WO2011087081A1 - 光学素子モジュール - Google Patents

光学素子モジュール Download PDF

Info

Publication number
WO2011087081A1
WO2011087081A1 PCT/JP2011/050528 JP2011050528W WO2011087081A1 WO 2011087081 A1 WO2011087081 A1 WO 2011087081A1 JP 2011050528 W JP2011050528 W JP 2011050528W WO 2011087081 A1 WO2011087081 A1 WO 2011087081A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
reflector
light guide
light
optical member
Prior art date
Application number
PCT/JP2011/050528
Other languages
English (en)
French (fr)
Inventor
真司 三ツ谷
Original Assignee
アルプス電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプス電気株式会社 filed Critical アルプス電気株式会社
Priority to JP2011550013A priority Critical patent/JP5186048B2/ja
Publication of WO2011087081A1 publication Critical patent/WO2011087081A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4214Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4249Packages, e.g. shape, construction, internal or external details comprising arrays of active devices and fibres

Definitions

  • the present invention relates to an optical element module and is suitably used for an optical connector.
  • FIG. 7 shows a conventional optical element module when an optical fiber 115 is used as an optical waveguide body.
  • a transparent structure 131 made of a molded product of transparent glass or transparent synthetic resin is provided, and a reflector 131a is formed to protrude from the upper surface of the transparent structure 131.
  • the reflector 131a is substantially perpendicular to the upper surface 132 of the transparent structure 131.
  • a positioning surface 133 is formed, and the reflector 131a is formed with a reflecting surface 134 that forms an angle of 45 degrees with the positioning surface 133, that is, is inclined with respect to the upper surface 132.
  • the end face of the optical fiber 115 disposed on the transparent structure 131 is abutted against the positioning surface 133 of the reflector 131a, and the optical fiber 115 is positioned in the left-right direction in FIG.
  • the optical fiber 115 is disposed at a substantially right angle with respect to the positioning surface 133.
  • light from the light emitting element 137 can enter the optical fiber 115.
  • the light emitting element 137 may be a light receiving element, and can receive light emitted from the optical fiber 115.
  • the spread of outgoing light from the optical fiber 115 is determined by the numerical aperture of the optical fiber 115.
  • the positioning surface 133 and the reflection surface 134 of the optical fiber 115 form an angle of 45 degrees, a part of the emission light is transmitted through the reflection surface due to the spread of the emission light from the optical fiber 115, and the light intensity is lost.
  • a problem that occurred In recent years, a flexible optical fiber has been developed and is effective for wiring in equipment. However, this optical fiber has a larger numerical aperture than that of the conventional one, and the spread of emitted light is increased, so that the above problem is remarkable. is there.
  • the present invention provides an optical element provided with a light guide, a reflector capable of reflecting light emitted from the light guide, and an optical member capable of condensing or collimating light from the reflector.
  • the focal point of the optical member on the reflector side is on the end surface of the light guide, and the angle formed by the reflective surface of the reflector and the optical axis of the optical member is less than 45 °, Minimum incident angle of the light emitted from the light guide to the reflective surface determined by the angle formed by the optical axis of the light emitted from the light guide and the reflective surface and the numerical aperture of the light guide
  • the optical element module is characterized in that the light guide is arranged such that ( ⁇ 4) is an angle satisfying a total reflection condition on the reflection surface. Thereby, the light emitted from the light guide or the optical member is reflected without passing through the reflecting surface of the reflector and is incident on the optical member or the light guide, so that an effect that almost no loss of light intensity occurs is obtained. .
  • the optical element module of the present invention is characterized in that incident light on the optical member is condensed and guided to the end face of the light guide via the reflector. Thereby, the incident light from the optical member is reliably incident on the light guide, so that almost no loss of light intensity occurs and is guided to the light guide.
  • the optical element module of the present invention is characterized in that a substrate for fixing the optical member, the reflector and the light guide is provided. Thereby, since the relative position of the said optical member, the said reflector, and the said light guide is determined with sufficient precision, the angle which satisfy
  • the base material is a transparent member that transmits the light. Even if the base material that fixes the optical member and the reflector is on the optical path between the optical member and the reflector, there is little light loss, so the reflector and the optical member However, it can be optically coupled.
  • the optical element module of the present invention can be easily compared with the case where the optical member, the reflector, and the base material are integrally formed of the transparent member, as compared with a case where the optical element module is assembled and formed separately. Since it is arranged with high positional accuracy, an angle satisfying the total reflection condition can be obtained more stably. Further, the optical element module can be easily realized at low cost.
