WO2011104973A1 - 4ストロークサイクル内燃機関および4ストロークサイクル内燃機関の気筒判別方法 - Google Patents

4ストロークサイクル内燃機関および4ストロークサイクル内燃機関の気筒判別方法 Download PDF

Info

Publication number
WO2011104973A1
WO2011104973A1 PCT/JP2010/071872 JP2010071872W WO2011104973A1 WO 2011104973 A1 WO2011104973 A1 WO 2011104973A1 JP 2010071872 W JP2010071872 W JP 2010071872W WO 2011104973 A1 WO2011104973 A1 WO 2011104973A1
Authority
WO
WIPO (PCT)
Prior art keywords
crank angle
signal
cylinder
internal combustion
combustion engine
Prior art date
Application number
PCT/JP2010/071872
Other languages
English (en)
French (fr)
Inventor
行孝 廣永
規彰 清水
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to EP10846636.8A priority Critical patent/EP2541029B1/en
Priority to CN201080064316.7A priority patent/CN102770653B/zh
Priority to US13/579,660 priority patent/US8914218B2/en
Publication of WO2011104973A1 publication Critical patent/WO2011104973A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/009Electrical control of supply of combustible mixture or its constituents using means for generating position or synchronisation signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0097Electrical control of supply of combustible mixture or its constituents using means for generating speed signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/009Electrical control of supply of combustible mixture or its constituents using means for generating position or synchronisation signals
    • F02D2041/0092Synchronisation of the cylinders at engine start
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/101Engine speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2400/00Control systems adapted for specific engine types; Special features of engine control systems not otherwise provided for; Power supply, connectors or cabling for engine control systems
    • F02D2400/02Four-stroke combustion engines with electronic control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting

