WO2011100650A2 - Improved compositions and methods for pathogen control in plants - Google Patents

Improved compositions and methods for pathogen control in plants Download PDF

Info

Publication number
WO2011100650A2
WO2011100650A2 PCT/US2011/024693 US2011024693W WO2011100650A2 WO 2011100650 A2 WO2011100650 A2 WO 2011100650A2 US 2011024693 W US2011024693 W US 2011024693W WO 2011100650 A2 WO2011100650 A2 WO 2011100650A2
Authority
WO
WIPO (PCT)
Prior art keywords
seq
plant
nucleic acid
acid molecule
species
Prior art date
Application number
PCT/US2011/024693
Other languages
French (fr)
Other versions
WO2011100650A9 (en
Inventor
John D. Bradley
Michael J. Crawford
Jr. William P. Haakenson
Michelle Coutu Hresko
Deryk J. Williams
Amy L. Caruano-Yzermans
Original Assignee
Divergence, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Divergence, Inc. filed Critical Divergence, Inc.
Priority to US13/578,095 priority Critical patent/US9175273B2/en
Publication of WO2011100650A2 publication Critical patent/WO2011100650A2/en
Publication of WO2011100650A9 publication Critical patent/WO2011100650A9/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance

Definitions

  • the present disclosure relates to methods and compositions for pathogen control in plants. More particularly, it discloses compositions and methods, isolated nucleic acid sequences, expression vectors, recombinant bacterial cells, transgenic plant cells, plants and seeds, comprising a recombinant DNA, and methods of making and using such plant cells, plants, and seeds that are associated with pest resistance.
  • Nematodes are active, flexible, elongate organisms that live on moist surfaces or in liquid environments, including films of water within soil and moist tissues within other organisms. Nematodes grow through a series of lifecycle stages and molts. Typically, there are five stages and four molts: egg stage; Jl ⁇ i.e. first juvenile stage); Ml ⁇ i.e. first molt); J2 (second juvenile stage; sometimes hatch from egg); M2; J3; M3; J4; M4; A (adult). Juvenile (“J”) stages are also sometimes referred to as larval ("L”) stages. Nematode parasites of plants can inhabit all parts of plants, including roots, developing flower buds, leaves, and stems.
  • Heterodera spp. Heterodera spp.
  • dagger nematodes ⁇ i.e. Xiphinema spp.
  • stem and bulb nematodes ⁇ i.e. Ditylenchus spp.
  • the largest and most economically important groups of plant-parasitic nematodes are the families Pratylenchidae (lesion nematodes), Meloidogynidae (root knot nematodes) and Heteroderidae (cyst nematodes) with lesion and root knot nematodes being particularly noteworthy for their very broad host rages.
  • Plant parasitic nematodes are classified on the basis of their feeding habits into the broad categories of migratory ectoparasites, migratory endoparasites, and sedentary endoparasites.
  • Sedentary endoparasites which include the root knot nematodes (Meloidogyne spp.) and cyst nematodes (Globodera and Heterodera spp.) induce feeding sites ("giant cells” in the case of root knot nematodes and "syncytia" for cyst nematodes) and establish long-term infections within roots.
  • Crop rotation or fallowing without weeding is not an effective strategy for controlling root lesion nematodes because of their broad host ranges which includes most crops, native grasses and weeds. Rotation is also less effective with the very broad host range Meloidogyne incognita, Meloidogyne javanica and Meloidogyne arenaria root knot nematodes.
  • Genetic resistance is usually narrow spectrum (e.g., race specific in the case of cyst nematodes and species specific for lesion nematodes). Deployment of narrow resistance quickly results in race or species shifts in fields with nematode problems leading to loss of effectiveness of the resistant germplasm. Other challenges with genetic resistance include loss of potency at higher temperatures (e.g., Mi resistance to root knot nematodes) or reduction in the yields of elite germplasm when
  • non- fumigant organophosphate and carbamate nematicides like ethoprop, terbufos, carbofuran and aldicarb though not as broad spectrum also show poor selectivity.
  • these chemical nematode control agents are highly toxic to mammals, birds, fish, and to non-target beneficial insects. These agents can in some cases accumulate in the water table, the food chain, and in higher trophic level species. These agents may also act as mutagens and/or carcinogens to cause irreversible and deleterious genetic modifications. As a result, government restrictions have been imposed on the use of these chemicals.
  • plants are typically subject to multiple disease causing agents such as fungi and insects which often potentiate the effect of the nematode.
  • diseases causing agents such as fungi and insects which often potentiate the effect of the nematode.
  • these disease complexes include the Fusarium solani fungal/soybean cyst nematode pairing in soybean sudden death syndrome and the rootknot nematode/fursarium wilt complex in cotton. Therefore methods of controlling nematodes having broader pesticidal effects are particularly desirable.
  • the present disclosure provides agents effective plant nematode control which also, in some embodiments, express other desirable pesticidal properties such as insecticidal activity.
  • the effective compounds are, in one embodiment, combinations of methylketones and related compounds that are produced in plants or bacteria used to treat plants, whose composite action results in effective nematode and insect control. Also disclosed are compositions and methods to produce improved mixtures of methylketones, e.g., mixtures comprising two or more
  • methylketones selected from 2-nonanone, 2-undecanone, 2-tridecanone, 2-tridecenone, 2- pentadecanone and related compounds such as 2-undecanol or 2-tridecanol, in plants that nematodes infect.
  • compositions and methods to produce improved mixtures of methylketones e.g., mixtures comprising two or more methylketones selected from 2- nonanone, 2-undecanone, 2-tridecanone, 2-tridecenone, 2-pentadecanone and related compounds such as 2-undecanol or 2-tridecanol, in bacteria that are then applied to plants that nematodes infect.
  • Plant parasitic nematodes are obligate parasites of plants. Thus the reduction in infestation can be achieved by killing the nematodes directly and/or reducing the viability of the plant cells on which the nematodes feed and/or repelling the nematodes or otherwise disrupting their ability to locate appropriate host plants and host tissues.
  • the method comprises production of transgenic plants containing (and capable of expressing) one or more transgenes that provide for the production of mixtures of two or more methylketones selected from 2-undecanone, 2-tridecanone, 2-tridecenone, 2- pentadecanone and/or related compounds such as 2-undecanol or 2-tridecanol, in plant tissues susceptible to nematode infection and/or insect predation.
  • the method comprises production of recombinant or recombinant bacteria containing (and capable of expressing) one or more transgenes that provide for the production of mixtures of two or more methylketones selected from 2-undecanone, 2- tridecanone, 2-tridecenone, 2-pentadecanone and/or related compounds such as 2-undecanol or 2-tridecanol, and using these bacteria to treat plant seeds, bulbs, cuttings, corms or other plant propagation material, and plant roots, stems or leaves in plant tissues susceptible to nematode infection and/or insect predation.
  • this disclosure provides methods for construction and use of a transgene expression cassette comprising a modified or unmodified (i.e., wild-type)
  • methylketone thioesterase coding region and expression of the thioesterase in a plant cell, particularly in the root cells of a plant, or in a bacterial cell which bacterial cell is then applied to plant propagation material, e.g., seeds or plant roots.
  • the invention provides for a transgenic plant comprising the transgene wherein the roots of the transgenic plant produce at least one methylketone and/or a related alcohol.
  • the modified or unmodified methylketone thioesterase transgene in certain embodiments, additionally comprises a sequence encoding a region comprising a heterologous plastid transit peptide molecule in operable linkage to the modified methylketone thioesterase coding region.
  • the methylketone thioesterase encoded by the transgene is unmodified and the transgene comprises a sequence encoding a heterologous plastid transit peptide. In certain embodiments, the methylketone thioesterase encoded by the transgene is modified and the transgene comprises a sequence encoding a heterologous plastid transit peptide. In certain embodiments, the methylketone thioesterase encoded by the transgene is modified and the transgene does not comprise a sequence encoding a heterologous plastid transit peptide.
  • the methylketone thioesterase encoded by the transgene is modified and the transgene comprises a sequence encoding a heterologous plastid transit peptide.
  • heterologous it is meant that a given sequence is not in its native context with respect to any other referenced sequence.
  • one sequence may be heterologous with respect to second, operably linked, sequence where both sequences can be isolated from the same species, but will be not be in their native orientation.
  • the two sequences can be from different species (i.e., from a first species and a second species) or from the same species, but from different genes (i.e., from a first gene and a second gene).
  • a heterologous transit peptide operably linked to a selected modified or unmodified methylketone thioesterase coding region is therefore a transit peptide not normally found in nature in an unmodified state in operable linkage to the particular selected methylketone thioesterase coding region.
  • a "modified" polypeptide or peptide has one or more amino acid modifications (e.g, changes, insertions, deletions or combinations thereof) compared to a reference sequence.
  • a modified polypeptide or peptide can have 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15 or more amino acid modifications compared to a reference sequence. In many cases, a modified polypeptide or peptide has unaltered or only slightly altered activity compared to a reference polypeptide.
  • a polypeptide having "methylketone thioesterase activity” exhibits thioesterase activity towards a beta keto acyl carrier protein (ACP) fatty acid ester or towards a beta keto acyl CoA fatty acid ester. In some cases, the polypeptide exhibits exhibits thioesterase activity towards a beta keto acyl carrier protein (ACP) fatty acid ester and towards a beta keto acyl CoA fatty acid ester. In certain cases, a polypeptide having methylketone thioesterase activity may also have decarboxylase activity.
  • modified DNA coding sequences SEQ ID NO: 5- 8, SEQ ID NO: 11-56 and SEQ ID NO: 131-168 and their amino acid sequences comprising SEQ ID NO: 61-64 and SEQ ID NO: 67-112 and SEQ ID NO: 188-225 are provided that encode a modified methylketone thioesterase.
  • the DNA coding sequence encoding a polypeptide with methylketone thioesterase activity shares at least about 80%, 85%, 90%), 95%o, 98%), or 99% percent sequence identity to any one or more of said SEQ ID NO: 5-8, SEQ ID NO: 11-56 and SEQ ID NO: 131-168.
  • the polypeptide with methylketone thioesterase activity has 10 (e.g., 9, 8, 7, 6, 5, 4, 3, 2, 1) or fewer amino acid changes compared to any one of SEQ lD NO: 5-8, SEQ ID NO: 11-56 and SEQ ID NO: 131-168. In some cases the amino acid changes will be conservative changes. In some cases a sequence encoding one of the forgoing methylketone thioesterage is operably liked to a heterologous promoter, e.g., root specific promoter.
  • a heterologous fusion protein comprises a plastid transit peptide polypeptide (such as SEQ ID NO: 230 or 232) and a modified methylketone thioesterase polypeptide (such as SEQ ID NO: 57-60 and SEQ ID NO: 170-187) or methylketone thioesterase polypeptide variant (such as SEQ ID NO: 61-64, SEQ ID NO: 67-112 and SEQ ID NO: 188-225) with methylketone thioesterase activity.
  • a plastid transit peptide polypeptide such as SEQ ID NO: 230 or 232
  • a modified methylketone thioesterase polypeptide such as SEQ ID NO: 57-60 and SEQ ID NO: 170-187
  • methylketone thioesterase polypeptide variant such as SEQ ID NO: 61-64, SEQ ID NO: 67-112 and SEQ ID NO: 188-225) with methylketone thioesterase activity.
  • polypeptide with methylketone thioesterase activity has 10 (e.g., 9, 8, 7, 6, 5, 4, 3, 2, 1) or fewer amino acid changes compared to any one of SEQ ID NO: 57-60, SEQ ID NO: 170-187, SEQ ID NO: 61-64, SEQ ID NO: 67-112 and SEQ ID NO: 188-225. In some cases the amino acid changes will be conservative changes.
  • heterologous fusion protein that comprises a plastid transit peptide (such as SEQ ID NO: 230 or 232) and a methylketone thioesterase molecule having at least about 80%>, 85%, 90%>, 95%, 98%>, or 99% percent sequence identity to any one or more of said SEQ ID NO: 65, SEQ ID NO: 66 or SEQ ID NO: 226.
  • the polypeptide with methylketone thioesterase activity has 10 (e.g., 9, 8, 7, 6, 5, 4, 3, 2, 1) or fewer amino acid changes compared to any one of SEQ ID NO: 5-8, SEQ ID NO: 65, SEQ ID NO: 66 or SEQ ID NO:226.
  • the amino acid changes will be conservative changes.
  • a sequence encoding one of the foregoing fusion proteins is operably linked to a heterologous promoter, e.g., a root specific promoter.
  • a transgene expression cassette comprising a heterologous methylketone synthase protein coding region that encodes a methylketone synthase such as those disclosed in WO 2009/00433 (hereby incorporated by reference) that is expressed in plant tissues with the transgene comprising the modified methylketone thioesterase coding region.
  • a transgenic seed is provided comprising a heterologous plastid transit peptide molecule in operable linkage to the methylketone
  • the transgenic seed may additionally comprise a transgene expression cassette comprising a heterologous acyl carrier protein coding region.
  • transgenic plant cells and transgenic plants comprising a plurality of the plant cells, nuclei and organelles, and progeny transgenic seed, embryo, ovule and transgenic pollen from such plants.
  • a plant cell including parts thereof is selected from a population of transgenic plant cells transformed with a heterologous methylketone thioesterase coding region and may additionally comprise a heterologous acyl carrier protein coding region by selecting the transgenic plant cell from any population comprising the heterologous coding region as compared to a cell that does not have the heterologous coding region.
  • This invention also provides methods for manufacturing non-natural, transgenic seed that can be used to produce a crop of transgenic plants with pest resistance resulting from expression of a heterologous methylketone thioesterase coding region and in certain embodiments the co- expression of a heterologous acyl carrier protein coding region in the nucleus or organelle or cytoplasm of the plant cells making up the transgenic plants.
  • the various aspects of this invention are especially useful for transgenic plants having nematode resistance activity that include, without limitation, cereals including corn, wheat, barley, rye, and rice; vegetables; tomatoes; potatoes; clovers; legumes including beans, soybeans, peas and alfalfa; sugar cane; sugar beets; tobacco; cotton; rapeseed (canola); sunflower; safflower; and sorghum.
  • the present invention provides for a transgenic plant such as a soybean, corn, cotton, sugar cane or wheat plant comprising within its genome a heterologous methylketone thioesterase coding region and may additionally comprise a heterologous acyl carrier protein coding region, wherein the plant has increased resistance to infection by one or more species of nematode (ie., compared to an otherwise genetically identical plant that does not a harbor a heterologous methylketone thioesterase coding region or a heterologous methylketone thioesterase coding region and a heterologous acyl carrier protein coding region) or displays reduced disease symptoms caused by infection by one or more species of nematode (ie., compared to an otherwise genetically identical plant that does not a harbor a heterologous methylketone thioesterase coding region or a heterologous methylketone thioesterase coding region and a heterologous acyl carrier protein coding region).
  • a transgenic plant such as
  • the present invention further provides a method of increasing the yield of a nematode tolerant crop plant.
  • the method comprises growing a crop plant comprising a heterologous methylketone thioesterase coding region which may additionally comprise a heterologous methylketone synthase coding region in the presence of nematodes.
  • Another aspect of the invention provides a method of producing a hybrid seed comprising acquiring hybrid seed from a nematode tolerant plant which also has a stably-integrated heterologous nucleotide sequence encoding a methylketone thioesterase and may also have integrated a heterologous nucleotide sequence encoding methylketone synthase.
  • the method further comprises producing a crop from plants grown from the hybrid seed, wherein a fraction of the plants produced from said hybrid seed are homozygous for the heterologous methylketone thioesterase coding sequence and if present, the heterologous methylketone synthase coding sequence, a fraction of the plants produced from said hybrid seed are hemizygous for the heterologous methylketone thioesterase coding sequence and if present, the heterologous methylketone synthase coding sequence, and a fraction of the plants produced from the hybrid have no heterologous methylketone thioesterase coding sequence or heterologous methylketone synthase coding sequence; selecting plants which are homozygous and hemizygous; collecting seed from the selected plants, and planting the seed to produce further progeny plants; repeating the selecting and collecting steps at least once from these progeny plants to produce an inbred line; and crossing the inbred line with a second line to produce hybrid seed.
  • the plants of the invention are selected, without limitation, from the group of corn (maize), soybean, cotton, canola (rape), wheat, sunflower, sorghum, alfalfa, barley, millet, rice, tobacco, tomato, potato, fruit and vegetable crops, turfgrass, sugar cane, sugar beets, and safflower.
  • agronomically important insects include, but are not limited to Beet armyworm (Spodoptera exigua), Boll weevil (Anthonomus grandis grandis), Cabbage looper (Trich oplusiani), Clouded plant bug (Neurocolpus nubilus), Corn Rootworm (Diabrotica spp), Cotton aphid (Aphis gossypii), Cotton bollworrn (Heliocoverpa zea), Cutworms (Feltia subterranea, Peridroma saucia, Agrotis ipsilon), European corn borer (Ostrinia nubilalis), Fall armyworm (Spodoptera frugiperda), Seedling thrips (Frankliniella spp.), Soybean looper (Pseudoplusia includens), Stink bugs ⁇ Nezara viridula, Acrosternum hilare, E
  • nucleic acid molecules comprising a nucleotide sequence encoding a polypeptide comprising an amino acid sequence that is at least 85% identical to any of SEQ ID NOs:61-64, 67-112 and 188-225.
  • the polypeptide does not comprise the amino acid sequence of any of SEQ ID NOs:57-60 and 170-187.
  • nucleic acid molecule comprising (or consisting of) a nucleotide sequence encoding a polypeptide comprising an amino acid sequence selected from the group consisting of:
  • the polypeptide comprises an amino acid sequence that is identical to amino acids 1-25 of any of SEQ ID NOs:61-64, 67-1 12 and 188-225; the polypeptide comprises an amino acid sequence that is identical to amino acids 1-50 of any of SEQ ID NOs:61-64, 67- 1 12 and 188-225; the polypeptide comprises an amino acid sequence that is identical to amino acids 1-75 of any of SEQ ID NOs:61-64, 67-1 12 and 188-225; the polypeptide comprises an amino acid sequence that is identical to amino acids 1-100 of any of SEQ ID NOs:61-64, 67-1 12 and 188-225; the polypeptide comprises an amino acid sequence that is identical to amino acids 100-140 of any of SEQ ID NOs:61-64, 67-1 12 and 188-225; the polypeptide comprises an amino acid sequence that is identical to amino acids 75-100 of any of SEQ ID NOs:61-64, 67-1 12 and 188-225; the polypeptide comprises an amino acid sequence that is
  • the polypeptide does not comprise the amino acid sequence of any of SEQ ID NOs:57-60 and 170-187; the polypeptide consists of an amino acid sequence that is at least 85% identical to any of SEQ ID NO:61-64, 67-1 12 and 188-225; the polypeptide has methylketone thioesterase activity; the polypeptide catalyzes the synthesis of one or more of 2-nonanone, 2-undecanone, 2-tridecanone, and 2-pentadecanone; the polypeptide catalyzes the synthesis of two or more of 2-nonanone, 2-undecanone, 2-tridecanone, and 2-pentadecanone; the polypeptide catalyzes the synthesis of 2-nonanone, 2-undecanone and 2-tridecanone; the polypeptide further comprises the amino acid sequence of a plastid transit peptide (e.g., a plastid transit peptide that mediates transit
  • vectors comprising any of the nucleic acid molecules described herein.
  • the nucleic acid molecule is operably linked to a promoter functional in plants.
  • the vector is a plant expression vector.
  • a plant cell comprising any of the nucleic acids molecules described herein.
  • the plant cell is from plant propagation material (e.g., a seed), root, leaf, shoot, flower, pollen, or ovule; the plant cells comprises two or more or three or more of the nucleic acid molecules described herein wherein the two or three nucleic acid molecules encode different polypeptides.
  • the plant cell produces one or more of or more of 2-nonanone, 2- undecanone, 2-tridecanone and 2-pentadecanone; the plant cell produces two or more of 2- nonanone, 2-undecanone, 2-tridecanone, and 2-pentadecanone; the plant cell is a crop plant cell; the plant cell is from a plant selected from the group selected from cotton, soybean, canola, corn, wheat, rice, sunflower, sorghum, sugarcane, potato, tomato, and a tree.
  • a plant or a part thereof comprising a nucleic acid molecule described herein.
  • the part thereof is selected from the group consisting of a seed, pollen, a root, a leaf, a shoot, a flower and an ovule.
  • the plant or part thereof comprises a nucleic acid molecule encoding an acyl carrier protein.
  • a processed product comprising plant tissue and a processed product produced fcomprising a nucleic acid molecule described herein.
  • the processed product is selected from the group consisting of meal, flour, oil, hay, starch, juice, protein extract, and fiber.
  • Described herein is a method for controlling a pathogen or pest in a plant comprising expressing in the plant the polypeptide encoded by a nucleic acid molecule described herein.
  • the pest is a nematode (e.g., Heterodera species, Globodera species, Meloidogyne species, Rotylenchulus species, Hoplolaimus species, Belonolaimus species, Pratylenchus species, Longidorus species, Paratrichodorus species, Ditylenchus species, Xiphinema species, Dolichodorus species, Helicotylenchus species, Radopholus species, HirschmannieUa species, Tylenchorhynchus species, and Trichodorus species);
  • the pest is an insect (e.g., Coleoptera, Diptera, Hemiptera (including Homoptera and Heteroptera), Hymenoptera and Lepidoptera).
  • the method comprises expressing in the plant two or more (or three or more) of the polypeptides encoded by the nucleic acid molecules described herein or the vectors described hererin wherein the nucleic acids or vectors encode different two polypeptides.
  • nucleic acid molecule described herein further comprising a bacterial expression sequences operably linked to the nucleotide sequence encoding the polypeptide.
  • a bacterial vector comprising the nucleic acid molecule described herein (e.g., an expression vector).
  • a recombinant bacterial cell comprising a nucleic acid molecule or vector described herein.
  • the bacterial cell expresses a polypeptide encoded by the nucleic acid; the bacterial cell produces one or more of or more of 2-nonanone, 2-undecanone, 2- tridecanone and 2-pentadecanone; the bacterial cell of claim 56 wherein the bacterial cell produces two or more of 2-nonanone, 2-undecanone, 2-tridecanone, and 2-pentadecanone; the bacterial cell is selected from the group consisting of Pasteuria spp., Pseudomonas spp., Bacillus spp., Corynebacterium, Agrobacterium spp., and Paenibacillus spp.; the bacterial cell comprises two or more or three or more of the nucleic acid molecules or vectors described herein wherein the nucleic acid molecules or vectors encode different polypeptides.
  • the plant material is selected from the group consisting of: plant propagation material (e.g., a seed), shoot, seedling, tuber and sprout; the plant material is from a plant selected from the group selected from cotton, soybean, canola, corn, wheat, rice, sunflower, sorghum, sugarcane, potato, tomato, and a tree.
  • plant propagation material e.g., a seed
  • shoot, seedling, tuber and sprout e.g., a seed
  • the plant material is from a plant selected from the group selected from cotton, soybean, canola, corn, wheat, rice, sunflower, sorghum, sugarcane, potato, tomato, and a tree.
  • Described herein is a method for treating plant material comprising applying a composition a recombinant bacterial cell described herein to the plant material.
  • the composition further comprises an insecticide or a nematicide
  • the plant material is selected from the group consisting of: plant propagation material (e.g., a seed), shoot, seedling, tuber and sprout; the plant material is from a plant selected from the group selected from cotton, soybean, canola, corn, wheat, rice, sunflower, sorghum, sugarcane, potato, tomato, and a tree.
  • the pest or pathogen is a nematode (e.g., Heterodera species, Globodera species, Meloidogyne species, Rotylenchulus species, Hoplolaimus species, Belonolaimus species, Pratylenchus species, Longidorus species, Paratrichodorus species, Ditylenchus species, Xiphinema species, Dolichodorus species, Helicotylenchus species, Radopholus species, Hirschmanniella species, Tylenchorhynchus species, and Trichodorus species); the pest is an insect (e.g., the insect is selected from the orders consisting of Coleoptera, Diptera, Hemiptera (including Homoptera and Heteroptera), Hymenoptera and Lepidoptera).
  • a nematode e.g., Heterodera species, Globodera species, Meloidogyne species, Rotylenchulus species, Hoplolaimus species, Belonolai
  • Figure 1A Comparisons of ratios and amounts of CI 1, C13 and C15 methylketone metabolites produced in E. coli by methylketone thioesterases from L. esculentum, P. integrifolia, L.
  • Figure IB Comparisons of ratios and amounts of C9, CI 1, C13 and C15 methylketone metabolites produced in E. coli by methylketone thioesterases from L. hirsutum, L. esculentum, P. integrifolia, S. tuberosum, A. thaliana, and Populus trichocarpa. Each bar shows the fraction of C9, CI 1, C13 and C15 methylketone (numbers on bars are the ug of MK).
  • Lh L. hirsutum, Le: L. esculentum, Pi: P. integrifolia, St: S. tuberosum, AtA: A. thaliana, At B: A. thaliana, At C: A.
  • FIG. 1C Comparisons of ratios and amounts of C9, CI 1, C13 and C15 methylketone metabolites produced in E. coli by methylketone thioesterases from Ricinus communis, Vitis vinifera, Oryza sativa japonica, Oryza sativa indica, Phyllostachys edulis, Zea mays and Sorghum bicolor.
  • Each bar shows the fraction of C9, CI 1, C13 and C15 methylketone (numbers on bars are the ug of MK).
  • Rc Ricinus communis
  • Vv A Vitis vinifera
  • Osj Oryza sativa japonica
  • Osi Oryza sativa indica
  • Pe Phyllostachys edulis
  • Zm Zea mays
  • Sb Sorghum bicolor.
  • Figure 2 A Comparisons of ratios and amounts of CI 1, C13 and C15 methylketone metabolites produced in E. coli by L. esculentum/L. hirsutum chimeric methylketone thioesterases Bottom portion of each bar is CI 1, middle portion of each bar is CI 3, and top portion of each bar is C15.
  • Figure 2B Comparisons of ratios and amounts of C9, CI 1, C13 and C15 methylketone metabolites produced in E. coli by L. esculentum/L. hirsutum chimeric methylketone
  • Each bar shows the fraction of C9, CI 1, C13 and C15 methylketone (numbers on bars are the ug of MK).
  • Figure 3 Multiple alignment of various methylketone thioesterases from dicot and monocot plants. Depicted is a multiple sequence alignment generated with ClustalX for several methylketone thioesterases from a variety of dicot plants including spruce, castor, grape, poplar, cotton, soybeans, tomato, petunia, potato and Arabidopsis) and several moncot plants including rice, bamboo, sorghum, sugarcane and corn.
  • Figure 4 Sequence aligned depicting various region.
  • the L. hirsutum and L. esculentum sequences were aligned as shown in the graphic and then two tail regions and four internal regions defined (N-terminal tail, A region, B region, C region, D region, C-terminal terminal tail).
  • N-terminal tail For the external tails if the sequence is from L. esculentum it is e; if it is from L. hirsutum it is H.
  • For the internal regions if the sequence is from L. esculentum it is 0; if it is from L.
  • hirsutum it is 1.
  • the present disclosure relates to methods and compositions for pest control in plants, in particular nematode and insect control.
  • the disclosure relates to controlling, preventing or treating nematode and/or insect infection in transgenic plants or in plants treated with transgenic bacteria.
  • the method comprises, in one embodiment, generation of transgenic plants containing a recombinant construct and expression of such construct to impart increased nematode and/or insect resistance to plants.
  • transgenic bacteria are generated containing a recombinant construct.
  • the expression of such a construct causes the bacteria to produce agents that impart nematode and/or insect resistance to plants when treated with the bacteria.
  • the construct allows the bacteria to produce an agent that they do not produce in the absence of the contrsuct.
  • the bacetia produce more of an agent that they produce in the absensce of the construct.
  • the recombinant construct may comprise a nucleotide sequence encoding one or more proteins, wherein the sequence is operably linked to a heterologous promoter functional in a plant cell or a bacterial cell.
  • Cells comprising (meaning including but not limited to) the recombinant construct may be prokaryotic or eukaryotic. In particular, they may be plant cells or bacterial cells. Plants and seeds derived from such transformed plant cells are also contemplated.
  • the transgenic plants or parts thereof of the present invention in one embodiment produce two or more plant metabolites from among 2-nonanone, 2-undecanone and 2-tridecanone.
  • 2-undecanone is the major methylketone in the Lycopersicon hirsutum LA 407 accession whereas in other L. hirsutum accessions (e.g., PI 251304, PI 126449, PI 134418) 2-tridecanone is the major methylketone (Antonious. J Environ Sci Health B. 2001 36(6):835-48).
  • methylketone synthase of the alpha/beta hydrolase fold has been cloned from the wild tomato L. hirsutum PI 126449, expressed in Escherichia coli and shown in vitro to be capable of
  • 2-nonanone (a C9 methylketone) has been shown to be a repellant to C. elegans (Bargmann et al. Cell. 1993 74(3):515-27).
  • More recently two novel methylketone thioesterases of the hotdog fold type from L. hirsutum and L. esculentum have been shown by Ben-Israel et al. to produce various methylketones and related metabolites (e.g., alcohols) when expressed in E. coli (Ben-Israel et al. Plant Physiol. 2009 151(4): 1952-64).
  • the methylketone thioesterase from L. hirsutum produced significant amounts of 2-tridecanone and small amounts of 2-unedecanone whereas the methylketone thioesterase from L. esculentum produces moderate amounts of 2-undecanone and trace quantities of 2-tridecanone.
  • Methylketones differ in their intrinsic potency against various pests. As discussed by Kennedy (Annu. Rev. Entomol. 2003 48:51-72), 2-undecanone is less toxic to Helicoverp zea (tomato fruit worm) and Manduca sexta (tobacco hornworm) than 2-tridecanone, whereas the two metabolites have equivalent potency against Keiferia ly coper sicella (tomato pinworm) and Spodoptera exigua (beet armyworm). Surprisingly mixtures of 2-undecanone and 2-tridecanone have synergistic toxicity effects on H. zea, K. lycopersicella and S. exigua (Kennedy Annual Rev. Entomol. 2003 48:51-72). Methylketones also differ in their level of cytotoxicity.
  • Modulating the ratio and levels is therefore critical to maximizing pesticidal activity while minimizing phytotoxic effects.
  • the present disclosure provides heterologous molecules that are modified methylketone thioesterases which are expressed in plants to provide optimal ratios and levels of methylketones, especially mixtures of at least 2-tridecanone, 2-undecanone and 2-noneanone to provide insecticidal and nematicidal activity while minimizing phytotoxicity.
  • modified methylketone thioesterases include, but not limited to, nucleotides that encode polypeptides having
  • methylketone thioesterase activity such as SEQ ID NO: 61-64, SEQ ID NO: 67-112 and SEQ ID NO: 188-225.
  • the polypeptide having methylketone thioesterase activity may share at least 80%, at least 85%, at least 90%, at least 95%, at least 98%, at least 99%), or 100%) sequence identity, to any one or more amino acid sequence(s) set forth in SEQ ID NO: 61-64 and SEQ ID NO: 67-112 and SEQ ID NO: 188-225, where the sequences comprise (or consist of) the following motif.
  • each X independently represents 1 , 2, 3, 5, 6, 7, 8, 9, or 10 amino acids.
  • the function of the encoded polypeptide may also be determined by measuring the efficacy of the presence of the transgene that encodes it in reducing nematode infection, growth, reproduction, or symptomatology. For instance, a reduction in root galls, cysts, or worm number of 20% or more, 25% or more, 50% or more, 80% or more, or 95% or more, in a transgenic plant comprising a heterologous nucleotide construct encoding methylketone thioesterase activity, relative to a control plant, for instance an otherwise isogenic plant not comprising the
  • heterologous molecule under similar conditions, indicates the presence of a functional molecule.
  • a heterologous polypeptide provided by the present disclosure that is directed into the plastid of a plant to provide production of a methylketone may share at least 80%, at least 85%, at least 90%, at least 95%, at least 98%, at least 99%, or 100% sequence identity at the nucleotide level with one or more sequence(s) as set forth in SEQ ID NO: 5-8, SEQ ID NO: 1 1-56 and SEQ ID NO: 131-168.
  • the heterologous molecule may also comprise a sequence encoding a heterologous chloroplast transit peptide, for instance, without limitation, as shown in SEQ ID NO: 229 or SEQ ID NO: 231.
  • a nucleotide of the present invention may further comprise a sequence that encodes a methylketone synthase as set forth WO 2009100433
  • Yet another aspect of the invention provides methods for production and for use of one or more methylketone(s), such as 2-undecanone and 2-tridecanone, to control insect and nematode infestations.
  • transgenic plant is any plant in which one or more, or all, of the cells of the plant include a transgene.
  • a transgene may be integrated within a nuclear genome or organelle genome, or it may be extrachromosomally replicating DNA.
  • the term "transgene” means a nucleic acid that is partly or entirely heterologous, foreign, to a transgenic microbe, plant, animal, or cell into which it is introduced.
  • a plant is comprised of cells that make up various cell and tissue types, these include but are not limited to seed, root, leaf, shoot, flower, pollen and ovule.
  • Recombinant DNA is a polynucleotide having a genetically engineered modification introduced through combination of endogenous and/or exogenous molecules in a transcription unit, manipulation via mutagenesis, restriction enzymes, and the like or simply by inserting multiple copies of a native transcription unit.
  • Recombinant DNA may comprise DNA segments obtained from different sources, or DNA segments obtained from the same source, but which have been manipulated to join DNA segments which do not naturally exist in the joined form.
  • An isolated recombinant polynucleotide may exist, for example as a purified molecule, or integrated into a genome, such as a plant cell, or organelle genome or a microbe plasmid or genome.
  • the polynucleotide comprises linked regulatory molecules that cause transcription of an RNA in a plant cell.
  • percent identity means the extent to which two optimally aligned DNA or protein segments are invariant throughout a window of alignment of components, for example nucleotide sequence or amino acid sequence.
  • An “identity fraction” for aligned segments of a test sequence and a reference sequence is the number of identical components that are shared by sequences of the two aligned segments divided by the total number of sequence components in the reference segment over a window of alignment which is the smaller of the full test sequence or the full reference sequence.
  • Percent identity (“% identity) is the identity fraction times 100.
  • “Expression” includes transcription of DNA to produce RNA.
  • the resulting R A may be without limitation mRNA encoding a protein, antisense RNA, or a double-stranded RNA for use in RNAi technology.
  • Expression also refers to production of encoded protein from an mRNA.
  • promoter means regulatory DNA molecules for initializing
  • plant promoter is a promoter capable of initiating transcription in plant cells whether or not its origin is a plant cell, for example it is well known that certain Agrobacterium promoters are functional in plant cells.
  • plant promoters include promoter DNA obtained from plants, plant viruses (in particular, double stranded DNA viruses) and bacteria such as Agrobacterium and Bradyrhizobium bacteria.
  • Constitutive promoters generally provide transcription in most or all of the cells of a plant, in particular, promoters such as the FMV promoter (FMV, US Patent 6,051,753), the enhanced 35S promoter (E35S, US Patent
  • promoters under developmental control include promoters that preferentially initiate transcription in certain tissues, such as leaves, roots, or seeds. Such promoters are referred to as "tissue preferred”. Promoters that initiate transcription only in certain tissues are referred to as "tissue specific”.
  • resistance when used in the context of comparing the effectiveness of a transgene in a transgenic plant and another plant, refers to the ability of the invention transgenic plant to maintain, to some degree, a desirable phenotype in the face of nematode infection relative to a non-transgenic plant of sensitive genome.
  • the level of resistance can be determined by comparing the physical characteristics of the invention plant to non-transgenic plants that either have or have not been exposed to nematode infection.
  • Exemplary physical characteristics to observe in the presence and absence of parasitic nematode pressure include: plant height, weight, coloration, germination rate, fruit or grain yield, overall growth rate and root growth rate.
  • Exemplary characteristics in the presence of nematode pressure may additionally include: nematode infection rates, nematode reproduction rates, feeding site choice and establishment, nematode growth and maturation rates.
  • Desirable outcomes of the invention transgenic plants include an increase in the population of plants that exhibit positive changes in the above characteristics when compared to control plants.
  • Transgenic invention plants that come in contact with parasitic nematodes may exhibit enhanced root growth, enhanced fruit or grain yield, reduction of nematode infection or decreases in nematode population growth compared to the control plants.
  • the product of expression of the recombinant DNA may be directly toxic to the nematode (nematicidal) or may affect the mobility, host affinity, feeding site establishment or fecundity of the parasitic nematodes, or may have other measurable nematistatic effects.
  • Transformed seed is the seed which has been generated from the transformed plant.
  • a transformed plant contains transformed cells.
  • a transformed cell is a cell that has been altered by the introduction of an exogenous DNA molecule or in the present invention comprises a chimeric promoter comprising viral enhancer elements and promoters having activity in cells from which plant parasitic nematodes such as Heterodera glycines (soybean cyst nematode), Meloidogyne incognita (root knot nematode), or Pratylenchus scribneri (root lesion nematode) feed.
  • plant parasitic nematodes such as Heterodera glycines (soybean cyst nematode), Meloidogyne incognita (root knot nematode), or Pratylenchus scribneri (root lesion nematode) feed.
  • Nematodes include, but are not limited to plant parasitic species, for example,
  • Pratylenchus species Heterodera species, Globodera species, Meloidogyne species,
  • Rotylenchulus species Hoplolaimus species, Belonolaimus species, Longidorus species, Paratrichodorus species, Ditylenchus species, Xiphinema species, Dolichodorus species, Helicotylenchus species, Radopholus species, Hirschmanniella species, Tylenchorhynchus species, and Trichodorus species.
  • Insect refers to any embryonic, larval, nymph or adult form of of the arthropod classes Arachnida or Ins ecta.
  • Insecta includes Coleoptera (e.g. Leptinotarsa decemlineata, Diabrotica spp.), Diptera (e.g. Hylemya platura), Hemiptera (e.g. Lygus spp., Aphis gossypii, Homoptera such as Trialeurodes abutilonea, Bemisia tabaci; Heteroptera such as Nezara viridula), Hymenoptera, and Lepidoptera (e.g. Helicoverpa armigera, Ostrinia nubilalis).
  • Coleoptera e.g. Leptinotarsa decemlineata, Diabrotica spp.
  • Diptera e.g. Hylemya platura
  • Hemiptera e.g. Ly
  • Bacteria suitable for production of methylketones and treating of plant propagation material, roots or other tissue include but are not limited to, a rhizobacterial species.
  • the species can be selected from Pasteuria spp., Pseudomonas spp., Bacillus spp., Corynebacterium, Agrobacterium spp., and Paenibacillus spp.
  • the bacterial species can be Bacillus firmus, Bacillus cereus, Pseudomonas cepacia, Corynebacterium pauronietabolum or species of the genus Pasteuria, e.g. Pasteuria penetrans, P. thornei, P. nishizawae, Candidatus Pasteuria usgae sp. nov., or Candidatus Pasteuria sp. strain HG and others.
  • bacterial strains are suitable as host cells for the over-expression of methylketone thioesterase proteins according to the present technology, including E. coli strains and many other species and genera of prokaryotes including bacilli such as Bacillus subtilis, other enterobacteriaceae such as Salmonella typhimurium or Serratia marcesans, and various Pseudomonas species.
  • Prokaryotic host cells or other host cells with rigid cell walls can be transformed using a calcium chloride method as described in section 1.82 of Sambrook et al., Molecular Cloning - A Laboratory Manual (3rd Ed.), Vol. 1-3, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., 2000.
  • electroporation may be used for transformation of such cells.
  • Various prokaryote transformation techniques are known in the art; e.g. Dower, W. J., in Genetic Engineering, Principles and Methods, 12:275- 296, Plenum Publishing Corp., 1990; Hanahan et al, Meth. EnzymoL, 204:63 1991.
  • the present invention provides recombinant DNA constructs comprising a
  • constructs that when incorporated into a plant cell imparts increased resistance to nematode infection or plant disease caused by the nematode infection.
  • constructs also typically comprise a promoter operatively linked to said polynucleotide to provide for expression in the plant cells.
  • Other construct components may include additional regulatory molecules, such as 5' leader regions or 3' untranslated regions (such as
  • Recombinant constructs prepared in accordance with the present invention also generally include a 3' untranslated DNA region (UTR) that typically contains a polyadenylation sequence following the polynucleotide coding region.
  • UTR 3' untranslated DNA region
  • Examples of useful 3 ' UTRs include but are not limited to those from the nopaline synthase gene of Agrobacterium tumefaciens (nos), a gene encoding the small subunit of a ribulose-l,5-bisphosphate carboxylase-oxygenase (rbcS), and the T7 transcript of Agrobacterium tumefaciens.
  • Constructs and vectors may also include a transit peptide for targeting of a protein product, particularly to a chloroplast, leucoplast or other plastid organelle, or mitochondria, or peroxisome, or vacuole or an extracellular location.
  • a transit peptide for targeting of a protein product particularly to a chloroplast, leucoplast or other plastid organelle, or mitochondria, or peroxisome, or vacuole or an extracellular location.
  • plastid transit peptides see U.S. Patent 5,188,642 and U.S. Patent No. 5,728,925, herein incorporated by reference in their entirety.
  • Many chloroplast-localized proteins are expressed from nuclear genes as precursors and are targeted to the chloroplast by a chloroplast transit peptide (CTP).
  • chloroplast proteins examples include, but are not limited to those associated with the small subunit (SSU) of ribulose-l,5,-bisphosphate carboxylase, ferredoxin, ferredoxin oxidoreductase, the light-harvesting complex protein I and protein II, thioredoxin F, enolpyruvyl shikimate phosphate synthase (EPSPS) and transit peptides described in US Patent 7,193,133, herein incorporated by reference. It has been demonstrated in vivo and in vitro that non-chloroplast proteins may be targeted to the chloroplast by use of protein fusions with a heterologous CTP and that the CTP is sufficient to target a protein to the chloroplast.
  • SSU small subunit
  • EPSPS enolpyruvyl shikimate phosphate synthase
  • a suitable chloroplast transit peptide such as, the Lycopersicon esculentum DCL1 CTP (Gnanasambandam et al. Plant Biotechnol J. 2007 5(2):290-6.), the Arabidopsis thaliana EPSPS CTP (CTP2, Klee et al, Mol. Gen. Genet. 210:437-442), and the Petunia hybrida EPSPS CTP (CTP4, della-Cioppa et al, Proc. Natl. Acad. Sci. USA 83:6873-6877) has been show to target heterologous EPSPS protein sequences to chloroplasts in transgenic plants.
  • a suitable chloroplast transit peptide such as, the Lycopersicon esculentum DCL1 CTP (Gnanasambandam et al. Plant Biotechnol J. 2007 5(2):290-6.)
  • the Arabidopsis thaliana EPSPS CTP CTP2, Kle
  • Stable methods for plant transformation include virtually any method by which DNA can be introduced into a cell, such as by direct delivery of DNA (for example, by PEG-mediated transformation of protoplasts, by electroporation, by agitation with silicon carbide fibers, and by acceleration of DNA coated particles), by Agrobacterium -mediated transformation, by viral or other vectors.
  • direct delivery of DNA for example, by PEG-mediated transformation of protoplasts, by electroporation, by agitation with silicon carbide fibers, and by acceleration of DNA coated particles
  • Agrobacterium -mediated transformation by viral or other vectors.
  • microprojectile bombardment for example, as illustrated in U.S.
  • Transgenic plant cells and transgenic plants can also be obtained by transformation with other vectors, such as, but not limited to, viral vectors (for example, tobacco etch virus (TEV), barley stripe mosaic virus (BSMV), and the viruses referenced in Edwardson and
  • transformation protocol for example, bacterial infection (for example, with Agrobacterium as described above), binary bacterial artificial chromosome constructs, direct delivery of DNA (for example, via PEG-mediated transformation, desiccation/inhibition-mediated DNA uptake, electroporation, agitation with silicon carbide fibers, and microprojectile bombardment).
  • DNA for example, via PEG-mediated transformation, desiccation/inhibition-mediated DNA uptake, electroporation, agitation with silicon carbide fibers, and microprojectile bombardment.
  • various transformation methodologies can be used and modified for production of stable transgenic plants from any number of plant species of interest.
  • the construction of stably inherited recombinant DNA constructs and minichromosomes can be used as vectors for the construction of transgenic plants (U.S. Patent 7,235,716, herein incorporated by reference).
  • Transformation methods to provide transgenic plant cells and transgenic plants containing stably integrated recombinant DNA are preferably practiced in tissue culture on media and in a controlled environment.
  • Recipient cell targets include, but are not limited to, meristem cells, callus, immature embryos or parts of embryos, and gametic cells such as microspores, pollen, sperm, and egg cells. Any cell from which a fertile plant can be regenerated is contemplated as a useful recipient cell for practice of the invention.
  • Callus can be initiated from various tissue sources, including, but not limited to, immature embryos or parts of embryos, seedling apical meristems, microspores, and the like.
  • transgenic plants of this invention for example, various media and recipient target cells, transformation of immature embryos, and subsequent regeneration of fertile transgenic plants
  • U. S. Patents 6,194,636 and 6,232,526 and U. S. Patent Application Publication 2004/0216189 which are incorporated herein by reference.
  • Marker genes are generally used to provide an efficient system for identification of those cells that are transformed by a transgenic DNA construct.
  • Preferred marker genes provide selective markers which confer resistance to a selective agent, such as an antibiotic or herbicide. Any of the antibiotics or herbicides to which a plant cell may be resistant can be a useful agent for selection.
  • Potentially transformed cells are exposed to the selective agent. In the population of surviving cells will be those cells where, generally, the resistance-conferring gene is expressed at sufficient levels to permit cell survival. Cells can be tested further to confirm integration of the recombinant DNA.
  • selective marker genes include those conferring resistance to antibiotics such as kanamycin or paromomycin (nptll), hygromycin B (aph IV), gentamycin (aac3 and aacC4) and glufosinate (bar or pat), glyphosate (EPSPS), and dicamba (dicamba monooxygenase). Examples of useful selective marker genes and selection agents are illustrated in U. S. Patents 5,550,318, 5,633,435, 5,780,708, and 6,118,047, all of which are incorporated by reference. Screenable markers or reporters, such as markers that provide an ability to visually identify transformants can also be employed.
  • Non-limiting examples of useful screenable markers include, for example, a gene expressing a protein that produces a detectable color by acting on a chromogenic substrate (for example, ⁇ glucuronidase, GUS, uidA, or luciferase, luc) or that itself is detectable, such as green fluorescent protein (GFP, gfp) or an immunogenic molecule.
  • a chromogenic substrate for example, ⁇ glucuronidase, GUS, uidA, or luciferase, luc
  • GFP green fluorescent protein
  • gfp green fluorescent protein
  • the recombinant DNA constructs of the invention can be stacked with other recombinant DNA for imparting additional agronomic traits (such as in the case of transformed plants, traits including but not limited to herbicide resistance, insect resistance, cold germination tolerance, water deficit tolerance, enhanced yield, enhanced quality, fungal, viral, and bacterial disease resistance) for example, by expressing other transgenes.
  • additional agronomic traits such as in the case of transformed plants, traits including but not limited to herbicide resistance, insect resistance, cold germination tolerance, water deficit tolerance, enhanced yield, enhanced quality, fungal, viral, and bacterial disease resistance
  • the recombinant DNA constructs of the present invention can also be transformed into plant varieties that carry natural pest resistance genes to enhance the efficacy of the pest resistance phenotype. Constructs for coordinated decrease and/or increase of gene expression are disclosed in U.S. Patent Application Publication 2004/0126845 Al .
  • transgenic plants of the invention can be prepared by crossing a first plant having the recombinant DNA with a second plant lacking the construct.
  • the recombinant DNA can be introduced into a plant line that is amenable to transformation to produce a transgenic plant, which can be crossed with a second plant line to introduce the recombinant DNA into the resulting progeny.
  • a transgenic plant of the invention can be crossed with a plant line having other recombinant DNA or naturally occurring genetic regions that confers one or more additional trait(s) (such as, but not limited to, herbicide resistance, pest or disease resistance, environmental stress resistance, modified nutrient content, and yield improvement) to produce progeny plants having recombinant DNA that confers both the desired target sequence expression behavior and the additional trait(s).
  • additional trait(s) such as, but not limited to, herbicide resistance, pest or disease resistance, environmental stress resistance, modified nutrient content, and yield improvement
  • the transgenic plant donating the additional trait is a male line and the transgenic plant carrying the base traits is the female line.
  • the progeny of this cross segregate such that some of the plant will carry the DNA for both parental traits and some will carry DNA for one parental trait; such plants can be identified by markers associated with parental recombinant DNA
  • Progeny plants carrying DNA for both parental traits can be crossed back into the female parent line multiple times, for example, usually 6 to 8 generations, to produce a progeny plant with substantially the same genotype as one original transgenic parental line but for the recombinant DNA of the other transgenic parental line.
  • transgenic plant, plant part, seed or progeny plants of the present invention can be processed into products useful in commerce. These products include but are not limited to meal, flour, oil, hay, starch, juice, protein extract, and fiber.
  • Example 1 Escherichia coli expression and methylketone analysis
  • oligonucleotide sets were used to design oligonucleotide sets for artificial gene assembly. Sequence used was either wild-type sequence, wild-type sequence with silent mutations to avoid certain restriction enzymes, or sequence filtered through a plant-expression optimization scheme. In some cases N- and/or C-terminal extensions were added to the theoretical sequences to be assembled. Oligonucleotides of lengths between 40 and 60 nucleotides were designed that alternated between matching portions of the desired sequence or were antiparallel to the desired sequence. In general, odd numbered oligos matched the sequence of the coding (parallel) strand, and even numbered oligos matched the non-coding (anti-parallel) strand of desired DNA.
  • each oligonucleotide is antiparallel to the 5 '-most and 3 '-most 18 to 30 nucleotides of the adjoining oligonucleotides, such that assembly of the oligonucleotides by at least four cycles of PCR will result in a template that matches the desired sequence.
  • Oligonucleotides that add restriction sites are used to further amplify the construct in secondary PCR reactions.
  • Forward oligonucleotides for secondary amplification usually have the sequence ATACATCCATGG+(nl5+) where CCATGG is an Ncol site overlapping the initiation codon (ATG) and nl5+ equals the 15 or greater nucleotides following the initiation codon in the assembled gene.
  • Reverse amplification oligonucleotides usually have the sequence ATACATAAGCTT(ap-nl5+) where AAGCTT is a Hindlll restriction site, and ap-nl5+ references sequence antiparallel to the 3' end of the assembled gene, including a stop codon.
  • UV- HPLC analysis was performed on an Eclipse XDB C18 column (5 um particle size, 4.6 x 250 mm) or a C8 column (5 um particle size, 4.6 x 250 mm) with a gradient mobile phase consisting of water and acetonitrile.
  • DNPH derivatives were monitored by UV absorption at 362 nm. Peaks were identified by comparison of retention times of commercial standards of 2- undecanone, 2-tridecanone, and 2-pentadecanone (CI 8 column) or 2-nonanone, 2-undecanone, 2-tridecanone, and 2-pentadecanone (C8 column) post DNPH derivatization.
  • the ratios and amounts of C9, CI 1, C13 and C15 metabolites can differ significantly between between various methylketone thioesterases and for chimeric versions of the enzyme made by swapping regions between MKTs.
  • Yeast extract is the water-soluble portion of autolyzed yeast. The autolysis is carefully controlled to preserve naturally occurring B-complex vitamins. Yeast extract is typically prepared by growing baker's yeast, Saccharomyces spp., in a carbohydrate- rich plant medium. The yeast is harvested, washed, and resuspended in water, where it undergoes autolysis, i.e., self-digestion using the yeast's enzymes.
  • Yeast extract is the total soluble portion of this auto lytic action.
  • the auto lytic activity is stopped by a heating step.
  • the resulting yeast extract is filtered clear and dried into a powder by spray drying.
  • rhizogenes strain Dl are similar, except that MgL media containing yeast extract, NaCl, tryptone, L-glutamic acid, potassium phosphate, magnesium sulfate and biotin is used. Soybean seeds were surface-sterilized by contacting with chlorine gas under controlled conditions for 12-16 hours, followed by aeration in a clean air hood for at least 30 minutes. Seeds were germinated in Petri dishes containing 1 ⁇ 4 MS (Murashige & Skoog, 1962). The hypocotyl or cotyledons of 6-day-old seedlings were wounded using a scalpel, and wounded cotyledons were then immersed in a culture of freshly grown A.
  • MgL media containing yeast extract, NaCl, tryptone, L-glutamic acid, potassium phosphate, magnesium sulfate and biotin is used. Soybean seeds were surface-sterilized by contacting with chlorine gas under controlled conditions for 12-16 hours, followed by a
  • rhizogenes containing a DNA construct of interest, and vacuum infiltrated. Cotyledons were cultured under similar conditions used for seed germination with the exception that the antibiotic cefotaxime is added to the 1 ⁇ 4 MS agar plates to prevent subsequent overgrowth by A. rhizogenes.
  • Adventitious roots were excised from hypocotyls or cotyledons inoculated with A. rhizogenes.
  • the putative transformed roots were cultured on Gamborg's B-5 agar (Gamborg et ah, 1976) containing 3% sucrose plus 3 g/1 Gelrite®, BASTA, and cefotaxime). Roots surviving selection were transferred to fresh media and maintained on Gamborg's B-5 agar in an incubator, without light, at about 24-30 °C. A piece of root tip was typically excised and transferred to fresh medium every 2-4 weeks.
  • roots for the plant nematode bioassay are transferred to fresh plates containing Gamborg's B-5 medium and allowed to grow for approximately two weeks to provide sufficient tissue for nematode infection before inoculation with a mixed population of root lesion nematodes or second-stage juveniles of soybean cyst nematode (SCN) or root knot nematode (RKN). Individual hairy root tips are placed on infection plates. 20 plates are used for testing transformed roots for reaction to lesion, SCN or RKN. Each plate contains a transformed root from a separate integration.
  • An additional 20 plates containing a transformed lesion susceptible, SCN-susceptible or RKN-susceptible control and an additional 20 plates containing a transformed SCN-resistant or RKN-resistant control are also tested.
  • Transformed controls are empty vectors. Plates are then inoculated with approximately 400 sterile lesion worms or 1000 sterile H. glycines J2s or 450 sterile M. incognita J2s and incubated at 26-28 °C (SCN or RKN) or 25 °C or 30 °C (lesion nematode). Approximately six weeks for M. incognita or five weeks for H.
  • infected tomato or soybean hairy roots are removed from the agar plates and the number of galls or cysts counted.
  • cyst counts are done whereas for RKN gall numbers are estimated.
  • galls are noted and marked off on each plate.
  • Gall scores are weighted estimates based on size. A scale is created at the beginning of scoring process. The smallest galls are given a score of 1 and as the galled areas become larger the gall score increases. The scale is then used to rate each gall on each plate in the experiment.
  • Egg numbers are also scored at 42 days for RK infections in tomato hairy roots. At 42 days post infection plates are micro waved and sieved to collect the roots.
  • the roots are then blended in a 10% bleach solution and poured over a series of sieves to remove the root debris and collect the eggs. Eggs removed from each plate are counted and the roots are weighed.
  • lesion nematodes plates are harvested after approximately 56 days by placing roots in glass bowls filled with sterilized water containing 50 mg/L carbenicillin and 50 mg/L kanamycin. After 9-10 days to allow the worms to exit the roots, the solution is poured off and the worms counted under a microscope. To determine weights, root masses are removed from the bowls and micro-waved to melt the agar and the roots are collected with a sieve. The extra water is absorbed with a paper towel and the root weights recorded.
  • Sterile SCN J2s are produced as follows. Clean soybean cyst nematode eggs (i.e., eggs with soil and other debris removed) are collected and placed in a 50 ml centrifuge vial containing 30 ml of a 10% bleach solution. The bleach solution is mildly agitated and then left to settle for 2-3 minutes. The vial is mildly agitated again to re-suspend the eggs and then centrifuged for 1 minute at 1000 rpm. Under a sterile hood, the bleach solution is removed into a receptacle and 25 ml of sterile water is added into the vial of eggs.
  • the vial is recapped under the sterile hood, mildly agitated to re-suspend the eggs and centrifuged for 1 minute at 1000 rpm. Under the sterile hood, this liquid is poured off and 25 ml of sterile water is again placed in the vial. The vial is recapped under the sterile hood and the process of agitation and centrifugation repeated. This process of washing the eggs with sterile water is repeated approximately 4 times to thoroughly rinse the bleach from the eggs. Following the last rinse under the sterile hood the liquid is removed leaving about 1-2 ml of egg concentrate.
  • Sterilized eggs are hatched by incubating them on the surface of moist filter paper resting in a solution of 5 mM zinc sulfate just deep enough to cover the surface of the filter paper. After 2-3 days J2 larvae are collected in the solution underneath the filter paper. J2s are centrifuged and further sterilized using chlorhexidine (Atkinson et al. (1996) J. Nematol. 28:209-215).
  • Sterile RK larvae are prepared by collecting eggs by placing chopped RK infected roots into a blender with a sufficient quantity of 10% bleach solution. The blender is pulsed on/off for 5 second intervals. This process is repeated 5-6 times. The root slurry is then passed through a series of sieves where the eggs and small debris are collected in a 500 micron sieve. Any remaining bleach solution is thoroughly rinsed from this egg/debris. Twenty milliliters of the egg/debris is added to a 50 ml conical tube and 20 ml of a 40%> sucrose solution is added into the bottom of the tube, bringing the total volume to 40 milliliters. This solution is then centrifuged at 3750 rpm for 5 minutes to separate the eggs from the debris.
  • Sterile lesion larvae are prepared from lesion nematodes grown on corn explant plates.
  • the nematodes are harvested by putting the roots with medium onto filter paper supported by a wire sieve in a sterilized glass bowl, which has been filled with sterilized water containing 50 mg/L carbenicillin and 50 mg/L kanamycin. The amount of the water is enough to just submerge the agar.
  • the bowls are stored at room temperature (25 °C) for two days. The sieve is removed and the solution poured into a 50 ml conical tube, which is then centrifuged for 5 minutes at 3500g at room temperature.
  • the tube is then let to sit for 15 minutes to allow the worms to set to the bottom of the tube and the supernatant sucked out with a sterilized one ml tip connected to a vacuum. Sterilized water is then added to the worms containing 12 mg/L of the antifungal compound Imazilil and 50 mg/L kanamycin.
  • Table 1 Heterodera glycines (soybean cyst nematode) infection assay in soybean hairy roots
  • Table 2 Meloidogyne incognita (root knot nematode) infection assay in tomato hairy roots
  • Table 4 Meloidogyne incognita (root knot nematode) infection assay in tomato hairy roots
  • Table 6 Pratylenchus scribneri (root lesion nematode) infection assay in tomato hairy roots
  • the expression of certain monocot or dicot methylketone thioesterases under the control of heterologous promoters results in the reduced infestation of plant roots for either soybean cyst nematodes, root knot nematodes or root lesion nematodes and additionally a root protective effect (i.e., increased root weights) in the presence of lesion nematode infections.
  • heterologous promoters e.g., constitutive promoters like ubi3 or root specific promoters like tobRB7
  • a root protective effect i.e., increased root weights
  • the degree of in planta nematicidal efficacy is not a simple function of the total amounts of methylketone produced or the specific levels of any one methylketone accumulated (e.g., L. hirsutum MKT which makes a very large amount of the strongly nematicidal C13 methylketone is not necessarily the most efficacious MKT for broad spectrum nematode control in plants).
  • the plants are collected and the above ground portion of the soybean plant is cut off, weighed and then appropriately discarded. Each plant is harvested individually.
  • the root of the plant is placed in a bucket of water, is swirled around and gently massaged with the hand to remove the growing media and dislodge any cysts attached to the root.
  • the liquid and loose contents are then poured over a 500 micron sieve which is mounted above a 250 micron sieve. More water is then added to the bucket, this water is swirled to create a suspension with the bucket contents and the water is again poured over the sieves. All cysts and any debris between 500 microns and 250 microns are captured in the 250 micron sieved.
  • the contents of the 250 micron sieve are collected and examined under a microscope and the number of cysts per sample are counted and recorded. A test treatment is replicated 4 times.
  • Tobacco seeds for each construct are randomly planted into a 6 inch X 4 inch
  • the flats are then placed under a mist system to keep them moist for 7 days or until the plants germinate.
  • the flats are then transferred to the greenhouse and the plants are allowed to grow for another 7-10 days until they have 2-3 young leaves.
  • Selected plants are then transplanted into 3 inch square deep-well plastic pots, 1 plant per pot.
  • the plastic pots are 2/3 full of a 60:40 blend of sand:TurfaceTM.
  • the tobacco plant is placed on top of this mix and the last 1/3 of the pot is filled with 100% sand keeping the foliage of the plant on top of the sand and the pot is lightly watered.
  • the pots are then placed in the greenhouse where the plants are allowed to adapt to the new growing media for 3-5 days.
  • RKN eggs are added to distilled water to create a concentration of 1000 vermiform eggs per milliliter of water. For each pot a hole near the planting site is punched about 1cm deep into the pot. Five milliliters of the nematode solution is pippetted into the hole and the hole is covered with the media. Watering is then restricted to water only as needed to keep plants from wilting for 24 hours. After the 24 hours normal watering is resumed. The plants are then grown for 56 days.
  • each plant is harvested individually.
  • the root of the plant is placed in a bucket of water, is swirled around and gently massaged with the hand to remove the growing media.
  • the root is the place in a moist towel and transported to the lab for gall rating.
  • a mixture of sand and Turface (2: 1) is poured into 4 inch pots to fill the bottom 2/3 rd of the pot.
  • Inoculum composed of corn roots infected with a lesion nematode such as P. scribneri is incorporated into the soil mix and then covered with 100% sand. Pots are watered and allowed to drain completely.
  • a single corn seed is planted per pot. Corn grows for 30 days and then harvested.
  • Inoculum to be used consists of a lesion (e.g., P. scribneri) infected corn roots that have previously been analyzed for nematode population. This population is expressed as nematodes per gram. Infected roots are weighed for each pot to be treated to yield 10,000 nematodes per pot. Inoculum is applied prior to seed planting.
  • a lesion e.g., P. scribneri
  • Roots are gently washed, blotted and weighed. Roots are chopped and thoroughly mixed; three grams of roots are placed in a funnel lined with a screen and a folded Kimwipe. Funnels are placed in a 50 ml conical tube in a mist tent for 6 days. Roots are misted for 30 seconds every 30 minutes; nematodes move from the roots and settle into the bottom of the tube. After 6 days, nematodes are counted.
  • Transgenic tobacco for lesion Tobacco seeds are randomly planted into 6 inch X 4 inch germination trays containing FafardTM germination mix. Flats are placed under a mist system to keep them moist for 7 days or until the plants germinate. Seedlings are transferred to the greenhouse and allowed to grow for another 7-10 days until they have 2-3 young leaves. A mixture of sand and Turface (2: 1) is poured into 3 inch deep-well plastic pots to 2/3 rd full. Corn roots infected with lesion nematodes (e.g., P. scribneri ) are incorporated into the soil mix and then covered with 100% sand. Pots are watered and allowed to drain completely; selected plants are then transplanted. Inoculated plants are grown for 60 days.
  • lesion nematodes e.g., P. scribneri
  • Inoculum to be used consists of lesion nematode (e.g., P. scribneri) infected corn roots that have previously been analyzed for nematode population. This population is expressed as nematodes per gram. Infected roots are weighed for each pot to be treated to yield 6,000 nematodes per pot. Inoculum is applied prior to transplanting.
  • lesion nematode e.g., P. scribneri
  • Roots are gently washed, blotted and weighed. Roots are chopped and thoroughly mixed; 2.5 grams of roots are placed in a funnel lined with a screen and a folded Kimwipe. Funnels are placed in a 50 ml conical tube in a mist tent for 6 days. Roots are misted for 30 seconds every 30 minutes; nematodes move from the roots and settle into the bottom of the tube. After 6 days, nematodes are counted.
  • Example 5 Example whole plant creation methods
  • This example describes a plant transformation method useful in producing transgenic soybean plants and transgenic seed. Other methods are known in the art of plant cell
  • soybean seeds are germinated overnight and the meristem explants excised (see US Patent No. 7,002,058).
  • the meristems and the explants are placed in a wounding vessel.
  • Soybean explants and induced Agrobacterium cells from a strain containing plasmid DNA with the expression cassettes of the present invention and a plant selectable marker cassette are mixed within about 14 hours from the time of initiation of seed germination and wounded using sonication.
  • explants are placed in co- culture for 2-5 days at which point they are transferred to selection media for 6-8 weeks to allow selection and growth of transgenic shoots. Trait positive shoots are harvested after approximately 6-8 weeks and placed into selective rooting media for 2-3 weeks.
  • a DNA construct can be transferred into the genome of a soybean cell by particle bombardment and the cell regenerated into a fertile soybean plant as described in U.S. Patent 5,015,580.
  • Transgenic soybean plant cells are transformed with recombinant DNA of this invention.
  • Progeny transgenic plants and seed of the transformed plant cells are selected that provide pathogen resistance, especially nematode resistance.
  • Example 6 Optimized methylketone thioesterase sequences and uses in the creation of nematode resistant plants
  • compositions in use or contemplated for use in controlling plant parasitic nematodes singularly or in any combination Table 3 provides a list of the compositions.
  • a crop transformation base vector comprising selection expression cassettes and elements necessary for the maintenance of the plasmid in a bacterial cell is used to assemble DNA segments (e.g., promoters, leaders, introns, 3'UTR such as those shown in Table 4) that provide regulatory activity when operably linked to DNA segments that provide functionality in the present invention.
  • the assembly of these DNA segments can be accomplished using methods known in the art of recombinant DNA technology.
  • DNA coding sequences of the present invention such as any one or more of the DNA molecules identified in SEQ ID NO: 1-56 and SEQ ID NO: 113-169 are cloned and inserted into an expression cassette or inserted into operable linkage with another coding sequence or genetic element of an expression cassette.
  • Other genetic elements can be selected and tested by those skilled in the art that provide functional expression of a methylketone thioesterase in plant tissues.
  • Table 7 Example Methylketone Thioesterase sequences
  • SEQ ID NO: 14 St MKT optl cDNA Optimization 1 nucleotide sequence of S.
  • SEQ ID NO: 18 St MKT opt2 cDNA Optimization 2 nucleotide sequence of S.
  • SEQ ID NO:29 St MKT opt3 cDNA Optimization 3 nucleotide sequence of S.
  • SEQ ID NO:56 St MKT opt3 cDNA Optimization 3 nucleotide sequence of S.
  • SEQ ID NO: 120 Ps a MKT cDNA Native nucleotide sequence of P. sitchensis A methylketone thioesterase
  • SEQ ID NO: 177 Ps a MKT ORF Native amino acid sequence of P. sitchensis A methylketone thioesterase
  • SEQ ID NO: 180 Osi MKT ORF Native amino acid sequence of O. sativa indica methylketone thioesterase
  • SEQ ID NO: 182 Sb MKT ORF Native amino acid sequence of S. bicolor
  • methylketone thioesterase SEQ ID NO: 186 Gm MKT ORF Native amino acid sequence of G. max methylketone thioesterase
  • SEQ ID NO: 130 Sh MKT cDNA Native nucleotide sequence of Saccharum hybrid methylketone thioesterase
  • SEQ ID NO: 187 Sh MKT ORF Native amino acid sequence of Saccharum hybrid methylketone thioesterase
  • SEQ ID NO: 199 Sb MKT mod ORF Modified amino acid sequence of S. bicolor methylketone thioesterase
  • Table 8 Descriptions of other genetic elements SEQ ID NO:229 DCL1 44 cDNA Optimized nucleotide sequence for 44 amino acid plastid import leader from DCL1 Lycopersicon esculentum
  • SEQ ID NO:240 RB7 promoter Root specific promoter from Nicotiana tabacum
  • each X independently represents 1, 2, 3, 5, 6, 7, 8, 9, or 10 amino acids.
  • This example describes the detection and measurement of the recombinant DNA construct in the transgenic plant cell.
  • Detecting or measuring transcription of the recombinant DNA construct in the transgenic plant cell of the invention can be achieved by any suitable method, including protein detection methods (for example, western blots, ELISAs, and other immunochemical methods), measurements of enzymatic activity, or nucleic acid detection methods (for example, Southern blots, northern blots, PCR, RT-PCR, fluorescent in situ hybridization).
  • protein detection methods for example, western blots, ELISAs, and other immunochemical methods
  • nucleic acid detection methods for example, Southern blots, northern blots, PCR, RT-PCR, fluorescent in situ hybridization.
  • Such methods are well known to those of ordinary skill in the art as evidenced by the numerous handbooks available; see, for example, Joseph Sambrook and David W. Russell, “Molecular Cloning: A Laboratory Manual” (third edition), Cold Spring Harbor Laboratory Press, NY, 2001; Frederick M.
  • DNA sequence information provided by the invention allows for the preparation of relatively short DNA (or RNA) sequences having the ability to specifically hybridize to DNA sequences of the selected polynucleotides disclosed herein.
  • the polynucleotides disclosed in the present invention include SEQ ID NO: 5 -8, SEQ ID NO: 11-56 and SEQ ID NO: 131-168.
  • nucleic acid probes of an appropriate length are prepared. The ability of the nucleic acid probes to specifically hybridize to one or more of these gene coding sequences lends them particular utility in a variety of embodiments. Most importantly, the probes may be used in a variety of assays for detecting the presence of complementary sequences in a given sample.
  • oligonucleotide primers In certain embodiments, it is advantageous to use oligonucleotide primers.
  • the sequence of such primers is designed using a portion of a polynucleotide sequence of the present invention to be homologous or complementary to the sequence for use in detecting, amplifying a defined polynucleotide segment using PCRTM technology (A Guide to Methods and Applications, Academic Press: San Diego, 1990).
  • PCR primer pairs can be derived from a known sequence, for example, by using computer programs intended for that purpose such as Primer (Version 0.5, ⁇ (1991, Whitehead Institute for Biomedical Research, Cambridge, Mass.).
  • PCR reaction conditions may include: Component Amount/Volume required sub- library aliquot 1 ⁇ Gene-specific primer 1, 1 ⁇ (100 pmol, Genome WalkerTM) Adaptor primer 1 (API), 1 ⁇ dNTP mix (10 mM of each dNTP), 1 ⁇ DMSO 2.5 ⁇ (or 2-5% final concentration) 10X PCR buffer, 5 ⁇ (final concentration of IX) Amplitaq GoldTM , 0.5 ⁇ distilled water for final reaction volume of 50 ⁇ reaction conditions for primary PCR:
  • Genome WalkerTM Adaptor primer 2 1 ⁇ or 3 (AP2 or AP3), dNTP mix (10 mM of each dNTP); 1 ⁇ DMSO; 2.5 ⁇ 10X PCR buffer containing MgCl 2 ; 5 ⁇ (final concentration of IX) Amplitaq GoldTM; 0.5 ⁇ distilled water to final reaction volume of 50 ⁇ reaction.
  • dNTP mix 10 mM of each dNTP
  • 1 DMSO 2.5 ⁇ 10X PCR buffer containing MgCl 2 ; 5 ⁇ (final concentration of IX) Amplitaq GoldTM; 0.5 ⁇ distilled water to final reaction volume of 50 ⁇ reaction.
  • PCR conditions can be modified from the described conditions by those skilled in the method to produce an amplicon.
  • ELISA enzyme-linked immunosorbent assays
  • Quantitative determination of the encoded protein in the leaves of transgenic plants is performed using ELISA, for example as disclosed in Clark et ah, : ELISA Techniques. In: Weissbach A,
  • SEQ ID NO 1 Lycopersicon esculentum MKT cDNA ATGGCTGAGTTCCATGAAGTTGAACTCAAAGTCCGGGACTATGAATTGGATCAGTATGGTGTTGTAAACA ATGCTATTTATGCAAGTTATTGCCAACATGGTCGTCATGAGCTTCTAGAAAGGATTGGTATAAGTGCTGA TGAAGTGGCACGCAGTGGTGACGCACTAGCACTAACAGAGCTGTCACTTAAGTATCTAGCACCTCTAAGG AGTGGAGATAGATTTGTCGTGAAGGCACGAATATCTGATTCTTCAGCTGCTCGTTTGTTTCGAACACT TCATCTTCAAGCTTCCAGATCAAGAGCCCATCTTGGAGGCAAGAGGAATAGCAGTGTGGCTCAATAAAAG TTACCGTCCTGTCCGAATCCCGGCAGAGTTCAGATCAAAATTTGTTCAGTTCCTTCGCCAGGAGGCATCC AAC
  • SEQ ID NO 2 Petunia integrifolia subsp. inflata MKT cDNA
  • SEQ ID NO 58 Petunia integrifolia subsp. inflata MKT ORF
  • SEQ ID NO 59 Lycopersicon hirsutum f. glabratum MKT ORF
  • SEQ ID NO 4 Solatium tuberosum MKT cDNA
  • SEQ ID NO 60 Solanum tuberosum MKT ORF
  • SEQ ID NO 62 Petunia integrifolia MKT modified ORF
  • SEQ ID NO 7 Lycopersicon hirsutum MKT modified cDNA
  • SEQ ID NO 8 Solanum tuberosum MKT modified cDNA
  • SEQ ID NO 9 Modified Z. esculentum MKT cDNA with heterologous plastid transit sequence
  • SEQ ID NO 65 Modified L. esculentum MKT ORF with heterologous plastid transit peptide masictsnfhflcrknnsspishhlllspsslsfsrcgglrlcraaaEFHEVELKVRDYELDQYGWNNAIYASYCQ HGRHELLERIGISADEVARSGDALALTELSLKYLAPLRSGDRFWKARISDSSAARLFFEHFIFKLPDQEPILEARG IAVWLNKSYRPVRIPAEFRSKFVQFLRQEASN
  • SEQ ID NO 10 Modified L. hirsutum MKT cDNA with heterologous plastid transit sequence
  • SEQ ID NO 66 Modified L. hirsutum MKT ORF with heterologous plastid transit peptide masictsnfhflcrknnsspishhlllspsslsfsrcgglrlcraaaSDQVYHHDVELTVRDYELDQFGWNNATYA SYCQHCRHAFLEKIGVSVDEVTRNGDALAVTELSLKFLAPLRSGDRFWRARLSHFTVARLFFEHFIFKLPDQEPIL EARGIAVWLNRSYRPIRIPSEFNSKFVKFLHQKSCGVQHHL
  • SEQ ID NO 14 Solanum tuberosum optimization 1 cDNA
  • SEQ ID NO 70 Solanum tuberosum optimization 1 ORF
  • SEQ ID NO 72 Petunia integrifolia optimization 2 ORF
  • SEQ ID NO 18 Solanum tuberosum optimization 2 cDNA ATGagtgagcagcatGAAGTTGAACTCCAAGTCAGGGACTATGAATTGGATCAGtatGGTGTTGTAAACAATGCTat tTATGCAAGTTATTGTCAACATTGCCGTCATGAGcttCTTGAgAAGATTGGTGTAAGTgctGATGAAGTATGTaGaA CTGGTGAAGCATTAGCAACAACAGAGCTTTCACTTAAGTATCTtGCACCTCTcAGGAGTGGAGATAGATTTGTGGTG AAGGTGaGAATATCCaGgTCTtCCGCAGCTCGtTTGTTcTTCGAGCATTTCATCTTCAAaCTTCCAGATCAAGAGCC TATATTGGAGGCAAGAGGAATAGCAGTGTGGCTTAATaagAGTTACCGTCCTgtgaGAATaCCATCAGAGTTCAGTT CAAAgTTTGTTCAGTTCCTTCGtCAGGAGGCATCCAAC
  • SEQ ID NO 28 Lycopersicon hirsutum optimization 5 cDNA
  • SEQ ID NO 29 Solanum tuberosum optimization 3 cDNA
  • SEQ ID NO 100 L. esculentum/L. hirsutum chimeric optimization 15 ORF MSDQVYHHEVELKVRDYELDQYGWNNAIYASYCQHGRHELLERIGI SADEVARSGDALALTELSLKYLAPLRSGDR FWKARI SDS SAARLFFEHFI FKLPDQEPI LEARGIAVWLNKSYRPVRI PAEFRSKFVQFLRQEASN
  • SEQ ID NO 107 L. esculentum/L. hirsutum chimeric optimization 22 ORF MAEFHDVELTVRDYELDQFGWNNATYASYCQHCRHAFLEKIGVSVDEVTRNGDALAVTELSLKFLAPLRSGDRFW RARLSHFTVARLFFEHFI FKLPDQEPI LEARGIAVWLNRSYRPIRI PSEFNSKFVKFLHQEASN
  • SEQ ID NO 54 L. esculentum/L. hirsutum chimeric optimization 25 cDNA
  • SEQ ID NO 56 Solanum tuberosum optimization 4 cDNA
  • SEQ ID NO 113 Ricinus communis MKT cDNA
  • SEQ ID NO 170 Ricinus communis MKT ORF
  • SEQ ID NO 114 Populus trichocarpa MKT cDNA ATGATTTTGCAGGCATTGGCAATAACCCCGCCGCCACACGTGACGTTTCCTACCACCTCACGTGCCTGCG CAAAATGGATGATCCATCTTCCCCGTCAATCCTCATCTGCTCCGTTTCCAACATCCCGGCCGCCACATGT GCGGTCACTGCCCCTCATCAGAAACTGCACGTCGTTACCATTTATCGATCTCAAAGCTGGCAAAGGAATG AGTGGGTTAGTGGAAGTGGAGCTAAAAGTGCGTGATTACGAGCTGGATCAATTCGGAGTTGTCAACAATG CTGTTTACGCAAGTTATTGCCAACATGGTCGTCATGAGCTTTTGGAGAGGATTGGTGTCAGTGCTGATGT GGTTGCTCGCACTGGCGATGCTTTGGCACTGTCAGAATTGTCACTCAAATTCCTCGCCCCCCGCTAAGAAGT GGAGACAGGTTTGTTGTAAAGAAGT GGATCTCTGGTTCCTCTGCTGCTCGCCTAT
  • SEQ ID NO 171 Populus trichocarpa MKT ORF
  • SEQ ID NO 174 Arabidopsis thaliana "A" MKT ORF
  • SEQ ID NO 118 Arabidopsis thaliana "B" MKT cDNA
  • SEQ ID NO 175 Arabidopsis thaliana "B" MKT ORF MIRVTGTAAPAMSWFPTSWRQPVMLPLRSAKTFKPHTFLDLKGGKEMSEFHEVELKVRDYELDQFGWN NAVYANYCQHGMHEFLESIGINCDEVARSGEALAISELTMNFLAPLRSGDKFWKVNISRTSAARIYFDH SILKLPNQEVILEAKATWWLDNKHRPVRIPSSIRSKFVHFLRQNDTV
  • SEQ ID NO 119 Arabidopsis thaliana "C” MKT cDNA
  • SEQ ID NO 176 Arabidopsis thaliana "C” MKT ORF
  • SEQ ID NO 120 Picea sitchensis "A” MKT cDNA
  • SEQ ID NO 122 Oryza sativa japonica MKT cDNA
  • SEQ ID NO 179 Oryza sativa japonica MKT ORF
  • SEQ ID NO 180 Oryza sativa indica MKT ORF
  • SEQ ID NO 124 Zea mays MKT cDNA
  • SEQ ID NO 181 Zea mays MKT ORF
  • SEQ ID NO 125 Sorghum bicolor MKT cDNA
  • SEQ ID NO 126 Phyllostachys edulis MKT cDNA
  • SEQ ID NO 183 Phyllostachys edulis MKT ORF
  • SEQ ID NO 127 Picea glauca MKT cDNA
  • SEQ ID NO 128 Gossypium hirsutum MKT cDNA
  • SEQ ID NO 185 Gossypium hirsutum MKT ORF
  • SEQ ID NO 129 Glycine max MKT cDNA
  • SEQ ID NO 186 Glycine max MKT ORF
  • SEQ ID NO 188 Arabidopsis thaliana "A" modified ORF
  • SEQ ID NO 132 Arabidopsis thaliana "B” modified cDNA
  • SEQ ID NO 133 Arabidopsis thaliana "C” modified cDNA
  • SEQ ID NO 190 Arabidopsis thaliana "C” modified ORF
  • SEQ ID NO 134 Populus trichocarpa modified cDNA
  • SEQ ID NO 191 Populus trichocarpa modified ORF
  • SEQ ID NO 135 Ricinus communis modified cDNA
  • SEQ ID NO 138 Oryza sativa japonica modified cDNA
  • SEQ ID NO 139 Oryza sativa indica modified cDNA
  • SEQ ID NO 196 Oryza sativa indica modified ORF
  • SEQ ID NO 140 Phyllostachys edulis modified cDNA
  • SEQ ID NO 141 Zea mays modified cDNA
  • SEQ ID NO 142 Sorghum bicolor modified cDNA
  • SEQ ID NO 145 Petunia integrifolia with Lycopersicon hirsutum ends cDNA
  • SEQ ID NO 202 Petunia integrifolia with Lycopersicon hirsutum ends
  • SEQ ID NO 146 Lycopersicon hirsutum with Petunia integrifolia ends cDNA
  • SEQ ID NO 203 Lycopersicon hirsutum with Petunia integrifolia ends
  • SEQ ID NO 148 L. esculentum/L. hirsutum chimeric optimization 28 cDNA
  • SEQ ID NO 149 L. esculentum/L. hirsutum chimeric optimization 29 cDNA
  • SEQ ID NO 150 L. esculentum/L. hirsutum chimeric optimization 30 cDNA
  • SEQ ID NO 207 L. esculentum/L. hirsutum chimeric optimization 30 ORF MAEFHEVELKVRDYELDQYGWNNAIYASYCQHGRHELLERIGISADEVARSGDALALTELSLKYLAPLRSGDRFW KARISDSSAARLFFEHFIFKLPDQEPILEARGIAVWLNRSYRPIRIPSEFNSKFVKFLHQEASN
  • SEQ ID NO 151 L. hirsutum/S. tuberosum chimeric optimization 1 cDNA
  • SEQ ID NO 152 L. hirsutum/S. tuberosum chimeric optimization 2 cDNA
  • SEQ ID NO 153 L. hirsutum/S. tuberosum chimeric optimization 3 cDNA

