WO2011104855A1 - Retardation film and method for producing retardation film - Google Patents

Retardation film and method for producing retardation film Download PDF

Info

Publication number
WO2011104855A1
WO2011104855A1 PCT/JP2010/053057 JP2010053057W WO2011104855A1 WO 2011104855 A1 WO2011104855 A1 WO 2011104855A1 JP 2010053057 W JP2010053057 W JP 2010053057W WO 2011104855 A1 WO2011104855 A1 WO 2011104855A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
acid
retardation
retardation film
tear strength
Prior art date
Application number
PCT/JP2010/053057
Other languages
French (fr)
Japanese (ja)
Inventor
高木 隆裕
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Priority to JP2012501585A priority Critical patent/JP5637207B2/en
Priority to PCT/JP2010/053057 priority patent/WO2011104855A1/en
Publication of WO2011104855A1 publication Critical patent/WO2011104855A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/02Halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/101Esters; Ether-esters of monocarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/53Phosphorus bound to oxygen bound to oxygen and to carbon only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/08Cellulose derivatives
    • C08J2301/10Esters of organic acids
    • C08J2301/12Cellulose acetate

Definitions

  • the present invention relates to a retardation film using a cellulose acetate film, a polarizing plate using the same, a liquid crystal display device, and a method for producing a cellulose acetate film, and particularly when used as a retardation film for a liquid crystal display device.
  • a retardation film capable of improving viewing angle characteristics by exhibiting a good optical compensation function, exhibiting excellent contrast, and being excellent in physical isotropy, a polarizing plate and a liquid crystal display using the same Relates to the device.
  • Liquid crystal display devices are widely used in monitors for personal computers and portable devices, and for television applications because of their various advantages such as low voltage and low power consumption, and enabling miniaturization and thinning.
  • liquid crystal display devices for television that are expected to be viewed from various angles on a large screen have severe demands for viewing angle dependency, and recently, the performance requirements for liquid crystal display devices for monitors are also increasing.
  • a liquid crystal display device is composed of a liquid crystal cell, a retardation film (also called a retardation plate) for improving viewing angle characteristics, and a polarizing plate.
  • the phase difference film is used to eliminate image coloring or enlarge the viewing angle.
  • a film provided with birefringence by stretching a resin film is attached to a polarizing plate, or isotropic.
  • a technique for providing birefringence as a retardation film by providing a protective film for polarizing plate with a liquid crystal layer in which liquid crystal molecules are aligned in an arbitrary direction is known.
  • Patent Document 1 discloses a technique in which a retardation film obtained by stretching a mixed fatty acid ester film of cellulose in the width direction is applied to a VA mode liquid crystal cell to widen the viewing angle.
  • Patent Document 2 there is described a retardation film in which a desired retardation value is given by adding a retardation increasing agent to cellulose triacetate.
  • the film is stretched at a high magnification in order to obtain a desired in-plane and depth retardation, or a cited document. It was necessary to add an additive such as a retardation increasing agent as in 2.
  • each polarizing plate is usually arranged so that the absorption axes of the polarizers are orthogonal to each other.
  • a retardation film is disposed on the liquid crystal cell side of each polarizing plate, but the two retardation films sandwiching the liquid crystal cell are so that the in-plane retardation directions are orthogonal to each other like the polarizer. Need to be placed in.
  • Patent Document 3 a technique has been proposed for making the physical properties in the MD direction and TD direction more equal under the retardation film processing condition atmosphere.
  • An object of the present invention is to provide a long retardation film that is physically stable under any environmental conditions during manufacturing and processing.
  • the object of the present invention was achieved by the following.
  • the in-plane retardation Ro represented by the following formula is 30 to 150 nm, and the ratio Rth / Ro between the thickness direction retardation Rth and the in-plane retardation Ro is greater than 0.8 and less than 5.
  • d the thickness (nm) of the retardation film
  • nx is the maximum refractive index in the plane of the film
  • ny is the refractive index in the direction perpendicular to the nx direction in the film plane
  • nz is the thickness. Represents the refractive index of the film in the direction.
  • the wavelength is 590 nm.
  • the tear strength in the film transport direction (MD direction) and the tear strength in the same width direction (TD direction) are both 30 mN or more and 120 mN or less at 60 ° C. and 10% RH. 2.
  • the retardation film as described in 1 above.
  • a cellulose acetate dope having an acetyl group substitution degree of 2.1 or more and 2.6 or less is prepared, the dope is cast on a metal support, the casting film is peeled off as a film from the support, and the peeled film
  • a method for producing a retardation film wherein a drying temperature is in a range of 140 ° C. to 200 ° C. in a gripping section, and a tension applied in a film width direction is 30 N / m or more and less than 100 N / m.
  • a specific additive is contained in cellulose acetate having an acetyl group substitution degree of 2.1 or more and 2.6 or less, and production conditions within a predetermined range are used.
  • the in-plane retardation Ro is 30 to 150 nm, and the ratio Rth / Ro between the thickness direction retardation Rth and the in-plane retardation Ro is greater than 0.8 and more than 5. It has been found that a small retardation film can be produced without greatly different physical properties in the long direction and the width direction.
  • the ratio of tear strength in the longitudinal direction (also referred to as MD direction) to the width direction (also referred to as TD direction) (Tear strength in MD direction / TD direction) It was found that a retardation film having a tear strength of 0.8 to 1.2 can be obtained.
  • the in-plane retardation Ro represented by the following formula is 30 to 150 nm, and the ratio Rth / Ro between the thickness direction retardation Rth and the in-plane direction retardation Ro is as follows.
  • ⁇ Tear strength> A normal retardation film is subjected to a stretching process in the production process for adjusting the retardation, which causes a difference in physical properties between the MD direction and the TD direction.
  • retardation is achieved.
  • the physical properties in the MD direction and the TD direction can be made uniform during manufacturing and processing while expressing.
  • the ratio between the tear strength in the longitudinal direction (MD direction) and the tear strength in the same width direction (TD direction) under the conditions of 23 ° C. and 55% RH and 60 ° C. and 10% RH: (MD direction tear strength) / TD direction tear strength) is 0.8 to 1.2 in all cases.
  • the tear strength at 23 ° C. and 55% RH is 40 mN or more and 150 mN or less, preferably 50 mN or more and 130 mN or less. In 60 degreeC10% RH, it is 30 mN or more and 120 mN or less, Preferably it is 40 mN or more and 120 mN or less.
  • the tear strength can be measured with a light weight tear device manufactured by Toyo Seiki Co., Ltd. according to the elemendorf method JIS K 7128 / 2-1991.
  • Ro is preferably in the range of 40 nm to 100 nm. Is more preferably 40 nm or more and 80 nm or less, and particularly preferably 45 nm or more and 60 nm or less.
  • Rth is preferably in the range of 90 nm to 300 nm, more preferably 90 nm to 200 nm, and particularly preferably 100 nm to 130 nm.
  • the cellulose acetate of the present invention has a acetyl group substitution degree of 2.1 to 2.6.
  • the degree of acetyl group substitution is determined by the method prescribed in ASTM-D817-96.
  • the cellulose acetate ⁇ of the present invention preferably has a 6% viscosity of 70 to 250 mPa ⁇ s, more preferably 80 to 220 mPa ⁇ s.
  • 6% viscosity can be measured by the following method.
  • the 6% viscosity is measured with an Ostwald viscometer using a 95% acetone solution having a concentration of 6% by mass of cellulose acetate at 25 ° C. ⁇ 1 ° C.
  • 6% viscosity (mPa ⁇ s) flow time (s) ⁇ viscosity coefficient
  • the viscometer coefficient is obtained by measuring the flow time by the same operation as described above using a viscometer calibration standard solution.
  • Viscometer coefficient ⁇ standard solution absolute viscosity (mPa ⁇ s) ⁇ solution density (0.827 g / cm 3 ) ⁇ / ⁇ standard solution density (g / cm 3 ) ⁇ standard solution flow time (s) ⁇
  • the cellulose acetate of the present invention has a 6% viscosity lower than that of cellulose acetate ⁇ , and is preferably 40 to 80 mPa ⁇ s. Cellulose acetate can be further mixed.
  • the cellulose acetate of the present invention can be produced by a conventional method such as a sulfuric acid catalyst method, an acetic acid method, or a methylene chloride method, and the raw material is preferably wood pulp.
  • Cellulose acetate is usually pulp (cellulose) activated with acetic acid or the like (activation step), and then triacetate is prepared with acetic anhydride using a sulfuric acid catalyst (acetylation step). It can be produced by adjusting the degree of acetylation by aging (saponification / aging process).
  • the activation step can be performed by treating pulp (cellulose), for example, by spraying acetic acid or hydrous acetic acid, immersing in acetic acid or hydrous acetic acid, etc.
  • the amount is about 10 to 100 parts by weight, preferably 20 to 80 parts by weight, and more preferably about 30 to 60 parts by weight with respect to 100 parts by weight of pulp (cellulose).
  • the amount of acetic anhydride used in the acetylation step can be selected within the range of the acetylation degree. For example, 230 to 300 parts by weight, preferably 240 to 290, per 100 parts by weight of pulp (cellulose). Part by mass, more preferably about 250 to 280 parts by mass.
  • acetic acid is usually used as a solvent.
  • the amount of acetic acid used is, for example, about 200 to 700 parts by weight, preferably 300 to 600 parts by weight, and more preferably about 350 to 500 parts by weight with respect to 100 parts by weight of pulp (cellulose).
  • sulfuric acid is usually used as the acetylation or aging catalyst.
  • the amount of sulfuric acid used is usually about 1 to 15 parts by mass, preferably about 5 to 15 parts by mass, and particularly about 5 to 10 parts by mass with respect to 100 parts by mass of cellulose.
  • the saponification / ripening can be performed at a temperature of about 50 to 70 ° C., for example.
  • the cellulose acetate produced may be treated with an oxidizing agent at an appropriate stage in the cellulose acetate production process, for example, after completion of acetylation, saponification or aging.
  • oxidizing agent examples include hydrogen peroxide; peracids such as performic acid, peracetic acid, and perbenzoic acid; and organic peroxides such as diacetyl peroxide.
  • the oxidizing agent can be used alone or in combination of two or more.
  • Preferred oxidizing agents include oxidizing agents that are easy to remove from cellulose acetate and have low persistence, such as hydrogen peroxide, performic acid, and peracetic acid, with hydrogen peroxide and peracetic acid being particularly preferred.
  • the amount of the oxidizing agent used can be selected according to the desired level of optical properties. For example, 0.01 to 5 parts by mass, preferably 0.1 to 2.5 parts by mass with respect to 100 parts by mass of cellulose acetate. In particular, it is about 0.1 to 1 part by mass.
  • the treatment with the oxidizing agent can be performed at, for example, about 20 to 100 ° C., preferably about 30 to 70 ° C., depending on the type of the oxidizing agent.
  • the cellulose acetate of the present invention is cellulose acetate L-30, L-40, L-50, L-70 (manufactured by Daicel Chemical Industries), Ca398-6, Ca398-10, Ca398-30, Ca394-60S (yeast Commercial products such as Man Chemical Japan Co., Ltd. can be used.
  • the retardation film of the present invention can be obtained by incorporating cellulose ester into the following sugar ester compound and polyester D represented by the general formula (1).
  • sugars preferably used in the present invention include the following, but the present invention is not limited to these.
  • Glucose galactose, mannose, fructose, xylose or arabinose, lactose, sucrose, nystose, 1F-fructosyl nystose, stachyose, maltitol, lactitol, lactulose, cellobiose, maltose, cellotriose, maltotriose, raffinose or kestose .
  • gentiobiose gentiotriose
  • gentiotetraose gentiotetraose
  • xylotriose galactosyl sucrose
  • sucrose examples include sucrose, kestose, nystose, 1F-fructosyl nystose, stachyose, and more preferably sucrose.
  • the monocarboxylic acid used for esterifying all or part of the OH groups in the pyranose structure or furanose structure of the present invention is not particularly limited, and known aliphatic monocarboxylic acids, alicyclic monocarboxylic acids, An aromatic monocarboxylic acid or the like can be used.
  • the carboxylic acid used may be one type or a mixture of two or more types.
  • Preferred aliphatic monocarboxylic acids include acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, 2-ethyl-hexanecarboxylic acid, undecylic acid, lauric acid , Saturated fatty acids such as tridecylic acid, myristic acid, pentadecylic acid, palmitic acid, heptadecylic acid, stearic acid, nonadecanoic acid, arachidic acid, behenic acid, lignoceric acid, serotic acid, heptacosanoic acid, montanic acid, melicic acid, and laccelic acid, Examples include unsaturated fatty acids such as undecylenic acid, oleic acid, sorbic acid, linoleic acid, linolenic acid, arachidonic acid and oc
  • Examples of preferable alicyclic monocarboxylic acids include acetic acid, cyclopentanecarboxylic acid, cyclohexanecarboxylic acid, cyclooctanecarboxylic acid, and derivatives thereof.
  • aromatic monocarboxylic acids examples include aromatic monocarboxylic acids having an alkyl group or alkoxy group introduced into the benzene ring of benzoic acid such as benzoic acid and toluic acid, cinnamic acid, benzylic acid, biphenylcarboxylic acid, and naphthalene.
  • aromatic monocarboxylic acids having two or more benzene rings such as carboxylic acid and tetralin carboxylic acid, or derivatives thereof.
  • Oligosaccharides are produced by allowing an enzyme such as amylase to act on starch, sucrose, etc.
  • examples of oligosaccharides that can be applied to the present invention include maltooligosaccharides, isomaltoligosaccharides, fructooligosaccharides, galactooligosaccharides, xylooligos. Sugar.
  • the sugar ester compound of the present invention is a compound obtained by condensing 1 or more and 12 or less of at least one pyranose structure or furanose structure represented by the following general formula (A).
  • R 11 to R 15 and R 21 to R 25 each represents an acyl group having 2 to 22 carbon atoms or a hydrogen atom, m and n each represents an integer of 0 to 12, and m + n represents an integer of 1 to 12.
  • R 11 to R 15 and R 21 to R 25 are preferably a benzoyl group or a hydrogen atom.
  • the benzoyl group may further have a substituent R 26 (p is 0 to 5), and examples thereof include an alkyl group, an alkenyl group, an alkoxyl group, and a phenyl group, and further, these alkyl groups, alkenyl groups, and phenyl groups. May have a substituent.
  • Oligosaccharides can also be produced by the same method as the ester compound of the present invention.
  • ester compound of the present invention is listed below, but the present invention is not limited thereto.
  • B- (GA) n-GB (Wherein B is an arylcarboxylic acid residue, G is an alkylene glycol residue having 2 to 12 carbon atoms, an aryl glycol residue having 6 to 12 carbon atoms, or an oxyalkylene glycol residue having 4 to 12 carbon atoms, A Represents an alkylene dicarboxylic acid residue having 4 to 12 carbon atoms or an aryl dicarboxylic acid residue having 6 to 12 carbon atoms, and n represents an integer of 1 or more.)
  • arylcarboxylic acid component of the polyester D used in the present invention examples include benzoic acid, para-tert-butylbenzoic acid, orthotoluic acid, metatoluic acid, p-toluic acid, dimethylbenzoic acid, ethylbenzoic acid, normal propylbenzoic acid, There are aminobenzoic acid, acetoxybenzoic acid and the like, and these can be used as one kind or a mixture of two or more kinds, respectively.
  • alkylene glycol component having 2 to 12 carbon atoms of polyester D that can be preferably used in the retardation film used in the present invention
  • examples of the alkylene glycol component having 2 to 12 carbon atoms of polyester D that can be preferably used in the retardation film used in the present invention include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,2- Butanediol, 1,3-butanediol, 1,2-propanediol, 2-methyl 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 2,2-dimethyl-1,3 -Propanediol (neopentyl glycol), 2,2-diethyl-1,3-propanediol (3,3-dimethylolpentane), 2-n-butyl-2-ethyl-1,3propanediol (3,3 -Dimethylolheptane
  • alkylene glycols having 2 to 12 carbon atoms are particularly preferable because of excellent compatibility with cellulose esters.
  • Examples of the oxyalkylene glycol component having 4 to 12 carbon atoms of the aromatic terminal ester include diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, and tripropylene glycol. These glycols include 1 It can be used as a seed or a mixture of two or more.
  • alkylene dicarboxylic acid component having 4 to 12 carbon atoms of the aromatic terminal ester examples include succinic acid, maleic acid, fumaric acid, glutaric acid, adipic acid, azelaic acid, sebacic acid, and dodecanedicarboxylic acid. These are used as one kind or a mixture of two or more kinds.
  • arylene dicarboxylic acid component having 6 to 12 carbon atoms examples include phthalic acid, terephthalic acid, isophthalic acid, 1,5 naphthalene dicarboxylic acid, and 1,4 naphthalene dicarboxylic acid.
  • the polyester D used for the retardation film has a number average molecular weight of preferably 300 to 1500, more preferably 400 to 1000.
  • the acid value is 0.5 mgKOH / g or less, the hydroxyl value is 25 mgKOH / g or less, more preferably the acid value is 0.3 mgKOH / g or less, and the hydroxyl value is 15 mgKOH / g or less.
  • the retardation film of the present invention includes a phosphate ester plasticizer, a phthalate ester plasticizer, a trimellitic acid ester plasticizer, a pyromellitic acid plasticizer, a glycolate plasticizer, and a citrate ester plasticizer. Polyester plasticizers and phosphate ester plasticizer plasticizers can also be preferably used.
  • carboxylic acid esters examples include trimethylolpropane tribenzoate, butyl oleate, methylacetyl ricinoleate, dibutyl sebacate, and various trimellitic acid esters.
  • polyester plasticizer a copolymer of a dibasic acid and a glycol such as an aliphatic dibasic acid, an alicyclic dibasic acid, or an aromatic dibasic acid can be used.
  • the aliphatic dibasic acid is not particularly limited, and adipic acid, sebacic acid, phthalic acid, terephthalic acid, 1,4-cyclohexyl dicarboxylic acid and the like can be used.
  • glycol ethylene glycol, diethylene glycol, 1,3-propylene glycol, 1,2-propylene glycol, 1,4-butylene glycol, 1,3-butylene glycol, 1,2-butylene glycol and the like can be used.
  • dibasic acids and glycols may be used alone or in combination of two or more.
  • the amount of these plasticizers to be used is preferably 1% by mass to 20% by mass, particularly preferably 3% by mass to 13% by mass with respect to the cellulose ester in terms of film performance, processability and the like.
  • Such a cellulose acetate usually has a heat resistance stabilizer such as an alkali metal (lithium, potassium, sodium, etc.) or a salt or compound thereof, an alkaline earth metal (calcium, magnesium, strontium, Barium etc.) or a salt thereof or a compound thereof.
  • a heat resistance stabilizer such as an alkali metal (lithium, potassium, sodium, etc.) or a salt or compound thereof, an alkaline earth metal (calcium, magnesium, strontium, Barium etc.) or a salt thereof or a compound thereof.
  • the alkaline earth metal such as calcium contained in normal cellulose acetate is about 30 to 200 ppm per gram of cellulose acetate.
  • content of the metal salt in a cellulose acetate can be quantified with the following method.
  • ⁇ Measurement of metal salt (calcium) content> (Pretreatment and measurement) About 500 mg of the sample is cut, put into a decomposition tube of a sealed microwave sample decomposition apparatus, 8 ml of nitric acid (ultra high purity reagent) manufactured by Kanto Chemical Co., Ltd. is added, a wet decomposed sample is prepared, and the sample is transferred to a polypropylene container After finishing to 50 ml with ultrapure water, Ca can be quantified with an inductively coupled plasma optical emission spectrometer (ICP-AES).
  • ICP-AES inductively coupled plasma optical emission spectrometer
  • UV absorber An ultraviolet absorber is preferably used for the retardation film of the present invention.
  • the ultraviolet absorber those excellent in the ability to absorb ultraviolet rays having a wavelength of 370 nm or less and having little absorption of visible light having a wavelength of 400 nm or more are preferably used from the viewpoint of good liquid crystal display properties.
  • ultraviolet absorber preferably used in the present invention include oxybenzophenone compounds, benzotriazole compounds, salicylic acid ester compounds, benzophenone compounds, cyanoacrylate compounds, nickel complex compounds, and the like. However, it is not limited to these.
  • a benzotriazole-based ultraviolet absorber and a benzophenone-based ultraviolet absorber that are highly transparent and excellent in preventing the deterioration of the polarizing plate and the liquid crystal are preferable, and unnecessary coloring is less.
  • a benzotriazole-based ultraviolet absorber is particularly preferably used.
  • the ultraviolet absorber having a distribution coefficient of 9.2 or more described in JP-A No. 2001-187825 improves the surface quality of a long film and is excellent in coating properties.
  • polymer ultraviolet absorber described in the general formula (1) or general formula (2) described in JP-A-6-148430 and the general formulas (3), (6), (7) of Japanese Patent Application No. 2000-156039 is also preferably used.
  • PUVA-30M manufactured by Otsuka Chemical Co., Ltd.
  • the like are commercially available.
  • Fine particles In order to impart slipperiness to the retardation film of the present invention, it is preferable to add fine particles.
  • the primary average particle diameter of the fine particles is preferably 20 nm or less, more preferably 5 to 16 nm, and particularly preferably 5 to 12 nm.
  • These fine particles preferably form secondary particles having a particle diameter of 0.1 to 5 ⁇ m and are contained in the retardation film, and the preferable average particle diameter is 0.1 to 2 ⁇ m, more preferably 0.2 to 0.6 ⁇ m.
  • irregularities having a height of about 0.1 to 1.0 ⁇ m are formed on the film surface, thereby providing appropriate slipperiness to the film surface.
  • the primary average particle diameter of the fine particles used in the present invention is measured by observing the particles with a transmission electron microscope (magnification of 500,000 to 2,000,000 times), observing 100 particles, measuring the particle diameter, and measuring the average. The value was taken as the primary average particle size.
  • the apparent specific gravity of the fine particles is preferably 70 g / liter or more, more preferably 90 to 200 g / liter, and particularly preferably 100 to 200 g / liter.
  • a larger apparent specific gravity makes it possible to make a high-concentration dispersion, which improves haze and agglomerates, and is preferable when preparing a dope having a high solid content concentration as in the present invention.
  • Silicon dioxide fine particles having an average primary particle diameter of 20 nm or less and an apparent specific gravity of 70 g / liter or more are, for example, a mixture of vaporized silicon tetrachloride and hydrogen burned in air at 1000 to 1200 ° C. Can be obtained. For example, it is marketed with the brand name of Aerosil 200V and Aerosil R972V (above, Nippon Aerosil Co., Ltd. product), and can use them.
  • the apparent specific gravity described above is calculated by the following equation by taking a certain amount of silicon dioxide fine particles in a graduated cylinder, measuring the weight at this time.
  • Apparent specific gravity (g / liter) silicon dioxide mass (g) / volume of silicon dioxide (liter) ⁇ Method for producing retardation film>
  • the retardation film of the present invention can be preferably used regardless of whether it is a film produced by a solution casting method or a film produced by a melt casting method.
  • the production of the retardation film of the present invention comprises a step of preparing a dope by dissolving cellulose acetate and an additive in a solvent, a step of casting a dope on an endless metal support, and a cast dope.
  • the step of drying as a web, the step of peeling from the metal support, the step of stretching or maintaining the width, the step of further drying, and the step of winding up the finished film are performed.
  • Dope adjustment process> The process for preparing the dope will be described.
  • the concentration of cellulose acetate in the dope is preferably higher because the drying load after casting on the metal support can be reduced. However, if the concentration of cellulose acetate is too high, the load during filtration increases and the filtration accuracy is poor. Become.
  • the concentration that achieves both of these is preferably 10 to 35% by mass, and more preferably 15 to 25% by mass.
  • the solvent used in the dope may be used alone or in combination of two or more. However, it is preferable to use a mixture of a good solvent and a poor solvent of cellulose acetate in terms of production efficiency, and there are many good solvents. This is preferable from the viewpoint of solubility of cellulose acetate.
  • a preferable range of the mixing ratio of the good solvent and the poor solvent is 70 to 98% by mass for the good solvent and 2 to 30% by mass for the poor solvent.
  • the good solvent and the poor solvent change depending on the average degree of acetylation (acetyl group substitution degree) of cellulose acetate.
  • acetyl group substitution degree acetyl group substitution degree 2.4
  • cellulose triacetate acetyl group substitution degree 2.9
  • the good solvent used in the present invention is not particularly limited, and examples thereof include organic halogen compounds such as methylene chloride, dioxolanes, acetone, methyl acetate, and methyl acetoacetate. Particularly preferred is methylene chloride or methyl acetate.
  • the poor solvent used in the present invention is not particularly limited, but for example, methanol, ethanol, n-butanol, cyclohexane, cyclohexanone and the like are preferably used.
  • the dope preferably contains 0.01 to 2% by mass of water.
  • the solvent used for dissolving cellulose acetate the solvent removed from the film by drying in the film forming process is recovered and reused.
  • the recovery solvent may contain trace amounts of additives added to cellulose acetate, such as plasticizers, UV absorbers, polymers, monomer components, etc., but these are preferably reused even if they are included. Can be purified and reused if necessary.
  • a general method can be used as a method for dissolving cellulose acetate when preparing the dope described above. When heating and pressurization are combined, it is possible to heat above the boiling point at normal pressure.
  • a method in which a cellulose ester is mixed with a poor solvent and wetted or swollen, and then a good solvent is added and dissolved is also preferably used.
  • Pressurization may be performed by a method of injecting an inert gas such as nitrogen gas or a method of increasing the vapor pressure of the solvent by heating. Heating is preferably performed from the outside.
  • a jacket type is preferable because temperature control is easy.
  • the heating temperature with the addition of the solvent is preferably higher from the viewpoint of the solubility of the cellulose ester, but if the heating temperature is too high, the required pressure increases and the productivity deteriorates.
  • the preferred heating temperature is 45 to 120 ° C, more preferably 60 to 110 ° C, and even more preferably 70 ° C to 105 ° C.
  • the pressure is adjusted so that the solvent does not boil at the set temperature.
  • a cooling dissolution method is also preferably used, whereby cellulose acetate can be dissolved in a solvent such as methyl acetate.
  • the cellulose acetate solution is filtered using a suitable filter medium such as filter paper.
  • a suitable filter medium such as filter paper.
  • the absolute filtration accuracy is small in order to remove insoluble matters and the like, but there is a problem that the filter medium is likely to be clogged if the absolute filtration accuracy is too small.
  • a filter medium with an absolute filtration accuracy of 0.008 mm or less is preferable, a filter medium with 0.001 to 0.008 mm is more preferable, and a filter medium with 0.003 to 0.006 mm is more preferable.
  • the material of the filter medium there are no particular restrictions on the material of the filter medium, and ordinary filter media can be used. However, plastic filter media such as polypropylene and Teflon (registered trademark), and metal filter media such as stainless steel do not drop off fibers. preferable.
  • the bright spot foreign matter is arranged in a crossed Nicols state with two polarizing plates, a retardation film or the like is placed between them, light is applied from one polarizing plate side, and observation is performed from the other polarizing plate side. It is a point (foreign matter) where light from the opposite side sometimes leaks, and the number of bright spots having a diameter of 0.01 mm or more is preferably 200 / cm 2 or less.
  • it is 100 pieces / cm 2 or less, further preferably 50 pieces / m 2 or less, and further preferably 0 to 10 pieces / cm 2 . Further, it is preferable that the number of bright spots of 0.01 mm or less is small.
  • the dope can be filtered by a normal method, but the method of filtering while heating at a temperature not lower than the boiling point of the solvent at normal pressure and in a range where the solvent does not boil under pressure is the filtration pressure before and after filtration.
  • the increase in the difference (referred to as differential pressure) is small and preferable.
  • a preferable temperature is 45 to 120 ° C, more preferably 45 to 70 ° C, and further preferably 45 to 55 ° C.
  • the filtration pressure is preferably 1.6 MPa or less, more preferably 1.2 MPa or less, and further preferably 1.0 MPa or less.
  • the metal support in the casting process is preferably a mirror-finished surface, and a stainless steel belt or a drum whose surface is plated with a casting is preferably used as the metal support.
  • the cast width can be 1 ⁇ 4m.
  • the surface temperature of the metal support in the casting step is ⁇ 50 ° C. to less than the boiling point of the solvent, and a higher temperature is preferable because the web drying speed can be increased. May deteriorate.
  • the preferred support temperature is 0 to 60 ° C, more preferably 25 to 55 ° C.
  • the method for controlling the temperature of the metal support is not particularly limited, but there are a method of blowing hot air or cold air, and a method of contacting hot water with the back side of the metal support.
  • the residual solvent amount when peeling the web from the metal support is preferably 10 to 150% by mass, more preferably 20 to 40% by mass or 60 to 130% by mass. Particularly preferred is 20 to 30% by mass or 70 to 120% by mass.
  • the amount of residual solvent is defined by the following formula.
  • Residual solvent amount (% by mass) ⁇ (MN) / N ⁇ ⁇ 100 M is the mass of a sample collected during or after the production of the web or film, and N is the mass after heating M at 115 ° C. for 1 hour.
  • the residual solvent amount is preferably 1% by mass or less, more preferably 0.1% by mass or less, Particularly preferred is 0 to 0.01% by mass.
  • a roll drying method (a method in which webs are alternately passed through a plurality of rolls arranged above and below) and a method in which the web is dried while being conveyed by a tenter method are employed.
  • the retardation film of the present invention it is particularly preferable to stretch in the width direction (lateral direction) by a tenter method in which both ends of the web are gripped by clips or the like. Peeling is preferably performed at a peeling tension of 300 N / m or less.
  • the means for drying the web is not particularly limited, and can be generally performed with hot air, infrared rays, a heating roll, microwave, or the like, but is preferably performed with hot air in terms of simplicity.
  • drying temperature in the web drying process is increased stepwise from 40 to 200 ° C.
  • the retardation film of the present invention preferably has a width of 1 to 4 m. Particularly, those having a width of 1.3 to 4 m are preferably used, and particularly preferably 1.3 to 3 m.
  • the retardation values Ro and Rth targeted by the present retardation film can be adjusted by the amount of sugar ester and polyester D to be added and the stretching ratio (control of tenter stretching and transport tension) during film production.
  • Biaxial stretching or uniaxial stretching can be performed sequentially or simultaneously with respect to the longitudinal direction (film forming direction) of the film and the direction orthogonal to the longitudinal direction of the film, that is, the width direction.
  • the draw ratios in the biaxial directions perpendicular to each other are preferably in the range of 0.8 to 1.5 times in the casting direction and 1.1 to 2.5 times in the width direction, respectively. It is preferable to carry out in the range of 0.8 to 1.0 times in the direction and 1.3 to 1.5 times in the width direction.
  • the stretching temperature is 140 ° C. to 200 ° C., and it is preferable that the stretching temperature is over 140 ° C. and 180 ° C. or less.
  • the residual solvent in the film is preferably 0 to 20% by mass, more preferably 5 to 15% by mass.
  • the tension applied in the film width direction during stretching is desirably 30 N / m or more and less than 100 N / m, and preferably 40 N / m or more and less than 80 N / m.
  • the method of stretching the web For example, a method in which a circumferential speed difference is applied to a plurality of rolls, and the roll circumferential speed difference is used to stretch the rolls in the vertical direction. Both ends of the web are fixed with clips and pins, and the interval between the clips and pins is increased in the traveling direction And a method of stretching in the vertical direction, a method of stretching in the horizontal direction and stretching in the horizontal direction, a method of stretching in the vertical and horizontal directions and stretching in both the vertical and horizontal directions, and the like. Of course, these methods may be used in combination.
  • a tenter it may be a pin tenter or a clip tenter.
  • heat setting at a temperature of 140 ° C. to 180 ° C. after the stretching step is also effective for obtaining the tear strength in the present invention.
  • the heat setting at a stretching temperature of 140 ° C. to 180 ° C. or 140 ° C. to 180 ° C. after the stretching step is a temperature range that is specifically effective for cellulose acetate having an acetyl group substitution degree of 2.1 to 2.6. is there.
  • ⁇ 1 is preferably ⁇ 1 ° or more and + 1 ° or less, ⁇ 0 More preferably, it is 3 ° or more and + 0.3 ° or less.
  • This ⁇ 1 can be defined as an orientation angle, and ⁇ 1 can be measured in an atmosphere of 23 ° C. and 55% RH using an automatic birefringence meter KOBRA-21ADH (Oji Scientific Instruments).
  • ⁇ 1 satisfying the above relationship can contribute to obtaining high luminance in a display image, suppressing or preventing light leakage, and contributing to obtaining faithful color reproduction in a color liquid crystal display device.
  • the water vapor transmission rate of the retardation film of the present invention is preferably 800 to 1600 g / m 2 ⁇ 24 h at 40 ° C.
  • the moisture permeability can be measured according to the method described in JIS Z 0208.
  • the breaking elongation of the retardation film of the present invention is preferably 10 to 80%, more preferably 20 to 50%.
  • the visible light transmittance of the retardation film of the present invention is preferably 90% or more, and more preferably 93% or more.
  • the haze of the retardation film of the present invention is preferably less than 1%, particularly preferably 0 to 0.2%.
  • the additive becomes a foreign substance and the film is caused by internal haze and internal scattering.
  • the internal haze is preferably less than 0.1%, particularly preferably from 0 to 0.05%.
  • This haze can be achieved by using a cellulose ester as a raw material for pulp and containing the sugar ester and polyester D of the present invention.
  • the retardation film of the present invention has a refractive index difference between 5 ⁇ 10 ⁇ 4 to 5 ⁇ 10 ⁇ 3 between one surface thereof and the opposite surface (also referred to as film surface or back surface). preferable.
  • the hard coat film can be provided with functional layers such as an antistatic layer, a backcoat layer, an antireflection layer, a slippery layer, an adhesive layer, an antiglare layer, and a barrier layer.
  • the hard coat film may be provided with a back coat layer on the surface of the base film opposite to the side on which the hard coat layer is provided in order to prevent curling and sticking.
  • examples of inorganic compounds include silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, calcium carbonate, talc, clay, calcined kaolin, calcined calcium silicate, tin oxide, and oxide. Mention may be made of indium, zinc oxide, ITO, hydrated calcium silicate, aluminum silicate, magnesium silicate and calcium phosphate.
  • the particles contained in the back coat layer are preferably 0.1 to 50% by mass with respect to the binder.
  • the increase in haze when the backcoat layer is provided is preferably 1.5% or less, more preferably 0.5% or less, and particularly preferably 0.1% or less.
  • a cellulose ester resin such as diacetylcellulose is preferable.
  • the hard coat film can be used as an antireflection film having an external light antireflection function by coating an antireflection layer on the hard coat layer.
  • the antireflection layer is preferably laminated in consideration of the refractive index, the film thickness, the number of layers, the layer order, and the like so that the reflectance is reduced by optical interference.
  • the antireflection layer is preferably composed of a low refractive index layer having a refractive index lower than that of the support, or a combination of a high refractive index layer having a refractive index higher than that of the support and a low refractive index layer. Particularly preferably, it is an antireflection layer composed of three or more refractive index layers.
  • Three layers having different refractive indexes from the support side are divided into medium refractive index layers (high refractive index layers having a higher refractive index than the support). Are preferably laminated in the order of a layer having a lower refractive index) / a high refractive index layer / a low refractive index layer.
  • an antireflection layer having a layer structure of four or more layers in which two or more high refractive index layers and two or more low refractive index layers are alternately laminated is also preferably used.
  • the layer structure of the antireflection film the following structure can be considered, but it is not limited to this.
  • the refractive index layer preferably contains silica-based fine particles, and the refractive index thereof is lower than the refractive index of the base film as a support, and is in the range of 1.30 to 1.45 at 23 ° C. and wavelength of 550 nm. Preferably there is.
  • the film thickness of the low refractive index layer is preferably 5 nm to 0.5 ⁇ m, more preferably 10 nm to 0.3 ⁇ m, and most preferably 30 nm to 0.2 ⁇ m.
  • the composition for forming a low refractive index layer preferably contains at least one kind of particles having an outer shell layer and porous or hollow inside as silica-based fine particles.
  • the particles having the outer shell layer and porous or hollow inside are preferably hollow silica-based fine particles.
  • composition for forming a low refractive index layer may contain an organosilicon compound represented by the following general formula (OSi-1), a hydrolyzate thereof, or a polycondensate thereof.
  • OSi-1 organosilicon compound represented by the following general formula (OSi-1)
  • hydrolyzate thereof a hydrolyzate thereof
  • polycondensate thereof a polycondensate thereof.
  • R represents an alkyl group having 1 to 4 carbon atoms. Specifically, tetramethoxysilane, tetraethoxysilane, tetraisopropoxysilane and the like are preferably used. In addition, a silane coupling agent, a curing agent, a surfactant and the like may be added as necessary.
  • ⁇ Polarizing plate> A polarizing plate using the retardation film of the present invention will be described. The polarizing plate can be produced by a general method.
  • the retardation film of the present invention is subjected to alkali saponification treatment, and the treated retardation film is bonded to at least one surface of a polarizer produced by immersing and stretching in an iodine solution using a completely saponified polyvinyl alcohol aqueous solution. Is preferred.
  • a hard coat film may be used on the other surface, or another polarizing plate protective film may be used.
  • polarizing plate protective films that can be preferably used include KC4UA, KC6UA, KC8UX2MW, KC4UX, KC5UX, KC4UY, KC8UY, KC12UR, KC4UEW, KC8UCR-3, KC8UCR-4, KC8UCR-5, KC4CCR-1, 2, KC8UE, KC4UE (manufactured by Konica Minolta Opto) and the like.
  • a polarizer which is a main component of a polarizing plate, is an element that allows only light of a plane of polarization in a certain direction to pass.
  • a typical polarizer currently known is a polyvinyl alcohol-based polarizing film, which is polyvinyl alcohol.
  • iodine is dyed on a system film
  • a dichroic dye is dyed, but it is not limited to this.
  • a polyvinyl alcohol aqueous solution is formed into a film and dyed by uniaxial stretching or dyed or uniaxially stretched and then preferably subjected to a durability treatment with a boron compound.
  • the retardation film of the present invention and one side of the hard coat film are bonded together to form a polarizing plate. It is preferably bonded with an aqueous adhesive mainly composed of completely saponified polyvinyl alcohol or the like.
  • the pressure-sensitive adhesive layer used on one side of the protective film to be bonded to the substrate of the liquid crystal cell is preferably optically transparent and exhibits moderate viscoelasticity and adhesive properties.
  • the adhesive layer include adhesives or adhesives such as acrylic copolymers, epoxy resins, polyurethane, silicone polymers, polyethers, butyral resins, polyamide resins, polyvinyl alcohol resins, and synthetic rubbers.
  • a film such as a drying method, a chemical curing method, a thermal curing method, a thermal melting method, a photocuring method, or the like can be formed and cured using a polymer such as the above.
  • the acrylic copolymer can be preferably used because it is most easy to control the physical properties of the adhesive and is excellent in transparency, weather resistance, durability and the like.
  • the retardation film of the present invention is incorporated in a polarizing plate, and is a reflection type, transmission type, transflective liquid crystal display device or TN type, STN type, OCB type, HAN type, VA type (PVA type, MVA type), IPS type. It is preferably used in liquid crystal display devices of various drive systems such as the OCB type and is particularly suitable for the VA type.
  • cellulose acetate D having an acetyl substitution degree of 2.4 and a viscosity average polymerization degree of 180 was obtained.
  • Synthesis example 2 Cellulose acetate was produced in the same manner as in Synthesis Example 1 except that the amount of calcium acetate and the amount of water added in the synthesis process were changed as shown in Table 1. The obtained cellulose acetates were designated as A to C and E to J. The amount of calcium acetate and the amount of water shown in Table 1 indicate parts by mass.
  • Example 1 ⁇ Cellulose Acetate Film 1: Production of PL1> (Silicon dioxide dispersion) Aerosil R812 (manufactured by Nippon Aerosil Co., Ltd.) 12 parts by mass (average diameter of primary particles 12 nm, apparent specific gravity 90 g / liter) 88 parts by mass of ethanol or more was stirred and mixed with a dissolver for 30 minutes, and then dispersed with Manton Gorin. 88 parts by mass of methylene chloride was added to the silicon dioxide dispersion while stirring, and the mixture was stirred and mixed for 30 minutes with a dissolver to prepare a silicon dioxide dispersion dilution.
  • Aerosil R812 manufactured by Nippon Aerosil Co., Ltd.
  • Tinuvin 109 (manufactured by Ciba Japan Co., Ltd.) 11 parts by mass Tinuvin 171 (manufactured by Ciba Japan Co., Ltd.) 5 parts by mass Methylene chloride 100 parts by mass Dissolved and filtered.
  • the dope solution was filtered with Finemet NF manufactured by Nippon Seisen Co., Ltd. in the film production line.
  • the inline additive solution was filtered with Finemet NF manufactured by Nippon Seisen Co., Ltd.
  • the solvent was evaporated until the residual solvent amount became 120%, and the stainless steel band support was peeled off.
  • the peeled cellulose ester web was evaporated at 35 ° C., slit to 1.65 m width, and then stretched by 1.05 times in the TD direction (direction perpendicular to the film transport direction) with a tenter. Drying was performed at a drying temperature of ° C. At this time, the residual solvent amount when starting stretching with a tenter was 30%.
  • drying is completed while transporting a drying zone of 110 ° C. and 120 ° C. with a number of rolls, slitting to a width of 1.5 m, and knurling of a width of 15 mm and an average height of 10 ⁇ m is performed on both ends of the film, and the average film thickness Produced a cellulose triacetate film 1 having a thickness of 60 ⁇ m.
  • Ro and Rth were 3 nm and 50 nm, respectively.
  • the following hard coat layer coating composition 1 is filtered through a polypropylene filter having a pore size of 0.4 ⁇ m to prepare a hard coat layer coating solution, which is applied using a micro gravure coater, after drying at 80 ° C., using an ultraviolet lamp, the illuminance of the irradiated portion is 80 mW / cm 2, thereby curing the coated layer with irradiation dose as 80 mJ / cm 2, to form a hard coat layer 1 dry thickness 9 .mu.m, Winding and roll-shaped hard coat film 1 were produced.
  • ⁇ Hardcoat layer coating composition 1> The following materials were stirred and mixed to obtain hard coat layer coating composition 1.
  • 6.0 parts by mass (as polyester urethane resin 2 .0 parts by mass)
  • Pentaerythritol triacrylate 30 parts by mass
  • Pentaerythritol tetraacrylate 30 parts by mass
  • Irgacure 184 manufactured by Ciba Japan, photopolymerization initiator
  • Irgacure 907 manufactured by Ciba Japan, photopolymerization initiator
  • 1.0 part by mass Polyether-modified polydimethylsiloxane (BYK-UV3510, manufactured by Big Chemie Japan) 2.0 parts by mass Propylene glycol monomethyl ether 150 parts by mass Methyl ethyl ketone 150 parts by mass
  • Fine particles (Aerosil R812 (Nippon Aerosil Co., Ltd.)) 11 parts by mass (average primary particle diameter 16 nm, apparent specific gravity 90 g / liter) 89 parts by mass or more of ethanol was stirred and mixed with a dissolver for 50 minutes, and then dispersed with Manton Gorin.
  • ⁇ Fine particle additive solution Cellulose ester A was added to a dissolution tank containing methylene chloride and heated to completely dissolve, and this was then added to Azumi filter paper No. 3 manufactured by Azumi Filter Paper Co., Ltd. Filtered using 244.
  • the fine particle dispersion was slowly added to the cellulose ester solution after filtration while sufficiently stirring. Further, the particles were dispersed by an attritor so that the secondary particles had a predetermined particle size. This was filtered through Finemet NF manufactured by Nippon Seisen Co., Ltd. to prepare a fine particle additive solution.
  • Methylene chloride 99 parts by mass Fine particle dispersion 11 parts by mass A main dope solution having the following composition was prepared. First, methylene chloride and ethanol were added to the pressure dissolution tank. Cellulose ester F was charged into a pressure dissolution tank containing a solvent while stirring. This was heated and stirred to dissolve completely, and a plasticizer and an ultraviolet absorber were added and dissolved.
  • the main dope solution was prepared by filtration using 244.
  • the solvent was evaporated until the residual solvent amount became 110%, and the stainless steel band support was peeled off.
  • the film was stretched so that the longitudinal (MD) stretch ratio was 1.0 times by applying tension at the time of peeling, and then both ends of the web were gripped by a tenter, and the stretch ratio in the width (TD) direction was 1.4. It extended
  • the tension in the width direction applied to the film at this time was 45 m / N.
  • composition of main dope solution Methylene chloride 390 parts by weight Ethanol 80 parts by weight Cellulose acetate C 35 parts by weight Cellulose acetate D 65 parts by weight Additive: Sugar ester compound 4 10 parts by weight Additive: Polyester D 21 2.5 parts by weight Composition of dope solution (cellulose acetate, Retardation films 102 to 119 were produced in the same manner as described above except that the additive was changed as shown in Table 2.
  • TPP triphenyl phosphate
  • AB represents the following triazine compound.
  • the obtained retardation film was measured for the in-plane retardation value Ro, the retardation value Rth in the thickness direction, the tear strength ratio and the internal haze / internal scattering by the following measurements. The results are shown in Table 3.
  • nxny and nz represent the refractive indexes in the principal axes x, y and z directions of the refractive index ellipsoid, respectively, and nx and ny represent the refractive index in the film in-plane direction, and nz represents the thickness direction of the film.
  • Refractive index, nx> ny, and d represents film thickness (nm).
  • the average refractive index was determined from the average value obtained by measurement.
  • the thickness d of the film was measured using a commercially available micrometer.
  • the tear strength in the film transport direction (MD direction) and the tear strength in the same width direction (TD direction) are determined by applying a tear load of the Elmendorf method in accordance with JISK7128 / 2-1991. Then, the samples conditioned at 23 ° C. 55% RH and 60 ° C. 10% RH for 24 hours were measured under the same atmosphere.
  • scattering means the haze of the whole film including the state (film surface haze) which does not dripping glycerol.
  • Haze meter (turbidity meter) (model: NDH 2000, manufactured by Nippon Denshoku Co., Ltd.)
  • the light source uses a 5V9W halogen bulb, and the light receiving unit uses a silicon photocell (with a relative visibility filter).
  • the value is 0.02 or less in the haze measurement of a film when a solvent having a refractive index of ⁇ 0.05 is used as the film interface.
  • the blank haze 1 of a measuring instrument other than a film is measured.
  • the glass and glycerin used in the above measurement are as follows.
  • the obtained PVA film had an average thickness of 25 ⁇ m, a moisture content of 4.4%, and a film width of 3 m.
  • the obtained PVA film was continuously treated in the order of pre-swelling, dyeing, uniaxial stretching by a wet method, fixing treatment, drying, and heat treatment to produce a polarizer.
  • the PVA film was preliminarily swollen in water at a temperature of 30 ° C. for 30 seconds, and immersed in an aqueous solution having an iodine concentration of 0.4 g / liter and a potassium iodide concentration of 40 g / liter at a temperature of 35 ° C. for 3 minutes. Subsequently, the film was uniaxially stretched 6 times in a 50% aqueous solution with a boric acid concentration of 4% under a tension of 700 N / m. The potassium iodide concentration was 40 g / liter, and the boric acid concentration was 40 g / liter. Then, it was immersed in an aqueous solution having a zinc chloride concentration of 10 g / liter and a temperature of 30 ° C. for 5 minutes for fixing treatment.
  • the obtained polarizer had an average thickness of 13 ⁇ m, a polarization performance of 43.0% transmittance, a polarization degree of 99.5%, and a dichroic ratio of 40.1.
  • Step 1 The aforementioned polarizer was immersed in a storage tank of a polyvinyl alcohol adhesive solution having a solid content of 2% by mass for 1 to 2 seconds.
  • Process 2 The alkali saponification process was implemented on the hard coat film which stuck the peelable protective film (product made from PET) to retardation film and the hard coat layer on the following conditions.
  • the excess adhesive adhered to the polarizer immersed in the polyvinyl alcohol adhesive solution in Step 1 is gently removed, and the retardation film and the hard coat film 1 are sandwiched between the polarizers as shown in FIG. Arranged.
  • Step 3 The laminate was bonded with a rotating roller at a pressure of 20 to 30 N / cm 2 at a speed of about 2 m / min. At this time, it was carried out with care to prevent bubbles from entering.
  • Step 4 The sample prepared in Step 3 was dried in a dryer at a temperature of 80 ° C. for 5 minutes to prepare a polarizing plate.
  • Step 5 A commercially available acrylic pressure-sensitive adhesive is applied to the polarizing plate prepared in Step 4 so that the thickness after drying is 25 ⁇ m, and dried in an oven at 110 ° C. for 5 minutes to form an adhesive layer. A peelable protective film was attached to the film. This polarized light was cut (punched) into a size of 576 ⁇ 324 mm to produce a polarizing plate.
  • a hard coat film and a retardation film were arranged to produce polarizing plates 202 to 223.
  • the cellulose ester film 1 (PL1) was used as the retardation film.
  • the viewing side polarizing plate of the liquid crystal panel of the 40-inch display KDL-40V5 manufactured by Sony Corporation is peeled off, and the polarizing plate prepared above (see FIG. 5 for the configuration) is used as the polarizing plate instead so that the hard coat layer is on the viewing side. Then, the pressure-sensitive adhesive layer and the liquid crystal cell glass were bonded to prepare liquid crystal display devices 401 to 423.
  • Front contrast (brightness of white display measured from normal direction of display device) / (brightness of black display measured from normal direction of display device) The results obtained are shown in Table 4.

Abstract

In order to provide a long retardation film that is physically stable under both the environmental conditions during production and during processing, disclosed is an elongated retardation film—which uses cellulose acetate and of which the retardation (Ro) in the in-plane direction represented by the belowmentioned formula is 30-150 nm and the ratio (Rth/Ro) of the retardation (Rth) in the direction of thickness to the aforementioned retardation (Ro) in the in-plane direction is greater than 0.8—characterized by the degree of acetyl group substitution of the aforementioned cellulose acetate being between 2.1 and 2.6 inclusive, and by the ratio (tear strength in the MD direction / tear strength in the TD direction) between the tear strength in the lengthwise direction (MD direction) of the aforementioned retardation film and the tear strength in the widthwise direction (TD direction) of same being 0.8-1.2 under both conditions of 23°C/55%RH and 60°C/10%RH. Ro=(nx-ny)×d, Rth={(nx+ny)/2-nz}×d

Description

位相差フィルム、位相差フィルムの製造方法Retardation film and method for producing retardation film
 本発明は、セルロースアセテートフィルムを用いた位相差フィルム、それを用いた偏光板および液晶表示装置およびセルロースアセテートフィルムの製造方法に関し、特に液晶表示装置用の位相差フィルムとして用いられた際に、十分な光学補償機能を示すことで視野角特性を改善することが可能であるとともに、優れたコントラストを示し、さらに物理的な等方性にも優れる位相差フィルム、それを用いた偏光板および液晶表示装置に関する。 The present invention relates to a retardation film using a cellulose acetate film, a polarizing plate using the same, a liquid crystal display device, and a method for producing a cellulose acetate film, and particularly when used as a retardation film for a liquid crystal display device. A retardation film capable of improving viewing angle characteristics by exhibiting a good optical compensation function, exhibiting excellent contrast, and being excellent in physical isotropy, a polarizing plate and a liquid crystal display using the same Relates to the device.
 液晶表示装置は、低電圧・低消費電力で小型化・薄膜化が可能など様々な利点からパーソナルコンピューターや携帯機器のモニター、テレビ用途に広く利用されている。 Liquid crystal display devices are widely used in monitors for personal computers and portable devices, and for television applications because of their various advantages such as low voltage and low power consumption, and enabling miniaturization and thinning.
 特に、大画面で様々な角度から見ることが想定されるテレビ用途の液晶表示装置は視野角依存性に対する要求が厳しく、最近ではモニター用途の液晶表示装置に対する要求性能も高まっている。 In particular, liquid crystal display devices for television that are expected to be viewed from various angles on a large screen have severe demands for viewing angle dependency, and recently, the performance requirements for liquid crystal display devices for monitors are also increasing.
 そのため、液晶セル内の液晶の配列状態を工夫することで視野角依存性を低減された様々なモードが提案され、例えば、IPS(In-Plane Switching)モード、OCB(Optically Compensatory Bend)モード、VA(Vertically Aligned)モードなど、液晶表示装置が様々に研究されている。 Therefore, various modes in which the viewing angle dependency is reduced by devising the alignment state of the liquid crystal in the liquid crystal cell have been proposed. Various studies have been made on liquid crystal display devices such as (Vertically Aligned) mode.
 通常、液晶表示装置は液晶セル、視野角特性を改善するための位相差フィルム(位相差板ともいう)、偏光板から構成される。 Usually, a liquid crystal display device is composed of a liquid crystal cell, a retardation film (also called a retardation plate) for improving viewing angle characteristics, and a polarizing plate.
 位相差フィルムは画像着色を解消したり、視野角を拡大するために用いられており、樹脂フィルムを延伸して複屈折性を付与したフィルムを偏光板に貼り付けて用いたり、等方性の偏光板用保護フィルムに任意の方向に液晶分子を配向させた液晶層を設けることで位相差フィルムとしての複屈折性を付与する技術などが知られている。 The phase difference film is used to eliminate image coloring or enlarge the viewing angle. A film provided with birefringence by stretching a resin film is attached to a polarizing plate, or isotropic. A technique for providing birefringence as a retardation film by providing a protective film for polarizing plate with a liquid crystal layer in which liquid crystal molecules are aligned in an arbitrary direction is known.
 しかしながら、これらの技術は位相差フィルムや位相差層を偏光板用保護フィルムとは別に設ける必要があり、偏光板の製造方法が複雑化してコストが増大するという問題があった。 However, these techniques require the provision of a retardation film or retardation layer separately from the protective film for polarizing plate, and there is a problem that the manufacturing method of the polarizing plate becomes complicated and costs increase.
 それに対し、偏光板用の保護フィルムとして広く用いられているセルロースエステルフィルムに位相差フィルムとしての機能も付与することで簡素な構成で視野角特性を改善可能な偏光板を製造可能な位相差フィルムが提案されている(例えば、特許文献1、特許文献2)。 In contrast, a retardation film capable of producing a polarizing plate capable of improving viewing angle characteristics with a simple structure by imparting a function as a retardation film to a cellulose ester film widely used as a protective film for a polarizing plate. Has been proposed (for example, Patent Document 1 and Patent Document 2).
 特許文献1ではセルロースの混合脂肪酸エステルフィルムを幅手方向に延伸した位相差フィルムをVAモードの液晶セルに適用し、視野角を広げる技術が開示されている。 Patent Document 1 discloses a technique in which a retardation film obtained by stretching a mixed fatty acid ester film of cellulose in the width direction is applied to a VA mode liquid crystal cell to widen the viewing angle.
 また、引用文献2では、セルローストリアセテートにリターデーション上昇剤を添加することで、所望の位相差値を付与した位相差フィルムについて記載されている。 Further, in Patent Document 2, there is described a retardation film in which a desired retardation value is given by adding a retardation increasing agent to cellulose triacetate.
 しかし、上述のような位相差フィルムとしての機能をセルロースエステルフィルムに付与するためには、所望の面内および深さ方向のレターデーションを得るために、高倍率の延伸を施すか、または引用文献2のようにリターデーション上昇剤のような添加剤を付加することが必要であった。 However, in order to impart a function as a retardation film as described above to the cellulose ester film, the film is stretched at a high magnification in order to obtain a desired in-plane and depth retardation, or a cited document. It was necessary to add an additive such as a retardation increasing agent as in 2.
 しかしながら、このようなセルロースエステルフィルムは、高延伸することが必要となるため、通常位相差フィルムの長尺方向(以下、MD方向ともいう)および幅手方向(以下、TD方向ともいう)の物理特性が大きく異なってしまうことがあった。 However, since such a cellulose ester film needs to be highly stretched, the physical properties of the normal direction (hereinafter also referred to as MD direction) and the width direction (hereinafter also referred to as TD direction) of the retardation film are generally used. The characteristics sometimes differed greatly.
 一方、液晶表示装置においては、液晶セルの両面にそれぞれ1枚の偏光板を使用する必要があり、それぞれの偏光板は、通常偏光子の吸収軸が直交するように配置される。 On the other hand, in a liquid crystal display device, it is necessary to use one polarizing plate on each side of the liquid crystal cell, and each polarizing plate is usually arranged so that the absorption axes of the polarizers are orthogonal to each other.
 また、それぞれの偏光板の液晶セル側には位相差フィルムが配されるが、液晶セルを挟んだ2枚の位相差フィルムは偏光子と同様にそれぞれ面内位相差の方向が互いに直交するように配置される必要がある。 In addition, a retardation film is disposed on the liquid crystal cell side of each polarizing plate, but the two retardation films sandwiching the liquid crystal cell are so that the in-plane retardation directions are orthogonal to each other like the polarizer. Need to be placed in.
 上記のように、位相差フィルムの物理的な特性がMD方向とTD方向で異なってしまうと、偏光板を液晶セルの形状に断裁する場合にそれぞれの偏光板によって加工条件を調整することが必要となったり、偏光板を液晶セルに貼り合わせる際にそれぞれ異なる条件で貼り合わせることが必要となるため、加工安定性の観点で課題があった。 As described above, if the physical properties of the retardation film are different in the MD direction and the TD direction, it is necessary to adjust the processing conditions by each polarizing plate when cutting the polarizing plate into the shape of a liquid crystal cell. There is a problem in terms of processing stability because it is necessary to bond the polarizing plate to the liquid crystal cell under different conditions.
 この課題に対し、位相差フィルム加工条件雰囲気下でMD方向、TD方向の物性をより等しくするための技術が提案されている(特許文献3)。 In response to this problem, a technique has been proposed for making the physical properties in the MD direction and TD direction more equal under the retardation film processing condition atmosphere (Patent Document 3).
 しかしながら、近年の偏光板の薄膜化への要望に伴い、位相差フィルムの加工時だけでなく、長尺状位相差フィルムの製造時にも破断等の問題が発生しやすくなり、製造時および加工時でのいずれの環境条件においても改善が求められていた。 However, due to the recent demand for thinner polarizing plates, not only when processing retardation films, but also when manufacturing long retardation films, problems such as breakage tend to occur. Improvements were sought in all environmental conditions.
特許第4337345号公報Japanese Patent No. 4337345 欧州特許0911656A2号明細書European Patent 0911656A2 特開2010-1383号公報JP 2010-1383 A
 本発明の目的は、製造時および加工時のいずれの環境条件においても、物理的に安定な長尺位相差フィルムを提供することにある。 An object of the present invention is to provide a long retardation film that is physically stable under any environmental conditions during manufacturing and processing.
 本発明の目的は、下記によって達成された。 The object of the present invention was achieved by the following.
 1.下記式で表される面内方向のレターデーションRoが30~150nmであり、厚み方向のレターデーションRthと前記面内方向のレターデーションRoとの比Rth/Roが0.8より大きく5より小さい、セルロースアセテートを使用した長尺状位相差フィルムであって、前記セルロースアセテートのアセチル基置換度が2.1以上2.6以下であり、23℃55%RHおよび60℃10%RHの条件での前記位相差フィルムの長尺方向(MD方向)の引裂き強度と、同幅手方向(TD方向)の引裂き強度との比:(MD方向の引裂き強度/TD方向の引裂き強度)が、いずれも0.8~1.2であることを特徴とする位相差フィルム。
Ro=(nx-ny)×d
Rth={(nx+ny)/2-nz}×d
 なお、dは位相差フィルムの厚さ(nm)を表し、nxはフィルムの面内の最大の屈折率を、nyはフィルム面内でnxの方向に直角な方向の屈折率を、nzは厚み方向におけるフィルムの屈折率を表す。波長は590nmである。
1. The in-plane retardation Ro represented by the following formula is 30 to 150 nm, and the ratio Rth / Ro between the thickness direction retardation Rth and the in-plane retardation Ro is greater than 0.8 and less than 5. , A long retardation film using cellulose acetate, wherein the cellulose acetate has an acetyl group substitution degree of 2.1 or more and 2.6 or less, and under conditions of 23 ° C. 55% RH and 60 ° C. 10% RH. The ratio of the tear strength in the longitudinal direction (MD direction) and the tear strength in the same width direction (TD direction) of the above retardation film: (Tear strength in the MD direction / Tear strength in the TD direction) A retardation film having a thickness of 0.8 to 1.2.
Ro = (nx−ny) × d
Rth = {(nx + ny) / 2−nz} × d
Here, d represents the thickness (nm) of the retardation film, nx is the maximum refractive index in the plane of the film, ny is the refractive index in the direction perpendicular to the nx direction in the film plane, and nz is the thickness. Represents the refractive index of the film in the direction. The wavelength is 590 nm.
 2.該位相差フィルムにおいて、フィルム搬送方向(MD方向)の引裂き強度と、同幅手方向(TD方向)の引裂き強度が共に、60℃10%RHでは、30mN以上120mN以下であることを特徴とする前記1に記載の位相差フィルム。 2. In the retardation film, the tear strength in the film transport direction (MD direction) and the tear strength in the same width direction (TD direction) are both 30 mN or more and 120 mN or less at 60 ° C. and 10% RH. 2. The retardation film as described in 1 above.
 3.アセチル基置換度が2.1以上2.6以下であるセルロースアセテートドープを調製し、該ドープを金属支持体上に流延し、流延膜を支持体上からフィルムとして剥離し、剥離したフィルムの幅手方向両端部をテンターにより把持しフィルムの幅保持を行なうとともにフィルムを乾燥させ、フィルムをテンターから離脱後さらに乾燥する位相差フィルムの製造方法であって、フィルムの幅手方向両端部を把持している区間において乾燥温度が140℃~200℃の範囲であり、フィルム幅方向にかかるテンションが30N/m以上100N/m未満であることを特徴とする位相差フィルムの製造方法。 3. A cellulose acetate dope having an acetyl group substitution degree of 2.1 or more and 2.6 or less is prepared, the dope is cast on a metal support, the casting film is peeled off as a film from the support, and the peeled film A method for producing a retardation film in which both widthwise ends of a film are held by a tenter to hold the width of the film and the film is dried, and the film is further dried after being detached from the tenter. A method for producing a retardation film, wherein a drying temperature is in a range of 140 ° C. to 200 ° C. in a gripping section, and a tension applied in a film width direction is 30 N / m or more and less than 100 N / m.
 つまり、本発明者らの検討の結果、アセチル基置換度が2.1以上2.6以下のセルロースアセテートに特定の添加剤を含有させ、所定の範囲の製造条件を用いることで、製造時および加工時のいずれの条件であっても、面内位相差Roが30~150nmであり、厚み方向の位相差Rthと前記面内位相差Roとの比Rth/Roが0.8より大きく5より小さい位相差フィルムを、長尺方向と幅手方向の物理特性を大きく異ならせることなく製造可能なことが見出した。 That is, as a result of the study by the present inventors, a specific additive is contained in cellulose acetate having an acetyl group substitution degree of 2.1 or more and 2.6 or less, and production conditions within a predetermined range are used. Under any conditions during processing, the in-plane retardation Ro is 30 to 150 nm, and the ratio Rth / Ro between the thickness direction retardation Rth and the in-plane retardation Ro is greater than 0.8 and more than 5. It has been found that a small retardation film can be produced without greatly different physical properties in the long direction and the width direction.
 具体的には、物理特性の指標として引裂き強度を用いた場合、長尺方向(MD方向ともいう)と幅手方向(TD方向ともいう)の引裂き強度の比(MD方向の引裂き強度/TD方向の引裂き強度)が0.8~1.2に保たれた位相差フィルムを得ることができることを見出した。 Specifically, when tear strength is used as an index of physical properties, the ratio of tear strength in the longitudinal direction (also referred to as MD direction) to the width direction (also referred to as TD direction) (Tear strength in MD direction / TD direction) It was found that a retardation film having a tear strength of 0.8 to 1.2 can be obtained.
スライドガラス上にグリセリンを滴下した状態を示す模式図である。It is a schematic diagram which shows the state which dripped glycerin on the slide glass. グリセリン上に試料フィルムを置いた状態を示す模式図である。It is a schematic diagram which shows the state which put the sample film on glycerol. 試料フィルム上にグリセリンを滴下した状態を示す模式図である。It is a schematic diagram which shows the state which dripped glycerin on the sample film. グリセリン上にカバーガラスを置いた状態を示す模式図である。It is a schematic diagram which shows the state which put the cover glass on glycerol. 本発明の位相差フィルムを使用した液晶表示装置の概略図である。It is the schematic of the liquid crystal display device using the retardation film of this invention.
以下、本発明を詳細に説明する。
<位相差フィルム>
 本発明の位相差フィルムは、下記式で表される面内方向のレターデーションRoが30~150nmであり、厚み方向のレターデーションRthと前記面内方向のレターデーションRoとの比Rth/Roが0.8より大きく、セルロースアセテートを使用した長尺状位相差フィルムであって、前記セルロースアセテートのアセチル基置換度が2.1以上2.6以下であり、23℃55%RHおよび60℃10%RHの条件での前記位相差フィルムの長尺方向(MD方向)の引裂き強度と、同幅手方向(TD方向)の引裂き強度との比:(MD方向の引裂き強度/TD方向の引裂き強度)が、いずれも0.8~1.2であることを特徴とする。
<引き裂き強度>
 通常の位相差フィルムは、レターデーションの調整のため製造工程において延伸処理がされ、そのためMD方向とTD方向の物理特性の相違が発生するが、本発明のセルロースアセテートを使用することにより、レターデーションを発現させながらも製造時および加工時においてMD方向とTD方向の物理特性を均等とすることができる。
Hereinafter, the present invention will be described in detail.
<Phase difference film>
In the retardation film of the present invention, the in-plane retardation Ro represented by the following formula is 30 to 150 nm, and the ratio Rth / Ro between the thickness direction retardation Rth and the in-plane direction retardation Ro is as follows. A long retardation film using cellulose acetate larger than 0.8, wherein the cellulose acetate has an acetyl group substitution degree of 2.1 or more and 2.6 or less, 23 ° C. 55% RH and 60 ° C. 10 Ratio of tear strength in the longitudinal direction (MD direction) and tear strength in the same width direction (TD direction) of the retardation film under the condition of% RH: (Tear strength in MD direction / Tear strength in TD direction) ) Is 0.8 to 1.2.
<Tear strength>
A normal retardation film is subjected to a stretching process in the production process for adjusting the retardation, which causes a difference in physical properties between the MD direction and the TD direction. However, by using the cellulose acetate of the present invention, retardation is achieved. The physical properties in the MD direction and the TD direction can be made uniform during manufacturing and processing while expressing.
 つまり、23℃55%RHおよび60℃10%RHの条件での長尺方向(MD方向)の引裂き強度と、同幅手方向(TD方向)の引裂き強度との比:(MD方向の引裂き強度/TD方向の引裂き強度)が、いずれも0.8~1.2である。 That is, the ratio between the tear strength in the longitudinal direction (MD direction) and the tear strength in the same width direction (TD direction) under the conditions of 23 ° C. and 55% RH and 60 ° C. and 10% RH: (MD direction tear strength) / TD direction tear strength) is 0.8 to 1.2 in all cases.
 引き裂き強度は、23℃55%RHでは、40mN以上150mN以下であり、好ましくは50mN以上130mN以下である。60℃10%RHでは、30mN以上120mN以下、好ましくは40mN以上120mN以下である。 The tear strength at 23 ° C. and 55% RH is 40 mN or more and 150 mN or less, preferably 50 mN or more and 130 mN or less. In 60 degreeC10% RH, it is 30 mN or more and 120 mN or less, Preferably it is 40 mN or more and 120 mN or less.
 引き裂き強度は、エレメンドルフ法JIS K 7128/2-1991に準じ、東洋精機(株)製軽加重引き裂き装置で、それぞれの条件下測定することができる。
<レターデーションRo、Rth>
 本発明の位相差フィルムは、VAに適して使用されるため、面内レターデーションRoが30~150nmの範囲であり、厚み方向のレターデーションRthと面内方向のレターデーションRoとの比であるRth/Roが0.8より大きく5より小さい。さらには、1.5より大きく4より小さいことが好ましい。
The tear strength can be measured with a light weight tear device manufactured by Toyo Seiki Co., Ltd. according to the elemendorf method JIS K 7128 / 2-1991.
<Retardation Ro, Rth>
Since the retardation film of the present invention is suitable for VA, the in-plane retardation Ro is in the range of 30 to 150 nm, and is the ratio of the retardation Rth in the thickness direction to the retardation Ro in the in-plane direction. Rth / Ro is larger than 0.8 and smaller than 5. Furthermore, it is preferably larger than 1.5 and smaller than 4.
 本発明においては、Roは40nm以上100nm以下の範囲にあることが好ましい。は40nm以上80nm以下であることがさらに好ましく、45nm以上60nm以下であることが特に好ましい。 In the present invention, Ro is preferably in the range of 40 nm to 100 nm. Is more preferably 40 nm or more and 80 nm or less, and particularly preferably 45 nm or more and 60 nm or less.
 Rthは90nm以上300nm以下の範囲にあることが好ましく、90nm以上200nm以下であることがさらに好ましく、100nm以上130nm以下であることが特に好ましい。 Rth is preferably in the range of 90 nm to 300 nm, more preferably 90 nm to 200 nm, and particularly preferably 100 nm to 130 nm.
 レターデーションは、KOBRA・21ADH(王子計測機器(株)製)によって測定することができる。
<セルロースアセテート>
 本発明のセルロースアセテートは、アセチル基置換度が2.1~2.6であることを特徴とする。アセチル基置換度は、ASTM-D817-96に規定の方法により求めたものである。
Retardation can be measured by KOBRA · 21ADH (manufactured by Oji Scientific Instruments).
<Cellulose acetate>
The cellulose acetate of the present invention has a acetyl group substitution degree of 2.1 to 2.6. The degree of acetyl group substitution is determined by the method prescribed in ASTM-D817-96.
 本発明のセルロースアセテートαは、6%粘度が70~250mPa・sであることが好ましく、さらに好ましくは80~220mPa・sである。 The cellulose acetate α of the present invention preferably has a 6% viscosity of 70 to 250 mPa · s, more preferably 80 to 220 mPa · s.
 6%粘度は、以下の方法により測定することができる。 6% viscosity can be measured by the following method.
 (6%粘度の測定方法)
 本発明において6%粘度とは、セルロースアセテート6質量%濃度の95%アセトン溶液を25℃±1℃に条件においてオストワルド粘度計で測定したものである。
(Measurement method of 6% viscosity)
In the present invention, the 6% viscosity is measured with an Ostwald viscometer using a 95% acetone solution having a concentration of 6% by mass of cellulose acetate at 25 ° C. ± 1 ° C.
 三角フラスコに乾燥試料3.00g、95%アセトン水溶液を39.90g入れ、密栓して約1.5時間撹拌する(6質量/容積%の溶液)。その後、回転振盪機で約1時間振盪して完溶させる。得られた6質量/容積%の溶液を所定のオストワルド粘度計の標線まで移し、25±1℃で約15分間整温する。計時標線間の流下時間を測定する。 Put 3.00 g of dry sample and 39.90 g of 95% acetone aqueous solution in Erlenmeyer flask, seal tightly and stir for about 1.5 hours (6 mass / volume% solution). Then, it is completely dissolved by shaking for about 1 hour on a rotary shaker. The obtained 6 mass / volume% solution is transferred to a predetermined Ostwald viscometer mark, and the temperature is adjusted at 25 ± 1 ° C. for about 15 minutes. Measure the flow time between the time marks.
 次式により6%粘度を算出する。 Calculate 6% viscosity by the following formula.
    6%粘度(mPa・s)=流下時間(s)×粘度計係数
 粘度計係数は、粘度計校正用標準液を用いて上記と同様の操作で流下時間を測定して求める。
6% viscosity (mPa · s) = flow time (s) × viscosity coefficient The viscometer coefficient is obtained by measuring the flow time by the same operation as described above using a viscometer calibration standard solution.
 粘度計係数={標準液絶対粘度(mPa・s)×溶液の密度(0.827g/cm)}/{標準液の密度(g/cm)×標準液の流下時間(s)}
 本発明のセルロースアセテートには、6%粘度がセルロースアセテートαよりも小さいことを特徴とし、好ましくは、40~80mPa・sである。セルロースアセテートをさらに混合することができる。
Viscometer coefficient = {standard solution absolute viscosity (mPa · s) × solution density (0.827 g / cm 3 )} / {standard solution density (g / cm 3 ) × standard solution flow time (s)}
The cellulose acetate of the present invention has a 6% viscosity lower than that of cellulose acetate α, and is preferably 40 to 80 mPa · s. Cellulose acetate can be further mixed.
 本発明のセルロースアセテートは、慣用の方法、例えば、硫酸触媒法、酢酸法、メチレンクロライド法などの方法で製造でき、原材料を木材パルプとすることが好ましい。 The cellulose acetate of the present invention can be produced by a conventional method such as a sulfuric acid catalyst method, an acetic acid method, or a methylene chloride method, and the raw material is preferably wood pulp.
 セルロースアセテートは、通常、パルプ(セルロース)を酢酸などにより活性化処理(活性化工程)した後、硫酸触媒を用いて無水酢酸によりトリアセテートを調製し(酢化工程)、ケン化(加水分解)・熟成により酢化度を調整する(ケン化・熟成工程)ことにより製造できる。 Cellulose acetate is usually pulp (cellulose) activated with acetic acid or the like (activation step), and then triacetate is prepared with acetic anhydride using a sulfuric acid catalyst (acetylation step). It can be produced by adjusting the degree of acetylation by aging (saponification / aging process).
 この方法において、活性化工程は、例えば、酢酸や含水酢酸の噴霧、酢酸や含水酢酸への浸漬などによリ、パルプ(セルロース)を処理することにより行うことができ、酢酸の使用量は、パルプ(セルロース)100質量部に対して10~100質量部、好ましくは20~80質量部、さらに好ましくは30~60質量部程度である。 In this method, the activation step can be performed by treating pulp (cellulose), for example, by spraying acetic acid or hydrous acetic acid, immersing in acetic acid or hydrous acetic acid, etc. The amount is about 10 to 100 parts by weight, preferably 20 to 80 parts by weight, and more preferably about 30 to 60 parts by weight with respect to 100 parts by weight of pulp (cellulose).
 酢化工程(アセチル化工程)における無水酢酸の使用量は、前記酢化度となる範囲で選択でき、例えば、パルプ(セルロース)100質量部に対して230~300質量部、好ましくは240~290質量部、さらに好ましくは250~280質量部程度である。 The amount of acetic anhydride used in the acetylation step (acetylation step) can be selected within the range of the acetylation degree. For example, 230 to 300 parts by weight, preferably 240 to 290, per 100 parts by weight of pulp (cellulose). Part by mass, more preferably about 250 to 280 parts by mass.
 酢化工程において、通常、溶媒として酢酸が使用される。酢酸の使用量は、例えば、パルプ(セルロース)100質量部に対して200~700質量部、好ましくは300~600質量部、さらに好ましくは350~500質量部程度である。 In the acetylation step, acetic acid is usually used as a solvent. The amount of acetic acid used is, for example, about 200 to 700 parts by weight, preferably 300 to 600 parts by weight, and more preferably about 350 to 500 parts by weight with respect to 100 parts by weight of pulp (cellulose).
 アセチル化又は熟成触媒としては、通常、硫酸が使用される。硫酸の使用量は、通常、セルロース100質量部に対して、1~15質量部、好ましくは5~15質量部、特に5~10質量部程度である。また、ケン化・熟成は、例えば、温度50~70℃程度で行うことができる。 As the acetylation or aging catalyst, sulfuric acid is usually used. The amount of sulfuric acid used is usually about 1 to 15 parts by mass, preferably about 5 to 15 parts by mass, and particularly about 5 to 10 parts by mass with respect to 100 parts by mass of cellulose. The saponification / ripening can be performed at a temperature of about 50 to 70 ° C., for example.
 セルロースアセテートの光学的特性を改善するため、セルロースアセテートの製造工程のうち適当な段階、例えば、酢化やケン化・熟成終了後、生成したセルロースアセテートを酸化剤で処理してもよい。 In order to improve the optical properties of cellulose acetate, the cellulose acetate produced may be treated with an oxidizing agent at an appropriate stage in the cellulose acetate production process, for example, after completion of acetylation, saponification or aging.
 酸化剤としては、例えば、過酸化水素;過ギ酸,過酢酸,過安息香酸などの過酸;過酸化ジアセチルなどの有機過酸化物などが例示できる。酸化剤は単独で又は二種以上使用できる。 Examples of the oxidizing agent include hydrogen peroxide; peracids such as performic acid, peracetic acid, and perbenzoic acid; and organic peroxides such as diacetyl peroxide. The oxidizing agent can be used alone or in combination of two or more.
 好ましい酸化剤には、セルロースアセテートからの除去が容易であり、かつ残留性が小さな酸化剤、例えば、過酸化水素、過ギ酸、過酢酸が含まれ、過酸化水素や過酢酸が特に好ましい。酸化剤の使用量は、所望する光学的特性のレベルに応じて選択でき、例えば、セルロースアセテート100質量部に対して、0.01~5質量部、好ましくは0.1~2.5質量部、特に0.1~1質量部程度である。 Preferred oxidizing agents include oxidizing agents that are easy to remove from cellulose acetate and have low persistence, such as hydrogen peroxide, performic acid, and peracetic acid, with hydrogen peroxide and peracetic acid being particularly preferred. The amount of the oxidizing agent used can be selected according to the desired level of optical properties. For example, 0.01 to 5 parts by mass, preferably 0.1 to 2.5 parts by mass with respect to 100 parts by mass of cellulose acetate. In particular, it is about 0.1 to 1 part by mass.
 酸化剤による処理は、酸化剤の種類に応じて、例えば、20~100℃、好ましくは30~70℃程度で行うことができる。 The treatment with the oxidizing agent can be performed at, for example, about 20 to 100 ° C., preferably about 30 to 70 ° C., depending on the type of the oxidizing agent.
 本発明のセルロースアセテートは酢酸セルロースL-30、L-40、L-50、L-70(ダイセル化学工業(株)製)、Ca398-6、Ca398-10,Ca398-30,Ca394-60S(イーストマンケミカルジャパン(株)製)等の市販品を使用することができる。
<添加剤>
 本発明の位相差フィルムは、下記の糖エステル化合物、および一般式(1)で表されるポリエステルDをセルロースエステルに含有させることによって得ることができる。
<糖エステル化合物>
 エステル化の割合としては、ピラノース構造またはフラノース構造内に存在するOH基の60%以上であることが好ましく、75%以上であることがさらに好ましい。
The cellulose acetate of the present invention is cellulose acetate L-30, L-40, L-50, L-70 (manufactured by Daicel Chemical Industries), Ca398-6, Ca398-10, Ca398-30, Ca394-60S (yeast Commercial products such as Man Chemical Japan Co., Ltd. can be used.
<Additives>
The retardation film of the present invention can be obtained by incorporating cellulose ester into the following sugar ester compound and polyester D represented by the general formula (1).
<Sugar ester compound>
The proportion of esterification is preferably 60% or more, more preferably 75% or more of the OH group present in the pyranose structure or furanose structure.
 本発明で好ましく用いられる糖の例としては、例えば以下のようなものを挙げることができるが、本発明はこれらに限定されるものではない。 Examples of sugars preferably used in the present invention include the following, but the present invention is not limited to these.
 グルコース、ガラクトース、マンノース、フルクトース、キシロース、あるいはアラビノース、ラクトース、スクロース、ニストース、1F-フラクトシルニストース、スタキオース、マルチトール、ラクチトール、ラクチュロース、セロビオース、マルトース、セロトリオース、マルトトリオース、ラフィノースあるいはケストース挙げられる。 Glucose, galactose, mannose, fructose, xylose or arabinose, lactose, sucrose, nystose, 1F-fructosyl nystose, stachyose, maltitol, lactitol, lactulose, cellobiose, maltose, cellotriose, maltotriose, raffinose or kestose .
 このほか、ゲンチオビオース、ゲンチオトリオース、ゲンチオテトラオース、キシロトリオース、ガラクトシルスクロースなども挙げられる。 Other examples include gentiobiose, gentiotriose, gentiotetraose, xylotriose, and galactosyl sucrose.
 これらの化合物の中で、特にピラノース構造とフラノース構造を両方有する化合物が好ましい。 Among these compounds, compounds having both a pyranose structure and a furanose structure are particularly preferable.
 例としてはスクロース、ケストース、ニストース、1F-フラクトシルニストース、スタキオースなどが好ましく、さらに好ましくは、スクロースである。 Examples include sucrose, kestose, nystose, 1F-fructosyl nystose, stachyose, and more preferably sucrose.
 本発明ピラノース構造またはフラノース構造中のOH基のすべてもしくは一部をエステル化するのに用いられるモノカルボン酸としては、特に制限はなく、公知の脂肪族モノカルボン酸、脂環族モノカルボン酸、芳香族モノカルボン酸等を用いることができる。用いられるカルボン酸は1種類でもよいし、2種以上の混合であってもよい。 The monocarboxylic acid used for esterifying all or part of the OH groups in the pyranose structure or furanose structure of the present invention is not particularly limited, and known aliphatic monocarboxylic acids, alicyclic monocarboxylic acids, An aromatic monocarboxylic acid or the like can be used. The carboxylic acid used may be one type or a mixture of two or more types.
 好ましい脂肪族モノカルボン酸としては、酢酸、プロピオン酸、酪酸、イソ酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、2-エチル-ヘキサンカルボン酸、ウンデシル酸、ラウリン酸、トリデシル酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、ヘプタデシル酸、ステアリン酸、ノナデカン酸、アラキン酸、ベヘン酸、リグノセリン酸、セロチン酸、ヘプタコサン酸、モンタン酸、メリシン酸、ラクセル酸等の飽和脂肪酸、ウンデシレン酸、オレイン酸、ソルビン酸、リノール酸、リノレン酸、アラキドン酸、オクテン酸等の不飽和脂肪酸等を挙げることができる。 Preferred aliphatic monocarboxylic acids include acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, 2-ethyl-hexanecarboxylic acid, undecylic acid, lauric acid , Saturated fatty acids such as tridecylic acid, myristic acid, pentadecylic acid, palmitic acid, heptadecylic acid, stearic acid, nonadecanoic acid, arachidic acid, behenic acid, lignoceric acid, serotic acid, heptacosanoic acid, montanic acid, melicic acid, and laccelic acid, Examples include unsaturated fatty acids such as undecylenic acid, oleic acid, sorbic acid, linoleic acid, linolenic acid, arachidonic acid and octenoic acid.
 好ましい脂環族モノカルボン酸の例としては、酢酸、シクロペンタンカルボン酸、シクロヘキサンカルボン酸、シクロオクタンカルボン酸、またはそれらの誘導体を挙げることができる。 Examples of preferable alicyclic monocarboxylic acids include acetic acid, cyclopentanecarboxylic acid, cyclohexanecarboxylic acid, cyclooctanecarboxylic acid, and derivatives thereof.
 好ましい芳香族モノカルボン酸の例としては、安息香酸、トルイル酸等の安息香酸のベンゼン環にアルキル基、アルコキシ基を導入した芳香族モノカルボン酸、ケイ皮酸、ベンジル酸、ビフェニルカルボン酸、ナフタリンカルボン酸、テトラリンカルボン酸等のベンゼン環を2個以上有する芳香族モノカルボン酸、またはそれらの誘導体を挙げることができ、より、具体的には、キシリル酸、ヘメリト酸、メシチレン酸、プレーニチル酸、γ-イソジュリル酸、ジュリル酸、メシト酸、α-イソジュリル酸、クミン酸、α-トルイル酸、ヒドロアトロパ酸、アトロパ酸、ヒドロケイ皮酸、サリチル酸、o-アニス酸、m-アニス酸、p-アニス酸、クレオソート酸、o-ホモサリチル酸、m-ホモサリチル酸、p-ホモサリチル酸、o-ピロカテク酸、β-レソルシル酸、バニリン酸、イソバニリン酸、ベラトルム酸、o-ベラトルム酸、没食子酸、アサロン酸、マンデル酸、ホモアニス酸、ホモバニリン酸、ホモベラトルム酸、o-ホモベラトルム酸、フタロン酸、p-クマル酸を挙げることができるが、特に安息香酸が好ましい。 Examples of preferred aromatic monocarboxylic acids include aromatic monocarboxylic acids having an alkyl group or alkoxy group introduced into the benzene ring of benzoic acid such as benzoic acid and toluic acid, cinnamic acid, benzylic acid, biphenylcarboxylic acid, and naphthalene. Examples thereof include aromatic monocarboxylic acids having two or more benzene rings such as carboxylic acid and tetralin carboxylic acid, or derivatives thereof. More specifically, xylyl acid, hemelic acid, mesitylene acid, prenylic acid, γ-isoduric acid, jurylic acid, mesitic acid, α-isoduric acid, cumic acid, α-toluic acid, hydroatropic acid, atropic acid, hydrocinnamic acid, salicylic acid, o-anisic acid, m-anisic acid, p-anisic acid Creosote acid, o-homosalicylic acid, m-homosalicylic acid, p-homosalicylic acid, o-pyro Technic acid, β-resorcylic acid, vanillic acid, isovanillic acid, veratromic acid, o-veratrumic acid, gallic acid, asaronic acid, mandelic acid, homoanisic acid, homovanillic acid, homoveratormic acid, o-homoveratrumic acid, phthalonic acid, p- Although coumaric acid can be mentioned, benzoic acid is particularly preferable.
 オリゴ糖は、澱粉、ショ糖等にアミラーゼ等の酵素を作用させて製造されるもので、本発明に適用できるオリゴ糖としては、例えば、マルトオリゴ糖、イソマルトオリゴ糖、フラクトオリゴ糖、ガラクトオリゴ糖、キシロオリゴ糖が挙げられる。 Oligosaccharides are produced by allowing an enzyme such as amylase to act on starch, sucrose, etc. Examples of oligosaccharides that can be applied to the present invention include maltooligosaccharides, isomaltoligosaccharides, fructooligosaccharides, galactooligosaccharides, xylooligos. Sugar.
 本発明の糖エステル化合物は、下記一般式(A)で表されるピラノース構造またはフラノース構造の少なくとも1種を1個以上12個以下縮合した化合物である。ただし、R11~R15、R21~R25は、炭素数2~22のアシル基または水素原子を、m、nはそれぞれ0~12の整数、m+nは1~12の整数を表す。 The sugar ester compound of the present invention is a compound obtained by condensing 1 or more and 12 or less of at least one pyranose structure or furanose structure represented by the following general formula (A). R 11 to R 15 and R 21 to R 25 each represents an acyl group having 2 to 22 carbon atoms or a hydrogen atom, m and n each represents an integer of 0 to 12, and m + n represents an integer of 1 to 12.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 R11~R15、R21~R25は、ベンゾイル基、水素原子であることが好ましい。ベンゾイル基はさらに置換基R26(pは0~5)を有していてもよく、例えばアルキル基、アルケニル基、アルコキシル基、フェニル基が挙げられ、さらにこれらのアルキル基、アルケニル基、フェニル基は置換基を有していてもよい。オリゴ糖も本発明のエステル化合物と同様な方法で製造することができる。 R 11 to R 15 and R 21 to R 25 are preferably a benzoyl group or a hydrogen atom. The benzoyl group may further have a substituent R 26 (p is 0 to 5), and examples thereof include an alkyl group, an alkenyl group, an alkoxyl group, and a phenyl group, and further, these alkyl groups, alkenyl groups, and phenyl groups. May have a substituent. Oligosaccharides can also be produced by the same method as the ester compound of the present invention.
 以下に、本発明のエステル化合物の具体例を挙げるが、本発明はこれに限定されるものではない。 Specific examples of the ester compound of the present invention are listed below, but the present invention is not limited thereto.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
<ポリエステルD>
 一般式(1) B-(G-A)n-G-B
(式中、Bはアリールカルボン酸残基、Gは炭素数2~12のアルキレングリコール残基または炭素数6~12のアリールグリコール残基または炭素数が4~12のオキシアルキレングリコール残基、Aは炭素数4~12のアルキレンジカルボン酸残基または炭素数6~12のアリールジカルボン酸残基を表し、またnは1以上の整数を表す。)
 一般式(1)中、Bで示されるベンゼンモノカルボン酸残基とGで示されるアルキレングリコール残基またはオキシアルキレングリコール残基またはアリールグリコール残基、Aで示されるアルキレンジカルボン酸残基またはアリールジカルボン酸残基とから構成されるものであり、通常のポリエステル系可塑剤と同様の反応により得られる。
<Polyester D>
General formula (1) B- (GA) n-GB
(Wherein B is an arylcarboxylic acid residue, G is an alkylene glycol residue having 2 to 12 carbon atoms, an aryl glycol residue having 6 to 12 carbon atoms, or an oxyalkylene glycol residue having 4 to 12 carbon atoms, A Represents an alkylene dicarboxylic acid residue having 4 to 12 carbon atoms or an aryl dicarboxylic acid residue having 6 to 12 carbon atoms, and n represents an integer of 1 or more.)
In the general formula (1), a benzene monocarboxylic acid residue represented by B and an alkylene glycol residue, oxyalkylene glycol residue or aryl glycol residue represented by G, an alkylene dicarboxylic acid residue or aryl dicarboxylic group represented by A It is composed of an acid residue and can be obtained by a reaction similar to that of a normal polyester plasticizer.
 本発明で使用されるポリエステルDのアリールカルボン酸成分としては、例えば、安息香酸、パラターシャリブチル安息香酸、オルソトルイル酸、メタトルイル酸、パラトルイル酸、ジメチル安息香酸、エチル安息香酸、ノルマルプロピル安息香酸、アミノ安息香酸、アセトキシ安息香酸等があり、これらはそれぞれ1種または2種以上の混合物として使用することができる。 Examples of the arylcarboxylic acid component of the polyester D used in the present invention include benzoic acid, para-tert-butylbenzoic acid, orthotoluic acid, metatoluic acid, p-toluic acid, dimethylbenzoic acid, ethylbenzoic acid, normal propylbenzoic acid, There are aminobenzoic acid, acetoxybenzoic acid and the like, and these can be used as one kind or a mixture of two or more kinds, respectively.
 本発明で用いられる位相差フィルムに好ましく用いることのできるポリエステルDの炭素数2~12のアルキレングリコール成分としては、エチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、1,2-ブタンジオール、1,3-ブタンジオール、1,2-プロパンジオール、2-メチル1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、2,2-ジメチル-1,3-プロパンジオール(ネオペンチルグリコール)、2,2-ジエチル-1,3-プロパンジオール(3,3-ジメチロールペンタン)、2-n-ブチル-2-エチル-1,3プロパンジオール(3,3-ジメチロールヘプタン)、3-メチル-1,5-ペンタンジオール1,6-ヘキサンジオール、2,2,4-トリメチル1,3-ペンタンジオール、2-エチル1,3-ヘキサンジオール、2-メチル1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,12-オクタデカンジオール等があり、これらのグリコールは、1種または2種以上の混合物として使用される。 Examples of the alkylene glycol component having 2 to 12 carbon atoms of polyester D that can be preferably used in the retardation film used in the present invention include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,2- Butanediol, 1,3-butanediol, 1,2-propanediol, 2-methyl 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 2,2-dimethyl-1,3 -Propanediol (neopentyl glycol), 2,2-diethyl-1,3-propanediol (3,3-dimethylolpentane), 2-n-butyl-2-ethyl-1,3propanediol (3,3 -Dimethylolheptane), 3-methyl-1,5-pentanediol 1,6-hexanediol, 2,2 4-trimethyl 1,3-pentanediol, 2-ethyl 1,3-hexanediol, 2-methyl 1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, 1,12-octadecanediol These glycols are used as one or a mixture of two or more.
 特に炭素数2~12のアルキレングリコールがセルロースエステルとの相溶性に優れているため、特に好ましい。 Particularly, alkylene glycols having 2 to 12 carbon atoms are particularly preferable because of excellent compatibility with cellulose esters.
 また、上記芳香族末端エステルの炭素数4~12のオキシアルキレングリコール成分としては、例えば、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール、トリプロピレングリコール等があり、これらのグリコールは、1種または2種以上の混合物として使用できる。 Examples of the oxyalkylene glycol component having 4 to 12 carbon atoms of the aromatic terminal ester include diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, and tripropylene glycol. These glycols include 1 It can be used as a seed or a mixture of two or more.
 芳香族末端エステルの炭素数4~12のアルキレンジカルボン酸成分としては、例えば、コハク酸、マレイン酸、フマール酸、グルタール酸、アジピン酸、アゼライン酸、セバシン酸、ドデカンジカルボン酸等があり、これらは、それぞれ1種または2種以上の混合物として使用される。炭素数6~12のアリーレンジカルボン酸成分としては、フタル酸、テレフタル酸、イソフタル酸、1,5ナフタレンジカルボン酸、1,4ナフタレンジカルボン酸等がある。 Examples of the alkylene dicarboxylic acid component having 4 to 12 carbon atoms of the aromatic terminal ester include succinic acid, maleic acid, fumaric acid, glutaric acid, adipic acid, azelaic acid, sebacic acid, and dodecanedicarboxylic acid. These are used as one kind or a mixture of two or more kinds. Examples of the arylene dicarboxylic acid component having 6 to 12 carbon atoms include phthalic acid, terephthalic acid, isophthalic acid, 1,5 naphthalene dicarboxylic acid, and 1,4 naphthalene dicarboxylic acid.
 位相差フィルムに使用されるポリエステルDは、数平均分子量が、好ましくは300~1500、より好ましくは400~1000の範囲が好適である。また、その酸価は、0.5mgKOH/g以下、水酸基価は25mgKOH/g以下、より好ましくは酸価0.3mgKOH/g以下、水酸基価は15mgKOH/g以下のものである。 The polyester D used for the retardation film has a number average molecular weight of preferably 300 to 1500, more preferably 400 to 1000. The acid value is 0.5 mgKOH / g or less, the hydroxyl value is 25 mgKOH / g or less, more preferably the acid value is 0.3 mgKOH / g or less, and the hydroxyl value is 15 mgKOH / g or less.
 以下に、本発明に用いることのできる一般式(1)に示す構造の芳香族末端エステル系可塑剤の具体的化合物を示すが、本発明はこれに限定されない。 Hereinafter, specific compounds of the aromatic terminal ester plasticizer having a structure represented by the general formula (1) that can be used in the present invention will be shown, but the present invention is not limited thereto.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
<その他の添加剤>
 (可塑剤)
 本発明の位相差フィルムには、リン酸エステル系可塑剤、フタル酸エステル系可塑剤、トリメリット酸エステル系可塑剤、ピロメリット酸系可塑剤、グリコレート系可塑剤、クエン酸エステル系可塑剤、ポリエステル系可塑剤、リン酸エステル系可塑剤の可塑剤も好ましく用いることができる。
<Other additives>
(Plasticizer)
The retardation film of the present invention includes a phosphate ester plasticizer, a phthalate ester plasticizer, a trimellitic acid ester plasticizer, a pyromellitic acid plasticizer, a glycolate plasticizer, and a citrate ester plasticizer. Polyester plasticizers and phosphate ester plasticizer plasticizers can also be preferably used.
 その他のカルボン酸エステルの例には、トリメチロールプロパントリベンゾエート、オレイン酸ブチル、リシノール酸メチルアセチル、セバシン酸ジブチル、種々のトリメリット酸エステルが含まれる。ポリエステル系可塑剤として脂肪族二塩基酸、脂環式二塩基酸、芳香族二塩基酸等の二塩基酸とグリコールの共重合ポリマーを用いることができる。 Examples of other carboxylic acid esters include trimethylolpropane tribenzoate, butyl oleate, methylacetyl ricinoleate, dibutyl sebacate, and various trimellitic acid esters. As the polyester plasticizer, a copolymer of a dibasic acid and a glycol such as an aliphatic dibasic acid, an alicyclic dibasic acid, or an aromatic dibasic acid can be used.
 脂肪族二塩基酸としては特に限定されないが、アジピン酸、セバシン酸、フタル酸、テレフタル酸、1,4-シクロヘキシルジカルボン酸等を用いることができる。グリコールとしては、エチレングリコール、ジエチレングリコール、1,3-プロピレングリコール、1,2-プロピレングリコール、1,4-ブチレングリコール、1,3-ブチレングリコール、1,2-ブチレングリコール等を用いることができる。 The aliphatic dibasic acid is not particularly limited, and adipic acid, sebacic acid, phthalic acid, terephthalic acid, 1,4-cyclohexyl dicarboxylic acid and the like can be used. As the glycol, ethylene glycol, diethylene glycol, 1,3-propylene glycol, 1,2-propylene glycol, 1,4-butylene glycol, 1,3-butylene glycol, 1,2-butylene glycol and the like can be used.
 これらの二塩基酸及びグリコールはそれぞれ単独で用いてもよいし、二種以上混合して用いてもよい。 These dibasic acids and glycols may be used alone or in combination of two or more.
 これらの可塑剤の使用量は、フィルム性能、加工性等の点で、セルロースエステルに対して1質量%~20質量%が好ましく、特に好ましくは、3質量%~13質量%である。 The amount of these plasticizers to be used is preferably 1% by mass to 20% by mass, particularly preferably 3% by mass to 13% by mass with respect to the cellulose ester in terms of film performance, processability and the like.
 (金属塩)
 このようなセルロースアセテートは、通常、安定性を向上させるため、耐熱安定剤、例えば、アルカリ金属(リチウム、カリウム、ナトリウムなど)又はその塩やその化合物、アルカリ土類金属(カルシウム、マグネシウム、ストロンチウム、バリウムなど)又はその塩やその化合物を含有している。
(Metal salt)
Such a cellulose acetate usually has a heat resistance stabilizer such as an alkali metal (lithium, potassium, sodium, etc.) or a salt or compound thereof, an alkaline earth metal (calcium, magnesium, strontium, Barium etc.) or a salt thereof or a compound thereof.
 通常のセルロースアセテートに含まれるカルシウム等のアルカリ土類金属は、セルロースアセテート1グラムあたり30~200ppm程度である。 The alkaline earth metal such as calcium contained in normal cellulose acetate is about 30 to 200 ppm per gram of cellulose acetate.
 なお、セルロースアセテート中の金属塩の含有量は、次のような方法により定量できる。
〈金属塩(カルシウム)の含有量測定〉
 (前処理・測定)
 試料約500mgを裁断し、密封式マイクロ波試料分解装置の分解管に入れ関東化学株式会社製硝酸(超高純度試薬)8mlを加え、湿式分解した試料を作成し、試料をポリプロピレン製容器に移し、超純水で50mlに仕上げ、誘導結合プラズマ発光分光分析装置(ICP-AES)でCaの定量を行うことができる。
In addition, content of the metal salt in a cellulose acetate can be quantified with the following method.
<Measurement of metal salt (calcium) content>
(Pretreatment and measurement)
About 500 mg of the sample is cut, put into a decomposition tube of a sealed microwave sample decomposition apparatus, 8 ml of nitric acid (ultra high purity reagent) manufactured by Kanto Chemical Co., Ltd. is added, a wet decomposed sample is prepared, and the sample is transferred to a polypropylene container After finishing to 50 ml with ultrapure water, Ca can be quantified with an inductively coupled plasma optical emission spectrometer (ICP-AES).
 (使用装置・条件)
 分解装置 マイルストーンゼネラル株式会社 ETHOS-1
 測定装置 エスアイアイ・ナノテクノロジー株式会社 SPS3520UV
 測定波長 393.4769nm
 検量線用試薬 関東化学株式会社 化学分析用カルシウム標準液
 (紫外線吸収剤)
 本発明の位相差フィルムには、紫外線吸収剤が好ましく用いられる。紫外線吸収剤としては、波長370nm以下の紫外線の吸収能に優れ、かつ良好な液晶表示性の観点から、波長400nm以上の可視光の吸収が少ないものが好ましく用いられる。
(Usage equipment and conditions)
Decomposition Equipment Milestone General Co., Ltd. ETHOS-1
SII Nano Technology Co., Ltd. SPS3520UV
Measurement wavelength 3933.4769nm
Calibration curve reagent Kanto Chemical Co., Ltd. Calcium standard solution for chemical analysis (UV absorber)
An ultraviolet absorber is preferably used for the retardation film of the present invention. As the ultraviolet absorber, those excellent in the ability to absorb ultraviolet rays having a wavelength of 370 nm or less and having little absorption of visible light having a wavelength of 400 nm or more are preferably used from the viewpoint of good liquid crystal display properties.
 本発明に好ましく用いられる紫外線吸収剤の具体例としては、例えば、オキシベンゾフェノン系化合物、ベンゾトリアゾール系化合物、サリチル酸エステル系化合物、ベンゾフェノン系化合物、シアノアクリレート系化合物、ニッケル錯塩系化合物等が挙げられるが、これらに限定されない。 Specific examples of the ultraviolet absorber preferably used in the present invention include oxybenzophenone compounds, benzotriazole compounds, salicylic acid ester compounds, benzophenone compounds, cyanoacrylate compounds, nickel complex compounds, and the like. However, it is not limited to these.
 本発明で好ましく用いられる紫外線吸収剤としては、透明性が高く、偏光板や液晶の劣化を防ぐ効果に優れたベンゾトリアゾール系紫外線吸収剤やベンゾフェノン系紫外線吸収剤が好ましく、不要な着色がより少ないベンゾトリアゾール系紫外線吸収剤が特に好ましく用いられる。 As the ultraviolet absorber preferably used in the present invention, a benzotriazole-based ultraviolet absorber and a benzophenone-based ultraviolet absorber that are highly transparent and excellent in preventing the deterioration of the polarizing plate and the liquid crystal are preferable, and unnecessary coloring is less. A benzotriazole-based ultraviolet absorber is particularly preferably used.
 また、特開2001-187825号に記載されている分配係数が9.2以上の紫外線吸収剤は、長尺フィルムの面品質を向上させ、塗布性にも優れている。特に分配係数が10.1以上の紫外線吸収剤を用いることが好ましい。 Also, the ultraviolet absorber having a distribution coefficient of 9.2 or more described in JP-A No. 2001-187825 improves the surface quality of a long film and is excellent in coating properties. In particular, it is preferable to use an ultraviolet absorber having a distribution coefficient of 10.1 or more.
 また、特開平6-148430号に記載の一般式(1)または一般式(2)、特願2000-156039号の一般式(3)、(6)、(7)記載の高分子紫外線吸収剤(または紫外線吸収性ポリマー)も好ましく用いられる。高分子紫外線吸収剤としては、PUVA-30M(大塚化学(株)製)等が市販されている。 Further, the polymer ultraviolet absorber described in the general formula (1) or general formula (2) described in JP-A-6-148430 and the general formulas (3), (6), (7) of Japanese Patent Application No. 2000-156039 (Or UV-absorbing polymer) is also preferably used. As a polymer ultraviolet absorber, PUVA-30M (manufactured by Otsuka Chemical Co., Ltd.) and the like are commercially available.
 (微粒子)
 本発明の位相差フィルムには滑り性を付与するため、微粒子を添加することが好ましい。
(Fine particles)
In order to impart slipperiness to the retardation film of the present invention, it is preferable to add fine particles.
 微粒子の1次平均粒子径としては、20nm以下が好ましく、さらに好ましくは、5~16nmであり、特に好ましくは、5~12nmである。 The primary average particle diameter of the fine particles is preferably 20 nm or less, more preferably 5 to 16 nm, and particularly preferably 5 to 12 nm.
 これらの微粒子は0.1~5μmの粒径の2次粒子を形成して位相差フィルムに含まれることが好ましく、好ましい平均粒径は0.1~2μmであり、さらに好ましくは0.2~0.6μmである。これにより、フィルム表面に高さ0.1~1.0μm程度の凹凸を形成し、これによってフィルム表面に適切な滑り性を与えることができる。 These fine particles preferably form secondary particles having a particle diameter of 0.1 to 5 μm and are contained in the retardation film, and the preferable average particle diameter is 0.1 to 2 μm, more preferably 0.2 to 0.6 μm. As a result, irregularities having a height of about 0.1 to 1.0 μm are formed on the film surface, thereby providing appropriate slipperiness to the film surface.
 本発明に用いられる微粒子の1次平均粒子径の測定は、透過型電子顕微鏡(倍率50万~200万倍)で粒子の観察を行い、粒子100個を観察し、粒子径を測定しその平均値をもって、1次平均粒子径とした。 The primary average particle diameter of the fine particles used in the present invention is measured by observing the particles with a transmission electron microscope (magnification of 500,000 to 2,000,000 times), observing 100 particles, measuring the particle diameter, and measuring the average. The value was taken as the primary average particle size.
 微粒子の見掛比重としては、70g/リットル以上が好ましく、さらに好ましくは、90~200g/リットルであり、特に好ましくは、100~200g/リットルである。見掛比重が大きい程、高濃度の分散液を作ることが可能になり、ヘイズ、凝集物が良化するため好ましく、また、本発明のように固形分濃度の高いドープを調製する際には、特に好ましく用いられる。 The apparent specific gravity of the fine particles is preferably 70 g / liter or more, more preferably 90 to 200 g / liter, and particularly preferably 100 to 200 g / liter. A larger apparent specific gravity makes it possible to make a high-concentration dispersion, which improves haze and agglomerates, and is preferable when preparing a dope having a high solid content concentration as in the present invention. Are particularly preferably used.
 1次粒子の平均径が20nm以下、見掛比重が70g/リットル以上の二酸化珪素微粒子は、例えば、気化させた四塩化珪素と水素を混合させたものを1000~1200℃にて空気中で燃焼させることで得ることができる。また例えばアエロジル200V、アエロジルR972V(以上、日本アエロジル(株)製)の商品名で市販されており、それらを使用することができる。 Silicon dioxide fine particles having an average primary particle diameter of 20 nm or less and an apparent specific gravity of 70 g / liter or more are, for example, a mixture of vaporized silicon tetrachloride and hydrogen burned in air at 1000 to 1200 ° C. Can be obtained. For example, it is marketed with the brand name of Aerosil 200V and Aerosil R972V (above, Nippon Aerosil Co., Ltd. product), and can use them.
 上記記載の見掛比重は二酸化珪素微粒子を一定量メスシリンダーに採り、この時の重さを測定し、下記式で算出したものである。
見掛比重(g/リットル)=二酸化珪素質量(g)/二酸化珪素の容積(リットル)
<位相差フィルムの製造方法>
 次に、本発明の位相差フィルムの製造方法について詳細に説明する。
The apparent specific gravity described above is calculated by the following equation by taking a certain amount of silicon dioxide fine particles in a graduated cylinder, measuring the weight at this time.
Apparent specific gravity (g / liter) = silicon dioxide mass (g) / volume of silicon dioxide (liter)
<Method for producing retardation film>
Next, the manufacturing method of the retardation film of this invention is demonstrated in detail.
 本発明の位相差フィルムは溶液流延法で製造されたフィルムであっても溶融流延法で製造されたフィルムであっても好ましく用いることができる。 The retardation film of the present invention can be preferably used regardless of whether it is a film produced by a solution casting method or a film produced by a melt casting method.
 本発明の位相差フィルムの製造は、セルロースアセテート及び添加剤を溶剤に溶解させてドープを調製する工程、ドープを無限に移行する無端の金属支持体上に流延する工程、流延したドープをウェブとして乾燥する工程、金属支持体から剥離する工程、延伸又は幅保持する工程、さらに乾燥する工程、仕上がったフィルムを巻取る工程により行われる。
〈ドープ調整工程〉
 ドープを調製する工程について述べる。ドープ中のセルロースアセテートの濃度は、濃い方が金属支持体に流延した後の乾燥負荷が低減できて好ましいが、セルロースアセテートの濃度が濃過ぎると濾過時の負荷が増えて、濾過精度が悪くなる。これらを両立する濃度としては、10~35質量%が好ましく、さらに好ましくは、15~25質量%である。
The production of the retardation film of the present invention comprises a step of preparing a dope by dissolving cellulose acetate and an additive in a solvent, a step of casting a dope on an endless metal support, and a cast dope. The step of drying as a web, the step of peeling from the metal support, the step of stretching or maintaining the width, the step of further drying, and the step of winding up the finished film are performed.
<Dope adjustment process>
The process for preparing the dope will be described. The concentration of cellulose acetate in the dope is preferably higher because the drying load after casting on the metal support can be reduced. However, if the concentration of cellulose acetate is too high, the load during filtration increases and the filtration accuracy is poor. Become. The concentration that achieves both of these is preferably 10 to 35% by mass, and more preferably 15 to 25% by mass.
 ドープで用いられる溶剤は、単独で用いても二種以上を併用してもよいが、セルロースアセテートの良溶剤と貧溶剤を混合して使用することが生産効率の点で好ましく、良溶剤が多い方がセルロースアセテートの溶解性の点で好ましい。 The solvent used in the dope may be used alone or in combination of two or more. However, it is preferable to use a mixture of a good solvent and a poor solvent of cellulose acetate in terms of production efficiency, and there are many good solvents. This is preferable from the viewpoint of solubility of cellulose acetate.
 良溶剤と貧溶剤の混合比率の好ましい範囲は、良溶剤が70~98質量%であり、貧溶剤が2~30質量%である。良溶剤、貧溶剤とは、使用するセルロースアセテートを単独で溶解するものを良溶剤、単独で膨潤するか又は溶解しないものを貧溶剤と定義している。 A preferable range of the mixing ratio of the good solvent and the poor solvent is 70 to 98% by mass for the good solvent and 2 to 30% by mass for the poor solvent. With a good solvent and a poor solvent, what dissolve | melts the cellulose acetate to be used independently is defined as a good solvent, and what does not swell or dissolve independently is defined as a poor solvent.
 そのため、一般にセルロースアセテートの平均酢化度(アセチル基置換度)によっては、良溶剤、貧溶剤が変わり、例えばアセトンを溶剤として用いる時には、セルロースジアセテート(アセチル基置換度2.4)に対しては良溶剤になり、セルローストリアセテート(アセチル基置換度2.9)では貧溶剤となる。 Therefore, in general, depending on the average degree of acetylation (acetyl group substitution degree) of cellulose acetate, the good solvent and the poor solvent change. For example, when acetone is used as a solvent, cellulose acetate (acetyl group substitution degree 2.4) is used. Is a good solvent, and cellulose triacetate (acetyl group substitution degree 2.9) is a poor solvent.
 本発明に用いられる良溶剤は特に限定されないが、メチレンクロライド等の有機ハロゲン化合物やジオキソラン類、アセトン、酢酸メチル、アセト酢酸メチル等が挙げられる。特に好ましくはメチレンクロライド又は酢酸メチルが挙げられる。 The good solvent used in the present invention is not particularly limited, and examples thereof include organic halogen compounds such as methylene chloride, dioxolanes, acetone, methyl acetate, and methyl acetoacetate. Particularly preferred is methylene chloride or methyl acetate.
 また、本発明に用いられる貧溶剤は特に限定されないが、例えば、メタノール、エタノール、n-ブタノール、シクロヘキサン、シクロヘキサノン等が好ましく用いられる。また、ドープ中には水が0.01~2質量%含有していることが好ましい。 The poor solvent used in the present invention is not particularly limited, but for example, methanol, ethanol, n-butanol, cyclohexane, cyclohexanone and the like are preferably used. The dope preferably contains 0.01 to 2% by mass of water.
 また、セルロースアセテートの溶解に用いられる溶媒は、フィルム製膜工程で乾燥によりフィルムから除去された溶媒を回収し、これを再利用して用いられる。 Further, as the solvent used for dissolving cellulose acetate, the solvent removed from the film by drying in the film forming process is recovered and reused.
 回収溶剤中に、セルロースアセテートに添加されている添加剤、例えば可塑剤、紫外線吸収剤、ポリマー、モノマー成分などが微量含有されていることもあるが、これらが含まれていても好ましく再利用することができるし、必要であれば精製して再利用することもできる。 The recovery solvent may contain trace amounts of additives added to cellulose acetate, such as plasticizers, UV absorbers, polymers, monomer components, etc., but these are preferably reused even if they are included. Can be purified and reused if necessary.
 上記記載のドープを調製する時の、セルロースアセテートの溶解方法としては、一般的な方法を用いることができる。加熱と加圧を組み合わせると常圧における沸点以上に加熱できる。 A general method can be used as a method for dissolving cellulose acetate when preparing the dope described above. When heating and pressurization are combined, it is possible to heat above the boiling point at normal pressure.
 溶剤の常圧での沸点以上でかつ加圧下で溶剤が沸騰しない範囲の温度で加熱しながら攪拌溶解すると、ゲルやママコと呼ばれる塊状未溶解物の発生を防止するため好ましい。 It is preferable to stir and dissolve while heating at a temperature that is higher than the boiling point of the solvent at normal pressure and that the solvent does not boil under pressure, in order to prevent the formation of massive undissolved material called gel or mamako.
 また、セルロースエステルを貧溶剤と混合して湿潤あるいは膨潤させた後、さらに良溶剤を添加して溶解する方法も好ましく用いられる。 Further, a method in which a cellulose ester is mixed with a poor solvent and wetted or swollen, and then a good solvent is added and dissolved is also preferably used.
 加圧は窒素ガス等の不活性気体を圧入する方法や、加熱によって溶剤の蒸気圧を上昇させる方法によって行ってもよい。加熱は外部から行うことが好ましく、例えばジャケットタイプのものは温度コントロールが容易で好ましい。 Pressurization may be performed by a method of injecting an inert gas such as nitrogen gas or a method of increasing the vapor pressure of the solvent by heating. Heating is preferably performed from the outside. For example, a jacket type is preferable because temperature control is easy.
 溶剤を添加しての加熱温度は、高い方がセルロースエステルの溶解性の観点から好ましいが、加熱温度が高過ぎると必要とされる圧力が大きくなり生産性が悪くなる。 The heating temperature with the addition of the solvent is preferably higher from the viewpoint of the solubility of the cellulose ester, but if the heating temperature is too high, the required pressure increases and the productivity deteriorates.
 好ましい加熱温度は45~120℃であり、60~110℃がより好ましく、70℃~105℃がさらに好ましい。また、圧力は設定温度で溶剤が沸騰しないように調整される。 The preferred heating temperature is 45 to 120 ° C, more preferably 60 to 110 ° C, and even more preferably 70 ° C to 105 ° C. The pressure is adjusted so that the solvent does not boil at the set temperature.
 もしくは冷却溶解法も好ましく用いられ、これによって酢酸メチルなどの溶媒にセルロースアセテートを溶解させることができる。 Alternatively, a cooling dissolution method is also preferably used, whereby cellulose acetate can be dissolved in a solvent such as methyl acetate.
 次に、このセルロースアセテート溶液を濾紙等の適当な濾過材を用いて濾過する。濾過材としては、不溶物等を除去するために絶対濾過精度が小さい方が好ましいが、絶対濾過精度が小さ過ぎると濾過材の目詰まりが発生し易いという問題がある。 Next, the cellulose acetate solution is filtered using a suitable filter medium such as filter paper. As the filter medium, it is preferable that the absolute filtration accuracy is small in order to remove insoluble matters and the like, but there is a problem that the filter medium is likely to be clogged if the absolute filtration accuracy is too small.
 このため絶対濾過精度0.008mm以下の濾材が好ましく、0.001~0.008mmの濾材がより好ましく、0.003~0.006mmの濾材がさらに好ましい。 For this reason, a filter medium with an absolute filtration accuracy of 0.008 mm or less is preferable, a filter medium with 0.001 to 0.008 mm is more preferable, and a filter medium with 0.003 to 0.006 mm is more preferable.
 濾材の材質は特に制限はなく、通常の濾材を使用することができるが、ポリプロピレン、テフロン(登録商標)等のプラスチック製の濾材や、ステンレススティール等の金属製の濾材が繊維の脱落等がなく好ましい。 There are no particular restrictions on the material of the filter medium, and ordinary filter media can be used. However, plastic filter media such as polypropylene and Teflon (registered trademark), and metal filter media such as stainless steel do not drop off fibers. preferable.
 濾過により、原料のセルロースアセテートに含まれていた不純物、特に輝点異物を除去、低減することが好ましい。 It is preferable to remove and reduce impurities, particularly bright spot foreign matter, contained in the raw material cellulose acetate by filtration.
 輝点異物とは、2枚の偏光板をクロスニコル状態にして配置し、その間に位相差フィルム等を置き、一方の偏光板の側から光を当てて、他方の偏光板の側から観察した時に反対側からの光が漏れて見える点(異物)のことであり、径が0.01mm以上である輝点数が200個/cm以下であることが好ましい。 The bright spot foreign matter is arranged in a crossed Nicols state with two polarizing plates, a retardation film or the like is placed between them, light is applied from one polarizing plate side, and observation is performed from the other polarizing plate side. It is a point (foreign matter) where light from the opposite side sometimes leaks, and the number of bright spots having a diameter of 0.01 mm or more is preferably 200 / cm 2 or less.
 より好ましくは100個/cm以下であり、さらに好ましくは50個/m以下であり、さらに好ましくは0~10個/cm以下である。また、0.01mm以下の輝点も少ない方が好ましい。 More preferably, it is 100 pieces / cm 2 or less, further preferably 50 pieces / m 2 or less, and further preferably 0 to 10 pieces / cm 2 . Further, it is preferable that the number of bright spots of 0.01 mm or less is small.
 ドープの濾過は通常の方法で行うことができるが、溶剤の常圧での沸点以上で、かつ加圧下で溶剤が沸騰しない範囲の温度で加熱しながら濾過する方法が、濾過前後の濾圧の差(差圧という)の上昇が小さく、好ましい。 The dope can be filtered by a normal method, but the method of filtering while heating at a temperature not lower than the boiling point of the solvent at normal pressure and in a range where the solvent does not boil under pressure is the filtration pressure before and after filtration. The increase in the difference (referred to as differential pressure) is small and preferable.
 好ましい温度は45~120℃であり、45~70℃がより好ましく、45~55℃であることがさらに好ましい。 A preferable temperature is 45 to 120 ° C, more preferably 45 to 70 ° C, and further preferably 45 to 55 ° C.
 濾圧は小さい方が好ましい。濾圧は1.6MPa以下であることが好ましく、1.2MPa以下であることがより好ましく、1.0MPa以下であることがさらに好ましい。
〈流延工程〉
 ここで、ドープの流延について説明する。
A smaller filtration pressure is preferred. The filtration pressure is preferably 1.6 MPa or less, more preferably 1.2 MPa or less, and further preferably 1.0 MPa or less.
<Casting process>
Here, the dope casting will be described.
 流延(キャスト)工程における金属支持体は、表面を鏡面仕上げしたものが好ましく、金属支持体としては、ステンレススティールベルトもしくは鋳物で表面をメッキ仕上げしたドラムが好ましく用いられる。 The metal support in the casting process is preferably a mirror-finished surface, and a stainless steel belt or a drum whose surface is plated with a casting is preferably used as the metal support.
 キャストの幅は1~4mとすることができる。流延工程の金属支持体の表面温度は-50℃~溶剤の沸点未満の温度で、温度が高い方がウェブの乾燥速度が速くできるので好ましいが、余り高過ぎるとウェブが発泡したり、平面性が劣化する場合がある。 The cast width can be 1 ~ 4m. The surface temperature of the metal support in the casting step is −50 ° C. to less than the boiling point of the solvent, and a higher temperature is preferable because the web drying speed can be increased. May deteriorate.
 好ましい支持体温度は0~60℃であり、25~55℃がさらに好ましい。あるいは、冷却することによってウェブをゲル化させて残留溶媒を多く含んだ状態でドラムから剥離することも好ましい方法である。 The preferred support temperature is 0 to 60 ° C, more preferably 25 to 55 ° C. Alternatively, it is also a preferable method that the web is gelled by cooling and peeled from the drum in a state containing a large amount of residual solvent.
 金属支持体の温度を制御する方法は特に制限されないが、温風又は冷風を吹きかける方法や、温水を金属支持体の裏側に接触させる方法がある。 The method for controlling the temperature of the metal support is not particularly limited, but there are a method of blowing hot air or cold air, and a method of contacting hot water with the back side of the metal support.
 温水を用いる方が熱の伝達が効率的に行われるため、金属支持体の温度が一定になるまでの時間が短く好ましい。温風を用いる場合は目的の温度よりも高い温度の風を使う場合がある。 It is preferable to use hot water because heat transfer is performed efficiently, so that the time until the temperature of the metal support becomes constant is short. When warm air is used, wind at a temperature higher than the target temperature may be used.
 セルロースエステルフィルムが良好な平面性を示すためには、金属支持体からウェブを剥離する際の残留溶媒量は10~150質量%が好ましく、さらに好ましくは20~40質量%又は60~130質量%であり、特に好ましくは、20~30質量%又は70~120質量%である。 In order for the cellulose ester film to exhibit good flatness, the residual solvent amount when peeling the web from the metal support is preferably 10 to 150% by mass, more preferably 20 to 40% by mass or 60 to 130% by mass. Particularly preferred is 20 to 30% by mass or 70 to 120% by mass.
 本発明においては、残留溶媒量は下記式で定義される。 In the present invention, the amount of residual solvent is defined by the following formula.
 残留溶媒量(質量%)={(M-N)/N}×100
 尚、Mはウェブ又はフィルムを製造中又は製造後の任意の時点で採取した試料の質量で、NはMを115℃で1時間の加熱後の質量である。
〈乾燥工程〉
 また、セルロースエステルフィルムの乾燥工程においては、ウェブを金属支持体より剥離し、さらに乾燥し、残留溶媒量を1質量%以下にすることが好ましく、さらに好ましくは0.1質量%以下であり、特に好ましくは0~0.01質量%である。
Residual solvent amount (% by mass) = {(MN) / N} × 100
M is the mass of a sample collected during or after the production of the web or film, and N is the mass after heating M at 115 ° C. for 1 hour.
<Drying process>
Further, in the drying step of the cellulose ester film, the web is peeled off from the metal support, and further dried, and the residual solvent amount is preferably 1% by mass or less, more preferably 0.1% by mass or less, Particularly preferred is 0 to 0.01% by mass.
 フィルム乾燥工程では一般にロール乾燥方式(上下に配置した多数のロールにウェブを交互に通し乾燥させる方式)やテンター方式でウェブを搬送させながら乾燥する方式が採られる。 In the film drying process, generally, a roll drying method (a method in which webs are alternately passed through a plurality of rolls arranged above and below) and a method in which the web is dried while being conveyed by a tenter method are employed.
 本発明の位相差フィルムを作製するためには、ウェブの両端をクリップ等で把持するテンター方式で幅方向(横方向)に延伸を行うことが特に好ましい。剥離張力は300N/m以下で剥離することが好ましい。 In order to produce the retardation film of the present invention, it is particularly preferable to stretch in the width direction (lateral direction) by a tenter method in which both ends of the web are gripped by clips or the like. Peeling is preferably performed at a peeling tension of 300 N / m or less.
 ウェブを乾燥させる手段は特に制限なく、一般的に熱風、赤外線、加熱ロール、マイクロ波等で行うことができるが、簡便さの点で、熱風で行うことが好ましい。 The means for drying the web is not particularly limited, and can be generally performed with hot air, infrared rays, a heating roll, microwave, or the like, but is preferably performed with hot air in terms of simplicity.
 ウェブの乾燥工程における乾燥温度は40~200℃で段階的に高くしていくことが好ましい。 It is preferable that the drying temperature in the web drying process is increased stepwise from 40 to 200 ° C.
 本発明の位相差フィルムは、幅1~4mのものが好ましく用いられる。特に幅1.3~4mのものが好ましく用いられ、特に好ましくは1.3~3mである。
〈延伸工程〉
 本発の位相差フィルムが目標とするリターデーション値Ro、Rthは、添加する糖エステル、ポリエステルDの量およびフィルム作製時の延伸倍率(テンター延伸、搬送張力の制御)によって調整することができる。
The retardation film of the present invention preferably has a width of 1 to 4 m. Particularly, those having a width of 1.3 to 4 m are preferably used, and particularly preferably 1.3 to 3 m.
<Extension process>
The retardation values Ro and Rth targeted by the present retardation film can be adjusted by the amount of sugar ester and polyester D to be added and the stretching ratio (control of tenter stretching and transport tension) during film production.
 フィルムの長手方向(製膜方向)及びそれとフィルム面内で直交する方向、即ち幅手方向に対して、逐次又は同時に2軸延伸もしくは1軸延伸することができる。 Biaxial stretching or uniaxial stretching can be performed sequentially or simultaneously with respect to the longitudinal direction (film forming direction) of the film and the direction orthogonal to the longitudinal direction of the film, that is, the width direction.
 互いに直交する2軸方向の延伸倍率は、それぞれ最終的には流延方向に0.8~1.5倍、幅方向に1.1~2.5倍の範囲とすることが好ましく、流延方向に0.8~1.0倍、幅方向に1.3~1.5倍に範囲で行うことが好ましい。 The draw ratios in the biaxial directions perpendicular to each other are preferably in the range of 0.8 to 1.5 times in the casting direction and 1.1 to 2.5 times in the width direction, respectively. It is preferable to carry out in the range of 0.8 to 1.0 times in the direction and 1.3 to 1.5 times in the width direction.
 延伸温度は、140℃~200℃であり、好ましくは140℃を超えて180℃以下で延伸するのが好ましい。 The stretching temperature is 140 ° C. to 200 ° C., and it is preferable that the stretching temperature is over 140 ° C. and 180 ° C. or less.
 フィルム中の残留溶媒は0~20質量%が好ましく、さらに好ましくは5~15質量%で延伸するのが好ましい。 The residual solvent in the film is preferably 0 to 20% by mass, more preferably 5 to 15% by mass.
 また、延伸時のフィルム幅方向にかかるテンションは30N/m以上100N/m未満が望ましく、好ましくは40N/m以上80N/m未満である。 Further, the tension applied in the film width direction during stretching is desirably 30 N / m or more and less than 100 N / m, and preferably 40 N / m or more and less than 80 N / m.
 ウェブを延伸する方法には特に限定はない。例えば、複数のロールに周速差をつけ、その間でロール周速差を利用して縦方向に延伸する方法、ウェブの両端をクリップやピンで固定し、クリップやピンの間隔を進行方向に広げて縦方向に延伸する方法、同様に横方向に広げて横方向に延伸する方法、あるいは縦横同時に広げて縦横両方向に延伸する方法などが挙げられる。もちろんこれ等の方法は、組み合わせて用いてもよい。 There is no particular limitation on the method of stretching the web. For example, a method in which a circumferential speed difference is applied to a plurality of rolls, and the roll circumferential speed difference is used to stretch the rolls in the vertical direction. Both ends of the web are fixed with clips and pins, and the interval between the clips and pins is increased in the traveling direction And a method of stretching in the vertical direction, a method of stretching in the horizontal direction and stretching in the horizontal direction, a method of stretching in the vertical and horizontal directions and stretching in both the vertical and horizontal directions, and the like. Of course, these methods may be used in combination.
 また、所謂テンター法の場合、リニアドライブ方式でクリップ部分を駆動すると滑らかな延伸を行うことができ、破断等の危険性が減少できるので好ましい。 Also, in the case of the so-called tenter method, driving the clip portion by the linear drive method is preferable because smooth stretching can be performed and the risk of breakage and the like can be reduced.
 製膜工程のこれらの幅保持あるいは横方向の延伸はテンターによって行うことが好ましく、ピンテンターでもクリップテンターでもよい。 It is preferable to carry out the width maintenance or lateral stretching in the film forming step by a tenter, and it may be a pin tenter or a clip tenter.
 本発明においては、延伸工程後に140℃から180℃の温度の熱固定をすることも、本発明に引き裂き強度を得るためには有効である。 In the present invention, heat setting at a temperature of 140 ° C. to 180 ° C. after the stretching step is also effective for obtaining the tear strength in the present invention.
 延伸温度の140℃から180℃または延伸工程後の140℃から180℃の熱固定は、本発明のアセチル基置換度2.1以上2.6以下のセルロースアセテートに特異的に有効な温度領域である。 The heat setting at a stretching temperature of 140 ° C. to 180 ° C. or 140 ° C. to 180 ° C. after the stretching step is a temperature range that is specifically effective for cellulose acetate having an acetyl group substitution degree of 2.1 to 2.6. is there.
 本発明の位相差フィルムの遅相軸又は進相軸がフィルム面内に存在し、製膜方向とのなす角をθ1とするとθ1は-1°以上+1°以下であることが好ましく、-0.3°以上+0.3°以下であることがより好ましい。 When the slow axis or the fast axis of the retardation film of the present invention exists in the film plane and the angle formed with the film forming direction is θ1, θ1 is preferably −1 ° or more and + 1 ° or less, −0 More preferably, it is 3 ° or more and + 0.3 ° or less.
 このθ1は配向角として定義でき、θ1の測定は、自動複屈折計KOBRA-21ADH(王子計測機器)を用いて23℃55%RHの雰囲気下、行うことができる。θ1が各々上記関係を満たすことは、表示画像において高い輝度を得ること、光漏れを抑制又は防止することに寄与でき、カラー液晶表示装置においては忠実な色再現を得ることに寄与できる。
<位相差フィルムの物性>
 本発明の位相差フィルムの透湿度は、40℃、90%RHで800~1600g/m・24hが好ましく、さらに1000~1600g/m・24hが好ましく、1200~1600g/m・24hが特に好ましい。透湿度はJIS Z 0208に記載の方法に従い測定することができる。
This θ1 can be defined as an orientation angle, and θ1 can be measured in an atmosphere of 23 ° C. and 55% RH using an automatic birefringence meter KOBRA-21ADH (Oji Scientific Instruments). Each of θ1 satisfying the above relationship can contribute to obtaining high luminance in a display image, suppressing or preventing light leakage, and contributing to obtaining faithful color reproduction in a color liquid crystal display device.
<Physical properties of retardation film>
The water vapor transmission rate of the retardation film of the present invention is preferably 800 to 1600 g / m 2 · 24 h at 40 ° C. and 90% RH, more preferably 1000 to 1600 g / m 2 · 24 h, and 1200 to 1600 g / m 2 · 24 h. Particularly preferred. The moisture permeability can be measured according to the method described in JIS Z 0208.
 本発明の位相差フィルムの破断伸度は10~80%であることが好ましく20~50%であることがさらに好ましい。 The breaking elongation of the retardation film of the present invention is preferably 10 to 80%, more preferably 20 to 50%.
 本発明の位相差フィルムの可視光透過率は90%以上であることが好ましく、93%以上であることがさらに好ましい。 The visible light transmittance of the retardation film of the present invention is preferably 90% or more, and more preferably 93% or more.
 本発明の位相差フィルムのヘイズは1%未満であることが好ましく0~0.2%であることが特に好ましい。 The haze of the retardation film of the present invention is preferably less than 1%, particularly preferably 0 to 0.2%.
 VA型液晶表示装置のように正面コントラストが非常に高い液晶表示装置にリターデーション上昇剤のような添加剤を加えた位相差フィルムを用いた場合、添加剤が異物となり内部ヘイズ、内部散乱によるフィルムの散乱が上昇し、結果として正面コントラストを損なうことがあるため、本発明の位相差フィルムの内部ヘイズは0.1%未満であることが好ましく0~0.05%であることが特に好ましい。 When a retardation film with an additive such as a retardation increasing agent is used in a liquid crystal display device with a very high front contrast, such as a VA liquid crystal display device, the additive becomes a foreign substance and the film is caused by internal haze and internal scattering. In the retardation film of the present invention, the internal haze is preferably less than 0.1%, particularly preferably from 0 to 0.05%.
 このヘイズは、セルロースエステルとしてパルプを原材料としてものを使用し、本発明の糖エステルおよびポリエステルDを含有することによって達成することができる。 This haze can be achieved by using a cellulose ester as a raw material for pulp and containing the sugar ester and polyester D of the present invention.
 本発明の位相差フィルムは、その一方の面とそれと反対側の面(フィルム表面、裏面ともいう)との屈折率差が、5×10-4~5×10-3の範囲であることが好ましい。 The retardation film of the present invention has a refractive index difference between 5 × 10 −4 to 5 × 10 −3 between one surface thereof and the opposite surface (also referred to as film surface or back surface). preferable.
 これは薄膜偏光板にすると、偏光板のコシが弱くなり液晶セルに貼合する際に気泡の発生や位置ズレが発生し易くなる。その為、位相差フィルムに意図的なカールをつけて偏光板にコシを与えることにより、液晶セルに貼合する際の上記故障を低減することができる。
<機能性層>
 ハードコートフィルムには、帯電防止層、バックコート層、反射防止層、易滑性層、接着層、防眩層、バリアー層等の機能性層を設けることができる。
When this is a thin film polarizing plate, the stiffness of the polarizing plate becomes weak, and bubbles are likely to be generated or misaligned when bonded to a liquid crystal cell. Therefore, the above-mentioned failure at the time of pasting to a liquid crystal cell can be reduced by giving a curl intentionally to a retardation film and giving a stiffness to a polarizing plate.
<Functional layer>
The hard coat film can be provided with functional layers such as an antistatic layer, a backcoat layer, an antireflection layer, a slippery layer, an adhesive layer, an antiglare layer, and a barrier layer.
 〈バックコート層〉
 ハードコートフィルムは、基材フィルムのハードコート層を設けた側と反対側の面に、カールやくっつき防止の為にバックコート層を設けてもよい。
<Back coat layer>
The hard coat film may be provided with a back coat layer on the surface of the base film opposite to the side on which the hard coat layer is provided in order to prevent curling and sticking.
 バックコート層に添加される粒子としては無機化合物の例として、二酸化珪素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成ケイ酸カルシウム、酸化錫、酸化インジウム、酸化亜鉛、ITO、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウムおよびリン酸カルシウムを挙げることができる。バックコート層に含まれる粒子は、バインダーに対して0.1~50質量%が好ましい。バックコート層を設けた場合のヘイズの増加は1.5%以下であることが好ましく、0.5%以下であることがさらに好ましく、特に0.1%以下であることが好ましい。バインダーとしては、ジアセチルセルロース等のセルロースエステル樹脂が好ましい。 As particles added to the backcoat layer, examples of inorganic compounds include silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, calcium carbonate, talc, clay, calcined kaolin, calcined calcium silicate, tin oxide, and oxide. Mention may be made of indium, zinc oxide, ITO, hydrated calcium silicate, aluminum silicate, magnesium silicate and calcium phosphate. The particles contained in the back coat layer are preferably 0.1 to 50% by mass with respect to the binder. The increase in haze when the backcoat layer is provided is preferably 1.5% or less, more preferably 0.5% or less, and particularly preferably 0.1% or less. As the binder, a cellulose ester resin such as diacetylcellulose is preferable.
 〈反射防止層〉
 ハードコートフィルムは、ハードコート層の上層に反射防止層を塗設して、外光反射防止機能を有する反射防止フィルムとして用いることができる。反射防止層は、光学干渉によって反射率が減少するように屈折率、膜厚、層の数、層順等を考慮して積層されていることが好ましい。反射防止層は、支持体よりも屈折率の低い低屈折率層、もしくは支持体よりも屈折率の高い高屈折率層と低屈折率層を組み合わせて構成されていることが好ましい。特に好ましくは、三層以上の屈折率層から構成される反射防止層であり、支持体側から屈折率の異なる三層を、中屈折率層(支持体よりも屈折率が高く、高屈折率層よりも屈折率の低い層)/高屈折率層/低屈折率層の順に積層されているものが好ましく用いられる。又は、二層以上の高屈折率層と二層以上の低屈折率層とを交互に積層した四層以上の層構成の反射防止層も好ましく用いられる。
<Antireflection layer>
The hard coat film can be used as an antireflection film having an external light antireflection function by coating an antireflection layer on the hard coat layer. The antireflection layer is preferably laminated in consideration of the refractive index, the film thickness, the number of layers, the layer order, and the like so that the reflectance is reduced by optical interference. The antireflection layer is preferably composed of a low refractive index layer having a refractive index lower than that of the support, or a combination of a high refractive index layer having a refractive index higher than that of the support and a low refractive index layer. Particularly preferably, it is an antireflection layer composed of three or more refractive index layers. Three layers having different refractive indexes from the support side are divided into medium refractive index layers (high refractive index layers having a higher refractive index than the support). Are preferably laminated in the order of a layer having a lower refractive index) / a high refractive index layer / a low refractive index layer. Alternatively, an antireflection layer having a layer structure of four or more layers in which two or more high refractive index layers and two or more low refractive index layers are alternately laminated is also preferably used.
 反射防止フィルムの層構成としては下記のような構成が考えられるが、これに限定されるものではない。 As the layer structure of the antireflection film, the following structure can be considered, but it is not limited to this.
 基材フィルム/ハードコート層/低屈折率層
 基材フィルム/ハードコート層/中屈折率層/低屈折率層
 基材フィルム/ハードコート層/中屈折率層/高屈折率層/低屈折率層
 基材フィルム/ハードコート層/高屈折率層(導電性層)/低屈折率層
 基材フィルム/ハードコート層/防眩性層/低屈折率層
 反射防止フィルムには必須である低屈折率層は、シリカ系微粒子を含有することが好ましく、その屈折率は、支持体である基材フィルムの屈折率より低く、23℃、波長550nm測定で、1.30~1.45の範囲であることが好ましい。
Base film / hard coat layer / low refractive index layer Base film / hard coat layer / medium refractive index layer / low refractive index layer Base film / hard coat layer / medium refractive index layer / high refractive index layer / low refractive index Layer Base film / hard coat layer / high refractive index layer (conductive layer) / low refractive index layer Base film / hard coat layer / antiglare layer / low refractive index layer Low refraction essential for antireflection film The refractive index layer preferably contains silica-based fine particles, and the refractive index thereof is lower than the refractive index of the base film as a support, and is in the range of 1.30 to 1.45 at 23 ° C. and wavelength of 550 nm. Preferably there is.
 低屈折率層の膜厚は、5nm~0.5μmであることが好ましく、10nm~0.3μmであることがさらに好ましく、30nm~0.2μmであることが最も好ましい。低屈折率層形成用組成物については、シリカ系微粒子として、特に外殻層を有し内部が多孔質又は空洞の粒子を少なくとも一種類以上含むことが好ましい。特に該外殻層を有し内部が多孔質又は空洞である粒子が、中空シリカ系微粒子であることが好ましい。 The film thickness of the low refractive index layer is preferably 5 nm to 0.5 μm, more preferably 10 nm to 0.3 μm, and most preferably 30 nm to 0.2 μm. The composition for forming a low refractive index layer preferably contains at least one kind of particles having an outer shell layer and porous or hollow inside as silica-based fine particles. In particular, the particles having the outer shell layer and porous or hollow inside are preferably hollow silica-based fine particles.
 なお、低屈折率層形成用組成物には、下記一般式(OSi-1)で表される有機珪素化合物もしくはその加水分解物、或いは、その重縮合物を併せて含有させても良い。 Note that the composition for forming a low refractive index layer may contain an organosilicon compound represented by the following general formula (OSi-1), a hydrolyzate thereof, or a polycondensate thereof.
 一般式(OSi-1):Si(OR)
 前記一般式で表される有機珪素化合物は、式中、Rは炭素数1~4のアルキル基を表す。具体的には、テトラメトキシシラン、テトラエトキシシラン、テトライソプロポキシシラン等が好ましく用いられる。他に溶剤、必要に応じて、シランカップリング剤、硬化剤、界面活性剤等を添加してもよい。
<偏光板>
 本発明の位相差フィルムを用いた偏光板について述べる。偏光板は一般的な方法で作製することができる。本発明の位相差フィルムをアルカリ鹸化処理し、処理した位相差フィルムを、ヨウ素溶液中に浸漬延伸して作製した偏光子の少なくとも一方の面に、完全鹸化型ポリビニルアルコール水溶液を用いて貼り合わせることが好ましい。
General formula (OSi-1): Si (OR) 4
In the organosilicon compound represented by the above general formula, R represents an alkyl group having 1 to 4 carbon atoms. Specifically, tetramethoxysilane, tetraethoxysilane, tetraisopropoxysilane and the like are preferably used. In addition, a silane coupling agent, a curing agent, a surfactant and the like may be added as necessary.
<Polarizing plate>
A polarizing plate using the retardation film of the present invention will be described. The polarizing plate can be produced by a general method. The retardation film of the present invention is subjected to alkali saponification treatment, and the treated retardation film is bonded to at least one surface of a polarizer produced by immersing and stretching in an iodine solution using a completely saponified polyvinyl alcohol aqueous solution. Is preferred.
 もう一方の面にハードコートフィルムを用いても、別の偏光板保護フィルムを用いてもよい。 Alternatively, a hard coat film may be used on the other surface, or another polarizing plate protective film may be used.
 また、好ましく用いられる市販の偏光板保護フィルムとしては、KC4UA、KC6UA、KC8UX2MW、KC4UX、KC5UX、KC4UY、KC8UY、KC12UR、KC4UEW、KC8UCR-3、KC8UCR-4、KC8UCR-5、KC4FR-1、KC4FR-2、KC8UE、KC4UE(コニカミノルタオプト(株)製)等が挙げられる。 Commercially available polarizing plate protective films that can be preferably used include KC4UA, KC6UA, KC8UX2MW, KC4UX, KC5UX, KC4UY, KC8UY, KC12UR, KC4UEW, KC8UCR-3, KC8UCR-4, KC8UCR-5, KC4CCR-1, 2, KC8UE, KC4UE (manufactured by Konica Minolta Opto) and the like.
 偏光板の主たる構成要素である偏光子とは、一定方向の偏波面の光だけを通す素子であり、現在知られている代表的な偏光子は、ポリビニルアルコール系偏光フィルムで、これはポリビニルアルコール系フィルムにヨウ素を染色させたものと二色性染料を染色させたものがあるがこれのみに限定されるものではない。 A polarizer, which is a main component of a polarizing plate, is an element that allows only light of a plane of polarization in a certain direction to pass. A typical polarizer currently known is a polyvinyl alcohol-based polarizing film, which is polyvinyl alcohol. There are ones in which iodine is dyed on a system film and ones in which a dichroic dye is dyed, but it is not limited to this.
 偏光子は、ポリビニルアルコール水溶液を製膜し、これを一軸延伸させて染色するか、染色した後一軸延伸してから、好ましくはホウ素化合物で耐久性処理を行ったものが用いられている。偏光子の膜厚は5~30μm、好ましくは10~25μmの偏光子が好ましく用いられる。当該偏光子の面上に、本発明の位相差フィルムとハードコートフィルムの片面を貼り合わせて偏光板を形成する。好ましくは完全鹸化ポリビニルアルコール等を主成分とする水系の接着剤によって貼り合わせる。
<粘着層>
 液晶セルの基板と貼り合わせるために保護フィルムの片面に用いられる粘着剤層は、光学的に透明であることはもとより、適度な粘弾性や粘着特性を示すものが好ましい。
For the polarizer, a polyvinyl alcohol aqueous solution is formed into a film and dyed by uniaxial stretching or dyed or uniaxially stretched and then preferably subjected to a durability treatment with a boron compound. A polarizer having a thickness of 5 to 30 μm, preferably 10 to 25 μm, is preferably used. On the surface of the polarizer, the retardation film of the present invention and one side of the hard coat film are bonded together to form a polarizing plate. It is preferably bonded with an aqueous adhesive mainly composed of completely saponified polyvinyl alcohol or the like.
<Adhesive layer>
The pressure-sensitive adhesive layer used on one side of the protective film to be bonded to the substrate of the liquid crystal cell is preferably optically transparent and exhibits moderate viscoelasticity and adhesive properties.
 具体的な粘着層としては、例えばアクリル系共重合体やエポキシ系樹脂、ポリウレタン、シリコーン系ポリマー、ポリエーテル、ブチラール系樹脂、ポリアミド系樹脂、ポリビニルアルコール系樹脂、合成ゴムなどの接着剤もしくは粘着剤等のポリマーを用いて、乾燥法、化学硬化法、熱硬化法、熱熔融法、光硬化法等により膜形成させ、硬化せしめることができる。なかでも、アクリル系共重合体は、最も粘着物性を制御しやすく、かつ透明性や耐候性、耐久性などに優れていて好ましく用いることができる。
<液晶表示装置>
 本発明の位相差フィルムを用いて作製した本発明の偏光板を表示装置に組み込むことによって、種々の視認性に優れた画像表示装置を作製することができる。
Specific examples of the adhesive layer include adhesives or adhesives such as acrylic copolymers, epoxy resins, polyurethane, silicone polymers, polyethers, butyral resins, polyamide resins, polyvinyl alcohol resins, and synthetic rubbers. A film such as a drying method, a chemical curing method, a thermal curing method, a thermal melting method, a photocuring method, or the like can be formed and cured using a polymer such as the above. Among them, the acrylic copolymer can be preferably used because it is most easy to control the physical properties of the adhesive and is excellent in transparency, weather resistance, durability and the like.
<Liquid crystal display device>
By incorporating the polarizing plate of the present invention produced using the retardation film of the present invention into a display device, various image display devices with excellent visibility can be produced.
 本発明の位相差フィルムは偏光板に組み込まれ、反射型、透過型、半透過型液晶表示装置又はTN型、STN型、OCB型、HAN型、VA型(PVA型、MVA型)、IPS型、OCB型等の各種駆動方式の液晶表示装置で好ましく用いられ、特にVA型に適している。 The retardation film of the present invention is incorporated in a polarizing plate, and is a reflection type, transmission type, transflective liquid crystal display device or TN type, STN type, OCB type, HAN type, VA type (PVA type, MVA type), IPS type. It is preferably used in liquid crystal display devices of various drive systems such as the OCB type and is particularly suitable for the VA type.
 以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例中の「%」および「部」は、特に断りのない限りそれぞれ「質量%」および「質量部」を表す。
セルロースアセテートの合成
合成例1
 クラフト法パルプ(α-セルロース含量98.2%)100質量部に氷酢酸50質量部を散布して前処理活性化させた後、氷酢酸470質量部、無水酢酸265質量部および硫酸8.3質量部の混合物を添加し、常法によりエステル化を行った。その後酢酸95質量部、水33質量部を加え、加水分解熟成を行い、酢酸カルシウム5.7質量部加えて系内の硫酸を中和した。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples. In the examples, “%” and “part” represent “% by mass” and “part by mass”, respectively, unless otherwise specified.
Synthetic synthesis example 1 of cellulose acetate
After pretreatment activation by spraying 50 parts by mass of glacial acetic acid on 100 parts by mass of kraft pulp (α-cellulose content 98.2%), 470 parts by mass of glacial acetic acid, 265 parts by mass of acetic anhydride, and 8.3 parts of sulfuric acid. A part by mass of the mixture was added and esterification was carried out by a conventional method. Thereafter, 95 parts by mass of acetic acid and 33 parts by mass of water were added for hydrolysis and aging, and 5.7 parts by mass of calcium acetate was added to neutralize sulfuric acid in the system.
 こうして、アセチル置換度2.4、粘度平均重合度180のセルロースアセテートDを得た。
合成例2
 合成過程で加える酢酸カルシウム量、水量を表1のように変更した以外は合成例1と同様にしてセルロースアセテートを製造した。得られたセルロースアセテートをA~C、E~Jとした。表1に記載の酢酸カルシウム量、水量は質量部を示す。
Thus, cellulose acetate D having an acetyl substitution degree of 2.4 and a viscosity average polymerization degree of 180 was obtained.
Synthesis example 2
Cellulose acetate was produced in the same manner as in Synthesis Example 1 except that the amount of calcium acetate and the amount of water added in the synthesis process were changed as shown in Table 1. The obtained cellulose acetates were designated as A to C and E to J. The amount of calcium acetate and the amount of water shown in Table 1 indicate parts by mass.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 実施例1
 <セルロースアセテートフィルム1:PL1の作製>
(二酸化珪素分散液)
 アエロジルR812(日本アエロジル(株)製)  12質量部
(一次粒子の平均径12nm、見掛け比重90g/リットル)
 エタノール                   88質量部
 以上をディゾルバーで30分間撹拌混合した後、マントンゴーリンで分散を行った。二酸化珪素分散液に88質量部のメチレンクロライドを撹拌しながら投入し、ディゾルバーで30分間撹拌混合し、二酸化珪素分散希釈液を作製した。
(インライン添加液の作製)
 チヌビン109(チバ・ジャパン(株)製)    11質量部
 チヌビン171(チバ・ジャパン(株)製)     5質量部
 メチレンクロライド              100質量部
 以上を密閉容器に投入し、加熱し、撹拌しながら、完全に溶解し、濾過した。
Example 1
<Cellulose Acetate Film 1: Production of PL1>
(Silicon dioxide dispersion)
Aerosil R812 (manufactured by Nippon Aerosil Co., Ltd.) 12 parts by mass (average diameter of primary particles 12 nm, apparent specific gravity 90 g / liter)
88 parts by mass of ethanol or more was stirred and mixed with a dissolver for 30 minutes, and then dispersed with Manton Gorin. 88 parts by mass of methylene chloride was added to the silicon dioxide dispersion while stirring, and the mixture was stirred and mixed for 30 minutes with a dissolver to prepare a silicon dioxide dispersion dilution.
(Production of in-line additive solution)
Tinuvin 109 (manufactured by Ciba Japan Co., Ltd.) 11 parts by mass Tinuvin 171 (manufactured by Ciba Japan Co., Ltd.) 5 parts by mass Methylene chloride 100 parts by mass Dissolved and filtered.
 これに二酸化珪素分散希釈液を36質量部、撹拌しながら加えて、さらに30分間撹拌した後、下記セルローストリアセテート6質量部を撹拌しながら加えて、さらに60分間撹拌した後、アドバンテック東洋(株)のポリプロピレンワインドカートリッジフィルターTCW-PPS-1Nで濾過し、インライン添加液を調製した。
(ドープ液の調製)
 セルローストリアセテートKTL(ダイセル化学工業(株)製:アセチル基置換度2.9)                100質量部
 トリメチロールプロパントリベンゾエート    5.0質量部
 エチルフタリルエチルグリコレート       5.5質量部
 メチレンクロライド              440質量部
 エタノール                   40質量部
 以上を密閉容器に投入し、加熱し、撹拌しながら、完全に溶解し、安積濾紙(株)製の安積濾紙No.24を使用して濾過し、ドープ液を調製した。
To this was added 36 parts by mass of the silicon dioxide dispersion diluted with stirring, and further stirred for 30 minutes. Then, 6 parts by mass of the following cellulose triacetate was added with stirring and further stirred for 60 minutes, and then Advantech Toyo Corp. The polypropylene wind cartridge filter TCW-PPS-1N was used to prepare an in-line additive solution.
(Preparation of dope solution)
Cellulose triacetate KTL (manufactured by Daicel Chemical Industries, Ltd .: acetyl group substitution degree 2.9) 100 parts by weight Trimethylolpropane tribenzoate 5.0 parts by weight Ethylphthalylethyl glycolate 5.5 parts by weight Methylene chloride 440 parts by weight Ethanol 40 parts by mass or more was put into a closed container, heated and stirred to dissolve completely, and Azumi Filter Paper No. No. 24 was used for filtration to prepare a dope solution.
 製膜ライン中で日本精線(株)製のファインメットNFでドープ液を濾過した。インライン添加液ライン中で、日本精線(株)製のファインメットNFでインライン添加液を濾過した。濾過したドープ液を100質量部に対し、濾過したインライン添加液を2質量部加えて、インラインミキサー(東レ静止型管内混合機 Hi-Mixer、SWJ)で十分混合し、次いで、ベルト流延装置を用い、温度35℃、1.8m幅でステンレスバンド支持体に均一に流延した。 The dope solution was filtered with Finemet NF manufactured by Nippon Seisen Co., Ltd. in the film production line. In the inline additive solution line, the inline additive solution was filtered with Finemet NF manufactured by Nippon Seisen Co., Ltd. Add 2 parts by weight of the filtered in-line additive to 100 parts by weight of the filtered dope solution, mix thoroughly with an in-line mixer (Toray static type in-pipe mixer Hi-Mixer, SWJ), and then use a belt casting apparatus. Used at a temperature of 35 ° C. and a width of 1.8 m and uniformly cast on a stainless steel band support.
 ステンレスバンド支持体で、残留溶剤量が120%になるまで溶媒を蒸発させ、ステンレスバンド支持体上から剥離した。剥離したセルロースエステルのウェブを35℃で溶媒を蒸発させ、1.65m幅にスリットし、その後、テンターでTD方向(フィルムの搬送方向と直交する方向)に1.05倍に延伸しながら、135℃の乾燥温度で、乾燥させた。このときテンターで延伸を始めたときの残留溶剤量は30%であった。 Using a stainless steel band support, the solvent was evaporated until the residual solvent amount became 120%, and the stainless steel band support was peeled off. The peeled cellulose ester web was evaporated at 35 ° C., slit to 1.65 m width, and then stretched by 1.05 times in the TD direction (direction perpendicular to the film transport direction) with a tenter. Drying was performed at a drying temperature of ° C. At this time, the residual solvent amount when starting stretching with a tenter was 30%.
 その後、110℃、120℃の乾燥ゾーンを多数のロールで搬送させながら乾燥を終了させ、1.5m幅にスリットし、フィルム両端に幅15mm、平均高さ10μmのナーリング加工を施し、平均膜厚が60μmのセルローストリアセテートフィルム1を作製した。 Then, drying is completed while transporting a drying zone of 110 ° C. and 120 ° C. with a number of rolls, slitting to a width of 1.5 m, and knurling of a width of 15 mm and an average height of 10 μm is performed on both ends of the film, and the average film thickness Produced a cellulose triacetate film 1 having a thickness of 60 μm.
 リターデーション値の測定をしたところ、Ro、Rthが各々3nm、50nmであった。 When the retardation value was measured, Ro and Rth were 3 nm and 50 nm, respectively.
 <ハードコートフィルム1の作製>
 上記作製したセルローストリアセテートフィルム1上に、下記のハードコート層塗布組成物1を孔径0.4μmのポリプロピレン製フィルターで濾過してハードコート層塗布液を調製し、マイクログラビアコーターを用いて塗布し、80℃で乾燥の後、紫外線ランプを用いて、照射部の照度が80mW/cm、照射量を80mJ/cmとして塗布層を硬化させ、ドライ膜厚9μmのハードコート層1を形成し、巻き取り、ロール状のハードコートフィルム1を作製した。
<ハードコートフィルム2の作製>
 市販の偏光板保護フィルム(セルローストリアセテートフィルム)KC6UA(コニカミノルタ(株)製)の上に、下記のハードコート層塗布組成物1を孔径0.4μmのポリプロピレン製フィルターで濾過してハードコート層塗布液を調製し、マイクログラビアコーターを用いて塗布し、80℃で乾燥の後、紫外線ランプを用いて、照射部の照度が80mW/cm、照射量を80mJ/cmとして塗布層を硬化させ、ドライ膜厚9μmのハードコート層1を形成し、巻き取り、ロール状のハードコートフィルム2を作製した。
<Preparation of hard coat film 1>
On the produced cellulose triacetate film 1, the following hard coat layer coating composition 1 is filtered through a polypropylene filter having a pore size of 0.4 μm to prepare a hard coat layer coating solution, which is applied using a micro gravure coater, after drying at 80 ° C., using an ultraviolet lamp, the illuminance of the irradiated portion is 80 mW / cm 2, thereby curing the coated layer with irradiation dose as 80 mJ / cm 2, to form a hard coat layer 1 dry thickness 9 .mu.m, Winding and roll-shaped hard coat film 1 were produced.
<Preparation of hard coat film 2>
On a commercially available polarizing plate protective film (cellulose triacetate film) KC6UA (manufactured by Konica Minolta Co., Ltd.), the following hard coat layer coating composition 1 is filtered through a polypropylene filter having a pore size of 0.4 μm to apply a hard coat layer. liquid was prepared, was applied with a micro gravure coater, after drying at 80 ° C., using a UV lamp to cure the coated layer illuminance of the irradiated portion is 80 mW / cm 2, the irradiation amount as 80 mJ / cm 2 Then, a hard coat layer 1 having a dry film thickness of 9 μm was formed, wound up, and a roll-shaped hard coat film 2 was produced.
