WO2011092229A1 - Procédé de freinage automatique d'un véhicule pour éviter une collision ou réduire les conséquences d'une collision - Google Patents

Procédé de freinage automatique d'un véhicule pour éviter une collision ou réduire les conséquences d'une collision Download PDF

Info

Publication number
WO2011092229A1
WO2011092229A1 PCT/EP2011/051103 EP2011051103W WO2011092229A1 WO 2011092229 A1 WO2011092229 A1 WO 2011092229A1 EP 2011051103 W EP2011051103 W EP 2011051103W WO 2011092229 A1 WO2011092229 A1 WO 2011092229A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
collision
determined
vehicle
braking
Prior art date
Application number
PCT/EP2011/051103
Other languages
German (de)
English (en)
Inventor
Philipp Reinisch
Peter Zahn
Original Assignee
Bayerische Motoren Werke Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayerische Motoren Werke Aktiengesellschaft filed Critical Bayerische Motoren Werke Aktiengesellschaft
Publication of WO2011092229A1 publication Critical patent/WO2011092229A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • B60T7/22Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger initiated by contact of vehicle, e.g. bumper, with an external object, e.g. another vehicle, or by means of contactless obstacle detectors mounted on the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/1755Brake regulation specially adapted to control the stability of the vehicle, e.g. taking into account yaw rate or transverse acceleration in a curve
    • B60T8/17558Brake regulation specially adapted to control the stability of the vehicle, e.g. taking into account yaw rate or transverse acceleration in a curve specially adapted for collision avoidance or collision mitigation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/09Taking automatic action to avoid collision, e.g. braking and steering
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/166Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2201/00Particular use of vehicle brake systems; Special systems using also the brakes; Special software modules within the brake system controller
    • B60T2201/02Active or adaptive cruise control system; Distance control
    • B60T2201/022Collision avoidance systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2201/00Particular use of vehicle brake systems; Special systems using also the brakes; Special software modules within the brake system controller
    • B60T2201/02Active or adaptive cruise control system; Distance control
    • B60T2201/024Collision mitigation systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/40Dynamic objects, e.g. animals, windblown objects
    • B60W2554/404Characteristics
    • B60W2554/4041Position

