derivatives of n-[phenyl(pyrrolidin-2-yl)methyl]benzamide and n-[(azepan-2-yl)phenylmethyl]benzamide, method of obtaining said compounds and use thereof in therapy
JP5571133B2 (en) Kappa opioid receptor ligand
KR20030059084A (en) Carboxamide compounds and their use as antagonists of a human 11cby receptor
US20130158072A1 (en) Kappa opioid receptor binding ligands
AU2009236609B2 (en) Kappa opioid receptor ligands
WO2006103342A2 (en) Indanyl-piperazine derivatives, method for preparing same and pharmaceutical compositions containing same
AU2012347416B2 (en) 1-substituted 4-arylpiperazine as kappa opioid receptor antagonists
ES2286474T3 (en) DERIVATIVES OF 4- (FINILPIPERAZINILMETIL) BENZAMIDA AND ITS USE FOR THE TREATMENT OF PAIN OR GASTROINTESTINAL DISORDERS.
JP2009526844A (en) Piperazine derivatives
PL179341B1 (en) Diaryl methyl piperazine and diaryl methyl piperidine compounds exhibiting properties equal to those of opioides as well as method obtaining and using them

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10846785

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010346633

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2787037

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2010346633

Country of ref document: AU

Date of ref document: 20101012

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13574179

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010846785

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012554983

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE