WO2011105014A1 - 硬化性樹脂組成物 - Google Patents

硬化性樹脂組成物 Download PDF

Info

Publication number
WO2011105014A1
WO2011105014A1 PCT/JP2011/000702 JP2011000702W WO2011105014A1 WO 2011105014 A1 WO2011105014 A1 WO 2011105014A1 JP 2011000702 W JP2011000702 W JP 2011000702W WO 2011105014 A1 WO2011105014 A1 WO 2011105014A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphate
curable composition
tetra
butylphosphonium
bis
Prior art date
Application number
PCT/JP2011/000702
Other languages
English (en)
French (fr)
Inventor
岡崎 仁
竹内 基晴
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to EP11746987.4A priority Critical patent/EP2540761B1/en
Priority to JP2012501666A priority patent/JP5177322B2/ja
Priority to US13/580,803 priority patent/US8853346B2/en
Priority to KR1020127021945A priority patent/KR101787132B1/ko
Priority to CN201180010569.0A priority patent/CN102791771B/zh
Publication of WO2011105014A1 publication Critical patent/WO2011105014A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/06Polythioethers from cyclic thioethers
    • C08G75/08Polythioethers from cyclic thioethers from thiiranes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G12/00Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
    • C08G12/02Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes
    • C08G12/04Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with acyclic or carbocyclic compounds
    • C08G12/043Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with acyclic or carbocyclic compounds with at least two compounds covered by more than one of the groups C08G12/06 - C08G12/24
    • C08G12/046Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with acyclic or carbocyclic compounds with at least two compounds covered by more than one of the groups C08G12/06 - C08G12/24 one being urea or thiourea
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • C08G75/025Preparatory processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/02Polythioethers; Polythioether-ethers