Definitions

  • the present invention relates to a four-stroke cycle internal combustion engine in which one cycle is completed by two rotations of the crankshaft (that is, 720 ° CA (crank angle)), and in particular, an internal combustion engine having an odd number of cylinders such as three cylinders and five cylinders.
  • the present invention relates to a cylinder discrimination technique in an engine.
  • a cam angle sensor that synchronizes with a camshaft that rotates once at 720 ° CA is provided. Cylinder discrimination and each cylinder are determined by a pulse signal for each angle (so-called POS signal) and a different pulse signal (so-called PHASE signal) for each cylinder interval (for example, 180 ° CA for a 4-cylinder engine) obtained from a cam angle sensor. The phase position in the current cycle is specified.
  • Patent Document 1 discloses a technique in which a phase position of each cylinder is detected without depending on a cam angle sensor in a 4-stroke cycle internal combustion engine having an odd number of cylinders.
  • an intake pipe pressure signal or rotation speed signal
  • an intake pipe pressure signal or rotation speed signal
  • the extreme value (minimum value or maximum value) of reversal or change in the increase / decrease in the intake pipe pressure signal near the above-mentioned tooth missing portion that occurs every 360 ° CA is used. Judging whether there is.
  • the gradient is obtained by differentiating the intake pipe pressure signal (or the rotation speed signal) with respect to time, and as described above, the increase in intake pipe pressure signal /
  • the reversal of the decrease or the minimum or maximum value is detected, but in such a method, many extreme values (that is, the reversal of the increase / decrease) are detected due to inevitable disturbances such as the intake pipe pressure signal. Or a slight shift in the phase of the intake pipe pressure signal, etc., may reverse the gradient in the narrow range of the tooth missing part, so that the detection reliability is low and reliable cylinder discrimination can be performed. Can not.
  • a four-stroke cycle internal combustion engine has an odd number of cylinders, A crank angle sensor that outputs a first signal composed of a pulse train for each constant crank angle including a singular part corresponding to a specific position of a specific cylinder with respect to rotation of the crankshaft; Means for generating a second signal that periodically oscillates with a period corresponding to the number of cylinders in relation to the actual stroke of each cylinder with respect to rotation of the crankshaft; Means for integrating the second signal for at least two sections preset with respect to the singular part so as to include a peak or valley portion of the second signal; A means for performing cylinder discrimination based on a comparison of these integral values; Is provided.
  • the cylinder discrimination method for a four-stroke cycle internal combustion engine having an odd number of cylinders includes a first signal composed of a pulse train for each constant crank angle including a singular part for each crank angle of 360 °, and the cylinder
  • a cylinder discrimination method for performing cylinder discrimination from a second signal that periodically vibrates corresponding to the number At least two integration values are obtained for the peaks or valleys of the second signal, and the position of the singular part with respect to the cycle having a crank angle of 720 ° is specified based on a comparison of these integration values.
  • the second signal correlates with the intake pipe pressure which fluctuates in correlation with the opening / closing of the intake valve of each cylinder (that is, the intake stroke of each cylinder), or the reaction force in the compression stroke of each cylinder. It is possible to use a microscopically changing rotational speed, etc., but this changes periodically in accordance with the number of cylinders. For example, if integral values are obtained for two sections and these are compared, It is reliably determined which section corresponds to a vibration peak or a valley, or whether the previous section was a vibration peak or a valley, and the position of the singular part of the first signal In addition, cylinder discrimination is possible.
  • the cylinder discrimination independent of the cam angle sensor is reliably realized without being affected by the disturbance of the second signal or the slight shift of the phase.
  • FIG. 1 is a structural explanatory view showing an embodiment in which the present invention is applied to a spark ignition type 4-stroke cycle internal combustion engine.
  • the internal combustion engine 1 includes three cylinders 2 arranged in series, and a piston 3 defining a combustion chamber 4 is slidably fitted to each cylinder 2.
  • a spark plug 5 is arranged in the center.
  • An exhaust passage 7 is connected to the combustion chamber 4 via an exhaust valve 6, and an intake passage 11 is connected via an intake valve 10.
  • a fuel injection valve 12 is arranged for each cylinder toward the intake valve 10, and a throttle valve 14 is interposed upstream of the collector 13.
  • the opening of the throttle valve 14 is detected by a throttle valve opening sensor 16.
  • the collector 13 is provided with an intake pressure sensor 15 for detecting the pressure in the collector 13 as the intake pipe pressure.
  • a crank angle sensor 17 described later is provided at the end of the crankshaft 8 in order to detect the angular position of the crankshaft 8.
  • the detection signals of these sensors are input to the engine control unit 18 respectively.
  • the engine control unit 18 comprehensively controls the fuel injection amount and injection timing by the fuel injection valve 12 and the ignition timing of the spark plug 5 based on these detection signals.
  • the internal combustion engine 1 includes a known starter motor 20, and the starter motor 20 operates based on a signal from the starter switch 19.
  • the exhaust valve 6 and the intake valve 10 are driven to open and close by an exhaust side camshaft 21 and an intake side camshaft 22, respectively.
  • These camshafts 21 and 22 are driven at half the speed of the crankshaft 8 in conjunction with the crankshaft 8 and rotate once at 720 ° CA.
  • a so-called cam angle sensor is not provided.
  • spark ignition type internal combustion engine is taken as an example, but the present invention can be applied to a 4-stroke cycle diesel engine in exactly the same manner.
  • FIG. 2 shows the configuration of the crank angle sensor 17, which is arranged around the circular signal plate 25 fixed to the end of the crankshaft 8 at regular intervals, for example, 10 ° intervals. Accordingly, a large number of protrusions 26 are provided, and the protrusions 26 made of a Hall IC or the like are detected by the protrusions 26. Thereby, the crank angle sensor 17 outputs a pulse signal (POS signal) as shown. Then, as the so-called tooth missing portion 28, the two protrusions 26 are removed at a specific part of 360 °, and thereby a singular portion serving as a reference for the angular position of the crankshaft 8 is configured.
  • POS signal pulse signal
  • the singular part may be a tooth missing part, or conversely, it may be configured by increasing the width (angle range) of some protrusions 26, or different pulses generated by another pickup part. It may be used.
  • the singular part is provided only at one place in 360 °. However, the singular part may be additionally provided in another place for the purpose different from the present invention. .
  • FIG. 3 is a waveform chart or time chart with the horizontal axis as the crank angle, and the uppermost line shows the first signal, that is, the POS signal obtained by the crank angle sensor 17 described above.
  • this POS signal basically comprises a pulse train of pulses every 10 ° CA, and includes a singular portion 28 ′ that appears every 360 ° CA, that is, a pulse defect portion. This singular part 28 'is easily identified by the difference between the pulses.
  • the first pulse that appears after the singular part 28 ′ is a reference pulse.
  • the crank angle of one reference pulse is shown as “0 ° CA” for convenience.
  • the POS signal is output as a pulse having a certain width as shown in the figure, but for control, the timing of the falling edge of the pulse is used. Means a signal having no width corresponding to the falling edge. Further, in the illustrated example, the pulse at every 10 ° CA output from the crank angle sensor 17 is used as it is as the POS signal, but the pulse at every 10 ° CA is further divided to obtain a pulse at a smaller unit crank angle. It is also possible to generate a POS signal as the signal.
  • the ignition order is “# 1 cylinder ⁇ # 2 cylinder ⁇ # 3 cylinder”, and FIG. 3 illustrates the timing of each compression top dead center. It is.
  • the singular part 28 ' corresponds to a specific phase position of a specific cylinder.
  • the reference pulse immediately after the singular part 28' is 180 ° CA before compression top dead center of the # 1 cylinder.
  • the position of the missing portion 28 of the crank angle sensor 17 is positioned with respect to the crankshaft 8 so as to correspond to the above.
  • the relative positional relationship between the position of the singular part 28 'and each top dead center position is not limited to this and can be arbitrarily set.
  • the crank angle sensor 17 makes one rotation at 360 ° CA and the singular part 28 ′ appears every 360 ° CA, the singular part 28 ′ is associated with the compression top dead center of the # 1 cylinder as described above. Even if the position is set, the phase position in one cycle of 720 ° CA cannot be specified by this alone.
  • the first reference pulse shown as “0 ° CA” appears at 180 ° CA before compression top dead center of the # 1 cylinder, but after the second reference after 360 ° CA. This pulse appears at 60 ° CA before the compression top dead center of the # 2 cylinder. Therefore, only the POS signal from the crank angle sensor 17 cannot identify the cylinder and specify the phase.
