WO2011090842A2 - Electrode array and method of fabrication - Google Patents

Electrode array and method of fabrication Download PDF

Info

Publication number
WO2011090842A2
WO2011090842A2 PCT/US2011/020741 US2011020741W WO2011090842A2 WO 2011090842 A2 WO2011090842 A2 WO 2011090842A2 US 2011020741 W US2011020741 W US 2011020741W WO 2011090842 A2 WO2011090842 A2 WO 2011090842A2
Authority
WO
WIPO (PCT)
Prior art keywords
tube
substrate
layer
electrode array
electrodes
Prior art date
Application number
PCT/US2011/020741
Other languages
French (fr)
Other versions
WO2011090842A3 (en
Inventor
Angelique Johnson
Kensall Wise
Original Assignee
The Regents Of The University Of Michigan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Regents Of The University Of Michigan filed Critical The Regents Of The University Of Michigan
Priority to EP11734996.9A priority Critical patent/EP2525867B1/en
Priority to AU2011207709A priority patent/AU2011207709B2/en
Priority to CA 2787091 priority patent/CA2787091A1/en
Publication of WO2011090842A2 publication Critical patent/WO2011090842A2/en
Publication of WO2011090842A3 publication Critical patent/WO2011090842A3/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • A61N1/0526Head electrodes
    • A61N1/0541Cochlear electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49155Manufacturing circuit on or in base
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal
    • Y10T428/31681Next to polyester, polyamide or polyimide [e.g., alkyd, glue, or nylon, etc.]