 <ハードコート層塗布組成物1>
 下記材料を攪拌、混合しハードコート層塗布組成物1とした。
<Hardcoat layer coating composition 1>
The following materials were stirred and mixed to obtain hard coat layer coating composition 1.
 熱可塑性樹脂、ポリエステルウレタン樹脂(東洋紡績(株)製、商品名「バイロンUR1350」、固形分濃度33%(トルエン/メチルエチルケトン溶媒=65/35))6.0質量部(ポリエステルウレタン樹脂として、2.0質量部)
 ペンタエリスリトールトリアクリレート        30質量部
 ペンタエリスリトールテトラアクリレート       30質量部
 イルガキュア184(チバ・ジャパン社製、光重合開始剤)
                          3.0質量部
 イルガキュア907(チバ・ジャパン社製、光重合開始剤)
                          1.0質量部
 ポリエーテル変性ポリジメチルシロキサン
  (BYK-UV3510、ビックケミージャパン社製)
                          2.0質量部
 プロピレングリコールモノメチルエーテル      150質量部
 メチルエチルケトン                150質量部
 <位相差フィルム101の作製>
 位相差フィルム101を下記のように作製した。
Thermoplastic resin, polyester urethane resin (manufactured by Toyobo Co., Ltd., trade name “Byron UR1350”, solid content concentration 33% (toluene / methyl ethyl ketone solvent = 65/35)) 6.0 parts by mass (as polyester urethane resin 2 .0 parts by mass)
Pentaerythritol triacrylate 30 parts by mass Pentaerythritol tetraacrylate 30 parts by mass Irgacure 184 (manufactured by Ciba Japan, photopolymerization initiator)
3.0 parts by mass Irgacure 907 (manufactured by Ciba Japan, photopolymerization initiator)
1.0 part by mass Polyether-modified polydimethylsiloxane (BYK-UV3510, manufactured by Big Chemie Japan)
2.0 parts by mass Propylene glycol monomethyl ether 150 parts by mass Methyl ethyl ketone 150 parts by mass <Preparation of retardation film 101>
The retardation film 101 was produced as follows.
 〈微粒子分散液〉
 微粒子(アエロジルR812(日本アエロジル(株)製))
                           11質量部
(一次粒子の平均径16nm、見掛け比重90g/リットル)
 エタノール                     89質量部
以上をディゾルバーで50分間攪拌混合した後、マントンゴーリンで分散を行った。
<Fine particle dispersion>
Fine particles (Aerosil R812 (Nippon Aerosil Co., Ltd.))
11 parts by mass (average primary particle diameter 16 nm, apparent specific gravity 90 g / liter)
89 parts by mass or more of ethanol was stirred and mixed with a dissolver for 50 minutes, and then dispersed with Manton Gorin.
 〈微粒子添加液〉
 メチレンクロライドを入れた溶解タンクにセルロースエステルAを添加し、加熱して完全に溶解させた後、これを安積濾紙(株)製の安積濾紙No.244を使用して濾過した。
<Fine particle additive solution>
Cellulose ester A was added to a dissolution tank containing methylene chloride and heated to completely dissolve, and this was then added to Azumi filter paper No. 3 manufactured by Azumi Filter Paper Co., Ltd. Filtered using 244.
 濾過後のセルロースエステル溶液を充分に攪拌しながら、ここに上記微粒子分散液をゆっくりと添加した。さらに、二次粒子の粒径が所定の大きさとなるようにアトライターにて分散を行った。これを日本精線(株)製のファインメットNFで濾過し、微粒子添加液を調製した。 The fine particle dispersion was slowly added to the cellulose ester solution after filtration while sufficiently stirring. Further, the particles were dispersed by an attritor so that the secondary particles had a predetermined particle size. This was filtered through Finemet NF manufactured by Nippon Seisen Co., Ltd. to prepare a fine particle additive solution.
 メチレンクロライド               99質量部
 微粒子分散液                  11質量部
 下記組成の主ドープ液を調製した。まず加圧溶解タンクにメチレンクロライドとエタノールを添加した。溶剤の入った加圧溶解タンクにセルロースエステルFを攪拌しながら投入した。これを加熱し、攪拌しながら、完全に溶解し、さらに可塑剤および紫外線吸収剤を添加、溶解させた。
Methylene chloride 99 parts by mass Fine particle dispersion 11 parts by mass A main dope solution having the following composition was prepared. First, methylene chloride and ethanol were added to the pressure dissolution tank. Cellulose ester F was charged into a pressure dissolution tank containing a solvent while stirring. This was heated and stirred to dissolve completely, and a plasticizer and an ultraviolet absorber were added and dissolved.
 これを安積濾紙(株)製の安積濾紙No.244を使用して濾過し、主ドープ液を調製した。 This is Azumi Filter Paper No. The main dope solution was prepared by filtration using 244.
 主ドープ液100質量部と微粒子添加液5質量部となるように加えて、インラインミキサー(東レ静止型管内混合機 Hi-Mixer、SWJ)で十分に混合し、次いでベルト流延装置を用い、幅2mのステンレスバンド支持体に均一に流延した。 In addition to 100 parts by mass of the main dope solution and 5 parts by mass of the fine particle additive solution, thoroughly mix with an in-line mixer (Toray static type in-pipe mixer Hi-Mixer, SWJ), then use a belt casting device to It was cast uniformly on a 2 m stainless steel band support.
 ステンレスバンド支持体上で、残留溶媒量が110%になるまで溶媒を蒸発させ、ステンレスバンド支持体から剥離した。剥離の際に張力をかけて縦(MD)延伸倍率が1.0倍となるように延伸し、次いで、テンターでウェブ両端部を把持し、幅手(TD)方向の延伸倍率が1.4倍(40%)となるように延伸した。この時のフィルムにかかる幅方向の張力は45m/Nであった。 On the stainless steel band support, the solvent was evaporated until the residual solvent amount became 110%, and the stainless steel band support was peeled off. The film was stretched so that the longitudinal (MD) stretch ratio was 1.0 times by applying tension at the time of peeling, and then both ends of the web were gripped by a tenter, and the stretch ratio in the width (TD) direction was 1.4. It extended | stretched so that it might become double (40%). The tension in the width direction applied to the film at this time was 45 m / N.
 延伸後、その幅を維持したまま数秒間保持し、幅方向の張力を緩和させた後幅保持を解放し、さらに125℃に設定された第3乾燥ゾーンで30分間搬送させて乾燥を行い、幅1.5m、かつ端部に幅1cm、高さ8μmのナーリングを有する膜厚40μmの位相差フィルム101を作製した。 After stretching, hold for several seconds while maintaining its width, release the width holding after relaxing the tension in the width direction, further carry for 30 minutes in the third drying zone set at 125 ° C., and perform drying, A retardation film 101 having a film thickness of 40 μm having a width of 1.5 m, a knurling having a width of 1 cm at the end and a height of 8 μm was produced.
 〈主ドープ液の組成〉
 メチレンクロライド              390質量部
 エタノール                   80質量部
 セルロースアセテートC             35質量部
 セルロースアセテートD             65質量部
 添加剤:糖エステル化合物 4          10質量部
 添加剤:ポリエステルD 21         2.5質量部
 ドープ液の組成(セルロースアセテート、添加剤)を表2に記載のように変更した以外は、上記と同様にして位相差フィルム102~119を作製した。
<Composition of main dope solution>
Methylene chloride 390 parts by weight Ethanol 80 parts by weight Cellulose acetate C 35 parts by weight Cellulose acetate D 65 parts by weight Additive: Sugar ester compound 4 10 parts by weight Additive: Polyester D 21 2.5 parts by weight Composition of dope solution (cellulose acetate, Retardation films 102 to 119 were produced in the same manner as described above except that the additive was changed as shown in Table 2.
 なお表2中、TPPはトリフェニルフォスフェート、ABは下記トリアジン化合物を表す。 In Table 2, TPP represents triphenyl phosphate, and AB represents the following triazine compound.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 得られた位相差フィルムについて、下記測定により面内リターデーション値Ro、厚さ方向のリターデーション値Rth、引裂き強度比率および内部ヘイズ・内部散乱を測定した。結果を表3に示した。 The obtained retardation film was measured for the in-plane retardation value Ro, the retardation value Rth in the thickness direction, the tear strength ratio and the internal haze / internal scattering by the following measurements. The results are shown in Table 3.
 〈リターデーション値の測定〉
Ro=(nx-ny)×d
Rth=((nx+ny)/2-nz)×d
(式中、nxny、nzはそれぞれ屈折率楕円体の主軸x、y、z方向の屈折率を表し、かつ、nx、nyはフィルム面内方向の屈折率を、nzはフィルムの厚さ方向の屈折率を表す。また、nx>nyであり、dはフィルムの厚さ(nm)を表す。)
 アッベ屈折率計(1T)に偏光板付き接眼鏡を付け、分光光源を用いて位相差フィルムの両方の面のフィルム面内の一方向とそれに直交する方向およびフィルム面に垂直方向の屈折率を測定し、それらからの平均値より平均屈折率を求めた。また、市販のマイクロメーターを用いてフィルムの厚さdを測定した。
<Measurement of retardation value>
Ro = (nx−ny) × d
Rth = ((nx + ny) / 2−nz) × d
(In the formula, nxny and nz represent the refractive indexes in the principal axes x, y and z directions of the refractive index ellipsoid, respectively, and nx and ny represent the refractive index in the film in-plane direction, and nz represents the thickness direction of the film. Refractive index, nx> ny, and d represents film thickness (nm).
Attach eyepiece with polarizing plate to Abbe refractometer (1T), and use spectral light source to change the refractive index in one direction on both sides of the retardation film, the direction perpendicular to it and the direction perpendicular to the film surface. The average refractive index was determined from the average value obtained by measurement. Moreover, the thickness d of the film was measured using a commercially available micrometer.
 自動複屈折計KOBRA-21ADH(王子計測機器(株)製)を用いて、23℃、55%RHの環境下24時間放置したフィルムにおいて、同環境下、波長が590nmにおけるフィルムのリターデーション測定を行った。上述の平均屈折率と膜厚を上記式に入力し、面内リターデーション値(Ro)nmおよび厚さ方向のリターデーション値(Rth)nmの値を得た。 Using an automatic birefringence meter KOBRA-21ADH (manufactured by Oji Scientific Instruments Co., Ltd.), film retardation measurement at a wavelength of 590 nm was performed in a film that was allowed to stand for 24 hours in an environment of 23 ° C. and 55% RH. went. The average refractive index and film thickness described above were input into the above formula, and values for in-plane retardation value (Ro) nm and thickness direction retardation value (Rth) nm were obtained.
 〈引き裂き強度の測定〉
 フィルム搬送方向(MD方向)の引裂き強度、および同幅手方向(TD方向)の引裂き強度は、エレメンドルフ法の引裂き荷重をJISK7128/2-1991に従い、東洋精機(株)製の軽荷重引裂き装置で、23℃55%RHおよび60℃10%RHに24時間調湿した試料を同じ雰囲気下測定した。
<Measurement of tear strength>
The tear strength in the film transport direction (MD direction) and the tear strength in the same width direction (TD direction) are determined by applying a tear load of the Elmendorf method in accordance with JISK7128 / 2-1991. Then, the samples conditioned at 23 ° C. 55% RH and 60 ° C. 10% RH for 24 hours were measured under the same atmosphere.
 〈内部ヘイズ測定〉
 フィルム屈折率±0.05の屈折率の溶剤(グリセリン)をフィルム界面に滴下して、フィルム表面のヘイズをできるだけ無視できる状態にして、ヘイズメーターにより測定される。
<Internal haze measurement>
A solvent (glycerin) having a refractive index of film refractive index ± 0.05 is dropped on the film interface to make the haze on the film surface as negligible as possible, and the measurement is performed with a haze meter.
 なお散乱とは、グリセリンを滴下しない状態(フィルム表面ヘイズ)を含めたフィルム全体のヘイズをいう。 In addition, scattering means the haze of the whole film including the state (film surface haze) which does not dripping glycerol.
 〈フィルム内部のヘイズ(以下、内部ヘイズと略す)測定装置〉
 ヘイズメーター(濁度計)(型式:NDH 2000、日本電色(株)製)
 光源は、5V9Wハロゲン球、受光部は、シリコンフォトセル(比視感度フィルター付き)を用いている。
<Measurement of haze inside film (hereinafter abbreviated as internal haze)>
Haze meter (turbidity meter) (model: NDH 2000, manufactured by Nippon Denshoku Co., Ltd.)
The light source uses a 5V9W halogen bulb, and the light receiving unit uses a silicon photocell (with a relative visibility filter).
 本発明においては、この装置にてフィルム屈折率±0.05の屈折率の溶剤をフィルム界面とした場合のフィルムのヘイズ測定において、その値が0.02以下であることを特徴とする。 In the present invention, in this apparatus, the value is 0.02 or less in the haze measurement of a film when a solvent having a refractive index of ± 0.05 is used as the film interface.
 測定はJIS K-7136に準じて測定した。 Measured according to JIS K-7136.
 内部ヘイズ測定は以下のように行う。図1~4を持って説明する。 Measure internal haze as follows. A description will be given with reference to FIGS.
 まず、フィルム以外の測定器具のブランクヘイズ1を測定する。
1.きれいにしたスライドガラスの上にグリセリンを一滴(0.05ml)たらす。このとき液滴に気泡が入らないように注意する。ガラスは見た目がきれいでも汚れていることがあるので必ず洗剤で洗浄したものを使用する。図1参照
2.その上にカバーガラスを載せる。カバーガラスは押さえなくてもグリセリンは広がる。
3.ヘイズメーターにセットしブランクヘイズ1を測定する。
First, the blank haze 1 of a measuring instrument other than a film is measured.
1. Drip a drop (0.05 ml) of glycerin on a cleaned glass slide. At this time, care is taken so that bubbles do not enter the droplet. Be sure to use glass that has been cleaned with a detergent because it may look dirty even if it looks clean. See FIG. Place the cover glass on top of it. Glycerin spreads without pressing the cover glass.
3. Set on a haze meter and measure blank haze 1.
 ついで、試料を含めたヘイズ2を測定する。
4.スライドガラス上にグリセリンを滴下する。(0.05ml)
                          図1参照
5.その上に測定する試料フィルムを載せる。     図2参照
6.試料フィルム上にグリセリンを滴下する。(0.05ml)
                          図3参照
7.その上にカバーガラスを載せる。         図4参照
8.ヘイズメーターにセットしヘイズ2を測定する。
9.(ヘイズ2)-(ヘイズ1)=(本発明の内部ヘイズ)を算出する。
Next, the haze 2 including the sample is measured.
4). Glycerol is dropped on the slide glass. (0.05ml)
See FIG. A sample film to be measured is placed thereon. See FIG. Glycerol is dropped on the sample film. (0.05ml)
See FIG. Place the cover glass on top of it. See FIG. Set in a haze meter and measure haze 2.
9. (Haze 2) − (Haze 1) = (Internal haze of the present invention) is calculated.
 上記測定にて使用したガラス、グリセリンを以下の通りである。 The glass and glycerin used in the above measurement are as follows.
 ガラス:MICRO SLIDE GLASS S9213 MATSUNAMI
 グリセリン: 関東化学製 鹿特級
Glass: MICRO SLIDE GLASS S9213 MATUNAMI
Glycerin: Deer special grade manufactured by Kanto Chemical
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
 表3から本発明では、MD方向とTD方向の引き裂き強度がほぼ均等であることが分かる。
<偏光板の作製>
 (アルカリ鹸化処理)
 ハードコートフィルム1と位相差フィルム101~117の各々1枚を偏光板の保護フィルムとして用いて、偏光板を作製した。
From Table 3, it can be seen that in the present invention, the tear strengths in the MD direction and the TD direction are substantially equal.
<Preparation of polarizing plate>
(Alkaline saponification treatment)
A polarizing plate was produced using one each of the hard coat film 1 and the retardation films 101 to 117 as a protective film for the polarizing plate.
 (a)偏光子の作製
 けん化度99.95モル%、重合度2400のポリビニルアルコール(以下、PVAと略記する)100質量部に、グリセリン10質量部、および水170質量部を含浸させたものを溶融混練し、脱泡後、Tダイから金属ロール上に溶融押出し、製膜した。その後、乾燥・熱処理して、PVAフィルムを得た。
(A) Production of Polarizer What was impregnated with 10 parts by mass of glycerin and 170 parts by mass of water in 100 parts by mass of polyvinyl alcohol (hereinafter abbreviated as PVA) having a saponification degree of 99.95 mol% and a polymerization degree of 2400. After melt-kneading and defoaming, it was melt-extruded from a T-die onto a metal roll to form a film. Then, it dried and heat-processed and obtained the PVA film.
 得られたPVAフィルムは、平均厚さが25μm、水分率が4.4%、フィルム幅が3mであった。次に、得られたPVAフィルムを予備膨潤、染色、湿式法による一軸延伸、固定処理、乾燥、熱処理の順番で、連続的に処理して偏光子を作製した。 The obtained PVA film had an average thickness of 25 μm, a moisture content of 4.4%, and a film width of 3 m. Next, the obtained PVA film was continuously treated in the order of pre-swelling, dyeing, uniaxial stretching by a wet method, fixing treatment, drying, and heat treatment to produce a polarizer.
 すなわち、PVAフィルムを温度30℃の水中に30秒間浸して予備膨潤し、ヨウ素濃度0.4g/リットル、ヨウ化カリウム濃度40g/リットルの温度35℃の水溶液中に3分間浸した。続いて、ホウ酸濃度4%の50℃の水溶液中でフィルムにかかる張力が700N/mの条件下で、6倍に一軸延伸を行い、ヨウ化カリウム濃度40g/リットル、ホウ酸濃度40g/リットル、塩化亜鉛濃度10g/リットルの温度30℃の水溶液中に5分間浸漬して固定処理を行った。 That is, the PVA film was preliminarily swollen in water at a temperature of 30 ° C. for 30 seconds, and immersed in an aqueous solution having an iodine concentration of 0.4 g / liter and a potassium iodide concentration of 40 g / liter at a temperature of 35 ° C. for 3 minutes. Subsequently, the film was uniaxially stretched 6 times in a 50% aqueous solution with a boric acid concentration of 4% under a tension of 700 N / m. The potassium iodide concentration was 40 g / liter, and the boric acid concentration was 40 g / liter. Then, it was immersed in an aqueous solution having a zinc chloride concentration of 10 g / liter and a temperature of 30 ° C. for 5 minutes for fixing treatment.
 その後、PVAフィルムを取り出し、温度40℃で熱風乾燥し、さらに温度100℃で5分間熱処理を行った。得られた偏光子は、平均厚さが13μm、偏光性能については透過率が43.0%、偏光度が99.5%、2色性比が40.1であった。 Thereafter, the PVA film was taken out, dried with hot air at a temperature of 40 ° C., and further heat-treated at a temperature of 100 ° C. for 5 minutes. The obtained polarizer had an average thickness of 13 μm, a polarization performance of 43.0% transmittance, a polarization degree of 99.5%, and a dichroic ratio of 40.1.
 (b)偏光板201の作製
 下記工程1~5に従って、偏光子と、位相差フィルム101とハードコートフィルム1を貼り合わせて偏光板を作製した。
工程1:前述の偏光子を、固形分2質量%のポリビニルアルコール接着剤溶液の貯留槽中に1~2秒間浸漬した。
工程2:位相差フィルムとハードコート層に剥離性の保護フィルム(PET製)を張り付けたハードコートフィルムを下記条件でアルカリ鹸化処理を実施した。次いで、工程1でポリビニルアルコール接着剤溶液に浸漬した偏光子に付着した過剰の接着剤を軽く取り除き、この偏光子に位相差フィルムと、ハードコートフィルム1とを図2のように挟み込んで、積層配置した。
(B) Preparation of Polarizing Plate 201 A polarizer, a retardation film 101, and a hard coat film 1 were bonded together according to the following steps 1 to 5 to prepare a polarizing plate.
Step 1: The aforementioned polarizer was immersed in a storage tank of a polyvinyl alcohol adhesive solution having a solid content of 2% by mass for 1 to 2 seconds.
Process 2: The alkali saponification process was implemented on the hard coat film which stuck the peelable protective film (product made from PET) to retardation film and the hard coat layer on the following conditions. Next, the excess adhesive adhered to the polarizer immersed in the polyvinyl alcohol adhesive solution in Step 1 is gently removed, and the retardation film and the hard coat film 1 are sandwiched between the polarizers as shown in FIG. Arranged.
 (アルカリ鹸化処理)
  ケン化工程  1.5M-KOH  50℃   45秒
  水洗工程   水         30℃   60秒
  中和工程   10質量部HCl  30℃   45秒
  水洗工程   水         30℃   60秒
  ケン化処理後、水洗、中和、水洗の順に行い、次いで100℃で乾燥。
工程3:積層物を、二つの回転するローラにて20~30N/cmの圧力で約2m/minの速度で貼り合わせた。このとき、気泡が入らないように注意して実施した。
工程4:工程3で作製した試料を、温度80℃の乾燥機中にて5分間乾燥処理し、偏光板を作製した。
工程5:工程4で作製した偏光板に市販のアクリル系粘着剤を乾燥後の厚さが25μmとなるように塗布し、110℃のオーブンで5分間乾燥して粘着層を形成し、粘着層に剥離性の保護フィルムを張り付けた。この偏光を576×324mmサイズに裁断(打ち抜き)し、偏光板を作製した。
<偏光板の作製>
 偏光板の作製において、表4に記載のようにハードコートフィルム、位相差フィルムを配置し偏光板202~223を作製した。
(Alkaline saponification treatment)
Saponification step 1.5M-KOH 50 ° C 45 seconds Water washing step Water 30 ° C 60 seconds Neutralization step 10 parts HCl 30 ° C 45 seconds Water washing step Water 30 ° C 60 seconds After saponification treatment, water washing, neutralization, water washing in this order And then dried at 100 ° C.
Step 3: The laminate was bonded with a rotating roller at a pressure of 20 to 30 N / cm 2 at a speed of about 2 m / min. At this time, it was carried out with care to prevent bubbles from entering.
Step 4: The sample prepared in Step 3 was dried in a dryer at a temperature of 80 ° C. for 5 minutes to prepare a polarizing plate.
Step 5: A commercially available acrylic pressure-sensitive adhesive is applied to the polarizing plate prepared in Step 4 so that the thickness after drying is 25 μm, and dried in an oven at 110 ° C. for 5 minutes to form an adhesive layer. A peelable protective film was attached to the film. This polarized light was cut (punched) into a size of 576 × 324 mm to produce a polarizing plate.
<Preparation of polarizing plate>
In the production of the polarizing plates, as shown in Table 4, a hard coat film and a retardation film were arranged to produce polarizing plates 202 to 223.
 なお、偏光板203、223の作製において、位相差フィルムとしてセルロースエステルフィルム1(PL1)を使用した。
<液晶表示装置の作製>
 SONY(株)製40型ディスプレイKDL-40V5の液晶パネルの視認側偏光板を剥がし、その代わりの偏光板として上記作製した偏光板(構成は図5参照)をハードコート層が視認側となるようにして、粘着剤層と液晶セルガラスとを貼合し液晶表示装置401~423を作製した。
In preparing the polarizing plates 203 and 223, the cellulose ester film 1 (PL1) was used as the retardation film.
<Production of liquid crystal display device>
The viewing side polarizing plate of the liquid crystal panel of the 40-inch display KDL-40V5 manufactured by Sony Corporation is peeled off, and the polarizing plate prepared above (see FIG. 5 for the configuration) is used as the polarizing plate instead so that the hard coat layer is on the viewing side. Then, the pressure-sensitive adhesive layer and the liquid crystal cell glass were bonded to prepare liquid crystal display devices 401 to 423.
 《評価》
 上記作製した位相差フィルム101~119、偏光板201~223および画像表示装置401~423について下記の評価を行った。
<偏光板>
 (液晶表示装置)
《視認性の評価》
 上記作製した各液晶表示装置について、60℃、90%RHの条件で100時間放置した後、23℃、55%RHに戻した。その後、表示装置の表面を目視で観察し下記の基準による評価をした。
◎:表面に波打ち状のムラは全く認められない。
○:表面にわずかに波打ち状のムラが認められる。
△:表面に細かい波打ち状のムラがやや認められる。
×:表面に細かい波打ち状のムラが認められる。
《色味変動の評価》
 上記作製した各液晶表示装置について、測定機(EZ-Contrast160D、ELDIM社製)を用いて色味変動について測定した。CIE1976、UCS座標において、上下方向(表示法線から上80°~下80°)での最大色味変動幅Δu‘v’を比較した。
《正面コントラストの評価》
 23℃55%RHの環境で、各々の液晶表示装置のバックライトを1週間連続点灯した後、測定を行った。測定にはELDIM社製EZ-Contrast160Dを用いて、液晶表示装置で白表示と黒表示の表示画面の法線方向からの輝度を測定し、その比を正面コントラストとした。
<Evaluation>
The following evaluations were performed on the produced retardation films 101 to 119, polarizing plates 201 to 223, and image display devices 401 to 423.
<Polarizing plate>
(Liquid crystal display device)
<Evaluation of visibility>
About each produced said liquid crystal display device, after leaving for 100 hours on 60 degreeC and 90% RH conditions, it returned to 23 degreeC and 55% RH. Thereafter, the surface of the display device was visually observed and evaluated according to the following criteria.
A: No wavy unevenness is observed on the surface.
○: Slight wavy unevenness is observed on the surface.
Δ: Small wavy unevenness is slightly observed on the surface.
X: Fine wavy unevenness is observed on the surface.
<Evaluation of color variation>
About each produced said liquid crystal display device, the color fluctuation was measured using the measuring machine (EZ-Contrast160D, ELDIM company make). In the CIE 1976 and UCS coordinates, the maximum color variation width Δu′v ′ in the vertical direction (80 ° to 80 ° below the display normal) was compared.
<< Evaluation of front contrast >>
The measurement was performed after the backlight of each liquid crystal display device was lit continuously for one week in an environment of 23 ° C. and 55% RH. For measurement, EZ-Contrast 160D manufactured by ELDIM was used, the luminance from the normal direction of the display screen of white display and black display was measured with a liquid crystal display device, and the ratio was defined as the front contrast.
 正面コントラスト=(表示装置の法線方向から測定した白表示の輝度)/(表示装置の法線方向から測定した黒表示の輝度)
 得られた結果を表4に示した。
Front contrast = (brightness of white display measured from normal direction of display device) / (brightness of black display measured from normal direction of display device)
The results obtained are shown in Table 4.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
 表4から、本発明の位相差フィルムを使用した偏光板であれば良好な光学補償ができることが分かる。 It can be seen from Table 4 that good optical compensation can be achieved with a polarizing plate using the retardation film of the present invention.
 P1 セルローストリアセテートフィルム
 P2 ハードコート層
 P3 偏光子
 P4 本発明の位相差フィルム
 P5 粘着層
 P6 ハードコートフィルム
 P7 偏光板
P1 Cellulose triacetate film P2 Hard coat layer P3 Polarizer P4 Retardation film of the present invention P5 Adhesive layer P6 Hard coat film P7 Polarizing plate