  • the counter PSCNT that counts the number of pulses of the POS signal.
  • the counter PSCNT is reset by the reference pulse immediately after the singular part 28 '. Therefore, the value indicates the current crank angle position with reference to the singular part 28' (more specifically, the reference pulse). It is.
  • FIG. 3 shows a second signal that periodically oscillates with a period corresponding to the number of cylinders.
  • this is a signal corresponding to the engine rotational speed that changes microscopically during the cycle, and in particular, every 10 ° CA corresponding to the POS signal, the crank angle change of 10 ° CA.
  • the actual time required for the calculation is calculated and plotted with the horizontal axis as the crank angle and the vertical axis as the time per unit crank angle. Accordingly, although it is a graph of discrete values in the strict sense, it is schematically drawn in a continuous shape with a smooth curve in FIG. 3 (the illustration below the peak of the valley is omitted).
  • the rotation speed is low at the mountain portion and high at the valley portion.
  • the graph of this illustrated example is essentially the same as the characteristic of the engine speed itself, but according to the method of calculating the real time every 10 ° CA corresponding to the POS signal as described above, the crank angle sensor 17 It is possible to obtain both the first signal and the second signal by using only the crank angle sensor 17 as a sensor. Therefore, only the crank angle sensor 17 has an advantage that the desired cylinder discrimination and phase position specification during the cycle can be completed.
  • the characteristics of the engine speed described above are basically the same regardless of cranking or motoring without explosion combustion or during normal operation with explosion combustion. In other words, when explosion combustion is involved, the speed in the combustion stroke increases, but the phase positions of the peaks and valleys hardly change, and the same vibration waveform is obtained.
  • the period of T1 to T6 shown in FIG. 3 is obtained by dividing the period of 720 ° CA every 120 ° CA.
  • the compression top dead center of each cylinder at which the rotational speed is most decreased From the 120 ° CA section (T2, T4, T6 in the figure) consisting of 60 ° CA before and after the center, and the remaining 120 ° CA section (T1, T3, T5 in the figure) sandwiched between these sections Become.
  • the sections T2, T4, T6 centered on the compression top dead center of each of the former cylinders include the peak portion of the vibration waveform of the second signal, and the latter sections T1, T3 and T5 include a trough portion of the vibration waveform.
  • the integrated value (the area shown by cross-hatching in the drawing) of the former sections T2, T4, and T6 is large, and the latter section T1. , T3, and T5 have a small integral value (area shown by hatching in the figure). Since the second signal of this embodiment is the actual time required for changing the crank angle every 10 ° CA as described above, the actual integration process uses the pulse of the POS signal as a trigger for 10 °. What is necessary is just to calculate a required real time for each CA and sequentially accumulate these.
  • an integral value in a certain section is compared with an integral value in a section before 360 ° CA.
  • the integral value of the section (T1 or T4) immediately after the singular part 28 ' is compared with the integral value of the section (T4 or T1) immediately after the singular part 28' before 360 ° CA.
  • the comparison between the two integral values may be a simple magnitude comparison as described above, or may be another method such as obtaining a ratio between the two. Further, in order to avoid erroneous determination, it is possible to hold final determination of cylinder discrimination when the difference between them or the ratio between the two is smaller than a predetermined value.
  • the integral values of two sections separated by 360 ° CA are compared, but the integral values of three or more sections may be compared. That is, if the current integrated value, the integrated value before 360 ° CA, and the integrated value before 360 ° CA are compared sequentially, they should change alternately, so for example, the current interval Is T1 or T4 with higher accuracy, and erroneous determination due to some disturbance can be avoided.
  • Cylinder discrimination is possible for the section T2 and the section T5 different from each other by 360 ° CA, or the section T3 and the section T6 by exactly the same processing.
  • the integral value of a certain interval is compared with the integral value of the immediately preceding interval adjacent thereto.
  • the integrated value of the section (T1 or T4) immediately after the singular part 28 ' is compared with the section (T6 or T3) immediately before that.
  • this interval is T4 instead of T1. Therefore, when integration and comparison of the two sections are completed (for example, immediately after the end of T4), it is possible to determine that the cylinder to be the next combustion stroke is the # 3 cylinder, and specify the current phase position of each cylinder. be able to. Conversely, if the current integration value is smaller than the integration value of the immediately preceding interval, this interval is identified as T1 instead of T4.
  • the comparison of the two integral values may be a simple magnitude comparison as described above, or may be another method such as obtaining the ratio between the two.
  • the integrated values of two adjacent sections are compared, but the integrated values of three or more adjacent sections may be compared.
  • these should change alternately, so that it is possible to more accurately identify whether the current section is T1 or T4, and due to some disturbance Misjudgment can be avoided.
  • the interval for performing the integration as described above does not actually need to be 120 ° CA obtained by dividing 720 ° CA into 6 parts, and the integration is performed for the interval corresponding to the peak portion and the valley portion of the second signal. It is sufficient that the temperature is 120 ° CA or more, or 120 ° CA or less, or it may be asymmetric with respect to the center of the section T1 to T6. Arrows A, B, and C in FIG. 3 show a preferable example of an actual integration interval in 360 ° CA.
  • the section A is a range of 80 ° CA from 10 ° CA to 90 ° CA when the reference pulse immediately after the singular part 28 ′ is 0 ° CA.
  • the section B is from 130 ° CA.
  • the range of 80 ° CA is up to 210 ° CA
  • the section C is the range of 80 ° CA from 250 ° CA to 330 ° CA.
  • the POS signal including the singular part 28 ′ is simply used as it is to calculate the required real time between pulses, and It is possible to integrate.
  • sections A, B, and C may be variably set according to engine operating conditions (cooling water temperature, oil temperature, hydraulic pressure, etc.).
  • the cylinder discrimination technique of the present invention can be applied to a case where the cam angle sensor that rotates once at 720 ° CA is not provided as in the above embodiment.
  • the cam angle sensor can be applied as a backup technique when the cam angle sensor fails or is abnormal. It can also be used for diagnosis of abnormality of the cam angle sensor.
  • the cylinder discrimination by the above method is executed in parallel during normal operation so that the sections A, B, and C are more appropriate. For example, learning correction can be made for engine temperature conditions and the like.
  • the actual time required for the change of the unit crank angle is calculated and sequentially integrated.
  • the ratio between the required actual time calculated once and the actual required time this time may be obtained, and this may be sequentially integrated as the second signal.
  • each time a POS signal is input a required time t n from the input of the previous POS signal to the input of the current POS signal is obtained, and the previous POS signal
  • the ratio (t n / t n-1 ) with the previous required time t n-1 obtained in the same manner at the time of input is obtained, and this is integrated sequentially to obtain the integrated value of each section. .
  • the second signal is substantially dimensionless, and the engine rotational speed is more macroscopic than the rotational speed fluctuation during the cycle.
  • the influence of the change of can be eliminated.
  • the engine rotational speed is large and changes rapidly, so that the accuracy of cylinder discrimination using the rotational speed fluctuation during the cycle is likely to decrease.
  • the influence can be suppressed as much as possible.
  • the fluctuation of the intake pipe pressure detected by the intake pressure sensor 15 can be used in addition to the rotation speed fluctuation as described above.
  • the intake pipe pressure in the collector 13 to which the intake passage 11 of each cylinder is connected oscillates periodically in response to the intake stroke of each cylinder.
  • the vibration characteristic is basically the same as the vibration waveform shown in FIG. 3, and it vibrates at a period corresponding to the number of cylinders reflecting the actual stroke of each cylinder. Therefore, the cylinder can be discriminated by the same method as in the above embodiment.
  • the integral value integrated on the basis of the crank angle is essentially unaffected by changes in the engine speed (macroscopic changes).
  • high accuracy can be obtained even in a situation where the engine speed changes greatly.
  • the present invention is not limited to the three-cylinder internal combustion engine of the above-described embodiment, and can be similarly applied as long as it has an odd-numbered cylinder such as a five-cylinder internal combustion engine. Since the odd-numbered cylinders only need to be sequentially subjected to the combustion stroke, the arrangement of the cylinders is not limited to the in-line multi-cylinder engine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