Definitions

  • the invention relates to a method for the automatic braking of a vehicle for collision avoidance or Kollisions Pharmaceuticalmeidung according to the preamble of claim 1.
  • Modern driver assistance systems are able to completely avoid an imminent collision by an autonomously initiated full braking or at least to minimize the collision consequences. These systems detect the vehicle environment using suitable sensors (radar, lidar, image processing) or by evaluating vehicle-vehicle communication and determine possible collision objects. If a collision is imminent, a full deceleration is initiated at a certain intervention time.
  • the object of the invention is to specify an improved method for automatic braking of a vehicle for collision avoidance or collision sequence reduction taking into account a driver overtaking or avoidance procedure, wherein the overtaking or avoidance procedure is to be recognized quickly and clearly.
  • This object is achieved by a method according to claim 1.
  • the invention is based on a conventional method for automatic braking of a vehicle for collision avoidance or collision sequence reduction with a detected collision object, wherein at a determined intervention time, a braking system of the vehicle is automatically controlled such that a collision with the detected collision object avoided or at least the collision sequences are reduced can.
  • the intervention time is determined taking into account the recognition or presumption of a driver's avoidance or passing process.
  • the movement of the vehicle in the longitudinal direction and the movement of the vehicle in the transverse direction are compared with each other, d.
  • an evasive or overtaking maneuver is detected or assumed as a function of a measure of the (relative) movement of the vehicle to the detected collision object in the longitudinal direction and a measure of the (relative) movement in the transverse direction and a comparison of the two dimensions.
  • both measures for the relative movement in the longitudinal direction and in the transverse direction are each expressed in terms of normalized numbers. This allows a simple and quick comparison of the two values.
  • the duration until the collision object collides - the so-called "time-to-collision (TTC)" - is determined, which represents a speed-normalized numerical value The time taken for the vehicle to collide with the preceding vehicle while maintaining the instantaneous speed and acceleration., In addition to the relative speed and the distance between the two vehicles in the longitudinal direction, the relative acceleration can also be evaluated.
  • High-resolution sensors allow analog viewing in the transverse direction.
  • This duration can be calculated analogously to the above by an evaluation of the relative lateral velocity and the distance to the preceding colliding object in the transverse direction.
  • This time period can also be referred to as a so-called "time-to-no-overlap (TNO)."
  • TNO time-to-no-overlap
  • an avoidance or overtaking operation can be established by comparing the two determined speed-normalized time periods TTC and TNO. If the TNO is smaller than the TTC, an overtaking maneuver is more likely than the imminent collision, ie an evasion or overtaking process is detected or suspected if the determined time to collision occurs at least not less than the determined time until a zero overlap between the vehicle and the collision object in the transverse direction. In this case, the - possibly necessary - intervention in the brake system should be made only at a time, to which no evasive maneuver is possible, since in principle it is suspected that the driver would like to drive past the collision object and thus would interfere too early intervention of the brake system. If, however, the determined time duration until the occurrence of the collision is less than the determined time duration until a zero overlap occurs, no avoidance or overtaking maneuver appears to be planned. A collision-avoiding braking intervention at the last possible braking time is necessary.
  • an avoidance or overtaking procedure can be assumed even if the TTC is smaller than the TNO. This is the case, for example, when the TNO is still larger than the TTC, but tends to decrease or falls below a predetermined threshold. In this case, the vehicle shears with previously insufficient lateral velocity behind the collision object, but it is expected that the driver continues to break and intends to avoid or overtake. Thus, an avoidance or overtaking maneuver may be suspected even if the time to onset of the collision is not more than a predetermined limit less than the duration until the zero overlap occurs in the transverse direction and / or the gradient of the duration is Occurrence of the zero overlap is strongly negative. On the other hand, as soon as the driver withdraws the deceleration movement, the TNO rises again and an evasive maneuver is unlikely.
  • the determination of the intervention time also includes the Driver reaction time or the end time of the driver reaction time and a determined last possible braking time to be considered.
  • the vehicle sensors can be used to create a model of these reaction triggers.
  • driving psychological threshold values are used which describe the transition from a perceived safe driving to a reaction-requiring approximation.
  • TTC time to collision
  • This threshold value can also be specified as a distance value in a limited differential speed range. It is composed of a constant safety distance at standstill and a speed-dependent value. With this minimum following distance, the remaining applications “sudden braking” and “shearing” can now be detected. Delays a preceding vehicle in the following traffic so much that the driver of the ego vehicle, while maintaining his would fall below the safety distance wegungsShes, there is a need for action to restore the safe driving condition. This need for action also arises when a vehicle on the adjacent lane within the minimum following distance starts a Einschermanöver.
  • the reaction time which begins after the occurrence of the corresponding reaction trigger and extends to the time at which the driver reaction can be measured on the vehicle bus system, can be modeled using the so-called OODA feedback loop. This represents the individual components of human decision making: O (bserve, Observe), O (rient, Arrange), D (ecide, Decide) and A (ct, Act).