Claims (3)

  1.  下記式で表される面内方向のレターデーションRoが30~150nmであり、厚み方向のレターデーションRthと前記面内方向のレターデーションRoとの比Rth/Roが0.8より大きく5より小さい、セルロースアセテートを使用した長尺状位相差フィルムであって、前記セルロースアセテートのアセチル基置換度が2.1以上2.6以下であり、23℃55%RHおよび60℃10%RHの条件での前記位相差フィルムの長尺方向(MD方向)の引裂き強度と、同幅手方向(TD方向)の引裂き強度との比:(MD方向の引裂き強度/TD方向の引裂き強度)が、いずれも0.8~1.2であることを特徴とする位相差フィルム。
    Ro=(nx-ny)×d
    Rth={(nx+ny)/2-nz}×d
     なお、dは位相差フィルムの厚さ(nm)を表し、nxはフィルムの面内の最大の屈折率を、nyはフィルム面内でnxの方向に直角な方向の屈折率を、nzは厚み方向におけるフィルムの屈折率を表す。波長は590nmである。
    The in-plane retardation Ro represented by the following formula is 30 to 150 nm, and the ratio Rth / Ro between the thickness direction retardation Rth and the in-plane retardation Ro is greater than 0.8 and less than 5. , A long retardation film using cellulose acetate, wherein the cellulose acetate has an acetyl group substitution degree of 2.1 or more and 2.6 or less, and under conditions of 23 ° C. 55% RH and 60 ° C. 10% RH. The ratio of the tear strength in the longitudinal direction (MD direction) and the tear strength in the same width direction (TD direction) of the above retardation film: (Tear strength in the MD direction / Tear strength in the TD direction) A retardation film having a thickness of 0.8 to 1.2.
    Ro = (nx−ny) × d
    Rth = {(nx + ny) / 2−nz} × d
    Here, d represents the thickness (nm) of the retardation film, nx is the maximum refractive index in the plane of the film, ny is the refractive index in the direction perpendicular to the nx direction in the film plane, and nz is the thickness. Represents the refractive index of the film in the direction. The wavelength is 590 nm.
  2.  該位相差フィルムにおいて、フィルム搬送方向(MD方向)の引裂き強度と、同幅手方向(TD方向)の引裂き強度が共に、60℃10%RHでは、30mN以上120mN以下であることを特徴とする請求項1に記載の位相差フィルム。 In the retardation film, the tear strength in the film transport direction (MD direction) and the tear strength in the same width direction (TD direction) are both 30 mN or more and 120 mN or less at 60 ° C. and 10% RH. The retardation film according to claim 1.
  3.  アセチル基置換度が2.1以上2.6以下であるセルロースアセテートドープを調製し、該ドープを金属支持体上に流延し、流延膜を支持体上からフィルムとして剥離し、剥離したフィルムの幅手方向両端部をテンターにより把持しフィルムの幅保持を行なうとともにフィルムを乾燥させ、フィルムをテンターから離脱後さらに乾燥する位相差フィルムの製造方法であって、フィルムの幅手方向両端部を把持している区間において乾燥温度が140℃~200℃の範囲であり、フィルム幅方向にかかるテンションが30N/m以上100N/m未満であることを特徴とする位相差フィルムの製造方法。 A cellulose acetate dope having an acetyl group substitution degree of 2.1 or more and 2.6 or less is prepared, the dope is cast on a metal support, the casting film is peeled off as a film from the support, and the peeled film A method for producing a retardation film in which both widthwise ends of a film are held by a tenter to hold the width of the film and the film is dried, and the film is further dried after being detached from the tenter. A method for producing a retardation film, wherein a drying temperature is in a range of 140 ° C. to 200 ° C. in a gripping section, and a tension applied in a film width direction is 30 N / m or more and less than 100 N / m.
PCT/JP2010/053057 2010-02-26 2010-02-26 Retardation film and method for producing retardation film WO2011104855A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012501585A JP5637207B2 (en) 2010-02-26 2010-02-26 Retardation film and method for producing retardation film
PCT/JP2010/053057 WO2011104855A1 (en) 2010-02-26 2010-02-26 Retardation film and method for producing retardation film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/053057 WO2011104855A1 (en) 2010-02-26 2010-02-26 Retardation film and method for producing retardation film