Definitions

  • the present invention relates to a curable composition suitable as a raw material for optical materials such as optical element adhesives, optical element coating agents, resist materials, prisms, optical fibers, information recording substrates, filters, and plastic lenses.
  • optical materials such as optical element adhesives, optical element coating agents, resist materials, prisms, optical fibers, information recording substrates, filters, and plastic lenses.
  • onium salts such as quaternary ammonium salts, quaternary phosphonium salts, tertiary sulfonium salts, and secondary iodonium salts having a halogen in the anion portion are disclosed.
  • Patent Document 5 halogen-free materials have been desired from the viewpoint of reducing environmental impact.
  • tetraalkylphosphonium dialkyl phosphates have been disclosed as curing accelerators for epoxy resins (Patent Document 6). However, it is not described that these can be used as a polymerization catalyst for episulfide compounds.
  • Japanese Patent Laid-Open No. 9-71580 Japanese Patent Laid-Open No. 9-110979 Japanese Patent Laid-Open No. 9-255781 JP 2001-163874 A JP 2000-239384 A JP 2007-284525 A
  • An object of the present invention is to provide a curable composition containing an episulfide compound, which can obtain a high refractive index resin having good transparency and color tone and containing no halogen.
  • a specific tetraalkylphosphonium dialkyl phosphate does not contain a halogen atom in the molecular structure, has an appropriate catalytic activity for an episulfide compound, and has a thermal property. It has been found that it is suitable as a polymerization catalyst for episulfide compounds because it is difficult to be yellowed and deteriorated by light and light, and the present invention has been achieved.
  • the present invention relates to a curable composition
  • a curable composition comprising a polymerization catalyst comprising (A) an episulfide compound and (B) a tetraalkylphosphonium dialkyl phosphate represented by the following general formula (1).
  • R 1 to R 6 are the same or different and are an alkyl group having 1 to 8 carbon atoms or an alkyl group having 1 to 8 carbon atoms having a hydroxyl group, linear, branched or alicyclic .
  • a curable composition containing an episulfide compound that can be easily polymerized by heating, and having excellent transparency and color tone by polymerizing the curable composition and containing no halogen.
  • a high refractive index resin can be provided.
  • the (A) episulfide compound used in the present invention is a compound having one or more thiirane rings in one molecule, and a cured product is formed by ring-opening polymerization of the thiirane ring.
  • a compound represented by the following general formula (2) is preferred.
  • R 7 and R 8 are each independently a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms
  • R 9 , R 10 is each independently a hydrocarbon group having 1 to 10 carbon atoms.
  • Specific examples of the compound represented by the general formula (2) include bis (2,3-epithiopropyl) sulfide, bis (2,3-epithiopropylthio) ethane, bis (2,3-epithiopropylthio).
  • the tetraalkylphosphonium dialkyl phosphate represented by the general formula (1) of the present invention (B) is suitable from the viewpoint of reducing the environmental load because it does not contain a halogen atom in the molecular structure.
  • the episulfide compound since it exhibits an appropriate catalytic activity for the episulfide compound, the episulfide compound can be easily polymerized by appropriate heating.
  • yellowing of the cured product due to yellowing deterioration of the polymerization catalyst can be suppressed.
  • the polymerization of the curable composition is difficult to proceed at room temperature, that is, the pot life of the curable composition (the time during which the viscosity is stable under normal temperature storage) is long. Also have. If the catalytic activity of the polymerization catalyst is too strong, the polymerization of the curable composition proceeds gradually even at room temperature. As a result, the viscosity of the curable composition changes from moment to moment, making it difficult to obtain stable handling properties.
  • the tetraalkylphosphonium dialkyl phosphate represented by the general formula (1) can be produced by a known method.
  • the method include a production method by a reaction of a tetraalkylphosphonium halide and a dialkyl phosphate metal salt described in JP-A-2-40389, and US Pat. No. 3,050,543B.
  • Examples thereof include a production method by reaction of tetraalkylphosphonium halide and dialkyl phosphoric acid, a production method by reaction of tertiary phosphine and phosphate ester described in JP-A-2007-284525.
  • Examples of the tetraalkylphosphonium dialkyl phosphate represented by the general formula (1) include the following compounds.
  • (Dimethyl phosphate group) Tetramethylphosphonium dimethyl phosphate, tetraethyl phosphonium dimethyl phosphate, tetra-n-propyl phosphonium dimethyl phosphate, tetra-n-butyl phosphonium dimethyl phosphate, tetra-n-pentylphosphonium dimethyl phosphate, tetra-n-hexylphosphonium dimethyl phosphate, ethyl trimethyl Phosphonium dimethyl phosphate, methyl triethyl phosphonium dimethyl phosphate, methyl tri-n-propyl phosphonium dimethyl phosphate, methyl tri-n-butyl phosphonium dimethyl phosphate, methyl tri-n-pentyl phosphonium dimethyl phosphate, methyl tri-n-hexyl phosphonium dimethyl phosphate, methyl tricyclopentyl Phospho Um dimethyl phosphate, hexyl
  • (Di-n-propyl phosphate group) Tetramethylphosphonium di-n-propyl phosphate, tetraethylphosphonium di-n-propyl phosphate, tetra-n-propylphosphonium di-n-propyl phosphate, tetra-n-butylphosphonium di-n-propyl phosphate, tetra-n-pentyl Phosphonium di-n-propyl phosphate, tetra-n-hexylphosphonium di-n-propyl phosphate
  • (Di-n-butyl phosphate group) Tetramethylphosphonium di-n-butyl phosphate, tetraethylphosphonium di-n-butyl phosphate, tetra-n-propylphosphonium di-n-butyl phosphate, tetra-n-butylphosphonium di-n-butyl phosphate, tetra-n-pentyl Phosphonium di-n-butyl phosphate, tetra-n-hexylphosphonium di-n-butyl phosphate, methyltri-n-butylphosphonium di-n-butyl phosphate, ethyltri-n-butylphosphonium di-n-butyl phosphate, n- Propyl tri-n-butylphosphonium di-n-butyl phosphate, n-pentyltri-n-butylphosphonium di-n-butyl phosphat
  • (Di-n-octyl phosphate group) Tetramethylphosphonium di-n-octyl phosphate, tetraethylphosphonium di-n-octyl phosphate, tetra-n-propylphosphonium di-n-octyl phosphate, tetra-n-butylphosphonium di-n-octyl phosphate, tetra-n-pentyl Phosphonium di-n-octyl phosphate, tetra-n-hexylphosphonium di-n-octyl phosphate, ethyltrimethylphosphonium di-n-octyl phosphate, methyltriethylphosphonium di-n-octyl phosphate, methyltri-n-propylphosphonium di- n-octyl phosphate, methyl tri-n-butylphosphonium di-n-
  • (Dicyclohexyl phosphate group) Tetramethylphosphonium dicyclohexyl phosphate, tetraethylphosphonium dicyclohexyl phosphate, tetra-n-propylphosphonium dicyclohexyl phosphate, tetra-n-butylphosphonium dicyclohexyl phosphate, tetra-n-pentylphosphonium dicyclo Xyl phosphate, tetra-n-hexylphosphonium dicyclohexyl phosphate
  • Butylphosphonium dimethyl phosphate, methyl tri-n-butylphosphonium di-n-butyl phosphate, tetra-n-butylphosphonium di-n-octyl phosphate are preferred, methyl tri-n-butylphosphonium dimethyl phosphate, tetra-n-butylphosphonium di- Particularly preferred are n-butyl phosphate and tetra-n-butylphosphonium di-n-octyl phosphate.
  • the above compounds may be used alone or in combination of two or more.
  • the addition amount of tetraalkylphosphonium dialkyl phosphate is preferably in the range of 0.001 to 5 parts by weight with respect to 100 parts by weight of the total amount of (A) episulfide compound and (C) thiol compound described below, The amount is preferably 0.01 to 2 parts by weight, and more preferably 0.05 to 0.5 parts by weight.
  • the curable composition containing (A) an episulfide compound and (B) a tetraalkylphosphonium dialkyl phosphate of the present invention can further contain (C) a thiol compound. Since a thiol compound can be copolymerized with an episulfide compound and has an oxidation-inhibiting effect, a cured product with little yellowing and excellent transparency can be obtained by blending the thiol compound.
  • the thiol compound referred to in the present invention is a compound having one or more mercapto groups in one molecule, but is preferably a compound having two or more mercapto groups in order to increase the mechanical strength of the cured product.
  • Preferred examples of the thiol compound include methanedithiol, methanetrithiol, 1,2-dimercaptoethane, bis (2-mercaptoethyl) sulfide, bis (2,3-dimercaptopropyl) sulfide, 1,2,3.
  • the content of the thiol compound is preferably in the range of 0 to 50 parts by weight, more preferably 5 to 30 parts by weight, even more preferably, with respect to 100 parts by weight of the total amount of the episulfide compound and the thiol compound. Is 10 to 25 parts by weight.
  • the curable composition of the present invention includes an antioxidant, a light stabilizer (HALS), an ultraviolet absorber, a silane coupling agent, a release agent, an inorganic filler, a pigment, a dye, a reactive or non-reactive agent. It is also possible to add a reactive diluent or the like.