 内燃機関は奇数個の気筒を有する。360°CAのクランク角センサにより、10°CA毎のパルス列からなるPOS信号が得られる。このPOS信号は、クランク角センサの歯抜け部による360°CA毎の特異部28'を含む。第2の信号として、10°CA毎に、10°CAの変化に要した所要時間を求め、これを、区間A,B,Cについて積分する。各気筒の行程変化に応答して第2の信号は気筒数に応じた周期で振動するので、各々の積分値を比較することで、例えば区間T1とT4との識別がなされ、720°CAのカム角センサに依存せずに、360°CAのクランク角センサの信号のみで気筒判別が可能となる。

Description

[規則37.2に基づきISAが決定した発明の名称] 4ストロークサイクル内燃機関および4ストロークサイクル内燃機関の気筒判別方法
 この発明は、クランクシャフトの2回転(つまり720°CA(クランク角度))でもって1つのサイクルが完了する4ストロークサイクル内燃機関に関し、特に、3気筒、5気筒といった奇数個の気筒を備えた内燃機関における気筒判別技術に関する。
 特定の気筒に適切なタイミングで燃料噴射や点火等を行うために、多気筒内燃機関においては、次に燃焼行程となるべき気筒を判定する気筒判別が必要である。多くの4ストロークサイクル内燃機関では、クランクシャフトの回転位置を検出するクランク角センサに加えて、720°CAで1回転するカムシャフトに同期したカム角センサを備え、クランク角センサから得られる単位クランク角毎のパルス信号(いわゆるPOS信号)とカム角センサから得られる気筒間隔(例えば4気筒機関であれば180°CA)毎の各々異なるパルス信号(いわゆるPHASE信号)とによって、気筒判別ならびに各気筒の現時点のサイクル中の位相位置の特定を行うようになっている。
 これに対し、特許文献1には、奇数個の気筒を備えた4ストロークサイクル内燃機関において、カム角センサに依存せずに各気筒の位相位置を検出するようにした技術が開示されている。これは、いわゆる「歯抜け」と呼ばれるパルス欠損部を備えたクランク角センサからの単位クランク角毎のパルス信号のほかに、サイクルに関連して変動する吸気管圧力信号(あるいは回転数信号)を用い、360°CA毎に生じる上記の歯抜け部分付近での吸気管圧力信号の増加/減少の反転もしくは変化の極値(最小値ないし最大値)を求めることで、各気筒がいずれの行程にあるかを判定している。
 上記の特許文献1の技術においては、吸気管圧力信号(あるいは回転数信号)を時間に関して微分することで、その勾配を求め、上記のように歯抜け部分付近での吸気管圧力信号の増加/減少の反転もしくは最小値ないし最大値を検出しているが、このような手法では、吸気管圧力信号等の不可避的な乱れによって多数の極値(つまり増加/減少の反転)が検出されてしまったり、吸気管圧力信号等の位相の僅かなずれによって、歯抜け部分の狭い範囲での勾配が逆になったりすることがあるため、検出の信頼性が低く、確実な気筒判別を行うことができない。
 また、時間に関して微分することから、吸気管圧力信号を対象とした場合でも機関回転速度の影響が不可避的に生じ、例えば機関の始動に際してクランキングされているような状況では、機関回転速度の急激な上昇ないし変動により検出精度がさらに低下する。
特許第3998719号公報
 本発明に係る4ストロークサイクル内燃機関は、奇数個の気筒を備えたものであって、
 クランクシャフトの回転に対し、特定の気筒の特定の位置に対応する特異部を含む一定クランク角毎のパルス列からなる第1の信号を出力するクランク角センサと、
 クランクシャフトの回転に対し、各気筒の実際の行程に関連して気筒数に対応した周期でもって周期的に振動する第2の信号を生成する手段と、
 上記第2の信号の山もしくは谷の部分を含むように、上記特異部を基準として予め設定された少なくとも2つの区間について上記第2の信号を積分する手段と、
 これらの積分値の比較に基づき、気筒判別を行う手段と、
 を備える。
 同様に、本発明に係る奇数個の気筒を備えた4ストロークサイクル内燃機関の気筒判別方法は、クランク角360°毎の特異部を含む一定クランク角毎のパルス列からなる第1の信号と、気筒数に対応して周期的に振動する第2の信号と、から気筒判別を行う気筒判別方法において、
 上記第2の信号の山もしくは谷の部分について少なくとも2つの積分値を求め、これらの積分値の比較に基づき、クランク角720°のサイクルに対する上記特異部の位置を特定する。
 上記第2の信号としては、例えば、各気筒の吸気弁の開閉(つまり各気筒の吸気行程)に相関して変動する吸気管圧力、あるいは、各気筒の圧縮行程での反力等に相関して微視的に変動する回転速度、等を用いることができるが、これは気筒数に対応して周期的に振動変化するので、例えば2つの区間について積分値を求め、これらを比較すれば、いずれの区間が振動の山に相当するか谷に相当するか、あるいは直前の区間が振動の山であったのか谷であったのか、が確実に判別され、第1の信号の特異部の位置と合わせて、気筒判別が可能である。
 この発明によれば、第2の信号の乱れや位相の多少のずれに影響されることなく、カム角センサに依存しない気筒判別が確実に実現される。
この発明に係る4ストロークサイクル内燃機関の一実施例を示す構成説明図。 この実施例に用いられるクランク角センサを模式的に示した説明図。 第1の信号および第2の信号を示す波形図。
 図1は、この発明を火花点火式4ストロークサイクル内燃機関に適用した一実施例を示す構成説明図である。この実施例では、内燃機関1は、直列に配置された3個の気筒2を備え、各々の気筒2に、燃焼室4を画成するピストン3が摺動可能に嵌合しているとともに、中央に点火プラグ5が配置されている。上記燃焼室4には、排気弁6を介して排気通路7が接続され、また吸気弁10を介して吸気通路11が接続されている。この吸気通路11には、燃料噴射弁12が吸気弁10へ向けて各気筒毎に配置されており、さらにコレクタ13の上流側に、スロットル弁14が介装されている。
 上記スロットル弁14の開度は、スロットル弁開度センサ16によって検出される。また上記コレクタ13には、吸気管圧力としてコレクタ13内の圧力を検出する吸気圧センサ15が設けられている。そして、クランクシャフト8の端部には、該クランクシャフト8の角度位置を検出するために後述するクランク角センサ17が設けられている。これらのセンサ類の検出信号は、それぞれエンジンコントロールユニット18に入力されている。エンジンコントロールユニット18は、これらの検出信号に基づき、燃料噴射弁12による燃料噴射量ならびに噴射時期、点火プラグ5の点火時期等を総合的に制御している。さらに、この内燃機関1は、公知のスタータモータ20を具備し、スタータスイッチ19の信号に基づいて該スタータモータ20が作動する。
 また上記排気弁6および吸気弁10は、それぞれ排気側カムシャフト21および吸気側カムシャフト22によって開閉駆動される。これらのカムシャフト21,22は、クランクシャフト8に連動して、該クランクシャフト8の1/2の速度で駆動され、720°CAで1回転するようになっている。特に、本実施例では、いわゆるカム角センサは具備していない。
 なお、この実施例は、火花点火式内燃機関を例としているが、本発明は、4ストロークサイクルのディーゼル機関においても全く同様に適用できる。