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

Methods and compositions for use in reducing biotic stress in plants by providing recombinant DNA molecules encoding methkyletone thioesterase into the cells of a plant in order to achieve a reduction in infestation by nematodes, insects and other pests are described. The plant cells in some cases produce one or more of 2-nonanone, 2-undecanone, 2-tridecanone and 2-pentadecanone. Also described are methods for making transgenic plants that express the recombinant DNA molecule for use in protecting plants from pest infestations.

Description

Improved Compositions and Methods for Pathogen Control in Plants
FIELD
The present disclosure relates to methods and compositions for pathogen control in plants. More particularly, it discloses compositions and methods, isolated nucleic acid sequences, expression vectors, recombinant bacterial cells, transgenic plant cells, plants and seeds, comprising a recombinant DNA, and methods of making and using such plant cells, plants, and seeds that are associated with pest resistance.
BACKGROUND
Effective, environmentally safe control of plant parasitic nematode infection is one of the largest unmet needs in crop protection. For example, it is estimated that nematodes annually cause soybean losses of approximately $3.2 billion worldwide (Barker et ah, 1994) and that parasitic nematodes cost the horticulture and agriculture industries in excess of $78 billion worldwide a year, based on an estimated average 12% annual loss spread across all major crops. Therefore, improved methods for protecting plants from nematode infection are highly desirable since they would increase the amount and stability of food production.
Nematodes are active, flexible, elongate organisms that live on moist surfaces or in liquid environments, including films of water within soil and moist tissues within other organisms. Nematodes grow through a series of lifecycle stages and molts. Typically, there are five stages and four molts: egg stage; Jl {i.e. first juvenile stage); Ml {i.e. first molt); J2 (second juvenile stage; sometimes hatch from egg); M2; J3; M3; J4; M4; A (adult). Juvenile ("J") stages are also sometimes referred to as larval ("L") stages. Nematode parasites of plants can inhabit all parts of plants, including roots, developing flower buds, leaves, and stems.
There are numerous plant-parasitic nematode species, including various lesion nematodes {i.e. Pratylenchus spp.), root knot nematodes {i.e. Meloidogyne spp.), cyst nematodes {i.e.
Heterodera spp.), dagger nematodes {i.e. Xiphinema spp.) and stem and bulb nematodes {i.e. Ditylenchus spp.), among others. However, the largest and most economically important groups of plant-parasitic nematodes are the families Pratylenchidae (lesion nematodes), Meloidogynidae (root knot nematodes) and Heteroderidae (cyst nematodes) with lesion and root knot nematodes being particularly noteworthy for their very broad host rages. Plant parasitic nematodes are classified on the basis of their feeding habits into the broad categories of migratory ectoparasites, migratory endoparasites, and sedentary endoparasites. Sedentary endoparasites, which include the root knot nematodes (Meloidogyne spp.) and cyst nematodes (Globodera and Heterodera spp.) induce feeding sites ("giant cells" in the case of root knot nematodes and "syncytia" for cyst nematodes) and establish long-term infections within roots. In contrast, while spending most of their lifecycles within host tissues, migratory endoparasitic nematodes like lesion neamtodes {Pratylenchus spp.) do not induce permanent feeding sites but feed while migrating between or through plant cells.
Traditional approaches to control plant diseases have relied on crop rotation, the construction of interspecific hybrids between resistant crops and their wild-type relatives as sources of resistant germplasm, and chemical treatment. However these traditional approaches all suffer from significant limitations in providing broad spectrum nematode control. Crop rotation or fallowing without weeding is not an effective strategy for controlling root lesion nematodes because of their broad host ranges which includes most crops, native grasses and weeds. Rotation is also less effective with the very broad host range Meloidogyne incognita, Meloidogyne javanica and Meloidogyne arenaria root knot nematodes. Genetic resistance is usually narrow spectrum (e.g., race specific in the case of cyst nematodes and species specific for lesion nematodes). Deployment of narrow resistance quickly results in race or species shifts in fields with nematode problems leading to loss of effectiveness of the resistant germplasm. Other challenges with genetic resistance include loss of potency at higher temperatures (e.g., Mi resistance to root knot nematodes) or reduction in the yields of elite germplasm when
introgressing resistance traits from wild relatives.
In contrast, most chemical nematode control agents though broad spectrum, are not effective in eradicating nematode infestations. Nematodes deeper in the soil or inside roots are largely protected and can cause significant crop damage later in the growing season. The few agents like the fumigant methyl bromide that can effectively get to nematode reservoirs are biocides effectively sterilizing a field for a period of time. Furthermore, methyl bromide, which was once the most widely used fumigant nematicide, is scheduled to be soon retired from use, and at present there are very few, if any, promising candidate to replace this treatment. The non- fumigant organophosphate and carbamate nematicides like ethoprop, terbufos, carbofuran and aldicarb though not as broad spectrum also show poor selectivity. In particular these chemical nematode control agents are highly toxic to mammals, birds, fish, and to non-target beneficial insects. These agents can in some cases accumulate in the water table, the food chain, and in higher trophic level species. These agents may also act as mutagens and/or carcinogens to cause irreversible and deleterious genetic modifications. As a result, government restrictions have been imposed on the use of these chemicals. Additionally, few chemical nematicides (fumigant or non- fumigant) are cost effective for use in large acreage row crops such as soybeans and corn. There has been renewed interest recently in chemical seed treatments which can be economically applied in large acreage row crops but these only provide early season protection under moderate levels of nematode infestation.
In addition to nematode pests, plants are typically subject to multiple disease causing agents such as fungi and insects which often potentiate the effect of the nematode. Examples of these disease complexes include the Fusarium solani fungal/soybean cyst nematode pairing in soybean sudden death syndrome and the rootknot nematode/fursarium wilt complex in cotton. Therefore methods of controlling nematodes having broader pesticidal effects are particularly desirable.
The methods of plant biotechnology have been shown to provide an effective means to control insect infestations by having the plant express an insect control agent. However, there are few examples of effectively applied biotechnology methods to simultaneously control nematode and other plant pathogens such as insects and fungi.
SUMMARY
The present disclosure provides agents effective plant nematode control which also, in some embodiments, express other desirable pesticidal properties such as insecticidal activity. The effective compounds are, in one embodiment, combinations of methylketones and related compounds that are produced in plants or bacteria used to treat plants, whose composite action results in effective nematode and insect control. Also disclosed are compositions and methods to produce improved mixtures of methylketones, e.g., mixtures comprising two or more
methylketones selected from 2-nonanone, 2-undecanone, 2-tridecanone, 2-tridecenone, 2- pentadecanone and related compounds such as 2-undecanol or 2-tridecanol, in plants that nematodes infect. Also disclosed are compositions and methods to produce improved mixtures of methylketones, e.g., mixtures comprising two or more methylketones selected from 2- nonanone, 2-undecanone, 2-tridecanone, 2-tridecenone, 2-pentadecanone and related compounds such as 2-undecanol or 2-tridecanol, in bacteria that are then applied to plants that nematodes infect. These compounds can reduce or inhibit nematode growth, development, or the plant disease caused by nematode infection. Plant parasitic nematodes are obligate parasites of plants. Thus the reduction in infestation can be achieved by killing the nematodes directly and/or reducing the viability of the plant cells on which the nematodes feed and/or repelling the nematodes or otherwise disrupting their ability to locate appropriate host plants and host tissues. In some embodiments the method comprises production of transgenic plants containing (and capable of expressing) one or more transgenes that provide for the production of mixtures of two or more methylketones selected from 2-undecanone, 2-tridecanone, 2-tridecenone, 2- pentadecanone and/or related compounds such as 2-undecanol or 2-tridecanol, in plant tissues susceptible to nematode infection and/or insect predation.
In other embodiments the method comprises production of recombinant or recombinant bacteria containing (and capable of expressing) one or more transgenes that provide for the production of mixtures of two or more methylketones selected from 2-undecanone, 2- tridecanone, 2-tridecenone, 2-pentadecanone and/or related compounds such as 2-undecanol or 2-tridecanol, and using these bacteria to treat plant seeds, bulbs, cuttings, corms or other plant propagation material, and plant roots, stems or leaves in plant tissues susceptible to nematode infection and/or insect predation.
In another aspect, this disclosure provides methods for construction and use of a transgene expression cassette comprising a modified or unmodified (i.e., wild-type)
methylketone thioesterase coding region and expression of the thioesterase in a plant cell, particularly in the root cells of a plant, or in a bacterial cell which bacterial cell is then applied to plant propagation material, e.g., seeds or plant roots. The invention provides for a transgenic plant comprising the transgene wherein the roots of the transgenic plant produce at least one methylketone and/or a related alcohol. The modified or unmodified methylketone thioesterase transgene, in certain embodiments, additionally comprises a sequence encoding a region comprising a heterologous plastid transit peptide molecule in operable linkage to the modified methylketone thioesterase coding region. In certain embodiments, the methylketone thioesterase encoded by the transgene is unmodified and the transgene comprises a sequence encoding a heterologous plastid transit peptide. In certain embodiments, the methylketone thioesterase encoded by the transgene is modified and the transgene comprises a sequence encoding a heterologous plastid transit peptide. In certain embodiments, the methylketone thioesterase encoded by the transgene is modified and the transgene does not comprise a sequence encoding a heterologous plastid transit peptide. In certain embodiments, the methylketone thioesterase encoded by the transgene is modified and the transgene comprises a sequence encoding a heterologous plastid transit peptide. By "heterologous" it is meant that a given sequence is not in its native context with respect to any other referenced sequence. Thus, one sequence may be heterologous with respect to second, operably linked, sequence where both sequences can be isolated from the same species, but will be not be in their native orientation. In other cases, the two sequences can be from different species (i.e., from a first species and a second species) or from the same species, but from different genes (i.e., from a first gene and a second gene). A heterologous transit peptide operably linked to a selected modified or unmodified methylketone thioesterase coding region is therefore a transit peptide not normally found in nature in an unmodified state in operable linkage to the particular selected methylketone thioesterase coding region. A "modified" polypeptide or peptide has one or more amino acid modifications (e.g, changes, insertions, deletions or combinations thereof) compared to a reference sequence. A modified polypeptide or peptide can have 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15 or more amino acid modifications compared to a reference sequence. In many cases, a modified polypeptide or peptide has unaltered or only slightly altered activity compared to a reference polypeptide.
A polypeptide having "methylketone thioesterase activity" exhibits thioesterase activity towards a beta keto acyl carrier protein (ACP) fatty acid ester or towards a beta keto acyl CoA fatty acid ester. In some cases, the polypeptide exhibits exhibits thioesterase activity towards a beta keto acyl carrier protein (ACP) fatty acid ester and towards a beta keto acyl CoA fatty acid ester. In certain cases, a polypeptide having methylketone thioesterase activity may also have decarboxylase activity.
In yet another aspect of the disclosure, modified DNA coding sequences SEQ ID NO: 5- 8, SEQ ID NO: 11-56 and SEQ ID NO: 131-168 and their amino acid sequences comprising SEQ ID NO: 61-64 and SEQ ID NO: 67-112 and SEQ ID NO: 188-225 are provided that encode a modified methylketone thioesterase. In certain embodiments, the DNA coding sequence encoding a polypeptide with methylketone thioesterase activity shares at least about 80%, 85%, 90%), 95%o, 98%), or 99% percent sequence identity to any one or more of said SEQ ID NO: 5-8, SEQ ID NO: 11-56 and SEQ ID NO: 131-168. In some cases the polypeptide with methylketone thioesterase activity has 10 (e.g., 9, 8, 7, 6, 5, 4, 3, 2, 1) or fewer amino acid changes compared to any one of SEQ lD NO: 5-8, SEQ ID NO: 11-56 and SEQ ID NO: 131-168. In some cases the amino acid changes will be conservative changes. In some cases a sequence encoding one of the forgoing methylketone thioesterage is operably liked to a heterologous promoter, e.g., root specific promoter.
In still yet another aspect of the disclosure, a heterologous fusion protein is provided that comprises a plastid transit peptide polypeptide (such as SEQ ID NO: 230 or 232) and a modified methylketone thioesterase polypeptide (such as SEQ ID NO: 57-60 and SEQ ID NO: 170-187) or methylketone thioesterase polypeptide variant (such as SEQ ID NO: 61-64, SEQ ID NO: 67-112 and SEQ ID NO: 188-225) with methylketone thioesterase activity. In some cases the polypeptide with methylketone thioesterase activity has 10 (e.g., 9, 8, 7, 6, 5, 4, 3, 2, 1) or fewer amino acid changes compared to any one of SEQ ID NO: 57-60, SEQ ID NO: 170-187, SEQ ID NO: 61-64, SEQ ID NO: 67-112 and SEQ ID NO: 188-225. In some cases the amino acid changes will be conservative changes. Also provided is a heterologous fusion protein that comprises a plastid transit peptide (such as SEQ ID NO: 230 or 232) and a methylketone thioesterase molecule having at least about 80%>, 85%, 90%>, 95%, 98%>, or 99% percent sequence identity to any one or more of said SEQ ID NO: 65, SEQ ID NO: 66 or SEQ ID NO: 226. In some cases the polypeptide with methylketone thioesterase activity has 10 (e.g., 9, 8, 7, 6, 5, 4, 3, 2, 1) or fewer amino acid changes compared to any one of SEQ ID NO: 5-8, SEQ ID NO: 65, SEQ ID NO: 66 or SEQ ID NO:226. In some cases the amino acid changes will be conservative changes. In some cases a sequence encoding one of the foregoing fusion proteins is operably linked to a heterologous promoter, e.g., a root specific promoter.
In still yet another aspect of the invention, a transgene expression cassette is provided comprising a heterologous methylketone synthase protein coding region that encodes a methylketone synthase such as those disclosed in WO 2009/00433 (hereby incorporated by reference) that is expressed in plant tissues with the transgene comprising the modified methylketone thioesterase coding region. In still yet another aspect of the invention, a transgenic seed is provided comprising a heterologous plastid transit peptide molecule in operable linkage to the methylketone
thioesterase coding region. The transgenic seed may additionally comprise a transgene expression cassette comprising a heterologous acyl carrier protein coding region.
Other aspects of the invention are specifically directed to transgenic plant cells, and transgenic plants comprising a plurality of the plant cells, nuclei and organelles, and progeny transgenic seed, embryo, ovule and transgenic pollen from such plants. A plant cell including parts thereof is selected from a population of transgenic plant cells transformed with a heterologous methylketone thioesterase coding region and may additionally comprise a heterologous acyl carrier protein coding region by selecting the transgenic plant cell from any population comprising the heterologous coding region as compared to a cell that does not have the heterologous coding region.
This invention also provides methods for manufacturing non-natural, transgenic seed that can be used to produce a crop of transgenic plants with pest resistance resulting from expression of a heterologous methylketone thioesterase coding region and in certain embodiments the co- expression of a heterologous acyl carrier protein coding region in the nucleus or organelle or cytoplasm of the plant cells making up the transgenic plants. The various aspects of this invention are especially useful for transgenic plants having nematode resistance activity that include, without limitation, cereals including corn, wheat, barley, rye, and rice; vegetables; tomatoes; potatoes; clovers; legumes including beans, soybeans, peas and alfalfa; sugar cane; sugar beets; tobacco; cotton; rapeseed (canola); sunflower; safflower; and sorghum.
The present invention provides for a transgenic plant such as a soybean, corn, cotton, sugar cane or wheat plant comprising within its genome a heterologous methylketone thioesterase coding region and may additionally comprise a heterologous acyl carrier protein coding region, wherein the plant has increased resistance to infection by one or more species of nematode (ie., compared to an otherwise genetically identical plant that does not a harbor a heterologous methylketone thioesterase coding region or a heterologous methylketone thioesterase coding region and a heterologous acyl carrier protein coding region) or displays reduced disease symptoms caused by infection by one or more species of nematode (ie., compared to an otherwise genetically identical plant that does not a harbor a heterologous methylketone thioesterase coding region or a heterologous methylketone thioesterase coding region and a heterologous acyl carrier protein coding region).
The present invention further provides a method of increasing the yield of a nematode tolerant crop plant. The method comprises growing a crop plant comprising a heterologous methylketone thioesterase coding region which may additionally comprise a heterologous methylketone synthase coding region in the presence of nematodes.
Another aspect of the invention provides a method of producing a hybrid seed comprising acquiring hybrid seed from a nematode tolerant plant which also has a stably-integrated heterologous nucleotide sequence encoding a methylketone thioesterase and may also have integrated a heterologous nucleotide sequence encoding methylketone synthase. The method further comprises producing a crop from plants grown from the hybrid seed, wherein a fraction of the plants produced from said hybrid seed are homozygous for the heterologous methylketone thioesterase coding sequence and if present, the heterologous methylketone synthase coding sequence, a fraction of the plants produced from said hybrid seed are hemizygous for the heterologous methylketone thioesterase coding sequence and if present, the heterologous methylketone synthase coding sequence, and a fraction of the plants produced from the hybrid have no heterologous methylketone thioesterase coding sequence or heterologous methylketone synthase coding sequence; selecting plants which are homozygous and hemizygous; collecting seed from the selected plants, and planting the seed to produce further progeny plants; repeating the selecting and collecting steps at least once from these progeny plants to produce an inbred line; and crossing the inbred line with a second line to produce hybrid seed. The plants of the invention are selected, without limitation, from the group of corn (maize), soybean, cotton, canola (rape), wheat, sunflower, sorghum, alfalfa, barley, millet, rice, tobacco, tomato, potato, fruit and vegetable crops, turfgrass, sugar cane, sugar beets, and safflower.
In a further aspect of the invention, control of agronomically important insects is contemplated, which include, but are not limited to Beet armyworm (Spodoptera exigua), Boll weevil (Anthonomus grandis grandis), Cabbage looper (Trich oplusiani), Clouded plant bug (Neurocolpus nubilus), Corn Rootworm (Diabrotica spp), Cotton aphid (Aphis gossypii), Cotton bollworrn (Heliocoverpa zea), Cutworms (Feltia subterranea, Peridroma saucia, Agrotis ipsilon), European corn borer (Ostrinia nubilalis), Fall armyworm (Spodoptera frugiperda), Seedling thrips (Frankliniella spp.), Soybean looper (Pseudoplusia includens), Stink bugs {Nezara viridula, Acrosternum hilare, Euschistus servus), Tarnished plant bug {Lygus lineolaris), Tobacco budworm {Heliothis virescens) and Whiteflies {Trialeurodes abutilonea, Bemisia tabaci) among others. Broader acaricidal, insecticidal, and pest repellent properties are also contemplated.
Described herein are isolated nucleic acid molecules comprising a nucleotide sequence encoding a polypeptide comprising an amino acid sequence that is at least 85% identical to any of SEQ ID NOs:61-64, 67-112 and 188-225. In various embodiments: the polypeptide does not comprise the amino acid sequence of any of SEQ ID NOs:57-60 and 170-187.
Also described is an isolated nucleic acid molecule comprising (or consisting of) a nucleotide sequence encoding a polypeptide comprising an amino acid sequence selected from the group consisting of:
XoXiX2X6X7X8VELX9VRDYELDQXioGVV NAXiiYASYCQHXi2RHXi3Xi4LEXi5IG
Xl6Xl7Xl8DXi9VX2oRX2lGX22ALAX23X24EX25X26LKX27LAPLRSGDRPX28VX29X3oRX3lSX32
X33X34X35ARLX3gFEHFIFKLPX37X3gEPILEAX39X4()X4iA X42LX43X44X45YRPX4gRIPX47EX4 8X49SKX50VX51FLX52X53EX54X55;
X0XiX2X3X4X5X6X7X8VELX9VRDYELDQXioGVV NAXi iYASYCQHXi2RHXi3Xi4 LEXi5IGXi6Xi7Xi8DXi9VX2oRX2iGX22ALAX23X24EX25X26LKX27LAPLRSGDRFX28VX29X3o RX3iSX32X33X34X35ARLX3gFEHFIFKLPX37X3gEPILEAX39X4()X4iA X42LX43X44X45YRPX4gR IPX47EX48X49SKX5oVX5iFLX52X53KSCGX56QHX57L; and
XoXiX2X3X4X5X6X7X8VEMX9VPJ)YELDQXioGVVNNAXi iYASYCQHXi2RHXi3Xi4 LEXi5VGXigXi7Xi8DXi9VX2oRX2iGX22SLAX23X24EX25X26LKX27FAPLRSGDRFX28VX29X3o RX3iAX32X33X34X35ARLX3gFEHFIFKLPX37X38EPILEAX39X4oX4iAVX42LX43X44X45YRPX4gR
IPX47EX4gX49SKX5oQX5lFX58SX59XgoSXgiXg2;
wherein
Xo = L, M, MA, X where X = 1 to 15 amino acids; Xi = S, N, R, A, T, G; X2 = D, E, G, R, S, L, deletion; X3 = Q, L, E, V; X4 = V, L, D, E; X5 = Y, K, Q; X6 = F, H, Q, P, L, V; X7 = H, Y, F, L, V; X8 = D, E, G; X9 = K, T, Q; X10 = F, Y; Xn = T, I, V; X12 = C, G; X13 = E, A; X14 = L, F, V; Xi5 = K, R, A, S, N, T, C; Xi6 = V, I, F, L; X17 = S, N; Xi8 = A, V, C, P; Xi9 = E, A, V; X20 = A, 1, C, S ; X21 = S, N, T, I; X22 = D, E, N; X23 = L, V, I, T; X24 =1, S; X25 = L, M ; X26 = S, 1, H, N; X27 = F, Y; X28 = V, I; X29 =1, K, R; X30 =Y, A, T ; X31 = L, I, V; X32 = H, R, D, G, S, N; X33 = S, 1, 1, F, A ; X34 = S, T, K; X35 = A, G, V, M; X36 = F, Y, I; X37 = D, N; X38 = R, Q, E, H; X39 = R, K; X40 = G, A; X4i = I, Ύ, M; V; X42 = Y, W, C, R; X43 = N, D; X44 = R, K, N; 45 = L S, N, K, D, R; X46 = I, V, 1, A ; X47 = S, T, A, P, R; X48 = F, I, M, L; X49 = K, R, N, S, L ; X50 = F, L, I, M; Xsi = L, Q, K, H, F; X52 = H, R, K; X53 = Q, N, H, C, I; X54 = A, E, D; X55 = nothing, S, SH, SN, LN, PS; X56 = V, 1, 1; X57 = H, R, K; X58 = X, S, L; X59 = E, K, R, V; X60 = G, D; X6i = S, R, K; X62 = S, G, GX where X = 1 to 15 amino acids. In this notation, "MA" refers to the amino acid sequence MA. In preferred embodiments, each of the variable positions is selected from a preferred (underlined) amino acid.
In some cases: the polypeptide comprises an amino acid sequence that is identical to amino acids 1-25 of any of SEQ ID NOs:61-64, 67-1 12 and 188-225; the polypeptide comprises an amino acid sequence that is identical to amino acids 1-50 of any of SEQ ID NOs:61-64, 67- 1 12 and 188-225; the polypeptide comprises an amino acid sequence that is identical to amino acids 1-75 of any of SEQ ID NOs:61-64, 67-1 12 and 188-225; the polypeptide comprises an amino acid sequence that is identical to amino acids 1-100 of any of SEQ ID NOs:61-64, 67-1 12 and 188-225; the polypeptide comprises an amino acid sequence that is identical to amino acids 100-140 of any of SEQ ID NOs:61-64, 67-1 12 and 188-225; the polypeptide comprises an amino acid sequence that is identical to amino acids 75-100 of any of SEQ ID NOs:61-64, 67-1 12 and 188-225; the polypeptide comprises an amino acid sequence that is identical to amino acids 50- 75 of any of SEQ ID NOs:61-64, 67-1 12 and 188-225; the polypeptide comprises an amino acid sequence that is identical to amino acids 25-50 of any of SEQ ID NOs:61-64, 67-1 12 and 188- 225; the polypeptide comprises an amino acid sequence that is identical to amino acids 10-25 of any of SEQ ID NOs:61-64, 67-1 12 and 188-225; the polypeptide comprises an amino acid sequence that is identical to amino acids 35-65 of any of SEQ ID NOs:61-64, 67-1 12 and 188- 225; the polypeptide comprises an amino acid sequence that is identical to amino acids 80-88 of any of SEQ ID NOs:61-64, 67-1 12 and 188-225; and the polypeptide comprises an amino acid sequence that is identical to amino acids 120-135 of any of SEQ ID NOs:61-64, 67-1 12 and 188- 225.
In certain embodiments of the nucleic acid molecules: the polypeptide does not comprise the amino acid sequence of any of SEQ ID NOs:57-60 and 170-187; the polypeptide consists of an amino acid sequence that is at least 85% identical to any of SEQ ID NO:61-64, 67-1 12 and 188-225; the polypeptide has methylketone thioesterase activity; the polypeptide catalyzes the synthesis of one or more of 2-nonanone, 2-undecanone, 2-tridecanone, and 2-pentadecanone; the polypeptide catalyzes the synthesis of two or more of 2-nonanone, 2-undecanone, 2-tridecanone, and 2-pentadecanone; the polypeptide catalyzes the synthesis of 2-nonanone, 2-undecanone and 2-tridecanone; the polypeptide further comprises the amino acid sequence of a plastid transit peptide (e.g., a plastid transit peptide that mediates transit of the polypeptide); the nucleic acid molecule further comprises a nucleotide sequence encoding a polypeptide comprising a methylketone synthase; the methylketone synthase is a plant methylketone synthase; the methylketone synthase is operably linked to a plastid transit peptide.
Also described are vectors comprising any of the nucleic acid molecules described herein. In some cases, the nucleic acid molecule is operably linked to a promoter functional in plants. In some cases, the vector is a plant expression vector.
Also described is a plant cell comprising any of the nucleic acids molecules described herein. In certain cases: the plant cell is from plant propagation material (e.g., a seed), root, leaf, shoot, flower, pollen, or ovule; the plant cells comprises two or more or three or more of the nucleic acid molecules described herein wherein the two or three nucleic acid molecules encode different polypeptides.
In some cases: the plant cell produces one or more of or more of 2-nonanone, 2- undecanone, 2-tridecanone and 2-pentadecanone; the plant cell produces two or more of 2- nonanone, 2-undecanone, 2-tridecanone, and 2-pentadecanone; the plant cell is a crop plant cell; the plant cell is from a plant selected from the group selected from cotton, soybean, canola, corn, wheat, rice, sunflower, sorghum, sugarcane, potato, tomato, and a tree.
Also described is a plant or a part thereof comprising a nucleic acid molecule described herein. In some cases, the part thereof is selected from the group consisting of a seed, pollen, a root, a leaf, a shoot, a flower and an ovule. In some cases the plant or part thereof comprises a nucleic acid molecule encoding an acyl carrier protein.
Also described is a processed product comprising plant tissue and a processed product produced fcomprising a nucleic acid molecule described herein. In some cases, the processed product is selected from the group consisting of meal, flour, oil, hay, starch, juice, protein extract, and fiber.
Described herein is a method for controlling a pathogen or pest in a plant comprising expressing in the plant the polypeptide encoded by a nucleic acid molecule described herein. In some cases: the pest is a nematode (e.g., Heterodera species, Globodera species, Meloidogyne species, Rotylenchulus species, Hoplolaimus species, Belonolaimus species, Pratylenchus species, Longidorus species, Paratrichodorus species, Ditylenchus species, Xiphinema species, Dolichodorus species, Helicotylenchus species, Radopholus species, HirschmannieUa species, Tylenchorhynchus species, and Trichodorus species); the pest is an insect (e.g., Coleoptera, Diptera, Hemiptera (including Homoptera and Heteroptera), Hymenoptera and Lepidoptera).
In various embodiments: the method comprises expressing in the plant two or more (or three or more) of the polypeptides encoded by the nucleic acid molecules described herein or the vectors described hererin wherein the nucleic acids or vectors encode different two polypeptides.
Described herein is an isolated nucleic acid molecule described herein further comprising a bacterial expression sequences operably linked to the nucleotide sequence encoding the polypeptide. Also described is a bacterial vector comprising the nucleic acid molecule described herein (e.g., an expression vector).
Also described is a recombinant bacterial cell comprising a nucleic acid molecule or vector described herein. In some cases: the bacterial cell expresses a polypeptide encoded by the nucleic acid; the bacterial cell produces one or more of or more of 2-nonanone, 2-undecanone, 2- tridecanone and 2-pentadecanone; the bacterial cell of claim 56 wherein the bacterial cell produces two or more of 2-nonanone, 2-undecanone, 2-tridecanone, and 2-pentadecanone; the bacterial cell is selected from the group consisting of Pasteuria spp., Pseudomonas spp., Bacillus spp., Corynebacterium, Agrobacterium spp., and Paenibacillus spp.; the bacterial cell comprises two or more or three or more of the nucleic acid molecules or vectors described herein wherein the nucleic acid molecules or vectors encode different polypeptides.
Described herein is plant material admixed or coated with a composition comprising a recombinant bacterial cell described herein. In some cases: The plant material is selected from the group consisting of: plant propagation material (e.g., a seed), shoot, seedling, tuber and sprout; the plant material is from a plant selected from the group selected from cotton, soybean, canola, corn, wheat, rice, sunflower, sorghum, sugarcane, potato, tomato, and a tree.
Described herein is a method for treating plant material comprising applying a composition a recombinant bacterial cell described herein to the plant material. In some cases: the composition further comprises an insecticide or a nematicide; the plant material is selected from the group consisting of: plant propagation material (e.g., a seed), shoot, seedling, tuber and sprout; the plant material is from a plant selected from the group selected from cotton, soybean, canola, corn, wheat, rice, sunflower, sorghum, sugarcane, potato, tomato, and a tree.
Also described is a method for controlling a pathogen or pest in a plant comprising providing the roots of the plant with a composition comprising the bacteria of any of claims 55- 61 to plant material. In certain cases: the pest or pathogen is a nematode (e.g., Heterodera species, Globodera species, Meloidogyne species, Rotylenchulus species, Hoplolaimus species, Belonolaimus species, Pratylenchus species, Longidorus species, Paratrichodorus species, Ditylenchus species, Xiphinema species, Dolichodorus species, Helicotylenchus species, Radopholus species, Hirschmanniella species, Tylenchorhynchus species, and Trichodorus species); the pest is an insect (e.g., the insect is selected from the orders consisting of Coleoptera, Diptera, Hemiptera (including Homoptera and Heteroptera), Hymenoptera and Lepidoptera).
BRIEF DESCRIPTION OF FIGURES
Figure 1A: Comparisons of ratios and amounts of CI 1, C13 and C15 methylketone metabolites produced in E. coli by methylketone thioesterases from L. esculentum, P. integrifolia, L.
hirsutum, R. communis, P. trichocarpa, V. vinifera, A. thaliana and S. tuberosum. Bottom portion of each bar is CI 1, middle portion of each bar is CI 3, and top portion of each bar is C15. Lh: L. hirsutum, Le: L. esculentum, Pi: P. integrifolia, St: S. tuberosum, AtA: A. thaliana, At B: A. thaliana, At C: A. thaliana, Pt: Populus trichocarpa Rc: Ricinus communis, Vv A: Vitis vinifera, Vv B: Vitis vinifera.
Figure IB: Comparisons of ratios and amounts of C9, CI 1, C13 and C15 methylketone metabolites produced in E. coli by methylketone thioesterases from L. hirsutum, L. esculentum, P. integrifolia, S. tuberosum, A. thaliana, and Populus trichocarpa. Each bar shows the fraction of C9, CI 1, C13 and C15 methylketone (numbers on bars are the ug of MK). Lh: L. hirsutum, Le: L. esculentum, Pi: P. integrifolia, St: S. tuberosum, AtA: A. thaliana, At B: A. thaliana, At C: A. thaliana, Pt: Populus trichocarpa. Figure 1C: Comparisons of ratios and amounts of C9, CI 1, C13 and C15 methylketone metabolites produced in E. coli by methylketone thioesterases from Ricinus communis, Vitis vinifera, Oryza sativa japonica, Oryza sativa indica, Phyllostachys edulis, Zea mays and Sorghum bicolor. Each bar shows the fraction of C9, CI 1, C13 and C15 methylketone (numbers on bars are the ug of MK). Rc: Ricinus communis, Vv A: Vitis vinifera, Vv B Vitis vinifera, Osj: Oryza sativa japonica, Osi: Oryza sativa indica, Pe: Phyllostachys edulis, Zm: Zea mays, Sb: Sorghum bicolor.
Figure 2 A: Comparisons of ratios and amounts of CI 1, C13 and C15 methylketone metabolites produced in E. coli by L. esculentum/L. hirsutum chimeric methylketone thioesterases Bottom portion of each bar is CI 1, middle portion of each bar is CI 3, and top portion of each bar is C15.
Figure 2B: Comparisons of ratios and amounts of C9, CI 1, C13 and C15 methylketone metabolites produced in E. coli by L. esculentum/L. hirsutum chimeric methylketone
thioesterases. Each bar shows the fraction of C9, CI 1, C13 and C15 methylketone (numbers on bars are the ug of MK). L. esculentum parent sequence with an C-terminal 6-HIS tag, L.
esculentum/L. hirsutum chimera with the second alpha helix of Le (residues of 25 to 42 of Le) replaced with the second alpha helix of Lh (residues of 28 to 45 of Lh), L hirsutum parent sequence, L. hirsutum/L. esculentum chimera with the second alpha helix of Lh (residues of 28 to 45 of Lh) replaced with the second alpha helix of Le (residues of 25 to 42 of Le).
Figure 3 : Multiple alignment of various methylketone thioesterases from dicot and monocot plants. Depicted is a multiple sequence alignment generated with ClustalX for several methylketone thioesterases from a variety of dicot plants including spruce, castor, grape, poplar, cotton, soybeans, tomato, petunia, potato and Arabidopsis) and several moncot plants including rice, bamboo, sorghum, sugarcane and corn.
Figure 4: Sequence aligned depicting various region. The L. hirsutum and L. esculentum sequences were aligned as shown in the graphic and then two tail regions and four internal regions defined (N-terminal tail, A region, B region, C region, D region, C-terminal terminal tail). For the external tails if the sequence is from L. esculentum it is e; if it is from L. hirsutum it is H. For the internal regions if the sequence is from L. esculentum it is 0; if it is from L.