Definitions

  • the subject invention relates to an array of electrodes.
  • the subject invention relates to an array of electrodes for use as part of a cochlear implant.
  • Cochlear implants are the most widely used neural prostheses, using current stimulation to bypass the non-functional hair cells of the cochlea to directly stimulate receptor cells that drive the auditory nerve.
  • Typical cochlear electrode arrays are fabricated with bundles of wires coated in silicone. Such wire bundles are hand assembled and are limited in the number of electrodes.
  • a typical cochlear electrode array utilizes only 16 to 24 electrodes because of large size relative to the size of the scala tympani. The low number of electrodes results in often poor
  • the subject invention is directed toward providing an electrode array providing greater pitch specificity, greater pitch range, while resulting in minimal insertion damage.
  • the subject invention provides an electrode array.
  • the electrode array includes a tube having at least one wall wherein the tube defines a channel.
  • a substrate comprised of a non-conductive material is supported at least partially by the tube.
  • the electrode includes a plurality of electrodes. Each electrode comprises a conductive material and is supported by the substrate.
  • a plurality of feed lines comprised of a conductive material are disposed primarily within the substrate. Each feed line is electrically connected to at least one of the plurality of electrodes.
  • At least one wall of the tube defines a plurality of voids into the hollow channel for regulating stiffness and curl of the tube.
  • the subject invention also provides a method of fabricating the electrode array.
  • the method includes the step of depositing a first composition on a carrier wafer.
  • the first composition defines a longitudinal slit and forms a first layer of the substrate.
  • the carrier wafer is etched through the longitudinal slit to define a channel underneath the first layer.
  • the method also includes depositing a second composition comprising a polymer through the longitudinal slit and onto the carrier wafer to form the tube around the channel and seal the longitudinal slit.
  • the method further includes the step of disposing a plurality of feed lines comprised of conductive
  • the method further includes the step of etching the carrier wafer opposite the substrate to define voids with each void exposing an area of the tube The areas of the tube exposed by the voids are removed to define slots within the tube. The tube and substrate are then released from the carrier wafer.
  • the electrode array provides a lower profile than those of the prior art, resulting in less damage when inserted into a cochlea.
  • the electrode array also provides a greater number of electrodes and allows for deeper insertion into the cochlear, resulting in improved pitch specificity and greater pitch range.
  • the slots of the tube of the electrode array assist in providing a modiolus-hugging curl to position the electrodes as close as possible to the receptor cells and reduce insertion trauma.
  • Figure 1 is a top view of an electrode array of the subject invention showing an interconnect region and thirty-two electrode sites in an electrode region;
  • Figure 3 is a widthwise cross sectional view of the electrode array during fabrication showing a longitudinal slit defined by the first layer;
  • Figure 4 is a widthwise cross sectional view of the electrode array during fabrication showing a carrier channel defined by the carrier wafer underneath the first layer;
  • Figure 5 is a widthwise cross sectional view of the electrode array during fabrication showing a tube and a second layer of the substrate;
  • Figure 6 is a widthwise cross sectional view of the electrode array during fabrication showing a feed line disposed on the second layer;
  • Figure 8 is a widthwise cross sectional view of the electrode array during fabrication showing an electrode disposed above the third layer and in contact with the feed line;
  • Figure 9 is a widthwise cross sectional view of the electrode array during fabrication showing a fourth layer of the substrate disposed above the third layer;
  • Figure 10 is a lengthwise cross sectional view of a portion of the electrode array during fabrication showing the fourth layer
  • Figure 11 is a widthwise cross sectional view of the electrode array during fabrication showing a curl strip disposed above the fourth layer;
  • Figure 12 is a widthwise cross sectional view of the electrode array during fabrication showing a fifth layer of the substrate disposed above the curl strip and the fourth layer;
  • Figure 13 is a widthwise cross sectional view of the electrode array during fabrication showing a void disposed in the carrier wafer opposite the substrate;
  • Figure 14 is a lengthwise cross sectional view of a portion of the electrode array during fabrication showing voids disposed in the carrier wafer opposite the substrate;
  • Figure 15 is a lengthwise cross sectional view of a portion of the electrode array during fabrication showing slots defined by the tube to expose a tube channel;
  • Figure 16 is a widthwise cross sectional view of the electrode array
  • Figure 18 is a perspective view of a portion of the electrode array
  • Figure 20 is a perspective view of a portion of the electrode array with a wire disposed
  • the electrode array 20 includes a substrate 22 at least partially supported by a tube 24.
  • the substrate 22 and tube 24 each comprise a non-conductive material.
  • the substrate 22 and tube 24 of the illustrated embodiments each comprise a polymer and more specifically, the substrate 22 and tube 24 each comprises poly(p-xylene), known commonly by the trade name Parylene.
  • Parylene C is utilized to form the substrate 22 and tube 24.
  • other types of Parylene, other types of polymers, and other types of non-conductive materials may alternatively be utilized to form the substrate 22 and tube 24.
  • electrically conductive materials such as metals, may alternatively be used to form the tube 24.
  • the substrate 22 and tube 24 may be formed of a combination of different materials.
  • the electrode array 20 may include more than one tube 24 connected to the substrate 22, i.e., a plurality of tubes 24. However, for purposes of illustrative simplicity, the electrode array 20 is shown and described herein with only a single tube 24.
  • the tube 24 includes at least one wall 26, 28 of defining a hollow channel 30 referred to hereafter as the tube channel 30.
  • the tube 24 has a generally semicircular cross section defined by a curved wall 26 and a generally straight wall 28, as shown in Figure 16.
  • the generally straight wall 28 of the illustrated embodiment is connected to the substrate 22 as described in further detail below.
  • Other shapes for the tube 24 may be realized by
  • the substrate 22 includes an interconnect region 34 and an electrode region 36.
  • the interconnect region 34 allows for electrical connection of the electrode array 20 with at least one external device (not shown), as described further below.
  • the substrate 22 of the illustrated embodiment comprises a plurality of layers of Parylene. That is, several layers of Parylene are connected together to form the substrate 22.
  • the substrate 22 comprises a first layer 38 of Parylene, also referred to as a base layer 38.
  • the first layer 38 is in contact with and affixed to the straight wall 28 of the tube 24.
  • a second layer 40 of Parylene is disposed above the first layer 34. That is, the second layer 40 is disposed on the first layer 38 opposite the tube 24.
  • the second layer 40 and the tube 24 are integrally formed as described further below. That is, the second layer 40 and tube 24 are comprised of a single unit.
  • the substrate 22 also supports a plurality of feed lines 42 comprised of a conductive material.
  • the feed lines 42 of the illustrated embodiment comprise a metal. More specifically, the feed lines 42 are formed of chromium-gold- chromium (Cr-Au-Cr).
  • the pitch i.e., the distance between a point on one feed line 42 and a corresponding point on another feed line 42, is about 10 ⁇ . As such, a width of each feed line 42 is less than 9 ⁇ , to maintain electrical isolation between the feed lines 42.
  • the substrate 22 also supports a plurality of electrodes 46 for conducting electrical energy.
  • the electrodes 46 each comprise an electrically conductive material, including, but not limited to, a metal.
  • the electrodes comprise titanium- iridium (Ti-Ir).
  • the electrodes 46 may be formed of different metals.
  • other electrically conductive material such as conductive polymers, could be used to form the electrodes 46.
  • the various electrodes 46 need not be formed of the same type of material and could be formed by a combination of different materials.
  • the electrodes 46 are supported in the electrode region 26. Particularly, the electrodes 46 are disposed above the third
  • At least one electrode 46 is electrically connected to at least one feed line 42. As the feed lines extend to the interconnect region 34, the feed lines 42 may electrically connect the electrodes 46 to the at least one external device. In the illustrated embodiment, each electrode 46 is electrically connected to one feed line 42.
  • the substrate 22 of the illustrated embodiment includes a fourth layer 48 of Parylene disposed above the third layer 44. That is, the fourth layer is supported by the third layer 44 opposite the tube 24.
  • the substrate 22 defines a peripheral edge 50 around its periphery.
  • the electrode array 20 may include a curl strip 52 disposed adjacent at least a portion of the peripheral edge 50.
  • the curl strip 52 provides rigidity to the electrode array 20 and further regulates the amount of bend and/or curl of the array 20.
  • the curl strip 52 is disposed on the fourth layer 48.
  • a fifth layer 54 of Parylene is disposed over the curl strip 52. That is, the fifth layer 54 is disposed on the fourth layer 48 opposite the tube 24. As such, the curl strip 52 is encased within the substrate 22 around the entire peripheral edge 50.