  • the duration for the pure perception of the situation is about 0.2s, the execution of the action - ie the foot movement to the pedal operation - due to the frequent exercise at about 0.3s.
  • the driver reaction time can be determined as a function of the current vehicle environment and / or the type of occurrence of the collision object.
  • Unexpected triggers for example, unpredictable heavy braking of the vehicle ahead
  • low-probability events lead to a longer decision-making phase than expected or frequent events.
  • these two process steps can be modeled as gamma-distributed.
  • the risk is considered to exceed a certain duration.
  • the cumulative gamma distribution of one is deducted.
  • a risk of 20% Accordingly, in the study under consideration, 80% of drivers needed less or exactly the resulting duration to respond to the triggering event.
  • reaction time resulting from the OODA active circuit is extended, as long as the driver has several alternative courses of action available. Since the individual occurrence probabilities of the action alternatives are a priori unknown, they are assumed to be equally distributed.
  • the area next to the vehicle is divided into three sub-areas: behind the ego vehicle, laterally at the level of the ego vehicle and in front of the ego vehicle.
  • a lane change-relevant value is calculated and standardized in a comparison function to a factor between 0 (lane change not feasible) and 1 (lane change safely feasible).
  • the minimum of the three factors determines the global lane change feasibility. If a defined threshold for the minimum is exceeded, the feasibility of a lane change in the corresponding direction is assumed.
  • the necessary deceleration for an approaching vehicle in the event of a lane change of the ego vehicle is calculated as a lane change relevant value.
  • the necessary delay for the ego vehicle is analyzed, it should carry out a lane change and the destination lane already be occupied by another vehicle.
  • the page area the space required to carry out the lane change is evaluated. The lane change feasibility then results from the ratio between the necessary and the reasonable deceleration (rear and front area) or between the required and the available space in the side area.
  • an overtaking parabola with an assumed lateral acceleration is placed in the free area between the emergency vehicle and the potential collision object.
  • the necessary for the overtaking or evasive maneuver distance in the longitudinal direction then results in dependence on the instantaneous relative speed, as well as the lateral distance to be overcome. This consists of the object widths of the ego and other vehicles as well as the current object position. Since a maximum lateral acceleration can not be assumed at low speeds, the lateral acceleration is adapted as a function of the speed.
  • the situation can be evaluated at the end of the reaction time and thus at least determine a provisional intervention time for an autonomous braking intervention.
  • the corresponding reaction time is first assigned to the three possible reaction triggers.
  • a continuous approach to a front vehicle is considered as expected, a sudden braking or a collapsing vehicle as an unexpected event. If one subtracts the corresponding reaction time from the time to the collision (TTC) at the time of the occurrence of the reaction requirement, the determined value - ie the value of the Collision avoidance remaining time after the reaction - with the
  • the last possible braking time can always be used as the intervention time since the driver does not have any other alternative to collision avoidance.
  • the last possible braking time can be selected as the provisional intervention time, as in the case of an independent collision avoidance by the driver, a corresponding reaction is already present. In this case, accident prevention is always possible.
  • the determined end time of the driver reaction time occurs before the determined last possible avoidance time and after the determined last possible braking time. Since the driver's likelihood of autonomous control of the situation is much higher than that of a rear-end collision, braking intervention may be initiated (ie, if necessary) only at the end of the reaction time. In the worst case, however, this may mean that the emergency braking is no longer sufficient for complete collision avoidance. In order to partially resolve this conflict, the normalized value is used to evaluate the lane change possibility from the reaction time estimation, ie the provisional intervention time in this case is dependent on the Feasibility of an evasive maneuver set.
  • the last possible braking time is determined as a provisional intervention time when an evasive maneuver is not feasible, and only the endpoint of the driver reaction time when an evasive maneuver is safely feasible. If no lane change is possible, a completely collision-avoiding braking takes place.
  • the determined end time of the driver reaction time is after the determined last possible braking time and after the determined last possible avoidance time, with the determined last possible avoidance time occurring after the determined last possible braking time.
  • the automatic brake intervention can be made already at the last possible braking time, since a timely response of the driver is very unlikely.
  • the intervention time of the emergency brake assistants it is also important, in addition to the above, to check and take into account the actual driver reaction.
  • the incoming driver reaction eg braking or overtaking
  • the provisional engagement time determined in the case distinction becomes the so-called "point of no return", ie the last possible avoidance time
  • Indicators can be determined for the two action options "braking” and "overtaking”.
  • a braking effect can be achieved both by the original operation of the brake pedal as well as by the construction of drag torque by releasing the accelerator pedal are applied.
  • the overtaking reaction can be detected by the method according to claim 1 or for example by detecting a decreasing overlap to the front vehicle or by a corresponding steering angle course.
  • the use of lane change motivational models is obvious. A simplified approach for this is the detection of the turn signal operation for lane change.
  • the applied deceleration is compared with the deceleration necessary to avoid the collision. This is dependent on the instantaneous relative speed between ego vehicle and collision object, the instantaneous distance between the two vehicles and the delay of the other vehicle.