  • the curable composition of the present invention comprises (A) an episulfide compound, (B) a tetraalkylphosphonium dialkyl phosphate, (C) a thiol compound, and if necessary, various additives at about 25 ° C. according to a conventional method. It can be obtained by mixing uniformly at room temperature or under heating.
  • the curable composition of the present invention can be cured by heating to obtain a cured product.
  • the heating temperature and time depend on the type and blending amount of the episulfide compound, the type and addition amount of the polymerization catalyst, and thus cannot be specified unconditionally.
  • the heating temperature is preferably in the range of 20 ° C to 120 ° C, and the heating time is A range of 30 minutes to 100 hours is preferred.
  • the present invention will be specifically described by way of examples, but the present invention is not limited thereto.
  • the (A) episulfide compound was synthesized based on the method described in JP-A-9-110979.
  • the tetraalkylphosphonium dialkyl phosphate was synthesized based on the method described in JP-A-2007-284525 or was commercially available.
  • C The industrially marketed thiol compound and other compounds were used.
  • the pot life of the curable composition was evaluated by the change in viscosity of the curable composition at room temperature. 5 g of the curable composition was put in a test tube and kept in a 25 ° C. water bath, and the viscosity at the initial stage and after 6 hours was measured. The viscosity was measured using a cone / plate viscometer DV-II + (manufactured by Brookfield) at a measurement temperature of 25 ° C.
  • the cured product was produced by the following method. First, a curable composition was injected into a mold constituted by sandwiching an O-ring (G-60, Viton rubber) between two hard glasses. Subsequently, after keeping the temperature at 30 ° C. for 10 hours in an electric oven with a program function, the temperature was raised from 30 ° C. to 100 ° C. at a rate of 7 ° C./hr over 10 hours. Keep warm for hours. Thereafter, the cured product obtained by polymerization was removed from the mold to obtain a flat cured product.
  • O-ring G-60, Viton rubber
  • a precision refractometer KPR-200 (manufactured by Kalnew Optical Industry Co., Ltd.) was used for measuring the refractive index of the cured product.
  • the measurement temperature was 25 ° C.
  • the measurement wavelength was d-line (587.56 nm).
  • a viscoelasticity measuring device DMS6100 manufactured by Seiko Instruments Inc. was used for measuring the glass transition temperature (hereinafter abbreviated as Tg) of the cured product.
  • Tg glass transition temperature
  • the temperature increase rate was 2 ° C./min
  • the frequency was 10 Hz
  • the peak temperature of tan ⁇ was Tg.
  • the transparency of the cured product was evaluated by visual observation by applying light from a mercury lamp to the cured product in a dark room.
  • the thickness of the cured product was 2.5 mm.
  • the yellowing resistance of the cured product was evaluated by measuring yellowness (YI value) at the initial stage, after heating, and after exposure.
  • the heating method was 100 ° C. for 100 hours.
  • a light resistance tester Suntest XLS + manufactured by Toyo Seiki Co., Ltd., with Xe lamp and UV filter
  • the illuminance was 500 W / m 2
  • the temperature was 50 ° C.
  • the exposure time was 100 hours.
  • the yellowness (YI value) was measured using a spectrocolorimeter JS555 (manufactured by Color Techno System), the thickness of the cured product was 2.5 mm, and the measurement temperature was 25 ° C.
  • Example 1 (A) Bis (2,3-epithiopropyl) sulfide (100 parts by weight) as a polymerization catalyst (B) Methyltri-n-butylphosphonium dimethyl phosphate (0.05 parts by weight) (Product name: PX-4MP, Nippon Chemical Co., Ltd.) Manufactured by Kogyo Co., Ltd.) and stirred at room temperature to obtain a uniform solution. This was stirred under reduced pressure to degas, and then filtered through a membrane filter (PTFE, 0.5 ⁇ m) to prepare a curable composition. Table 1 shows the evaluation results of the pot life of the curable composition and the evaluation results of the refractive index, Tg, transparency, and yellowness of the cured product prepared by polymerizing the same.
  • Example 1 Example 1 was repeated except that the type and amount of component (B) were changed to the contents shown in Table 1. The evaluation results are shown in Table 1.
  • Example 1 Example 1 was repeated except that component (B) was changed to tetra-n-butylphosphonium bromide (0.1 parts by weight). The evaluation results are shown in Table 1. Compared with Example 1, the pot life of the curable composition was short and it solidified after 6 hours, and the yellowing resistance of the cured product was inferior. Further, tetra-n-butylphosphonium bromide is not preferable from the viewpoint of reducing the environmental load because it contains a halogen atom (bromine atom) in the molecular structure.
  • halogen atom bromine atom
  • Example 2 Example 1 was repeated except that component (B) was changed to tetra-n-butylphosphonium O, O-diethyl phosphorodithioate (0.01 parts by weight), indicating that the curable composition rapidly exothermed during the preparation. The polymer was violently polymerized. In comparison with Example 1, the catalytic activity of the component (B) as a polymerization catalyst was too strong.
  • Example 5 (A) Bis (2,3-epithiopropyl) sulfide (90 parts by weight), (B) Methyltri-n-butylphosphonium dimethyl phosphate (0.1 part by weight) as a polymerization catalyst (Product name PX-4MP, Nippon Chemical Co., Ltd.) Kogyo Co., Ltd.) and (C) bis (2-mercaptoethyl) sulfide (10 parts by weight) as a thiol compound were mixed and stirred at room temperature to obtain a uniform solution. This was stirred under reduced pressure to degas, and then filtered through a membrane filter (PTFE, 0.5 ⁇ m) to prepare a curable composition. The evaluation results are shown in Table 2.
  • Example 5 Example 5 was repeated except that component (B) was changed to tetra-n-butylphosphonium bromide (0.1 parts by weight). The evaluation results are shown in Table 2. Compared to Example 5, the pot life of the curable composition was shorter. Further, tetra-n-butylphosphonium bromide is not preferable from the viewpoint of reducing the environmental load because it contains a halogen atom (bromine atom) in the molecular structure.
  • halogen atom bromine atom
  • Example 5 Example 5 was repeated except that component (B) was changed to tetra-n-butylammonium bromide (0.1 parts by weight). The evaluation results are shown in Table 2. Compared to Example 5, the pot life of the curable composition was shorter. Further, tetra-n-butylammonium bromide is not preferable from the viewpoint of reducing the environmental load because it contains a halogen atom (bromine atom) in the molecular structure.
  • halogen atom bromine atom
  • Example 5 Example 5 was repeated except that component (B) was changed to diethylcyclohexylamine (0.1 parts by weight). The evaluation results are shown in Table 2. Compared to Example 5, the Tg of the cured product was low, and the transparency of the cured product was inferior.
  • Example 6 (A) Bis (2,3-epithiopropyl) sulfide (75 parts by weight), (B) Methyltri-n-butylphosphonium dimethyl phosphate (0.5 parts by weight) as a polymerization catalyst (product name PX-4MP, Nippon Chemical Co., Ltd.) Manufactured by Kogyo Co., Ltd.) and (C) pentaerythritol tetrakis (3-mercaptopropionate) (25 parts by weight) as a thiol compound were mixed and stirred at room temperature to obtain a uniform solution. This was stirred under reduced pressure to degas, and then filtered through a membrane filter (PTFE, 0.5 ⁇ m) to prepare a curable composition. The evaluation results are shown in Table 3.
  • Example 6 Example 6 was repeated except that component (B) was changed to tetra-n-butylphosphonium bromide (0.1 parts by weight). The evaluation results are shown in Table 3. Although performance equivalent to that in Example 6 was obtained, tetra-n-butylphosphonium bromide contains a halogen atom (bromine atom) in the molecular structure, which is not preferable from the viewpoint of reducing environmental burden.
  • component (B) was changed to tetra-n-butylphosphonium bromide (0.1 parts by weight).
  • Table 3 Although performance equivalent to that in Example 6 was obtained, tetra-n-butylphosphonium bromide contains a halogen atom (bromine atom) in the molecular structure, which is not preferable from the viewpoint of reducing environmental burden.
  • Example 6 was repeated except that component (B) was changed to diethylcyclohexylamine (0.1 parts by weight). The evaluation results are shown in Table 3. Compared with Example 6, the transparency of the cured product and the yellowing resistance of the cured product were inferior.
  • Example 6 Example 6 was repeated except that component (B) was changed to diethylaminoethanol (0.5 parts by weight). The evaluation results are shown in Table 3. Compared to Example 6, the pot life of the curable composition was short, and the transparency and the yellowing resistance of the cured product were inferior.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)