  • the curl strip 52 of the illustrated embodiment is bimetallic.
  • the curl strip 52 is composed of Titanium-Iridium and Chromium-Gold (Ti-Ir/Cr-Au). Of course, other materials may be utilized to form the curl strip 52. Furthermore, the curl strip 52 may be formed of various independent pieces or one continuous piece.
  • the fourth and fifth layers 48 define a plurality of openings 56.
  • the electrode array 20 of the illustrated embodiment provides significantly greater flexibility than silicon-substrate devices of the prior art and are robust enough to withstand repeated flexing. Testing of the electrode array 20 results in only a 20% impedance drop after 6000 cycles of twisting the array 20 to a helical radius of about 2 mm. This testing also revealed that no shorting between the feed lines 42 and saline after the 6000 cycles of twisting.
  • the subject invention also provides an exemplary method of fabricating the electrode array 20.
  • other methods of fabricating the electrode array 20 described above may be realized by those skilled in the art.
  • the method utilizes a carrier wafer 60.
  • the carrier wafer 60 of the illustrated embodiment comprises silicon (Si). Of course other materials may also be suitable for forming the carrier wafer 60, as realized by those skilled in the art.
  • a longitudinal slit 62 is defined in the first layer 38.
  • lithography is utilized to demarcate the area of the slit 62 on the first layer 38.
  • the area of the first layer 38 is removed using a directional oxygen (0 2 ) plasma reactive ion etching (RIE) to define the slit 62.
  • RIE plasma reactive ion etching
  • the longitudinal slit 62 has a length of about 16 mm and a width of about 5-20 ⁇ .
  • the method also includes etching the carrier wafer 60 through the longitudinal slit 62 to define a channel 64 underneath the first layer 38, as shown in Figure 4.
  • the channel 64 in the carrier wafer 60 is referred to hereafter as the carrier channel 64.
  • the etching of the carrier wafer 60 to form the carrier channel 64 is accomplished using xenon difluoride.
  • those skilled in the art realize may realize other suitable techniques for generating the carrier channel 64.
  • the maximum depth of the carrier channel 64 is about 150-200 ⁇ below a top level of the substrate 60. Said another way, the depth of the carrier channel 64 is about 150-200 ⁇ below the first layer 38. Of course, other depths may alternatively be generated.
  • the width of the carrier hannel 64 in the illustrated embodiment is about 100-300 ⁇ .
  • Attorney Docket Number: 100295.00081 channel 64 may have a generally semicircular cross section, as is shown in Figure 4. However, those skilled in the art realize that the carrier channel 64 may any of numerous shapes and sizes.
  • the method further includes the step of depositing a second composition (not separately numbered).
  • the second composition is preferably a non- conductive material and more preferably, the second composition is a polymer. Most preferably, the second composition is Parylene C and is applied by vapor deposition.
  • the second composition is deposited through the longitudinal slit and around the carrier channel 64 to form the tube 24 described above having the tube channel 36.
  • the second composition is also deposited above the first layer 38 to form the second layer 40 described above. Accordingly, the second composition seals the longitudinal slit 62.
  • the tube 24 and second layer 40 are formed of a unitary material in the illustrated embodiment.
  • the feed lines 42 are disposed on the second layer 40 opposite the tube 24 according to the method.
  • the feed lines 42 are applied to the second layer 40 using evaporated metal and lift off.
  • the method further includes depositing a third composition
  • the third composition forms the third layer 44 described above.
  • the third composition is preferably a non-conductive material and more preferably, the third composition is a polymer. Most preferably, the third composition is Parylene C and is applied by vapor deposition.
  • the third layer 44 (as well as the fourth and fifth layers
  • a plurality of apertures 45 are defined in the third layer 44 using directional 0 2 RIE or other suitable techniques. Each aperture 45 exposes at least one of the feed lines 42.
  • each electrode 46 in the illustrated embodiment is generally circular shaped with a diameter of less than 200 ⁇ .
  • each electrode 46 has a diameter of about 180 ⁇ .
  • other suitable shapes and sizes for the electrodes 46 will be contemplated by those skilled in the art.
  • the electrodes 46 are formed using a lift-off technique. More specifically, photoresist (not shown) is placed on the exposed substrate 22, the photoresist is removed from areas where the electrodes 46 are to be disposed, the Ti-Ir metal (not shown) is disposed on the exposed substrate 22 such that the Ti-Ir metal bonds in the areas where the photoresist has been removed, and acetone (not shown) is applied to the substrate 22. The acetone eats away at the remaining photoresist and removes the Ti-Ir metal, except for the electrodes 46.
  • the method also includes the step of depositing a fourth composition (not separately numbered) atop the third layer 40, as shown in Figures 9 and 10.
  • the fourth composition forms the fourth layer 48 described above.
  • the fourth composition is preferably a non-conductive material and more preferably, the fourth composition is a polymer. Most preferably, the fourth composition is Parylene
  • the curl strip 52 is disposed adjacent the peripheral edge 50, as shown in Figures 11 and 12.
  • a fifth composition (not separately numbered) is deposited atop the fourth layer 48 and the
  • the fifth composition forms the fifth layer 54 described above.
  • the fifth composition is preferably a non-conductive material and more preferably, the fifth composition is a polymer. Most preferably, the fifth composition is Parylene C and is applied by vapor deposition.
  • the method also includes the step of forming the plurality of openings 56 in the fourth and fifth layers 48, 52 to expose the electrodes 46.
  • the openings 56 are created using directional 0 2 RIE or other suitable techniques.
  • the openings 56 allow electrical conduction with the electrodes 46.
  • one opening 56 is formed for each electrode 46.
  • the method continues with the step of etching the carrier wafer 60 opposite the substrate 22 to define voids 68 with each void 68 exposing an area (not separately numbered) of the tube 24.
  • the creation of the voids 68 is performed using directional RIE or other suitable techniques.
  • the method proceeds with removing the areas of the tube 24 exposed by the voids 68 to define the slots 32 within the tube 24.
  • the slots 32 are generated using oxygen plasma.
  • the method further includes the step of releasing the tube 24 and substrate 22 from the carrier wafer 60.
  • the tube 24 and substrate 22 are released from the carrier wafer 60 by dissolving the carrier wafer 60 using a solution including potassium hydroxide (KOH).
  • KOH potassium hydroxide
  • the solution is sodium hydroxide
  • Figures 16 and 17 show cross sectional views of the electrode array 20 after release from the carrier wafer 60. Furthermore, Figure 18 shows a perspective view of a portion of the electrode array 16 and Figure 19 shows a close up top view of two electrodes 46 and a plurality of feed lines 42.
  • Curl may be induced into the electrode array 20 by utilizing a wire 74.
  • the wire 74 is disposed through the tube channel 30 to hold the array 20 in a curled position.
  • the electrode array 20 provides high electrode 46 density, built in curl, integrated positioning, and tailored stiffness for use as part of the cochlear implant.
  • the substrate 22 is flexible and robust enough to withstand the tight helical pitch of the cochlea. This substrate 22 can hug the modiolus of the cochlear for close proximity to neural receptors.
  • the size and spacing of the openings 56 can be altered to make the array stiff enough for insertion in the cochlea yet pliable enough to curl.
  • the openings 56 also provide a lumen where a stylet wire (not shown) can be advanced to straighten the array for insertion into the cochlea and then fed off the array to allow it to curl into the cochlea.
  • a microelectromechanical systems (MEMS) solution may be implemented to perform insertion of the electrode array 20 into the cochlea.
  • MEMS microelectromechanical systems
  • the electrode array 20 may also find application as part of a neural probe (not shown).
  • Polymer neural probes are of increasing interest because they more closely match the tissue compliance then harder silicon or glass probes.
  • the electrode array 20 may also find application with for dispensing cell growth promoters or pharmaceuticals to the surrounding tissue through the tube channel 30, either with or without the slots 32.
  • the tube channel(s) 30 beneath the electrodes 20 may be used to deliver other fluid locally to surrounding cells. Electrochemical reactions can be studied locally, by stimulating cells chemically and recording the electrical response via the electrodes 46. Alternatively or additionally, the electrodes 46 may be used to electrically stimulate cells.
  • Prior art polymer electrode arrays have been designed with drug delivery channels. However, the channels were fabricated using sacrificial photoresist. The photoresist is sandwiched between two polymer layers such that when it is dissolved away it leaves an empty space (channel) in the polymer.
  • the sacrificial process of the prior art has the drawback of limiting the cross-sectional dimensions of the channel to the maximum thickness the resist can be spun on, typically less than 100 ⁇ .
  • the cross-sectional dimensions of the tube channel 30 of the present invention are only limited by the thickness of the carrier wafer 64, thus providing cross-sectional dimensions up to about 500 ⁇ . Furthermore, these cross-sectional dimensions can even be extended beyond that through bonding of carrier wafers 64.