Abstract

L'invention concerne un procédé de freinage automatique d'un véhicule pour éviter une collision ou réduire les conséquences d'une collision avec un objet de collision détecté. A un instant d'intervention déterminé, un système de freinage du véhicule est commandé automatiquement de telle manière qu'une collision avec l'objet de collision détecté est évitée ou au moins les conséquences de la collision sont réduites. L'instant d'intervention est déterminé en fonction de l'identification ou de la présomption d'une manoeuvre d'évitement ou de dépassement entreprise par le conducteur. L'invention est caractérisée en ce qu'une manoeuvre d'évitement ou de dépassement est identifiée ou présumée en fonction d'une grandeur pour le mouvement relatif du véhicule en direction de l'objet de collision détecté dans la direction longitudinale et d'une grandeur pour le mouvement relatif dans la direction transversale, et d'une comparaison des deux grandeurs.
PCT/EP2011/051103 2010-01-29 2011-01-27 Procédé de freinage automatique d'un véhicule pour éviter une collision ou réduire les conséquences d'une collision WO2011092229A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010006215A DE102010006215A1 (de) 2010-01-29 2010-01-29 Verfahren zum automatischen Abbremsen eines Fahrzeugs zur Kollisionsvermeidung oder Kollisionsfolgenminderung
DE102010006215.4 2010-01-29

Publications (1)

Publication Number Publication Date
WO2011092229A1 true WO2011092229A1 (fr) 2011-08-04

Family

ID=43839712

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/051103 WO2011092229A1 (fr) 2010-01-29 2011-01-27 Procédé de freinage automatique d'un véhicule pour éviter une collision ou réduire les conséquences d'une collision

Country Status (2)

Country Link
DE (1) DE102010006215A1 (fr)
WO (1) WO2011092229A1 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2626267A3 (fr) * 2012-02-10 2014-03-19 Robert Bosch Gmbh Procédé et dispositif destinés au fonctionnement d'un véhicule
US9594376B2 (en) 2011-11-18 2017-03-14 Atlas Copco Rock Drills Ab Method and system for driving a mining and/or construction machine in a safe manner without the risk of collision
WO2018149699A1 (fr) * 2017-02-15 2018-08-23 Bayerische Motoren Werke Aktiengesellschaft Prévention de collision avec le trafic transversal
US10343680B2 (en) 2011-11-18 2019-07-09 Epiroc Rock Drills Aktiebolag Method and system for driving a mining and/or construction machine
CN111731279A (zh) * 2020-06-24 2020-10-02 重庆长安汽车股份有限公司 融合侧视摄像头实现车辆侧面保护的方法、车载设备及车辆
CN112061125A (zh) * 2019-05-23 2020-12-11 克诺尔商用车制动系统有限公司 用于动态适配车辆之间的纵向距离的方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016210848A1 (de) 2015-07-06 2017-01-12 Ford Global Technologies, Llc Verfahren zur Vermeidung einer Kollision eines Fahrzeuges mit einem Objekt, sowie Fahrassistenzsystem
DE102021208090A1 (de) 2021-07-27 2023-02-02 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zur Erkennung eines Ausweichmanövers und Ansteuerung eines Fahrerassistenzsystems in einem Einspurfahrzeug
DE102021212360A1 (de) 2021-11-03 2023-05-04 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zur Erkennung einer Richtungsänderung in einem Einspurfahrzeug

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040145238A1 (en) * 2003-01-24 2004-07-29 Nissan Motor Co., Ltd. Braking control device
US20040193351A1 (en) * 2003-03-28 2004-09-30 Nissan Motor Co., Ltd. Automatic brake system for a vehicle
DE102004048868A1 (de) * 2004-10-07 2006-04-13 Daimlerchrysler Ag Verfahren zum Erkennen von auffahrunfallkritischen Situationen
DE102004052519A1 (de) * 2004-10-29 2006-05-04 Robert Bosch Gmbh Vorrichtung zur Vermeidung einer Kollision
DE102004056120A1 (de) * 2004-11-20 2006-05-24 Daimlerchrysler Ag Verfahren zur Kollisionsvermeidung oder Kollisionsfolgenminderung und Vorrichtung zur Durchführung des Verfahrens
DE102005003274A1 (de) * 2005-01-25 2006-07-27 Robert Bosch Gmbh Verfahren und Vorrichtung zur Vermeidung und/oder Minderung der Folgen von Kollisionen beim Ausweichen vor Hindernissen
DE102005012037A1 (de) * 2005-03-16 2006-09-28 Daimlerchrysler Ag Verfahren zum Betreiben eines Kollisionsvermeidungs-oder Kollisionsfolgenminderungssystem eines Fahrzeugs sowie Kollisionsvermeidungs-oder Kollisionsfolgenminderungssystem
DE102005023832A1 (de) * 2005-05-24 2006-11-30 Daimlerchrysler Ag Verfahren und System zur Vermeidung einer Kollision eines Kraftfahrzeugs mit einem Objekt
DE60126398T2 (de) 2001-01-09 2007-11-29 Nissan Motor Co., Ltd., Yokohama Bremssteuerungssystem mit Systemeingriff bei Objekterkennung
EP1889765A1 (fr) * 2006-08-17 2008-02-20 Delphi Technologies, Inc. Procédé de prédiction d'une collision et de réduction de sa gravité pour véhicule
WO2008031662A1 (fr) * 2006-09-12 2008-03-20 Robert Bosch Gmbh Procédé pour éviter ou pour diminuer les conséquences de la collision d'un véhicule avec au moins un objet