Abstract

 本発明は、光学素子接着剤、光学素子用コーティング剤、レジスト材料、プリズム、光ファイバー、情報記録基盤、フィルター、プラスチックレンズ等の光学材料の原料として好適な硬化性組成物に関し、より詳しくは、(A)エピスルフィド化合物と、(B)下記一般式(1)で表されるテトラアルキルホスホニウムジアルキルホスフェートからなる重合触媒を含むことを特徴とする硬化性組成物に関するものである。

Description

硬化性樹脂組成物
 本発明は、光学素子接着剤、光学素子用コーティング剤、レジスト材料、プリズム、光ファイバー、情報記録基盤、フィルター、プラスチックレンズ等の光学材料の原料として好適な硬化性組成物に関するものである。
 プラスチック製光学材料の多くに要求される光学性能の一つとして屈折率が挙げられる。特に屈折率の高い光学材料については、屈折率1.7以上の光学材料の提供を可能とするエピスルフィド化合物が多数見いだされている(特許文献1~4)。
 エピスルフィド化合物を含有する組成物の重合触媒として、アニオン部にハロゲンを有する、第4級アンモニウム塩、第4級ホスホニウム塩、第3級スルホニウム塩、および第2級ヨードニウム塩等のオニウム塩が開示されている(特許文献5)。しかし、近年は環境負荷低減の観点からハロゲンフリーの材料が望まれている。
 一方、エポキシ樹脂用硬化促進剤としてテトラアルキルホスホニウムジアルキルホスフェート類が開示されている(特許文献6)。しかしながら、これらがエピスルフィド化合物の重合触媒として利用できることは記載されていない。
特開平9-71580号公報 特開平9-110979号公報 特開平9-255781号公報 特開2001-163874号公報 特開2000-239384号公報 特開2007-284525号公報
 本発明の目的は、良好な透明性と色調を有し且つハロゲンを含有しない高屈折率樹脂を得られる、エピスルフィド化合物を含有する硬化性組成物を提供することにある。
 本発明者らは上記問題を解決すべく検討を行った結果、特定のテトラアルキルホスホニウムジアルキルホスフェートが、分子構造上ハロゲン原子を含まず、エピスルフィド化合物に対して適度な触媒活性を有し、且つ熱や光によって黄変劣化しにくいことから、エピスルフィド化合物の重合触媒として好適であることを見出して本発明に至った。
 即ち本発明は、(A)エピスルフィド化合物と、(B)下記一般式(1)で表されるテトラアルキルホスホニウムジアルキルホスフェートからなる重合触媒を含むことを特徴とする硬化性組成物に関するものである。
Figure JPOXMLDOC01-appb-C000001
(式中、R~Rは、同一または異なって、炭素数1~8のアルキル基又はヒドロキシル基を有する炭素数1~8のアルキル基であり、直鎖状、分岐鎖状又は脂環状である。)
 本発明によれば、加熱によって容易に重合が可能な、エピスルフィド化合物を含有する硬化性組成物、並びに該硬化性組成物を重合させることによって優れた透明性と色調を有し且つハロゲンを含有しない高屈折率樹脂を提供することができる。
 本発明で使用する(A)エピスルフィド化合物とは、1分子中に1個以上のチイラン環を有する化合物であり、チイラン環が開環重合することにより硬化物を生成する。特に、硬化性組成物の架橋性および得られる硬化物の屈折率の向上を追求した場合、下記一般式(2)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000002
(式中、nは0から4の整数、mは0から6の整数であり、R,Rはそれぞれ独立に、水素原子又は炭素数1~10の炭化水素基であり、R,R10はそれぞれ独立に炭素数1~10の炭化水素基である。)
 一般式(2)で表わされる化合物の具体例としては、ビス(2,3-エピチオプロピル)スルフィド、ビス(2,3-エピチオプロピルチオ)エタン、ビス(2,3-エピチオプロピルチオ)プロパン、ビス(2,3-エピチオプロピルチオ)ブタン、ビス(5,6-エピチオ-3-チオヘキサン)スルフィド、ビス(2,3-エピチオプロピル)ジスルフィド、ビス(3,4-エピチオブチル)ジスルフィド、ビス(4,5-エピチオペンチル)ジスルフィドまたはビス(5,6-エピチオヘキシル)ジスルフィドが挙げられるが、ビス(2,3-エピチオプロピル)スルフィド〔一般式(2)において、nが0、RおよびRが水素原子、RおよびR10がメチレン基〕およびビス(2,3-エピチオプロピル)ジスルフィド〔一般式(2)において、mが0、nが1、RおよびRが水素原子、RおよびR10がメチレン基〕が好ましく、ビス(2,3-エピチオプロピル)スルフィドが特に好ましい。
 本発明の(B)一般式(1)で表されるテトラアルキルホスホニウムジアルキルホスフェートは、分子構造上ハロゲン原子を含まないため、環境負荷低減の観点から好適である。また、エピスルフィド化合物に対して適度な触媒活性を示すため、適度な加熱によってエピスルフィド化合物を容易に重合させることができる。また、熱や光に対して安定であるため、重合触媒の黄変劣化に起因する硬化物の黄変も抑えられる。
 さらに、エピスルフィド化合物に対して適度な触媒活性を示すため、常温において硬化性組成物の重合が進みにくく、即ち硬化性組成物の可使時間(常温保存下で粘度が安定な時間)が長い特徴も有する。仮に重合触媒の触媒活性が強すぎる場合、硬化性組成物の重合は常温においても徐々に進行してしまう。その結果、硬化性組成物の粘度は時々刻々と変化してしまい、安定したハンドリング性を得ることが難しくなる。
 一般式(1)で表されるテトラアルキルホスホニウムジアルキルホスフェートは、公知の方法によって製造することが可能である。該方法としては、例えば、特開平2-40389号公報に記載されているテトラアルキルホスホニウムハライドとジアルキルリン酸金属塩との反応による製造方法や、米国特許公報US3,050,543Bに記載されているテトラアルキルホスホニウムハライドとジアルキルリン酸との反応による製造方法や、特開2007-284525号公報に記載されている第三級ホスフィンとリン酸エステルの反応による製造方法等が挙げられる。
 一般式(1)で表わされるテトラアルキルホスホニウムジアルキルホスフェートとしては、以下の化合物が挙げられる。
(ジメチルホスフェート群)
 テトラメチルホスホニウムジメチルホスフェート、テトラエチルホスホニウムジメチルホスフェート、テトラ-n-プロピルホスホニウムジメチルホスフェート、テトラ-n-ブチルホスホニウムジメチルホスフェート、テトラ-n-ペンチルホスホニウムジメチルホスフェート、テトラ-n-へキシルホスホニウムジメチルホスフェート、エチルトリメチルホスホニウムジメチルホスフェート、メチルトリエチルホスホニウムジメチルホスフェート、メチルトリ-n-プロピルホスホニウムジメチルホスフェート、メチルトリ-n-ブチルホスホニウムジメチルホスフェート、メチルトリ-n-ペンチルホスホニウムジメチルホスフェート、メチルトリ-n-へキシルホスホニウムジメチルホスフェート、メチルトリシクロペンチルホスホニウムジメチルホスフェート、メチルトリシクロへキシルホスホニウムジメチルホスフェート、ジエチルジメチルホスホニウムジメチルホスフェート、ジ-n-プロピルエチルメチルホスホニウムジメチルホスフェート、ジ-n-ブチルエチル-n-プロピルホスホニウムジメチルホスフェート
(ジエチルホスフェート群)
 テトラメチルホスホニウムジエチルホスフェート、テトラエチルホスホニウムジエチルホスフェート、テトラ-n-プロピルホスホニウムジエチルホスフェート、テトラ-n-ブチルホスホニウムジエチルホスフェート、テトラ-n-ペンチルホスホニウムジエチルホスフェート、テトラ-n-へキシルホスホニウムジエチルホスフェート
(ジ-n-プロピルホスフェート群)
 テトラメチルホスホニウムジ-n-プロピルホスフェート、テトラエチルホスホニウムジ-n-プロピルホスフェート、テトラ-n-プロピルホスホニウムジ-n-プロピルホスフェート、テトラ-n-ブチルホスホニウムジ-n-プロピルホスフェート、テトラ-n-ペンチルホスホニウムジ-n-プロピルホスフェート、テトラ-n-へキシルホスホニウムジ-n-プロピルホスフェート