Landscapes

  • Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Electrotherapy Devices (AREA)
  • Micromachines (AREA)
  • Prostheses (AREA)

Abstract

An electrode array (20), having application as a cochlear implant, includes a tube (24) formed of Parylene defining a hollow channel (30). A substrate (22) formed primarily of Parylene is supported by the tube (24). In turn, a plurality of metallic electrodes (46) and feed lines (42) are supported by the substrate (22). Numerous voids (68) are defined by the tube (24) which opens into the hollow channel (30). The size and spacing of the voids (68) regulate stiffness and curl of the tube (24) to provide excellent fit within the cochlea.

Description

ELECTRODE ARRAY AND METHOD OF FABRICATION
CROSS REFERENCE TO RELATED APPLICATION
[0001] This application claims the benefit of United States patent application No. 12/691,924, filed January 22, 2010, which is hereby incorporated by reference.
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
[0002] This invention was made with government support under Grant
No. EEC-9986866 awarded by the National Science Foundation. The government has certain rights in the invention.
BACKGROUND OF THE INVENTION
1. Field of the Invention
[0003] The subject invention relates to an array of electrodes.
Specifically, the subject invention relates to an array of electrodes for use as part of a cochlear implant.
2. Description of the Related Art
[0004] Cochlear implants are the most widely used neural prostheses, using current stimulation to bypass the non-functional hair cells of the cochlea to directly stimulate receptor cells that drive the auditory nerve. Typical cochlear electrode arrays are fabricated with bundles of wires coated in silicone. Such wire bundles are hand assembled and are limited in the number of electrodes. A typical cochlear electrode array utilizes only 16 to 24 electrodes because of large size relative to the size of the scala tympani. The low number of electrodes results in often poor
1
Attorney Docket Number: 100295.00081 pitch specificity. The relatively large size of these electrode arrays may also cause insertion damage and limit the depth of insertion. The low insertion depth limits the pitch range provided by the implant.
[0005] The subject invention is directed toward providing an electrode array providing greater pitch specificity, greater pitch range, while resulting in minimal insertion damage.
SUMMARY OF THE INVENTION AND ADVANTAGES
[0006] The subject invention provides an electrode array. The electrode array includes a tube having at least one wall wherein the tube defines a channel. A substrate comprised of a non-conductive material is supported at least partially by the tube. The electrode includes a plurality of electrodes. Each electrode comprises a conductive material and is supported by the substrate. A plurality of feed lines comprised of a conductive material are disposed primarily within the substrate. Each feed line is electrically connected to at least one of the plurality of electrodes. At least one wall of the tube defines a plurality of voids into the hollow channel for regulating stiffness and curl of the tube.
[0007] The subject invention also provides a method of fabricating the electrode array. The method includes the step of depositing a first composition on a carrier wafer. The first composition defines a longitudinal slit and forms a first layer of the substrate. The carrier wafer is etched through the longitudinal slit to define a channel underneath the first layer. The method also includes depositing a second composition comprising a polymer through the longitudinal slit and onto the carrier wafer to form the tube around the channel and seal the longitudinal slit. The method further includes the step of disposing a plurality of feed lines comprised of conductive
2
Attorney Docket Number: 100295.00081 material on the substrate opposite the tube. The plurality of electrodes is disposed on the substrate with each electrode electrically connected to at least one of the feed lines. The method further includes the step of etching the carrier wafer opposite the substrate to define voids with each void exposing an area of the tube The areas of the tube exposed by the voids are removed to define slots within the tube. The tube and substrate are then released from the carrier wafer.
[0008] The electrode array provides a lower profile than those of the prior art, resulting in less damage when inserted into a cochlea. The electrode array also provides a greater number of electrodes and allows for deeper insertion into the cochlear, resulting in improved pitch specificity and greater pitch range. Furthermore, the slots of the tube of the electrode array assist in providing a modiolus-hugging curl to position the electrodes as close as possible to the receptor cells and reduce insertion trauma.
BRIEF DESCRIPTION OF THE DRAWINGS
[0009] Other advantages of the present invention will be readily appreciated, as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings wherein:
[0010] Figure 1 is a top view of an electrode array of the subject invention showing an interconnect region and thirty-two electrode sites in an electrode region;
[0011] Figure 2 is a widthwise cross sectional view of the electrode array during fabrication showing a carrier wafer after a first layer of a substrate has been disposed atop;
3
Attorney Docket Number: 100295.00081 [0012] Figure 3 is a widthwise cross sectional view of the electrode array during fabrication showing a longitudinal slit defined by the first layer;
[0013] Figure 4 is a widthwise cross sectional view of the electrode array during fabrication showing a carrier channel defined by the carrier wafer underneath the first layer;
[0014] Figure 5 is a widthwise cross sectional view of the electrode array during fabrication showing a tube and a second layer of the substrate;
[0015] Figure 6 is a widthwise cross sectional view of the electrode array during fabrication showing a feed line disposed on the second layer;
[0016] Figure 7 is a widthwise cross sectional view of the electrode array during fabrication showing a third layer of the substrate disposed on the second layer and the feed line;
[0017] Figure 8 is a widthwise cross sectional view of the electrode array during fabrication showing an electrode disposed above the third layer and in contact with the feed line;
[0018] Figure 9 is a widthwise cross sectional view of the electrode array during fabrication showing a fourth layer of the substrate disposed above the third layer;
[0019] Figure 10 is a lengthwise cross sectional view of a portion of the electrode array during fabrication showing the fourth layer;
[0020] Figure 11 is a widthwise cross sectional view of the electrode array during fabrication showing a curl strip disposed above the fourth layer;
[0021] Figure 12 is a widthwise cross sectional view of the electrode array during fabrication showing a fifth layer of the substrate disposed above the curl strip and the fourth layer;
4
Attorney Docket Number: 100295.00081 [0022] Figure 13 is a widthwise cross sectional view of the electrode array during fabrication showing a void disposed in the carrier wafer opposite the substrate;
[0023] Figure 14 is a lengthwise cross sectional view of a portion of the electrode array during fabrication showing voids disposed in the carrier wafer opposite the substrate;
[0024] Figure 15 is a lengthwise cross sectional view of a portion of the electrode array during fabrication showing slots defined by the tube to expose a tube channel;
[0025] Figure 16 is a widthwise cross sectional view of the electrode array;
[0026] Figure 17 is a lengthwise cross sectional view of a portion of the electrode array;
[0027] Figure 18 is a perspective view of a portion of the electrode array;
[0028] Figure 19 is a close-up top view of a pair of electrodes of the electrode array; and
[0029] Figure 20 is a perspective view of a portion of the electrode array with a wire disposed
DETAILED DESCRIPTION OF THE INVENTION
[0030] Referring to the Figures, wherein like numerals indicate like parts throughout the several views, an electrode array 20 is shown herein. The electrode array 20 is well suited for use as part of a cochlear implant (not shown), but
5
Attorney Docket Number: 100295.00081 other uses of the electrode array 20 are described further below and/or will be realized by those skilled in the art.
[0031] The electrode array 20 includes a substrate 22 at least partially supported by a tube 24. In the illustrated embodiments, the substrate 22 and tube 24 each comprise a non-conductive material. Specifically, the substrate 22 and tube 24 of the illustrated embodiments each comprise a polymer and more specifically, the substrate 22 and tube 24 each comprises poly(p-xylene), known commonly by the trade name Parylene. In the illustrated embodiments, Parylene C is utilized to form the substrate 22 and tube 24. However, in other embodiments, other types of Parylene, other types of polymers, and other types of non-conductive materials may alternatively be utilized to form the substrate 22 and tube 24. Furthermore, electrically conductive materials, such as metals, may alternatively be used to form the tube 24. Moreover, the substrate 22 and tube 24 may be formed of a combination of different materials.
[0032] The electrode array 20 may include more than one tube 24 connected to the substrate 22, i.e., a plurality of tubes 24. However, for purposes of illustrative simplicity, the electrode array 20 is shown and described herein with only a single tube 24.