hirsutum it is 1. Example: eOOOOe is the L. esculentum parent; HI 111H is the L. hirsutum parent.
DETAILED DESCRIPTION
The present disclosure relates to methods and compositions for pest control in plants, in particular nematode and insect control. In one aspect, the disclosure relates to controlling, preventing or treating nematode and/or insect infection in transgenic plants or in plants treated with transgenic bacteria. The method comprises, in one embodiment, generation of transgenic plants containing a recombinant construct and expression of such construct to impart increased nematode and/or insect resistance to plants. In another embodiment, transgenic bacteria are generated containing a recombinant construct. The expression of such a construct causes the bacteria to produce agents that impart nematode and/or insect resistance to plants when treated with the bacteria. In some cases, the construct allows the bacteria to produce an agent that they do not produce in the absence of the contrsuct. In other cases, the bacetia produce more of an agent that they produce in the absensce of the construct. The recombinant construct may comprise a nucleotide sequence encoding one or more proteins, wherein the sequence is operably linked to a heterologous promoter functional in a plant cell or a bacterial cell. Cells comprising (meaning including but not limited to) the recombinant construct may be prokaryotic or eukaryotic. In particular, they may be plant cells or bacterial cells. Plants and seeds derived from such transformed plant cells are also contemplated. The transgenic plants or parts thereof of the present invention, in one embodiment produce two or more plant metabolites from among 2-nonanone, 2-undecanone and 2-tridecanone.
2-undecanone is the major methylketone in the Lycopersicon hirsutum LA 407 accession whereas in other L. hirsutum accessions (e.g., PI 251304, PI 126449, PI 134418) 2-tridecanone is the major methylketone (Antonious. J Environ Sci Health B. 2001 36(6):835-48). A
methylketone synthase of the alpha/beta hydrolase fold has been cloned from the wild tomato L. hirsutum PI 126449, expressed in Escherichia coli and shown in vitro to be capable of
inefficiently catalyzing the conversion of beta ketolauroyl-ACP, beta ketomyristoyl-ACP and beta ketopalmitoyl-ACP to 2-undecanone, 2-tridecanone and 2-pentadecanone, respectively (Fridman et al. Plant Cell. 2005 17(4): 1252-67). Bradley et al. (WO 2009100433) have shown that 2-tridecanone and 2-undecanone are nematicidal and that the expression of tomato methylketone synthase genes similar to those cloned by Fridman et al., optimized for plant expression and operably linked to a heterologous transit peptide, produce transgenic plants that are nematode resistant. In addition the 2-nonanone (a C9 methylketone) has been shown to be a repellant to C. elegans (Bargmann et al. Cell. 1993 74(3):515-27). More recently two novel methylketone thioesterases of the hotdog fold type from L. hirsutum and L. esculentum have been shown by Ben-Israel et al. to produce various methylketones and related metabolites (e.g., alcohols) when expressed in E. coli (Ben-Israel et al. Plant Physiol. 2009 151(4): 1952-64). The methylketone thioesterase from L. hirsutum produced significant amounts of 2-tridecanone and small amounts of 2-unedecanone whereas the methylketone thioesterase from L. esculentum produces moderate amounts of 2-undecanone and trace quantities of 2-tridecanone.
Methylketones differ in their intrinsic potency against various pests. As discussed by Kennedy (Annu. Rev. Entomol. 2003 48:51-72), 2-undecanone is less toxic to Helicoverp zea (tomato fruit worm) and Manduca sexta (tobacco hornworm) than 2-tridecanone, whereas the two metabolites have equivalent potency against Keiferia ly coper sicella (tomato pinworm) and Spodoptera exigua (beet armyworm). Surprisingly mixtures of 2-undecanone and 2-tridecanone have synergistic toxicity effects on H. zea, K. lycopersicella and S. exigua (Kennedy Annual Rev. Entomol. 2003 48:51-72). Methylketones also differ in their level of cytotoxicity.
Modulating the ratio and levels is therefore critical to maximizing pesticidal activity while minimizing phytotoxic effects.
The present disclosure provides heterologous molecules that are modified methylketone thioesterases which are expressed in plants to provide optimal ratios and levels of methylketones, especially mixtures of at least 2-tridecanone, 2-undecanone and 2-noneanone to provide insecticidal and nematicidal activity while minimizing phytotoxicity. These methylketone thioesterases include, but not limited to, nucleotides that encode polypeptides having
methylketone thioesterase activity such as SEQ ID NO: 61-64, SEQ ID NO: 67-112 and SEQ ID NO: 188-225. In certain embodiments, the polypeptide having methylketone thioesterase activity may share at least 80%, at least 85%, at least 90%, at least 95%, at least 98%, at least 99%), or 100%) sequence identity, to any one or more amino acid sequence(s) set forth in SEQ ID NO: 61-64 and SEQ ID NO: 67-112 and SEQ ID NO: 188-225, where the sequences comprise (or consist of) the following motif.
XoXiX2X6X7X8VELX9VRDYELDQX1 oGW AX11YASYCQHX12RHXi3Xi4LEX15 lGX1 6X17X18DX 1 9VX20RX21GX22ALAX23X24EX25X26LKX27LAPLRSGDRFX28 X29X30RX31SX32X33X34X35ARLX 3 gFEHFIFKL X37X3 §E __LE- X3 9X 0X41AVX42LX43X44X45 YRPX gRIPX47 EX 48X4 9SKX50VX5 FLX52X53EX54X55 or
XoXiX2X3X4X5X6X7X8VELX9VRDYELDQX1 oGW AX11YASYCQHX12RHX13Xi4LEX15 lGXi 6Xi 7X18DX19VX20RX21GX22ALAX23X24EX25X26LKX27LAPLRSGDRFX28 X29X30RX31SX32X33X34X 35ARLX3 6FEHFIFKLPX37X38EPILEAX3 9X40X41AVX42LX43X44X45YRPX4 6RIPX47EX48X4 9SK X50VX51FLX52X53KSCGX5 6QHX57L or
XoXiX2X3X4X5X6X7X8VEMX9VRDYELDQX1 oGW AX11YASYCQHX12RHX13Xi4LEX15VGXi 6Xi 7X18DX19VX20RX21GX22SLAX23X24EX25X26LKX27FAPLRSGDRFX28VX29X30RX31AX32X33X34X 35ARLX3 6FEHFIFKLPX37X38EPILEAX3 9X40X41AVX42LX43X44X45YRPX4 6RIPX47EX48X4 9SK
X50QX51FX58SX59X60SX61X62
With preferred residues (underlined) and other residue (or sequences of residues) examples as follows:
Xo = L, M, MA, X (where X = 1 to 15 amino acids); Xi = S, N, R, A, T, G; X2 = D, E, G, R, S, L, deletion; X3 = Q, L, E, V; X4 = V, L, D, E; X5 = Y, K, Q_; X6 = F, H, Q, P, L, V; X7 = H, Y, F, L, V; X8 = D, E, G; X9 = K, 1, Q; X10 = F, Y; X„ =1, 1, V; Xi2 = C, G; Xi3 = E, A; X14 = L, F, V; Xi5 = K, R, A, S, N, T, C; Xi6 = V, I, F, L; X17 = S, N; Xi8 = A, V, C, P; Xi9 = E, A, V; X20 = A, 1, C, S ; X21 = S, N, T, I; X22 = D, E, N; X23 = L, V, I, T; X24 =1, S; X25 = L, M ; X26 = S, 1, H, N; X27 = F, Y; X28 = V, I; X29 =1, K, R; X30 = V, A, T ; X31 = L, I, V; X32 = H, R, D, G, S, N; X33 = S,1, 1, F, A ; X34 = S,1, K; X35 = A, G, V, M; X36 = F, Y, I; X37 = D, N; X38 = R, Q, E, H; X39 = R, K; X40 = G, A; X4i = 1,1, M; V; X42 = Y, W, C, R; X43 = N, D; X44 = R, K, N; X45 = I, S, N, K, D, R; X46 = I, V, J, A ; X47 = S,1, A, P, R; X48 = F, I,M,L; X49 = K, R, N, S, L ; X50 = F, L, I,M; Xsi = L, Q, K, H, F; X52 = H, R, K; X53 = Q, N, H, C, I; X54 = A, E, D; X55 = nothing, S, SH, SN, LN, PS; X56 = V,1, 1; X57 = H, R, K; X58 =1, S, L; X59 = E, K, R, V; X60 = G, D; X6i = S, R, K; X62 = S, G, GX (where X = 1 to 15 amino acids).
Also contemplated are examples where 1 to 10 of the conserved residues (i.e., the residues shown in bold) are substituted with another amino acid. Particularly preferred are cases where the conserved residue substitutions are conservative (e.g., D to E, A to G, L to V, K to R, etc). In some embodiments each X independently represents 1 , 2, 3, 5, 6, 7, 8, 9, or 10 amino acids.
The function of the encoded polypeptide may also be determined by measuring the efficacy of the presence of the transgene that encodes it in reducing nematode infection, growth, reproduction, or symptomatology. For instance, a reduction in root galls, cysts, or worm number of 20% or more, 25% or more, 50% or more, 80% or more, or 95% or more, in a transgenic plant comprising a heterologous nucleotide construct encoding methylketone thioesterase activity, relative to a control plant, for instance an otherwise isogenic plant not comprising the
heterologous molecule, under similar conditions, indicates the presence of a functional molecule.
In certain embodiments, a heterologous polypeptide provided by the present disclosure that is directed into the plastid of a plant to provide production of a methylketone may share at least 80%, at least 85%, at least 90%, at least 95%, at least 98%, at least 99%, or 100% sequence identity at the nucleotide level with one or more sequence(s) as set forth in SEQ ID NO: 5-8, SEQ ID NO: 1 1-56 and SEQ ID NO: 131-168. In particular embodiments, the heterologous molecule may also comprise a sequence encoding a heterologous chloroplast transit peptide, for instance, without limitation, as shown in SEQ ID NO: 229 or SEQ ID NO: 231.
Likewise, in certain embodiments, a nucleotide of the present invention may further comprise a sequence that encodes a methylketone synthase as set forth WO 2009100433
(methylketone synthase L. hirsutum amino acid sequence: GenBank® AAV87156.1 ,
methylketone synthase L. hirsutum nucleotide GenBank® gb|AY701574.1 , MKS L. esculentum nucleotide GenBank® gb|BT012867.1). Yet another aspect of the invention provides methods for production and for use of one or more methylketone(s), such as 2-undecanone and 2-tridecanone, to control insect and nematode infestations.
Unless otherwise noted, terms are to be understood according to conventional usage by those of ordinary skill in the relevant art. Definitions of common terms in molecular biology may also be found in Rieger et al., Glossary of Genetics: Classical and Molecular, 5th edition, Springer- Verlag: New York, 1991; and Lewin, Genes V, Oxford University Press: New York, 1994. The nomenclature for DNA bases as set forth at 37 CFR § 1.822 is used.
As used herein, a "transgenic plant" is any plant in which one or more, or all, of the cells of the plant include a transgene. A transgene may be integrated within a nuclear genome or organelle genome, or it may be extrachromosomally replicating DNA. The term "transgene" means a nucleic acid that is partly or entirely heterologous, foreign, to a transgenic microbe, plant, animal, or cell into which it is introduced. A plant is comprised of cells that make up various cell and tissue types, these include but are not limited to seed, root, leaf, shoot, flower, pollen and ovule.
"Recombinant DNA" is a polynucleotide having a genetically engineered modification introduced through combination of endogenous and/or exogenous molecules in a transcription unit, manipulation via mutagenesis, restriction enzymes, and the like or simply by inserting multiple copies of a native transcription unit. Recombinant DNA may comprise DNA segments obtained from different sources, or DNA segments obtained from the same source, but which have been manipulated to join DNA segments which do not naturally exist in the joined form. An isolated recombinant polynucleotide may exist, for example as a purified molecule, or integrated into a genome, such as a plant cell, or organelle genome or a microbe plasmid or genome. The polynucleotide comprises linked regulatory molecules that cause transcription of an RNA in a plant cell.
As used herein, "percent identity" means the extent to which two optimally aligned DNA or protein segments are invariant throughout a window of alignment of components, for example nucleotide sequence or amino acid sequence. An "identity fraction" for aligned segments of a test sequence and a reference sequence is the number of identical components that are shared by sequences of the two aligned segments divided by the total number of sequence components in the reference segment over a window of alignment which is the smaller of the full test sequence or the full reference sequence. "Percent identity" ("% identity") is the identity fraction times 100.
"Expression" includes transcription of DNA to produce RNA. The resulting R A may be without limitation mRNA encoding a protein, antisense RNA, or a double-stranded RNA for use in RNAi technology. Expression also refers to production of encoded protein from an mRNA.
As used herein, "promoter" means regulatory DNA molecules for initializing
transcription. A "plant promoter" is a promoter capable of initiating transcription in plant cells whether or not its origin is a plant cell, for example it is well known that certain Agrobacterium promoters are functional in plant cells. Thus, plant promoters include promoter DNA obtained from plants, plant viruses (in particular, double stranded DNA viruses) and bacteria such as Agrobacterium and Bradyrhizobium bacteria. Constitutive promoters generally provide transcription in most or all of the cells of a plant, in particular, promoters such as the FMV promoter (FMV, US Patent 6,051,753), the enhanced 35S promoter (E35S, US Patent
5,359,142), rice actin promoter (US Patent 5,641,876), and various chimeric promoters (US Patent 6,660,911) are herein incorporated by reference and are useful in the present invention. Examples of promoters under developmental control include promoters that preferentially initiate transcription in certain tissues, such as leaves, roots, or seeds. Such promoters are referred to as "tissue preferred". Promoters that initiate transcription only in certain tissues are referred to as "tissue specific".
The term "resistance," or "tolerance" when used in the context of comparing the effectiveness of a transgene in a transgenic plant and another plant, refers to the ability of the invention transgenic plant to maintain, to some degree, a desirable phenotype in the face of nematode infection relative to a non-transgenic plant of sensitive genome. The level of resistance can be determined by comparing the physical characteristics of the invention plant to non-transgenic plants that either have or have not been exposed to nematode infection.
Exemplary physical characteristics to observe in the presence and absence of parasitic nematode pressure include: plant height, weight, coloration, germination rate, fruit or grain yield, overall growth rate and root growth rate. Exemplary characteristics in the presence of nematode pressure may additionally include: nematode infection rates, nematode reproduction rates, feeding site choice and establishment, nematode growth and maturation rates. Desirable outcomes of the invention transgenic plants include an increase in the population of plants that exhibit positive changes in the above characteristics when compared to control plants. Transgenic invention plants that come in contact with parasitic nematodes may exhibit enhanced root growth, enhanced fruit or grain yield, reduction of nematode infection or decreases in nematode population growth compared to the control plants. The product of expression of the recombinant DNA may be directly toxic to the nematode (nematicidal) or may affect the mobility, host affinity, feeding site establishment or fecundity of the parasitic nematodes, or may have other measurable nematistatic effects.
"Transformed seed" is the seed which has been generated from the transformed plant. A transformed plant contains transformed cells. A transformed cell is a cell that has been altered by the introduction of an exogenous DNA molecule or in the present invention comprises a chimeric promoter comprising viral enhancer elements and promoters having activity in cells from which plant parasitic nematodes such as Heterodera glycines (soybean cyst nematode), Meloidogyne incognita (root knot nematode), or Pratylenchus scribneri (root lesion nematode) feed.
Nematodes include, but are not limited to plant parasitic species, for example,
Pratylenchus species, Heterodera species, Globodera species, Meloidogyne species,
Rotylenchulus species, Hoplolaimus species, Belonolaimus species, Longidorus species, Paratrichodorus species, Ditylenchus species, Xiphinema species, Dolichodorus species, Helicotylenchus species, Radopholus species, Hirschmanniella species, Tylenchorhynchus species, and Trichodorus species.
The term "insect" refers to any embryonic, larval, nymph or adult form of of the arthropod classes Arachnida or Ins ecta. Insecta includes Coleoptera (e.g. Leptinotarsa decemlineata, Diabrotica spp.), Diptera (e.g. Hylemya platura), Hemiptera (e.g. Lygus spp., Aphis gossypii, Homoptera such as Trialeurodes abutilonea, Bemisia tabaci; Heteroptera such as Nezara viridula), Hymenoptera, and Lepidoptera (e.g. Helicoverpa armigera, Ostrinia nubilalis).
Bacteria suitable for production of methylketones and treating of plant propagation material, roots or other tissue include but are not limited to, a rhizobacterial species. In particular embodiments, the species can be selected from Pasteuria spp., Pseudomonas spp., Bacillus spp., Corynebacterium, Agrobacterium spp., and Paenibacillus spp. As non-limiting examples, the bacterial species can be Bacillus firmus, Bacillus cereus, Pseudomonas cepacia, Corynebacterium pauronietabolum or species of the genus Pasteuria, e.g. Pasteuria penetrans, P. thornei, P. nishizawae, Candidatus Pasteuria usgae sp. nov., or Candidatus Pasteuria sp. strain HG and others.
Bacterial transformation
As is known to a person skilled in the art, many bacterial strains are suitable as host cells for the over-expression of methylketone thioesterase proteins according to the present technology, including E. coli strains and many other species and genera of prokaryotes including bacilli such as Bacillus subtilis, other enterobacteriaceae such as Salmonella typhimurium or Serratia marcesans, and various Pseudomonas species. Prokaryotic host cells or other host cells with rigid cell walls can be transformed using a calcium chloride method as described in section 1.82 of Sambrook et al., Molecular Cloning - A Laboratory Manual (3rd Ed.), Vol. 1-3, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., 2000. Alternatively, electroporation may be used for transformation of such cells. Various prokaryote transformation techniques are known in the art; e.g. Dower, W. J., in Genetic Engineering, Principles and Methods, 12:275- 296, Plenum Publishing Corp., 1990; Hanahan et al, Meth. EnzymoL, 204:63 1991.
Plant expression cassette
The present invention provides recombinant DNA constructs comprising a
polynucleotide disclosed herein that when incorporated into a plant cell imparts increased resistance to nematode infection or plant disease caused by the nematode infection. Such constructs also typically comprise a promoter operatively linked to said polynucleotide to provide for expression in the plant cells. Other construct components may include additional regulatory molecules, such as 5' leader regions or 3' untranslated regions (such as
polyadenylation sites), intron regions, and transit or signal peptides fused to the transgene. Such recombinant DNA constructs can be assembled using methods known to those of ordinary skill in the art.
Recombinant constructs prepared in accordance with the present invention also generally include a 3' untranslated DNA region (UTR) that typically contains a polyadenylation sequence following the polynucleotide coding region. Examples of useful 3 ' UTRs include but are not limited to those from the nopaline synthase gene of Agrobacterium tumefaciens (nos), a gene encoding the small subunit of a ribulose-l,5-bisphosphate carboxylase-oxygenase (rbcS), and the T7 transcript of Agrobacterium tumefaciens.
Constructs and vectors may also include a transit peptide for targeting of a protein product, particularly to a chloroplast, leucoplast or other plastid organelle, or mitochondria, or peroxisome, or vacuole or an extracellular location. For descriptions of the use of plastid transit peptides, see U.S. Patent 5,188,642 and U.S. Patent No. 5,728,925, herein incorporated by reference in their entirety. Many chloroplast-localized proteins are expressed from nuclear genes as precursors and are targeted to the chloroplast by a chloroplast transit peptide (CTP).
Examples of other such isolated chloroplast proteins include, but are not limited to those associated with the small subunit (SSU) of ribulose-l,5,-bisphosphate carboxylase, ferredoxin, ferredoxin oxidoreductase, the light-harvesting complex protein I and protein II, thioredoxin F, enolpyruvyl shikimate phosphate synthase (EPSPS) and transit peptides described in US Patent 7,193,133, herein incorporated by reference. It has been demonstrated in vivo and in vitro that non-chloroplast proteins may be targeted to the chloroplast by use of protein fusions with a heterologous CTP and that the CTP is sufficient to target a protein to the chloroplast.
Incorporation of a suitable chloroplast transit peptide, such as, the Lycopersicon esculentum DCL1 CTP (Gnanasambandam et al. Plant Biotechnol J. 2007 5(2):290-6.), the Arabidopsis thaliana EPSPS CTP (CTP2, Klee et al, Mol. Gen. Genet. 210:437-442), and the Petunia hybrida EPSPS CTP (CTP4, della-Cioppa et al, Proc. Natl. Acad. Sci. USA 83:6873-6877) has been show to target heterologous EPSPS protein sequences to chloroplasts in transgenic plants. The production of glyphosate tolerant plants by expression of a fusion protein comprising an amino-terminal CTP with a glyphosate resistant EPSPS enzyme is well known by those skilled in the art, (U.S. Patent No. 5,627,061, U.S. Patent No. 5,633,435, U.S. Patent No. 5,312,910, EP 0218571, EP 189707, EP 508909, and EP 924299). Those skilled in the art will recognize that various chimeric constructs can be made that utilize the functionality of a CTP to import various methylketone thioesterases into the plant cell plastid.
Plant Transformation
Stable methods for plant transformation include virtually any method by which DNA can be introduced into a cell, such as by direct delivery of DNA (for example, by PEG-mediated transformation of protoplasts, by electroporation, by agitation with silicon carbide fibers, and by acceleration of DNA coated particles), by Agrobacterium -mediated transformation, by viral or other vectors. One preferred method of plant transformation is microprojectile bombardment, for example, as illustrated in U.S. Patents 5,015,580 (soy), 5,550,318 (maize), 5,538,880 (maize), 6, 153,812 (wheat), 6, 160,208 (maize), 6,288,312 (rice) and 6,399,861 (maize), and 6,403,865 (maize), herein incorporated by reference in their entirety.
Detailed procedures for Agrobacterium-mQdiatQd transformation of plants, especially crop plants, include, for example, procedures disclosed in U. S. Patents 5,004,863, 5,159, 135, 5,518,908, 5,846,797, and 6,624,344 (cotton); 5,416,01 1 , 5,569,834, 5,824,877, 5,914,451 6,384,301 , and 7,002,058 (soy); 5,591 ,616 5,981 ,840, and 7,060,876 (maize); 5,463,174 and 5,750,871 (Brassica species, including rapeseed and canola), and in U. S. Patent Application Publications 2004/0244075 (maize), 2004/0087030 (cotton) and 2005/0005321 (soybean).
Additional procedures for Agrobacterium-mQdiatQd transformation are disclosed in WO9506722 (maize). Similar methods have been reported for many plant species, both dicots and monocots, including, among others, peanut (Cheng et al. (1996) Plant Cell Rep., 15 :653); asparagus (Bytebier et al. (1987) Proc. Natl. Acad. Sci. U.S.A., 84:5345); barley (Wan and Lemaux (1994) Plant Physiol, 104:37); rice (Toriyama et al. (1988) Bio/Technology, 6: 10; Zhang et al. (1988) Plant Cell Rep., 7:379; wheat (Vasil et al. (1992) Bio/Technology, 10 667; Becker et al. (1994) Plant J. , 5 :299), alfalfa (Masoud et al. (1996) Transgen. Res., 5 :313); Brassica species (Radke et al. (1992) Plant Cell Rep., 1 1 :499-505); and tomato (Sun et al. (2006) Plant Cell Physiol., 47:426-431). Transgenic plant cells and transgenic plants can also be obtained by transformation with other vectors, such as, but not limited to, viral vectors (for example, tobacco etch virus (TEV), barley stripe mosaic virus (BSMV), and the viruses referenced in Edwardson and
Christie, "The Potyvirus Group: Monograph No. 16, 1991 , Agric. Exp. Station, Univ. of Florida), plasmids, cosmids, YACs (yeast artificial chromosomes), BACs (bacterial artificial chromosomes) or any other suitable cloning vector, when used with an appropriate
transformation protocol, for example, bacterial infection (for example, with Agrobacterium as described above), binary bacterial artificial chromosome constructs, direct delivery of DNA (for example, via PEG-mediated transformation, desiccation/inhibition-mediated DNA uptake, electroporation, agitation with silicon carbide fibers, and microprojectile bombardment). It would be clear to one of ordinary skill in the art that various transformation methodologies can be used and modified for production of stable transgenic plants from any number of plant species of interest. For example the construction of stably inherited recombinant DNA constructs and minichromosomes can be used as vectors for the construction of transgenic plants (U.S. Patent 7,235,716, herein incorporated by reference).
Transformation methods to provide transgenic plant cells and transgenic plants containing stably integrated recombinant DNA are preferably practiced in tissue culture on media and in a controlled environment. Recipient cell targets include, but are not limited to, meristem cells, callus, immature embryos or parts of embryos, and gametic cells such as microspores, pollen, sperm, and egg cells. Any cell from which a fertile plant can be regenerated is contemplated as a useful recipient cell for practice of the invention. Callus can be initiated from various tissue sources, including, but not limited to, immature embryos or parts of embryos, seedling apical meristems, microspores, and the like. Those cells which are capable of proliferating as callus can serve as recipient cells for genetic transformation. Practical transformation methods and materials for making transgenic plants of this invention (for example, various media and recipient target cells, transformation of immature embryos, and subsequent regeneration of fertile transgenic plants) are disclosed, for example, in U. S. Patents 6,194,636 and 6,232,526 and U. S. Patent Application Publication 2004/0216189, which are incorporated herein by reference.
In general transformation practice, DNA is introduced into only a small percentage of target cells in any one transformation experiment. Marker genes are generally used to provide an efficient system for identification of those cells that are transformed by a transgenic DNA construct. Preferred marker genes provide selective markers which confer resistance to a selective agent, such as an antibiotic or herbicide. Any of the antibiotics or herbicides to which a plant cell may be resistant can be a useful agent for selection. Potentially transformed cells are exposed to the selective agent. In the population of surviving cells will be those cells where, generally, the resistance-conferring gene is expressed at sufficient levels to permit cell survival. Cells can be tested further to confirm integration of the recombinant DNA. Commonly used selective marker genes include those conferring resistance to antibiotics such as kanamycin or paromomycin (nptll), hygromycin B (aph IV), gentamycin (aac3 and aacC4) and glufosinate (bar or pat), glyphosate (EPSPS), and dicamba (dicamba monooxygenase). Examples of useful selective marker genes and selection agents are illustrated in U. S. Patents 5,550,318, 5,633,435, 5,780,708, and 6,118,047, all of which are incorporated by reference. Screenable markers or reporters, such as markers that provide an ability to visually identify transformants can also be employed. Non-limiting examples of useful screenable markers include, for example, a gene expressing a protein that produces a detectable color by acting on a chromogenic substrate (for example, ^^glucuronidase, GUS, uidA, or luciferase, luc) or that itself is detectable, such as green fluorescent protein (GFP, gfp) or an immunogenic molecule. Those of skill in the art will recognize that many other useful markers or reporters are available for use.
Trait Stacking and Breeding
The recombinant DNA constructs of the invention can be stacked with other recombinant DNA for imparting additional agronomic traits (such as in the case of transformed plants, traits including but not limited to herbicide resistance, insect resistance, cold germination tolerance, water deficit tolerance, enhanced yield, enhanced quality, fungal, viral, and bacterial disease resistance) for example, by expressing other transgenes. The recombinant DNA constructs of the present invention can also be transformed into plant varieties that carry natural pest resistance genes to enhance the efficacy of the pest resistance phenotype. Constructs for coordinated decrease and/or increase of gene expression are disclosed in U.S. Patent Application Publication 2004/0126845 Al . Seeds of transgenic, fertile plants can be harvested and used to grow progeny generations, including hybrid generations, of transgenic plants of this invention that include the recombinant DNA construct in their genome. Thus, in addition to direct transformation of a plant with a recombinant DNA construct of this invention, transgenic plants of the invention can be prepared by crossing a first plant having the recombinant DNA with a second plant lacking the construct. For example, the recombinant DNA can be introduced into a plant line that is amenable to transformation to produce a transgenic plant, which can be crossed with a second plant line to introduce the recombinant DNA into the resulting progeny. A transgenic plant of the invention can be crossed with a plant line having other recombinant DNA or naturally occurring genetic regions that confers one or more additional trait(s) (such as, but not limited to, herbicide resistance, pest or disease resistance, environmental stress resistance, modified nutrient content, and yield improvement) to produce progeny plants having recombinant DNA that confers both the desired target sequence expression behavior and the additional trait(s).
Typically, in such breeding for combining traits the transgenic plant donating the additional trait is a male line and the transgenic plant carrying the base traits is the female line. The progeny of this cross segregate such that some of the plant will carry the DNA for both parental traits and some will carry DNA for one parental trait; such plants can be identified by markers associated with parental recombinant DNA Progeny plants carrying DNA for both parental traits can be crossed back into the female parent line multiple times, for example, usually 6 to 8 generations, to produce a progeny plant with substantially the same genotype as one original transgenic parental line but for the recombinant DNA of the other transgenic parental line.
The transgenic plant, plant part, seed or progeny plants of the present invention can be processed into products useful in commerce. These products include but are not limited to meal, flour, oil, hay, starch, juice, protein extract, and fiber.
EXAMPLES
The following examples are included to illustrate embodiments of the invention. It should be appreciated by those of skill in the art that the techniques disclosed in the examples that follow represent techniques discovered by the inventor to function well in the practice of the invention. However, those of skill in the art should, in light of the present disclosure, appreciate that many changes can be made in the specific embodiments which are disclosed and still obtain a similar result without departing from the concept, spirit and scope of the invention. More specifically, it will be apparent that certain agents which are both chemically and physiologically related may be substituted for the agents described herein while achieving the same or similar results. All such similar substitutes and modifications apparent to those skilled in the art are deemed to be within the spirit, scope and concept of the invention.
Example 1 : Escherichia coli expression and methylketone analysis
Expression of MKT constructs in E. coli:
Theoretical sequences were used to design oligonucleotide sets for artificial gene assembly. Sequence used was either wild-type sequence, wild-type sequence with silent mutations to avoid certain restriction enzymes, or sequence filtered through a plant-expression optimization scheme. In some cases N- and/or C-terminal extensions were added to the theoretical sequences to be assembled. Oligonucleotides of lengths between 40 and 60 nucleotides were designed that alternated between matching portions of the desired sequence or were antiparallel to the desired sequence. In general, odd numbered oligos matched the sequence of the coding (parallel) strand, and even numbered oligos matched the non-coding (anti-parallel) strand of desired DNA. The 5 '-most and 3 '-most 18 to 30 nucleotides of each oligonucleotide are antiparallel to the 5 '-most and 3 '-most 18 to 30 nucleotides of the adjoining oligonucleotides, such that assembly of the oligonucleotides by at least four cycles of PCR will result in a template that matches the desired sequence. Oligonucleotides that add restriction sites are used to further amplify the construct in secondary PCR reactions. Forward oligonucleotides for secondary amplification usually have the sequence ATACATCCATGG+(nl5+) where CCATGG is an Ncol site overlapping the initiation codon (ATG) and nl5+ equals the 15 or greater nucleotides following the initiation codon in the assembled gene. Reverse amplification oligonucleotides usually have the sequence ATACATAAGCTT(ap-nl5+) where AAGCTT is a Hindlll restriction site, and ap-nl5+ references sequence antiparallel to the 3' end of the assembled gene, including a stop codon. Following secondary PCR reactions, correct length amplicons were identified by agarose gel electrophoresis, purified using QIAQuick Gel Extraction Kits, and Ncol/Hindlll subcloned to the bacterial expression plasmid pET28-a (Novagen). Sequence-confirmed constructs were transformed into BL21 Codon Plus (Stratagene) cells which harbor a plasmid encoding tRNAs to facilitate recombinant expression of codons rarely used by E. coli. Bacterial cultures were grown to an optical density at 600 nm of 0.8 to 1.0, induced with 1 mM IPTG and grown overnight at 30°C.
Methylketone extraction and detection:
After overnight induction of protein at 30 °C, the 50 ml bacterial culture was centrifuged at 3,273xg for 20 min at room temperature. The pelleted bacteria was resuspended in 2ml of chloroform and lysed using a FastPrep 24 Instrument with Lysing Matrix D tubes (MP
Biomedicals, Inc.) at a setting of 6.0 m/s for 30 seconds. The resulting extract was centrifuged at 16,000 x g for 10 min to pellet any debris prior to derivatization. Methylketones from the bacterial extract were detected by UV-HPLC post derivatization with 2,4 dinitrophenylhydrazine (DNPH). Extract (200 ul) was derivatized in the presence of 1 umol of DNPH and 1.5 umol of HC1 for 1 hour at room temperature. Different dilutions of extract were evaluated to ensure an excess of DNPH which was monitored by the presence of a DNPH peak by UV-HPLC. UV- HPLC analysis was performed on an Eclipse XDB C18 column (5 um particle size, 4.6 x 250 mm) or a C8 column (5 um particle size, 4.6 x 250 mm) with a gradient mobile phase consisting of water and acetonitrile. DNPH derivatives were monitored by UV absorption at 362 nm. Peaks were identified by comparison of retention times of commercial standards of 2- undecanone, 2-tridecanone, and 2-pentadecanone (CI 8 column) or 2-nonanone, 2-undecanone, 2-tridecanone, and 2-pentadecanone (C8 column) post DNPH derivatization.
As can be seen in Figure la-c and 2a and 2b the ratios and amounts of C9, CI 1, C13 and C15 metabolites can differ significantly between between various methylketone thioesterases and for chimeric versions of the enzyme made by swapping regions between MKTs.
Example 2: Hairy Root Generation Protocols