 図2は、上記クランク角センサ17の構成を示すものであって、このクランク角センサ17は、クランクシャフト8端部に固定された円形のシグナルプレート25の周囲に、一定間隔、例えば10°間隔でもって多数の突起26を備え、この突起26をホールIC等からなるピックアップ部27が検出する。これにより、クランク角センサ17は、図示するようなパルス信号(POS信号)を出力する。そして、いわゆる歯抜け部28として、360°の中の特定の一部で、2つの突起26を除去してあり、これによってクランクシャフト8の角度位置の基準となる特異部が構成されている。なお、この特異部としては、歯抜け部とするほか、逆に一部の突起26の幅(角度範囲)を大きくするなどによって構成することもでき、あるいは別のピックアップ部によって生成した異なるパルスを用いてもよい。また、上記実施例では、360°の中の1箇所にのみ特異部が設けられているが、本発明とは異なる目的でさらに他の箇所に特異部を付加的に具備することも可能である。
 次に、図3に基づいて、本発明の気筒判別について説明する。
 この図3は、横軸をクランク角として示した波形図ないしタイムチャートであって、最上段は、第1の信号つまり上述したクランク角センサ17によって得られるPOS信号を示している。図示するように、このPOS信号は、基本的に10°CA毎のパルスのパルス列からなり、360°CA毎に出現する特異部28’つまりパルス欠損部を含んでいる。この特異部28’は、パルス間の間隔が他と異なることによって容易に識別される。この特異部28’の後に最初に出現するパルスが基準のパルスであり、図3では、便宜上、1つの基準のパルスのクランク角を、「0°CA」として示してある。なお、POS信号は図示するようにある程度の幅を有するパルスとして出力されるが、制御上は、そのパルスの立ち下がりのタイミングが利用されるので、以下の説明では、基本的に「パルス」とは上記の立ち下がりに相当する幅のない信号を意味する。また、図示例では、クランク角センサ17が出力する10°CA毎のパルスをそのままPOS信号として用いているが、10°CA毎のパルスをさらに分周して、より小さな単位クランク角毎のパルス信号としてPOS信号を生成することも可能である。
 実施例の直列3気筒内燃機関においては、その点火順は、「♯1気筒→♯2気筒→♯3気筒」の順であり、図3には、各々の圧縮上死点のタイミングを図示してある。そして、特異部28’は、特定の気筒の特定の位相位置に対応しており、例えばこの実施例では、特異部28’直後の基準のパルスが♯1気筒の圧縮上死点前180°CAに対応するように、クランク角センサ17の歯抜け部28の位置がクランクシャフト8に対し位置決めされている。なお、このような特異部28’の位置と各上死点位置との相対的な位置関係は、これに限定されずに任意に設定できるものである。
 ここで、クランク角センサ17は360°CAで1回転し、特異部28’は360°CA毎に出現するので、上記のように♯1気筒の圧縮上死点に関連付けて特異部28’の位置を設定しても、720°CAの1サイクル中における位相位置は、これのみでは特定することができない。例えば、図3の例では、「0°CA」として示す最初の基準のパルスが出現するのは、♯1気筒の圧縮上死点前180°CAであるが、360°CA後に2回目の基準のパルスが出現するのは、♯2気筒の圧縮上死点前60°CAであるから、クランク角センサ17からのPOS信号のみでは、気筒判別ならびに位相の特定はできない。
 図3の中段は、上記のPOS信号のパルス数をカウントするカウンタPSCNTの値を示している。このカウンタPSCNTは、特異部28’直後の上記の基準のパルスによってリセットされ、従って、その値によって、上記特異部28’(より詳しくは基準のパルス)を基準とした現時点のクランク角位置が示される。
 図3の下段は、気筒数に対応した周期でもって周期的に振動する第2の信号を示している。本実施例では、これはサイクル中に微視的に変化する機関回転速度に相当する信号であって、特に、上記のPOS信号に対応した10°CA毎に、その10°CAのクランク角変化に要した実時間を演算し、横軸をクランク角、縦軸を単位クランク角当たりの時間としてプロットしたものである。従って、厳密には離散的な値のグラフとなるが、図3では、滑らかな曲線で連続した形に模式的に描いてある(谷のピークより下部は図示省略してある)。すなわち、1つの気筒についてみると、圧縮仕事によって圧縮上死点付近で微視的に回転速度が低下する。そして、3気筒機関では、240°CAずつずれて各気筒が圧縮上死点となるので、720°CAの間に3つの山および3つの谷を有する振動波形が得られる。従って、この振動波形は、クランクシャフト8の回転に対する各気筒の実際の行程を反映したものと言え、かつ気筒数に対応した周期となるが、気筒数が奇数であることから、図3から明らかなように、360°CA単位で区切ってみると、互いに異なる振動波形となる。
 なお、容易に理解できるように、図示例のグラフでは、回転速度としては、山の部分で速度が低く、谷の部分で速度が高い。この図示例のグラフは、機関回転速度そのものの特性と本質的に変わりはないが、上記のようにPOS信号に対応した10°CA毎に実時間を演算する方法によれば、クランク角センサ17以外の回転速度検出手段に依存することがなく、センサとして実質的にクランク角センサ17のみでもって第1の信号と第2の信号の双方を得ることができる。従ってクランク角センサ17のみで所期の気筒判別ならびにサイクル中の位相位置の特定が完結する利点がある。
 また、上記の機関回転速度の特性は、爆発燃焼を伴わないクランキングないしモータリングであっても、爆発燃焼を伴う通常の運転中であっても、基本的に変わりがない。つまり、爆発燃焼を伴う場合は、燃焼行程での速度が大となるが、山および谷の位相位置は殆ど変化せず、同様の振動波形となる。
 図3に示すT1~T6の区間は、説明の便宜のために、720°CAの期間を120°CA毎に区切ったものであり、特に、最も回転速度が低下する各気筒の圧縮上死点を中心とした前後60°CAからなる120°CAの区間(図のT2,T4,T6)とこれらの区間に挟まれた残りの120°CAの区間(図のT1,T3,T5)とからなる。図から明らかなように、前者の各気筒の圧縮上死点を中心とした区間T2,T4,T6は、第2の信号の振動波形の山の部分を含んだものとなり、後者の区間T1,T3,T5は、振動波形の谷の部分を含んだものとなる。従って、各区間において、クランク角ベースで第2の信号を積分すると、前者の区間T2,T4,T6の積分値(図中にクロスハッチングを施して示す面積)は大であり、後者の区間T1,T3,T5の積分値(図中にハッチングを施して示す面積)は小である。なお、この実施例の第2の信号は、上述したように10°CA毎のクランク角変化に要した実時間であるから、実際の積分処理としては、POS信号のパルスをトリガとして、10°CA毎に所要の実時間を演算し、かつこれを順次積算していけばよい。
 本発明の一つの態様では、ある区間の積分値が、これよりも360°CA前の区間の積分値と比較される。例えば、特異部28’直後の区間(T1もしくはT4)の積分値が、360°CA前の同じく特異部28’直後の区間(T4もしくはT1)の積分値と比較される。この比較の結果、360°CA前の積分値よりも今回の積分値が大となっていれば、この区間は、T1ではなくT4であることが明確となる。従って、この積分ならびに比較が終了した時点(例えばT4の終了直後)で、次に燃焼行程となる気筒が♯3気筒であると判別でき、かつ現時点の各気筒の位相位置を特定することができる。また逆に360°CA前の積分値よりも今回の積分値が小であれば、この区間は、T4ではなくT1であると識別される。