  • the optical element module of the present invention a plurality of units each including the optical member, the reflector, and the light guide are provided on the base, and the distance between the optical member and the reflector of each unit is set.
  • the optical member and the reflector are fixed to the base material so as to be substantially the same.
  • the optical element module is small in size and can receive and transmit multi-channel light by arranging a plurality of the light guides.
  • the optical axes of the optical members provided in the plurality of units are all in the same direction, and the surface of the base material on which the plurality of light guides are disposed is the same plane. And at least one optical member having a different distance from a virtual plane having the plurality of optical axes as normals is provided. Thereby, since the said several light guide is formed in the same plane on the said base material, the said light guide can be arrange
  • the light emitted from the light guide or the optical member is reflected without passing through the reflecting surface of the reflector and is incident on the optical member or the light guide, so that there is an effect that almost no loss of light intensity occurs. It is done.
  • FIG. 2 is a cross-sectional view taken along line AA showing the first embodiment of the present invention. It is the elements on larger scale of the cross section which shows the 1st Embodiment of this invention. It is sectional drawing which shows the 2nd Embodiment of this invention. It is sectional drawing which shows the modification of the 2nd Embodiment of this invention. It is sectional drawing which shows the 3rd Embodiment of this invention. It is sectional drawing of the conventional structure.
  • FIG. 1 is a plan view for explaining an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view for explaining the structure of the present invention, and is a cross-sectional view taken along line AA of FIG.
  • FIG. 3 shows a partially enlarged view of FIG.
  • FIG. 1 shows the arrangement of the base member 2 in the plan view of the optical element module 14, the reflector 1, the optical member 8, and the light guide 5 in the present embodiment.
  • Nine light guides 5 and nine reflectors 1 are arranged on the polycarbonate base material surface, and nine optical members 8 are arranged on the back surface of the base material.
  • Each light guide 5 and optical member 8 are optically coupled through a reflecting prism as the reflector 1 to form a unit unit 15.
  • the lenses that are the nine optical members 8 are arranged in a lattice pattern with a pitch of 300 ⁇ m in this embodiment, and the end faces of the optical fibers that are the nine light guides 5 are in contact with the reflecting prism that is the reflector 1. Have been placed.
  • FIG. 2 shows a cross section of the arrangement of the base member 2, the reflector 1, the optical member 8, and the light guide 5 of the optical element module 14 in the present embodiment.
  • All the optical members 8 on the substrate back surface 10 are arranged on the same plane, and the reflector 1 and the light guide 5 on the substrate surface are arranged on the saw-toothed slope 3 on the substrate surface.
  • the distance of the optical member 8 of each unit 15 and the reflector 1 is arrange
  • the angle formed by the sawtooth-shaped inclined surface 3 on the substrate surface and the substrate back surface 10 is the same 10 ° as ⁇ 2 shown in the figure, and the light guide 5 and the reflector 1 are arranged on the surface of the inclined surface 3. .
  • the angle ⁇ 1 formed by the reflection surface 4 of the reflector 1 and the substrate back surface 10 is an angle of 50 °, and the reflector 1 is arranged. Therefore, the angle ⁇ 0 formed by the reflecting surface 4 of the reflector 1 and the optical axis 13 of the optical member 8 is 40 ° and is arranged to be less than 45 °.
  • the optical member 8 is designed so that the focal point P of the optical member 8 on the reflector 1 side is on the end surface of the light guide 5.
  • FIG. 3 is an enlarged view of the vicinity of the reflector 1 of the optical element module 14 shown in FIG. 2, and shows a case where light is emitted from the light guide 5.
  • an optical fiber having a numerical aperture of 0.29 that is, the light guide 5 is disposed, and light emitted from the light guide 5 has a spread.
  • the refractive index of the polycarbonate reflector 1 is 1.585, the angle of spread of the light emitted from the light guide 5 with respect to the optical axis 16, that is, the fiber exit angle ⁇ 3 is 10.5 °.
  • the angle at which the angle of light emitted from the light guide 5 and the reflecting surface 4 becomes the largest, that is, the minimum incident angle at which the incident angle is minimum is ⁇ 4.