For soybean Williams 82 hairy roots, A. rhizogenes strain K599 (NCPPB 2659; NCPPB, Sand Hutton, York, UK) was grown and maintained on LB (Luria Bertani), or yeast extract and peptone (YEP) media. Yeast extract is the water-soluble portion of autolyzed yeast. The autolysis is carefully controlled to preserve naturally occurring B-complex vitamins. Yeast extract is typically prepared by growing baker's yeast, Saccharomyces spp., in a carbohydrate- rich plant medium. The yeast is harvested, washed, and resuspended in water, where it undergoes autolysis, i.e., self-digestion using the yeast's enzymes. Yeast extract is the total soluble portion of this auto lytic action. The auto lytic activity is stopped by a heating step. The resulting yeast extract is filtered clear and dried into a powder by spray drying. Methods for generation of transgenic tomato Mountain Spring (susceptible) or Fresh Mountain Plus
(resistant) hairy root cultures using A. rhizogenes strain Dl are similar, except that MgL media containing yeast extract, NaCl, tryptone, L-glutamic acid, potassium phosphate, magnesium sulfate and biotin is used. Soybean seeds were surface-sterilized by contacting with chlorine gas under controlled conditions for 12-16 hours, followed by aeration in a clean air hood for at least 30 minutes. Seeds were germinated in Petri dishes containing ¼ MS (Murashige & Skoog, 1962). The hypocotyl or cotyledons of 6-day-old seedlings were wounded using a scalpel, and wounded cotyledons were then immersed in a culture of freshly grown A. rhizogenes containing a DNA construct of interest, and vacuum infiltrated. Cotyledons were cultured under similar conditions used for seed germination with the exception that the antibiotic cefotaxime is added to the ¼ MS agar plates to prevent subsequent overgrowth by A. rhizogenes. Adventitious roots were excised from hypocotyls or cotyledons inoculated with A. rhizogenes. The putative transformed roots were cultured on Gamborg's B-5 agar (Gamborg et ah, 1976) containing 3% sucrose plus 3 g/1 Gelrite®, BASTA, and cefotaxime). Roots surviving selection were transferred to fresh media and maintained on Gamborg's B-5 agar in an incubator, without light, at about 24-30 °C. A piece of root tip was typically excised and transferred to fresh medium every 2-4 weeks.
Example 3: Nematode Bioassays on Hairy Root Material
Hairy Root Efficacy Testing Setup:
Following hairy root line selection, roots for the plant nematode bioassay are transferred to fresh plates containing Gamborg's B-5 medium and allowed to grow for approximately two weeks to provide sufficient tissue for nematode infection before inoculation with a mixed population of root lesion nematodes or second-stage juveniles of soybean cyst nematode (SCN) or root knot nematode (RKN). Individual hairy root tips are placed on infection plates. 20 plates are used for testing transformed roots for reaction to lesion, SCN or RKN. Each plate contains a transformed root from a separate integration. An additional 20 plates containing a transformed lesion susceptible, SCN-susceptible or RKN-susceptible control and an additional 20 plates containing a transformed SCN-resistant or RKN-resistant control are also tested. Transformed controls are empty vectors. Plates are then inoculated with approximately 400 sterile lesion worms or 1000 sterile H. glycines J2s or 450 sterile M. incognita J2s and incubated at 26-28 °C (SCN or RKN) or 25 °C or 30 °C (lesion nematode). Approximately six weeks for M. incognita or five weeks for H. glycines after inoculation with nematodes, infected tomato or soybean hairy roots are removed from the agar plates and the number of galls or cysts counted. For SCN hairy root plates exact cyst counts are done whereas for RKN gall numbers are estimated. For RKN, galls are noted and marked off on each plate. Gall scores are weighted estimates based on size. A scale is created at the beginning of scoring process. The smallest galls are given a score of 1 and as the galled areas become larger the gall score increases. The scale is then used to rate each gall on each plate in the experiment. Egg numbers are also scored at 42 days for RK infections in tomato hairy roots. At 42 days post infection plates are micro waved and sieved to collect the roots. The roots are then blended in a 10% bleach solution and poured over a series of sieves to remove the root debris and collect the eggs. Eggs removed from each plate are counted and the roots are weighed. For lesion nematodes plates are harvested after approximately 56 days by placing roots in glass bowls filled with sterilized water containing 50 mg/L carbenicillin and 50 mg/L kanamycin. After 9-10 days to allow the worms to exit the roots, the solution is poured off and the worms counted under a microscope. To determine weights, root masses are removed from the bowls and micro-waved to melt the agar and the roots are collected with a sieve. The extra water is absorbed with a paper towel and the root weights recorded.
Sterile lesion, SCN and RKN larvae preparation for use with the hairy root culture system:
Sterile SCN J2s are produced as follows. Clean soybean cyst nematode eggs (i.e., eggs with soil and other debris removed) are collected and placed in a 50 ml centrifuge vial containing 30 ml of a 10% bleach solution. The bleach solution is mildly agitated and then left to settle for 2-3 minutes. The vial is mildly agitated again to re-suspend the eggs and then centrifuged for 1 minute at 1000 rpm. Under a sterile hood, the bleach solution is removed into a receptacle and 25 ml of sterile water is added into the vial of eggs. The vial is recapped under the sterile hood, mildly agitated to re-suspend the eggs and centrifuged for 1 minute at 1000 rpm. Under the sterile hood, this liquid is poured off and 25 ml of sterile water is again placed in the vial. The vial is recapped under the sterile hood and the process of agitation and centrifugation repeated. This process of washing the eggs with sterile water is repeated approximately 4 times to thoroughly rinse the bleach from the eggs. Following the last rinse under the sterile hood the liquid is removed leaving about 1-2 ml of egg concentrate. Sterilized eggs are hatched by incubating them on the surface of moist filter paper resting in a solution of 5 mM zinc sulfate just deep enough to cover the surface of the filter paper. After 2-3 days J2 larvae are collected in the solution underneath the filter paper. J2s are centrifuged and further sterilized using chlorhexidine (Atkinson et al. (1996) J. Nematol. 28:209-215).
Sterile RK larvae are prepared by collecting eggs by placing chopped RK infected roots into a blender with a sufficient quantity of 10% bleach solution. The blender is pulsed on/off for 5 second intervals. This process is repeated 5-6 times. The root slurry is then passed through a series of sieves where the eggs and small debris are collected in a 500 micron sieve. Any remaining bleach solution is thoroughly rinsed from this egg/debris. Twenty milliliters of the egg/debris is added to a 50 ml conical tube and 20 ml of a 40%> sucrose solution is added into the bottom of the tube, bringing the total volume to 40 milliliters. This solution is then centrifuged at 3750 rpm for 5 minutes to separate the eggs from the debris. After centrifugation, the eggs are removed and thoroughly rinsed to remove any remaining sucrose solution. Eggs are then placed into a hatch bowl containing filter paper moistened with just enough aerated tap water to cover the eggs. After 1-2 days J2 larvae are collected in the solution underneath the filter paper. J2 larvae are centrifuged and further sterilized using chlorhexidine (Atkinson et al. (1996) J. Nematol. 28:209-215).
Sterile lesion larvae are prepared from lesion nematodes grown on corn explant plates. The nematodes are harvested by putting the roots with medium onto filter paper supported by a wire sieve in a sterilized glass bowl, which has been filled with sterilized water containing 50 mg/L carbenicillin and 50 mg/L kanamycin. The amount of the water is enough to just submerge the agar. The bowls are stored at room temperature (25 °C) for two days. The sieve is removed and the solution poured into a 50 ml conical tube, which is then centrifuged for 5 minutes at 3500g at room temperature. The tube is then let to sit for 15 minutes to allow the worms to set to the bottom of the tube and the supernatant sucked out with a sterilized one ml tip connected to a vacuum. Sterilized water is then added to the worms containing 12 mg/L of the antifungal compound Imazilil and 50 mg/L kanamycin.
Table 1: Heterodera glycines (soybean cyst nematode) infection assay in soybean hairy roots
Figure imgf000033_0001
Table 2: Meloidogyne incognita (root knot nematode) infection assay in tomato hairy roots
Figure imgf000034_0001
Table 3: Heterodera glycines (soybean cyst nematode) infection assay in soybean hairy roots
Figure imgf000034_0002
Table 4: Meloidogyne incognita (root knot nematode) infection assay in tomato hairy roots
Figure imgf000034_0003
Table 5: Pratylenchus scribneri (root lesion nematode) infection assay in tomato hairy roots
Figure imgf000034_0004
Ubi3 DC44 opt StMKT opt | 11,395.2 | 19.9 | 11,043.4 | 43.9 | 1.03 | -20.0
Table 6: Pratylenchus scribneri (root lesion nematode) infection assay in tomato hairy roots
Figure imgf000035_0001
As can be seen in the Tables 1 through 6 above, the expression of certain monocot or dicot methylketone thioesterases under the control of heterologous promoters (e.g., constitutive promoters like ubi3 or root specific promoters like tobRB7) results in the reduced infestation of plant roots for either soybean cyst nematodes, root knot nematodes or root lesion nematodes and additionally a root protective effect (i.e., increased root weights) in the presence of lesion nematode infections. Importantly the degree of in planta nematicidal efficacy is not a simple function of the total amounts of methylketone produced or the specific levels of any one methylketone accumulated (e.g., L. hirsutum MKT which makes a very large amount of the strongly nematicidal C13 methylketone is not necessarily the most efficacious MKT for broad spectrum nematode control in plants).
Example 4: Nematode testing in transgenic whole plant greenhouse assays
Transgenic soybean for SCN:
Four inch square plastic pots are filled with a media mixture of 80% sand plus 20% loam soil. Pots are placed in the greenhouse and watered to settle the media firmly into the pot. The next day 1 soybean seed per pot is planted 2 inches deep into the pot. Pots are watered as needed to keep the media moist. Four-five days after planting SCN eggs are added to distilled water to create a concentration of 1000 vermiform eggs per milliliter of water. For each pot a hole near the planting site is punched about 1cm deep into the pot. One milliliter of the nematode solution is pippetted into the hole and the hole is covered with the media. Watering is then restricted to water only as needed to keep plants from wilting for 24 hours. After the 24 hours normal watering is resumed. The plants are then allowed to grow for 28 days.
After 28 days the plants are collected and the above ground portion of the soybean plant is cut off, weighed and then appropriately discarded. Each plant is harvested individually. The root of the plant is placed in a bucket of water, is swirled around and gently massaged with the hand to remove the growing media and dislodge any cysts attached to the root. The liquid and loose contents are then poured over a 500 micron sieve which is mounted above a 250 micron sieve. More water is then added to the bucket, this water is swirled to create a suspension with the bucket contents and the water is again poured over the sieves. All cysts and any debris between 500 microns and 250 microns are captured in the 250 micron sieved. The contents of the 250 micron sieve are collected and examined under a microscope and the number of cysts per sample are counted and recorded. A test treatment is replicated 4 times.
Transgenic tobacco for R N:
Tobacco seeds for each construct are randomly planted into a 6 inch X 4 inch
germination tray containing Fafard™ germinating mix. The flats are then placed under a mist system to keep them moist for 7 days or until the plants germinate. The flats are then transferred to the greenhouse and the plants are allowed to grow for another 7-10 days until they have 2-3 young leaves. Selected plants are then transplanted into 3 inch square deep-well plastic pots, 1 plant per pot. The plastic pots are 2/3 full of a 60:40 blend of sand:Turface™. The tobacco plant is placed on top of this mix and the last 1/3 of the pot is filled with 100% sand keeping the foliage of the plant on top of the sand and the pot is lightly watered. The pots are then placed in the greenhouse where the plants are allowed to adapt to the new growing media for 3-5 days. RKN eggs are added to distilled water to create a concentration of 1000 vermiform eggs per milliliter of water. For each pot a hole near the planting site is punched about 1cm deep into the pot. Five milliliters of the nematode solution is pippetted into the hole and the hole is covered with the media. Watering is then restricted to water only as needed to keep plants from wilting for 24 hours. After the 24 hours normal watering is resumed. The plants are then grown for 56 days.
After 56 days the plants are collected and the above ground portion of the tobacco plant is cut off, weighed and then appropriately discarded. Each plant is harvested individually. The root of the plant is placed in a bucket of water, is swirled around and gently massaged with the hand to remove the growing media. The root is the place in a moist towel and transported to the lab for gall rating. Each root is rated separately for galling on a scale of 0 - 100 where 0 = no galls on the root and 100 = the entire root is covered with galls. Tests treatments are replicated 5 times.
Transgenic corn for lesion:
A mixture of sand and Turface (2: 1) is poured into 4 inch pots to fill the bottom 2/3rd of the pot. Inoculum composed of corn roots infected with a lesion nematode such as P. scribneri is incorporated into the soil mix and then covered with 100% sand. Pots are watered and allowed to drain completely. A single corn seed is planted per pot. Corn grows for 30 days and then harvested.
Inoculum to be used consists of a lesion (e.g., P. scribneri) infected corn roots that have previously been analyzed for nematode population. This population is expressed as nematodes per gram. Infected roots are weighed for each pot to be treated to yield 10,000 nematodes per pot. Inoculum is applied prior to seed planting.
After 30 days, corn plants are topped and the tops weighed and discarded. Roots are gently washed, blotted and weighed. Roots are chopped and thoroughly mixed; three grams of roots are placed in a funnel lined with a screen and a folded Kimwipe. Funnels are placed in a 50 ml conical tube in a mist tent for 6 days. Roots are misted for 30 seconds every 30 minutes; nematodes move from the roots and settle into the bottom of the tube. After 6 days, nematodes are counted.
Transgenic tobacco for lesion: Tobacco seeds are randomly planted into 6 inch X 4 inch germination trays containing Fafard™ germination mix. Flats are placed under a mist system to keep them moist for 7 days or until the plants germinate. Seedlings are transferred to the greenhouse and allowed to grow for another 7-10 days until they have 2-3 young leaves. A mixture of sand and Turface (2: 1) is poured into 3 inch deep-well plastic pots to 2/3rd full. Corn roots infected with lesion nematodes (e.g., P. scribneri ) are incorporated into the soil mix and then covered with 100% sand. Pots are watered and allowed to drain completely; selected plants are then transplanted. Inoculated plants are grown for 60 days.
Inoculum to be used consists of lesion nematode (e.g., P. scribneri) infected corn roots that have previously been analyzed for nematode population. This population is expressed as nematodes per gram. Infected roots are weighed for each pot to be treated to yield 6,000 nematodes per pot. Inoculum is applied prior to transplanting.
After 60 days, tobacco plants are topped and the tops weighed and discarded. Roots are gently washed, blotted and weighed. Roots are chopped and thoroughly mixed; 2.5 grams of roots are placed in a funnel lined with a screen and a folded Kimwipe. Funnels are placed in a 50 ml conical tube in a mist tent for 6 days. Roots are misted for 30 seconds every 30 minutes; nematodes move from the roots and settle into the bottom of the tube. After 6 days, nematodes are counted.
Example 5: Example whole plant creation methods
This example describes a plant transformation method useful in producing transgenic soybean plants and transgenic seed. Other methods are known in the art of plant cell
transformation that can be applied using the DNA constructs of the present invention.
For Agrobacterium mediated transformation, soybean seeds are germinated overnight and the meristem explants excised (see US Patent No. 7,002,058). The meristems and the explants are placed in a wounding vessel. Soybean explants and induced Agrobacterium cells from a strain containing plasmid DNA with the expression cassettes of the present invention and a plant selectable marker cassette are mixed within about 14 hours from the time of initiation of seed germination and wounded using sonication. Following wounding, explants are placed in co- culture for 2-5 days at which point they are transferred to selection media for 6-8 weeks to allow selection and growth of transgenic shoots. Trait positive shoots are harvested after approximately 6-8 weeks and placed into selective rooting media for 2-3 weeks. Shoots producing roots are transferred to the greenhouse and potted in soil. Shoots that remain healthy on selection but that do not produce roots are transferred to non-selective rooting media for an additional two weeks. Roots from any shoots that produce roots off selection are tested for expression of the plant selectable marker before they are transferred to the greenhouse and potted in soil. Additionally, a DNA construct can be transferred into the genome of a soybean cell by particle bombardment and the cell regenerated into a fertile soybean plant as described in U.S. Patent 5,015,580.
Transgenic soybean plant cells are transformed with recombinant DNA of this invention. Progeny transgenic plants and seed of the transformed plant cells are selected that provide pathogen resistance, especially nematode resistance.
Example 6: Optimized methylketone thioesterase sequences and uses in the creation of nematode resistant plants
This example provides descriptions of compositions in use or contemplated for use in controlling plant parasitic nematodes singularly or in any combination. Table 3 provides a list of the compositions. A crop transformation base vector comprising selection expression cassettes and elements necessary for the maintenance of the plasmid in a bacterial cell is used to assemble DNA segments (e.g., promoters, leaders, introns, 3'UTR such as those shown in Table 4) that provide regulatory activity when operably linked to DNA segments that provide functionality in the present invention. The assembly of these DNA segments can be accomplished using methods known in the art of recombinant DNA technology. DNA coding sequences of the present invention such as any one or more of the DNA molecules identified in SEQ ID NO: 1-56 and SEQ ID NO: 113-169 are cloned and inserted into an expression cassette or inserted into operable linkage with another coding sequence or genetic element of an expression cassette. Other genetic elements can be selected and tested by those skilled in the art that provide functional expression of a methylketone thioesterase in plant tissues. Table 7: Example Methylketone Thioesterase sequences
Figure imgf000040_0001
SEQ ID NO:66 Ctp Lh MKT mod ORF Modified amino acid sequence of L. hirsutum methylketone thioesterase with chloroplast transit peptide from Z. esculentum DCL1
SEQ ID NO: 11 Le MKT optl cDNA Optimization 1 nucleotide sequence of L.
esculentum methylketone thioesterase
SEQ ID NO:67 Le MKT optl ORF Optimization 1 amino acid sequence of L.
esculentum methylketone thioesterase
SEQ ID NO: 12 Pi MKT optl cDNA Optimization 1 nucleotide sequence of P.
integrifolia methylketone thioesterase
SEQ ID NO:68 Pi MKT optl ORF Optimization 1 amino acid sequence of P.
integrifolia methylketone thioesterase
SEQ ID NO: 13 Lh MKT optl cDNA Optimization 1 nucleotide sequence of L.
hirsutum methylketone thioesterase
SEQ ID NO:69 Lh MKT optl ORF Optimization 1 amino acid sequence of L.
hirsutum methylketone thioesterase
SEQ ID NO: 14 St MKT optl cDNA Optimization 1 nucleotide sequence of S.
tuberosum methylketone thioesterase
SEQ ID NO:70 St MKT optl ORF Optimization 1 amino acid sequence of S.
tuberosum methylketone thioesterase
SEQ ID NO: 15 Le MKT opt2 cDNA Optimization 2 nucleotide sequence of L.
esculentum methylketone thioesterase
SEQ ID NO:71 Le MKT opt2 ORF Optimization 2 amino acid sequence of L.
esculentum methylketone thioesterase
SEQ ID NO: 16 Pi MKT opt2 cDNA Optimization 2 nucleotide sequence of P.
integrifolia methylketone thioesterase
SEQ ID NO: 72 Pi MKT opt2 ORF Optimization 2 amino acid sequence of P.
integrifolia methylketone thioesterase
SEQ ID NO: 17 Lh MKT opt2 cDNA Optimization 2 nucleotide sequence of L.
hirsutum methylketone thioesterase
SEQ ID NO:73 Lh MKT opt2 ORF Optimization 2 amino acid sequence of L.
hirsutum methylketone thioesterase
SEQ ID NO: 18 St MKT opt2 cDNA Optimization 2 nucleotide sequence of S.
tuberosum methylketone thioesterase
SEQ ID NO:74 St MKT opt2 ORF Optimization 2 amino acid sequence of S.
tuberosum methylketone thioesterase
SEQ ID NO: 19 Le MKT opt3 cDNA Optimization 3 nucleotide sequence of L.
esculentum methylketone thioesterase
SEQ ID NO:75 Le MKT opt3 ORF Optimization 3 amino acid sequence of L.
esculentum methylketone thioesterase
SEQ ID NO:20 Le MKT opt4 cDNA Optimization 4 nucleotide sequence of L.
esculentum methylketone thioesterase
SEQ ID NO:76 Le MKT opt4 ORF Optimization 4 amino acid sequence of L.
esculentum methylketone thioesterase SEQ ID NO:21 Le MKT opt5 cDNA Optimization 5 nucleotide sequence of L.
esculentum methylketone thioesterase
SEQ ID NO: 77 Le MKT opt5 ORF Optimization 5 amino acid sequence of L.
esculentum methylketone thioesterase
SEQ ID NO:22 Le MKT opt6 cDNA Optimization 6 nucleotide sequence of L.
esculentum methylketone thioesterase
SEQ ID NO:78 Le MKT opt6 ORF Optimization 6 amino acid sequence of L.
esculentum methylketone thioesterase
SEQ ID NO:23 Pi MKT opt3 cDNA Optimization 3 nucleotide sequence of P.
integrifolia methylketone thioesterase
SEQ ID NO:79 Pi MKT opt3 ORF Optimization 3 amino acid sequence of P.
integrifolia methylketone thioesterase
SEQ ID NO:24 Pi MKT opt4 cDNA Optimization 4 nucleotide sequence of P.
integrifolia methylketone thioesterase
SEQ ID NO:80 Pi MKT opt4 ORF Optimization 4 amino acid sequence of P.
integrifolia methylketone thioesterase
SEQ ID NO:25 Pi MKT opt5 cDNA Optimization 5 nucleotide sequence of P.
integrifolia methylketone thioesterase
SEQ ID N0:81 Pi MKT opt5 ORF Optimization 5 amino acid sequence of P.
integrifolia methylketone thioesterase
SEQ ID NO:26 Lh MKT opt3 cDNA Optimization 3 nucleotide sequence of L.
hirsutum methylketone thioesterase
SEQ ID NO: 82 Lh MKT opt3 ORF Optimization 3 amino acid sequence of L.
hirsutum methylketone thioesterase
SEQ ID NO:27 Lh MKT opt4 cDNA Optimization 4 nucleotide sequence of L.
hirsutum methylketone thioesterase
SEQ ID NO:83 Lh MKT opt4 ORF Optimization 4 amino acid sequence of L.
hirsutum methylketone thioesterase
SEQ ID NO:28 Lh MKT opt5 cDNA Optimization 5 nucleotide sequence of L.
hirsutum methylketone thioesterase
SEQ ID NO: 84 Lh MKT opt5 ORF Optimization 5 amino acid sequence of L.
hirsutum methylketone thioesterase
SEQ ID NO:29 St MKT opt3 cDNA Optimization 3 nucleotide sequence of S.
tuberosum methylketone thioesterase
SEQ ID NO:85 St MKT opt3 ORF Optimization 3 amino acid sequence of S.
tuberosum methylketone thioesterase
SEQ ID NO:30 Le/Lh chiml cDNA Optimization 1 nucleotide acid sequence of L.
esculentumlL. hirsutum chimeric MKT
SEQ ID NO:86 Le/Lh chiml ORF Optimization 1 amino acid sequence of L.
esculentumlL. hirsutum chimeric MKT
SEQ ID N0:31 Le/Lh chim2 cDNA Optimization 2 nucleotide acid sequence of L.
esculentumlL. hirsutum chimeric MKT SEQ ID NO:87 Le/Lh chim2 ORF Optimization 2 amino acid sequence of L.
esculentum.IL. hirsutum chimeric MKT
SEQ ID NO:32 Le/Lh chim3 cDNA Optimization 3 nucleotide acid sequence of L.
esculentum.IL. hirsutum chimeric MKT
SEQ ID NO:88 Le/Lh chim3 ORF Optimization 3 amino acid sequence of L.
esculentum.IL. hirsutum chimeric MKT
SEQ ID NO:33 Le/Lh chim4 cDNA Optimization 4 nucleotide acid sequence of L.
esculentumlL. hirsutum chimeric MKT
SEQ ID NO:89 Le/Lh chim4 ORF Optimization 4 amino acid sequence of L.
esculentumlL. hirsutum chimeric MKT
SEQ ID NO:34 Le/Lh chim5 cDNA Optimization 5 nucleotide acid sequence of L.
esculentumlL. hirsutum chimeric MKT
SEQ ID NO:90 Le/Lh chim5 ORF Optimization 5 amino acid sequence of L.
esculentumlL. hirsutum chimeric MKT
SEQ ID NO:35 Le/Lh chim6 cDNA Optimization 6 nucleotide acid sequence of L.
esculentumlL. hirsutum chimeric MKT
SEQ ID N0:91 Le/Lh chim6 ORF Optimization 6 amino acid sequence of L.
esculentumlL. hirsutum chimeric MKT
SEQ ID NO:36 Le/Lh chim7 cDNA Optimization 7 nucleotide acid sequence of L.
esculentumlL. hirsutum chimeric MKT
SEQ ID NO: 92 Le/Lh chim7 ORF Optimization 7 amino acid sequence of L.
esculentumlL. hirsutum chimeric MKT
SEQ ID NO:37 Le/Lh chim8 cDNA Optimization 8 nucleotide acid sequence of L.
esculentumlL. hirsutum chimeric MKT
SEQ ID NO:93 Le/Lh chim8 ORF Optimization 8 amino acid sequence of L.
esculentumlL. hirsutum chimeric MKT
SEQ ID NO:38 Le/Lh chim9 cDNA Optimization 9 nucleotide acid sequence of L.
esculentumlL. hirsutum chimeric MKT
SEQ ID NO:94 Le/Lh chim9 ORF Optimization 9 amino acid sequence of L.
esculentumlL. hirsutum chimeric MKT
SEQ ID NO:39 Le/Lh chimlO cDNA Optimization 10 nucleotide acid sequence of L.
esculentumlL. hirsutum chimeric MKT
SEQ ID NO:95 Le/Lh chimlO ORF Optimization 10 amino acid sequence of L.
esculentumlL. hirsutum chimeric MKT
SEQ ID NO:40 Le/Lh chiml 1 cDNA Optimization 11 nucleotide acid sequence of L.
esculentumlL. hirsutum chimeric MKT
SEQ ID NO:96 Le/Lh chiml 1 ORF Optimization 11 amino acid sequence of L.
esculentumlL. hirsutum chimeric MKT
SEQ ID N0:41 Le/Lh chiml 2 cDNA Optimization 12 nucleotide acid sequence of L.
esculentumlL. hirsutum chimeric MKT
SEQ ID NO:97 Le/Lh chiml 2 ORF Optimization 12 amino acid sequence of L.
esculentumlL. hirsutum chimeric MKT SEQ ID NO:42 Le/Lh chiml3 cDNA Optimization 13 nucleotide acid sequence of L.
esculentum.IL. hirsutum chimeric MKT
SEQ ID NO:98 Le/Lh chiml3 ORF Optimization 13 amino acid sequence of L.
esculentum.IL. hirsutum chimeric MKT
SEQ ID NO:43 Le/Lh chiml4 cDNA Optimization 14 nucleotide acid sequence of L.
esculentum.IL. hirsutum chimeric MKT
SEQ ID NO:99 Le/Lh chiml4 ORF Optimization 14 amino acid sequence of L.
esculentumlL. hirsutum chimeric MKT
SEQ ID NO:44 Le/Lh chiml5 cDNA Optimization 15 nucleotide acid sequence of L.
esculentumlL. hirsutum chimeric MKT
SEQ ID NO: 100 Le/Lh chiml5 ORF Optimization 15 amino acid sequence of L.
esculentumlL. hirsutum chimeric MKT
SEQ ID NO:45 Le/Lh chiml6cDNA Optimization 16 nucleotide acid sequence of L.
esculentumlL. hirsutum chimeric MKT
SEQ ID NO: 101 Le/Lh chiml6 0RF Optimization 16 amino acid sequence of L.
esculentumlL. hirsutum chimeric MKT
SEQ ID NO:46 Le/Lh chiml7 cDNA Optimization 17 nucleotide acid sequence of L.
esculentumlL. hirsutum chimeric MKT
SEQ ID NO: 102 Le/Lh chiml7 0RF Optimization 17 amino acid sequence of L.
esculentumlL. hirsutum chimeric MKT
SEQ ID NO:47 Le/Lh chiml8 cDNA Optimization 18 nucleotide acid sequence of L.
esculentumlL. hirsutum chimeric MKT
SEQ ID NO: 103 Le/Lh chiml8 ORF Optimization 18 amino acid sequence of L.
esculentumlL. hirsutum chimeric MKT
SEQ ID NO:48 Le/Lh chiml9 cDNA Optimization 19 nucleotide acid sequence of L.
esculentumlL. hirsutum chimeric MKT
SEQ ID NO: 104 Le/Lh chiml9 0RF Optimization 19 amino acid sequence of L.
esculentumlL. hirsutum chimeric MKT
SEQ ID NO:49 Le/Lh chim20 cDNA Optimization 20 nucleotide acid sequence of L.
esculentumlL. hirsutum chimeric MKT
SEQ ID NO: 105 Le/Lh chim20 ORF Optimization 20 amino acid sequence of L.
esculentumlL. hirsutum chimeric MKT
SEQ ID NO:50 Le/Lh chim21 cDNA Optimization 21 nucleotide acid sequence of L.
esculentumlL. hirsutum chimeric MKT
SEQ ID NO: 106 Le/Lh chim21 ORF Optimization 21 amino acid sequence of L.
esculentumlL. hirsutum chimeric MKT
SEQ ID NO:51 Le/Lh chim22 cDNA Optimization 22 nucleotide acid sequence of L.
esculentumlL. hirsutum chimeric MKT
SEQ ID NO: 107 Le/Lh chim22 ORF Optimization 22 amino acid sequence of L.
esculentumlL. hirsutum chimeric MKT
SEQ ID NO:52 Le/Lh chim23 cDNA Optimization 23 nucleotide acid sequence of L.
esculentumlL. hirsutum chimeric MKT SEQ ID NO: 108 Le/Lh chim23 ORF Optimization 23 amino acid sequence of L.
esculentum.IL. hirsutum chimeric MKT
SEQ ID NO:53 Le/Lh chim24 cDNA Optimization 24 nucleotide acid sequence of L.
esculentum.IL. hirsutum chimeric MKT
SEQ ID NO: 109 Le/Lh chim24 ORF Optimization 24 amino acid sequence of L.
esculentum.IL. hirsutum chimeric MKT
SEQ ID NO:54 Le/Lh chim25 cDNA Optimization 25 nucleotide acid sequence of L.
esculentumlL. hirsutum chimeric MKT
SEQ ID NO: 110 Le/Lh chim25 ORF Optimization 25 amino acid sequence of L.
esculentumlL. hirsutum chimeric MKT
SEQ ID NO:55 Le/Lh chim26 cDNA Optimization 26 nucleotide acid sequence of L.
esculentumlL. hirsutum chimeric MKT
SEQ ID NO: l l l Le/Lh chim26 ORF Optimization 26 amino acid sequence of L.
esculentumlL. hirsutum chimeric MKT
SEQ ID NO:56 St MKT opt3 cDNA Optimization 3 nucleotide sequence of S.
tuberosum methylketone thioesterase
SEQ ID NO:112 St MKT opt3 ORF Optimization 3 amino acid sequence of S.
tuberosum methylketone thioesterase
SEQ ID NO: 113 Rc MKT cDNA Native nucleotide sequence of R. communis methylketone thioesterase
SEQ ID NO: 170 Rc MKT ORF Native amino acid sequence of R. communis methylketone thioesterase
SEQ ID NO: 114 Pt MKT cDNA Native nucleotide sequence of P. trichocarpa methylketone thioesterase
SEQ ID NO: 171 Pt MKT ORF Native amino acid sequence of P. trichocarpa methylketone thioesterase
SEQ ID NO: 115 Vv a MKT cDNA Native nucleotide sequence of V. vinifera A methylketone thioesterase
SEQ ID NO: 172 Vv a MKT ORF Native amino acid sequence of V. vinifera A methylketone thioesterase
SEQ ID NO: 116 Vv b MKT cDNA Native nucleotide sequence of V. vinifera B methylketone thioesterase
SEQ ID NO: 173 Vv b MKT ORF Native amino acid sequence of V. vinifera B methylketone thioesterase
SEQ ID NO: 117 At a MKT cDNA Native nucleotide sequence of A. thaliana A methylketone thioesterase
SEQ ID NO: 174 At a MKT ORF Native amino acid sequence of A. thaliana A methylketone thioesterase
SEQ ID NO: 118 At b MKT cDNA Native nucleotide sequence of A. thaliana B methylketone thioesterase
SEQ ID NO: 175 At b MKT ORF Native amino acid sequence of A. thaliana B methylketone thioesterase SEQ ID NO: 119 At c MKT cDNA Native nucleotide sequence of A. thaliana C methylketone thioesterase
SEQ ID NO: 176 At c MKT ORF Native amino acid sequence of A. thaliana C methylketone thioesterase
SEQ ID NO: 120 Ps a MKT cDNA Native nucleotide sequence of P. sitchensis A methylketone thioesterase
SEQ ID NO: 177 Ps a MKT ORF Native amino acid sequence of P. sitchensis A methylketone thioesterase
SEQ ID NO: 121 Ps b MKT cDNA Native nucleotide sequence of P. sitchensis B methylketone thioesterase
SEQ ID NO: 178 Ps b MKT ORF Native amino acid sequence of P. sitchensis B methylketone thioesterase
SEQ ID NO: 122 Osj MKT cDNA Native nucleotide sequence of O. sativa japonica methylketone thioesterase
SEQ ID NO: 179 Osj MKT ORF Native amino acid sequence of O. sativa japonica methylketone thioesterase
SEQ ID NO: 123 Osi MKT cDNA Native nucleotide sequence of O. sativa indica methylketone thioesterase
SEQ ID NO: 180 Osi MKT ORF Native amino acid sequence of O. sativa indica methylketone thioesterase
SEQ ID NO: 124 Zm MKT cDNA Native nucleotide sequence of Z. mays
methylketone thioesterase
SEQ ID NO: 181 Zm MKT ORF Native amino acid sequence of Z. mays
methylketone thioesterase
SEQ ID NO: 125 Sb MKT cDNA Native nucleotide sequence of S. bicolor
methylketone thioesterase
SEQ ID NO: 182 Sb MKT ORF Native amino acid sequence of S. bicolor
methylketone thioesterase
SEQ ID NO: 126 Pe MKT cDNA Native nucleotide sequence of P. edulis
methylketone thioesterase
SEQ ID NO: 183 Pe MKT ORF Native amino acid sequence of P. edulis
methylketone thioesterase
SEQ ID NO: 127 Pg MKT cDNA Native nucleotide sequence of P. glauca
methylketone thioesterase
SEQ ID NO: 184 Pg MKT ORF Native amino acid sequence of P. glauca
methylketone thioesterase
SEQ ID NO: 128 Gh MKT cDNA Native nucleotide sequence of G. hirsutum
methylketone thioesterase
SEQ ID NO: 185 Gh MKT ORF Native amino acid sequence of G. hirsutum
methylketone thioesterase
SEQ ID NO: 129 Gm MKT cDNA Native nucleotide sequence of G. max
methylketone thioesterase SEQ ID NO: 186 Gm MKT ORF Native amino acid sequence of G. max methylketone thioesterase
SEQ ID NO: 130 Sh MKT cDNA Native nucleotide sequence of Saccharum hybrid methylketone thioesterase
SEQ ID NO: 187 Sh MKT ORF Native amino acid sequence of Saccharum hybrid methylketone thioesterase
SEQ ID NO: 131 At a MKT mod cDNA Modified nucleotide sequence of A. thaliana A methylketone thioesterase
SEQ ID NO: 188 At a MKT mod ORF Modified amino acid sequence of A. thaliana A methylketone thioesterase
SEQ ID NO: 132 At b MKT mod cDNA Modified nucleotide sequence of A. thaliana B methylketone thioesterase
SEQ ID NO: 189 At b MKT mod ORF Modified amino acid sequence of A. thaliana B methylketone thioesterase
SEQ ID NO: 133 At c MKT mod cDNA Modified nucleotide sequence of A. thaliana C methylketone thioesterase
SEQ ID NO: 190 At c MKT mod ORF Modified amino acid sequence of A. thaliana C methylketone thioesterase
SEQ ID NO: 134 Pt MKT mod cDNA Modified nucleotide sequence of P. trichocarpa methylketone thioesterase
SEQ ID NO: 191 Pt MKT mod ORF Modified amino acid sequence of P. trichocarpa methylketone thioesterase
SEQ ID NO: 135 Rc MKT mod cDNA Modified nucleotide sequence of R. communis methylketone thioesterase
SEQ ID NO: 192 Rc MKT mod ORF Modified amino acid sequence of R. communis methylketone thioesterase
SEQ ID NO: 136 Vv a MKT mod cDNA Modified nucleotide sequence of V. vinifera A methylketone thioesterase
SEQ ID NO: 193 Vv a MKT mod ORF Modified amino acid sequence of V. vinifera A methylketone thioesterase
SEQ ID NO: 137 Vv b MKT mod cDNA Modified nucleotide sequence of V. vinifera B methylketone thioesterase
SEQ ID NO: 194 Vv b MKT mod ORF Modified amino acid sequence of V. vinifera B methylketone thioesterase
SEQ ID NO: 138 Osj MKT mod cDNA Modified nucleotide sequence of O. sativa
japonica methylketone thioesterase
SEQ ID NO: 195 Osj MKT mod ORF Modified amino acid sequence of O. sativa
japonica methylketone thioesterase
SEQ ID NO: 139 Osi MKT mod cDNA Modified nucleotide sequence of O. sativa indica methylketone thioesterase
SEQ ID NO: 196 Osi MKT mod ORF Modified amino acid sequence of O. sativa
indica methylketone thioesterase SEQ ID NO: 140 Pe MKT mod cDNA Modified nucleotide sequence of P. edulis
methylketone thioesterase
SEQ ID NO: 197 Pe MKT mod ORF Modified amino acid sequence of P. edulis
methylketone thioesterase
SEQ ID NO: 141 Zm MKT mod cDNA Modified nucleotide sequence of Z. mays
methylketone thioesterase
SEQ ID NO: 198 Zm MKT mod ORF Modified amino acid sequence of Z. mays
methylketone thioesterase
SEQ ID NO: 142 Sb MKT mod cDNA Modified nucleotide sequence of S. bicolor
methylketone thioesterase
SEQ ID NO: 199 Sb MKT mod ORF Modified amino acid sequence of S. bicolor methylketone thioesterase
SEQ ID NO: 143 Le MKT imp A cDNA Improved A nucleotide sequence of L.
esculentum methylketone thioesterase
SEQ ID NO:200 Le MKT imp A ORF Improved A amino acid sequence of L.
esculentum methylketone thioesterase
SEQ ID NO: 144 Pi MKT nor A cDNA Normalized A nucleotide sequence of P.
integrifolia methylketone thioesterase
SEQ ID NO:201 Pi MKT nor A ORF Normalized A amino acid sequence of P.
integrifolia methylketone thioesterase
SEQ ID NO: 145 Pi MKT Lh ends cDNA Nucleotide sequence of P. integrifolia
methylketone thioesterase with Lh ends
SEQ ID NO:202 Pi MKT Lh ends ORF Amino acid sequence of P. integrifolia
methylketone thioesterase with Lh ends
SEQ ID NO: 146 Lh MKT Pi ends cDNA Nucleotide sequence of L. hirsutum methylketone thioesterase with Pi ends