[0033] The tube 24 includes at least one wall 26, 28 of defining a hollow channel 30 referred to hereafter as the tube channel 30. In the illustrated embodiment, the tube 24 has a generally semicircular cross section defined by a curved wall 26 and a generally straight wall 28, as shown in Figure 16. The generally straight wall 28 of the illustrated embodiment is connected to the substrate 22 as described in further detail below. Other shapes for the tube 24 may be realized by
6
Attorney Docket Number: 100295.00081 those skilled in the art. Moreover, the use of the term "tube" does not necessarily imply a circular or curved shape.
[0034] In one embodiment, the at least one wall 26, 28 of the tube 24 defines a plurality of slots 32 into the tube channel 30. Specifically, in the illustrated embodiments, the slots 32 are defined by the curved wall 26. The slots 32 regulate the stiffness and curl of the tube 24. More particularly, the size of the slots 32 and spacing of the slots 32 from one another define the ability of the tube 24 to bend and curl. The slots 32 in the illustrated embodiment are generally circular or ring shaped. Of course, other shapes for the slots 32 may also be suitable. Moreover, in other embodiments (not shown), the walls 26, 28 of the tube 24 may be continuous, i.e., without any slots or other holes, to allow liquids to pass through the tube channel 30.
[0035] In the illustrated embodiment, the substrate 22 includes an interconnect region 34 and an electrode region 36. The interconnect region 34 allows for electrical connection of the electrode array 20 with at least one external device (not shown), as described further below.
[0036] The substrate 22 of the illustrated embodiment comprises a plurality of layers of Parylene. That is, several layers of Parylene are connected together to form the substrate 22. Specifically, the substrate 22 comprises a first layer 38 of Parylene, also referred to as a base layer 38. The first layer 38 is in contact with and affixed to the straight wall 28 of the tube 24.
[0037] In the illustrated embodiment, a second layer 40 of Parylene is disposed above the first layer 34. That is, the second layer 40 is disposed on the first layer 38 opposite the tube 24. The second layer 40 and the tube 24 are integrally formed as described further below. That is, the second layer 40 and tube 24 are comprised of a single unit.
7
Attorney Docket Number: 100295.00081 [0038] The substrate 22 also supports a plurality of feed lines 42 comprised of a conductive material. The feed lines 42 of the illustrated embodiment comprise a metal. More specifically, the feed lines 42 are formed of chromium-gold- chromium (Cr-Au-Cr). In the illustrated embodiment, the pitch, i.e., the distance between a point on one feed line 42 and a corresponding point on another feed line 42, is about 10 μιη. As such, a width of each feed line 42 is less than 9 μιη, to maintain electrical isolation between the feed lines 42.
[0039] In the illustrated embodiment, the feed lines 42 are disposed on the second layer 40. The feed lines 42 run between the interconnect region 34 and the electrode region 36. A third layer 44 of Parylene is disposed above the feed lines 42 and the second layer 40. That is, the third layer 44 is connected to the second layer 40 opposite the tube 24. As such, the feed lines 42 are disposed primarily within the substrate 22, i.e., the feed lines 42 are encased within the substrate 22. As such, the feed lines 42 are insulated by the non-conductive material of the substrate 22. Specifically, the third layer 44 of Parylene electrically insulates the feed lines 42.
[0040] The substrate 22 also supports a plurality of electrodes 46 for conducting electrical energy. The electrodes 46 each comprise an electrically conductive material, including, but not limited to, a metal. In the illustrated embodiment, the electrodes comprise titanium- iridium (Ti-Ir). However, in other embodiments, the electrodes 46 may be formed of different metals. Furthermore, other electrically conductive material, such as conductive polymers, could be used to form the electrodes 46. Moreover, the various electrodes 46 need not be formed of the same type of material and could be formed by a combination of different materials.
[0041] In the illustrated embodiment, the electrodes 46 are supported in the electrode region 26. Particularly, the electrodes 46 are disposed above the third
8
Attorney Docket Number: 100295.00081 layer 44. At least one electrode 46 is electrically connected to at least one feed line 42. As the feed lines extend to the interconnect region 34, the feed lines 42 may electrically connect the electrodes 46 to the at least one external device. In the illustrated embodiment, each electrode 46 is electrically connected to one feed line 42.
[0042] The electrode array 20 of the subject invention achieves a high density of electrodes 46. More specifically, the pitch between the electrodes may be less than 300 μιη. In the illustrated embodiment, as shown in Figure 1, 32 electrodes 46 are supported in the electrode region 26 having a length of about 8 mm. That is, the pitch, or center-to-center spacing, between the electrodes 46 is the illustrated embodiment is about 250 μιη. By increasing the density and number of electrodes 46 the electrode array 20, when used as a cochlear implant, provides improved pitch specificity over the prior art. Of course, other number of electrodes 46 may be achieved as will be realized by those skilled in the art. During experimentation, other electrode arrays 20 (not shown) were fabricated with 64 and 128 electrodes 46.
[0043] The substrate 22 of the illustrated embodiment includes a fourth layer 48 of Parylene disposed above the third layer 44. That is, the fourth layer is supported by the third layer 44 opposite the tube 24.
[0044] The substrate 22 defines a peripheral edge 50 around its periphery. The electrode array 20 may include a curl strip 52 disposed adjacent at least a portion of the peripheral edge 50. The curl strip 52 provides rigidity to the electrode array 20 and further regulates the amount of bend and/or curl of the array 20.
In the illustrated embodiment, the curl strip 52 is disposed on the fourth layer 48. A fifth layer 54 of Parylene is disposed over the curl strip 52. That is, the fifth layer 54 is disposed on the fourth layer 48 opposite the tube 24. As such, the curl strip 52 is encased within the substrate 22 around the entire peripheral edge 50.
9
Attorney Docket Number: 100295.00081 [0045] The curl strip 52 of the illustrated embodiment is bimetallic.
Specifically, the curl strip 52 is composed of Titanium-Iridium and Chromium-Gold (Ti-Ir/Cr-Au). Of course, other materials may be utilized to form the curl strip 52. Furthermore, the curl strip 52 may be formed of various independent pieces or one continuous piece.
[0046] The fourth and fifth layers 48 define a plurality of openings 56.
Each opening 56 encircles at least one electrode 46 to allow electrical contact with the at least one electrode 46. Preferably, each opening 56 encircles just one electrode 46. In the illustrated embodiment, each opening 56 has a generally circular shape and a diameter less than 200 μιη. However, other shapes and sizes for the openings 56 may be suitable as realized by those skilled in the art.
[0047] The electrode array 20 of the illustrated embodiment provides significantly greater flexibility than silicon-substrate devices of the prior art and are robust enough to withstand repeated flexing. Testing of the electrode array 20 results in only a 20% impedance drop after 6000 cycles of twisting the array 20 to a helical radius of about 2 mm. This testing also revealed that no shorting between the feed lines 42 and saline after the 6000 cycles of twisting.
[0048] The subject invention also provides an exemplary method of fabricating the electrode array 20. However, other methods of fabricating the electrode array 20 described above may be realized by those skilled in the art.
[0049] Referring to Figure 2, the method utilizes a carrier wafer 60.
The carrier wafer 60 of the illustrated embodiment comprises silicon (Si). Of course other materials may also be suitable for forming the carrier wafer 60, as realized by those skilled in the art.
10
Attorney Docket Number: 100295.00081 [0050] The method includes the step of depositing a first composition
(not separately numbered) on the carrier wafer 60 as shown in Figure 2. The first composition forms the first layer 38 described above. The first composition is preferably a non-conductive material and more preferably, the first composition is a polymer. Most preferably, the first composition is Parylene C and is applied by vapor deposition.
[0051] Referring to Figure 3, a longitudinal slit 62 is defined in the first layer 38. In the illustrated embodiment, lithography is utilized to demarcate the area of the slit 62 on the first layer 38. Then, the area of the first layer 38 is removed using a directional oxygen (02) plasma reactive ion etching (RIE) to define the slit 62. Of course, other techniques for defining the slit 62 may be realized by those skilled in the art. In the illustrated embodiment, the longitudinal slit 62 has a length of about 16 mm and a width of about 5-20 μιη.
[0052] The method also includes etching the carrier wafer 60 through the longitudinal slit 62 to define a channel 64 underneath the first layer 38, as shown in Figure 4. The channel 64 in the carrier wafer 60 is referred to hereafter as the carrier channel 64. In the illustrated embodiment, the etching of the carrier wafer 60 to form the carrier channel 64 is accomplished using xenon difluoride. However, those skilled in the art realize may realize other suitable techniques for generating the carrier channel 64.
[0053] In the illustrated embodiment, the maximum depth of the carrier channel 64 is about 150-200 μιη below a top level of the substrate 60. Said another way, the depth of the carrier channel 64 is about 150-200 μιη below the first layer 38. Of course, other depths may alternatively be generated. The width of the carrier hannel 64 in the illustrated embodiment is about 100-300 μιη. The carrier