(ジ-n-ブチルホスフェート群)
 テトラメチルホスホニウムジ-n―ブチルホスフェート、テトラエチルホスホニウムジ-n―ブチルホスフェート、テトラ-n-プロピルホスホニウムジ-n-ブチルホスフェート、テトラ-n-ブチルホスホニウムジ-n-ブチルホスフェート、テトラ-n-ペンチルホスホニウムジ-n-ブチルホスフェート、テトラ-n-へキシルホスホニウムジ-n-ブチルホスフェート、メチルトリ-n-ブチルホスホニウムジ-n-ブチルホスフェート、エチルトリ-n-ブチルホスホニウムジ-n-ブチルホスフェート、n-プロピルトリ-n-ブチルホスホニウムジ-n-ブチルホスフェート、n-ペンチルトリ-n-ブチルホスホニウムジ-n-ブチルホスフェート、n-へキシルトリ-n-ブチルホスホニウムジ-n-ブチルホスフェート、メチルトリエチルホスホニウムジ-n-ブチルホスフェート、メチルトリ-n-プロピルホスホニウムジ-n-ブチルホスフェート、メチルトリ-n-ペンチルホスホニウムジ-n-ブチルホスフェート、メチルトリ-n-へキシルホスホニウムジ-n-ブチルホスフェート、メチルトリシクロペンチルホスホニウムジ-n-ブチルホスフェート、メチルトリシクロへキシルホスホニウムジ-n-ブチルホスフェート、n-ブチルエチルメチル-n-プロピルホスホニウムジ-n-ブチルホスフェート
(ジ-n-オクチルホスフェート群)
 テトラメチルホスホニウムジ-n-オクチルホスフェート、テトラエチルホスホニウムジ-n-オクチルホスフェート、テトラ-n-プロピルホスホニウムジ-n-オクチルホスフェート、テトラ-n-ブチルホスホニウムジ-n-オクチルホスフェート、テトラ-n-ペンチルホスホニウムジ-n-オクチルホスフェート、テトラ-n-へキシルホスホニウムジ-n-オクチルホスフェート、エチルトリメチルホスホニウムジ-n-オクチルホスフェート、メチルトリエチルホスホニウムジ-n-オクチルホスフェート、メチルトリ-n-プロピルホスホニウムジ-n-オクチルホスフェート、メチルトリ-n-ブチルホスホニウムジ-n-オクチルホスフェート、メチルトリ-n-ペンチルホスホニウムジ-n-オクチルホスフェート、メチルトリ-n-へキシルホスホニウムジ-n-オクチルホスフェート、メチルトリシクロペンチルホスホニウムジ-n-オクチルホスフェート、メチルトリシクロへキシルホスホニウムジ-n-オクチルホスフェート、ジエチルジメチルホスホニウムジ-n-オクチルホスフェート、ジ-n-プロピルエチルメチルホスホニウムジ-n-オクチルホスフェート、ジ-n-ブチルエチル-n-プロピルホスホニウムジ-n-オクチルホスフェート
(エチルメチルホスフェート群)
 メチルトリ-n-ブチルホスホニウムエチルメチルホスフェート、テトラ-n-ブチルホスホニウムエチルメチルホスフェート、テトラメチルホスホニウムエチルメチルホスフェート、テトラエチルホスホニウムエチルメチルホスフェート、テトラ-n-プロピルホスホニウムエチルメチルホスフェート、テトラ-n-ペンチルホスホニウムエチルメチルホスフェート、テトラ-n-へキシルホスホニウムエチルメチルホスフェート
(ジシクロへキシルホスフェート群)
 テトラメチルホスホニウムジシクロへキシルホスフェート、テトラエチルホスホニウムジシクロへキシルホスフェート、テトラ-n-プロピルホスホニウムジシクロへキシルホスフェート、テトラ-n-ブチルホスホニウムジシクロへキシルホスフェート、テトラ-n-ペンチルホスホニウムジシクロへキシルホスフェート、テトラ-n-へキシルホスホニウムジシクロへキシルホスフェート
 これらの化合物のうち、可視光領域での吸収が小さく、耐光性が良好となる点で、メチルトリ-n-ブチルホスホニウムジメチルホスフェート、テトラ-n-ブチルホスホニウムジ-n-ブチルホスフェート、テトラ-n-ブチルホスホニウムジメチルホスフェート、メチルトリ-n-ブチルホスホニウムジ-n-ブチルホスフェート、テトラ-n-ブチルホスホニウムジ-n-オクチルホスフェートが好ましく、メチルトリ-n-ブチルホスホニウムジメチルホスフェート、テトラ-n-ブチルホスホニウムジ-n-ブチルホスフェート、テトラ-n-ブチルホスホニウムジ-n-オクチルホスフェートが特に好ましい。上記化合物は、単独でも2種類以上を混合して使用してもかまわない。
 テトラアルキルホスホニウムジアルキルホスフェートの添加量は、少なすぎると硬化性組成物が十分に重合しなくなり、また多すぎると硬化性組成物の可使時間(常温保存下で粘度が安定な時間)が短くなる。従って、テトラアルキルホスホニウムジアルキルホスフェートの添加量は、(A)エピスルフィド化合物と後述の(C)チオール化合物の合計量100重量部に対して、好ましくは0.001~5重量部の範囲であり、より好ましくは0.01~2重量部であり、より一層好ましくは0.05~0.5重量部である。
 本発明の(A)エピスルフィド化合物、および(B)テトラアルキルホスホニウムジアルキルホスフェートを含有する硬化性組成物は、さらに(C)チオール化合物を含むことができる。チオール化合物はエピスルフィド化合物と共重合が可能であり、且つ酸化抑制効果を有するため、チオール化合物を配合することによって黄着色が少なく透明性に優れた硬化物を得ることができる。本発明でいうチオール化合物とは、1分子中に1個以上のメルカプト基を有する化合物であるが、硬化物の機械強度を高める上で2個以上のメルカプト基を有する化合物が好ましい。
 チオール化合物の好ましい具体例としては、メタンジチオール、メタントリチオール、1,2-ジメルカプトエタン、ビス(2-メルカプトエチル)スルフィド、ビス(2,3-ジメルカプトプロピル)スルフィド、1,2,3-トリメルカプトプロパン、2-メルカプトメチル-1,3-ジメルカプトプロパン、4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン、2,4-ビス(メルカプトメチル)-1,5-ジメルカプト-3-チアペンタン、4,8-ビス(メルカプトメチル)-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,7-ビス(メルカプトメチル)-1,11-ジメルカプト-3,6,9-トリチアウンデカン、5,7-ビス(メルカプトメチル)-1,11-ジメルカプト-3,6,9-トリチアウンデカン、1,2,7-トリメルカプト-4,6-ジチアヘプタン、1,2,9-トリメルカプト-4,6,8-トリチアノナン、1,2,8,9-テトラメルカプト-4,6-ジチアノナン、1,2,10,11-テトラメルカプト-4,6,8-トリチアウンデカン、1,2,12,13-テトラメルカプト-4,6,8,10-テトラチアトリデカン、テトラキス(メルカプトメチル)メタン、テトラキス(4-メルカプト-2-チアブチル)メタン、テトラキス(7-メルカプト-2,5-ジチアヘプチル)メタン、トリメチロールプロパントリス(2-メルカプトアセテート)、トリメチロールプロパントリス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(2-メルカプトアセテート)、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3-メルカプトブチレート)、2,5-ビス(メルカプトメチル)-1,4-ジチアン、1,3-ビス(メルカプトメチル)ベンゼン、1,4-ビス(メルカプトメチル)ベンゼン、ビス(4-メルカプトフェニル)スルフィド、ビス(4-メルカプトメチルフェニル)メタン、2,2-ビス(4-メルカプトメチルフェニル)プロパン、ビス(4-メルカプトメチルフェニル)エーテル、ビス(4-メルカプトメチルフェニル)スルフィド等が挙げられる。以上、好ましいチオール化合物を例示したが、これらは単独でも2種類以上を混合して使用してもかまわない。
 チオール化合物の含有量は、多いほど無色透明の硬化物を得ることができるが、一方、硬化物の屈折率は低下し、また硬化物が軟質になる傾向がある。従って、チオール化合物の含有量は、エピスルフィド化合物とチオール化合物の合計量100重量部に対して、好ましくは0~50重量部の範囲であり、より好ましくは5~30重量部であり、より一層好ましくは10~25重量部である。