  • the reflection of the reflector 1 is performed. Since the angle ⁇ 0 formed by the optical axis 13 of the surface 4 and the optical member 8 is 40 °, the minimum incident angle ⁇ 4 to the reflecting surface 4 is 39.5 ° even if the fiber exit angle ⁇ 3 is 10.5 °. It becomes. Therefore, since the minimum incident angle ⁇ 4 to the reflecting surface 4 is larger than the total reflection angle 39.1 ° of the polycarbonate reflector 1, the emitted light from the light guide 5 is reflected by 95% or more, and almost Satisfies total reflection conditions.
  • the angle between the optical axis 16 of the light emitted from the light guide 5 and the reflection surface 4 and the numerical aperture of the light guide 5 are determined by the light output from the light guide 5 to the reflection surface 4. It can be seen that the light guide 5 is disposed on the base material 2 so that the minimum incident angle ( ⁇ 4) is an angle satisfying the total reflection condition on the reflecting surface 4.
  • the light guide 5 is an optical fiber.
  • the light guide 5 may be a waveguide.
  • the base material 2, the reflector 1, and the optical member 8 of the optical element module 14 are made of polycarbonate.
  • polyetherimide or other transparent materials may be used.
  • the angle ⁇ 2 formed by the sawtooth slope 3 on the substrate surface and the substrate back surface 10 in FIG. 2 is 6 °, and the reflecting surface 4 of the reflector 1.
  • the angle ⁇ 1 formed by the substrate back surface 10 is 48 °
  • the angle ⁇ 0 formed by the reflection surface 4 of the reflector 1 and the optical axis 13 of the optical member 8 is 42 °, which is arranged to be less than 45 °. .
  • the reflector 1 and the optical member 8 are also made of polycarbonate, and may be integrally formed simultaneously with the formation of the substrate 2. Thereby, compared with the case where it forms and assembles separately, it arranges easily with high position accuracy, so that an angle satisfying the total reflection condition can be obtained more stably. Further, the optical element module 14 can be easily realized at low cost.
  • the nine optical members 8 on the back surface of the base material in FIG. 1 are arranged in a lattice shape is shown, but they may be arranged in a staggered manner.
  • the light guides 5 can be mounted with high density, and small and multi-channel light can be transmitted and received.
  • FIG. 4 the arrangement of the base material 21, the reflector 1, the optical member 8, and the light guide 5 of the optical element module 14 in the second embodiment of the present invention is shown in cross section.
  • the optical members 8 are arranged in a staggered manner in plan view.
  • the surface of the base material 2 is formed in a sawtooth shape, but in the base material 21 of the present embodiment, the horizontal surface 11 on the back surface of the base material to which the optical member 8 is attached is formed in a step shape.
  • the distance between the optical member 8 and the reflector 1 was formed to be practically the same between the units 15.
  • the base material 21, all the reflectors 1, and the optical member 8 are made of polycarbonate. All the reflectors 1 and the light guides 5 on the substrate surface are disposed on the inclined surface 3 on the same plane, and the optical member 8 on the substrate back surface is disposed on a stepwise horizontal surface 11 on the substrate back surface. Yes.
  • the distance between the optical member 8 of each unit 15 and the reflector 1 is arranged to be substantially the same.
  • the angle formed by the slope 3 on the substrate surface and the stepped horizontal surface 11 on the back surface of the substrate is the same 10 ° as ⁇ 2 shown in the figure, and the light guide 5 and the reflector 1 are arranged on the surface of the slope 3. ing.
  • the angle ⁇ 1 formed by the reflecting surface 4 of the reflector 1 and the step-like horizontal surface 11 on the back surface of the substrate is an angle of 50 °, and the reflector 1 is arranged. Therefore, the angle ⁇ 0 formed by the reflecting surface 4 of the reflector 1 and the optical axis 13 of the optical member 8 is 40 ° and is arranged to be less than 45 °.
  • the optical member 8 is designed so that the focal point P of the optical member 8 on the reflector 1 side is on the end surface of the light guide 5. With the configuration of the present embodiment, 95% or more of the light emitted from the light guide 5 is reflected as in the first embodiment, and almost satisfies the total reflection condition.
  • the optical element module 14 having this structure reflects the light emitted from the light guide 5 or the optical member 8 without passing through the reflecting surface 4 of the reflector 1 and enters the optical member 8 or the light guide 5.
  • the effect that almost no loss of strength occurs is obtained, and all the light guides 5 can be easily arranged at high density on the same plane on the substrate surface.