11
Attorney Docket Number: 100295.00081 channel 64 may have a generally semicircular cross section, as is shown in Figure 4. However, those skilled in the art realize that the carrier channel 64 may any of numerous shapes and sizes.
[0054] The method further includes the step of depositing a second composition (not separately numbered). The second composition is preferably a non- conductive material and more preferably, the second composition is a polymer. Most preferably, the second composition is Parylene C and is applied by vapor deposition.
[0055] In the illustrated embodiment, the second composition is deposited through the longitudinal slit and around the carrier channel 64 to form the tube 24 described above having the tube channel 36. The second composition is also deposited above the first layer 38 to form the second layer 40 described above. Accordingly, the second composition seals the longitudinal slit 62. As such, the tube 24 and second layer 40 are formed of a unitary material in the illustrated embodiment.
[0056] The feed lines 42 are disposed on the second layer 40 opposite the tube 24 according to the method. The feed lines 42 are applied to the second layer 40 using evaporated metal and lift off.
[0057] The method further includes depositing a third composition
(not separately numbered) atop the second layer 40 and the feed lines 42, as shown in
Figure 77. The third composition forms the third layer 44 described above. The third composition is preferably a non-conductive material and more preferably, the third composition is a polymer. Most preferably, the third composition is Parylene C and is applied by vapor deposition. The third layer 44 (as well as the fourth and fifth layers
44, 54) acts as insulation to the feed lines 42. A plurality of apertures 45 are defined in the third layer 44 using directional 02 RIE or other suitable techniques. Each aperture 45 exposes at least one of the feed lines 42.
12
Attorney Docket Number: 100295.00081 [0058] Referring to Figure 8, the method continues with the step of disposing a plurality of electrodes 46 on the substrate 22. In the illustrated embodiment, the electrodes are disposed in the apertures 45 such that each electrode 46 electrically connected to at least one of the feed lines 42. Each electrode 46 in the illustrated embodiment is generally circular shaped with a diameter of less than 200 μιη. Preferably, each electrode 46 has a diameter of about 180 μιη. Of course, other suitable shapes and sizes for the electrodes 46 will be contemplated by those skilled in the art.
[0059] In the illustrated embodiment, the electrodes 46 are formed using a lift-off technique. More specifically, photoresist (not shown) is placed on the exposed substrate 22, the photoresist is removed from areas where the electrodes 46 are to be disposed, the Ti-Ir metal (not shown) is disposed on the exposed substrate 22 such that the Ti-Ir metal bonds in the areas where the photoresist has been removed, and acetone (not shown) is applied to the substrate 22. The acetone eats away at the remaining photoresist and removes the Ti-Ir metal, except for the electrodes 46.
[0060] The method also includes the step of depositing a fourth composition (not separately numbered) atop the third layer 40, as shown in Figures 9 and 10. The fourth composition forms the fourth layer 48 described above. The fourth composition is preferably a non-conductive material and more preferably, the fourth composition is a polymer. Most preferably, the fourth composition is Parylene
C and is applied by vapor deposition.
[0061] The method further includes the step of disposing the curl strip
52 on the substrate 22. Preferably, the curl strip 52 is disposed adjacent the peripheral edge 50, as shown in Figures 11 and 12. After disposition of the curl strip 52, a fifth composition (not separately numbered) is deposited atop the fourth layer 48 and the
13
Attorney Docket Number: 100295.00081 curl strip 52. The fifth composition forms the fifth layer 54 described above. The fifth composition is preferably a non-conductive material and more preferably, the fifth composition is a polymer. Most preferably, the fifth composition is Parylene C and is applied by vapor deposition.
[0062] The method also includes the step of forming the plurality of openings 56 in the fourth and fifth layers 48, 52 to expose the electrodes 46. The openings 56 are created using directional 02 RIE or other suitable techniques. The openings 56 allow electrical conduction with the electrodes 46. Preferably, one opening 56 is formed for each electrode 46.
[0063] The use of five compositions forming five layers 38, 40, 44, 48,
54 is not absolutely necessary in forming the substrate 22 of the electrode array 20. Several of these layers 38, 40, 44, 48, 54 could be combined and/or the compositions applied in combination.
[0064] Referring to Figures 13 and 14, the method continues with the step of etching the carrier wafer 60 opposite the substrate 22 to define voids 68 with each void 68 exposing an area (not separately numbered) of the tube 24. The creation of the voids 68 is performed using directional RIE or other suitable techniques.
[0065] After the voids 68 have been defined in the carrier wafer 60, the method proceeds with removing the areas of the tube 24 exposed by the voids 68 to define the slots 32 within the tube 24. The slots 32 are generated using oxygen plasma.
[0066] The method further includes the step of releasing the tube 24 and substrate 22 from the carrier wafer 60. In the illustrated embodiment, the tube 24 and substrate 22 are released from the carrier wafer 60 by dissolving the carrier wafer 60 using a solution including potassium hydroxide (KOH). Preferably, the solution is
14
Attorney Docket Number: 100295.00081 about 2% KOH. However, other techniques may be implemented as realized by those skilled in the art.
[0067] Figures 16 and 17 show cross sectional views of the electrode array 20 after release from the carrier wafer 60. Furthermore, Figure 18 shows a perspective view of a portion of the electrode array 16 and Figure 19 shows a close up top view of two electrodes 46 and a plurality of feed lines 42.
[0068] Curl may be induced into the electrode array 20 by utilizing a wire 74. The wire 74 is disposed through the tube channel 30 to hold the array 20 in a curled position.
[0069] The electrode array 20 provides high electrode 46 density, built in curl, integrated positioning, and tailored stiffness for use as part of the cochlear implant. The substrate 22 is flexible and robust enough to withstand the tight helical pitch of the cochlea. This substrate 22 can hug the modiolus of the cochlear for close proximity to neural receptors. The size and spacing of the openings 56 can be altered to make the array stiff enough for insertion in the cochlea yet pliable enough to curl. The openings 56 also provide a lumen where a stylet wire (not shown) can be advanced to straighten the array for insertion into the cochlea and then fed off the array to allow it to curl into the cochlea. Alternatively, a microelectromechanical systems (MEMS) solution may be implemented to perform insertion of the electrode array 20 into the cochlea.
[0070] The electrode array 20 may also find application as part of a neural probe (not shown). Polymer neural probes are of increasing interest because they more closely match the tissue compliance then harder silicon or glass probes.
This match in compliance improves the synchronicity of probe motion with that of the tissue, so that the probes do not tear through the tissue in response to micro motions.
15
Attorney Docket Number: 100295.00081 However, the typical drawback of polymer probes is that they are highly flexible and need to be strengthened with stiffeners in order to penetrate the brain tissue.
[0071] The electrode array 20 may also find application with for dispensing cell growth promoters or pharmaceuticals to the surrounding tissue through the tube channel 30, either with or without the slots 32. The tube channel(s) 30 beneath the electrodes 20 may be used to deliver other fluid locally to surrounding cells. Electrochemical reactions can be studied locally, by stimulating cells chemically and recording the electrical response via the electrodes 46. Alternatively or additionally, the electrodes 46 may be used to electrically stimulate cells.
[0072] Prior art polymer electrode arrays have been designed with drug delivery channels. However, the channels were fabricated using sacrificial photoresist. The photoresist is sandwiched between two polymer layers such that when it is dissolved away it leaves an empty space (channel) in the polymer. The sacrificial process of the prior art has the drawback of limiting the cross-sectional dimensions of the channel to the maximum thickness the resist can be spun on, typically less than 100 μιη. In comparison, the cross-sectional dimensions of the tube channel 30 of the present invention are only limited by the thickness of the carrier wafer 64, thus providing cross-sectional dimensions up to about 500 μιη. Furthermore, these cross-sectional dimensions can even be extended beyond that through bonding of carrier wafers 64.
[0073] The present invention has been described herein in an illustrative manner, and it is to be understood that the terminology which has been used is intended to be in the nature of words of description rather than of limitation. Obviously, many modifications and variations of the invention are possible in light of
16
Attorney Docket Number: 100295.00081 the above teachings. The invention may be practiced otherwise than as specifically described within the scope of the appended claims.
17
Attorney Docket Number: 100295.00081