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19738611A1 (de) * 1997-07-17 1999-01-21 Volkswagen Ag Automatische Notbremsfunktion
DE10319700A1 (de) * 2003-05-02 2004-11-18 Ibeo Automobile Sensor Gmbh Verfahren und Vorrichtung zur Ermittlung einer Wahrscheinlichkeit für eine Kollision eines Fahrzeugs mit einem Gegenstand
JP2008018923A (ja) * 2006-06-16 2008-01-31 Nissan Motor Co Ltd 車両用制動制御装置及び車両制動制御方法
DE102008016377A1 (de) * 2008-03-29 2009-10-01 Daimler Ag Verfahren zum Betrieb eines Kraftfahrzeuges
DE102008040241A1 (de) * 2008-07-08 2010-01-14 Robert Bosch Gmbh Ausweichfunktion zur Vermeidung von Kollisionen

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60126398T2 (de) 2001-01-09 2007-11-29 Nissan Motor Co., Ltd., Yokohama Bremssteuerungssystem mit Systemeingriff bei Objekterkennung
US20040145238A1 (en) * 2003-01-24 2004-07-29 Nissan Motor Co., Ltd. Braking control device
US20040193351A1 (en) * 2003-03-28 2004-09-30 Nissan Motor Co., Ltd. Automatic brake system for a vehicle
DE102004048868A1 (de) * 2004-10-07 2006-04-13 Daimlerchrysler Ag Verfahren zum Erkennen von auffahrunfallkritischen Situationen
DE102004052519A1 (de) * 2004-10-29 2006-05-04 Robert Bosch Gmbh Vorrichtung zur Vermeidung einer Kollision
DE102004056120A1 (de) * 2004-11-20 2006-05-24 Daimlerchrysler Ag Verfahren zur Kollisionsvermeidung oder Kollisionsfolgenminderung und Vorrichtung zur Durchführung des Verfahrens
DE102005003274A1 (de) * 2005-01-25 2006-07-27 Robert Bosch Gmbh Verfahren und Vorrichtung zur Vermeidung und/oder Minderung der Folgen von Kollisionen beim Ausweichen vor Hindernissen
DE102005012037A1 (de) * 2005-03-16 2006-09-28 Daimlerchrysler Ag Verfahren zum Betreiben eines Kollisionsvermeidungs-oder Kollisionsfolgenminderungssystem eines Fahrzeugs sowie Kollisionsvermeidungs-oder Kollisionsfolgenminderungssystem
DE102005023832A1 (de) * 2005-05-24 2006-11-30 Daimlerchrysler Ag Verfahren und System zur Vermeidung einer Kollision eines Kraftfahrzeugs mit einem Objekt
EP1889765A1 (fr) * 2006-08-17 2008-02-20 Delphi Technologies, Inc. Procédé de prédiction d'une collision et de réduction de sa gravité pour véhicule
WO2008031662A1 (fr) * 2006-09-12 2008-03-20 Robert Bosch Gmbh Procédé pour éviter ou pour diminuer les conséquences de la collision d'un véhicule avec au moins un objet