 本発明の硬化性組成物には必要に応じて、酸化防止剤、光安定剤(HALS)、紫外線吸収剤、シランカップリング剤、離型剤、無機質充填剤、顔料、染料、反応性もしくは非反応性の希釈剤等を添加することも可能である。
 本発明の硬化性組成物は、(A)エピスルフィド化合物、(B)テトラアルキルホスホニウムジアルキルホスフェート、(C)チオール化合物、並びに必要に応じて各種添加剤を、常法に準じて、25℃程度の室温下又は加温下で、均一に混合することにより得られる。
 本発明の硬化性組成物は、加熱によって重合させることにより、硬化物を得ることができる。加熱の温度および時間は、エピスルフィド化合物の種類や配合量、重合触媒の種類や添加量などに依るので一概には規定できないが、加熱温度は20℃~120℃の範囲が好ましく、また加熱時間は30分間~100時間の範囲が好ましい。
 以下、実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例中において、(A)エピスルフィド化合物は、特開平9-110979号公報に記載の方法に基づいて合成した。(B)テトラアルキルホスホニウムジアルキルホスフェートは、特開2007-284525号公報に記載の方法に基づいて合成、もしくは工業的に市販されているものを使用した。(C)チオール化合物、およびその他の化合物は工業的に市販されているものを使用した。
 硬化性組成物の可使時間は、常温における硬化性組成物の粘度変化をもって評価した。硬化性組成物5gを試験管に入れて25℃の水浴で保温し、初期および6時間経過後の粘度を測定した。粘度の測定には、コーン/プレート型粘度計DV-II+(ブルックフィールド社製)を用いて、測定温度は25℃とした。
 硬化物の作製は以下の方法で行った。まず、Oリング(G-60、バイトンゴム)を2枚の硬質ガラスで挟んで構成されるモールド内に硬化性組成物を注入した。続いて、プログラム機能付きの電気オーブン内にて、30℃で10時間保温した後、30℃から100℃まで7℃/hrの速度で10時間かけて昇温して、最後に100℃で1時間保温した。その後、重合してできた硬化物をモールドから脱型して平板状の硬化物を得た。
 硬化物の屈折率の測定には、精密屈折計KPR-200(カルニュー光学工業社製)を用いた。測定温度は25℃、測定波長はd線(587.56nm)とした。
 硬化物のガラス転移温度(以下、Tgと略す)の測定には、粘弾性測定装置DMS6100(セイコーインスツルメンツ社製)を用いた。昇温速度は2℃/分、周波数は10Hzとして、tanδのピーク温度をTgとした。
 硬化物の透明性は、暗室にて水銀灯の光を硬化物に当てて目視観察で評価した。硬化物の厚みは2.5mmとした。
 硬化物の耐黄変性の評価は、初期、加熱後、および露光後の黄色度(YI値)を測定することで行った。加熱方法は、120℃で100時間とした。露光方法は、耐光性試験機サンテストXLS+(東洋精機社製、Xeランプ、UVフィルター付)を用いて、照度は500W/m、温度は50℃、露光時間は100時間とした。黄色度(YI値)の測定は、分光色彩計JS555(カラーテクノシステム社製)を用いて、硬化物の厚みは2.5mm、測定温度は25℃とした。
(実施例1)
 (A)ビス(2,3-エピチオプロピル)スルフィド(100重量部)に重合触媒として(B)メチルトリ-n-ブチルホスホニウムジメチルホスフェート(0.05重量部)(製品名PX-4MP、日本化学工業社製)を混合し、室温で撹拌して均一液とした。これを減圧下で撹拌して脱泡した後、メンブレンフィルター(PTFE、0.5μm)で濾過することによって硬化性組成物を作製した。硬化性組成物の可使時間の評価結果、およびこれを重合させて作製した硬化物の屈折率、Tg、透明性、および黄色度の評価結果を表1に示す。
(実施例2~4)
 成分(B)の種類と配合量を表1に示す内容に変える以外は実施例1を繰り返した。評価結果を表1に示す。
(比較例1)
 成分(B)をテトラ-n-ブチルホスホニウムブロマイド(0.1重量部)に変える以外は実施例1を繰り返した。評価結果を表1に示す。実施例1と比較して、硬化性組成物の可使時間が短く6時間後には固化してしまい、また硬化物の耐黄変性が劣る結果であった。また、テトラ-n-ブチルホスホニウムブロマイドは分子構造にハロゲン原子(臭素原子)を含むため、環境負荷低減の観点から好ましくない。
(比較例2)
 成分(B)をテトラ-n-ブチルホスホニウムO,O-ジエチルホスホロジチオアート(0.01重量部)に変える以外は実施例1を繰り返したところ、調合中に硬化性組成物が急速な発熱を伴いながら激しく重合してしまった。実施例1を比較して、成分(B)の重合触媒としての触媒活性が強すぎる結果であった。
(実施例5)
 (A)ビス(2,3-エピチオプロピル)スルフィド(90重量部)、重合触媒として(B)メチルトリ-n-ブチルホスホニウムジメチルホスフェート(0.1重量部)(製品名PX-4MP、日本化学工業社製)、およびチオール化合物として(C)ビス(2-メルカプトエチル)スルフィド(10重量部)を混合し、室温で撹拌して均一液とした。これを減圧下で撹拌して脱泡した後、メンブレンフィルター(PTFE、0.5μm)で濾過することによって硬化性組成物を作製した。評価結果を表2に示す。
(比較例3)
 成分(B)をテトラ-n-ブチルホスホニウムブロマイド(0.1重量部)に変える以外は実施例5を繰り返した。評価結果を表2に示す。実施例5と比較して、硬化性組成物の可使時間が短い結果であった。また、テトラ-n-ブチルホスホニウムブロマイドは分子構造にハロゲン原子(臭素原子)を含むため、環境負荷低減の観点から好ましくない。
(比較例4)
 成分(B)をテトラ-n-ブチルアンモニウムブロマイド(0.1重量部)に変える以外は実施例5を繰り返した。評価結果を表2に示す。実施例5と比較して、硬化性組成物の可使時間が短い結果であった。また、テトラ-n-ブチルアンモニウムブロマイドは分子構造にハロゲン原子(臭素原子)を含むため、環境負荷低減の観点から好ましくない。
(比較例5)
 成分(B)をジエチルシクロヘキシルアミン(0.1重量部)に変える以外は実施例5を繰り返した。評価結果を表2に示す。実施例5と比較して、硬化物のTgが低く、また硬化物の透明性が劣る結果であった。
(実施例6)
 (A)ビス(2,3-エピチオプロピル)スルフィド(75重量部)、重合触媒として(B)メチルトリ-n-ブチルホスホニウムジメチルホスフェート(0.5重量部)(製品名PX-4MP、日本化学工業社製)、およびチオール化合物として(C)ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)(25重量部)を混合し、室温で撹拌して均一液とした。これを減圧下で撹拌して脱泡した後、メンブレンフィルター(PTFE、0.5μm)で濾過することによって硬化性組成物を作製した。評価結果を表3に示す。
(比較例6)
 成分(B)をテトラ-n-ブチルホスホニウムブロマイド(0.1重量部)に変える以外は実施例6を繰り返した。評価結果を表3に示す。実施例6と同等の性能が得られたものの、テトラ-n-ブチルホスホニウムブロマイドは分子構造にハロゲン原子(臭素原子)を含むため、環境負荷低減の観点から好ましくない。
(比較例7)
 成分(B)をジエチルシクロヘキシルアミン(0.1重量部)に変える以外は実施例6を繰り返した。評価結果を表3に示す。実施例6と比較して、硬化物の透明性、および硬化物の耐黄変性が劣る結果であった。
(比較例8)
 成分(B)をジエチルアミノエタノール(0.5重量部)に変える以外は実施例6を繰り返した。評価結果を表3に示す。実施例6と比較して、硬化性組成物の可使時間が短く、また硬化物の透明性および耐黄変性が劣る結果であった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003