Claims

CLAIMS What is claimed is:
1. A method of fabricating an electrode array (20), said method comprising the steps of:
depositing a first composition on a carrier wafer (60) wherein the first composition defines a longitudinal slit (62) and the first composition forms a first layer (38) of a substrate (22);
etching the carrier wafer (60) through the longitudinal slit (62) to define a channel (30) underneath the first layer (38);
depositing a second composition comprising a polymer through the longitudinal slit (62) and onto the carrier wafer (60) to form a tube (24) around the channel (30) and seal the longitudinal slit (62);
disposing a plurality of feed lines (42) comprised of conductive material on the substrate (22) opposite the tube (24);
disposing a plurality of electrodes (46) on the substrate (22) with each electrode (46) electrically connected to at least one of the feed lines (42);
etching the carrier wafer (60) opposite the substrate (22) to define voids (68) with each void (68) exposing an area of the tube (24);
removing the areas of the tube (24) exposed by the voids (68) to define slots (32) within the tube (24); and
releasing the tube (24) and substrate (22) from the carrier wafer (60).
2. A method as set forth in claim 1, further comprising the step of depositing a third composition comprised of a polymer on the substrate (22) to form another layer (44, 48, 54) of the substrate (22) wherein the third composition defines a plurality of openings (56) with each opening (56) proximate to one of the electrodes
18
Attorney Docket Number: 100295.00081 (46) to expose the electrodes (46) and allow electrical conduction with the electrodes (46).
3. A method as set forth in either of claims 1 or 2, wherein the substrate (22) defines a peripheral edge (50) and further comprising the step of disposing a curl strip (52) adjacent the peripheral edge (50) of the substrate (22).
4. A method as set forth in any one of claims 1 to 3, wherein a maximum depth of the channel (30) is about 150-200 μιη below the level of the substrate (22).
5. A method as set forth in any one of claims 1 to 4, wherein said step of releasing the tube (24) and substrate (22) from the carrier wafer (60) is further defined as dissolving the carrier wafer (60) using a solution including potassium hydroxide.
6. A method as set forth in any one of claims 1 to 5, wherein said step of depositing the first composition on the carrier wafer (60) is further defined as the steps of:
depositing the first composition comprised of Parylene on the carrier wafer (60); and
etching a longitudinal slit using directional 02 plasma reactive-ion etching.
7. A method as set forth in any one of claims 1 to 6, wherein said step of depositing the second composition is further defined as depositing the second composition comprising Parylene using vapor deposition through the longitudinal slit (62) and onto the carrier wafer (60) to form a tube (24) around the channel (30) and seal the longitudinal slit (62) and onto the first layer (34) to form a second layer (40).
Attorney Docket Number: 100295.00081
8. An electrode array (20) comprising:
a tube (24) having at least one wall (26, 28) defining a channel (30);
a substrate (22) comprised of non-conductive material and supported at least partially by the tube (24);
a plurality of electrodes (46) comprised of a conductive material and supported by the substrate (22); and
a plurality of feed lines (42) comprised of a conductive material and disposed primarily within the substrate (22) wherein each feed line (42) is electrically connected to at least one of the plurality of electrodes (46);
wherein the at least one wall (26, 28) of the tube (24) defines a plurality of slots (32) into the hollow channel (30) for regulating stiffness and curl of the tube (24).
9. An electrode array (20) as set forth in claim 8 wherein the tube (24) comprises Parylene.
10. An electrode array (20) as set forth in either claims 8 or 9, wherein the tube (24) comprises a metal.
11. An electrode array (20) as set forth in any one of claims 8 to 10, wherein the substrate (22) defines a peripheral edge (50) and the electrode array (20) further comprises a curl strip (52) disposed adjacent at least a portion of the peripheral edge (50).
12. An electrode array (20) as set forth in claim 11 wherein the curl strip
(52) is bimetallic.
13. An electrode array (20) as set forth in any one of claims 8 to 12, wherein the electrodes (22) comprise metal.
14. An electrode array (20) as set forth in any one of claims 8 to 13, wherein the substrate includes a first layer (38) of a polymer supported at least
20
Attorney Docket Number: 100295.00081 partially by the tube (24) and at least one insulating layer (40, 44, 48) of a polymer disposed on the first layer (38) opposite the tube (24).
15. An electrode array (20) as set forth in claim 14 wherein said at least one insulating layer (40, 44, 48) comprises a second layer (40) disposed on the first layer (38) opposite the tube (24) and a third layer (44) disposed on the second layer (40) opposite the tube (24).
16. An electrode array (20) as set forth in claim 15 wherein the feed lines (42) are disposed between the first layer (38) and the second layer (40).
17. An electrode array (20) as set forth in claim 16 wherein the electrodes (46) are disposed between the second layer (40) and the third layer (44).
18. An electrode array (20) as set forth in any of claims 8 to 17 wherein each of said electrodes (46) has a generally circular shape and a diameter less than 200μιη and a pitch between electrodes (46) of less than 300 μιη.
21
Attorney Docket Number: 100295.00081
19. An electrode array (20) comprising:
a tube (24) comprised of Parylene and having at least one wall (26, 28) defining a channel (30);
a substrate (22) comprised of non-conductive material and supported at least partially by the tube (24);
a plurality of electrodes (46) comprised of a conductive material and supported by the substrate (22); and
a plurality of feed lines (42) comprised of a conductive material and disposed primarily within the substrate (22) wherein each feed line (42) is electrically connected to at least one of the plurality of electrodes (46).
20. An electrode array (20) as set forth in claim 19 wherein a pitch between electrodes (46) is less than 300 μιη.
22
Attorney Docket Number: 100295.00081
PCT/US2011/020741 2010-01-22 2011-01-11 Electrode array and method of fabrication WO2011090842A2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP11734996.9A EP2525867B1 (en) 2010-01-22 2011-01-11 Electrode array and method of fabrication
AU2011207709A AU2011207709B2 (en) 2010-01-22 2011-01-11 Electrode array and method of fabrication
CA 2787091 CA2787091A1 (en) 2010-01-22 2011-01-11 Electrode array and method of fabrication

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/691,924 US8283569B2 (en) 2010-01-22 2010-01-22 Electrode array and method of fabrication
US12/691,924 2010-01-22

Publications (2)

Publication Number Publication Date
WO2011090842A2 true WO2011090842A2 (en) 2011-07-28
WO2011090842A3 WO2011090842A3 (en) 2011-12-22

Family

ID=44307520

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2011/020741 WO2011090842A2 (en) 2010-01-22 2011-01-11 Electrode array and method of fabrication

Country Status (5)

Country Link
US (2) US8283569B2 (en)
EP (1) EP2525867B1 (en)
AU (1) AU2011207709B2 (en)
CA (1) CA2787091A1 (en)
WO (1) WO2011090842A2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8849426B1 (en) 2010-03-18 2014-09-30 Advanced Bionics Ag Microcircuit cochlear electrode array and method of manufacture
US8897894B1 (en) 2008-01-24 2014-11-25 Advanced Bionics Llc Microcircuit cochlear electrode array and method of manufacture
US8927876B2 (en) 2010-01-22 2015-01-06 The Regents Of The University Of Michigan Electrode array and method of fabrication
EP2742703A4 (en) * 2011-08-12 2015-03-11 Cochlear Ltd Flexible protected lead
WO2020097056A1 (en) * 2018-11-05 2020-05-14 Carnegie Mellon University High-density implantable neural probes

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012154179A1 (en) 2011-05-11 2012-11-15 Advanced Bionics Ag Mid-scalar electrode array
US20130190839A1 (en) * 2012-01-20 2013-07-25 Jane Rapsey Drug delivery using a sacrificial host
US10064565B2 (en) 2013-11-05 2018-09-04 The Regents Of The University Of California Multielectrode array and method of fabrication
CN113573771A (en) * 2019-04-05 2021-10-29 梅姆斯蒂姆有限责任公司 Stimulation device comprising an electrode array
WO2021074762A1 (en) * 2019-10-14 2021-04-22 Cochlear Limited Stimulation assembly sheath with signal pathway
EP3988160B1 (en) * 2020-10-23 2023-07-05 Oticon Medical A/S Cochlear implant device with a flexible electrode array