  • the base material 21 of the optical element module 14 and all the reflectors 1 and the optical member 8 may be integrally formed of polycarbonate.
  • the optical member 8 may be provided on the same plane 11A on the back surface of the base material, without arranging the optical member 8 on the back surface of the stepped base material.
  • the reflector 1 and the light guide 5 A spacer 30 made of polycarbonate may be provided therebetween.
  • the optical member 8 can be provided on the same plane as compared with the case where the optical member 8 is disposed on the back surface of the base material having a stepped shape, so that the optical member 8 can be easily formed.
  • FIG. 6 arrangement
  • the optical members 8 are arranged in a staggered manner in plan view.
  • the surface of the substrate 2 is formed in a sawtooth shape, but in the substrate 22 of the present embodiment, the inclined surface 6 on the back surface of the substrate to which the optical member 8 is attached and the inclined surface 3 of the substrate surface are parallel.
  • the base material 22 was formed so that it might become. Thereby, the distance between the optical member 8 and the reflector 1 can be practically the same between the units 15.
  • the base material 22, all the reflectors 1, and the optical member 8 are made of polycarbonate. All the reflectors 1 and the light guides 5 on the substrate surface are arranged on the inclined surface 3 on the same plane, and the optical member 8 on the back surface of the substrate is arranged on the inclined surface 6 on the same plane of the substrate back surface. ing.
  • the angle ⁇ 2 formed by the virtual plane 12 having the plurality of optical axes 13 of the optical member 8 on the back surface of the base material as normals and the slope 3 of the base material surface is an angle of 10 °.
  • FIG. 6 shows one of the plurality of optical axes 13.
  • the angle ⁇ 1 formed by the reflecting surface 4 of the reflector 1 and the virtual plane 12 is an angle of 50 °. Therefore, the angle ⁇ 0 formed by the reflecting surface 4 of the reflector 1 and the optical axis 13 of the optical member 8 is 40 ° and is arranged to be less than 45 °.
  • the optical member 8 is designed so that the focal point P of the optical member 8 on the reflector 1 side is on the end surface of the light guide 5. With the configuration of the present embodiment, 95% or more of the light emitted from the light guide 5 is reflected as in the first embodiment, and almost satisfies the total reflection condition.
  • the optical element module 14 having this structure reflects the light emitted from the light guide 5 or the optical member 8 without passing through the reflecting surface 4 of the reflector 1 and enters the optical member 8 or the light guide 5.
  • the effect that almost no loss of strength occurs is obtained, and all the light guides 5 can be easily arranged at high density on the same plane on the substrate surface.