Publications (1)

Publication Number Publication Date
WO2011104855A1 true WO2011104855A1 (en) 2011-09-01

Family

ID=44506299

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/053057 WO2011104855A1 (en) 2010-02-26 2010-02-26 Retardation film and method for producing retardation film

Country Status (2)

Country Link
JP (1) JP5637207B2 (en)
WO (1) WO2011104855A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4900540B1 (en) * 2010-04-28 2012-03-21 コニカミノルタオプト株式会社 Cellulose acetate film, polarizing plate using the same, and liquid crystal display device
JP5146628B1 (en) * 2012-05-01 2013-02-20 コニカミノルタアドバンストレイヤー株式会社 Retardation film, method of manufacturing polarizing plate, and liquid crystal display device
WO2017141938A1 (en) * 2016-02-15 2017-08-24 ダイセルポリマー株式会社 Cellulose acetate composition

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003279729A (en) * 2002-03-20 2003-10-02 Konica Corp Retardation film and method for manufacturing the same, polarization plate, liquid crystal display and optical compensation film
JP2007106794A (en) * 2005-10-11 2007-04-26 Fujifilm Corp Cellulose ester film, manufacturing method of the same, optical compensation film, polarizing plate and image display device
WO2007069465A1 (en) * 2005-12-12 2007-06-21 Konica Minolta Opto, Inc. Optical film, process for producing the same, and image display apparatus making use of the optical film
JP2007313888A (en) * 2006-04-28 2007-12-06 Konica Minolta Opto Inc Method for manufacturing optical film having convexoconcave structure, optical film, wire grid polarizer, and retardation film
JP2008089855A (en) * 2006-09-29 2008-04-17 Fujifilm Corp Optically compensatory film, polarizing plate and liquid crystal display
JP2010001383A (en) * 2008-06-20 2010-01-07 Konica Minolta Opto Inc Optical film and polarizing plate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003279729A (en) * 2002-03-20 2003-10-02 Konica Corp Retardation film and method for manufacturing the same, polarization plate, liquid crystal display and optical compensation film
JP2007106794A (en) * 2005-10-11 2007-04-26 Fujifilm Corp Cellulose ester film, manufacturing method of the same, optical compensation film, polarizing plate and image display device
WO2007069465A1 (en) * 2005-12-12 2007-06-21 Konica Minolta Opto, Inc. Optical film, process for producing the same, and image display apparatus making use of the optical film
JP2007313888A (en) * 2006-04-28 2007-12-06 Konica Minolta Opto Inc Method for manufacturing optical film having convexoconcave structure, optical film, wire grid polarizer, and retardation film
JP2008089855A (en) * 2006-09-29 2008-04-17 Fujifilm Corp Optically compensatory film, polarizing plate and liquid crystal display
JP2010001383A (en) * 2008-06-20 2010-01-07 Konica Minolta Opto Inc Optical film and polarizing plate

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4900540B1 (en) * 2010-04-28 2012-03-21 コニカミノルタオプト株式会社 Cellulose acetate film, polarizing plate using the same, and liquid crystal display device
JP5146628B1 (en) * 2012-05-01 2013-02-20 コニカミノルタアドバンストレイヤー株式会社 Retardation film, method of manufacturing polarizing plate, and liquid crystal display device
KR101291441B1 (en) 2012-05-01 2013-07-30 코니카 미놀타 어드밴스드 레이어즈 인코포레이티드 Retardation film, method of manufacturing polarizing plate, and liquid crystal display device
WO2013164868A1 (en) * 2012-05-01 2013-11-07 コニカミノルタ株式会社 Retardation film, process for producing polarizer, and liquid-crystal display device
CN104272147A (en) * 2012-05-01 2015-01-07 柯尼卡美能达株式会社 Retardation film, process for producing polarizer, and liquid-crystal display device
WO2017141938A1 (en) * 2016-02-15 2017-08-24 ダイセルポリマー株式会社 Cellulose acetate composition
CN108699292A (en) * 2016-02-15 2018-10-23 大赛璐塑料株式会社 Acetate fiber promotor composition

Also Published As

Publication number Publication date
JP5637207B2 (en) 2014-12-10
JPWO2011104855A1 (en) 2013-06-17

Similar Documents

Publication Publication Date Title
JP5329088B2 (en) Cellulose ester film, polarizing plate and liquid crystal display device
US8545737B2 (en) Cellulose acetate film, polarizing plate, and liquid crystal display device
JP4622698B2 (en) Retardation plate, polarizing plate, and liquid crystal display device
JP5440407B2 (en) Polarizing plate, liquid crystal display device, and method for producing cellulose acetate film
JP5720687B2 (en) Retardation film, polarizing plate using the same, and liquid crystal display device
TW201333552A (en) Phase differential film, manufacturing method of polarizer plate, and liquid crystal display device
JP5093106B2 (en) Optical compensation resin film for polarizing plate, method for producing optical compensation resin film, polarizing plate and liquid crystal display device
WO2011096036A1 (en) Optical film
WO2009119142A1 (en) Cellulose ester film
JP5776362B2 (en) Cellulose ester film, production method thereof, retardation film using the same, and display device
WO2011001700A1 (en) Cellulose ester film, polarizing plate using same, and liquid crystal display device
JP5741850B2 (en) Optical film, polarizing plate including the same, and liquid crystal display device
JP5637207B2 (en) Retardation film and method for producing retardation film
JP5348356B1 (en) Retardation film, polarizing plate and liquid crystal display device
JP5699519B2 (en) Retardation film, method for producing retardation film, polarizing plate and liquid crystal display device
WO2011114764A1 (en) Retardation film and polarizing plate equipped with same
WO2009101839A1 (en) Phase difference film
JP2010122445A (en) Twist nematic liquid crystal display device
WO2012002090A1 (en) Process for production of cellulose acetate film, cellulose acetate film, and polarizing plate and liquid crystal display device each equipped with the film
JP2011232428A (en) Inclined retardation film and liquid crystal display device
JP2011069857A (en) Optical film and polarizing plate using the same, liquid crystal display device, and retardation developing agent
JP5692237B2 (en) Retardation film, polarizing plate using the same, and liquid crystal display device
JP2012118177A (en) Cellulose acylate film, production method of cellulose acylate film, and liquid crystal display device
JP2010237412A (en) Twist nematic liquid crystal display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10846519

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012501585

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10846519

Country of ref document: EP

Kind code of ref document: A1