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040220651A1 (en) 2002-09-19 2004-11-04 Kuzma Janusz A Cochlear implant electrode and method of making same
US20070106360A1 (en) 2005-11-08 2007-05-10 Cochlear Limited Implantable carrier member having a non-communicative lumen

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1240784A (en) 1985-08-30 1988-08-16 Patrick D. Van Der Puije Cochlea implant
US5178957A (en) * 1989-05-02 1993-01-12 Minnesota Mining And Manufacturing Company Noble metal-polymer composites and flexible thin-film conductors prepared therefrom
US5800500A (en) 1995-08-18 1998-09-01 Pi Medical Corporation Cochlear implant with shape memory material and method for implanting the same
AU714520B2 (en) 1996-01-31 2000-01-06 Cochlear Limited Thin film fabrication technique for implantable electrodes
CA2374037C (en) 1999-05-21 2009-03-10 Cochlear Limited A cochlear implant electrode array
US6374143B1 (en) 1999-08-18 2002-04-16 Epic Biosonics, Inc. Modiolar hugging electrode array
JP3879816B2 (en) 2000-06-02 2007-02-14 セイコーエプソン株式会社 SEMICONDUCTOR DEVICE AND ITS MANUFACTURING METHOD, LAMINATED SEMICONDUCTOR DEVICE, CIRCUIT BOARD AND ELECTRONIC DEVICE
JP3971996B2 (en) * 2000-11-29 2007-09-05 コックリアー,リミテッド Pre-curved cochlear implant electrode array
US6782619B2 (en) 2001-08-17 2004-08-31 Advanced Cochlear Systems, Inc. Method of making high contact density electrode array
AUPR851601A0 (en) 2001-10-26 2001-11-29 Cochlear Limited Auditory midbrain implant
AUPR879201A0 (en) 2001-11-09 2001-12-06 Cochlear Limited Subthreshold stimulation of a cochlea
US6818911B2 (en) 2002-04-10 2004-11-16 Canon Kabushiki Kaisha Array structure and method of manufacturing the same, charged particle beam exposure apparatus, and device manufacturing method
US7211103B2 (en) 2002-04-11 2007-05-01 Second Sight Medical Products, Inc. Biocompatible bonding method and electronics package suitable for implantation
WO2004014479A2 (en) 2002-08-09 2004-02-19 Second Sight Medical Products, Inc Insulated implantable electrical circuit
US7035692B1 (en) * 2003-04-30 2006-04-25 The Regents Of The University Of California High density polymer-based integrated electrode array
AU2003903532A0 (en) 2003-07-09 2003-07-24 Cochlear Limited Conductive elements
US20050051427A1 (en) 2003-07-23 2005-03-10 Brauker James H. Rolled electrode array and its method for manufacture
WO2005046470A1 (en) 2003-11-06 2005-05-26 The Regents Of The University Of Colorado, A Body Corporate Shape-memory polymer coated electrodes
WO2007021762A2 (en) * 2005-08-09 2007-02-22 The University Of North Carolina At Chapel Hill Methods and materials for fabricating microfluidic devices
EP1766672A2 (en) 2004-05-14 2007-03-28 California Institute of Technology Parylene-based flexible multi-electrode arrays for neuronal stimulation and recording and methods for manufacturing the same
US7790493B2 (en) 2005-05-25 2010-09-07 The Regents Of The University Of Michigan Wafer-level, polymer-based encapsulation for microstructure devices
WO2007056561A2 (en) * 2005-11-09 2007-05-18 Liquidia Technologies, Inc. Medical device, materials, and methods
KR100798493B1 (en) * 2006-07-13 2008-01-28 고려용접봉 주식회사 A copper-free solid wire assembly for gas shielded arc welding and a welding method using thereof
JP5011597B2 (en) 2006-07-28 2012-08-29 メド−エル エレクトロ−メディツィニシェ ゲレーテ ゲゼルシャフト ミット ベシュレンクテル ハフツング Layered electrode array and cable
CA2700552A1 (en) * 2007-10-15 2009-04-23 Universite Catholique De Louvain Drug-eluting nanowire array
KR100941773B1 (en) * 2007-10-25 2010-02-11 한국기계연구원 Frequency analyzer of cochlear implant with self power supply
WO2009062114A2 (en) 2007-11-08 2009-05-14 Second Sight Medical Products, Inc. Cochlear stimulation device comprising a flexible electrode array
JP5592355B2 (en) * 2008-05-13 2014-09-17 アドヴァンスト リキッド ロジック インコーポレイテッド Droplet actuator device, system, and method
US20110097763A1 (en) * 2008-05-13 2011-04-28 Advanced Liquid Logic, Inc. Thermal Cycling Method
US8283569B2 (en) 2010-01-22 2012-10-09 The Regents Of The University Of Michigan Electrode array and method of fabrication

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040220651A1 (en) 2002-09-19 2004-11-04 Kuzma Janusz A Cochlear implant electrode and method of making same
US20070106360A1 (en) 2005-11-08 2007-05-10 Cochlear Limited Implantable carrier member having a non-communicative lumen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2525867A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8897894B1 (en) 2008-01-24 2014-11-25 Advanced Bionics Llc Microcircuit cochlear electrode array and method of manufacture
US9402991B1 (en) 2008-01-24 2016-08-02 Advanced Bionics, Llc Microcircuit cochlear electrode array and method of manufacture
US8927876B2 (en) 2010-01-22 2015-01-06 The Regents Of The University Of Michigan Electrode array and method of fabrication
US8849426B1 (en) 2010-03-18 2014-09-30 Advanced Bionics Ag Microcircuit cochlear electrode array and method of manufacture
EP2742703A4 (en) * 2011-08-12 2015-03-11 Cochlear Ltd Flexible protected lead
WO2020097056A1 (en) * 2018-11-05 2020-05-14 Carnegie Mellon University High-density implantable neural probes

Also Published As

Publication number Publication date
US8283569B2 (en) 2012-10-09
CA2787091A1 (en) 2011-07-28
AU2011207709B2 (en) 2015-02-19
US20120325525A1 (en) 2012-12-27
EP2525867B1 (en) 2016-05-25
AU2011207709A1 (en) 2012-08-02
EP2525867A4 (en) 2013-07-31
EP2525867A2 (en) 2012-11-28
US20110180305A1 (en) 2011-07-28
WO2011090842A3 (en) 2011-12-22
US8927876B2 (en) 2015-01-06

Similar Documents

Publication Publication Date Title
US8927876B2 (en) Electrode array and method of fabrication
JP5011597B2 (en) Layered electrode array and cable
EP2512586B1 (en) Cochlear electrode array
AU761806B2 (en) Modiolar hugging electrode array
US8515557B2 (en) Electrode array for a cochlear implant
US11357975B2 (en) Cylindrical microelectrode array for neural stimulation and recording
CN113041496A (en) Nerve electrical stimulation electrode, preparation method and implantation method thereof
US20100318167A1 (en) Neurostimulation electrode array and method of manufacture
EP2800589B1 (en) Porous dealloyed electrodes
US9974945B2 (en) Transmodiolar electrode array and a manufacturing method
EP3157616A1 (en) Electrode assembly for a cochlear lead that inhibits twisting

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11734996

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011207709

Country of ref document: AU

ENP Entry into the national phase in:

Ref document number: 2787091

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2011734996

Country of ref document: EP

NENP Non-entry into the national phase in:

Ref country code: DE

ENP Entry into the national phase in:

Ref document number: 2011207709

Country of ref document: AU

Date of ref document: 20110111

Kind code of ref document: A