Claims (7)

  1.  (A)エピスルフィド化合物と、(B)下記一般式(1)で表されるテトラアルキルホスホニウムジアルキルホスフェートからなる重合触媒を含むことを特徴とする硬化性組成物。
    Figure JPOXMLDOC01-appb-C000003
    (式中、R~Rは、同一または異なって、炭素数1~8のアルキル基又はヒドロキシル基を有する炭素数1~8のアルキル基であり、直鎖状、分岐鎖状又は脂環状である。)
  2.  (A)エピスルフィド化合物が下記一般式(2)で表わされる化合物である請求項1に記載の硬化性組成物。
    Figure JPOXMLDOC01-appb-C000004
    (式中、nは0から4の整数、mは0から6の整数であり、R,Rはそれぞれ独立に、水素原子又は炭素数1~10の炭化水素基であり、R,R10はそれぞれ独立に炭素数1~10の炭化水素基である。)
  3.  一般式(2)で表わされる化合物がビス(2,3-エピチオプロピル)スルフィドである請求項2に記載の硬化性組成物。
  4.  (B)一般式(1)で表されるテトラアルキルホスホニウムジアルキルホスフェートが、テトラ-n-ブチルホスホニウムジ-n-ブチルホスフェート、メチルトリ-n-ブチルホスホニウムジメチルホスフェート又はテトラ-n-ブチルホスホニウムジ-n-オクチルホスフェートである請求項1から3のいずれかに記載の硬化性組成物。
  5.  さらに、(C)チオール化合物を含むことを特徴とする請求項1から4のいずれかに記載の硬化性組成物。
  6.  請求項1から5のいずれかに記載の硬化性組成物を加熱して重合させることを特徴とする硬化方法。
  7.  請求項1から5のいずれかに記載の硬化性組成物を加熱して重合させて得られる硬化物。
PCT/JP2011/000702 2010-02-24 2011-02-08 硬化性樹脂組成物 WO2011105014A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP11746987.4A EP2540761B1 (en) 2010-02-24 2011-02-08 Curable resin composition
JP2012501666A JP5177322B2 (ja) 2010-02-24 2011-02-08 硬化性樹脂組成物
US13/580,803 US8853346B2 (en) 2010-02-24 2011-02-08 Curable resin composition
KR1020127021945A KR101787132B1 (ko) 2010-02-24 2011-02-08 경화성 수지 조성물
CN201180010569.0A CN102791771B (zh) 2010-02-24 2011-02-08 固化性树脂组合物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-038674 2010-02-24
JP2010038674 2010-02-24

Publications (1)

Publication Number Publication Date
WO2011105014A1 true WO2011105014A1 (ja) 2011-09-01

Family

ID=44506449

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/000702 WO2011105014A1 (ja) 2010-02-24 2011-02-08 硬化性樹脂組成物

Country Status (7)

Country Link
US (1) US8853346B2 (ja)
EP (1) EP2540761B1 (ja)
JP (1) JP5177322B2 (ja)
KR (1) KR101787132B1 (ja)
CN (1) CN102791771B (ja)
TW (1) TWI535761B (ja)
WO (1) WO2011105014A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113166369A (zh) * 2018-11-14 2021-07-23 依视路国际公司 用于涂覆光学镜片的边缘的组合物

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016209920A1 (en) * 2015-06-22 2016-12-29 The Scripps Research Institute Polymerization of silyl- and fluoro-containing monomers