 2つの積分値の比較としては、上記のような単なる大小比較でもよく、あるいは両者の比を求めるなど他の手法でもよい。また誤判定を回避するために、両者の差あるいは両者の比が所定値よりも小さい場合に気筒判別の最終的な確定を保留するなども可能である。
 このように、360°CA離れた複数の区間の積分値を比較する方法では、クランク角センサ17ならびにクランクシャフト8の角度範囲としては全く同じ区間の積分値同士を対比することとなり、種々の要因による誤差が互いに相殺される。従って、気筒判別の精度がより高く得られる利点がある。
 上記の例では、360°CA離れた2つの区間の積分値を比較しているが、3つ以上の区間の積分値を比較するようにしてもよい。つまり、今回の積分値と、360°CA前の積分値と、さらに360°CA前の積分値と、を順次比較すれば、これらは、交互に大小変化するはずであるから、例えば今回の区間がT1であるのかT4であるのかをより高精度に識別でき、何らかの外乱による誤判定を回避できる。
 360°CA異なる区間T2と区間T5とについて、あるいは、区間T3と区間T6とについても、全く同様の処理によって、気筒判別が可能である。特異部28’を基準としたこれらの区間T2(T5)および区間T3(T6)の位置は、カウンタPSCNTの値によって特定される。従って、クランクシャフト8が120°CA回転するたびに、繰り返し気筒判別を行うことが可能である。
 本発明の他の態様では、ある区間の積分値が、これに隣接する直前の区間の積分値と比較される。例えば、特異部28’直後の区間(T1もしくはT4)の積分値が、その直前の区間(T6もしくはT3)と比較される。この比較の結果、直前の区間の積分値よりも今回の積分値が大となっていれば、この区間は、T1ではなくT4であることが明確となる。従って、2つの区間の積分ならびに比較が終了した時点(例えばT4の終了直後)で、次に燃焼行程となる気筒が♯3気筒であると判別でき、かつ現時点の各気筒の位相位置を特定することができる。また逆に直前の区間の積分値よりも今回の積分値が小であれば、この区間は、T4ではなくT1であると識別される。
 2つの積分値の比較としては、前記と同様に、単なる大小比較でもよく、あるいは両者の比を求めるなど他の手法でもよい。また誤判定を回避するために、両者の差あるいは両者の比が所定値よりも小さい場合に気筒判別の確定を保留するなども可能である。
 このように、前後に連続した複数の区間の積分値を比較する方法では、クランクシャフト8の1回転を要さずに相対的に短期間で積分値の比較を完了することができる。そのため、始動時の最初の気筒判別には有利であり、また機関回転速度の巨視的な変化(例えば機関の加速、減速による変化)の影響を受けにくいものとなる。
 なお、上記の例では、隣接する2つの区間の積分値を比較しているが、隣接した3つ以上の区間の積分値を比較するようにしてもよい。例えば図の区間T1,T2,T3に示すように、これらは、交互に大小変化するはずであるから、今回の区間がT1であるのかT4であるのかをより高精度に識別でき、何らかの外乱による誤判定を回避できる。
 上記のような積分を行う区間は、実際には、720°CAを6等分した120°CAである必要はなく、第2の信号の山の部分および谷の部分に概ね対応した区間について積分を行えば足り、120°CA以上の範囲であっても120°CA以下の範囲であってもよく、また上述したT1~T6の区間の中心に対し非対称であってもよい。図3の矢印A,B,Cは、360°CA中の実際の積分区間の好ましい一例を示している。区間Aは、特異部28’直後の基準のパルスを0°CAとしたときに、10°CAから90°CAまでの80°CAの範囲であり、同様に、区間Bは、130°CAから210°CAまでの80°CAの範囲であり、区間Cは、250°CAから330°CAまでの80°CAの範囲である。この設定例では、積分区間Cがパルスの出現しない特異部28’と重ならないことから、特異部28’を含むPOS信号をそのまま単純に利用して、パルス間の所要実時間を演算し、かつ積分していくことが可能である。
 さらに、上記の区間A,B,Cを、機関運転条件(冷却水温、油温、油圧等)に応じて可変的に設定するようにしてもよい。
 以上、本発明の一実施例を説明したが、本発明の気筒判別技術は、上記実施例のように720°CAで1回転するカム角センサを具備しない場合に適用できるのは勿論であるが、従前のようにクランク角センサ17のほかにカム角センサを具備する構成において、カム角センサの故障ないし異常時に、そのバックアップ用の技術として適用することができる。また、カム角センサの異常の診断に利用することも可能である。なお、このようにカム角センサを備えたものなどでは、通常の運転中に上記の手法による気筒判別を併行して実行し、上記区間A,B,Cがより適切なものとなるように、例えば機関温度条件等に対して学習補正することが可能である。
 ところで、上記の図3の実施例では、単位クランク角(例えば10°CA)毎に、該単位クランク角の変化に要した実時間を演算し、これを順次積算しているが、これに代えて、1回前に演算した所要実時間と今回の所要実時間との比を求め、これを第2の信号として順次積算していくようにしてもよい。具体的には、区間A,B,Cの間、POS信号の入力のたびに、前回のPOS信号の入力から今回のPOS信号の入力までの所要時間tnを求め、かつ前回のPOS信号の入力の際に同様に求めていた前回の所要時間tn-1との比(tn/tn-1)を求め、これを順次積算していくことで、各々の区間の積分値とする。
 このように単位クランク角の実時間の比を第2の信号として用いるようにすれば、第2の信号が実質的に無次元化され、サイクル中の回転速度変動よりも巨視的な機関回転速度の変化の影響を排除することができる。例えば、機関始動の際にスタータモータ20によりクランキングされている状況では、機関回転速度が大きくかつ急激に変化するので、サイクル中の回転速度変動を利用した気筒判別の精度が低下し易いが、上記のように実時間の比を用いることで、その影響を可及的に抑制できる。
 本発明における第2の信号としては、上記のような回転速度変動のほかに、吸気圧センサ15によって検出される吸気管圧力の変動を用いることができる。各気筒の吸気通路11が接続されたコレクタ13内の吸気管圧力は、各気筒の吸気行程に応答して周期的に振動する。その振動特性は、図3に示した振動波形と基本的に同様であり、各気筒の実際の行程を反映して気筒数に対応した周期で振動する。従って、上記実施例と全く同様の手法により気筒判別が可能である。但し、吸気管圧力の場合には、実際の行程と圧力振動の山・谷との間に吸気管長に対応した遅れが生じるので、これを考慮して積分値区間A,B,Cを設定する必要があり、さらに、この遅れは実時間であることから機関回転速度に応じて補正を加えることが望ましい。
 このような吸気管圧力を利用した方法では、クランク角ベースで積分される積分値は、本質的に機関回転速度の変化(巨視的な変化)による影響を受けないので、例えばクランキング時のように機関回転速度が大きく変化する状況でも高い精度を得ることができる。
 本発明は、上記実施例の3気筒内燃機関に限らず、5気筒内燃機関など奇数気筒を有するものであれば、同様に適用が可能である。そして、奇数気筒が順次燃焼行程となればよいので、気筒の配列としても直列多気筒機関に限定されることはない。