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9594376B2 (en) 2011-11-18 2017-03-14 Atlas Copco Rock Drills Ab Method and system for driving a mining and/or construction machine in a safe manner without the risk of collision
US10343680B2 (en) 2011-11-18 2019-07-09 Epiroc Rock Drills Aktiebolag Method and system for driving a mining and/or construction machine
EP2626267A3 (fr) * 2012-02-10 2014-03-19 Robert Bosch Gmbh Procédé et dispositif destinés au fonctionnement d'un véhicule
WO2018149699A1 (fr) * 2017-02-15 2018-08-23 Bayerische Motoren Werke Aktiengesellschaft Prévention de collision avec le trafic transversal
US11257373B2 (en) 2017-02-15 2022-02-22 Bayerische Motoren Werke Aktiengesellschaft Avoidance of collision with cross-traffic
CN112061125A (zh) * 2019-05-23 2020-12-11 克诺尔商用车制动系统有限公司 用于动态适配车辆之间的纵向距离的方法
CN112061125B (zh) * 2019-05-23 2023-09-22 克诺尔商用车制动系统有限公司 用于动态适配车辆之间的纵向距离的方法
CN111731279A (zh) * 2020-06-24 2020-10-02 重庆长安汽车股份有限公司 融合侧视摄像头实现车辆侧面保护的方法、车载设备及车辆
CN111731279B (zh) * 2020-06-24 2022-06-07 重庆长安汽车股份有限公司 融合侧视摄像头实现车辆侧面保护的方法、车载设备及车辆

Also Published As

Publication number Publication date
DE102010006215A1 (de) 2011-10-06

Similar Documents

Publication Publication Date Title
EP2528787B1 (fr) Assistant de freinage d'urgence pour le freinage automatique d'un véhicule pour éviter une collision ou réduire les conséquences d'une collision
EP2814704B2 (fr) Procédé pour déterminer une situation de freinage d'urgence d'un véhicule
WO2011092229A1 (fr) Procédé de freinage automatique d'un véhicule pour éviter une collision ou réduire les conséquences d'une collision
EP1559607B1 (fr) Système d'avertissement anticollision pour véhicules
EP2013052B1 (fr) Procédé de régulation de vitesse d'un véhicule dans une situation de circulationc complexe
DE102007039039B4 (de) Ansteuerung von Sicherheitsmitteln eines Kraftfahrzeugs
EP3475130B1 (fr) Procédé de mise en uvre d'un freinage d'urgence dans un véhicule ainsi que système de freinage d'urgence permettant la mise en uvre dudit procédé
EP2252491B1 (fr) Assistant de guidage longitudinal comportant une fonction d'assistance latérale pour des véhicules motorisés
WO2006072342A1 (fr) Procede permettant de faire fonctionner un systeme anti-collision ou reducteur des consequences de collision d'un vehicule et systeme anti-collision ou reducteur des consequences de collision
WO2006053655A1 (fr) Procede pour eviter une collision ou pour reduire les consequences d'une collision et dispositif pour realiser ce procede
WO2009103692A1 (fr) Procédé et système d'assistance pour détecter des objets au voisinage d'un véhicule
EP3625092B1 (fr) Procédé de détermination d'un freinage d'urgence autonome, procédé d'exécution du freinage d'urgence, et dispositif de commande pour un système de dynamique de translation
WO2011101014A1 (fr) Procédé permettant d'éviter des collisions ou de diminuer une force de collision d'un véhicule
WO2015188904A1 (fr) Procédé et dispositif permettant au moins d'atténuer les conséquences d'une collision d'un véhicule
DE102009020647A1 (de) Verfahren zur Kollisionsvermeidung oder Kollisionsfolgenminderung für ein Kraftfahrzeug
DE102014008487A1 (de) Verfahren zum Betrieb eines Fahrzeuges
DE102013021813B4 (de) Fahrerassistenzsystem mit adaptiver Reaktionsschwelle
EP2054281B1 (fr) Commande de moyens de sécurité d'un véhicule automobile
DE102014220300A1 (de) Rangierassistent und Rangierassistenzverfahren für ein Kraftfahrzeug
DE102004053754A1 (de) Verfahren zur Erkennung von auffahrunfallkritischen Situationen im Kolonnenverkehr
EP2054280B1 (fr) Commande de moyens de sécurité d'un véhicule automobile
DE102017103700A1 (de) Vermeiden einer Kollision durch einen Lenkeingriff in Abhängigkeit von einer Bewegung eines fahrzeugexternen Objekts
EP3079959B1 (fr) Véhicule équipé d'un dispositif d'avertissement de risque de collision
DE102015200577A1 (de) Fahrerassistenzverfahren und -system
WO2015149902A1 (fr) Procédé et dispositif permettant au moins de diminuer la gravité d'une collision d'un véhicule et véhicule

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11701999

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 11701999

Country of ref document: EP

Kind code of ref document: A1