SEQ ID NO:203 Lh MKT Pi ends ORF Amino acid sequence of L. hirsutum
methylketone thioesterase with Pi ends
SEQ ID NO: 147 Le/Lh chim27 cDNA Optimization 27 nucleotide acid sequence of L.
esculentumlL. hirsutum chimeric MKT
SEQ ID NO:204 Le/Lh chim27 ORF Optimization 27 amino acid sequence of L.
esculentumlL. hirsutum chimeric MKT
SEQ ID NO: 148 Le/Lh chim28 cDNA Optimization 28 nucleotide acid sequence of L.
esculentumlL. hirsutum chimeric MKT
SEQ ID NO:205 Le/Lh chim28 ORF Optimization 28 amino acid sequence of L.
esculentumlL. hirsutum chimeric MKT
SEQ ID NO: 149 Le/Lh chim29 cDNA Optimization 29 nucleotide acid sequence of L.
esculentumlL. hirsutum chimeric MKT
SEQ ID NO:206 Le/Lh chim29 ORF Optimization 29 amino acid sequence of L.
esculentumlL. hirsutum chimeric MKT
SEQ ID NO: 150 Le/Lh chim30 cDNA Optimization 30 nucleotide acid sequence of L.
esculentumlL. hirsutum chimeric MKT SEQ ID NO:207 Le/Lh chim30 ORF Optimization 30 amino acid sequence of L.
esculentum.IL. hirsutum chimeric MKT
SEQ ID NO:151 Lh/St chiml cDNA Optimization 1 nucleotide acid sequence of L.
hirsutumlS. tuberosum chimeric MKT
SEQ ID NO:208 Lh/St chiml ORF Optimization 1 amino acid sequence of L.
hirsutumlS. tuberosum chimeric MKT
SEQ ID NO: 152 Lh/St chim2 cDNA Optimization 2 nucleotide acid sequence of L.
hirsutumlS. tuberosum chimeric MKT
SEQ ID NO:209 Lh/St chim2 ORF Optimization 2 amino acid sequence of L.
hirsutumlS. tuberosum chimeric MKT
SEQ ID NO:153 Lh/St chim3 cDNA Optimization 3 nucleotide acid sequence of L.
hirsutumlS. tuberosum chimeric MKT
SEQ ID NO:210 Lh/St chim3 ORF Optimization 3 amino acid sequence of L.
hirsutumlS. tuberosum chimeric MKT
SEQ ID NO: 154 Lh/St chim4 cDNA Optimization 4 nucleotide acid sequence of L.
hirsutumlS. tuberosum chimeric MKT
SEQ ID NO:211 Lh/St chim4 ORF Optimization 4 amino acid sequence of L.
hirsutumlS. tuberosum chimeric MKT
SEQ ID NO:155 Lh/St chim5 cDNA Optimization 5 nucleotide acid sequence of L.
hirsutumlS. tuberosum chimeric MKT
SEQ ID NO:212 Lh/St chim5 ORF Optimization 5 amino acid sequence of L.
hirsutumlS. tuberosum chimeric MKT
SEQ ID NO:156 Lh/St chim6 cDNA Optimization 6 nucleotide acid sequence of L.
hirsutumlS. tuberosum chimeric MKT
SEQ ID NO:213 Lh/St chim6 ORF Optimization 6 amino acid sequence of L.
hirsutumlS. tuberosum chimeric MKT
SEQ ID NO:157 Lh/St chim7 cDNA Optimization 7 nucleotide acid sequence of L.
hirsutumlS. tuberosum chimeric MKT
SEQ ID NO:214 Lh/St chim7 ORF Optimization 7 amino acid sequence of L.
hirsutumlS. tuberosum chimeric MKT
SEQ ID NO:158 Lh/St chim8 cDNA Optimization 8 nucleotide acid sequence of L.
hirsutumlS. tuberosum chimeric MKT
SEQ ID NO:215 Lh/St chim8 ORF Optimization 8 amino acid sequence of L.
hirsutumlS. tuberosum chimeric MKT
SEQ ID NO:159 Lh/St chim9 cDNA Optimization 9 nucleotide acid sequence of L.
hirsutumlS. tuberosum chimeric MKT
SEQ ID NO:216 Lh/St chim9 ORF Optimization 9 amino acid sequence of L.
hirsutumlS. tuberosum chimeric MKT
SEQ ID NO: 160 Lh/St chiml 0 cDNA Optimization 10 nucleotide acid sequence of L.
hirsutumlS. tuberosum chimeric MKT
SEQ ID NO:217 Lh/St chiml 0 ORF Optimization 10 amino acid sequence of L.
hirsutumlS. tuberosum chimeric MKT SEQ ID NO:161 Lh/St chiml 1 cDNA Optimization 11 nucleotide acid sequence of L.
hirsutumlS. tuberosum chimeric MKT
SEQ ID NO:218 Lh/St chiml 1 ORF Optimization 11 amino acid sequence of L.
hirsutumlS. tuberosum chimeric MKT
SEQ ID NO: 162 Lh/St chiml 2 cDNA Optimization 12 nucleotide acid sequence of L.
hirsutumlS. tuberosum chimeric MKT
SEQ ID NO:219 Lh/St chiml 2 ORF Optimization 12 amino acid sequence of L.
hirsutumlS. tuberosum chimeric MKT
SEQ ID NO: 163 Lh/St chiml 3 cDNA Optimization 13 nucleotide acid sequence of L.
hirsutumlS. tuberosum chimeric MKT
SEQ ID NO:220 Lh/St chiml 3 ORF Optimization 13 amino acid sequence of L.
hirsutumlS. tuberosum chimeric MKT
SEQ ID NO: 164 Lh/St chiml 4 cDNA Optimization 14 nucleotide acid sequence of L.
hirsutumlS. tuberosum chimeric MKT
SEQ ID NO:221 Lh/St chiml 4 ORF Optimization 14 amino acid sequence of L.
hirsutumlS. tuberosum chimeric MKT
SEQ ID NO: 165 Lh/St chiml 5 cDNA Optimization 15 nucleotide acid sequence of L.
hirsutumlS. tuberosum chimeric MKT
SEQ ID NO:222 Lh/St chiml 5 ORF Optimization 15 amino acid sequence of L.
hirsutumlS. tuberosum chimeric MKT
SEQ ID NO: 166 Lh/St chiml 6 cDNA Optimization 16 nucleotide acid sequence of L.
hirsutumlS. tuberosum chimeric MKT
SEQ ID NO:223 Lh/St chiml 6 ORF Optimization 16 amino acid sequence of L.
hirsutumlS. tuberosum chimeric MKT
SEQ ID NO: 167 Lh/St chiml 7 cDNA Optimization 17 nucleotide acid sequence of L.
hirsutumlS. tuberosum chimeric MKT
SEQ ID NO:224 Lh/St chiml 7 ORF Optimization 17 amino acid sequence of L.
hirsutumlS. tuberosum chimeric MKT
SEQ ID NO: 168 Lh/St chiml 8 cDNA Optimization 18 nucleotide acid sequence of L.
hirsutumlS. tuberosum chimeric MKT
SEQ ID NO:225 Lh/St chiml 8 ORF Optimization 18 amino acid sequence of L.
hirsutumlS. tuberosum chimeric MKT
SEQ ID NO: 169 Ctp Le MKT nat cDNA Native nucleotide sequence of L. esculentum
methylketone thioesterase with chloroplast transit peptide from Z. esculentum DCL1
SEQ ID NO:226 Ctp Le MKT nat ORF Native amino acid sequence of L. esculentum methylketone thioesterase with chloroplast transit peptide from Z. esculentum DCL1
Table 8: Descriptions of other genetic elements
Figure imgf000050_0001
SEQ ID NO:229 DCL1 44 cDNA Optimized nucleotide sequence for 44 amino acid plastid import leader from DCL1 Lycopersicon esculentum
SEQ ID NO:230 DCL1 44 ORF Amino acid sequence for 44 amino acid plastid import leader from DCL1 from Lycopersicon esculentum
SEQ ID NO:231 DCL1 50 cDNA Optimized nucleotide sequence for 50 amino acid leader from DCL1 from Lycopersicon esculentum
SEQ ID NO:232 DCL1 50 ORF Amino acid sequence for 50 amino acid plastid import leader from DCL1 from Lycopersicon esculentum
SEQ ID NO:233 UBQ10 INTRON 10th intron from Arabidopsis thaliana polyubiquitin gene
SEQ ID NO:234 HIS TAG Poly histidine peptide tag
SEQ ID NO:235 HA TAG Influenza hemagglutinin epitope
SEQ ID NO:236 HIS + HA TAG Poly histidine tag appended to influenza hemagglutinin epitope
SEQ ID NO:237 AcV5 TAG Baculovirus Autographa californica GP64 envelope fusion protein epitope
SEQ ID NO:238 FLAG TAG Epitope tag derived from amino-acid leader peptide of the gene- 10 product from bacteriophage T7
SEQ ID NO:239 cMyc TAG Synthetic peptide conjugated to KLH, corresponding to
C-terminal amino acids 408-432 of Human c-Myc
SEQ ID NO:240 RB7 promoter Root specific promoter from Nicotiana tabacum
SEQ ID NO:241 35S/ubi3 promoter Chimeric promoter of 35 S enhancer and ubi3
Additional optimized methylketone thioesterases contemplated in this invention can be described by the amino sequence profiles below:
XoXiX2 6 7 8VELX9VRDYELDQX1oGW AX11YASYCQHX12RHXi3 i4LEX15 lGXi 6Xi 7 i 8DX 1 9VX20RX21GX22ALAX23X24EX25X26LKX27LAPLRSGDRFX28VX29X30RX31SX32X33X34X35ARLX 35FEHFIFKLPX37X3 E PILE AX 9X40X41AVX42LX43X44X45 YRPX45RIPX47EX43X4 9SKX50 X51 FLX52X53EX54X55
XoXiX2X3X4X5X6X7X8VELX9VRDYELDQX1 oGW AX11YASYCQHX12RHX13Xi4LEX15 lGXi 6Xi 7X18DX19VX20RX21GX22ALAX23X24EX25X26LKX27LAPLRSGDRFX28 X29X30RX31SX32X33X34X 35ARLX3 6FEHFIFKLPX37X38EPILEAX3 9X40X41AVX42LX43X44X45YRPX4 6RIPX47EX48X4 9SK X50VX51FLX52X53KSCGX5 6QHX57L
XoXiX2X3X4X5X6X7X8VEMX9VRDYELDQX1 oGW AX11YASYCQHX12RHX13Xi4LEX15VGXi 6Xi 7X18DX19VX20RX21GX22SLAX23X24EX25X26LKX27FAPLRSGDRFX28VX29X30RX31AX32X33X34X 35ARLX3 6FEHFIFKLPX37X38EPILEAX3 9X40X41AVX42LX43X44X45YRPX4 6RIPX47EX48X4 9SK
X50QX51FX58SX59X60SX61X62
Preferred residues (underlined) and other residue examples
Xo = L, M, MA, X where X = 1 to 15 amino acids; Xi = S, N, R, A, T, G; X2 = D, E, G, R, S, L, deletion; X3 = Q, L, E, V; X4 = V, L, D, E; X5 = Y, K, Q; X6 = F, H, Q, P, L, V; X7 = H, Y, F, L, V; X8 = D, E, G; X9 = K, T, Q; X10 = F, Y; Xn = T, I, V; X12 = C, G; X13 = E, A; X14 = L, F, V; Xi5 = K, R, A, S, N, T, C; Xi6 = V, I, F, L; X17 = S, N; Xi8 = A, V, C, P; Xi9 = E, A, V; X20 = A, 1, C, S ; X2i = S, N, T, I; X22 = D, E, N; X23 = L, V, I, T; X24 =1, S; X25 = L, M ; X26 = S,1, H, N; X27 = F, Y; X28 = V, I; X29 =1, K, R; X30 = V, A, Ύ ; X31 = L, I, V; X32 = H, R, D, G, S, N;
33 = S,1, 1, F, A ; X34 = S,1, K; X35 = A, G, V, M; X36 = F, Y, I; X37 = D, N; X38 = R, Q, E, H; X39 = R, K; X40 = G, A; X4i = I, Ί, M; V; X42 = Y, W, C, R; X43 = N, D; X44 = R, K, N; X45 = I, S, N, K, D, R; X46 = I, V,1, A ; X47 = S,1, A, P, R; X48 = F, I,M,L; X49 = K, R, N, S, L ; X50 = F, L, I,M; Xsi = L, Q, K, H, F; X52 = H, R, K; X53 = Q, N, H, C, I; X54 = A, E, D; X55 = nothing, S, SH, SN, LN, PS; X56 = V,1, 1; X57 = H, R, K; X58 = T, S, L; X59 = E, K, R, V; X60 = G, D; X6i = S, R, K; X62 = S, G, GX where X = 1 to 15 amino acids.
Also contemplated are examples where 1 to 10 of the conserved residues are substituted with another amino acid. Particularly preferred are cases where the conserved residue substitutions are conservative (e.g., D to E, A to G, L to V, K to R, etc). In some embodiments each X independently represents 1, 2, 3, 5, 6, 7, 8, 9, or 10 amino acids.
Example 7: Methods for construct detection in transgenic plants
This example describes the detection and measurement of the recombinant DNA construct in the transgenic plant cell. Detecting or measuring transcription of the recombinant DNA construct in the transgenic plant cell of the invention can be achieved by any suitable method, including protein detection methods (for example, western blots, ELISAs, and other immunochemical methods), measurements of enzymatic activity, or nucleic acid detection methods (for example, Southern blots, northern blots, PCR, RT-PCR, fluorescent in situ hybridization). Such methods are well known to those of ordinary skill in the art as evidenced by the numerous handbooks available; see, for example, Joseph Sambrook and David W. Russell, "Molecular Cloning: A Laboratory Manual" (third edition), Cold Spring Harbor Laboratory Press, NY, 2001; Frederick M. Ausubel et al. (editors) "Short Protocols in Molecular Biology" (fifth edition), John Wiley and Sons, 2002; John M. Walker (editor) "Protein Protocols
Handbook" (second edition), Humana Press, 2002; and Leandro Pena (editor) "Transgenic Plants: Methods and Protocols", Humana Press, 2004.
DNA sequence information provided by the invention allows for the preparation of relatively short DNA (or RNA) sequences having the ability to specifically hybridize to DNA sequences of the selected polynucleotides disclosed herein. The polynucleotides disclosed in the present invention include SEQ ID NO: 5 -8, SEQ ID NO: 11-56 and SEQ ID NO: 131-168. In these aspects, nucleic acid probes of an appropriate length are prepared. The ability of the nucleic acid probes to specifically hybridize to one or more of these gene coding sequences lends them particular utility in a variety of embodiments. Most importantly, the probes may be used in a variety of assays for detecting the presence of complementary sequences in a given sample.
In certain embodiments, it is advantageous to use oligonucleotide primers. The sequence of such primers is designed using a portion of a polynucleotide sequence of the present invention to be homologous or complementary to the sequence for use in detecting, amplifying a defined polynucleotide segment using PCR™ technology (A Guide to Methods and Applications, Academic Press: San Diego, 1990). PCR primer pairs can be derived from a known sequence, for example, by using computer programs intended for that purpose such as Primer (Version 0.5,© (1991, Whitehead Institute for Biomedical Research, Cambridge, Mass.). Primers and probes based on the sequences disclosed herein can be used to confirm and, if necessary, to modify the disclosed sequences by conventional methods, for example, by re-cloning and re-sequencing. Exemplary PCR reaction conditions may include: Component Amount/Volume required sub- library aliquot 1 μΐ Gene-specific primer 1, 1 μΐ (100 pmol, Genome Walker™) Adaptor primer 1 (API), 1 μΐ dNTP mix (10 mM of each dNTP), 1 μΐ DMSO 2.5 μΐ (or 2-5% final concentration) 10X PCR buffer, 5 μΐ (final concentration of IX) Amplitaq Gold™ , 0.5 μΐ distilled water for final reaction volume of 50 μΐ reaction conditions for primary PCR:
A. 9 minutes at 95 °C; B. 94 °C for 2 seconds, 70° C for 3 minutes; repeat 94° C/70° C cycling for total of 7 times;
C. 94 °C for 2 seconds, 65° C for 3 minutes; repeat 94° C/65° C cycling for total of 36 times;
D. 65 °C. for 4 minutes as a final extension;
E. 10 °C. for an extended incubation
NESTED PCR (secondary PCR reaction) Component Amount/Volume Required 1 :50 dilution of the primary PCR reaction; 1 μΐ Gene-specific primer 2; 1 μΐ (100 pmol,
Genome Walker™ Adaptor primer 2; 1 μΐ or 3 (AP2 or AP3), dNTP mix (10 mM of each dNTP); 1 μΐ DMSO; 2.5 μΐ 10X PCR buffer containing MgCl2; 5 μΐ (final concentration of IX) Amplitaq Gold™; 0.5 μΐ distilled water to final reaction volume of 50 μΐ reaction. Conditions for Nested PCR:
A. 9 minutes at 95 °C;
B. 94 °C for 2 seconds, 70 °C for 3 minutes; repeat 94 °C/70° C cycling for total of 5 times;
C. 94 °C for 2 seconds, 65 °C for 3 minutes; repeat 94 °C/65 °C cycling for total of 24 times;
D. 65 °C for 4 minutes as a final extension;
E. 10 °C for an extended incubation.
PCR conditions can be modified from the described conditions by those skilled in the method to produce an amplicon.
Detection of foreign gene expression in transgenic plant is monitored by an
immunological method for example ELISA (enzyme-linked immunosorbent assays) for a quantitative determination of the level of corresponding protein obtained. Quantitative determination of the encoded protein in the leaves of transgenic plants is performed using ELISA, for example as disclosed in Clark et ah, : ELISA Techniques. In: Weissbach A,
Weissbach H (eds) Methods in Enzymology 118:742-766, Academic Press, Florida (1986).
Certain Useful sequences are described below. SEQ ID NO 1 : Lycopersicon esculentum MKT cDNA ATGGCTGAGTTCCATGAAGTTGAACTCAAAGTCCGGGACTATGAATTGGATCAGTATGGTGTTGTAAACA ATGCTATTTATGCAAGTTATTGCCAACATGGTCGTCATGAGCTTCTAGAAAGGATTGGTATAAGTGCTGA TGAAGTGGCACGCAGTGGTGACGCACTAGCACTAACAGAGCTGTCACTTAAGTATCTAGCACCTCTAAGG AGTGGAGATAGATTTGTCGTGAAGGCACGAATATCTGATTCTTCAGCTGCTCGTTTGTTTTTCGAACACT TCATCTTCAAGCTTCCAGATCAAGAGCCCATCTTGGAGGCAAGAGGAATAGCAGTGTGGCTCAATAAAAG TTACCGTCCTGTCCGAATCCCGGCAGAGTTCAGATCAAAATTTGTTCAGTTCCTTCGCCAGGAGGCATCC AAC
gi I 196122242 I g I EU908050.1 I Solanum lycopersicum thioesterase-like protein (MKS2) mRNA, partial cds
SEQ ID NO 57: Lycopersicon esculentum MKT ORF
MAEFHEVELKVRDYELDQYGWNNAIYASYCQHGRHELLERIGISADEVARSGDALALTELSLKYLAPLR SGDRFWKARISDSSAARLFFEHFIFKLPDQEPILEARGIAVWLNKSYRPVRIPAEFRSKFVQFLRQEAS
N
gi I 196122243 I g I ACG69783.1 I thioesterase-like protein [Solanum lycopersicum]
SEQ ID NO 2: Petunia integrifolia subsp. inflata MKT cDNA
CATAAATTGGGATGGAGGGGTACAATCTGTTACCCCTCGTCCATTCATTAAGGGTAAGTTTAATTGTTAA TTTAATAATGTGTCGTTCTTTTTTGTGAGGAGGTGTGAGTGGCTGGCTGTGCTGGGTCTGCGGAGTGGTA AAGGCAGACCAAAGAAGAATTGGGGCGAGGTGATTCGACATGATATGGCTCGCCTCCAGGTCACCGAGGA CACGACCCTTGACAGGAAAGCGTGGAGGTCTAGGATTAGGGTAGAAGGTTAGGTGAAAGGGGCTGATAGA TCTCGCCCAGTGTTCCCCTCCTTCCCCCGCCGCCTTTCGACCCGCGGGAGTATACAATGTCAGCCCAACA TAGGTTGTTAACCAAAAAAGAGAAGTTCCCGTGAAAACAGAAAAAGACCTCCCCCTTAACCCCCCTTACT TGGCAGATTCAGATTGAGTGCCGTCATTTTAGCGAATGAATGAGTTCTATGAAGTCGAACTCAAAGTCCG GGACTATGAGTTGGATCAATATGGTGTTGTAAACAATGCTATTTATGCTAGTTATTGCCAACATTGTCGG CATGAGCTTCTGGAAAAGATTGGCGTAAATGCTGATGCAGTGGCACGCAATGGTGAAGCATTAGCACTAA CAGAGATGACACTAAAGTATCTAGCACCTCTAAGGAGTGGAGACAGATTCATTGTGAAGGTGCGAATATC TGACTCTTCAGCTGCTCGTTTGTTCTTTGAACACTTCATCTTCAAGCTTCCAGATCAAGAGCCTATCTTG GAGGCAAGAGGAACAGCAGTGTGGCTTAATAAAAGTTACCGTCCTGTCCGAATTCCTTCAGAGTTCAGAT CAAAATTCGTTCAGTTCCTTCGCCAGGAGGCATGAACTAGTGTGCTTGTCTACAAAAGTCCAGAAAAGTT GTCTTGCTCAAGAATTTCATGAGCAAAAGCTCAAACTAATGTATATGAAGAACTCAATTCATACTGCTTC GCATAGAGGCAAGCGTTGGGGTCAATTAAAAGAAGTAAAAGCCTACACAATTGATTGGGAAAATCAGCTG TTGGAACTCAAAAGTGGGGAGCTAGAGGACCCTTAAAAAGAGGGCAGAAATTTATTTTTCCATTAGATTG GTGATGCACTTAGTTTATCTCCTTTGTGAATTGAAAGCACTTATTCAATTGAAAGTTTAGTAATCTGTAT TTTTTCAGGATAAATTCTAGATATAAGAAATTTCAAATTTATAAAGTTCTCTTAAAAAGGGTCTTTCTTC AAATGTGACTAAGTTTGAAATGTCAAGGCTCAGGGACTGTGTGTCCAGTGTTCTGTCTCTTCTTCAGTTA CTCTGAATTTGCTGTGTAGATCCTTG
gi I 46371864 I gb I AY577288.1 I Petunia integrifolia subsp. inflata clone
Pi061803d putative pollen thioesterase mRNA, complete cds
SEQ ID NO 58: Petunia integrifolia subsp. inflata MKT ORF
MNEFYEVELKVRDYELDQYGWNNAIYASYCQHCRHELLEKIGVNADAVARNGEALALTEMTLKYLAPLR SGDRFIVKVRISDSSAARLFFEHFIFKLPDQEPILEARGTAVWLNKSYRPVRIPSEFRSKFVQFLRQEA
gi I 46371865 I gb I AAS90598.1 I putative pollen thioesterase [Petunia integrifolia subsp. inflata] SEQ ID NO 3 : Lycopersicon hirsutum f. glabratum MKT cDNA
ATGAGTGATCAGGTCTATCACCATGACGTTGAACTCACAGTCAGGGACTATGAGTTGGATCAGTTTGGTG TTGTAAATAATGCTACTTATGCGAGTTATTGTCAACATTGTCGTCATGCGTTTCTAGAAAAAATTGGTGT TAGTGTTGATGAAGTAACGCGAAATGGTGATGCATTAGCTGTAACAGAGCTCTCACTTAAGTTTCTAGCA CCACTAAGGAGTGGAGATAGATTCGTGGTGAGGGCGCGATTATCCCACTTTACAGTAGCTCGATTGTTTT TCGAGCATTTCATCTTCAAGCTTCCAGATCAAGAGCCTATATTGGAGGCAAGAGGAATAGCAGTGTGGCT TAATAGAAGTTATCGTCC A CGAATTCCGTCAGAGTTCAATTCAAAATTTGTTAAATTCCTTCACCAG AAGAGTTGCGGTGTACAACATCATCTC
gi I 195979084 I gb I EU883793.1 I Lycopersicon hirsutum f. glabratum thioesterase- like protein (Sh-MKS2) mRNA, partial cds
SEQ ID NO 59: Lycopersicon hirsutum f. glabratum MKT ORF
MSDQVYHHDVELTVRDYELDQFGWNNATYASYCQHCRHAFLEKIGVSVDEVTRNGDALAVTELSLKFLA PLRSGDRFWRARLSHFTVARLFFEHFIFKLPDQEPILEARGIAVWLNRSYRPIRIPSEFNSKFVKFLHQ KSCGVQHHL
gi I 195979085 I gb I ACG63705.1 I thioesterase-like protein [Lycopersicon hir f. glabratum]
SEQ ID NO 4: Solatium tuberosum MKT cDNA
CCTTAGACAACAGATTTCCCAATATTTACAATTTCCTTCTCTTCTACCTCTGAATTTTTTCGTCAAATGT CTCATTCCGTCTGCATTGCACCCAACCCACTGTTGCTGAATCATCGGCAACGACCGTCTACATTTCCGTT CATCCCTCACCGGCAACTCCCGCTCCCAAATTTACAGTTATCGGCCCGTAAATCGAGGAGTTTTGAAGCT CATAATGCATTCGATCTCAAAGATACCCAAGGAATGGGTGATCAGCTCTATCAACATGAAGTTGAACTCC AAGTCAGGGACTATGAATTGGATCAGTTTGGTGTTGTAAACAATGCTACTTATGCAAGTTATTGTCAACA TTGCCGTCATGAGTTTCTTGAAAAGATTGGTGTAAGTGTTGATGAAGTATGTCGCACTGGTGAAGCATTA GCAACAACAGAGCTTTCACTTAAGTATCTAGCACCTCTAAGGAGTGGAGATAGATTTGTGGTGAAGGTGC GAATATCCCGCTCTACAGCAGCTCGATTGTTTTTCGAGCATTTCATCTTCAAGCTTCCAGATCAAGAGCC TATATTGGAGGCAAGAGGAATAGCAGTGTGGCTTAATAGAAGTTACCGTCCTATCCGAATTCCATCAGAG TTCAGTTCAAAATTTGTTCAGTTCCTTCACCAGAAGAGTTGCGGTACACAACACCGTCTCTAGAACCTAC TCGTGGAATTACATTGGTATTATTTCTGAATTTAGTGCTTGTAATGTCTAACAACATTTGATCTTTCATT AAATTGAATG gi I 13614793 I gb I BG596653.1 I BG596653 EST495331 cSTS Solanum tuberosum cDNA clone CSTS15E12 5' sequence, mRNA sequence
SEQ ID NO 60: Solanum tuberosum MKT ORF
MSHSVCIAPNPLLLNHRQRPSTFPFIPHRQLPLPNLQLSARKSRSFEAHNAFDLKDTQGMGDQLYQHEVE LQVRDYELDQFGWNNATYASYCQHCRHEFLEKIGVSVDEVCRTGEALATTELSLKYLAPLRSGDRFWK VRISRSTAARLFFEHFIFKLPDQEPILEARGIAVWLNRSYRPIRIPSEFSSKFVQFLHQKSCGTQHRL
SEQ ID NO 5 : Lycopersicon esculentum MKT modified cDNA ATGGCTGAGTTCCATGAAGTTGAACTCAAAGTCaGGGACTATGAATTGGATCAGTATGGTGTTGTAAACAATGCTAT cTATGCAAGTTATTGCCAACATGGTCGTCATGAGCTcCTtGAAAGGATTGGTATAAGTGCTGATGAAGTGGCACGtA GTGGTGACGCACTtGCACTtACAGAGtTGTCACTTAAGTATCTtGCACCTCTtAGGAGTGGAGATAGATTTGTCGTG AAaGCtaGAATATCTGATTCTTCAGCTGCTCGTTTGTTcTTtGAACACTTCATCTTCAAaCTTCCtGATCAAGAGCC CATCTTGGAGGCAAGAGGAATAGCAGTGTGGCTCAAcAAgAGTTACCGTCCTGTCaGAATCCCaGCAGAGTTCAGAT CAAAATTTGTTCAGTTCCTTCGtCAGGAGGCATCCAACtga
SEQ ID NO 61 : Lycopersicon esculentum MKT modified ORF
MAEFHEVELKVRDYELDQYGWNNAIYASYCQHGRHELLERIGI SADEVARSGDALALTELSLKYLAPLRSGDRFW KARI SDS SAARLFFEHFI FKLPDQEPI LEARGIAVWLNKSYRPVRI PAEFRSKFVQFLRQEASN
SEQ ID NO 6: Petunia integrifolia MKT modified cDNA
ATGgctAATGAGTTCTATGAAGTCGAACTCAAAGTCaGGGACTATGAGTTGGATCAATATGGTGTTGTAAACAATGC TATcTATGCTAGTTATTGCCAACATTGTaGGCATGAGCTTCTtGAAAAGATTGGCGTAAATGCTGATGCAGTGGCAC GtAATGGTGAAGCATTAGCACTtACAGAGATGACACTcAAGTATCTtGCACCTCTcAGGAGTGGAGACAGATTCATT GTGAAaGTtaGAATATCTGACTCTTCAGCTGCTCGTTTGTTCTTTGAACACTTCATCTTCAAaCTTCCtGATCAAGA GCCTATCTTGGAGGCAAGAGGAACAGCAGTGTGGCTTAAcAAgAGTTACCGTCCTGTCaGAATcCCTTCAGAGTTCA GATCAAAATTCGTTCAGTTCCTTCGtCAGGAGGCATGA
SEQ ID NO 62: Petunia integrifolia MKT modified ORF
MANEFYEVELKVRDYELDQYGWNNAIYASYCQHCRHELLEKIGVNADAVARNGEALALTEMTLKYLAPLRSGDRFI VKVRI SDS SAARLFFEHFI FKLPDQEPI LEARGTAVWLNKSYRPVRI PSEFRSKFVQFLRQEA
SEQ ID NO 7: Lycopersicon hirsutum MKT modified cDNA
ATGgctAGTGATCAGGTCTATCACCATGACGTTGAACTCACAGTCAGGGACTATGAGTTGGATCAGTTTGGTGTTGT AAATAATGCTACTTATGCtAGTTATTGTCAACATTGTCGTCATGCtTTcCTtGAgAAgATTGGTGTTAGTGTTGATG AAGTAACcCGtAATGGTGATGCATTAGCTGTAACAGAGCTCTCACTTAAGTTTCTtGCACCACTtAGGAGTGGAGAT AGATTCGTGGTGAGGGCtaGATTgTCCCACTTTACAGTAGCTaGATTGTTcTTtGAGCATTTCATCTTCAAaCTTCC tGATCAAGAGCCTATATTGGAGGCAAGAGGAATAGCAGTGTGGCTTAATAGAAGTTATCGTCCTATTCGtATTCCaT CAGAGTTCAATTCAAAATTTGTTAAATTCCTTCACCAGAAGAGTTGCGGTGTACAACATCATCTCtga
SEQ ID NO 63 : Lycopersicon hirsutum MKT modified ORF
MASDQVYHHDVELTVRDYELDQFGWNNATYASYCQHCRHAFLEKIGVSVDEVTRNGDALAVTELSLKFLAPLRSGD RFWRARLSHFTVARLFFEHFI FKLPDQEPI LEARGIAVWLNRSYRPIRI PSEFNSKFVKFLHQKSCGVQHHL
SEQ ID NO 8: Solanum tuberosum MKT modified cDNA
ATGgctGGTGATCAGCTCTATCAACATGAAGTTGAACTCCAAGTCAGGGACTATGAATTGGATCAGTTTGGTGTTGT AAACAATGCTACTTATGCAAGTTATTGTCAACATTGCCGTCATGAGTTTCTTGAgAAGATTGGTGTAAGTGTTGATG AAGTATGTaGaACTGGTGAAGCATTAGCAACAACAGAGCTTTCACTTAAGTATCTtGCACCTCTcAGGAGTGGAGAT AGATTTGTGGTGAAGGTGaGAATATCCaGgTCTACAGCAGCTCGtTTGTTcTTCGAGCATTTCATCTTCAAaCTTCC AGATCAAGAGCCTATATTGGAGGCAAGAGGAATAGCAGTGTGGCTTAATAGAAGTTACCGTCCTATCaGAATaCCAT CAGAGTTCAGTTCAAAgTTTGTTCAGTTCCTTCACCAGAAGAGTTGCGGTACACAACACCGTCTCTAG SEQ ID NO 64: Solatium tuberosum MKT modified ORF
MAGDQLYQHEVELQVRDYELDQFGWNNATYASYCQHCRHEFLEKIGVSVDEVCRTGEALATTELSLKYLAPLRSGD RFWKVRISRSTAARLFFEHFIFKLPDQEPILEARGIAVWLNRSYRPIRIPSEFSSKFVQFLHQKSCGTQHRL.
SEQ ID NO 9: Modified Z. esculentum MKT cDNA with heterologous plastid transit sequence
Atggcttcaatttgtacttcaaattttcactttctatgcagaaaaaacaattctagccctatttctcatcatctact gttatctccctcttctttatccttctcacgttgcggcggattgcggttgtgtcgtgcggccgcaGAGTTCCATGAAG TTGAACTCAAAGTCAGGGACTATGAATTGGATCAGTATGGTGTTGTAAACAATGCTATCTATGCAAGTTATTGCCAA CATGGTCGTCATGAGCTCCTTGAAAGGATTGGTATAAGTGCTGATGAAGTGGCACGTAGTGGTGACGCACTTGCACT TACAGAGTTGTCACTTAAGTATCTTGCACCTCTTAGGAGTGGAGATAGATTTGTCGTGAAAGCTAGAATATCTGATT CTTCAGCTGCTCGTTTGTTCTTTGAACACTTCATCTTCAAACTTCCTGATCAAGAGCCCATCTTGGAGGCAAGAGGA ATAGCAGTGTGGCTCAACAAGAGTTACCGTCCTGTCAGAATCCCAGCAGAGTTCAGATCAAAATTTGTTCAGTTCCT TCGTCAGGAGGCATCCAACTGA
SEQ ID NO 65 : Modified L. esculentum MKT ORF with heterologous plastid transit peptide masictsnfhflcrknnsspishhlllspsslsfsrcgglrlcraaaEFHEVELKVRDYELDQYGWNNAIYASYCQ HGRHELLERIGISADEVARSGDALALTELSLKYLAPLRSGDRFWKARISDSSAARLFFEHFIFKLPDQEPILEARG IAVWLNKSYRPVRIPAEFRSKFVQFLRQEASN
SEQ ID NO 10: Modified L. hirsutum MKT cDNA with heterologous plastid transit sequence
Atggcttcaatttgtacttcaaattttcactttctttgcaggaagaacaattctagccctatttctcatcatctact tttatctccctcttctttatccttctcacgttgcggcggattgcgtttgtgtcgtgcggccgcaAGTGATCAGGTCT ATCACCATGACGTTGAACTCACAGTCAGGGACTATGAGTTGGATCAGTTTGGTGTTGTAAATAATGCTACTTATGCt AGTTATTGTCAACATTGTCGTCATGCtTTcCTtGAgAAgATTGGTGTTAGTGTTGATGAAGTAACcCGtAATGGTGA TGCATTAGCTGTAACAGAGCTCTCACTTAAGTTTCTtGCACCACTtAGGAGTGGAGATAGATTCGTGGTGAGGGCta GATTgTCCCACTTTACAGTAGCTaGATTGTTcTTtGAGCATTTCATCTTCAAaCTTCCtGATCAAGAGCCTATATTG GAGGCAAGAGGAATAGCAGTGTGGCTTAATAGAAGTTATCGTCCTATTCGtATTCCaTCAGAGTTCAATTCAAAATT TGTTAAATTCCTTCACCAGAAGAGTTGCGGTGTACAACATCATCTCtga
SEQ ID NO 66: Modified L. hirsutum MKT ORF with heterologous plastid transit peptide masictsnfhflcrknnsspishhlllspsslsfsrcgglrlcraaaSDQVYHHDVELTVRDYELDQFGWNNATYA SYCQHCRHAFLEKIGVSVDEVTRNGDALAVTELSLKFLAPLRSGDRFWRARLSHFTVARLFFEHFIFKLPDQEPIL EARGIAVWLNRSYRPIRIPSEFNSKFVKFLHQKSCGVQHHL
SEQ ID NO 11 : Lycopersicon esculentum optimization 1 cDNA
ATGagtGAGTTCCATGAAGTTGAACTCAAAGTCaGGGACTATGAATTGGATCAGTATGGTGTTGTAAACAATGCTAT cTATGCAAGTTATTGCCAACATtgcCGTCATGAGCTcCTtGAAAGGATTGGTgtgAGTGCTGATGAAGTGGCACGtA GTGGTGACGCACTtGCACTtACAGAGtTGTCACTTAAGTATCTtGCACCTCTtAGGAGTGGAGATAGATTTGTCGTG AAaGCtaGAATATCTGATTCTTCAGCTGCTCGTTTGTTcTTtGAACACTTCATCTTCAAaCTTCCtGATCAAGAGCC CATCTTGGAGGCAAGAGGAATAGCAGTGTGGCTCAAcAAgAGTTACCGTCCTGTCaGAATCCCatccGAGTTCAGAT CAAAATTTGTTCAGTTCCTTCGtCAGGAGGCATCCAAC SEQ ID NO 67: Lycopersicon esculentum optimization 1 ORF
MSEFHEVELKVRDYELDQYGWNNAIYASYCQHCRHELLERIGVSADEVARSGDALALTELSLKYLAPLR SGDRFWKARI SDS SAARLFFEHFI FKLPDQEPI LEARGIAVWLNKSYRPVRI PSEFRSKFVQFLRQEAS N
SEQ ID NO 12: Petunia integrifolia optimization 1 cDNA
ATGAATGAGTTCTATGAAGTCGAACTCAAAGTCaGGGACTATGAGTTGGATCAATATGGTGTTGTAAACAATGCTAT cTATGCTAGTTATTGCCAACATTGTaGGCATGAGCTTCTtGAAAAGATTGGCGTAagtGCTGATgagGTGGCACGtA ATGGTGAAGCATTAGCACTtACAGAGttaACACTcAAGTATCTtGCACCTCTcAGGAGTGGAGACAGATTCgttGTG AAaGTtaGAATATCTGACTCTTCAGCTGCTCGTTTGTTCTTTGAACACTTCATCTTCAAaCTTCCtGATCAAGAGCC TATCTTGGAGGCAAGAGGAatcGCAGTGTGGCTTAAcAAgAGTTACCGTCCTGTCaGAATcCCTTCAGAGTTCAGAT CAAAATTCGTTCAGTTCCTTCGtCAGGAGGCAtcaaac
SEQ ID NO 68: Petunia integrifolia optimization 1 ORF
MNEFYEVELKVRDYELDQYGWNNAIYASYCQHCRHELLEKIGVSADEVARNGEALALTELTLKYLAPLR SGDRFWKVRI SDS SAARLFFEHFI FKLPDQEPI LEARGIAVWLNKSYRPVRI PSEFRSKFVQFLRQEAS N
SEQ ID NO 13: Lycopersicon hirsutum optimization 1 cDNA
ATGAGTGATCAGGTCTATttcCATGACGTTGAACTCaagGTCAGGGACTATGAGTTGGATCAGTTTGGTGTTGTAAA TAATGCTACTTATGCtAGTTATTGTCAACATTGTCGTCATgagTTcCTtGAgAAgATTGGTGTTAGTGTTGATGAAG TAgctCGtAATGGTGATGCATTAGCTcttACAGAGCTCTCACTTAAGTTTCTtGCACCACTtAGGAGTGGAGATAGA TTCGTGGTGAGGGCtaGAatcTCCgatagtACAgcaGCTaGATTGTTcTTtGAGCATTTCATCTTCAAaCTTCCtGA TCAAGAGCCTATATTGGAGGCAAGAGGAATAGCAGTGTGGCTTAATAGAAGTTATCGTCCTATTCGtATTCCaTCAG AGTTCagaTCAAAATTTGTTcagTTCCTTCACCAGAAGAGTTGCGGTGTACAACATCATCTC
SEQ ID NO 69: Lycopersicon hirsutum optimization 1 ORF
MSDQVYFHDVELKVRDYELDQFGWNNATYASYCQHCRHEFLEKIGVSVDEVARNGDALALTELSLKFLA PLRSGDRFWRARI SDSTAARLFFEHFI FKLPDQEPI LEARGIAVWLNRSYRPIRI PSEFRSKFVQFLHQ KSCGVQHHL
SEQ ID NO 14: Solanum tuberosum optimization 1 cDNA
ATGagtGATCAGCTCTATttcCATGAAGTTGAACTCaagGTCAGGGACTATGAATTGGATCAGTTTGGTGTTGTAAA CAATGCTACTTATGCAAGTTATTGTCAACATTGCCGTCATGAGTTTCTTGAgAAGATTGGTGTAAGTGTTGATGAAG TAgcaaGaACTGGTGAAGCATTAGCActtACAGAGCTTTCACTTAAGTATCTtGCACCTCTcAGGAGTGGAGATAGA TTTGTGGTGAAGGTGaGAATATCCgatTCTACAGCAGCTCGtTTGTTcTTCGAGCATTTCATCTTCAAaCTTCCAGA TCAAGAGCCTATATTGGAGGCAAGAGGAATAGCAGTGTGGCTTAATAGAAGTTACCGTCCTATCaGAATaCCATCAG AGTTCcgtTCAAAgTTTGTTCAGTTCCTTCACCAGAAGAGTTGCGGTACACAACACCGTCTC
SEQ ID NO 70: Solanum tuberosum optimization 1 ORF
MSDQLYFHEVELKVRDYELDQFGWNNATYASYCQHCRHEFLEKIGVSVDEVARTGEALALTELSLKYLA PLRSGDRFWKVRI SDSTAARLFFEHFI FKLPDQEPI LEARGIAVWLNRSYRPIRI PSEFRSKFVQFLHQ KSCGTQHRL
SEQ ID NO 15: Lycopersicon esculentum optimization 2 cDNA
ATGagtGATCAGCTCTATttcCATGAAGTTGAACTCaagGTCAGGGACTATGAATTGGATCAGTTTGGTGTTGTAAA CAATGCTACTTATGCAAGTTATTGTCAACATTGCCGTCATGAGTTTCTTGAgAAGATTGGTGTAAGTGTTGATGAAG TAgcaaGaACTGGTGAAGCATTAGCActtACAGAGCTTTCACTTAAGTATCTtGCACCTCTcAGGAGTGGAGATAGA TTTGTGGTGAAGGTGaGAATATCCgatTCTACAGCAGCTCGtTTGTTcTTCGAGCATTTCATCTTCAAaCTTCCAGA TCAAGAGCCTATATTGGAGGCAAGAGGAATAGCAGTGTGGCTTAATAGAAGTTACCGTCCTATCaGAATaCCATCAG AGTTCcgtTCAAAgTTTGTTCAGTTCCTTCACCAGAAGAGTTGCGGTACACAACACCGTCTC
SEQ ID NO 71 : Lycopersicon esculentum optimization 2 ORF
MSDQVYFHEVELKVRDYELDQFGWNNATYASYCQHCRHEFLERIGI SVDEVARSGDALALTELSLKYLA PLRSGDRFWKARI SDSTAARLFFEHFI FKLPDQEPI LEARGIAVWLNRSYRPIRI PSEFRSKFVQFLHQ KSCGVQHHL
SEQ ID NO 16: Petunia integrifolia optimization 2 cDNA
ATGaatGATCAGCTCTATTTCTATGAAGTCGAACTCAAAGTCaGGGACTATGAGTTGGATCAAttcGGTGTTGTAAA CAATGCTaccTATGCTAGTTATTGCCAACATTGTaGGCATGAGtttCTtGAAAAGATTGGCGTAAATgttGATGCAG TGGCACGtAATGGTGAAGCATTAGCACTtACAGAGATGACACTcAAGTATCTtGCACCTCTcAGGAGTGGAGACAGA TTCATTGTGAAaGTtaGAATATCTGACTCTacaGCTGCTCGTTTGTTCTTTGAACACTTCATCTTCAAaCTTCCtGA TCAAGAGCCTATCTTGGAGGCAAGAGGAACAGCAGTGTGGCTTAAcaggAGTTACCGTCCTatcaGAATcCCTTCAG AGTTCAGATCAAAATTCGTTCAGTTCCTTCACCAGAAGAGTTGCGGTACACAACACCGTCTC
SEQ ID NO 72: Petunia integrifolia optimization 2 ORF
MNDQLYFYEVELKVRDYELDQFGWNNATYASYCQHCRHEFLEKIGVNVDAVARNGEALALTEMTLKYLA PLRSGDRFIVKVRI SDSTAARLFFEHFI FKLPDQEPI LEARGTAVWLNRSYRPIRI PSEFRSKFVQFLHQ KSCGTQHRL
SEQ ID NO 17: Lycopersicon hirsutum optimization 2 cDNA
ATGagtgagcaccatGACGTTGAACTCACAGTCAGGGACTATGAGTTGGATCAGtatGGTGTTGTAAATAATGCTat tTATGCtAGTTATTGTCAACATTGTCGTCATGCtttgCTtGAgAAgATTGGTGTTAGTgctGATGAAGTAACcCGtA ATGGTGATGCATTAGCTGTAACAGAGCTCTCACTTAAGTTTCTtGCACCACTtAGGAGTGGAGATAGATTCGTGGTG AGGGCtaGATTgTCCCACTTTagcGTAGCTaGATTGTTcTTtGAGCATTTCATCTTCAAaCTTCCtGATCAAGAGCC TATATTGGAGGCAAGAGGAATAGCAGTGTGGCTTAATaagAGTTATCGTCCTgttCGtATTCCaTCAGAGTTCAATT CAAAATTTGTTAAATTCCTTCGtCAGGAGGCATCCAAC
SEQ ID NO 73 : Lycopersicon hirsutum optimization 2 ORF
MSEHHDVELTVRDYELDQYGWNNAIYASYCQHCRHALLEKIGVSADEVTRNGDALAVTELSLKFLAPLR SGDRFWRARLSHFSVARLFFEHFI FKLPDQEPI LEARGIAVWLNKSYRPVRI PSEFNSKFVKFLRQEAS N
SEQ ID NO 18: Solanum tuberosum optimization 2 cDNA ATGagtgagcagcatGAAGTTGAACTCCAAGTCAGGGACTATGAATTGGATCAGtatGGTGTTGTAAACAATGCTat tTATGCAAGTTATTGTCAACATTGCCGTCATGAGcttCTTGAgAAGATTGGTGTAAGTgctGATGAAGTATGTaGaA CTGGTGAAGCATTAGCAACAACAGAGCTTTCACTTAAGTATCTtGCACCTCTcAGGAGTGGAGATAGATTTGTGGTG AAGGTGaGAATATCCaGgTCTtCCGCAGCTCGtTTGTTcTTCGAGCATTTCATCTTCAAaCTTCCAGATCAAGAGCC TATATTGGAGGCAAGAGGAATAGCAGTGTGGCTTAATaagAGTTACCGTCCTgtgaGAATaCCATCAGAGTTCAGTT CAAAgTTTGTTCAGTTCCTTCGtCAGGAGGCATCCAAC
SEQ ID NO 74: Solanum tuberosum optimization 2 ORF
MSEQHEVELQVRDYELDQYGWNNAIYASYCQHCRHELLEKIGVSADEVCRTGEALATTELSLKYLAPLR SGDRFWKVRI SRS SAARLFFEHFI FKLPDQEPI LEARGIAVWLNKSYRPVRI PSEFS SKFVQFLRQEAS N
SEQ ID NO 19: Lycopersicon esculentum optimization 3 cDNA
ATGGCTGAGTTCCATGAAGTTGAACTCAAAGTCaGGGACTATGAATTGGATCAGTATGGTGTTGTAAACAATGCTAT cTATGCAAGTTATTGCCAACATGGTCGTCATGAGCTcCTtGAAAGGATTGGTATAaacGCTGATgcaGTGGCACGta atGGTGACGCACTtGCACTtACAGAGtTGTCACTTAAGTATCTtGCACCTCTtAGGAGTGGAGATAGATTTGTCGTG AAaGCtaGAATATCTGATTCTTCAGCTGCTCGTTTGTTcTTtGAACACTTCATCTTCAAaCTTCCtGATCAAGAGCC CATCTTGGAGGCAAGAGGAATAGCAGTGTGGCTCAAcAAgAGTTACCGTCCTGTCaGAATCCCaGCAGAGTTCAGAT CAAAATTTGTTCAGTTCCTTCGtCAGGAGGCATCCAAC
SEQ ID NO 75: Lycopersicon esculentum optimization 3 ORF
MAEFHEVELKVRDYELDQYGWNNAIYASYCQHGRHELLERIGIMAD.S.VARNGDALALTELSLKYLAPLR SGDRFWKARI SDS SAARLFFEHFI FKLPDQEPI LEARGIAVWLNKSYRPVRI PAEFRSKFVQFLRQEAS N
SEQ ID NO 20: Lycopersicon esculentum optimization 4 cDNA
ATGGCTGAGTTCCATGAAGTTGAACTCAAAGTCaGGGACTATGAATTGGATCAGTATGGTGTTGTAAACAATGCTAT cTATGCAAGTTATTGCCAACATtgcCGTCATGAGCTcCTtGAAAGGATTGGTATAaacGCTGATgcaGTGGCACGta atGGTGACGCACTtGCACTtACAGAGtTGTCACTTAAGTATCTtGCACCTCTtAGGAGTGGAGATAGATTTGTCGTG AAaGCtaGAATATCTGATTCTTCAGCTGCTCGTTTGTTcTTtGAACACTTCATCTTCAAaCTTCCtGATCAAGAGCC CATCTTGGAGGCAAGAGGAATAGCAGTGTGGCTCAAcAAgAGTTACCGTCCTGTCaGAATCCCaGCAGAGTTCAGAT CAAAATTTGTTCAGTTCCTTCGtCAGGAGGCATCCAAC
SEQ ID NO 76: Lycopersicon esculentum optimization 4 ORF
MAEFHEVELKVRDYELDQYGWNNAIYASYCQHCRHELLERIGINAD.&VARNGDALALTELSLKYLAPLR SGDRFWKARI SDS SAARLFFEHFI FKLPDQEPI LEARGIAVWLNKSYRPVRI PAEFRSKFVQFLRQEAS N
SEQ ID NO 21: Lycopersicon esculentum optimization 5 cDNA
ATGGCTGAGTTCCATGAAGTTGAACTCAAAGTCaGGGACTATGAATTGGATCAGTATGGTGTTGTAAACAATGCTAT cTATGCAAGTTATTGCCAACATtgcCGTCATGAGCTcCTtGAAAGGATTGGTATAAGTGCTGATGAAGTGGCACGtA GTGGTGACGCACTtGCACTtACAGAGtTGTCACTTAAGTATCTtGCACCTCTtAGGAGTGGAGATAGATTTGTCGTG AAaGCtaGAATATCTGATTCTTCAGCTGCTCGTTTGTTcTTtGAACACTTCATCTTCAAaCTTCCtGATCAAGAGCC CATCTTGGAGGCAAGAGGAATAGCAGTGTGGCTCAAcAAgAGTTACCGTCCTGTCaGAATCCCaGCAGAGTTCAGAT CAAAATTTGTTCAGTTCCTTCGtCAGGAGGCATCCAAC
SEQ ID NO 77: Lycopersicon esculentum optimization 5 ORF
MAEFHEVELKVRDYELDQYGWNNAIYASYCQHCRHELLERIGI SADEVARSGDALALTELSLKYLAPLR SGDRFWKARI SDS SAARLFFEHFI FKLPDQEPI LEARGIAVWLNKSYRPVRI PAEFRSKFVQFLRQEAS N
SEQ ID NO 22: Lycopersicon esculentum optimization 6 cDNA
ATGGCTGAGTTCtatGAAGTTGAACTCAAAGTCaGGGACTATGAATTGGATCAGTATGGTGTTGTAAACAATGCTAT cTATGCAAGTTATTGCCAACATGGTCGTCATGAGCTcCTtGAAAGGATTGGTATAAGTGCTGATGAAGTGGCACGtA GTGGTGACGCACTtGCACTtACAGAGtTGTCACTTAAGTATCTtGCACCTCTtAGGAGTGGAGATAGATTTGTCGTG AAaGCtaGAATATCTGATTCTTCAGCTGCTCGTTTGTTcTTtGAACACTTCATCTTCAAaCTTCCtGATCAAGAGCC CATCTTGGAGGCAAGAGGAATAGCAGTGTGGCTCAAcAAgAGTTACCGTCCTGTCaGAATCCCaGCAGAGTTCAGAT CAAAATTTGTTCAGTTCCTTCGtCAGGAGGCATCCAAC
SEQ ID NO 78: Lycopersicon esculentum optimization 6 ORF
MAEFX'EVELKVRDYELDQYGWNNAIYASYCQHGRHELLERIGI SADEVARSGDALALTELSLKYLAPLR SGDRFWKARI SDS SAARLFFEHFI FKLPDQEPI LEARGIAVWLNKSYRPVRI PAEFRSKFVQFLRQEAS N
SEQ ID NO 23: Petunia integrifolia optimization 3 cDNA
ATGAATGAGTTCTATGAAGTCGAACTCAAAGTCaGGGACTATGAGTTGGATCAATATGGTGTTGTAAACAATGCTAT cTATGCTAGTTATTGCCAACATggtaGGCATGAGCTTCTtGAAAAGATTGGCGTAAATGCTGATGCAGTGGCACGtA ATGGTGAAGCATTAGCACTtACAGAGATGACACTcAAGTATCTtGCACCTCTcAGGAGTGGAGACAGATTCATTGTG AAaGTtaGAATATCTGACTCTTCAGCTGCTCGTTTGTTCTTTGAACACTTCATCTTCAAaCTTCCtGATCAAGAGCC TATCTTGGAGGCAAGAGGAACAGCAGTGTGGCTTAAcAAgAGTTACCGTCCTGTCaGAATcCCTTCAGAGTTCAGAT CAAAATTCGTTCAGTTCCTTCGtCAGGAGGCA
SEQ ID NO 79: Petunia integrifolia optimization 3 ORF
MNEFYEVELKVRDYELDQYGWNNAIYASYCQHGRHELLEKIGVNADAVARNGEALALTEMTLKYLAPLR SGDRFIVKVRI SDS SAARLFFEHFI FKLPDQEPI LEARGTAVWLNKSYRPVRI PSEFRSKFVQFLRQEA
SEQ ID NO 24: Petunia integrifolia optimization 4 cDNA
ATGAATGAGTTCTATGAAGTCGAACTCAAAGTCaGGGACTATGAGTTGGATCAATATGGTGTTGTAAACAATGCTAT cTATGCTAGTTATTGCCAACATggtaGGCATGAGCTTCTtGAAAAGATTGGCGTAagtGCTGATgagGTGGCACGta gtGGTGAAGCATTAGCACTtACAGAGATGACACTcAAGTATCTtGCACCTCTcAGGAGTGGAGACAGATTCATTGTG AAaGTtaGAATATCTGACTCTTCAGCTGCTCGTTTGTTCTTTGAACACTTCATCTTCAAaCTTCCtGATCAAGAGCC TATCTTGGAGGCAAGAGGAACAGCAGTGTGGCTTAAcAAgAGTTACCGTCCTGTCaGAATcCCTTCAGAGTTCAGAT CAAAATTCGTTCAGTTCCTTCGtCAGGAGGCA SEQ ID NO 80: Petunia integrifolia optimization 4 ORF
MNEFYEVELKVRDYELDQYGWNNAIYASYCQHGRHELLEKIGVSADEVARSGEALALTEMTLKYLAPLR SGDRFIVKVRI SDS SAARLFFEHFI FKLPDQEPI LEARGTAVWLNKSYRPVRI PSEFRSKFVQFLRQEA
SEQ ID NO 25: Petunia integrifolia optimization 5 cDNA
ATGAATGAGTTCTATGAAGTCGAACTCAAAGTCaGGGACTATGAGTTGGATCAATATGGTGTTGTAAACAATGCTAT cTATGCTAGTTATTGCCAACATTGTaGGCATGAGCTTCTtGAAAAGATTGGCGTAagtGCTGATgagGTGGCACGta gtGGTGAAGCATTAGCACTtACAGAGATGACACTcAAGTATCTtGCACCTCTcAGGAGTGGAGACAGATTCATTGTG AAaGTtaGAATATCTGACTCTTCAGCTGCTCGTTTGTTCTTTGAACACTTCATCTTCAAaCTTCCtGATCAAGAGCC TATCTTGGAGGCAAGAGGAACAGCAGTGTGGCTTAAcAAgAGTTACCGTCCTGTCaGAATcCCTTCAGAGTTCAGAT CAAAATTCGTTCAGTTCCTTCGtCAGGAGGCA
SEQ ID NO 81 : Petunia integrifolia optimization 5 ORF
MNEFYEVELKVRDYELDQYGWNNAIYASYCQHCRHELLEKIGVSADEVARSGEALALTEMTLKYLAPLR SGDRFIVKVRI SDS SAARLFFEHFI FKLPDQEPI LEARGTAVWLNKSYRPVRI PSEFRSKFVQFLRQEA
SEQ ID NO 26: Lycopersicon hirsutum optimization 3 cDNA
ATGAATGAGTTCTATGAAGTCGAACTCAAAGTCaGGGACTATGAGTTGGATCAATATGGTGTTGTAAACAATGCTAT cTATGCTAGTTATTGCCAACATTGTaGGCATGAGCTTCTtGAAAAGATTGGCGTAagtGCTGATgagGTGGCACGta gtGGTGAAGCATTAGCACTtACAGAGATGACACTcAAGTATCTtGCACCTCTcAGGAGTGGAGACAGATTCATTGTG AAaGTtaGAATATCTGACTCTTCAGCTGCTCGTTTGTTCTTTGAACACTTCATCTTCAAaCTTCCtGATCAAGAGCC TATCTTGGAGGCAAGAGGAACAGCAGTGTGGCTTAAcAAgAGTTACCGTCCTGTCaGAATcCCTTCAGAGTTCAGAT CAAAATTCGTTCAGTTCCTTCGtCAGGAGGCA
SEQ ID NO 82: Lycopersicon hirsutum optimization 3 ORF
MSDQVYHHDVELTVRDYELDQFGWNNATYASYCQHGRHELLEKIGVSVDEVTRNGDALAVTELSLKFLA PLRSGDRFWRARLSHFTVARLFFEHFI FKLPDQEPI LEARGIAVWLNRSYRPIRI PSEFNSKFVKFLHQ KSCGVQHHL
SEQ ID NO 27: Lycopersicon hirsutum optimization 4 cDNA
ATGAGTGATCAGGTCTATCACCATGACGTTGAACTCACAGTCAGGGACTATGAGTTGGATCAGTTTGGTGTTGTAAA TAATGCTACTTATGCtAGTTATTGTCAACATggtCGTCATgagttgCTtGAgAAgATTGGTGTTaatgctGATGAAG TAACcCGtAATGGTGATGCATTAGCTGTAACAGAGCTCTCACTTAAGTTTCTtGCACCACTtAGGAGTGGAGATAGA TTCGTGGTGAGGGCtaGATTgTCCCACTTTACAGTAGCTaGATTGTTcTTtGAGCATTTCATCTTCAAaCTTCCtGA TCAAGAGCCTATATTGGAGGCAAGAGGAATAGCAGTGTGGCTTAATAGAAGTTATCGTCCTATTCGtATTCCaTCAG AGTTCAATTCAAAATTTGTTAAATTCCTTCACCAGAAGAGTTGCGGTGTACAACATCATCTC
SEQ ID NO 83: Lycopersicon hirsutum optimization 4 ORF
MSDQVYHHDVELTVRDYELDQFGWNNATYASYCQHGRHELLEKIGWADEVTRNGDALAVTELSLKFLA PLRSGDRFWRARLSHFTVARLFFEHFI FKLPDQEPI LEARGIAVWLNRSYRPIRI PSEFNSKFVKFLHQ KSCGVQHHL
SEQ ID NO 28: Lycopersicon hirsutum optimization 5 cDNA
ATGAGTGATCAGGTCTATCACCATGACGTTGAACTCACAGTCAGGGACTATGAGTTGGATCAGTTTGGTGTTGTAAA TAATGCTACTTATGCtAGTTATTGTCAACATTGTCGTCATGCtTTcCTtGAgAAgATTGGTGTTaatgctGATGAAG TAACcCGtAATGGTGATGCATTAGCTGTAACAGAGCTCTCACTTAAGTTTCTtGCACCACTtAGGAGTGGAGATAGA TTCGTGGTGAGGGCtaGATTgTCCCACTTTACAGTAGCTaGATTGTTcTTtGAGCATTTCATCTTCAAaCTTCCtGA TCAAGAGCCTATATTGGAGGCAAGAGGAATAGCAGTGTGGCTTAATAGAAGTTATCGTCCTATTCGtATTCCaTCAG AGTTCAATTCAAAATTTGTTAAATTCCTTCACCAGAAGAGTTGCGGTGTACAACATCATCTC
SEQ ID NO 84: Lycopersicon hirsutum optimization 5 ORF
MSDQVYHHDVELTVRDYELDQFGWNNATYASYCQHCRHAFLEKIGV ADEVTRNGDALAVTELSLKFLA PLRSGDRFWRARLSHFTVARLFFEHFI FKLPDQEPI LEARGIAVWLNRSYRPIRI PSEFNSKFVKFLHQ KSCGVQHHL
SEQ ID NO 29: Solanum tuberosum optimization 3 cDNA
ATGGGTGATCAGCTCTATCAACATGAAGTTGAACTCCAAGTCAGGGACTATGAATTGGATCAGTTTGGTGTTGTAAA CAATGCTACTTATGCAAGTTATTGTCAACATggcCGTCATGAGTTTCTTGAgAAGATTGGTGTAAGTGTTGATGAAG TAgctaGaACTGGTGAAGCATTAGCAACAACAGAGCTTTCACTTAAGTATCTtGCACCTCTcAGGAGTGGAGATAGA TTTGTGGTGAAGGTGaGAATATCCaGgTCTACAGCAGCTCGtTTGTTcTTCGAGCATTTCATCTTCAAaCTTCCAGA TCAAGAGCCTATATTGGAGGCAAGAGGAATAGCAGTGTGGCTTAATAGAAGTTACCGTCCTATCaGAATaCCATCAG AGTTCAGTTCAAAgTTTGTTCAGTTCCTTCACCAGAAGAGTTGCGGTACACAACACCGTCTC