Claims (6)

  1.  クランクシャフトの回転に対し、特定の気筒の特定の位置に対応する特異部を含む一定クランク角毎のパルス列からなる第1の信号を出力するクランク角センサと、
     クランクシャフトの回転に対し、各気筒の実際の行程に関連して気筒数に対応した周期でもって周期的に振動する第2の信号を生成する手段と、
     上記第2の信号の山もしくは谷の部分を含むように、上記特異部を基準として予め設定された少なくとも2つの区間について上記第2の信号を積分する手段と、
     これらの積分値の比較に基づき、気筒判別を行う手段と、
     を備えてなる奇数個の気筒を備えた4ストロークサイクル内燃機関。
  2.  クランク角として360°ずつ異なる少なくとも2つの区間での積分値を用いる請求項1に記載の4ストロークサイクル内燃機関。
  3.  第1の山もしくは谷を含む第1の区間と、この第1の山もしくは谷に続く第2の谷もしくは山を含む第2の区間と、を含む少なくとも2つの区間での積分値を用いる請求項1に記載の4ストロークサイクル内燃機関。
  4.  上記の積分値は、所定の単位クランク角毎に、この単位クランク角の角度変化に要した実時間を積算していくことによって求められる請求項1~3のいずれかに記載の4ストロークサイクル内燃機関。
  5.  上記の積分値は、所定の単位クランク角毎に、前回の単位クランク角の角度変化に要した実時間と今回の単位クランク角の角度変化に要した実時間との比を積算していくことによって求められる請求項1~3のいずれかに記載の4ストロークサイクル内燃機関。
  6.  奇数個の気筒を備え、クランク角360°毎の特異部を含む一定クランク角毎のパルス列からなる第1の信号と、気筒数に対応して周期的に振動する第2の信号と、から気筒判別を行う4ストロークサイクル内燃機関の気筒判別方法において、
     上記第2の信号の山もしくは谷の部分について少なくとも2つの積分値を求め、これらの積分値の比較に基づき、クランク角720°のサイクルに対する上記特異部の位置を特定する4ストロークサイクル内燃機関の気筒判別方法。
PCT/JP2010/071872 2010-02-26 2010-12-07 4ストロークサイクル内燃機関および4ストロークサイクル内燃機関の気筒判別方法 WO2011104973A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP10846636.8A EP2541029B1 (en) 2010-02-26 2010-12-07 Four-stroke cycle internal combustion engine and method of identifying cylinder of four-stroke cycle internal combustion engine
CN201080064316.7A CN102770653B (zh) 2010-02-26 2010-12-07 4冲程循环内燃机的气缸判别
US13/579,660 US8914218B2 (en) 2010-02-26 2010-12-07 Four-stroke cycle internal combustion engine and method of identifying cylinder of four-stroke cycle internal combustion engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010042568A JP5359932B2 (ja) 2010-02-26 2010-02-26 4ストロークサイクル内燃機関およびその気筒判別方法
JP2010-042568 2010-02-26

Publications (1)

Publication Number Publication Date
WO2011104973A1 true WO2011104973A1 (ja) 2011-09-01