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3050543A (en) 1961-11-24 1962-08-21 Virginia Carolina Chem Corp Phosphonium phosphates
JPH0240389A (ja) 1988-07-28 1990-02-09 Nippon Chem Ind Co Ltd ホスホニウムジアルキルリン酸塩の製造方法
JPH0971580A (ja) 1995-09-08 1997-03-18 Mitsubishi Gas Chem Co Inc 新規な分岐アルキルスルフィド型エピスルフィド化合物
JPH09110979A (ja) 1995-08-16 1997-04-28 Mitsubishi Gas Chem Co Inc 新規な直鎖アルキルスルフィド型エピスルフィド化合物
JPH09255781A (ja) 1996-01-17 1997-09-30 Mitsubishi Gas Chem Co Inc 新規なエピスルフィド化合物
JP2000239384A (ja) 1998-12-25 2000-09-05 Mitsubishi Gas Chem Co Inc 色調および透明性に優れた高屈折率樹脂の製造方法
JP2001163874A (ja) 1999-12-08 2001-06-19 Mitsui Chemicals Inc エピスルフィド化合物の製造方法
WO2004094438A1 (en) * 2003-03-31 2004-11-04 Cytec Canada Inc. Phosphonium salts and methods of their preparation
WO2007119809A1 (ja) * 2006-04-14 2007-10-25 Nippon Chemical Industrial Co., Ltd. 深紫外線透過性エポキシ樹脂用硬化促進剤、深紫外線透過性エポキシ樹脂組成物及び深紫外線透過性エポキシ樹脂硬化物
JP2008523120A (ja) * 2004-12-14 2008-07-03 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング 低いハロゲン化物含量を有するジアルキルリン酸、ジアルキルホスフィン酸または(o−アルキル)アルキルもしくはアルキルホスホン酸アニオンを有するオニウム塩類の調製方法
WO2009014270A1 (ja) * 2007-07-26 2009-01-29 Ajinomoto Co., Inc. 樹脂組成物

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5807975A (en) * 1995-08-16 1998-09-15 Mitsubishi Gas Chemical Company,Inc. Alkyl sulfide type episulfide compound
US5945504A (en) 1996-01-17 1999-08-31 Mitsubishi Gas Chemical Company, Inc. Episulfide compound
EP1006374B1 (en) * 1998-12-01 2009-01-07 Mitsubishi Gas Chemical Company, Inc. Process for producing a resin having a large refractive index
CN101495531B (zh) 2006-09-19 2013-11-20 三菱瓦斯化学株式会社 光学材料用树脂组合物及使用该树脂组合物的光学材料
US8394920B2 (en) 2008-02-13 2013-03-12 Mitsubishi Gas Chemical Company, Inc. Composition for resin and optical lens obtained therefrom
JP5442614B2 (ja) * 2008-07-28 2014-03-12 三井化学株式会社 化合物、重合性組成物、樹脂、およびその使用

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3050543A (en) 1961-11-24 1962-08-21 Virginia Carolina Chem Corp Phosphonium phosphates
JPH0240389A (ja) 1988-07-28 1990-02-09 Nippon Chem Ind Co Ltd ホスホニウムジアルキルリン酸塩の製造方法
JPH09110979A (ja) 1995-08-16 1997-04-28 Mitsubishi Gas Chem Co Inc 新規な直鎖アルキルスルフィド型エピスルフィド化合物
JPH0971580A (ja) 1995-09-08 1997-03-18 Mitsubishi Gas Chem Co Inc 新規な分岐アルキルスルフィド型エピスルフィド化合物
JPH09255781A (ja) 1996-01-17 1997-09-30 Mitsubishi Gas Chem Co Inc 新規なエピスルフィド化合物
JP2000239384A (ja) 1998-12-25 2000-09-05 Mitsubishi Gas Chem Co Inc 色調および透明性に優れた高屈折率樹脂の製造方法
JP2001163874A (ja) 1999-12-08 2001-06-19 Mitsui Chemicals Inc エピスルフィド化合物の製造方法
WO2004094438A1 (en) * 2003-03-31 2004-11-04 Cytec Canada Inc. Phosphonium salts and methods of their preparation
JP2008523120A (ja) * 2004-12-14 2008-07-03 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング 低いハロゲン化物含量を有するジアルキルリン酸、ジアルキルホスフィン酸または(o−アルキル)アルキルもしくはアルキルホスホン酸アニオンを有するオニウム塩類の調製方法
WO2007119809A1 (ja) * 2006-04-14 2007-10-25 Nippon Chemical Industrial Co., Ltd. 深紫外線透過性エポキシ樹脂用硬化促進剤、深紫外線透過性エポキシ樹脂組成物及び深紫外線透過性エポキシ樹脂硬化物
JP2007284525A (ja) 2006-04-14 2007-11-01 Nippon Chem Ind Co Ltd 深紫外線透過性エポキシ樹脂用硬化促進剤、深紫外線透過性エポキシ樹脂組成物及び深紫外線透過性エポキシ樹脂硬化物
WO2009014270A1 (ja) * 2007-07-26 2009-01-29 Ajinomoto Co., Inc. 樹脂組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2540761A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113166369A (zh) * 2018-11-14 2021-07-23 依视路国际公司 用于涂覆光学镜片的边缘的组合物
CN113166369B (zh) * 2018-11-14 2023-08-11 依视路国际公司 用于涂覆光学镜片的边缘的组合物

Also Published As

Publication number Publication date
EP2540761A4 (en) 2015-07-22
JPWO2011105014A1 (ja) 2013-06-17
KR20120129919A (ko) 2012-11-28
TW201136993A (en) 2011-11-01
EP2540761A1 (en) 2013-01-02
JP5177322B2 (ja) 2013-04-03
KR101787132B1 (ko) 2017-10-18
EP2540761B1 (en) 2016-08-31
CN102791771A (zh) 2012-11-21
TWI535761B (zh) 2016-06-01
US20130018168A1 (en) 2013-01-17
CN102791771B (zh) 2014-12-10
US8853346B2 (en) 2014-10-07

Similar Documents

Publication Publication Date Title
KR102263431B1 (ko) 광학재료용 조성물 및 그 제조방법
EP2902389B1 (en) Novel episulfide compound and optical material composition
JP5505573B1 (ja) 光学材料用組成物及びその製造方法
JP6172414B2 (ja) 新規エピスルフィド化合物およびそれを含む光学材料組成物
US9260566B2 (en) Composition for optical materials, process for production thereof, and optical materials made from the composition
BR112016022846B1 (pt) Composição para materiais ópticos, métodos para produzir um material óptico e uma matéria-prima para materiais ópticos, material óptico, e, lentes ópticas
JP5177322B2 (ja) 硬化性樹脂組成物
KR20130086007A (ko) 티오에폭시계 공중합체 조성물과 티오에폭시계 광학재료의 제조방법
KR20130086571A (ko) 티오에폭시계 광학재료용 폴리티올화합물의 제조방법과 이를 포함하는 티오에폭시계 광학재료용 공중합체 조성물
CN115667369B (zh) 光学材料用组合物
WO2020021953A1 (ja) エピスルフィド化合物および光学材料用組成物
WO2023127880A1 (ja) 光学部材用重合性組成物、硬化物、及び眼鏡レンズ
JP2004256655A (ja) エピスルフィド化合物からなる樹脂の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180010569.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11746987

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012501666

Country of ref document: JP

REEP Request for entry into the european phase

Ref document number: 2011746987

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011746987

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127021945

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13580803

Country of ref document: US