SEQ ID NO 85: Solanum tuberosum optimization 3 ORF
MGDQLYQHEVELQVRDYELDQFGWNNATYASYCQHGRHEFLEKIGVSVDEVARTGEALATTELSLKYL
APLRSGDRFWKVRI SRSTAARLFFEHFI FKLPDQEPI LEARGIAVWLNRSYRPIRI PSEFS SKFVQFLHQKS
CGTQHRL
SEQ ID NO 30: L. esculentum/L. hirsutum chimeric optimization 1 cDNA
ATGGCTGAGTTCCATGAAGTTGAACTCAAAGTCCGGGACTATGAATTGGATCAGTATGGTGTTGTAAACAATGCTAT TTATGCAAGTTATTGCCAACATGGTCGTCATGAGCTTCTAGAAAGGATTGGTATAAGTGCTGATGAAGTGGCACGCA GTGGTGACGCACTAGCACTAACAGAGCTGTCACTTAAGTATCTAGCACCTCTAAGGAGTGGAGATAGATTTGTCGTG AAGGCACGAATATCTGATTCTTCAGCTGCTCGTTTGTTTTTCGAACACTTCATCTTCAAGCTTCCAGATCAAGAGCC TATATTGGAGGCAAGAGGAATAGCAGTGTGGCTTAATAGAAGTTATCGTCCTATTCGAATTCCGTCAGAGTTCAATT CAAAATTTGTTAAATTCCTTCACCAGAAGAGTTGCGGTGTACAACATCATCTC
SEQ ID NO 86: L. esculentum/L. hirsutum chimeric optimization 1 ORF
MAEFHEVELKVRDYELDQYGWNNAIYASYCQHGRHELLERIGI SADEVARSGDALALTELSLKYLAPLRSGDRFW KARI SDS SAARLFFEHFI FKLPDQEPI LEARGIAVWLNRSYRPIRI PSEFNSKFVKFLHQKSCGVQHHL
SEQ ID NO 31: L. esculentum/L. hirsutum chimeric optimization 2 cDNA ATGGCTGAGTTCCATGAAGTTGAACTCAAAGTCCGGGACTATGAATTGGATCAGTATGGTGTTGTAAACAATGCTAT TTATGCAAGTTATTGCCAACATGGTCGTCATGAGCTTCTAGAAAGGATTGGTATAAGTGCTGATGAAGTGGCACGCA GTGGTGACGCACTAGCACTAACAGAGCTGTCACTTAAGTATCTAGCACCTCTAAGGAGTGGAGATAGATTCGTGGTG AGGGCGCGATTATCCCACTTTACAGTAGCTCGATTGTTTTTCGAGCATTTCATCTTCAAGCTTCCAGATCAAGAGCC CATCTTGGAGGCAAGAGGAATAGCAGTGTGGCTCAATAAAAGTTACCGTCCTGTCCGAATCCCGGCAGAGTTCAGAT CAAAATTTGTTCAGTTCCTTCGCCAGGAGGCATCCAAC
SEQ ID NO 87: L. esculentum/L. hirsutum chimeric optimization 2 ORF
MAEFHEVELKVRDYELDQYGWNNAIYASYCQHGRHELLERIGI SADEVARSGDALALTELSLKYLAPLRSGDRFW RARLSHFTVARLFFEHFI FKLPDQEPI LEARGIAVWLNKSYRPVRI PAEFRSKFVQFLRQEASN
SEQ ID NO 32: L. esculentum/L. hirsutum chimeric optimization 3 cDNA
ATGGCTGAGTTCCATGAAGTTGAACTCAAAGTCCGGGACTATGAATTGGATCAGTATGGTGTTGTAAACAATGCTAT TTATGCAAGTTATTGCCAACATGGTCGTCATGAGCTTCTAGAAAGGATTGGTATAAGTGCTGATGAAGTGGCACGCA GTGGTGACGCACTAGCACTAACAGAGCTGTCACTTAAGTATCTAGCACCTCTAAGGAGTGGAGATAGATTCGTGGTG AGGGCGCGATTATCCCACTTTACAGTAGCTCGATTGTTTTTCGAGCATTTCATCTTCAAGCTTCCAGATCAAGAGCC TATATTGGAGGCAAGAGGAATAGCAGTGTGGCTTAATAGAAGTTATCGTCCTATTCGAATTCCGTCAGAGTTCAATT CAAAATTTGTTAAATTCCTTCACCAGAAGAGTTGCGGTGTACAACATCATCTC
SEQ ID NO 88: L. esculentum/L. hirsutum chimeric optimization 3 ORF
MAEFHEVELKVRDYELDQYGWNNAIYASYCQHGRHELLERIGI SADEVARSGDALALTELSLKYLAPLRSGDRFW RARLSHFTVARLFFEHFI FKLPDQEPI LEARGIAVWLNRSYRPIRI PSEFNSKFVKFLHQKSCGVQHHL
SEQ ID NO 33: L. esculentum/L. hirsutum chimeric optimization 4 cDNA
ATGGCTGAGTTCCATGAAGTTGAACTCAAAGTCCGGGACTATGAATTGGATCAGTATGGTGTTGTAAACAATGCTAT TTATGCAAGTTATTGTCAACATTGTCGTCATGCGTTTCTAGAAAAAATTGGTGTTAGTGTTGATGAAGTAACGCGAA ATGGTGATGCATTAGCTGTAACAGAGCTCTCACTTAAGTTTCTAGCACCACTAAGGAGTGGAGATAGATTTGTCGTG AAGGCACGAATATCTGATTCTTCAGCTGCTCGTTTGTTTTTCGAACACTTCATCTTCAAGCTTCCAGATCAAGAGCC CATCTTGGAGGCAAGAGGAATAGCAGTGTGGCTCAATAAAAGTTACCGTCCTGTCCGAATCCCGGCAGAGTTCAGAT CAAAATTTGTTCAGTTCCTTCGCCAGGAGGCATCCAAC
SEQ ID NO 89: L. esculentum/L. hirsutum chimeric optimization 4 ORF
MAEFHEVELKVRDYELDQYGWNNAIYASYCQHCRHAFLEKIGVSVDEVTRNGDALAVTELSLKFLAPLRSGDRFW KARI SDS SAARLFFEHFI FKLPDQEPI LEARGIAVWLNKSYRPVRI PAEFRSKFVQFLRQEASN
SEQ ID NO 34: L. esculentum/L. hirsutum chimeric optimization 5 cDNA
ATGGCTGAGTTCCATGAAGTTGAACTCAAAGTCCGGGACTATGAATTGGATCAGTATGGTGTTGTAAACAATGCTAT TTATGCAAGTTATTGTCAACATTGTCGTCATGCGTTTCTAGAAAAAATTGGTGTTAGTGTTGATGAAGTAACGCGAA ATGGTGATGCATTAGCTGTAACAGAGCTCTCACTTAAGTTTCTAGCACCACTAAGGAGTGGAGATAGATTTGTCGTG AAGGCACGAATATCTGATTCTTCAGCTGCTCGTTTGTTTTTCGAACACTTCATCTTCAAGCTTCCAGATCAAGAGCC TATATTGGAGGCAAGAGGAATAGCAGTGTGGCTTAATAGAAGTTATCGTCCTATTCGAATTCCGTCAGAGTTCAATT CAAAATTTGTTAAATTCCTTCACCAGAAGAGTTGCGGTGTACAACATCATCTC SEQ ID NO 90: L. esculentum/L. hirsutum chimeric optimization 5 ORF
MAEFHEVELKVRDYELDQYGWNNAIYASYCQHCRHAFLEKIGVSVDEVTRNGDALAVTELSLKFLAPLRSGDRFW KARI SDS SAARLFFEHFI FKLPDQEPI LEARGIAVWLNRSYRPIRI PSEFNSKFVKFLHQKSCGVQHHL
SEQ ID NO 35: L. esculentum/L. hirsutum chimeric optimization 6 cDNA
ATGGCTGAGTTCCATGAAGTTGAACTCAAAGTCCGGGACTATGAATTGGATCAGTATGGTGTTGTAAACAATGCTAT TTATGCAAGTTATTGTCAACATTGTCGTCATGCGTTTCTAGAAAAAATTGGTGTTAGTGTTGATGAAGTAACGCGAA ATGGTGATGCATTAGCTGTAACAGAGCTCTCACTTAAGTTTCTAGCACCACTAAGGAGTGGAGATAGATTCGTGGTG AGGGCGCGATTATCCCACTTTACAGTAGCTCGATTGTTTTTCGAGCATTTCATCTTCAAGCTTCCAGATCAAGAGCC CATCTTGGAGGCAAGAGGAATAGCAGTGTGGCTCAATAAAAGTTACCGTCCTGTCCGAATCCCGGCAGAGTTCAGAT CAAAATTTGTTCAGTTCCTTCGCCAGGAGGCATCCAAC
SEQ ID NO 91: L. esculentum/L. hirsutum chimeric optimization 6 ORF
MAEFHEVELKVRDYELDQYGWNNAIYASYCQHCRHAFLEKIGVSVDEVTRNGDALAVTELSLKFLAPLRSGDRFW RARLSHFTVARLFFEHFI FKLPDQEPI LEARGIAVWLNKSYRPVRI PAEFRSKFVQFLRQEASN
SEQ ID NO 36: L. esculentum/L. hirsutum chimeric optimization 7 cDNA
ATGGCTGAGTTCCATGAAGTTGAACTCAAAGTCCGGGACTATGAATTGGATCAGTATGGTGTTGTAAACAATGCTAT TTATGCAAGTTATTGTCAACATTGTCGTCATGCGTTTCTAGAAAAAATTGGTGTTAGTGTTGATGAAGTAACGCGAA ATGGTGATGCATTAGCTGTAACAGAGCTCTCACTTAAGTTTCTAGCACCACTAAGGAGTGGAGATAGATTCGTGGTG AGGGCGCGATTATCCCACTTTACAGTAGCTCGATTGTTTTTCGAGCATTTCATCTTCAAGCTTCCAGATCAAGAGCC TATATTGGAGGCAAGAGGAATAGCAGTGTGGCTTAATAGAAGTTATCGTCCTATTCGAATTCCGTCAGAGTTCAATT CAAAATTTGTTAAATTCCTTCACCAGAAGAGTTGCGGTGTACAACATCATCTC
SEQ ID NO 92: L. esculentum/L. hirsutum chimeric optimization 7 ORF
MAEFHEVELKVRDYELDQYGWNNAIYASYCQHCRHAFLEKIGVSVDEVTRNGDALAVTELSLKFLAPLRSGDRFW RARLSHFTVARLFFEHFI FKLPDQEPI LEARGIAVWLNRSYRPIRI PSEFNSKFVKFLHQKSCGVQHHL
SEQ ID NO 37: L. esculentum/L. hirsutum chimeric optimization 8 cDNA
ATGAGTGATCAGGTCTATCACCATGACGTTGAACTCACAGTCAGGGACTATGAGTTGGATCAGTTTGGTGTTGTAAA TAATGCTACTTATGCGAGTTATTGCCAACATGGTCGTCATGAGCTTCTAGAAAGGATTGGTATAAGTGCTGATGAAG TGGCACGCAGTGGTGACGCACTAGCACTAACAGAGCTGTCACTTAAGTATCTAGCACCTCTAAGGAGTGGAGATAGA TTTGTCGTGAAGGCACGAATATCTGATTCTTCAGCTGCTCGTTTGTTTTTCGAACACTTCATCTTCAAGCTTCCAGA TCAAGAGCCCATCTTGGAGGCAAGAGGAATAGCAGTGTGGCTCAATAAAAGTTACCGTCCTGTCCGAATCCCGGCAG AGTTCAGATCAAAATTTGTTCAGTTCCTTCGCCAGGAGGCATCCAAC
SEQ ID NO 93: L. esculentum/L. hirsutum chimeric optimization 8 ORF
MSDQVYHHDVELTVRDYELDQFGWNNATYASYCQHGRHELLERIGI SADEVARSGDALALTELSLKYLAPLRSGDR FWKARI SDS SAARLFFEHFI FKLPDQEPI LEARGIAVWLNKSYRPVRI PAEFRSKFVQFLRQEASN SEQ ID NO 38: L. esculentum/L. hirsutum chimeric optimization 9 cDNA
ATGAGTGATCAGGTCTATCACCATGACGTTGAACTCACAGTCAGGGACTATGAGTTGGATCAGTTTGGTGTTGTAAA TAATGCTACTTATGCGAGTTATTGCCAACATGGTCGTCATGAGCTTCTAGAAAGGATTGGTATAAGTGCTGATGAAG TGGCACGCAGTGGTGACGCACTAGCACTAACAGAGCTGTCACTTAAGTATCTAGCACCTCTAAGGAGTGGAGATAGA TTTGTCGTGAAGGCACGAATATCTGATTCTTCAGCTGCTCGTTTGTTTTTCGAACACTTCATCTTCAAGCTTCCAGA TCAAGAGCCTATATTGGAGGCAAGAGGAATAGCAGTGTGGCTTAATAGAAGTTATCGTCCTATTCGAATTCCGTCAG AGTTCAATTCAAAATTTGTTAAATTCCTTCACCAGAAGAGTTGCGGTGTACAACATCATCTC
SEQ ID NO 94: L. esculentum/L. hirsutum chimeric optimization 9 ORF
MSDQVYHHDVELTVRDYELDQFGWNNATYASYCQHGRHELLERIGI SADEVARSGDALALTELSLKYLAPLRSGDR FWKARI SDS SAARLFFEHFI FKLPDQEPI LEARGIAVWLNRSYRPIRI PSEFNSKFVKFLHQKSCGVQHHL
SEQ ID NO 39: L. esculentum/L. hirsutum chimeric optimization 10 cDNA
ATGAGTGATCAGGTCTATCACCATGACGTTGAACTCACAGTCAGGGACTATGAGTTGGATCAGTTTGGTGTTGTAAA TAATGCTACTTATGCGAGTTATTGCCAACATGGTCGTCATGAGCTTCTAGAAAGGATTGGTATAAGTGCTGATGAAG TGGCACGCAGTGGTGACGCACTAGCACTAACAGAGCTGTCACTTAAGTATCTAGCACCTCTAAGGAGTGGAGATAGA TTCGTGGTGAGGGCGCGATTATCCCACTTTACAGTAGCTCGATTGTTTTTCGAGCATTTCATCTTCAAGCTTCCAGA TCAAGAGCCCATCTTGGAGGCAAGAGGAATAGCAGTGTGGCTCAATAAAAGTTACCGTCCTGTCCGAATCCCGGCAG AGTTCAGATCAAAATTTGTTCAGTTCCTTCGCCAGGAGGCATCCAAC
SEQ ID NO 95: L. esculentum/L. hirsutum chimeric optimization 10 ORF
MSDQVYHHDVELTVRDYELDQFGWNNATYASYCQHGRHELLERIGI SADEVARSGDALALTELSLKYLAPLRSGDR FWRARLSHFTVARLFFEHFI FKLPDQEPI LEARGIAVWLNKSYRPVRI PAEFRSKFVQFLRQEASN
SEQ ID NO 40: L. esculentum/L. hirsutum chimeric optimization 11 cDNA
ATGAGTGATCAGGTCTATCACCATGACGTTGAACTCACAGTCAGGGACTATGAGTTGGATCAGTTTGGTGTTGTAAA TAATGCTACTTATGCGAGTTATTGCCAACATGGTCGTCATGAGCTTCTAGAAAGGATTGGTATAAGTGCTGATGAAG TGGCACGCAGTGGTGACGCACTAGCACTAACAGAGCTGTCACTTAAGTATCTAGCACCTCTAAGGAGTGGAGATAGA TTCGTGGTGAGGGCGCGATTATCCCACTTTACAGTAGCTCGATTGTTTTTCGAGCATTTCATCTTCAAGCTTCCAGA TCAAGAGCCTATATTGGAGGCAAGAGGAATAGCAGTGTGGCTTAATAGAAGTTATCGTCCTATTCGAATTCCGTCAG AGTTCAATTCAAAATTTGTTAAATTCCTTCACCAGAAGAGTTGCGGTGTACAACATCATCTC
SEQ ID NO 96: L. esculentum/L. hirsutum chimeric optimization 11 ORF
MSDQVYHHDVELTVRDYELDQFGWNNATYASYCQHGRHELLERIGI SADEVARSGDALALTELSLKYLAPLRSGDR FWRARLSHFTVARLFFEHFI FKLPDQEPI LEARGIAVWLNRSYRPIRI PSEFNSKFVKFLHQKSCGVQHHL
SEQ ID NO 41: L. esculentum/L. hirsutum chimeric optimization 12 cDNA
ATGAGTGATCAGGTCTATCACCATGACGTTGAACTCACAGTCAGGGACTATGAGTTGGATCAGTTTGGTGTTGTAAA TAATGCTACTTATGCGAGTTATTGTCAACATTGTCGTCATGCGTTTCTAGAAAAAATTGGTGTTAGTGTTGATGAAG TAACGCGAAATGGTGATGCATTAGCTGTAACAGAGCTCTCACTTAAGTTTCTAGCACCACTAAGGAGTGGAGATAGA TTTGTCGTGAAGGCACGAATATCTGATTCTTCAGCTGCTCGTTTGTTTTTCGAACACTTCATCTTCAAGCTTCCAGA TCAAGAGCCCATCTTGGAGGCAAGAGGAATAGCAGTGTGGCTCAATAAAAGTTACCGTCCTGTCCGAATCCCGGCAG AGTTCAGATCAAAATTTGTTCAGTTCCTTCGCCAGGAGGCATCCAAC
SEQ ID NO 97: L. esculentum/L. hirsutum chimeric optimization 12 ORF
MSDQVYHHDVELTVRDYELDQFGWNNATYASYCQHCRHAFLEKIGVSVDEVTRNGDALAVTELSLKFLAPLRSGDR FWKARI SDS SAARLFFEHFI FKLPDQEPI LEARGIAVWLNKSYRPVRI PAEFRSKFVQFLRQEASN
SEQ ID NO 42: L. esculentum/L. hirsutum chimeric optimization 13 cDNA
ATGAGTGATCAGGTCTATCACCATGACGTTGAACTCACAGTCAGGGACTATGAGTTGGATCAGTTTGGTGTTGTAAA TAATGCTACTTATGCGAGTTATTGTCAACATTGTCGTCATGCGTTTCTAGAAAAAATTGGTGTTAGTGTTGATGAAG TAACGCGAAATGGTGATGCATTAGCTGTAACAGAGCTCTCACTTAAGTTTCTAGCACCACTAAGGAGTGGAGATAGA TTTGTCGTGAAGGCACGAATATCTGATTCTTCAGCTGCTCGTTTGTTTTTCGAACACTTCATCTTCAAGCTTCCAGA TCAAGAGCCTATATTGGAGGCAAGAGGAATAGCAGTGTGGCTTAATAGAAGTTATCGTCCTATTCGAATTCCGTCAG AGTTCAATTCAAAATTTGTTAAATTCCTTCACCAGAAGAGTTGCGGTGTACAACATCATCTC
SEQ ID NO 98: L. esculentum/L. hirsutum chimeric optimization 13 ORF
MSDQVYHHDVELTVRDYELDQFGWNNATYASYCQHCRHAFLEKIGVSVDEVTRNGDALAVTELSLKFLAPLRSGDR FWKARI SDS SAARLFFEHFI FKLPDQEPI LEARGIAVWLNRSYRPIRI PSEFNSKFVKFLHQKSCGVQHHL
SEQ ID NO 43: L. esculentum/L. hirsutum chimeric optimization 14 cDNA
ATGAGTGATCAGGTCTATCACCATGACGTTGAACTCACAGTCAGGGACTATGAGTTGGATCAGTTTGGTGTTGTAAA TAATGCTACTTATGCGAGTTATTGTCAACATTGTCGTCATGCGTTTCTAGAAAAAATTGGTGTTAGTGTTGATGAAG TAACGCGAAATGGTGATGCATTAGCTGTAACAGAGCTCTCACTTAAGTTTCTAGCACCACTAAGGAGTGGAGATAGA TTCGTGGTGAGGGCGCGATTATCCCACTTTACAGTAGCTCGATTGTTTTTCGAGCATTTCATCTTCAAGCTTCCAGA TCAAGAGCCCATCTTGGAGGCAAGAGGAATAGCAGTGTGGCTCAATAAAAGTTACCGTCCTGTCCGAATCCCGGCAG AGTTCAGATCAAAATTTGTTCAGTTCCTTCGCCAGGAGGCATCCAAC
SEQ ID NO 99: L. esculentum/L. hirsutum chimeric optimization 14 ORF
MSDQVYHHDVELTVRDYELDQFGWNNATYASYCQHCRHAFLEKIGVSVDEVTRNGDALAVTELSLKFLAPLRSGDR FWRARLSHFTVARLFFEHFI FKLPDQEPI LEARGIAVWLNKSYRPVRI PAEFRSKFVQFLRQEASN
SEQ ID NO 44: L. esculentum/L. hirsutum chimeric optimization 15 cDNA
ATGAGTGATCAGGTCTATCACCATGAAGTTGAACTCAAAGTCCGGGACTATGAATTGGATCAGTATGGTGTTGTAAA CAATGCTATTTATGCAAGTTATTGCCAACATGGTCGTCATGAGCTTCTAGAAAGGATTGGTATAAGTGCTGATGAAG TGGCACGCAGTGGTGACGCACTAGCACTAACAGAGCTGTCACTTAAGTATCTAGCACCTCTAAGGAGTGGAGATAGA TTTGTCGTGAAGGCACGAATATCTGATTCTTCAGCTGCTCGTTTGTTTTTCGAACACTTCATCTTCAAGCTTCCAGA TCAAGAGCCCATCTTGGAGGCAAGAGGAATAGCAGTGTGGCTCAATAAAAGTTACCGTCCTGTCCGAATCCCGGCAG AGTTCAGATCAAAATTTGTTCAGTTCCTTCGCCAGGAGGCATCCAAC
SEQ ID NO 100: L. esculentum/L. hirsutum chimeric optimization 15 ORF MSDQVYHHEVELKVRDYELDQYGWNNAIYASYCQHGRHELLERIGI SADEVARSGDALALTELSLKYLAPLRSGDR FWKARI SDS SAARLFFEHFI FKLPDQEPI LEARGIAVWLNKSYRPVRI PAEFRSKFVQFLRQEASN
SEQ ID NO 45: L. esculentum/L. hirsutum chimeric optimization 16 cDNA
ATGGCTGAGTTCCATGAAGTTGAACTCAAAGTCCGGGACTATGAATTGGATCAGTATGGTGTTGTAAACAATGCTAT TTATGCAAGTTATTGCCAACATGGTCGTCATGAGCTTCTAGAAAGGATTGGTATAAGTGCTGATGAAGTGGCACGCA GTGGTGACGCACTAGCACTAACAGAGCTGTCACTTAAGTATCTAGCACCTCTAAGGAGTGGAGATAGATTTGTCGTG AAGGCACGAATATCTGATTCTTCAGCTGCTCGTTTGTTTTTCGAACACTTCATCTTCAAGCTTCCAGATCAAGAGCC CATCTTGGAGGCAAGAGGAATAGCAGTGTGGCTCAATAAAAGTTACCGTCCTGTCCGAATCCCGGCAGAGTTCAGAT CAAAATTTGTTCAGTTCCTTCGCCAGAAGAGTTGCGGTGTACAACATCATCTC
SEQ ID NO 101: L. esculentum/L. hirsutum chimeric optimization 16 ORF
MAEFHEVELKVRDYELDQYGWNNAIYASYCQHGRHELLERIGI SADEVARSGDALALTELSLKYLAPLRSGDRFW KARI SDS SAARLFFEHFI FKLPDQEPI LEARGIAVWLNKSYRPVRI PAEFRSKFVQFLRQKSCGVQHHL
SEQ ID NO 46: L. esculentum/L. hirsutum chimeric optimization 17 cDNA
ATGAGTGATCAGGTCTATCACCATGAAGTTGAACTCAAAGTCCGGGACTATGAATTGGATCAGTATGGTGTTGTAAA CAATGCTATTTATGCAAGTTATTGCCAACATGGTCGTCATGAGCTTCTAGAAAGGATTGGTATAAGTGCTGATGAAG TGGCACGCAGTGGTGACGCACTAGCACTAACAGAGCTGTCACTTAAGTATCTAGCACCTCTAAGGAGTGGAGATAGA TTTGTCGTGAAGGCACGAATATCTGATTCTTCAGCTGCTCGTTTGTTTTTCGAACACTTCATCTTCAAGCTTCCAGA TCAAGAGCCCATCTTGGAGGCAAGAGGAATAGCAGTGTGGCTCAATAAAAGTTACCGTCCTGTCCGAATCCCGGCAG AGTTCAGATCAAAATTTGTTCAGTTCCTTCGCCAGAAGAGTTGCGGTGTACAACATCATCTC
SEQ ID NO 102: L. esculentum/L. hirsutum chimeric optimization 17 ORF
MSDQVYHHEVELKVRDYELDQYGWNNAIYASYCQHGRHELLERIGI SADEVARSGDALALTELSLKYLAPLRSGDR FWKARI SDS SAARLFFEHFI FKLPDQEPI LEARGIAVWLNKSYRPVRI PAEFRSKFVQFLRQKSCGVQHHL
SEQ ID NO 47: L. esculentum/L. hirsutum chimeric optimization 18 cDNA
ATGAGTGATCAGGTCTATCACCATGAAGTTGAACTCAAAGTCCGGGACTATGAATTGGATCAGTATGGTGTTGTAAA CAATGCTATTTATGCAAGTTATTGCCAACATGGTCGTCATGAGCTTCTAGAAAGGATTGGTATAAGTGCTGATGAAG TGGCACGCAGTGGTGACGCACTAGCACTAACAGAGCTGTCACTTAAGTATCTAGCACCTCTAAGGAGTGGAGATAGA TTCGTGGTGAGGGCGCGATTATCCCACTTTACAGTAGCTCGATTGTTTTTCGAGCATTTCATCTTCAAGCTTCCAGA TCAAGAGCCCATCTTGGAGGCAAGAGGAATAGCAGTGTGGCTCAATAAAAGTTACCGTCCTGTCCGAATCCCGGCAG AGTTCAGATCAAAATTTGTTCAGTTCCTTCGCCAGGAGGCATCCAAC
SEQ ID NO 103: L. esculentum/L. hirsutum chimeric optimization 18 ORF
MSDQVYHHEVELKVRDYELDQYGWNNAIYASYCQHGRHELLERIGI SADEVARSGDALALTELSLKYLAPLRSGDR FWRARLSHFTVARLFFEHFI FKLPDQEPI LEARGIAVWLNKSYRPVRI PAEFRSKFVQFLRQEASN
SEQ ID NO 48: L. esculentum/L. hirsutum chimeric optimization 19 cDNA
ATGGCTGAGTTCCATGAAGTTGAACTCAAAGTCCGGGACTATGAATTGGATCAGTATGGTGTTGTAAACAATGCTAT TTATGCAAGTTATTGCCAACATGGTCGTCATGAGCTTCTAGAAAGGATTGGTATAAGTGCTGATGAAGTGGCACGCA GTGGTGACGCACTAGCACTAACAGAGCTGTCACTTAAGTATCTAGCACCTCTAAGGAGTGGAGATAGATTCGTGGTG AGGGCGCGATTATCCCACTTTACAGTAGCTCGATTGTTTTTCGAGCATTTCATCTTCAAGCTTCCAGATCAAGAGCC CATCTTGGAGGCAAGAGGAATAGCAGTGTGGCTCAATAAAAGTTACCGTCCTGTCCGAATCCCGGCAGAGTTCAGAT CAAAATTTGTTCAGTTCCTTCGCCAGAAGAGTTGCGGTGTACAACATCATCTC
SEQ ID NO 104: L. esculentum/L. hirsutum chimeric optimization 19 ORF
MAEFHEVELKVRDYELDQYGWNNAIYASYCQHGRHELLERIGI SADEVARSGDALALTELSLKYLAPLRSGDRFW RARLSHFTVARLFFEHFI FKLPDQEPI LEARGIAVWLNKSYRPVRI PAEFRSKFVQFLRQKSCGVQHHL
SEQ ID NO 49: L. esculentum/L. hirsutum chimeric optimization 20 cDNA
ATGAGTGATCAGGTCTATCACCATGAAGTTGAACTCAAAGTCCGGGACTATGAATTGGATCAGTATGGTGTTGTAAA CAATGCTATTTATGCAAGTTATTGCCAACATGGTCGTCATGAGCTTCTAGAAAGGATTGGTATAAGTGCTGATGAAG TGGCACGCAGTGGTGACGCACTAGCACTAACAGAGCTGTCACTTAAGTATCTAGCACCTCTAAGGAGTGGAGATAGA TTCGTGGTGAGGGCGCGATTATCCCACTTTACAGTAGCTCGATTGTTTTTCGAGCATTTCATCTTCAAGCTTCCAGA TCAAGAGCCCATCTTGGAGGCAAGAGGAATAGCAGTGTGGCTCAATAAAAGTTACCGTCCTGTCCGAATCCCGGCAG AGTTCAGATCAAAATTTGTTCAGTTCCTTCGCCAGAAGAGTTGCGGTGTACAACATCATCTC
SEQ ID NO 105: L. esculentum/L. hirsutum chimeric optimization 20 ORF
MSDQVYHHEVELKVRDYELDQYGWNNAIYASYCQHGRHELLERIGI SADEVARSGDALALTELSLKYLAPLRSGDR FWRARLSHFTVARLFFEHFI FKLPDQEPI LEARGIAVWLNKSYRPVRI PAEFRSKFVQFLRQKSCGVQHHL
SEQ ID NO 50: L. esculentum/L. hirsutum chimeric optimization 21 cDNA
ATGGCTGAGTTCCATGACGTTGAACTCACAGTCAGGGACTATGAGTTGGATCAGTTTGGTGTTGTAAATAATGCTAC TTATGCGAGTTATTGTCAACATTGTCGTCATGCGTTTCTAGAAAAAATTGGTGTTAGTGTTGATGAAGTAACGCGAA ATGGTGATGCATTAGCTGTAACAGAGCTCTCACTTAAGTTTCTAGCACCACTAAGGAGTGGAGATAGATTCGTGGTG AGGGCGCGATTATCCCACTTTACAGTAGCTCGATTGTTTTTCGAGCATTTCATCTTCAAGCTTCCAGATCAAGAGCC TATATTGGAGGCAAGAGGAATAGCAGTGTGGCTTAATAGAAGTTATCGTCCTATTCGAATTCCGTCAGAGTTCAATT CAAAATTTGTTAAATTCCTTCACCAGAAGAGTTGCGGTGTACAACATCATCTC
SEQ ID NO 106: L. esculentum/L. hirsutum chimeric optimization 21 ORF
MAEFHDVELTVRDYELDQFGWNNATYASYCQHCRHAFLEKIGVSVDEVTRNGDALAVTELSLKFLAPLRSGDRFW RARLSHFTVARLFFEHFI FKLPDQEPI LEARGIAVWLNRSYRPIRI PSEFNSKFVKFLHQKSCGVQHHL
SEQ ID NO 51: L. esculentum/L. hirsutum chimeric optimization 22 cDNA
ATGAGTGATCAGGTCTATCACCATGACGTTGAACTCACAGTCAGGGACTATGAGTTGGATCAGTTTGGTGTTGTAAA TAATGCTACTTATGCGAGTTATTGTCAACATTGTCGTCATGCGTTTCTAGAAAAAATTGGTGTTAGTGTTGATGAAG TAACGCGAAATGGTGATGCATTAGCTGTAACAGAGCTCTCACTTAAGTTTCTAGCACCACTAAGGAGTGGAGATAGA TTCGTGGTGAGGGCGCGATTATCCCACTTTACAGTAGCTCGATTGTTTTTCGAGCATTTCATCTTCAAGCTTCCAGA TCAAGAGCCTATATTGGAGGCAAGAGGAATAGCAGTGTGGCTTAATAGAAGTTATCGTCCTATTCGAATTCCGTCAG AGTTCAATTCAAAATTTGTTAAATTCCTTCACCAGGAGGCATCCAAC
SEQ ID NO 107: L. esculentum/L. hirsutum chimeric optimization 22 ORF MAEFHDVELTVRDYELDQFGWNNATYASYCQHCRHAFLEKIGVSVDEVTRNGDALAVTELSLKFLAPLRSGDRFW RARLSHFTVARLFFEHFI FKLPDQEPI LEARGIAVWLNRSYRPIRI PSEFNSKFVKFLHQEASN
SEQ ID NO 52: L. esculentum/L. hirsutum chimeric optimization 23 cDNA
ATGGCTGAGTTCCATGACGTTGAACTCACAGTCAGGGACTATGAGTTGGATCAGTTTGGTGTTGTAAATAATGCTAC TTATGCGAGTTATTGTCAACATTGTCGTCATGCGTTTCTAGAAAAAATTGGTGTTAGTGTTGATGAAGTAACGCGAA ATGGTGATGCATTAGCTGTAACAGAGCTCTCACTTAAGTTTCTAGCACCACTAAGGAGTGGAGATAGATTCGTGGTG AGGGCGCGATTATCCCACTTTACAGTAGCTCGATTGTTTTTCGAGCATTTCATCTTCAAGCTTCCAGATCAAGAGCC TATATTGGAGGCAAGAGGAATAGCAGTGTGGCTTAATAGAAGTTATCGTCCTATTCGAATTCCGTCAGAGTTCAATT CAAAATTTGTTAAATTCCTTCACCAGGAGGCATCCAAC
SEQ ID NO 108: L. esculentum/L. hirsutum chimeric optimization 23 ORF
MAEFHDVELTVRDYELDQFGWNNATYASYCQHCRHAFLEKIGVSVDEVTRNGDALAVTELSLKFLAPLRSGDRFW RARLSHFTVARLFFEHFI FKLPDQEPI LEARGIAVWLNRSYRPIRI PSEFNSKFVKFLHQEASN
SEQ ID NO 53: L. esculentum/L. hirsutum chimeric optimization 24 cDNA
ATGGCTGAGTTCCATGACGTTGAACTCACAGTCAGGGACTATGAGTTGGATCAGTTTGGTGTTGTAAATAATGCTAC TTATGCGAGTTATTGTCAACATTGTCGTCATGCGTTTCTAGAAAAAATTGGTGTTAGTGTTGATGAAGTAACGCGAA ATGGTGATGCATTAGCTGTAACAGAGCTCTCACTTAAGTTTCTAGCACCACTAAGGAGTGGAGATAGATTTGTCGTG AAGGCACGAATATCTGATTCTTCAGCTGCTCGTTTGTTTTTCGAACACTTCATCTTCAAGCTTCCAGATCAAGAGCC TATATTGGAGGCAAGAGGAATAGCAGTGTGGCTTAATAGAAGTTATCGTCCTATTCGAATTCCGTCAGAGTTCAATT CAAAATTTGTTAAATTCCTTCACCAGAAGAGTTGCGGTGTACAACATCATCTC
SEQ ID NO 109: L. esculentum/L. hirsutum chimeric optimization 24 ORF
MAEFHDVELTVRDYELDQFGWNNATYASYCQHCRHAFLEKIGVSVDEVTRNGDALAVTELSLKFLAPLRSGDRFW KARI SDS SAARLFFEHFI FKLPDQEPI LEARGIAVWLNRSYRPIRI PSEFNSKFVKFLHQKSCGVQHHL
SEQ ID NO 54: L. esculentum/L. hirsutum chimeric optimization 25 cDNA
ATGAGTGATCAGGTCTATCACCATGACGTTGAACTCACAGTCAGGGACTATGAGTTGGATCAGTTTGGTGTTGTAAA TAATGCTACTTATGCGAGTTATTGTCAACATTGTCGTCATGCGTTTCTAGAAAAAATTGGTGTTAGTGTTGATGAAG TAACGCGAAATGGTGATGCATTAGCTGTAACAGAGCTCTCACTTAAGTTTCTAGCACCACTAAGGAGTGGAGATAGA TTTGTCGTGAAGGCACGAATATCTGATTCTTCAGCTGCTCGTTTGTTTTTCGAACACTTCATCTTCAAGCTTCCAGA TCAAGAGCCTATATTGGAGGCAAGAGGAATAGCAGTGTGGCTTAATAGAAGTTATCGTCCTATTCGAATTCCGTCAG AGTTCAATTCAAAATTTGTTAAATTCCTTCACCAGGAGGCATCCAAC
SEQ ID NO 110: L. esculentum/L. hirsutum chimeric optimization 25 ORF
MSDQVYHHDVELTVRDYELDQFGWNNATYASYCQHCRHAFLEKIGVSVDEVTRNGDALAVTELSLKFLAPLRSGDR FWKARI SDS SAARLFFEHFI FKLPDQEPI LEARGIAVWLNRSYRPIRI PSEFNSKFVKFLHQEASN
SEQ ID NO 55: L. esculentum/L. hirsutum chimeric optimization 26 cDNA ATGGCTGAGTTCCATGACGTTGAACTCACAGTCAGGGACTATGAGTTGGATCAGTTTGGTGTTGTAAATAATGCTAC TTATGCGAGTTATTGTCAACATTGTCGTCATGCGTTTCTAGAAAAAATTGGTGTTAGTGTTGATGAAGTAACGCGAA ATGGTGATGCATTAGCTGTAACAGAGCTCTCACTTAAGTTTCTAGCACCACTAAGGAGTGGAGATAGATTTGTCGTG AAGGCACGAATATCTGATTCTTCAGCTGCTCGTTTGTTTTTCGAACACTTCATCTTCAAGCTTCCAGATCAAGAGCC TATATTGGAGGCAAGAGGAATAGCAGTGTGGCTTAATAGAAGTTATCGTCCTATTCGAATTCCGTCAGAGTTCAATT CAAAATTTGTTAAATTCCTTCACCAGGAGGCATCCAAC
SEQ ID NO 111: L. esculentum/L. hirsutum chimeric optimization 26 ORF
MAEFHDVELTVRDYELDQFGWNNATYASYCQHCRHAFLEKIGVSVDEVTRNGDALAVTELSLKFLAPLRSGDRFW KARISDSSAARLFFEHFIFKLPDQEPILEARGIAVWLNRSYRPIRIPSEFNSKFVKFLHQEASN
SEQ ID NO 56: Solanum tuberosum optimization 4 cDNA
ATGGGTGATCAGCTCTATCAACATGAAGTTGAACTCCAAGTCAGGGACTATGAATTGGATCAGTTTGGTGTTGTAAA CAATGCTACTTATGCAAGTTATTGTCAACATTGCCGTCATGAGTTTCTTGAgAAGATTGGTGTAAGTGTTGATGAAG TAactaGaACTGGTGAAGCATTAGCAACAACAGAGCTTTCACTTAAGTATCTtGCACCTCTcAGGAGTGGAGATAGA TTTGTGGTGAAGGTGaGAATATCCaGgTCTACAGCAGCTCGtTTGTTcTTCGAGCATTTCATCTTCAAaCTTCCAGA TCAAGAGCCTATATTGGAGGCAAGAGGAATAGCAGTGTGGCTTAATAGAAGTTACCGTCCTATCaGAATaCCATCAG AGTTCAGTTCAAAgTTTGTTCAGTTCCTTCACCAGAAGAGTTGCGGTACACAACACCGTCTC
SEQ ID NO 112: Solanum tuberosum optimization 4 ORF
MGDQLYQHEVELQVRDYELDQFGWNNATYASYCQHCRHEFLEKIGVSVDEV RTGEALATTELSLKYL
APLRSGDRFWKVRISRSTAARLFFEHFIFKLPDQEPILEARGIAVWLNRSYRPIRIPSEFSSKFVQFLHQKS
CGTQHRL
SEQ ID NO 113: Ricinus communis MKT cDNA
ATGGCATTGCAGCAGGCATTTATCTACCCAATGCAAGTGACTACTCCCCTCTCACGTGCCAACACAACAT GGATCAATCTCCACCGTCCATCAGCATCACTACTATTTCGAGTTTCCCGGCCGCCCATGTCGCCAGTCGT CCGGTCACTCCCTACCGTGAAGAGCTGCCGTGGGTTATCATTTCTTGATATCAGAGGCGGTAAAGGAATG AATAGTTTTGTTGGTGTTGAGCTAAAAGTGCGTGATTATGAGCTTGATCAGTACGGAGTTGTCAATAATG CTGTCTATGCCAGTTATTGTCAGCATGGTCGTCATGAACTTTTGGAGAGGATTGGGGTCAGTGCTGATGC TGTTGCTCGCACAGGTGATGCATTGGCACTCTCCGAGTTGTCACTCAAGTTCCTTGCACCTCTAAGAAGT GGAGACAGGTTTGTTGTAAAGGTGAGGATCTCTGGCTCCTCAGCTGCCCGCTTATACTTTGATCACTTCA TCTTCAAGCTGCCAAATGAAGAGCCTATTTTGGAAGCAAAAGCCACAGCAGTATGGCTTGACAAAAATTA TCGTCCTGTCCGTATTCCATCTGATATGAGGTCTAAATTGGTTCAGTTTCTCAAACACGAGGAGTCTAAT
gi I 255572095 I ref I XM_002526942.1 I Ricinus communis acyl-CoA thioesterase, putative, mRNA
SEQ ID NO 170: Ricinus communis MKT ORF
MALQQAFIYPMQVTTPLSRANTTWINLHRPSASLLFRVSRPPMSPWRSLPTVKSCRGLSFLDIRGGKGM NSFVGVELKVRDYELDQYGWNNAVYASYCQHGRHELLERIGVSADAVARTGDALALSELSLKFLAPLRS GDRFWKVRISGSSAARLYFDHFIFKLPNEEPILEAKATAVWLDKNYRPVRIPSDMRSKLVQFLKHEESN
SEQ ID NO 114: Populus trichocarpa MKT cDNA ATGATTTTGCAGGCATTGGCAATAACCCCGCCGCCACACGTGACGTTTCCTACCACCTCACGTGCCTGCG CAAAATGGATGATCCATCTTCCCCGTCAATCCTCATCTGCTCCGTTTCCAACATCCCGGCCGCCACATGT GCGGTCACTGCCCCTCATCAGAAACTGCACGTCGTTACCATTTATCGATCTCAAAGCTGGCAAAGGAATG AGTGGGTTAGTGGAAGTGGAGCTAAAAGTGCGTGATTACGAGCTGGATCAATTCGGAGTTGTCAACAATG CTGTTTACGCAAGTTATTGCCAACATGGTCGTCATGAGCTTTTGGAGAGGATTGGTGTCAGTGCTGATGT GGTTGCTCGCACTGGCGATGCTTTGGCACTGTCAGAATTGTCACTCAAATTCCTCGCCCCGCTAAGAAGT GGAGACAGGTTTGTTGTAAAGGTAAGGATCTCTGGTTCCTCTGCTGCTCGCCTATACTTTGAACACTTCA TTTTCAGACTGCCAAATGAAGAGCCTATTCTGGAAGCAAAAGCAACGGCTGTCTGGCTTGACAAAAAATA TCATCCAGTTCGCATTCCACCTGAATTCAGATCTAAATTTGTTCAGTTCCTTCGGCATGAGGAGTCT
73934722 DT518032.1 DT518032 WS02436.B21_A02 PTxD-ICC-N-A-14 Populus trichocarpa x Populus deltoides cDNA clone WS02436_A02 3', mRNA sequence
SEQ ID NO 171 : Populus trichocarpa MKT ORF
MILQALAITPPPHVTFPTTSRACAKWMIHLPRQSSSAPFPTSRPPHVRSLPLIRNCTSLPFIDLKAGKGM SGLVEVELKVRDYELDQFGWNNAVYASYCQHGRHELLERIGVSADWARTGDALALSELSLKFLAPLRS GDRFWKVRISGSSAARLYFEHFIFRLPNEEPILEAKATAVWLDKKYHPVRIPPEFRSKFVQFLRHEES
SEQ ID NO 115: Vitis vinifera "A" MKT cDNA
ATGTTGCAGGCTCTCCTCTCCCCCACGCACATGGCGGTTCCCGCCTCACGTGCCCACACAAGGGGCCTCC GTCTCTATCGTCCACCACTTCTTCTCCCGGCACCTCAGCCTCCTAGCAATTGTCGCTCCCCACGACTCCG ATCAGTCCCCGCCGTGAGGAGCGCCAGTGGACTCGCTTTTGATTTCAAAGGCGGAAAAGGAATGAGTGGG TTCCTTGATGTTGAGCTCAAAGTCCGGGATTATGAATTGGATCAATATGGTGTTGTAAACAATGCTGTTT ATGCAAGTTATTGTCAACATGGTCGGCATGAGCTTCTGGAAAAGATTGGTGTCAATGCTGATGCTGTTGC TCGCACTGGTGATGCATTAGCACTTTCAGAGCTGACACTCAAATTCCTTGCACCTCTGAGAAGTGGAGAC AGGTTTGTGGTGAAGGTGAGGGTCTCTGATTCCTCAGCTGCCCGCTTATACTTTGAACACTTCATCTTCA AGCTCCCAAATGAAGAGCCCATCTTGGAAGCTAGGGCCACAGCAGTATGTCTCGACAAAAACTACCGTCC CGTTCGAATACCAACAGAGATAAGATCTAAATTGGTTCAATTCCTACGACATGAGGAATCCCAT
SEQ ID NO 172: Vitis vinifera "A" MKT ORF
MLQALLSPTHMAVPASRAHTRGLRLYRPPLLLPAPQPPSNCRSPRLRSVPAVRSASGLAFDFKGGKGMSG FLDVELKVRDYELDQYGWNNAVYASYCQHGRHELLEKIGVNADAVARTGDALALSELTLKFLAPLRSGD RFWKVRVSDSSAARLYFEHFIFKLPNEEPILEARATAVCLDKNYRPVRIPTEIRSKLVQFLRHEESH
gi 225424011 ref XP_002283543.1 PREDICTED: hypothetical protein [Vitis vinifera]
SEQ ID NO 116: Vitis vinifera "B" MKT cDNA
ATGTTGCAGGCTCTCCTCTCCCCCACGCACATGGCGGTTCCCGCCTCACGTGCCGACACAAGGGGCCTCC GTCTCTACTGTCCACCACTTCTTCTCCCGGCACCTCAGCCTCCTAGCAATTGTCGCTCCCCACGTCTCCG ATCAGTCCCCGCCGTGAGGAGCGCCAGTGGACTTGCTTTTGATTTCAAAGGCGGAAAAGGAATGAGTGGG TTCCTTGATGTTGAGCTCAAAGTCCGGGATTATGAATTGGATCAATATGGTGTTGTAAACAATGCTGTTT ATGCAAGTTATTGTCAACATGGTCGGCATGAGCTTCTGGAAAAGATTGGTCTCAATGCTGATGCTGTTGC TTGCATTGGTGACGCTGTAGCACTTTCAGAGCTGACACTCAAATTCCTTGCACCTCTGAGAAGTGGAGAC AGGTTTGTGGTGAAGGTGAGGGTCTCTGATGCCTCAGCTGCTCGCTTATACTTTGAACACTTCATCTTCA AGCTCCCAAATGAAGAGCCCATCTTGGAAGCTAGGGCCACAGGAGTATGTCTCGACAAAAACTACCGTCC CGTTCGAATACCAACAGAGATAAGATCTATATTGGTTCAATTCCTACGACATGAGGAATCCCAT
SEQ ID NO 173: Vitis vinifera "B" MKT ORF
MLQALLSPTHMAVPASRADTRGLRLYCPPLLLPAPQPPSNCRSPRLRSVPAVRSASGLAFDFKGGKGMSG FLDVELKVRDYELDQYGWNNAVYASYCQHGRHELLEKIGLNADAVACIGDAVALSELTLKFLAPLRSGD RFWKVRVSDASAARLYFEHFIFKLPNEEPILEARATGVCLDKNYRPVRIPTEIRSILVQFLRHEESH
gi I 225424015 I ref I XP_002283545.1 I PREDICTED: hypothetical protein [Vitis vinifera]
SEQ ID NO 117: Arabidopsis thaliana "A" MKT cDNA
ATGTTTCTTCAGGTTACCGGCACGGCGACTCCGGCTATGCCTGCGGTAGTGTTTCTCAATTCATGGAGAC GACCACTTAGTATTCCTCTCCGGAGCGTAAAAACCTTCAAGCCTCTAGCATTCTTCGATCTCAAAGGAGG CAAAGGAATGAGTGAGTTCCATGAGGTTGAACTCAAAGTTCGTGATTATGAATTGGATCAGTTTGGTGTT GTGAACAATGCTGTTTACGCAAACTACTGTCAACACGGTCGACATGAGTTTCTAGAGAGTATCGGTATCA ACTGCGACGAAGTAGCACGTTCTGGGGAAGCCTTAGCAATTTCAGAGTTGACAATGAAGTTCCTTTCACC TTTACGTAGCGGAGACAAATTCGTGGTGAAAGCGAGGATATCGGGGACATCTGCTGCGCGTATTTACTTC GATCATTTCATCTTTAAACTTCCAAATCAAGAGCCTATATTGGAGGCAAAAGGAATAGCTGTGTGGCTCG ACAACAAGTACCGTCCTGTTCGCATCCCATCTTCTATACGTTCTAAATTTGTTCACTTCCTACGCCAAGA CGACGCCGTT
SEQ ID NO 174: Arabidopsis thaliana "A" MKT ORF
MFLQVTGTATPAMPAWFLNSWRRPLSIPLRSVKTFKPLAFFDLKGGKGMSEFHEVELKVRDYELDQFGV VNNAVYANYCQHGRHEFLESIGINCDEVARSGEALAISELTMKFLSPLRSGDKFWKARISGTSAARIYF DHFIFKLPNQEPILEAKGIAVWLDNKYRPVRIPSSIRSKFVHFLRQDDAV
gi I 18408985 I ref |NP_564926.1 I thioesterase family protein [Arabidopsis thaliana ]
SEQ ID NO 118: Arabidopsis thaliana "B" MKT cDNA
ATGATTCGGGTTACCGGCACGGCGGCTCCGGCTATGTCTGTGGTGTTTCCGACTTCATGGAGACAACCGG TTATGCTTCCTCTCCGGAGCGCAAAGACCTTCAAGCCTCACACATTTCTTGATCTTAAAGGAGGCAAAGA AATGAGTGAGTTCCATGAGGTTGAGCTTAAAGTTCGTGATTATGAATTGGATCAGTTTGGTGTTGTGAAC AATGCTGTTTACGCAAACTACTGCCAACACGGCATGCACGAATTTCTAGAGAGTATTGGTATCAACTGTG ATGAAGTTGCCCGTTCTGGTGAAGCCTTAGCAATATCAGAGTTGACAATGAATTTCCTTGCACCTTTACG TAGCGGAGACAAGTTTGTAGTGAAAGTGAACATATCTAGAACATCTGCTGCGCGTATTTACTTCGATCAT TCCATCTTGAAACTTCCAAATCAAGAGGTTATATTGGAGGCGAAAGCAACAGTTGTATGGCTTGACAACA AGCACCGTCCTGTTCGTATCCCATCTTCGATACGCTCTAAATTTGTTCACTTCCTACGCCAAAACGACAC AGTT
SEQ ID NO 175: Arabidopsis thaliana "B" MKT ORF MIRVTGTAAPAMSWFPTSWRQPVMLPLRSAKTFKPHTFLDLKGGKEMSEFHEVELKVRDYELDQFGWN NAVYANYCQHGMHEFLESIGINCDEVARSGEALAISELTMNFLAPLRSGDKFWKVNISRTSAARIYFDH SILKLPNQEVILEAKATWWLDNKHRPVRIPSSIRSKFVHFLRQNDTV
42563045 |NP_176995.2 thioesterase-related [Arabidopsis thaliana]
SEQ ID NO 119: Arabidopsis thaliana "C" MKT cDNA
ATGCTTAAAGCTACCGGCACAGTGGCTCCGGCTATGCACGTGGTGTTTCCCTGTTTTTCGAGTCGACCGC TTATCCTACCTCTCCGGAGCACAAAGACCTTCAAACCTCTCTCATGTTTCAAACAGCAAGGAGGCAAAGG AATGAATGGAGTCCATGAGATTGAACTTAAAGTTCGTGATTATGAATTAGACCAATTTGGTGTTGTGAAC AACGCTGTTTATGCAAACTACTGCCAACACGGTCAACACGAGTTTATGGAGACTATCGGTATCAACTGTG ATGAAGTGTCCCGTTCTGGTGAAGCATTGGCAGTTTCTGAATTGACAATAAAGTTTCTTGCACCTTTACG TAGTGGATGCAAGTTTGTGGTGAAAACGAGGATATCGGGGACATCTATGACGCGCATTTACTTTGAACAG TTCATCTTTAAACTTCCAAATCAAGAGCCTATTTTGGAGGCAAAAGGAATGGCTGTGTGGCTTGACAAGA GGTACCGTCCTGTTTGTATCCCGTCTTACATACGCTCTAATTTCGGTCACTTCCAACGTCAACACGTTGT CGAATATTGA
SEQ ID NO 176: Arabidopsis thaliana "C" MKT ORF
MLKATGTVAPAMHWFPCFSSRPLILPLRSTKTFKPLSCFKQQGGKGMNGVHEIELKVRDYELDQFGWN NAVYANYCQHGQHEFMETIGINCDEVSRSGEALAVSELTIKFLAPLRSGCKFWKTRISGTSMTRIYFEQ FIFKLPNQEPILEAKGMAVWLDKRYRPVCIPSYIRSNFGHFQRQHWEY
gi 18399594 ref |NP_564457.1 thioesterase family protein [Arabidopsis thaliana ]
SEQ ID NO 120: Picea sitchensis "A" MKT cDNA
ATGTACAACATGGATCTTTTCGGAGCCAAAGGTATGGCTAGACCTTTTGAGCTCGAGTTAAAAGTGCGTG ATTATGAATTGGACCAATATGGAGTTGTCAACAATGCAACTTATGCAAGTTATTGCCAACATTGTCGTCA TGAACTCTGTGAAGCAATTGGGTTTAGCCCAGATGTAATAGCGCGTACTGGGAATGCCCTTGCATTGTCA GAATTGTCTTTGAAGTACCTTGCACCTCTAAGAAGTGGTGATAGTTTTGTTGTCACTGCAAGGATCTCTG GTTCATCTGCTGTACGCCTGTTTTTTGAGCACTTCATCTATAAGTTACCTAATAGAGAGCCTGTCTTGGA AGCAAAGGCCACAGCTGTTTATCTTGATAAAATCTATCGACCTGTTCGACTTCCAGCTGATTTTAAATCT AAGATCACGCTATTTCTTCGTAATGAAGAATTGAAC
SEQ ID NO 177: Picea sitchensis "A" MKT ORF
MYNMDLFGAKGMARPFELELKVRDYELDQYGWNNATYASYCQHCRHELCEAIGFSPDVIARTGNALALS ELSLKYLAPLRSGDSFWTARISGSSAVRLFFEHFIYKLPNREPVLEAKATAVYLDKIYRPVRLPADFKS KITLFLRNEELN
gi 294464460 gb ADE77741.1 [Picea sitchensis]
SEQ ID NO 121 : Picea sitchensis "B" MKT cDNA ATGACCACAGCAATGGGTGCAATATCAGGTGGGATTTCAGTGGGAGTAAGCGCCAGGTATCCTCATGTTC AGTGCAGCAGCTTCATTCAAAATCCCACCAAAAAATTGTCGAGAGCCCTTGCATTTCCTTCTCTTCGCAC AGCGTCTTGTAATCCCGTTTTTAGAAGGGCATTGCCTCCCATTGCCAACATGTACAACATGGATCTTTTC GGAGCCAAAGGTATGGCTAGACCTTTTGAGCTCGAGTTAAAAGTGCGTGATTATGAATTGGACCAATATG GAGTTGTCAACAATGCAACTTATGCAAGTTATTGCGAACATTGTCTTCATGAACTCTTTGAAGCAATTGG GTTTAGCCCAGATGCAATAGCGCGTACTGGGAATGCCCTTGCATTGTCAGAATTGTCTTTGAAGTACCTT GCACCTCTAAGAAGTGGTGATAGTTTTGTTGTCACTGCAAGGATCTCCGGTTCATCTGCTGTACGCCTGT TTATTGAGCACTTCATCTATAAGTTACCTAATAGAGAGCCTGTCTTGGAAGCAAAGGCCACAGCTGTTTA TCTTGATAAAATCTATCGACCTGTTCGACTTCCAGCTGATTTTAAATCTAAGATCACGCTATTTCTTCGT AATGAAGAA GAAC
SEQ ID NO 178: Picea sitchensis "B" MKT ORF
MTTAMGAISGGISVGVSARYPHVQCSSFIQNPTKKLSRALAFPSLRTASCNPVFRRALPPIANMYNMDLF GAKGMARPFELELKVRDYELDQYGWNNATYASYCEHCLHELFEAIGFSPDAIARTGNALALSELSLKYL APLRSGDSFWTARISGSSAVRLFIEHFIYKLPNREPVLEAKATAVYLDKIYRPVRLPADFKSKI LFLR NEELN
>gi 294464416 g ADE77720.1 [Picea sitchensis]
SEQ ID NO 122: Oryza sativa japonica MKT cDNA
ATGCACCACCAGATTTGGCGCCTCCTCCCCAGCGCCCTCTCGCCGATCCACGCCGGAGCTCCCCGGCCGA GCCGCCCGCCGGCGCGGCTAGGCCGCCCTTCACCGCAACGACGGCGGGCGCTCGCGCTCACGCACCTCGC CACCCGGCGCACATGTCGCCTCCTCGCTGTCTCCGCCCAGTCCGCCAGCCCCCACGCCGGCTTGAGGTTG GATCAGTTTTTCGAGGTGGAGATGAAGGTACGAGATTATGAACTCGACCAATATGGGGTTGTCAACAATG CCATCTATGCTAGTTACTGCCAACATGGTCGTCATGAGCTACTTGAAAGTGTAGGCATAAGTGCAGATGC AGTAGCACGCAGCGGTGAGTCGCTGGCCCTCTCTGAACTGCACCTCAAGTACTACGCGCCTTTGAGAAGT GGTGACAAGTTCGTCGTTAAGGTCAGGCTTGCGAGCACAAAAGGTATAAGGATGATATTCGAGCACTTCA TTGAAAAGCTGCCTAATCGTGAGCTCATTTTGGAAGCGAAGGCAACAGCGGTTTGTTTGAACAAAGACTA CCGCCCCACCCGTATATCTCCAGAGTTCCTGTCCAAGCTGCAGTTCTTCACTTCTGAAGGCAGTAGCAGT
SEQ ID NO 179: Oryza sativa japonica MKT ORF
MHHQIWRLLPSALSPIHAGAPRPSRPPARLGRPSPQRRRALALTHLATRRTCRLLAVSAQSASPHAGLRL DQFFEVEMKVRDYELDQYGWNNAIYASYCQHGRHELLESVGISADAVARSGESLALSELHLKYYAPLRS GDKFWKVRLASTKGIRMIFEHFIEKLPNRELILEAKATAVCLNKDYRPTRISPEFLSKLQFFTSEGSSS
>gi 38345477 CAE01692.2 OSJNBa0010H02.15 [Oryza sativa (japonica cultivar-group) ]
SEQ ID NO 123: Oryza sativa indica MKT cDNA
ATGCACCACCAGATTTGGCGCCTCCTCCCCAGCGCCCTCTCGCCGATCCACGCCGGAGCTCCCCGGCCGA GCCGCCCGCCGGCGCGGCTAGGCCGCCCTTCACCGCAACGACGGCGGGCGCTCGCGCTCGCGCTCGCGCA CCTCGCCACCCGGCGCACATGCCGCCTCCTCGCTGTCTCCGCCCAGTCCGCCAGCCCCCACGCCGGCTTG AGGTTGGATCAGTTTTTCGAGGTGGAGATGAAGGTACGAGATTATGAACTCGACCAATATGGGGTTGTCA ACAATGCCATCTATGCTAGTTACTGCCAACATGGTCGTCATGAGCTACTTGAATGTGTAGGCATAAGTGC AGATGCAGTAGCACGCAGCGGTGAGTCGCTGGCCCTCTCTGAACTGCACCTCAAGTACTACGCGCCTTTG AGAAGTGGTGACAAGTTCGTCGTTAAGGTCAGGCTTGCGAGCACAAAAGGTATAAGGATGATATTCGAGC ACTTCATTGAAAAGCTGCCTAATCGTGAGCTCATTTTGGAAGCGAAGGCAACAGCGGTTTGTTTGAACAA AGACTACCGCCCCACCCGTATATCTCCAGAGTTCCTGTCCAAGCTGCAGTTCTTCACTTCTGAAGGCAGT AGCAGTTAA
SEQ ID NO 180: Oryza sativa indica MKT ORF
MHHQIWRLLPSALSPIHAGAPRPSRPPARLGRPSPQRRRALALALAHLATRRTCRLLAVSAQSASPHAGL RLDQFFEVEMKVRDYELDQYGWNNAIYASYCQHGRHELLECVGISADAVARSGESLALSELHLKYYAPL RSGDKFWKVRLASTKGIRMIFEHFIEKLPNRELILEAKATAVCLNKDYRPTRISPEFLSKLQFFTSEGS SS
gi I 116310405 I emb I CAH67414.1 I OSIGBa0143N19.8 [Oryza sativa (indica cultivar- group) ]
SEQ ID NO 124: Zea mays MKT cDNA
ATGCATCACCGGTTCGCGGGCCTCGTGCCCACCGCCCGCCCCGCTCTGCCGCCGATCCACGGCGGAGTCG TCGGCCGGAGCTATCCGCCCGTCCACCGGTCCTTGGCGCTTCGCCTGGCGCCGTTTGCCTCCGCGTCTGT CCGACGCGCGTGCCGCCCCCTCGCCGTCTCCGCCCAATCCACCAGCCTCCGGCCGGAGAAGTTTTTTGAA GTGGAGATGAAGGTGCGCGACTATGAAATTGACCAGTATGGTGTTGTCAACAATGCAATCTATGCTAGCT ACTGCCAACATGGTCGTCACGAGCTGCTTGAGAGCGTAGGCATCAGTGCAGATGCAGTGGCGCGCAGTGG GGAATCCCTGGCTCTCTCTGAGTTGAACCTCAAGTACTTTGCCCCTTTGAGGAGTGGCGATAAGTTTGTT GTTAAGGTGAGGCTTGCAGGCATCAAAGGTGTACGGATGATATTCGACCACATCATTACAAAACTGCCTA ATCATGAGCTAATTCTGGAGGCAAAGGCAACGGCTGTTTGCCTGAACAAAGACTACTATCCTACCCGTAT TCCTCGTGAACTATTGTCCAAGATGCAGCTCTTCTTACCCGTGGACAGCAGAGGGTCAAATGAAGACGTT AATAATCGGAATAACAGCTGCAAC
SEQ ID NO 181 : Zea mays MKT ORF
MHHRFAGLVPTARPALPPIHGGWGRSYPPVHRSLALRLAPFASASVRRACRPLAVSAQSTSLRPEKFFE VEMKVRDYEIDQYGWNNAIYASYCQHGRHELLESVGISADAVARSGESLALSELNLKYFAPLRSGDKFV VKVRLAGIKGVRMIFDHI ITKLPNHELILEAKATAVCLNKDYYPTRIPRELLSKMQLFLPVDSRGSNEDV NNRNNSCN
gi I 238014368 I gb I ACR38219.1 I unknown [Zea mays]
SEQ ID NO 125: Sorghum bicolor MKT cDNA
ATGCATCACCAGTTCGCGCGCCTCGTGCCCACCGCCCGCCCCGCGCTGCCGCCGATCCACGGCGGAGCCG TCGGCCGGAGCTCTCCGCACGTCCACCGGGCCGTGGCGCTTCGACGGGCGCCGCTCGCCTCCGCGGCTGG CCGGCGCGCGTGCCGCCCCCTCGCCGTCTCCGCCCAATCCACCAGCCCCCAGGCCGGCTTGAGGCTGGAG GAGAAGTTTTTTGAAGTGGAGATGAAGGTGCGTGACTATGAACTTGACCAGTATGGTGTTGTCAACAATG CCGTCTATGCTAGCTACTGCCAACATGGTCGTCACGAGCTACTTGAGAGTGTAGGCATCAGTGCGGATGC AGTGGCGCGCAGTGGGGAGTCGCTGGCCCTCTCTGAGCTAAACCTAAAGTACTTTGGCCCTTTGAGGAGC GGCGACAAGTTTGTTGTTAAGGTGAGGCTTGTGGGCATCAAAGGTGTACGGATGATATTCGAGCACATCA TTGAGAAACTTCCTAATCACGAGCTAATTCTGGAGGCAAAGGCAACAGCTGTTTGCCTGAACAAAGACTA CTATCCTACCCGCATTCCTCGTGAACTATTGTCCAAGATGCAGCTCTTCTCATCCGAGGACAGCAGAGGG TCAAATAAAGACGTTAATAATCGGAATAACAGCTGCAAC SEQ ID NO 182: Sorghum bicolor MKT cDNA
MHHQFARLVPTARPALPPIHGGAVGRSSPHVHRAVALRRAPLASAAGRRACRPLAVSAQSTSPQAGLRLE EKFFEVEMKVRDYELDQYGWNNAVYASYCQHGRHELLESVGISADAVARSGESLALSELNLKYFGPLRS GDKFWKVRLVGIKGVRMIFEHI IEKLPNHELILEAKATAVCLNKDYYPTRIPRELLSKMQLFSSEDSRG SNKDVNNRNNSCN
gi I 242076712 I ref I XP_002448292.1 I hypothetical protein SORBIDRAFT_06g024720 [Sorghum bicolor]
SEQ ID NO 126: Phyllostachys edulis MKT cDNA
ATGCTGGCACTCCGGCGCGCCGCACCAGTCCACTCCACCGCGATGCGCCACCAGATTTGGCGCCTCGTGC CCAACGCCCAGTCGCCGCTCCCGCCGATCCACGCCGATGCTCGCCGGAGCTGCTCCCGGACCGTCAACCC TACACCGCTCCGCCTGCCGGCGCTCGCCTCCGCCGCCACCCGAGGCATATGCCGCCCCCTCGCCGTCTCC GCTCAGTCAGCCAGCCCCCACGCCGGCCTGAGGGTGGATAAGTTTTTCGAAGTGGCGATGAAGGTGCGCG ACTATGAACTCGACCAGTATGGAGTTGTCAACAATGCTGTCTATGCTAGCTACTGCCAACATGGCCGTCA TGAGCTACTTGAGAGTGTAGGCATAAGTGCAGATGCAGTAGCGCGCAGTGGTGAGTCGCTGGCCCTCTCT GATCTGCACCTCAAGTTCTTCGCGCCTTTGAGAAGTGGTGACGAGTTTGTCGTTAAGGTGAGACTTGCAA GCATCAAAGGTGTAAGGATGATATTCGAGCACTCCATTGAGAAGCTGCCTAACCGCGAGTTGATTTTGGA AGCAAAGGCAACAGCTGTTTGTCTCAACAAGGACTACCGTCCAACCCGTGTATCCCCAGAGTTCCTGTCC AGGCTGCAGCTCTTCTCATCCAAGGACAGCAAGGGT
gi I 242389648 I emb I FP100679.1 I Phyllostachys edulis cDNA clone: bphylf027gll
SEQ ID NO 183: Phyllostachys edulis MKT ORF
MLALRRAAPVHS AMRHQIWRLVPNAQSPLPPIHADARRSCSRTVNP PLRLPALASAATRGICRPLAVS AQSASPHAGLRVDKFFEVAMKVRDYELDQYGWNNAVYASYCQHGRHELLESVGISADAVARSGESLALS DLHLKFFAPLRSGDEFWKVRLASIKGVRMIFEHSIEKLPNRELILEAKATAVCLNKDYRPTRVSPEFLS RLQLFSSKDSKG
SEQ ID NO 127: Picea glauca MKT cDNA
ATGGCCACAGCAATGGGTGCAATATCAGGTGGGATTTCAGTGGGAGTAAACGCCAGGTATCCTCATGTTC AGTGCAGCAGTTTCATTCAAAATCCCACCAAAAAATTGTCGAGAGCCCTTGCATTTCCTTCTCTTCGCAC AGCGTCTTGTAATCCCGTATTTAGAAGGGCATTGCCTCCCATTGCCGACATGTACAACATGGAACTTTTC GGAGCCAAAGGTATGGCTAGACCTTTTGAGCTCGAGTTAAAAGTGCGTGATTATGAATTGGACCAATATG GAGTTGTCAACAATGCAACTTATGCAAGTTATTGCCAACATTGTCGTCATGAACTCTGTGAAGCAATTGG GTTTAGCCCAGATGCAATAGCGCGTACTGGGAATGCCCTTGCATTGTCAGAATTGTCTTTGAAGTACCTT GCACCTCTAAGAAGTGGTGATAGTTTTGTTGTCACTGCAAGGATCTCCGGTTCATCTGCTGTACGCCTGT TTTTTGAGCACTTCATCTATAAGTTACCTAATAGAGAGCCTGTCTTGGAAGCAAAGGCCACAGCTGTTTA TCTTGATAAAATCTATCGACCTGTTCGACTTCCAGCTGATTTTAAATCTAAGATCACGCTATTTCTTCGT AATGAAGAA GAAC AG
gi I 270148361 I gb I BT115313.1 I Picea glauca clone GQ03614_A18 SEQ ID NO 184: Picea glauca MKT ORF
MATAMGAI SGGI SVGVNARYPHVQCS SFIQNPTKKLSRALAFPSLRTASCNPVFRRALPPIADMYNMELF GAKGMARPFELELKVRDYELDQYGWNNATYASYCQHCRHELCEAIGFS PDAIARTGNALALSELSLKYL APLRSGDSFWTARI SGS SAVRLFFEHFIYKLPNRE PVLEAKATAVYLDKIYRPVRLPADFKSKI LFLR NEELN
SEQ ID NO 128: Gossypium hirsutum MKT cDNA
ATGCTCCAGGCTTCGGTTTTCCCGGCGCACGCCGCCTTGCCTTCCCCTCGTCCAAATGCTACTTTTCTCA ATCTTCACCGTCCATCTTCATCCTTTCCAATCTCTCCGCTGTTGATGCCGCTGCGTGTCCCTACGCTCTC CACCTCAAGGAGCTTCACTGTCGGAGCACTTTTTGATCTCAAAGGCGGCCAAGGAATGACTTCGTTCCAT GAGGTTGAGCTCAAAGTCCGTGACTACGAACTGGATCAGTATGGAGTTGTTAATAATGCTGTTTATGCAA GTTATTGTCAACACGGTCGCCATGAACTACTTGAAAGTATTGGTATCAGCTGTGATGAAGTTGCCCGCAC TGGTGATTCATTAGCACTGTCAGAGTTGTCGCTCAAATTTCTTGGACCTTTAAGGAGTGGAGACAATTTT GTTGTTAAGGTGAGGGTTTCCAACTCCTCAGGGGCTCGCCTGTACTTTGAGCATTTCATCTTTAAGATGC CAAATGAAGTGCCTATTCTGGAGGCAAAGGCCACAGCTGTATGGCTTGACAAAAATTATCGTCCTGCTCG TATCCCTCCAGAATTCAGATCAAAATTTGTTCAATTCCTTCGTTGTGAGGAACCTAGT
gi I 7 8333905 I gb I DT554 17 9 . 1 I DT554 17 9 EST 1 064 81 9 GH_TMO Gos sypium hi rsutum cDNA
SEQ ID NO 185: Gossypium hirsutum MKT ORF
MLQASVFPAHAALPS PRPNATFLNLHRPS S SFPI S PLLMPLRVPTLSTSRSFTVGALFDLKGGQGMTSFH EVELKVRDYELDQYGWNNAVYASYCQHGRHELLES IGI SCDEVARTGDSLALSELSLKFLGPLRSGDNF WKVRVSNS SGARLYFEHFI FKMPNEVPI LEAKATAVWLDKNYRPARI PPEFRSKFVQFLRCEEPS
SEQ ID NO 129: Glycine max MKT cDNA
ATGCTCTACAACCACACTTCCTCGATGTCATTGCCTTCCCCATTGTACCTGAATACTACGTCGTTTCGCC TCACGCGCCAATCTCCTTTTCCTTTTCCCCGCCGGCGCTTCAATCCACCGGCTTTCCGATCAGTTTCGCC GTTGAGTTCCAGCCCCTCTGCATCACTCTTCGATCTCAGAGGGGGCAAAGGAATGAGTGGATTCCATGAC GTTGAACTGAAGGTGCGCGACTATGAGTTGGATCAGTACGGTGTGGTTAACAATGCAGTTTATGCTAGTT ATTGCCAGCACGGTCGTCATGAACTCTTGCAAAACATTGGTATTAATTGCGATGCTGTGGCTCGCAGTGG TGATGCATTGGCATTGTCTGAACTATCGCTCAAATTCCTTGCACCTCTAAGAAGTGGAGACAAATTTGTT GTAAGAGTTAGGATTTCTGGCTCTTCAGCTGCTCGTTTATACTTTGATCACTTCATCTATAAGCTGCCAA ACCAAGAGCCTATTTTGGAAGCCAAGGCCATAGCGGTGCGGCTTGACAAAAACTATCGTCCTATACGAAT T C C AGC AG AG AT GAAG T C TAAAT T T G TAAAG T T T AT T C GAAT T G AGG AC T C T
gi I 1 62 831 14 I gb I BI 94537 9 . 1 I BI 94537 9 sb60 f 02 . yl Gm-c l O l O Glycine max