Family

ID=44506409

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/071872 WO2011104973A1 (ja) 2010-02-26 2010-12-07 4ストロークサイクル内燃機関および4ストロークサイクル内燃機関の気筒判別方法

Country Status (5)

Country Link
US (1) US8914218B2 (ja)
EP (1) EP2541029B1 (ja)
JP (1) JP5359932B2 (ja)
CN (1) CN102770653B (ja)
WO (1) WO2011104973A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5884589B2 (ja) * 2012-03-23 2016-03-15 アイシン精機株式会社 エンジン制御装置
CN104100379B (zh) * 2013-04-01 2017-02-08 北汽福田汽车股份有限公司 一种发动机配气系统及其发动机判定相位的方法
JP2015014283A (ja) * 2013-06-06 2015-01-22 三菱重工業株式会社 4サイクルエンジンの制御システム
KR101855779B1 (ko) * 2016-12-13 2018-06-20 현대자동차 주식회사 하이브리드 차량의 진동 제어 장치 및 방법
SE541683C2 (en) * 2016-12-19 2019-11-26 Scania Cv Ab Cylinder Detection in a Four-stroke Internal Combustion Engine
DE102018200526A1 (de) * 2018-01-15 2019-07-18 Robert Bosch Gmbh Verfahren zum Erkennen einer Startart einer Verbrennungskraftmaschine
DE102018200521A1 (de) * 2018-01-15 2019-07-18 Robert Bosch Gmbh Verfahren zur Bestimmung einer Position einer Verbrennungskraftmaschine
CN108397304B (zh) * 2018-03-29 2020-03-31 浙江雷亚电子有限公司 事件驱动下的电喷si发动机喷气点火同步控制方法
CN109869230A (zh) * 2018-12-26 2019-06-11 华北水利水电大学 多功能发动机缸内压力采集触发信号分频系统
CN111140353B (zh) * 2019-12-16 2021-06-22 潍柴动力股份有限公司 发动机缸数的测试方法及测试装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH086633B2 (ja) * 1986-04-04 1996-01-29 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 内燃機関のシリンダの作業行程を検出する方法
JPH10122026A (ja) * 1996-10-22 1998-05-12 Mitsubishi Motors Corp 気筒識別装置
JP2000352348A (ja) * 1999-06-09 2000-12-19 Suzuki Motor Corp 内燃機関の気筒判別装置
JP2005240606A (ja) * 2004-02-25 2005-09-08 Denso Corp 内燃機関のクランク角判別装置
JP3998719B2 (ja) 1996-09-18 2007-10-31 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 4サイクル内燃機関における位相位置を求めるための方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0668252B2 (ja) * 1989-11-24 1994-08-31 三菱電機株式会社 内燃機関の気筒識別装置
US5271362A (en) * 1990-06-27 1993-12-21 Toyota Jidosha Kabushiki Kaisha Two-stroke engine
JPH10196443A (ja) * 1997-01-08 1998-07-28 Hitachi Ltd 内燃機関の気筒判定制御装置
FR2821887B1 (fr) * 2001-03-07 2003-08-15 Siemens Automotive Sa Procede de detection de la phase du cycle d'un moteur a combustion interne a nombre de cylindres impair
JP4174061B2 (ja) * 2006-03-23 2008-10-29 本田技研工業株式会社 ハイブリッド車両の能動型制振制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH086633B2 (ja) * 1986-04-04 1996-01-29 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 内燃機関のシリンダの作業行程を検出する方法
JP3998719B2 (ja) 1996-09-18 2007-10-31 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 4サイクル内燃機関における位相位置を求めるための方法
JPH10122026A (ja) * 1996-10-22 1998-05-12 Mitsubishi Motors Corp 気筒識別装置
JP2000352348A (ja) * 1999-06-09 2000-12-19 Suzuki Motor Corp 内燃機関の気筒判別装置
JP2005240606A (ja) * 2004-02-25 2005-09-08 Denso Corp 内燃機関のクランク角判別装置

Also Published As

Publication number Publication date
JP2011179354A (ja) 2011-09-15
CN102770653A (zh) 2012-11-07
JP5359932B2 (ja) 2013-12-04
US20130041569A1 (en) 2013-02-14
CN102770653B (zh) 2015-07-29
EP2541029B1 (en) 2020-08-19
EP2541029A4 (en) 2018-03-14
US8914218B2 (en) 2014-12-16
EP2541029A1 (en) 2013-01-02

Similar Documents

Publication Publication Date Title
JP5359932B2 (ja) 4ストロークサイクル内燃機関およびその気筒判別方法
US9399963B2 (en) Misfire detection system
US8667835B2 (en) Method and system for diagnosing cylinder valve activation/deactivation
JP3839119B2 (ja) 4サイクルエンジンの行程判別装置
US9347413B2 (en) Method and control unit for controlling an internal combustion engine
JP6497312B2 (ja) 失火検出装置
JP6130124B2 (ja) 多気筒エンジンの制御装置
JP7370047B2 (ja) エンジンの失火診断検出方法
EP2556232B1 (en) Injection control method
WO2014061405A1 (ja) 内燃機関の筒内圧検出装置
US20180128712A1 (en) Misfire determination device and misfire determination method of internal combustion engine
EP1541846A1 (en) Engine controller
JP4317842B2 (ja) 圧力状態検出装置の異常判定装置
JP2015197074A (ja) 内燃機関の制御装置
JP4507201B2 (ja) 多気筒内燃機関の制御装置
CN109209666B (zh) 用于强化防发动机熄火的方法以及车辆
JP4207579B2 (ja) 多気筒内燃機関の失火検出装置
JP4313733B2 (ja) エンジンの気筒判定装置
JP5343926B2 (ja) 内燃機関の制御装置
JP6415415B2 (ja) 内燃機関の燃焼状態推定装置
JP4321449B2 (ja) 内燃機関の気筒判定装置
JP2013053554A (ja) 内燃機関の制御装置
RU2242734C2 (ru) Способ определения фазы рабочего цикла двс
JP2024000106A (ja) 内燃機関の失火判定装置
JP2019203468A (ja) 内燃機関の制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080064316.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10846636

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13579660

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010846636

Country of ref document: EP