SEQ ID NO 186: Glycine max MKT ORF
MLYNHTS SMS LPS PLYLNTTSFRLTRQS PFPFPRRRFNPPAFRSVS PLS S S PSAS LFDLRGGKGMSGFHD VELKVRDYELDQYGWNNAVYASYCQHGRHELLQNIGINCDAVARSGDALALSELSLKFLAPLRSGDKFV VRVRI SGS SAARLYFDHFIYKLPNQEPI LEAKAIAVRLDKNYRPIRI PAEMKSKFVKFIRIEDS
SEQ ID NO 130: Saccharum hybrid MKT cDNA ATGCATCACCAGTTCGCGCGCCTCGTGCCCGCCGCCCGCCCCGCGCTGCCGCCGATCCACGGCGGAGCCG TTGGGCGGAGCTCTCCGCCCGTCCACCGGGCCGTGGCGCTTCGCCGGGCGCCGCTCGCCTCCGCGGCTGG CCGGCGCGCGTACCGCCCCCTGGCCGTCTCCGCCCAATCCACCAGCCCCCAAGCCGGCTTGAGGCTGGAG GAGAAGTTTTTTGAAGTGGAGATGAAGGTGCGTGACTATGAACTTGACCAGTATGGTGTTGTCAACAATG CAGTCTATGCTAGCTACTGCCAACATGGTCGTCACGAGGTGCTTGAGAGTGTAGGCATCAGTGCGGATGC AGTGGCTCGCAGTGGGGAGTCGCTGGCCCTCTCTGAGCTAAACCTAAAGTACTTTGCCCCTTTGAGGAGT GGCGACAAGTTTGTTGTTAAGGTAAGGCTTGTGGGCATCAAAGGCATACGGATGATATTCGAGCACATCA TTGAGAAGCTGCCTAATCACGAGCTAATTCTGGAGGCAAAGGCAACAGCTGTTTGCCTGAACAAAGACTA CTATCCTACCCGCATTCCTCGTGAACTACTGGCCAAGATGCAGCTCTTCTCATNCCGAGGCAGCAGAGGG ACAAATGACGACATTAATAATCGGAATAACAGCTGCAAC
Saccharum hybrid cultivar SP80-3280 SEQ ID NO 187: Saccharum hybrid MKT ORF
MHHQFARLVPAARPALPPIHGGAVGRSSPPVHRAVALRRAPLASAAGRRAYRPLAVSAQSTSPQAGLRLE EKFFEVEMKVRDYELDQYGWNNAVYASYCQHGRHEVLESVGISADAVARSGESLALSELNLKYFAPLRS GDKFWKVRLVGIKGIRMIFEHI IEKLPNHELILEAKATAVCLNKDYYPTRIPRELLAKMQLFSXRGSRG TNDDINNRNNSCN
SEQ ID NO 131 : Arabidopsis thaliana "A" modified cDNA
ATGgctTCAGAATTTCACGAAGTTGAATTGAAGGTTAGAGATTATGAACTCGATCAGTTCGGCGTCGTTAATAACGC AGTTTATGCTAACTACTGCCAGCACGGCAGACACGAGTTTCTCGAGTCCATTGGCATTAACTGTGACGAGGTCGCAA GGTCAGGAGAAGCACTTGCAATTTCCGAGCTTACTATGAAGTTCTTGTCTCCTCTTAGGAGTGGTGATAAGTTTGTC GTTAAAGCTAGAATATCCGGGACTTCTGCTGCTAGGATTTATTTCGATCACTTTATATTCAAACTCCCAAACCAAGA ACCAATTCTTGAGGCTAAAGGTATAGCAGTTTGGCTTGATAATAAGTACAGACCTGTACGTATCCCAAGCTCTATTA GGTCAAAGTTTGTACACTTTCTTCGTCAGGATGATGCAGTG
SEQ ID NO 188: Arabidopsis thaliana "A" modified ORF
MASEFHEVELKVRDYELDQFGWNNAVYANYCQHGRHEFLESIGINCDEVARSGEALAISELTMKFLSPLRSGDKFV VKARISGTSAARIYFDHFIFKLPNQEPILEAKGIAVWLDNKYRPVRIPSSIRSKFVHFLRQDDAV
SEQ ID NO 132: Arabidopsis thaliana "B" modified cDNA
ATGgctTCAGAATTTCACGAAGTTGAATTGAAGGTTAGAGATTATGAACTCGATCAGTTCGGCGTCGTTAATAACGC AGTGTATGCTAATTATTGTCAACATGGTATGCATGAGTTTCTCGAATCCATTGGCATCAACTGTGATGAAGTGGCCA GAAGTGGTGAGGCTTTAGCAATTTCAGAACTCACAATGAATTTCCTTGCACCTCTTAGGAGTGGTGATAAATTCGTA GTGAAGGTTAACATAAGTAGAACAAGTGCAGCCAGAATCTACTTTGATCATTCAATATTGAAACTTCCCAATCAGGA GGTGATTCTTGAGGCTAAGGCCACCGTTGTTTGGTTGGATAACAAGCATAGGCCTGTGCGTATTCCATCTTCAATCA GGTCAAAGTTCGTCCACTTCTTGAGACAGAACGACACTGTT
SEQ ID N0189: Arabidopsis thaliana "B" modified ORF
MASEFHEVELKVRDYELDQFGWNNAVYANYCQHGMHEFLESIGINCDEVARSGEALAISELTMNFLAPLRSGDKFV VKVNISRTSAARIYFDHSILKLPNQEVILEAKATWWLDNKHRPVRIPSSIRSKFVHFLRQNDTV
SEQ ID NO 133: Arabidopsis thaliana "C" modified cDNA
ATGgctAATGGTGTACATGAAATTGAATTGAAGGTTAGAGATTATGAACTCGATCAGTTCGGCGTCGTTAATAACGC AGTTTATGCCAATTACTGCCAGCATGGCCAGCATGAGTTCATGGAAACAATCGGAATTAACTGCGACGAAGTTTCAA GGTCTGGTGAAGCACTTGCAGTCTCAGAACTCACTATAAAGTTCCTTGCACCTCTTAGGAGTGGTTGCAAATTTGTC G T C AAG AC T AGG AT AT C C GG T AC C T C T AT G AC T C G T AT C T AT T T C G AAC AAT T C AT C T T C AAG T T AC C T AAC C AAG A ACCAATTCTTGAGGCTAAGGGTATGGCTGTATGGTTGGACAAGAGATACAGGCCTGTTTGTATTCCATCTTACATCc gtAGCAATTTCGGTCATTTCCAAAGGCAGCACGTGGTCGAATAT
SEQ ID NO 190: Arabidopsis thaliana "C" modified ORF
MANGVHE IELKVRDYELDQFGWNNAVYANYCQHGQHEFMET IGINCDEVSRSGEALAVSELT IKFLAPLRSGCKFV VKTRI SGTSMTRIYFEQFI FKLPNQEPI LEAKGMAVWLDKRYRPVC I PSYIRSNFGHFQRQHWEY
SEQ ID NO 134: Populus trichocarpa modified cDNA
ATGgctTCTggtcttGTTGAAGTCGAATTGAAGGTTAGAGATTATGAACTCGATCAGTTCGGCGTCGTTAATAACGC AGTTTATGCCAGTTATTGCCAACATGGAAGACATGAGCTCTTGGAAAGAATAGGCGTGTCCGCAGATGTCGTCGCTA GGACAGGCGATGCATTGGCTTTGTCAGAGcttAGTCTCAAATTCTTGGCTCCTCTTAGGAGTGGTGATCGTTTTGTT GTTAAGGTTcgtATATCTGGAAGCTCTGCCGCAAGGCTTTACTTTGAACATTTCATCTTCcgtTTGCCTAATGAGGA ACCCATTCTTGAGGCTAAAGCTACCGCCGTCTGGCTTGACAAGAAGTATCATCCAGTGAGAATACCACCTGAGTTCA GATCTAAGTTCGTCCAGTTCTTGAGGCATGAAGAGTCT
SEQ ID NO 191 : Populus trichocarpa modified ORF
MASGLVEVELKVRDYELDQFGWNNAVYASYCQHGRHELLERIGVSADWARTGDALALSELSLKFLAPLRSGDRFV VKVRI SGS SAARLYFEHFI FRLPNEEPI LEAKATAVWLDKKYHPVRI PPEFRSKFVQFLRHEES
SEQ ID NO 135: Ricinus communis modified cDNA
atgGCTaatagcttcgttggagtaGAATTGAAGGTTAGAGATTATGAACTCGATCAGtacGGCGTCGTTAATAACGC Agtctacgcaagctattgtcagcatggaaggcatgagttacttgaaaggattggagtgtcagctgacgctgttgccc gtacaggcgatgcacttgcattgagtgagctttccttgaagtttctcgcaCCTCTTAGGAGTGGTgacagatttgtc gtgaaggttagaatctccggctcaagcgccgctaggttgtacttcgaccactttatattcaaactccctaacgagga accaATTCTTGAGGCTaaggccactgccgtatggctcgacaagaattacaggcctgtcaggatcccttctgatatga ggtctaaacttgttcaattccttaaacacgaggaaagtaac
SEQ ID NO 192: Ricinus communis modified ORF
MANSFVGVELKVRDYELDQYGWNNAVYASYCQHGRHELLERIGVSADAVARTGDALALSELSLKFLAPLRSGDRFV VKVRI SGS SAARLYFDHFI FKLPNEEPI LEAKATAVWLDKNYRPVRI PSDMRSKLVQFLKHEESN
SEQ ID NO 136: Vitis vinifera "A" modified cDNA
ATGgctTCAGGGTTCTTGGATGTTGAATTGAAGGTTAGAGATTATGAACTCGATCAGTACGGCGTCGTTAATAACGC AGTCTATGCCAGTTACTGTCAACATGGAAGGCACGAGCTCcttGAgAAGATAGGAGTGAATGCAGATGCTGTTGCAC GTACCGGCGATGCCcttGCACTCAGCGAGTTAACTCTTAAGTTcTTGGCTCCTCTTAGGAGTGGTGATAGGTTTGTG GTGAAGGTTAGAGTGTCCGACTCATCCGCTGCCAGGCTCTACTTCGAGCACTTTATATTCAAGctcCCaAATGAGGA GCCTATTCTTGAGGCTAGAGCAACAGCAGTCTGTCTCGATAAGAACTACcgtCCTGTTAGGATACCTACTGAAATTA GAAGCAAAC TCGTCCAGTTTctcAGGCAC G AAG AAT C AC AT
SEQ ID NO 193: Vitis vinifera "A" modified ORF
MASGFLDVELKVRDYELDQYGWNNAVYASYCQHGRHELLEKIGVNADAVARTGDALALSELTLKFLAPLRSGDRFV VKVRVSDS SAARLYFEHFI FKLPNEEPI LEARATAVCLDKNYRPVRI PTE IRSKLVQFLRHEESH SEQ ID NO 137: Vitis vinifera "B" modified cDNA
ATGgctTCAGGGTTCTTGGATGTTGAATTGAAGGTTAGAGATTATGAACTCGATCAGTACGGCGTCGTTAATAACGC AGTCTACGCATCATATTGCCAGCATGGGAGGCATGAATTGCTCGAAAAGATAGGTTTGAATGCAGATGCCGTTGCCT GTATCGGCGACGCTGTTGCActtTCCGAGCTTACTTTGAAGTTTTTAGCTCCTCTTAGGAGTGGTGACAGATTCGTT GTTAAGGTGAGAGTGTCCGACGCTTCCGCAGCCAGGctcTACTTCGAGCACTTTATCTTCAAGTTGCCTAATGAAGA ACCTATTCTTGAGGCTAGGGCCACTGGCGTTTGTCTCGATAAGAACTATAGACCTGTTAGAATCCCTACCGAAATCA GATCTATATTGGTTCAATTCCTTAGGCACGAAGAATCCCAT
SEQ ID NO 194: Vitis vinifera "B" modified ORF
MASGFLDVELKVRDYELDQYGWNNAVYASYCQHGRHELLEKIGLNADAVAC IGDAVALSELTLKFLAPLRSGDRFV VKVRVSDASAARLYFEHFI FKLPNEEPI LEARATGVCLDKNYRPVRI PTE IRS I LVQFLRHEESH
SEQ ID NO 138: Oryza sativa japonica modified cDNA
ATGGCTGGTCTTAGATTGGATCAGTTCTTCGAAGTTGAAATGAAGGTGAGGGATTACGAATTGGATCAGTACGGCGT CGTTAATAACGCAATCTACGCTagcTATTGCCAGCATGGCAGGCATGAGCTTCTTGAATCAGTTGGAATTTCCGCTG ATGCTGTTGCTAGAAGTGGTGAGTCATTGGCCTTATCAGAGTTGCACTTAAAGTACTATGCACCTCTTAGGAGTGGT GATAAGTTCGTTGTGAAGGTTAGGCTCGCCTCTACCAAGGGTATTAGAATGATATTTGAGCACTTTATAGAGAAGCT CCCTAACAGAGAGCTTATACTTGAAGCCAAGGCTACTGCTGTTTGCTTGAACAAGGACTACAGACCTACACGTATTT CACCAGAGTTCTTGTCCAAGCTCCAATTCTTCACCTCTGAGGGTTCTAGTTCA
SEQ ID NO 195: Oryza sativa japonica modified ORF
MAGLRLDQFFEVEMKVRDYELDQYGWNNAIYASYCQHGRHELLESVGI SADAVARSGESLALSELHLKYYAPLRSG DKFWKVRLASTKGIRMI FEHFIEKLPNRELI LEAKATAVCLNKDYRPTRI S PEFLSKLQFFTSEGS S S
SEQ ID NO 139: Oryza sativa indica modified cDNA
ATGGCTGGTCTTAGATTGGATCAGTTCTTCGAAGTTGAAATGAAGGTGAGGGATTACGAATTGGATCAGTACGGCGT CGTTAATAACGCAATCTACGCTugcTATTGCCAGCATGGCAGGCATGAGCTTCTTGAATCAGTTGGAATTTCCGCTG ATGCTGTTGCTAGAAGTGGTGAGTCATTGGCCTTATCAGAGTTGCACTTAAAGTACTATGCACCTCTTAGGAGTGGT GATAAGTTCGTTGTGAAGGTTAGGCTCGCCTCTACCAAGGGTATTAGAATGATATTTGAGCACTTTATAGAGAAGCT CCCTAACAGAGAGCTTATACTTGAAGCCAAGGCTACTGCTGTTTGCTTGAACAAGGACTACAGACCTACACGTATTT CACCAGAGTTCTTGTCCAAGCTCCAATTCTTCACCTCTGAGGGTTCTAGTTCA
SEQ ID NO 196: Oryza sativa indica modified ORF
MAGLRLDQFFEVEMKVRDYELDQYGWNNAIYACYCQHGRHELLESVGI SADAVARSGESLALSELHLKYYAPLRSG DKFWKVRLASTKGIRMI FEHFIEKLPNRELI LEAKATAVCLNKDYRPTRI S PEFLSKLQFFTSEGS S S
SEQ ID NO 140: Phyllostachys edulis modified cDNA
ATGGCTGGTCTTAGAgTGGATaAGTTCTTCGAAGTTGcAATGAAGGTGAGGGATTACGAATTGGATCAGTACGGCGT CGTTAATAACGCAgTCTACGCTAGCTATTGCCAGCATGGCAGGCATGAGCTTCTTGAATCAGTTGGAATTTCCGCTG ATGCTGTTGCTAGAAGTGGTGAGTCATTGGCCTTATCAGAtTTGCACTTAAAGTtCTtTGCACCTCTTAGGAGTGGT GATgAGTTCGTTGTGAAGGTTAGGCTCGCCTCTAtCAAGGGTgTTAGAATGATATTTGAGCACTcTATAGAGAAGCT CCCTAACAGAGAGCTTATACTTGAAGCCAAGGCTACTGCTGTTTGCTTGAACAAGGACTACAGACCTACACGTgTTT CACCAGAGTTCTTGTCCAgGCTCCAgTTgTTCAgCTCTaAGGaTTCTAaaggAtga SEQ ID NO 197: Phyllostachys edulis modified ORF
MAGLRVDKFFEVAMKVRDYELDQYGWNNAVYASYCQHGRHELLESVGI SADAVARSGESLALSDLHLKFFAPLRSG DEFWKVRLAS IKGVRMI FEHS IEKLPNRELI LEAKATAVCLNKDYRPTRVS PEFLSRLQLFS SKDSKG
SEQ ID NO 141 : Zea mays modified cDNA
AT GGC AG AG AAG T T C T T T GAAG C GAG A GAAAG T TAG AG AT T AC GAG AT AG AT C AG T AT GG AG TCGTTAATAATGC AATCTATGCCAGCTATTGTCAGCATGGTAGACACGAGTTGCTCGAATCCGTGGGCATATCTGCCGATGCTGTTGCTA GGTCTGGAGAGTCACTTGCATTGTCTGAACTCAACCTCAAATACTTCGCACCTCTTCGTTCTGGAGACAAGTTTGTT GTCAAAGTTAGGCTCGCTGGAATTAAGGGTGTTCGTATGATATTTGATCACATTATCACCAAACTTCCTAATCATGA GTTGATCTTGGAGGCTAAAGCTACAGCTGTTTGCCTCAATAAGGATTATTATCCTACAAGGATACCAAGGGAACTTC TTAGTAAGATGCAGCTCTTCCTTCCAGTCGACAGCAGAGGTAGTAATGAAGACGTGAACAATCGTAATAATTCATGC AATtga
SEQ ID NO 198: Zea mays modified ORF
MAEKFFEVEMKVRDYE I DQYGWNNAIYASYCQHGRHELLESVGI SADAVARSGESLALSELNLKYFAPLRSGDKFV VKVRLAGIKGVRMI FDHI I TKLPNHELI LEAKATAVCLNKDYYPTRI PRELLSKMQLFLPVDSRGSNEDVNNRNNSC N
SEQ ID NO 142: Sorghum bicolor modified cDNA
ATGGCAggtttgagacttgagGAGAAGTTCTTTGAAGTCGAGATGAAAGTTAGAGATTACGAGtTAGATCAGTATGG AGTCGTTAATAATGCAgTCTATGCCAGCTATTGTCAGCATGGTAGACACGAGTTGCTCGAATCCGTGGGCATATCTG CCGATGCTGTTGCTAGGTCTGGAGAGTCACTTGCATTGTCTGAACTCAACCTCAAATACTTCGgACCTCTTCGTTCT GGAGACAAGTTTGTTGTCAAAGTTAGGCTCGtTGGAATTAAGGGTGTTCGTATGATATTTGAgCACATTATCgagAA ACTTCCTAATCATGAGTTGATCTTGGAGGCTAAAGCTACAGCTGTTTGCCTCAATAAGGATTATTATCCTACAAGGA TACCAAGGGAACTTCTTAGTAAGATGCAGCTCTTCtcTtCAGagGACAGCAGAGGTAGTAATaAAGACGTGAACAAT CGTAATAATTCATGCAAT
SEQ ID NO 199: Sorghum bicolor modified ORF
MAGLRLEEKFFEVEMKVRDYELDQYGWNNAVYASYCQHGRHELLESVGI SADAVARSGESLALSELNLKYFGPLRS GDKFWKVRLVGIKGVRMI FEHI IEKLPNHELI LEAKATAVCLNKDYYPTRI PRELLSKMQLFS SEDSRGSNKDVNN RNNSCN
SEQ ID NO 143: Lycopersicon esculentum "improved A" cDNA
ATGaacGAGTTCCATGAAGTTGAACTCAAAGTCaGGGACTATGAATTGGATCAGTATGGTGTTGTAAACAATGCTAT cTATGCAAGTTATTGCCAACATtgcCGTCATGAGCTcCTtGAAAGGATTGGTATAAGTGCTGATGAAGTGGCACGta atGGTGACGCACTtGCACTtACAGAGtTGTCACTTAAGTATCTtGCACCTCTtAGGAGTGGAGATAGATTTGTCGTG AAaGCtaGAATATCTGATTCTTCAGCTGCTCGTTTGTTcTTtGAACACTTCATCTTCAAaCTTCCtGATCAAGAGCC CATCTTGGAGGCAAGAGGAATAGCAGTGTGGCTCAAcAAgAGTTACCGTCCTGTCaGAATCCCatctGAGTTCAGAT CAAAATTTGTTCAGTTCCTTCGtCAGGAGGCATCCAAC
SEQ ID NO 200: Lycopersicon esculentum "improved A" ORF
MNEFHEVELKVRDYELDQYGWNNAIYASYCQHCRHELLERIGI SADEVARNGDALALTELSLKYLAPLRSGDRFW KARI SDS SAARLFFEHFI FKLPDQEPI LEARGIAVWLNKSYRPVRI PSEFRSKFVQFLRQEASN SEQ ID NO 144: Petunia integrifolia "normalized A" cDNA
ATGAATGAGTTCcatGAAGTCGAACTCAAAGTCaGGGACTATGAGTTGGATCAATATGGTGTTGTAAACAATGCTAT cTATGCTAGTTATTGCCAACATTGTaGGCATGAGCTTCTtGAAAAGATTGGCGTAAATGCTGATGCAGTGGCACGtA ATGGTGAAGCATTAGCACTtACAGAGcttACACTcAAGTATCTtGCACCTCTcAGGAGTGGAGACAGATTCgttGTG AAaGTtaGAATATCTGACTCTTCAGCTGCTCGTTTGTTCTTTGAACACTTCATCTTCAAaCTTCCtGATCAAGAGCC TATCTTGGAGGCAAGAGGAACAGCAGTGTGGCTTAAcAAgAGTTACCGTCCTGTCaGAATcCCTTCAGAGTTCAGAT CAAAATTCGTTCAGTTCCTTCGtCAGGAGGCAtccaac
SEQ ID NO 201 : Petunia integrifolia "normalized A" ORF
MNEFHEVELKVRDYELDQYGWNNAIYASYCQHCRHELLEKIGVNADAVARNGEALALTELTLKYLAPLRSGDRFW KVRISDSSAARLFFEHFIFKLPDQEPILEARGTAVWLNKSYRPVRIPSEFRSKFVQFLRQEASN
SEQ ID NO 145: Petunia integrifolia with Lycopersicon hirsutum ends cDNA
ATGagtgatcaggtctatcaccatGAAGTCGAACTCAAAGTCaGGGACTATGAGTTGGATCAATATGGTGTTGTAAA CAATGCTATcTATGCTAGTTATTGCCAACATTGTaGGCATGAGCTTCTtGAAAAGATTGGCGTAAATGCTGATGCAG TGGCACGtAATGGTGAAGCATTAGCACTtACAGAGATGACACTcAAGTATCTtGCACCTCTcAGGAGTGGAGACAGA TTCATTGTGAAaGTtaGAATATCTGACTCTTCAGCTGCTCGTTTGTTCTTTGAACACTTCATCTTCAAaCTTCCtGA TCAAGAGCCTATCTTGGAGGCAAGAGGAACAGCAGTGTGGCTTAAcAAgAGTTACCGTCCTGTCaGAATcCCTTCAG AGTTCAGATCAAAATTCGTTCAGTTCCTTcaccagaagagttgcggtgtacaacatcatctcTGA
SEQ ID NO 202: Petunia integrifolia with Lycopersicon hirsutum ends ORF
MSDQVYHHEVELKVRDYELDQYGWNNAIYASYCQHCRHELLEKIGVNADAVARNGEALALTEMTLKYLAPLRSGDR FIVKVRISDSSAARLFFEHFIFKLPDQEPILEARGTAVWLNKSYRPVRIPSEFRSKFVQFLHQKSCGVQHHL
SEQ ID NO 146: Lycopersicon hirsutum with Petunia integrifolia ends cDNA
ATGaatgagttcCATGACGTTGAACTCACAGTCAGGGACTATGAGTTGGATCAGTTTGGTGTTGTAAATAATGCTAC TTATGCtAGTTATTGTCAACATTGTCGTCATGCtTTcCTtGAgAAgATTGGTGTTAGTGTTGATGAAGTAACcCGtA ATGGTGATGCATTAGCTGTAACAGAGCTCTCACTTAAGTTTCTtGCACCACTtAGGAGTGGAGATAGATTCGTGGTG AGGGCtaGATTgTCCCACTTTACAGTAGCTaGATTGTTcTTtGAGCATTTCATtTTCAAaCTTCCtGATCAAGAGCC TATATTGGAGGCAAGAGGAATAGCAGTGTGGCTTAATAGAAGTTATCGTCCTATTCGtATTCCaTCAGAGTTCAATT CAAAATTTGTTAAATTCCTTcgtcaggaggcatga
SEQ ID NO 203 : Lycopersicon hirsutum with Petunia integrifolia ends ORF
MNEFHDVELTVRDYELDQFGWNNATYASYCQHCRHAFLEKIGVSVDEVTRNGDALAVTELSLKFLAPLRSGDRFW RARLSHFTVARLFFEHFIFKLPDQEPILEARGIAVWLNRSYRPIRIPSEFNSKFVKFLRQEA
SEQ ID NO 147: L. esculentum/L. hirsutum chimeric optimization 27 cDNA
ATGgctAGTGATCAGGTCTATCACcatgaagttgaactcaaagtccgggactatgaattggatcagtatggtgttgt aaacaatgctatttatgcaagtTATTGTCAACATTGTCGTCATGCGTTTCTAGAAAAAATTGGTGTTAGTGTTGATG AAGTAACGCGAAATGGTGATGCATTAGCCGTAACAGAGCTCTCACTTAAGTTTCTAGCACCACTAAGGAGTGGAGAT AGATTCGTGGTGAGGGCGCGATTATCCCACTTTACAGTAGCTCGATTGTTTTTCGAGCATTTCATCTTCAAACTTCC AGATCAAGAGCCTATATTGGAGGCAAGAGGAATAGCAGTGTGGCTTAATAGAAGTTATCGTCCTATTCGAATTCCGT CAGAGTTCAATTCAAAATTTGTTAAATTCCTTCACCAGAAGAGTTGCGGTGTACAACATCATCTC H0111H = CHIM 7 with switch to 5' "H" tail
SEQ ID NO 204: L. esculentum/L. hirsutum chimeric optimization 27 ORF
MASDQVYHHEVELKVRDYELDQYGWNNAIYASYCQHCRHAFLEKIGVSVDEVTRNGDALAVTELSLKFLAPLRSGD RFWRARLSHFTVARLFFEHFIFKLPDQEPILEARGIAVWLNRSYRPIRIPSEFNSKFVKFLHQKSCGVQHHL
SEQ ID NO 148: L. esculentum/L. hirsutum chimeric optimization 28 cDNA
ATGgctAGTGATCAGGTCTATCACCATGACGTTGAACTCACAGTCAGGGACTATGAGTTGGATCAGTTTGGTGTTGT AAATAATGCTACTTATGCGAGTTATTGTCAACATTGTCGTCATGCGTTTCTAGAAAAAATTGGTGTTAGTGTTGATG AAGTAACGCGAAATGGTGATGCATTAGCCGTAACAGAGCTCTCACTTAAGTTTCTAGCACCACTAAGGAGTGGAGAT AGATTCGTGGTGAGGGCGCGATTATCCCACTTTACAGTAGCTCGATTGTTTTTCGAGCATTTCATCTTCAAACTTCC
Agatcaagagcctatattggaggcaagaggaatagcagtgtggctcaataaaagttaccgtcctgtccgaatcccgg cagagttcagatcaaaatttgttcagttccttcgccagAAGAGTTGCGGTGTACAACATCATCTC
H1110H = CHIM14 with switch to 3' "H" tail
SEQ ID NO 205: L. esculentum/L. hirsutum chimeric optimization 28 ORF
MASDQVYHHDVELTVRDYELDQFGWNNATYASYCQHCRHAFLEKIGVSVDEVTRNGDALAVTELSLKFLAPLRSGD RFWRARLSHFTVARLFFEHFIFKLPDQEPILEARGIAVWLNKSYRPVRIPAEFRSKFVQFLRQKSCGVQHHL
SEQ ID NO 149: L. esculentum/L. hirsutum chimeric optimization 29 cDNA
atggctgagttcCATGACGTTGAACTCACAGTCAGGGACTATGAGTTGGATCAGTTTGGTGTTGTAAATAATGCTAC TTATGCGAGTtattgccaacatggtcgtcatgagcttctagaaaggattggtataagtgctgatgaagtggcacgca Gtggtgacgcactagcactaacagagctgtcacttaagtatctagcacctctaaggagtggagatagatttgtcgtg Aaggcacgaatatctgattcttcagctgctcgtttgtttttcgaacacttcatcttcaaacttccagatcaagagcc Catcttggaggcaagaggaatagcagtgtggctcaataaaagttaccgtcctgtccgaatcccggcagagttcagat caaaatttgttcagttccttcgccaggaggcatccaac
elOOOe = CHIM 8 with switch to 5' "e" tail
SEQ ID NO 206: L. esculentum/L. hirsutum chimeric optimization 29 ORF
MAEFHDVELTVRDYELDQFGWNNATYASYCQHGRHELLERIGISADEVARSGDALALTELSLKYLAPLRSGDRFW KARISDSSAARLFFEHFIFKLPDQEPILEARGIAVWLNKSYRPVRIPAEFRSKFVQFLRQEASN
SEQ ID NO 150: L. esculentum/L. hirsutum chimeric optimization 30 cDNA
Atggctgagttccatgaagttgaactcaaagtccgggactatgaattggatcagtatggtgttgtaaacaatgctat Ttatgcaagttattgccaacatggtcgtcatgagcttctagaaaggattggtataagtgctgatgaagtggcacgca Gtggtgacgcactagcactaacagagctgtcacttaagtatctagcacctctaaggagtggagatagatttgtcgtg aaggcacgaatatctgattcttcagctgctcgtttgtttttcgaacacttcatcttcaaacttccaGATCAAGAGCC CATCTTGGAGGCAAGAGGAATAGCAGTGTGGCTTAATAGAAGTTATCGTCCTATTCGAATTCCGTCAGAGTTCAATT CAAAATTTGTTAAATTCCTTCACCAGgaggcatccaac
eOOOle = CHIM 1 with switch to 3' "e" tail
SEQ ID NO 207: L. esculentum/L. hirsutum chimeric optimization 30 ORF MAEFHEVELKVRDYELDQYGWNNAIYASYCQHGRHELLERIGISADEVARSGDALALTELSLKYLAPLRSGDRFW KARISDSSAARLFFEHFIFKLPDQEPILEARGIAVWLNRSYRPIRIPSEFNSKFVKFLHQEASN
SEQ ID NO 151 : L. hirsutum/S. tuberosum chimeric optimization 1 cDNA
ATGggtGATCAGctcTATCACCATGACGTTGAACTCACAGTCAGGGACTATGAGTTGGATCAGTTTGGTGTTGTAAA TAATGCTACTTATGCTAGTTATTGTCAACATTGTCGTCATGCTTTCCTTGAGAAGATTGGTGTTAGTGTTGATGAAG TAACCCGTAATGGTGATGCATTAGCTGTAACAGAGCTCTCACTTAAGTTTCTTGCACCACTTAGGAGTGGAGATAGA TTCGTGGTGAGGGCTAGATTGTCCCACTTTACAGTAGCTAGATTGTTCTTTGAGCATTTCATTTTCAAACTTCCTGA TCAAGAGCCTATATTGGAGGCAAGAGGAATAGCAGTGTGGCTTAATAGAAGTTATCGTCCTATTCGTATTCCATCAG AGTTCAATTCAAAATTTGTTAAATTCCTTCACCAGAAGAGTTGCGGTGTACAACATCATCTCTGA
LhSOl = Lh with St N-terra
SEQ ID NO 208: L. hirsutum/S. tuberosum chimeric optimization 1 ORF
MGDQLYHHDVELTVRDYELDQFGWNNATYASYCQHCRHAFLEKIGVSVDEVTRNGDALAVTELSLKFLAPLRSGDR FWRARLSHFTVARLFFEHFIFKLPDQEPILEARGIAVWLNRSYRPIRIPSEFNSKFVKFLHQKSCGVQHHL
SEQ ID NO 152: L. hirsutum/S. tuberosum chimeric optimization 2 cDNA
ATgAGTGATCAGGTCTATcagCATgagGTTGAACTCcaaGTCAGGGACTATGAGTTGGATCAGTTTGGTGTTGTAAA TAATGCTACTTATGCTAGTTATTGTCAACATTGTCGTCATGCTTTCCTTGAGAAGATTGGTGTTAGTGTTGATGAAG TAACCCGTAATGGTGATGCATTAGCTGTAACAGAGCTCTCACTTAAGTTTCTTGCACCACTTAGGAGTGGAGATAGA TTCGTGGTGAGGGCTAGATTGTCCCACTTTACAGTAGCTAGATTGTTCTTTGAGCATTTCATTTTCAAACTTCCTGA TCAAGAGCCTATATTGGAGGCAAGAGGAATAGCAGTGTGGCTTAATAGAAGTTATCGTCCTATTCGTATTCCATCAG AGTTCAATTCAAAATTTGTTAAATTCCTTCACCAGAAGAGTTGCGGTGTACAACATCATCTC
Lh with St betal
SEQ ID NO 209: L. hirsutum/S. tuberosum chimeric optimization 2 ORF
MSDQVYQHEVELQVRDYELDQFGWNNATYASYCQHCRHAFLEKIGVSVDEVTRNGDALAVTELSLKFLAPLRSGDR FWRARLSHFTVARLFFEHFIFKLPDQEPILEARGIAVWLNRSYRPIRIPSEFNSKFVKFLHQKSCGVQHHL
SEQ ID NO 153: L. hirsutum/S. tuberosum chimeric optimization 3 cDNA
ATGAGTGATCAGGTCTATCACCATGACGTTGAACTCACAGTCAGGGACTATGAGTTGGATCAGTTTGGTGTTGTAAA TAATGCTACTTATGCTAGTTATTGTCAACATTGTCGTCATgagTTCCTTGAGAAGATTGGTGTTAGTGTTGATGAAG TAACCCGTAATGGTGATGCATTAGCTGTAACAGAGCTCTCACTTAAGTTTCTTGCACCACTTAGGAGTGGAGATAGA TTCGTGGTGAGGGCTAGATTGTCCCACTTTACAGTAGCTAGATTGTTCTTTGAGCATTTCATTTTCAAACTTCCTGA TCAAGAGCCTATATTGGAGGCAAGAGGAATAGCAGTGTGGCTTAATAGAAGTTATCGTCCTATTCGTATTCCATCAG AGTTCAATTCAAAATTTGTTAAATTCCTTCACCAGAAGAGTTGCGGTGTACAACATCATCTC
Lh with St alpha2
SEQ ID NO 210: L. hirsutum/S. tuberosum chimeric optimization 3 ORF
MSDQVYHHDVELTVRDYELDQFGWNNATYASYCQHCRHEFLEKIGVSVDEVTRNGDALAVTELSLKFLAPLRSGDR FWRARLSHFTVARLFFEHFIFKLPDQEPILEARGIAVWLNRSYRPIRIPSEFNSKFVKFLHQKSCGVQHHL SEQ ID NO 154: L. hirsutum/S. tuberosum chimeric optimization 4 cDNA
ATGAGTGATCAGGTCTATCACCATGACGTTGAACTCACAGTCAGGGACTATGAGTTGGATCAGTTTGGTGTTGTAAA TAATGCTACTTATGCTAGTTATTGTCAACATTGTCGTCATGCTTTCCTTGAGAAGATTGGTGTTAGTGTTGATGAAG TAtgcCGTactGGTGATGCATTAGCTGTAACAGAGCTCTCACTTAAGTTTCTTGCACCACTTAGGAGTGGAGATAGA TTCGTGGTGAGGGCTAGATTGTCCCACTTTACAGTAGCTAGATTGTTCTTTGAGCATTTCATTTTCAAACTTCCTGA TCAAGAGCCTATATTGGAGGCAAGAGGAATAGCAGTGTGGCTTAATAGAAGTTATCGTCCTATTCGTATTCCATCAG AGTTCAATTCAAAATTTGTTAAATTCCTTCACCAGAAGAGTTGCGGTGTACAACATCATCTC
Lh with St a2 /b2 loop helix
SEQ ID NO 211 : L. hirsutum/S. tuberosum chimeric optimization 4 ORF
MSDQVYHHDVELTVRDYELDQFGWNNATYASYCQHCRHAFLEKIGVSVDEVCRTGDALAVTELSLKFLAPLRSGDR FWRARLSHFTVARLFFEHFI FKLPDQEPI LEARGIAVWLNRSYRPIRI PSEFNSKFVKFLHQKSCGVQHHL
SEQ ID NO 155: L. hirsutum/S. tuberosum chimeric optimization 5 cDNA
ATGAGTGATCAGGTCTATCACCATGACGTTGAACTCACAGTCAGGGACTATGAGTTGGATCAGTTTGGTGTTGTAAA TAATGCTACTTATGCTAGTTATTGTCAACATTGTCGTCATGCTTTCCTTGAGAAGATTGGTGTTAGTGTTGATGAAG TAACCCGTAATGGTgagGCATTAGCTacaACAGAGCTCTCACTTAAGtatCTTGCACCACTTAGGAGTGGAGATAGA TTCGTGGTGAGGGCTAGATTGTCCCACTTTACAGTAGCTAGATTGTTCTTTGAGCATTTCATTTTCAAACTTCCTGA TCAAGAGCCTATATTGGAGGCAAGAGGAATAGCAGTGTGGCTTAATAGAAGTTATCGTCCTATTCGTATTCCATCAG AGTTCAATTCAAAATTTGTTAAATTCCTTCACCAGAAGAGTTGCGGTGTACAACATCATCTC
Lh with St beta2
SEQ ID NO 212: L. hirsutum/S. tuberosum chimeric optimization 5 ORF
MSDQVYHHDVELTVRDYELDQFGWNNATYASYCQHCRHAFLEKIGVSVDEVTRNGEALATTELSLKYLAPLRSGDR FWRARLSHFTVARLFFEHFI FKLPDQEPI LEARGIAVWLNRSYRPIRI PSEFNSKFVKFLHQKSCGVQHHL
SEQ ID NO 156: L. hirsutum/S. tuberosum chimeric optimization 6 cDNA
ATGAGTGATCAGGTCTATCACCATGACGTTGAACTCACAGTCAGGGACTATGAGTTGGATCAGTTTGGTGTTGTAAA TAATGCTACTTATGCTAGTTATTGTCAACATTGTCGTCATGCTTTCCTTGAGAAGATTGGTGTTAGTGTTGATGAAG TAACCCGTAATGGTGATGCATTAGCTGTAACAGAGCTCTCACTTAAGTTTCTTGCACCACTTAGGAGTGGAGATAGA TTCGTGGTGaaggttAGAatcTCCcgctctACAgcaGCTAGATTGTTCTTTGAGCATTTCATTTTCAAACTTCCTGA TCAAGAGCCTATATTGGAGGCAAGAGGAATAGCAGTGTGGCTTAATAGAAGTTATCGTCCTATTCGTATTCCATCAG AGTTCAATTCAAAATTTGTTAAATTCCTTCACCAGAAGAGTTGCGGTGTACAACATCATCTC
Lh with St beta3
SEQ ID NO 213: L. hirsutum/S. tuberosum chimeric optimization 6 ORF
MSDQVYHHDVELTVRDYELDQFGWNNATYASYCQHCRHAFLEKIGVSVDEVTRNGDALAVTELSLKFLAPLRSGDR FWKVRI SRSTAARLFFEHFI FKLPDQEPI LEARGIAVWLNRSYRPIRI PSEFNSKFVKFLHQKSCGVQHHL
SEQ ID NO 157: L. hirsutum/S. tuberosum chimeric optimization 7 cDNA
ATGAGTGATCAGGTCTATCACCATGACGTTGAACTCACAGTCAGGGACTATGAGTTGGATCAGTTTGGTGTTGTAAA TAATGCTACTTATGCTAGTTATTGTCAACATTGTCGTCATGCTTTCCTTGAGAAGATTGGTGTTAGTGTTGATGAAG TAACCCGTAATGGTGATGCATTAGCTGTAACAGAGCTCTCACTTAAGTTTCTTGCACCACTTAGGAGTGGAGATAGA TTCGTGGTGAGGGCTAGATTGTCCCACTTTACAGTAGCTAGATTGTTCTTTGAGCATTTCATTTTCAAACTTCCTGA TCAAGAGCCTATATTGGAGGCAAGAGGAATAGCAGTGTGGCTTAATAGAAGTTATCGTCCTATTCGTATTCCATCAG AGTTCagtTCAAAATTTGTTcaaTTCCTTCACCAGAAGAGTTGCGGTGTACAACATCATCTC
Lh with St alpha3
SEQ ID NO 214: L. hirsutum/S. tuberosum chimeric optimization 7 cDNA
MSDQVYHHDVELTVRDYELDQFGWNNATYASYCQHCRHAFLEKIGVSVDEVTRNGDALAVTELSLKFLAPLRSGDR FWRARLSHFTVARLFFEHFI FKLPDQEPI LEARGIAVWLNRSYRPIRI PSEFS SKFVQFLHQKSCGVQHHL
SEQ ID NO 158: L. hirsutum/S. tuberosum chimeric optimization 8 cDNA
ATGAGTGATCAGGTCTATCACCATGACGTTGAACTCACAGTCAGGGACTATGAGTTGGATCAGTTTGGTGTTGTAAA TAATGCTACTTATGCTAGTTATTGTCAACATTGTCGTCATGCTTTCCTTGAGAAGATTGGTGTTAGTGTTGATGAAG TAACCCGTAATGGTGATGCATTAGCTGTAACAGAGCTCTCACTTAAGTTTCTTGCACCACTTAGGAGTGGAGATAGA TTCGTGGTGAGGGCTAGATTGTCCCACTTTACAGTAGCTAGATTGTTCTTTGAGCATTTCATTTTCAAACTTCCTGA TCAAGAGCCTATATTGGAGGCAAGAGGAATAGCAGTGTGGCTTAATAGAAGTTATCGTCCTATTCGTATTCCATCAG AGTTCAATTCAAAATTTGTTAAATTCCTTCACCAGAAGAGTTGCGGTacaCAACATcgtCTC
Lh with St C-term
SEQ ID NO 215: L. hirsutum/S. tuberosum chimeric optimization 8 ORF
MSDQVYHHDVELTVRDYELDQFGWNNATYASYCQHCRHAFLEKIGVSVDEVTRNGDALAVTELSLKFLAPLRSGDR FWRARLSHFTVARLFFEHFI FKLPDQEPI LEARGIAVWLNRSYRPIRI PSEFNSKFVKFLHQKSCGTQHRL
SEQ ID NO 159: L. hirsutum/S. tuberosum chimeric optimization 9 cDNA
atgggtgatcagctctatcaacatgaagttgaactccaagtcaggGACTATGAGTTGGATCAGTTTGGTGTTGTAAA TAATGCTACTTATGCTAGTTATTGTCAACATTGTCGCCATGCTTTCCTTGAGAAGATTGGTGTTAGTGTTGATGAAG TAACCCGTAATGGTGATGCATTAGCTGTAACAGAGCTCTCACTTAAGTTTCTTGCACCACTTAGGAGTGGAGATAGA TTCGTGGTGAGGGCTAGATTGTCCCACTTTACAGTAGCTAGATTGTTCTTTGAGCATTTCATTTTCAAACTTCCTGA TCAAGAGCCTATATTGGAGGCAAGAGGAATAGCAGTGTGGCTTAATAGAAGTTATCGTCCTATTCGTATTCCATCAG AGTTCagttcaaagtttgttcagttccttcaccagaagagttgcggtacacaacaccgtctc
Lh with St N-term, betal , alpha3 , C-term
SEQ ID NO 216: L. hirsutum/S. tuberosum chimeric optimization 9 ORF
MGDQLYQHEVELQVRDYELDQFGWNNATYASYCQHCRHAFLEKIGVSVDEVTRNGDALAVTELSLKFLAPLRSGDR FWRARLSHFTVARLFFEHFI FKLPDQEPI LEARGIAVWLNRSYRPIRI PSEFS SKFVQFLHQKSCGTQHRL
SEQ ID NO 160: L. hirsutum/S. tuberosum chimeric optimization 10 cDNA
ATGagtGATCAGgtcTATCAACATGAAGTTGAACTCCAAGTCAGGGACTATGAATTGGATCAGTTTGGTGTTGTAAA CAATGCTACTTATGCAAGTTATTGTCAACATTGCCGTCATGAGTTTCTTGAgAAGATTGGTGTAAGTGTTGATGAAG TATGTaGaACTGGTGAAGCATTAGCAACAACAGAGCTTTCACTTAAGTATCTtGCACCTCTcAGGAGTGGAGATAGA TTTGTGGTGAAGGTGaGAATATCCaGgTCTACAGCAGCTCGtTTGTTcTTCGAGCATTTCATCTTCAAaCTTCCAGA TCAAGAGCCTATATTGGAGGCAAGAGGAATAGCAGTGTGGCTTAATAGAAGTTACCGTCCTATCaGAATaCCATCAG AGTTCAGTTCAAAgTTTGTTCAGTTCCTTCACCAGAAGAGTTGCGGTACACAACACCGTCTC
St with Lh N-term
SEQ ID NO 217: L. hirsutum/S. tuberosum chimeric optimization 10 ORF
MSDQVYQHEVELQVRDYELDQFGWNNATYASYCQHCRHEFLEKIGVSVDEVCRTGEALATTELSLKYLAPLRSGDR FWKVRI SRSTAARLFFEHFI FKLPDQEPI LEARGIAVWLNRSYRPIRI PSEFS SKFVQFLHQKSCGTQHRL
SEQ ID NO 161 : L. hirsutum/S. tuberosum chimeric optimization 11 cDNA
ATGGGTGATCAGCTCTATcacCATgatGTTGAACTCacaGTCAGGGACTATGAATTGGATCAGTTTGGTGTTGTAAA CAATGCTACTTATGCAAGTTATTGTCAACATTGCCGTCATGAGTTTCTTGAgAAGATTGGTGTAAGTGTTGATGAAG TATGTaGaACTGGTGAAGCATTAGCAACAACAGAGCTTTCACTTAAGTATCTtGCACCTCTcAGGAGTGGAGATAGA TTTGTGGTGAAGGTGaGAATATCCaGgTCTACAGCAGCTCGtTTGTTcTTCGAGCATTTCATCTTCAAaCTTCCAGA TCAAGAGCCTATATTGGAGGCAAGAGGAATAGCAGTGTGGCTTAATAGAAGTTACCGTCCTATCaGAATaCCATCAG AGTTCAGTTCAAAgTTTGTTCAGTTCCTTCACCAGAAGAGTTGCGGTACACAACACCGTCTC
St with Lh Betal
SEQ ID NO 218: L. hirsutum/S. tuberosum chimeric optimization 11 ORF
MGDQLYHHDVELTVRDYELDQFGWNNATYASYCQHCRHEFLEKIGVSVDEVCRTGEALATTELSLKYLAPLRSGDR FWKVRI SRSTAARLFFEHFI FKLPDQEPI LEARGIAVWLNRSYRPIRI PSEFS SKFVQFLHQKSCGTQHRL
SEQ ID NO 162: L. hirsutum/S. tuberosum chimeric optimization 12 cDNA
ATGGGTGATCAGCTCTATCAACATGAAGTTGAACTCCAAGTCAGGGACTATGAATTGGATCAGTTTGGTGTTGTAAA CAATGCTACTTATGCAAGTTATTGTCAACATTGCCGTCATgcaTTTCTTGAgAAGATTGGTGTAAGTGTTGATGAAG TATGTaGaACTGGTGAAGCATTAGCAACAACAGAGCTTTCACTTAAGTATCTtGCACCTCTcAGGAGTGGAGATAGA TTTGTGGTGAAGGTGaGAATATCCaGgTCTACAGCAGCTCGtTTGTTcTTCGAGCATTTCATCTTCAAaCTTCCAGA TCAAGAGCCTATATTGGAGGCAAGAGGAATAGCAGTGTGGCTTAATAGAAGTTACCGTCCTATCaGAATaCCATCAG AGTTCAGTTCAAAgTTTGTTCAGTTCCTTCACCAGAAGAGTTGCGGTACACAACACCGTCTC
St with Lh alpha2
SEQ ID NO 219: L. hirsutum/S. tuberosum chimeric optimization 12 ORF
MGDQLYQHEVELQVRDYELDQFGWNNATYASYCQHCRHAFLEKIGVSVDEVCRTGEALATTELSLKYLAPLRSGDR FWKVRI SRSTAARLFFEHFI FKLPDQEPI LEARGIAVWLNRSYRPIRI PSEFS SKFVQFLHQKSCGTQHRL
SEQ ID NO 163: L. hirsutum/S. tuberosum chimeric optimization 13 cDNA
ATGGGTGATCAGCTCTATCAACATGAAGTTGAACTCCAAGTCAGGGACTATGAATTGGATCAGTTTGGTGTTGTAAA CAATGCTACTTATGCAAGTTATTGTCAACATTGCCGTCATGAGTTTCTTGAgAAGATTGGTGTAAGTGTTGATGAAG TAactAGAaatGGTGAAGCATTAGCAACAACAGAGCTTTCACTTAAGTATCTtGCACCTCTcAGGAGTGGAGATAGA TTTGTGGTGAAGGTGaGAATATCCaGgTCTACAGCAGCTCGtTTGTTcTTCGAGCATTTCATCTTCAAaCTTCCAGA TCAAGAGCCTATATTGGAGGCAAGAGGAATAGCAGTGTGGCTTAATAGAAGTTACCGTCCTATCaGAATaCCATCAG AGTTCAGTTCAAAgTTTGTTCAGTTCCTTCACCAGAAGAGTTGCGGTACACAACACCGTCTC
St with Lh alpha2/beta2 loop helix SEQ ID NO 220: L. hirsutum/S. tuberosum chimeric optimization 13 ORF
MGDQLYQHEVELQVRDYELDQFGWNNATYASYCQHCRHEFLEKIGVSVDEVTRNGEALATTELSLKYLAPLRSGDR FWKVRISRSTAARLFFEHFIFKLPDQEPILEARGIAVWLNRSYRPIRIPSEFSSKFVQFLHQKSCGTQHRL
SEQ ID NO 164: L. hirsutum/S. tuberosum chimeric optimization 14 cDNA
ATGGGTGATCAGCTCTATCAACATGAAGTTGAACTCCAAGTCAGGGACTATGAATTGGATCAGTTTGGTGTTGTAAA CAATGCTACTTATGCAAGTTATTGTCAACATTGCCGTCATGAGTTTCTTGAGAAGATTGGTGTAAGTGTTGATGAAG TATGTAGAACTGGTgatGCATTAGCAgttACAGAGCTTTCACTTAAGtttCTtGCACCTCTcAGGAGTGGAGATAGA TTTGTGGTGAAGGTGaGAATATCCaGgTCTACAGCAGCTCGtTTGTTcTTCGAGCATTTCATCTTCAAaCTTCCAGA TCAAGAGCCTATATTGGAGGCAAGAGGAATAGCAGTGTGGCTTAATAGAAGTTACCGTCCTATCaGAATaCCATCAG AGTTCAGTTCAAAgTTTGTTCAGTTCCTTCACCAGAAGAGTTGCGGTACACAACACCGTCTC
St with Lh beta2
SEQ ID NO 221 : L. hirsutum/S. tuberosum chimeric optimization 14 ORF
translation :
MGDQLYQHEVELQVRDYELDQFGWNNATYASYCQHCRHEFLEKIGVSVDEVCRTGDALAVTELSLKFLAPLRSGDR FWKVRISRSTAARLFFEHFIFKLPDQEPILEARGIAVWLNRSYRPIRIPSEFSSKFVQFLHQKSCGTQHRL
SEQ ID NO 165: L. hirsutum/S. tuberosum chimeric optimization 15 cDNA
ATGGGTGATCAGCTCTATCAACATGAAGTTGAACTCCAAGTCAGGGACTATGAATTGGATCAGTTTGGTGTTGTAAA CAATGCTACTTATGCAAGTTATTGTCAACATTGCCGTCATGAGTTTCTTGAgAAGATTGGTGTAAGTGTTGATGAAG TATGTaGaACTGGTGAAGCATTAGCAACAACAGAGCTTTCACTTAAGTATCTtGCACCTCTcAGGAGTGGAGATAGA TTTGTGGTGagggcgAGAttaTCCcatttcACAgtaGCTCGtTTGTTcTTCGAGCATTTCATCTTCAAaCTTCCAGA TCAAGAGCCTATATTGGAGGCAAGAGGAATAGCAGTGTGGCTTAATAGAAGTTACCGTCCTATCaGAATaCCATCAG AGTTCAGTTCAAAgTTTGTTCAGTTCCTTCACCAGAAGAGTTGCGGTACACAACACCGTCTC
St with Lh beta3
SEQ ID NO 222: L. hirsutum/S. tuberosum chimeric optimization 15 ORF
MGDQLYQHEVELQVRDYELDQFGWNNATYASYCQHCRHEFLEKIGVSVDEVCRTGEALATTELSLKYLAPLRSGDR FWRARLSHFTVARLFFEHFIFKLPDQEPILEARGIAVWLNRSYRPIRIPSEFSSKFVQFLHQKSCGTQHRL
SEQ ID NO 166: L. hirsutum/S. tuberosum chimeric optimization 16 cDNA
ATGGGTGATCAGCTCTATCAACATGAAGTTGAACTCCAAGTCAGGGACTATGAATTGGATCAGTTTGGTGTTGTAAA CAATGCTACTTATGCAAGTTATTGTCAACATTGCCGTCATGAGTTTCTTGAgAAGATTGGTGTAAGTGTTGATGAAG TATGTaGaACTGGTGAAGCATTAGCAACAACAGAGCTTTCACTTAAGTATCTtGCACCTCTcAGGAGTGGAGATAGA TTTGTGGTGAAGGTGaGAATATCCaGgTCTACAGCAGCTCGtTTGTTcTTCGAGCATTTCATCTTCAAaCTTCCAGA TCAAGAGCCTATATTGGAGGCAAGAGGAATAGCAGTGTGGCTTAATAGAAGTTACCGTCCTATCaGAATaCCATCAG AGTTCaatTCAAAGTTTGTTaagTTCCTTCACCAGAAGAGTTGCGGTACACAACACCGTCTC
St with Lh alpha3
SEQ ID NO 223: L. hirsutum/S. tuberosum chimeric optimization 16 ORF MGDQLYQHEVELQVRDYELDQFGWNNATYASYCQHCRHEFLEKIGVSVDEVCRTGEALATTELSLKYLAPLRSGDR FWKVRISRSTAARLFFEHFIFKLPDQEPILEARGIAVWLNRSYRPIRIPSEFNSKFVKFLHQKSCGTQHRL
SEQ ID NO 167: L. hirsutum/S. tuberosum chimeric optimization 17 cDNA
ATGGGTGATCAGCTCTATCAACATGAAGTTGAACTCCAAGTCAGGGACTATGAATTGGATCAGTTTGGTGTTGTAAA CAATGCTACTTATGCAAGTTATTGTCAACATTGCCGTCATGAGTTTCTTGAgAAGATTGGTGTAAGTGTTGATGAAG TATGTaGaACTGGTGAAGCATTAGCAACAACAGAGCTTTCACTTAAGTATCTtGCACCTCTcAGGAGTGGAGATAGA TTTGTGGTGAAGGTGaGAATATCCaGgTCTACAGCAGCTCGtTTGTTcTTCGAGCATTTCATCTTCAAaCTTCCAGA TCAAGAGCCTATATTGGAGGCAAGAGGAATAGCAGTGTGGCTTAATAGAAGTTACCGTCCTATCaGAATaCCATCAG AGTTCAGTTCAAAgTTTGTTCAGTTCCTTCACCAGAAGAGTTGCGGTgtaCAACACcatCTC
St with Lh C-term
SEQ ID NO 224: L. hirsutum/S. tuberosum chimeric optimization 17 ORF
MGDQLYQHEVELQVRDYELDQFGWNNATYASYCQHCRHEFLEKIGVSVDEVCRTGEALATTELSLKYLAPLRSGDR FWKVRISRSTAARLFFEHFIFKLPDQEPILEARGIAVWLNRSYRPIRIPSEFSSKFVQFLHQKSCGVQHHL
SEQ ID NO 168: L. hirsutum/S. tuberosum chimeric optimization 18 cDNA
atgagtgatcaggtctatcaccatgacgttgaactcacagtcaggGACTATGAATTGGATCAGTTTGGTGTTGTAAA CAATGCTACTTATGCAAGTTATTGTCAACATTGCCGTCATGAGTTTCTTGAgAAGATTGGTGTAAGTGTTGATGAAG TATGTaGaACTGGTGAAGCATTAGCAACAACAGAGCTTTCACTTAAGTATCTtGCACCTCTcAGGAGTGGAGATAGA TTTGTGGTGAAGGTGaGAATATCCaGgTCTACAGCAGCTCGtTTGTTcTTCGAGCATTTCATCTTCAAaCTTCCAGA TCAAGAGCCTATATTGGAGGCAAGAGGAATAGCAGTGTGGCTTAATAGAAGTTACCGTCCTATCaGAATaCCATCAG AGTTCaattcaaaatttgttaaattccttcaccagaagagttgcggtgtacaacatcatctc
St with Lh N-terra, betal, alpha3, C-term
SEQ ID NO 225 : L. hirsutum/S. tuberosum chimeric optimization 18 ORF
MSDQVYHHDVELTVRDYELDQFGWNNATYASYCQHCRHEFLEKIGVSVDEVCRTGEALATTELSLKYLAPLRSGDR FWKVRISRSTAARLFFEHFIFKLPDQEPILEARGIAVWLNRSYRPIRIPSEFNSKFVKFLHQKSCGVQHHL
SEQ ID NO 169: L. esculentum MKT cDNA with heterologous plastid transit sequence atggcttcaatttgtacttcaaattttcactttctatgcagaaaaaacaattctagccctatttctcatcatctact gttatctccctcttctttatccttctcacgttgcggcggattgcggttgtgtcgtgcggccgcaGAGTTCCATGAAG TTGAACTCAAAGTCCGGGACTATGAATTGGATCAGTATGGTGTTGTAAACAATGCTATTTATGCAAGTTATTGCCAA CATGGTCGTCATGAGCTTCTAGAAAGGATTGGTATAAGTGCTGATGAAGTGGCACGCAGTGGTGACGCACTAGCACT AACAGAGCTGTCACTTAAGTATCTAGCACCTCTAAGGAGTGGAGATAGATTTGTCGTGAAGGCACGAATATCTGATT CTTCAGCTGCTCGTTTGTTTTTCGAACACTTCATCTTCAAACTTCCAGATCAAGAGCCCATCTTGGAGGCAAGAGGA ATAGCAGTGTGGCTCAATAAAAGTTACCGTCCTGTCCGAATCCCGGCAGAGTTCAGATCAAAATTTGTTCAGTTCCT TCGCCAGGAGGCATCCAACTGA
SEQ ID NO 226: L. esculentum MKT ORF with heterologous plastid transit sequence masictsnfhflcrknnsspishhlllspsslsfsrcgglrlcraaaEFHEVELKVRDYELDQYGWNNAIYASYCQ HGRHELLERIGISADEVARSGDALALTELSLKYLAPLRSGDRFWKARISDSSAARLFFEHFIFKLPDQEPILEARG IAVWLNKSYRPVRIPAEFRSKFVQFLRQEASN SEQ ID NO 227: Ubi3 promoter Solanum tuberosum
GGCCGGCCAAAGCACATACTTATCGATTTAAATTTCATCGAAGAGATTAATATCGAATAATCATATACAT ACTTTAAATACATAACAAATTTTAAATACATATATCTGGTATATAATTAATTTTTTAAAGTCATGAAGTA TGTATCAAATACACATATGGAAAAAATTAACTATTCATAATTTAAAAAATAGAAAAGATACATCTAGTGA AATTAGGTGCATGTATCAAATACATTAGGAAAAGGGCATATATCTTGATCTAGATAATTAACGATTTTGA TTTATGTATAATTTCCAAATGAAGGTTTATATCTACTTCAGAAATAACAATATACTTTTATCAGAACATT CAACAAAGCAACAACCAAC AGAGTGAAAAATACACATTGTTCTCTAGACATACAAAATTGAGAAAAGAA TCTCAAAATTTAGAGAAACAAATCTGAATTTCTAGAAGAAAAAAATAATTATGCACTTTGCTATTGCTCG AAAAATAAATGAAAGAAATTAGACTTTTTTAAAAGATGTTAGACTAGATATACTCAAAAGCTATTAAAGG AGTAATATTCTTCTTACATTAAGTATTTTAGTTACAGTCCTGTAATTAAAGACACATTTTAGATTGTATC TAAACTTAAATGTATCTAGAATACATATATTTGAATGCATCATATACATGTATCCGACACACCAATTCTC ATAAAAAACGTAATATCCTAAACTAATTTATCCTTCAAGTCAACTTAAGCCCAATATACATTTTCATCTC TAAAGGCCCAAGTGGCACAAAATGTCAGGCCCAATTACGAAGAAAAGGGCTTGTAAAACCCTAATAAAGT GGCACTGGCAGAGCTTACACTCTCATTCCATCAACAAAGAAACCCTAAAAGCCGCAGCGCCACTGATTTC TCTCCTCCAGGCGAAG
SEQ ID NO 228: Ubi3 terminator Solanum tuberosum
Gtttaaactgattttaatgtttagcaaatgtcttatcagttttctctttttgtcgaacggtaatttagagt Tttttttgctatatggattttcgtttttgatgtatgtgacaaccctcgggattgttgatttatttcaaaac Taagagtttttgtcttattgttctcgtctattttggatatcaatcttagttttatatcttttctagttctc Tacgtgttaaatgttcaacacactagcaatttggcctgccagcgtatggattatggaactatcaagtgtgt Gggatcgataaatatgcttctcaggaatttgagattttacagtctttatgctcattgggttgagtataata tagtaaaaaaatagtaaatttaagcaataatgttaggtgctatgtgtctgtcgagactatt
SEQ ID NO 229: DCL1 44 optimized nucleotide cDNA
ATGGCTTCAATTTGTACTTCAAATTTTCACTTTCTtTGCAGgAAgAACAATTCTAGCCCTATTTCTCATCA TCTACTtTTATCTCCCTCTTCTTTATCCTTCTCACGTTGCGGCGGATTGCGtTTGTGTCGT
SEQ ID NO 230: DCL1 44 AMINO ACID TRANSIT PEPTIDE
MASICTSNFHFLCRKNNSSPISHHLLLSPSSLSFSRCGGLRLCR
SEQ ID NO 231 : DCL1 50 optimized nucleotide cDNA
ATGGCTTCAATTTGTACTTCAAATTTTCACTTTCTtTGCAGgAAgAACAATTCTAGCCCTATTTCTCATCA TCTACTtTTATCTCCCTCTTCTTTATCCTTCTCACGTTGCGGCGGATTGCGtTTGTGTCGTTGCGCtGCaG TGAAGACC
SEQ ID NO 232: DCL1 50 AMINO ACID TRANSIT PEPTIDE
MASICTSNFHFLCRKNNSSPISHHLLLSPSSLSFSRCGGLRLCRCAAVKT
SEQ ID NO 233: UBQ10 INTRON: CGTGATCAAGgtaaatttctgtgttccttattctctcaaaatcttcgattttgttttcgttcgatcccaatttcgta tatgttctttggtttagattctgttaatcttagatcgaagacgattttctgggtttgatcgttagatatcatcttaa ttctcgattagggtttcatagatatcatccgatttgttcaaataatttgagttttgtcgaataattactcttcgatt tgtgatttctaTCTtGAtctggtgttagtttctagtttgtgcgatcgaatttgtcgattaatctgagtttttctgat taacag
1-10 = context for 5' splice. 11-314 is intron (gt...ag)
SEQ ID N0 234: HIS TAG:
GCTGCACATCACCATCATCACCAC
translation: AAHHHHHH
SEQ ID N0 235: HA TAG:
gctgcagcctatccatacgatgtgcctgactatgct
translation: AAAYPYDVPDYA
SEQ ID N0 236: HIS + HA TAG:
gctgcagcctatccatacgatgtgcctgactatgctgctgcaCATCACCATCATCACCAC
translation: AAAYPYDVPDYAAAHHHHHH
SEQ ID NO 237: AcV5 TAG:
gcagcctcttggaaagatgcgagcggctggtct
translation: AASWKDASGWS
SEQ ID NO 238: FLAG TAG:
gcagccgactacaaagacgatgacgacaaa
translation: AADYKDDDDK
SEQ ID NO 239: cMyc TAG:
gcagccgaacagaaactgatctctgaagaagatctg
translation: AAEQKLISEEDL
SEQ ID NO 240: RB7 promoter from Nicotiana tabacum:
CCCATATGTCCTACACAATGTGAATTTGAATTAGTTTGGTCATACGGTATATCATATGATTATAAATAAAAAAAATT AGCAAAAGAATATAATTTATTAAATATTTTACACCATACCAAACACAACCGCATTATATATAATCTTAATTATCATT ATCACCAGCATCAACATTATAATGATTCCCCTATGCGTTGGAACGTCATTATAGTTATTCTAAACAAGAAAGAAATT TGTTCTTGACATCAGACATCTAGTATTATAACTCTAGTGGAGCTTACCTTTTCTTTTCCTTCTTTTTTTTCTTCTTA AAAAAATTATCACTTTTTAAATCTTGTATATTAGTTAAGCTTATCTAAACAAAGTTTTAAATTCATTTCTTAAACGT CCATTACAATGTAATATAACTTAGTCGTCTCAATTAAACCATTAATGTGAAATATAAATCAAAAAAAGCCAAAGGGC GGTGGGACGGCGCCAATCATTTGTCCTAGTCCACTCAAATAAGGCCCATGGTCGGCAAAACCAAACACAAAATGTGT TATTTTTAATTTTTTCCTCTTTTATTGTTAAAGTTGCAAAATGTGTTATTTTTGGTAAGACCCTATGGATATATAAA GACAGGTTATGTGAAACTTGGAAAACCATCAAGTTTTAAGCAAAACCCTCTTAAGAACTTAAATTGAGCTTCTTTTG GGGCATTTTTCTAGTGAGAA SEQ ID NO 241 : E35S/ubi3 chimeric promoter: ggtccgattGAGACTTTTCAACAAAGGGTAATATCCGGAAACCTCCTCGGATTCCATTGCCCAGCTATCTGTCACTT TATTGTGAAGATAGTGGAAAAGGAAGGTGGCTCCTACAAATGCCATCATTGCGATAAAGGAAAGGCCATCGTTGAAG ATGCCTCTGCCGACAGTGGTCCCAAAGATGGACCCCCACCCACGAGGAGCATCGTGGAAAAAGAAGACGTTCCAACC ACGTCTTCAAAGCAAGTGGATTGATGTGATatctccactgacgtaagggatgacgcacaatcccactatccttcgca attcCCAAAGCACATACTTATCGATTTAAATTTCATCGAAGAGATTAATATCGAATAATCATATACATACTTTAAAT ACATAACAAATTTTAAATACATATATCTGGTATATAATTAATTTTTTAAAGTCATGAAGTATGTATCAAATACACAT ATGGAAAAAATTAACTATTCATAATTTAAAAAATAGAAAAGATACATCTAGTGAAATTAGGTGCATGTATCAAATAC ATTAGGAAAAGGGCATATATCTTGATCTAGATAATTAACGATTTTGATTTATGTATAATTTCCAAATGAAGGTTTAT ATCTACTTCAGAAATAACAATATACTTTTATCAGAACATTCAACAAAGCAACAACCAACTAGAGTGAAAAATACACA TTGTTCTC AGACA ACAAAATTGAGAAAAGAATCTCAAAA AGAGAAACAAA C GAA C AGAAGAAAAAA ATAATTATGCACTTTGCTATTGCTCGAAAAATAAATGAAAGAAATTAGACTTTTTTAAAAGATGTTAGACTAGATAT ACTCAAAAGCTATTAAAGGAGTAATATTCTTCTTACATTAAGTATTTTAGTTACAGTCCTGTAATTAAAGACACATT TTAGATTGTATCTAAACTTAAATGTATCTAGAATACATATATTTGAATGCATCATATACATGTATCCGACACACCAA TTCTCATAAAAAACGTAATATCCTAAACTAATTTATCCTTCAAGTCAACTTAAGCCCAATATACATTTTCATCTCTA AAGGCCCAAGTGGCACAAAATGTCAGGCCCAATTACGAAGAAAAGGGCTTGTAAAACCCTAATAAAGTGGCACTGGC AGAGCTTACACTCTCATTCCATCAACAAAGAAACCCTAAAAGCCGCAGCGCCACTGATTTCTCTCCTCCAGGCGAAG
35S(BA)+ ubi3 promoter DESIGN: 1232 nt; 1-306 = 35S (BA) element, 313-1232 = divu promoter region. Chimeric promoter of 35S BA domain and ubi3 promoter from Solanum tuberosum
All publications and patents referenced herein are intended to be herein incorporated by reference in their entirety.
All of the compositions and methods disclosed and claimed herein can be made and executed without undue experimentation in light of the present disclosure. While the compositions and methods of this invention have been described in terms of the foregoing illustrative embodiments, it will be apparent to those of skill in the art that variations, changes, modifications, and alterations may be applied to the composition, methods, and in the steps or in the sequence of steps of the methods described herein, without departing from the true concept, spirit, and scope of the invention. More specifically, it will be apparent that certain agents that are both chemically and physiologically related may be substituted for the agents described herein while the same or similar results would be achieved. All such similar substitutes and modifications apparent to those skilled in the art are deemed to be within the spirit, scope, and concept of the invention as defined by the appended claims.

Claims

1. An isolated nucleic acid molecule comprising a nucleotide sequence encoding a polypeptide comprising an amino acid sequence that is at least 85% identical to any of SEQ ID NOs:61-64, 67-112 and 188-225.
2. The isolated nucleic acid molecule of claim 1 wherein the polypeptide does not comprise the amino acid sequence of any of SEQ ID NOs:57-60 and 170-187.
3. An isolated nucleic acid molecule comprising a nucleotide sequence encoding a polypeptide comprising an amino acid sequence selected from the group consisting of :
XoXiX2 6 7 8VELX9VRDYELDQX1 oGW AX11YASYCQHX12RHXi3 i4LEX15 lGXi 6 X17X18DX1 9VX20RX21GX22ALAX23X24EX25X26LKX27LAPLRSGDRFX28 X29X30RX31S X32X33X34X35ARLX36FEHFIFKLPX37X38EPILEAX39X40X41AVX42LX43X44X45YRPX46 RI PX47EX48X4 9SKX50VX51FLX52X53EX54X55 ;
XoXiX2X3X4X5X6X7X8VELX9VRDYELDQX1 oGW AX11YASYCQHX12RHX13X14LEX15 l
GXi 6X17X18^X19VX20RX21GX22ALAX23X24EX25X26LKX27LAPLRSGDRFX28 X29X3 oR X31SX32X33X34X35 ARLX3 gFEHFIFKLPX37X38EPILEAX3 9X40X41AVX42LX43X44X45 YR PX4 gRIPX47 EX 48X4 9SKX50VX5 ^FLX52X53KSCGX5 gQHX57L 3.11 cL
XoXiX2X3X4X5X6X7X8VEMX9VRDYELDQX1 oGW AX11YASYCQHX12RHX13X14LEX15V GX1 6X17X18DX1 9VX20RX21GX22SLAX23X24EX25X26I1KX27FAPLRSGDRFX28 X29X30R X3 ^AX32X33X34X35ARLX3 gFEHFIFKLPX37X38EPILEAX3 9X40X41AVX42LX43X44X45 YR PX46RIPX47EX48X49SKX50QX51FX58SX59X60SX61X62
wherein Χο = L, M, MA, X where X = 1 to 15 amino acids; Xi = S, N, R, A, T, G; X2 = D, E, G, R, S, L, deletion; X3 = Q, L, E, V; X4 = V, L, D, E; X5 = Y, K, Q; X6 = F, H, Q, P, L, V; Xv = H, Y, F, L, V; X8 = D, E, G; X9 = K,1, Q; X10 = F, Y; X„ = J, 1, V; Xi2 = C, G; Xi3=I, A; X14 = L, F, V; Xi5 = K, R, A, S, N, T, C; Xi6 = V, I, F, L; X17 = S, N; Xi8 = A, V, C, P; Xi9 = E, A, V; X20 = A,1, C, S ; X2i = S, N, T, I; X22 = D, E, N; X23 = L, V, L T; X24 = T, S; X25 = L, M ; X26 = S, T, H, N; X27 = F, Y; X28 = V, I; X2g = T, K, R; X30 =Y, A, J ; X31 = L, I, V; X32 = H, R, D, G, S, N; X33 = S,1, 1, F, A ; X34 = S,1, K; X35 = A, G, V, M; X36 = F, Y, I; X37 = D, N; X38 = R, Q, E, H; X39 = R, K; X40 = G, A; X4i = I, 1, M; V; X42 = Y, W, C, R; X43 = N, D; X44 = R, K, N; X45 = I, S, N, K, D, R; X46 = I, V, 1, A ; X47 = S,1, A, P, R; X48 = F, I,M,L; X49 = K, R, N, S, L ; X50 = F, L, I,M; Xsi = L, Q, K, H, F; X52 = H, R, K; X53 = Q, N, H, C, I; X54 = A, E, D; X55 = nothing, S, SH, SN, LN, PS; X56 = V,1, 1; X57 = H, R, K; X58 = Ί, S, L; X59 = E, K, R, V; X60 = G, D; X6i = S, R, K; X62 = S, G, GX where X = 1 to 15 amino acids
4. The isolated nucleic acid molecule of claim 3 wherein for each of X1-X55, Xi-X57 or Xi-X62 one of the underlined amino acids is present.
5. The isolated nucleic acid molecule of claim 3 wherein the polypeptide does not comprise the amino acid sequence of any of SEQ ID NOs:57-60 and 170-187.
6. The isolated nucleic acid molecule of any of the forgoing claims wherein the
polypeptide consists of an amino acid sequence that is at least 85% identical to any of SEQ ID NO:61-64, 67-112 and 188-225.
7. An isolated nucleic acid molecule comprising a nucleotide sequence encoding a polypeptide consisting of an amino acid sequence selected from:
XoXiX2 6 7 8VELX9VRDYELDQX1 oGW AX11YASYCQHX12RHXi3 i4LEX15 lGXi 6 X17X18DX1 9VX20RX21GX22ALAX23X24EX25X26LKX27LAPLRSGDRFX28 X29X30RX31S X32X33X34X35ARLX36FEHFIFKLPX37X38EPILEAX39X40X41AVX42LX43X44X45YRPX46 RIPX47EX48X4 9SKX50VX51FLX52X53EX54X55 ; XoXiX2 3 4 5 6 7 8VELX9VRDYELDQX1 oGW AX11YASYCQHX12RHXi3 i4LEX15 l GX16X17X18DX19 X20RX21GX22ALAX23X24EX25X26LKX27LAPLRSGDRFX28 X29X30R X31SX32X33X34X35ARLX3 6FEHFIFKLPX37X38EPILEAX3 9X40X41AVX42LX43X44X45YR PX4 6RIPX47EX48X4 9SKX50VX51FLX52X53 SCGX5 6QHX57L ; and
XoXiX2X3X4X5X6X7X8VEMX9VRDYELDQX1 oGW AX11YASYCQHX12RHX13Xi4LEX15V
GX16X17X18DX19 X20RX21GX22SLAX23X24EX25X26LKX27FAPLRSGDRFX28 X29X30R X31AX32X33X34X35ARLX36FEHFIFKLPX37X38EPILEAX39X40X41AVX42LX43X44X45YR
PX46RIPX47EX48X49SKX50QX51FX58SX59X60SX61X62
wherein
Xo = L, M, MA, X where X = 1 to 15 amino acids; Xi = S, N, R, A, T, G; X2 = D, E, G, R, S, L, deletion; X3 = Q, L, E, V; X4 = V, L, D, E; X5 = Y, K, Q; X6 = F, H, Q, P, L, V; Xv = H, Y, F, L, V; X8 = D, E, G; X9 = K,1, Q; X10 = F, Y; X„ = J, 1, V; Xi2 = C, G; Xi3 =I, A; X14 = L, F, V; X15 = K, R, A, S, N, T, C; X16 = V, I, F, L; X17 = S, N; X18 = A, V, C, P; Xi9 = E, A, V; X20 = A,1, C, S ; X2i = S, N, T, I; X22 = D, E, N; X23 = L, V, L T; X24 = T, S; X25 = L, M ; X26 = S, T, H, N; X27 = F, Y; X28 = V, I; X29 = T, , R; X3o =Y, A, J ; X3i = L, I, V; X32 = H, R, D, G, S, N; X33 = S,1, 1, F, A ; X34 = S,1, K; X35 = A, G, V, M; X36 = F, Y, I; X37 = D, N; X38 = R, Q, E, H; X39 = R, K; X40 = G, A; X4i = I, 1, M; V; X42 = Y, W, C, R; X43 = N, D; X44 = R, K, N; X45 = I, S, N, K, D, R; X46 = I, V, 1, A ; X47 = S,1, A, P, R; X48 = F, I,M,L; X49 = K, R, N, S, L ; X50 = F, L, I,M; X51 = L, Q, K, H, F; X52 = H, R, K; X53 = Q, N, H, C, I; X54 = A, E, D; X55 = nothing, S, SH, SN, LN, PS; X56 = V,1, 1; X57 = H, R, K; X58 = Ί, S, L; X59 = E, K, R, V; X60 = G, D; X6i = S, R, K; X62 = S, G, GX where X = 1 to 15 amino acids.
8. The nucleic acid molecule of any of the forgoing claims wherein the polypeptide has methylketone thioesterase activity.
9. The nucleic acid molecule of any of the forgoing claims wherein the polypeptide catalyzes the synthesis of one or more of 2-nonanone, 2-undecanone, 2-tridecanone, and 2-pentadecanone.
10. The nucleic acid molecule of any of the forgoing claims wherein the polypeptide catalyzes the synthesis of two or more of 2-nonanone, 2-undecanone, 2- tridecanone, and 2-pentadecanone.
11. The nucleic acid molecule of any of the forgoing claims wherein the polypeptide catalyzes the synthesis of 2-nonanone, 2-undecanone and 2-tridecanone.
12. The isolated nucleic acid molecule of any of the forgoing claims wherein the
polypeptide further comprises the amino acid sequence of a plastid transit peptide.
13. The isolated nucleic acid molecule of claim 12 wherein the plastid transit peptide mediates transit of the polypeptide.
14. The isolated nucleic acid molecule of any of claims 1-13 wherein the nucleic acid molecule further comprises a nucleotide sequence encoding a polypeptide comprising a methylketone synthase.
15. The isolated nucleic acid molecule of claim 14 wherein the methylketone synthase is a plant methylketone synthase.
16. The isolated nucleic acid molecule of claim 14 or 15 wherein the methylketone synthase is operably linked to a plastid transit peptide.
17. A vector comprising the the nucleic acid molecule of any of the forgoing claims, wherein the nucleic acid molecule is operably linked to a promoter functional in plants.
18. The vector of claim 14 wherein the vector is a plant expression vector.
19. A plant cell comprising the isolated nucleic acid molecule of any of claims 1-16 or the vector of claims of claim 17 or claim 18.
20. The plant cell of claim 19 wherein the plant cell is from a seed, root, leaf, shoot, flower, pollen, or ovule.
21. The plant cell of claim 20 wherein the plant cell produces one or more of or more of 2-nonanone, 2-undecanone, 2-tridecanone and 2-pentadecanone.
22. The plant cell of claim 21 wherein the plant cell produces two or more of 2- nonanone, 2-undecanone, 2-tridecanone, and 2-pentadecanone.
23. The plant cell of claim 21 wherein the plant cell is a crop plant cell.
24. The plant cell of claim 21 wherein the plant cell is from a plant selected from the group selected from cotton, soybean, canola, corn, wheat, rice, sunflower, sorghum, sugarcane, potato, tomato, and a tree.
25. A plant or a part thereof comprising the nucleic acid molecule of any of claims 1-16 or the vector of claim 17 or claim 18.
26. The plant or part thereof of claim 25 wherein the part thereof is selected from the group consisting of a seed, pollen, a root, a leaf, a shoot, a flower and an ovule.
27. A processed product comprising plant tissue comprising the nucleic acid molecule of any of claims 1-16 or the vector of claims of claim 17 or claim 18.
28. The processed product of claim 16, selected from the group consisting of meal, flour, oil, hay, starch, juice, protein extract, and fiber.
29. A method for controlling a pathogen or pest in a plant comprising expressing in the plant the polypeptide encoded by the isolated nucleic acid molecule of any of claims 1-16 or the vector of claims of claim 17 or claim 18.
30. The method of claim 29 wherein the pest is a nematode.
31. The method of claim 30 wherein the nematode is selected from the group consisting of Heterodera species, Globodera species, Meloidogyne species, Rotylenchulus species, Hoplolaimus species, Belonolaimus species, Pratylenchus species, Longidorus species, Paratrichodorus species, Ditylenchus species, Xiphinema species, Dolichodorus species, Helicotylenchus species, Radopholus species, HirschmannieUa species, Tylenchorhynchus species, and Trichodorus species.
32. The method of claim 29 wherein the pest is an insect.
33. The method of claim 32 wherein the insect is is selected from the orders consisting of Coleoptera, Diptera, Hemiptera (including Homoptera and Heteroptera), Hymenoptera and Lepidoptera.
34. The plant or part thereof of claim 25 comprising a nucleic acid molecule encoding an acyl carrier protein.
35. The isolated nucleic acid molecule of claim 1 or claim 2 wherein the polypeptide comprises an amino acid sequence that is identical to amino acids 1-25 of any of SEQ ID NOs:61-64, 67-112 and 188-225.
36. The isolated nucleic acid molecule of claim 1 or claim 2 wherein the polypeptide comprises an amino acid sequence that is identical to amino acids 1-50 of any of SEQ ID NOs:61-64, 67-112 and 188-225.
37. The isolated nucleic acid molecule of claim 1 or claim 2 wherein the polypeptide comprises an amino acid sequence that is identical to amino acids 1-75 of any of SEQ ID NOs:61-64, 67-112 and 188-225.
38. The isolated nucleic acid molecule of claim 1 or claim 2 wherein the polypeptide comprises an amino acid sequence that is identical to amino acids 1-100 of any of SEQ ID NOs:61-64, 67-112 and 188-225.
39. The isolated nucleic acid molecule of claim 1 or claim 2 wherein the polypeptide comprises an amino acid sequence that is identical to amino acids 100-140 of any of SEQ ID NOs:61-64, 67-112 and 188-225.
40. The isolated nucleic acid molecule of claim 1 or claim 2 wherein the polypeptide comprises an amino acid sequence that is identical to amino acids 75-100 of any of SEQ ID NOs:61-64, 67-112 and 188-225.
41. The isolated nucleic acid molecule of claim 1 or claim 2 wherein the polypeptide comprises an amino acid sequence that is identical to amino acids 50-75 of any of SEQ ID NOs:61-64, 67-112 and 188-225.
42. The isolated nucleic acid molecule of claim 1 or claim 2 wherein the polypeptide comprises an amino acid sequence that is identical to amino acids 25-50 of any of SEQ ID NOs:61-64, 67-112 and 188-225.
43. The isolated nucleic acid molecule of claim 1 or claim 2 wherein the polypeptide comprises an amino acid sequence that is identical to amino acids 10-25 of any of SEQ ID NOs:61-64, 67-112 and 188-225.
44. The isolated nucleic acid molecule of claim 1 or claim 2 wherein the polypeptide comprises an amino acid sequence that is identical to amino acids 35-65 of any of SEQ ID NOs:61-64, 67-112 and 188-225.
45. The isolated nucleic acid molecule of claim 1 or claim 2 wherein the polypeptide comprises an amino acid sequence that is identical to amino acids 80-88 of any of SEQ ID NOs:61-64, 67-112 and 188-225.
46. The isolated nucleic acid molecule of claim 1 or claim 2 wherein the polypeptide comprises an amino acid sequence that is identical to amino acids 120-135 of any of SEQ ID NOs:61-64, 67-112 and 188-225.
47. The plant cell of claim 19 comprising two or more of the isolated nucleic acid molecules of any of claims 1-16 and 35-46 or the vectors of claims of claim 17 or claim 18.
48. The method of claim 29 comprising expressing in the plant two or more of the polypeptides encoded by the isolated nucleic acid molecule of any of claims 1-16 and 35-46 or the vectors of claims of claim 17 or claim 18.
49. The plant cell of claim 19 comprising three or more of the isolated nucleic acid molecule of any of claims 1-16 and 35-46 or the vectors of claims of claim 17 or claim 18.
10
50. The method of claim 29 comprising expressing in the plant three or more of the polypeptides encoded by the isolated nucleic acid molecule of any of claims 1-16 and 35-46 or the vectors of claims of claim 17 or claim 18.
51. The isolated nucleic acid molecule of any of claims 1-11, 14, 15 and 35-46 wherein the isolated nucleic acid molecule further comprises a bacterial expression sequences operably linked to the sequence encoding the polypeptide.
52. A bacterial vector comprising the nucleic acid molecule of any of claims 1-11, 14, 15 and 35-46.
53. A bacterial vector comprising the the isolated nucleic acid molecule of claim 51.
54. The bacterial vector of claims 52 wherein the vector is an expression vector.
55. A recombinant bacterial cell comprising the isolated nucleic acid molecule of any of claims 1-11, 14, 15, 35-46 and 51 or the vector of any of claims 52-54.
56. The recombinant bacterial cell of claim 55 wherein the bacterial cell expresses the polypeptide.
57. The recombinant bacterial cell of claim 56 wherein the bacterial cell produces one or more of or more of 2-nonanone, 2-undecanone, 2-tridecanone and 2- pentadecanone.
58. The recombinant bacterial cell of claim 56 wherein the plant cell produces two or more of 2-nonanone, 2-undecanone, 2-tridecanone, and 2-pentadecanone.
59. The recombinant bacterial cell of any of claims 55-58 wherein the bacterial cell is selected from the group consisting of Pasteuria spp., Pseudomonas spp., Bacillus spp., Corynebacterium, Agrobacterium spp., and Paenibacillus spp.
60. The recombinant bacterial cell of claim 55 comprising two or more of the isolated nucleic acid molecule of any of claims 1-11, 14, 15, 35-46 and 51 or the vector of any of claims 52-54.
10
61. The recombinant bacterial cell of claim 55 comprising three or more of the isolated nucleic acid molecules any of claims 1-11, 14, 15, 35-46 and 51 or the vector of any of claims 52-54.
62. Plant material admixed or coated with a compostion comprising the recombinant bacterial cell any of claims 55-61.
63. The plant material of claim 62 wherein the plant material is selected from the group consisting of: plant propagation material, shoot, seedling, tuber and sprout.
64. The plant material of claim 62 wherein the plant material is from a plant selected from the group selected from cotton, soybean, canola, corn, wheat, rice, sunflower, sorghum, sugarcane, potato, tomato, and a tree.
65. A method for treating plant material comprising applying a compositon comprising the bacteria of any of claims 55-61 to plant material.
66. The method of claim 65 wherein the composition further comprises an insecticide or a nematocide.
67. The method of claim 65 wherein the plant material is selected from the group
consisting of: plant propagation material, shoot, seedling, tuber and sprout.
68. The method of claim 65 wherein the plant material is from a plant selected from the group selected from cotton, soybean, canola, corn, wheat, rice, sunflower, sorghum, sugarcane, potato, tomato, and a tree.
69. A method for controlling a pathogen or pest in a plant comprising providing the roots of the plant with a compositon comprising the bacteria of any of claims 55-61 to plant material.
70. The method of claim 69 wherein the pest or pathogen is a nematode.
71. The method of claim 70 wherein the nematode is selected from the group consisting of Heterodera species, Globodera species, Meloidogyne species, Rotylenchulus
10 species, Hoplolaimus species, Belonolaimus species, Pratylenchus species, Longidorus species, Paratrichodorus species, Ditylenchus species, Xiphinema species, Dolichodorus species, Helicotylenchus species, Radopholus species, Hirschmanniella species, Tylenchorhynchus species, and Trichodorus species.
72. The method of claim 70 wherein the pest is an insect.
73. The method of claim 72 wherein the insect is is selected from the orders consisting of Coleoptera, Diptera, Hemiptera (including Homoptera and Heteroptera), Hymenoptera and Lepidoptera.
10
PCT/US2011/024693 2010-02-12 2011-02-14 Improved compositions and methods for pathogen control in plants WO2011100650A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/578,095 US9175273B2 (en) 2010-02-12 2011-02-14 Compositions and methods for pathogen control in plants

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US30439110P 2010-02-12 2010-02-12
US61/304,391 2010-02-12
US36435010P 2010-07-14 2010-07-14
US61/364,350 2010-07-14

Publications (2)

Publication Number Publication Date
WO2011100650A2 true WO2011100650A2 (en) 2011-08-18
WO2011100650A9 WO2011100650A9 (en) 2012-01-12

Family

ID=44368485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2011/024693 WO2011100650A2 (en) 2010-02-12 2011-02-14 Improved compositions and methods for pathogen control in plants

Country Status (3)

Country Link
US (1) US9175273B2 (en)
AR (1) AR080171A1 (en)
WO (1) WO2011100650A2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2809989C (en) 2010-09-02 2017-01-03 Monsanto Technology Llc New compositions and methods for controlling nematode pests
BR112015021452A2 (en) * 2013-03-15 2017-07-18 Monsanto Technology Llc n-, c-disubstituted azoles to control nematode pests
WO2018146524A1 (en) * 2017-02-13 2018-08-16 Universidad De La Frontera Seedling growth-promoting composition, a kit, a method for applying the former, and use of the volatile organic compounds comprising the composition
AU2019234566A1 (en) * 2018-03-14 2020-09-10 Hexima Limited Insecticidal proteins from plants and methods for their use

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2659236T3 (en) * 2004-06-07 2018-03-14 Syngenta Participations Ag Nematode damage reduction methods
EP2014279A1 (en) 2007-06-22 2009-01-14 Pevion Biotech AG Virosomes comprising hemagglutinin derived from an influenza virus produced in a cell line, compositions, methods of manufacturing, use thereof

Also Published As

Publication number Publication date
WO2011100650A9 (en) 2012-01-12
AR080171A1 (en) 2012-03-21
US20130067620A1 (en) 2013-03-14
US9175273B2 (en) 2015-11-03

Similar Documents

Publication Publication Date Title
AU2012214420B2 (en) Pesticidal nucleic acids and proteins and uses thereof
KR102036395B1 (en) Glyphosate resistant plants and associated methods
CN109097376B (en) Insect inhibitory toxin family with activity against hemipteran and/or lepidopteran insects
AU2012214420A1 (en) Pesticidal nucleic acids and proteins and uses thereof
CN106573963B (en) Phytophthora resistant plants belonging to the solanaceae family
US20150203866A1 (en) Methods and compositions for plant pest control
US9175273B2 (en) Compositions and methods for pathogen control in plants
US11578338B2 (en) Hemipteran active insecticidal protein
US20030110530A1 (en) Transgenic plants having reduced susceptibility to invertebrate pests
CA2330550A1 (en) Plant pathogen inducible control sequences operably linked to cell cycle genes and the uses thereof
BR112019014727A2 (en) nucleic acid molecule, vector, cell, plant, seed, polypeptide, composition, methods for controlling a pest population, to kill a pest, to produce a polypeptide, to protect a plant and to increase yield on a plant, use of nucleic acid and basic product
Sultana Functional analysis of soybean proteinase inhibitor genes and cyst nematode-inducible synthetic promoters for insects and nematode-resistance in plants

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11742934

Country of ref document: EP

Kind code of ref document: A2

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase in:

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13578095

Country of ref document: US

122 Ep: pct app. not ent. europ. phase

Ref document number: 11742934

Country of ref document: EP

Kind code of ref document: A2