  • the base material 22 of the optical element module 14 and all the reflectors 1 and the optical member 8 may be integrally formed of polycarbonate.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

【課題】導光体または光学部材からの出射光が反射体の反射面を透過することなく反射し光学部材または導光体に入射可能であり、光強度の損失が殆ど発生しない光学素子モジュールを提供する。 【解決手段】本発明の光学素子モジュールは、導光体と、前記導光体から出た光を反射可能とする反射体と、前記反射体からの光を集光またはコリメーション可能とする光学部材と、が設けられた光学素子モジュールであって、前記光学部材の前記反射体側の焦点が、前記導光体の端面に有ると共に、前記反射体の反射面と前記光学部材の光軸とのなす角度が45°未満であり、前記導光体は、前記導光体の開口数によって決定される前記導光体からの出射光の前記反射面への入射角度が、ほぼ全反射条件を満たす角度となるよう配置されている。

Description

光学素子モジュール
 本発明は、光学素子モジュールに関するものであり、光コネクターに好適に用いられる。
 光導波路体として光ファイバ115を用いた場合の従来の光学素子モジュールを図7に示す。透明ガラス又は透明合成樹脂の成形品よりなる透明構造体131が設けられ、透明構造体131の上面に反射体131aが突出形成され、反射体131aには透明構造体131の上面132とほぼ垂直な位置決め面133が形成され、また反射体131aには位置決め面133と45度をなす、つまり上面132に対し斜めの反射面134が形成されている。透明構造体131の上に配された光ファイバ115の端面が反射体131aの位置決め面133に突き当てられて光ファイバ115の図7において左右方向における位置決めがなされる。光ファイバ115は位置決め面133に対してほぼ直角に配される。この構造により発光素子137からの光は、光ファイバ115へ入射することができる。尚、発光素子137は受光素子であっても良く、光ファイバ115からの出射光を受光できる。
特開2001-174671号公報
 光ファイバ115からの出射光は、光ファイバ115の開口数によって、出射光の広がりが決まる。光ファイバ115の位置決め面133と反射面134が45度の角度をなす場合、光ファイバ115からの出射光の広がりによって、出射光の一部が反射面を透過してしまい、光強度の損失が発生するという問題があった。近年、屈曲性のある光ファイバが開発されており、機器内配線に有効ではあるが、この光ファイバは、従来のものよりも開口数が大きく、出射光の広がりが大きくなり上記課題が顕著である。
 本発明は、導光体と、前記導光体から出た光を反射可能とする反射体と、前記反射体からの光を集光またはコリメーション可能とする光学部材と、が設けられた光学素子モジュールであって、前記光学部材の前記反射体側の焦点が、前記導光体の端面に有ると共に、前記反射体の反射面と前記光学部材の光軸とのなす角度が45°未満であり、前記導光体からの出射光の光軸と前記反射面とのなす角度と、前記導光体の開口数とによって決定される前記導光体からの出射光の前記反射面への最小入射角度(θ4)が、前記反射面における全反射条件を満たす角度となるよう、前記導光体が配置されていることを特徴とする光学素子モジュールである。これにより、導光体または光学部材からの出射光が反射体の反射面を透過することなく反射し光学部材または導光体に入射するので、光強度の損失が殆ど発生しないという効果が得られる。
 また、本発明の光学素子モジュールは、前記光学部材への入射光を前記反射体を介して前記導光体の前記端面に集光するとともに導光させることを特徴とする。これにより、前記光学部材からの入射光が、確実に前記導光体に入射するため光強度の損失が殆ど発生せず、前記導光体に導光される。
 また、本発明の光学素子モジュールは、前記光学部材と前記反射体と前記導光体を固定する基材が設けられていることを特徴とする。これにより、前記光学部材と前記反射体と前記導光体との相対位置が精度良く決められるので、全反射条件を満たす角度がより安定して得られる。
 また、本発明の光学素子モジュールにおいて、前記基材は、前記光を透過する透明部材であることを特徴とする。前記光学部材と前記反射体の間の光路上に、前記光学部材と前記反射体を固定する前記基材が光路上にあったとしても、光損失が少ないので、前記反射体と前記光学部材とが、確実に光結合できる。
 また、本発明の光学素子モジュールは、前記光学部材と前記反射体と前記基材とが前記透明部材で一体に形成されていることにより、別体で組み立て形成した場合と比較して、容易に高位置精度で配置されるため、全反射条件を満たす角度がさらに安定して得られる。また、光学素子モジュールを容易に低コストで実現できる。
 また、本発明の光学素子モジュールは、前記基材に前記光学部材と前記反射体と前記導光体とからなるユニットが複数設けられて、各ユニットの前記光学部材と前記反射体との距離が、実質的に同じとなるように、前記光学部材と前記反射体とが前記基材に固定されていることを特徴とする。これにより、前記光学素子モジュールは、前記導光体を複数配置することにより小型で多チャンネルの光授受が可能となる。
 また、本発明の光学素子モジュールは、前記複数のユニットに設けられた各光学部材の光軸は全て同一方向であり、前記複数の導光体が配置される前記基材の表面が、同一平面であり、前記複数の光軸を法線とする仮想平面からの距離が異なる光学部材が、少なくとも一つ設けられていることを特徴とする。これにより、複数の前記導光体が前記基材上の同一平面に形成されるため、前記導光体が容易に配置可能となる。
 本発明では、導光体または光学部材からの出射光が反射体の反射面を透過することなく反射し光学部材または導光体に入射するので、光強度の損失が殆ど発生しないという効果が得られる。
本発明の第1の実施形態を示す平面図である。 本発明の第1の実施形態を示すA-A線断面図である。 本発明の第1の実施形態を示す断面の部分拡大図である。 本発明の第2の実施形態を示す断面図である。 本発明の第2の実施形態の変形例を示す断面図である。 本発明の第3の実施形態を示す断面図である。 従来の構造の断面図である。
 次に、本発明の実施の形態について図を参照しながら詳細に説明をする。
 [第1実施形態]
 図1は、本発明の実施形態を説明するための平面図である。図2は、本発明の構造を説明するための断面図であり、図1のA-A線断面図である。図3は図2の部分拡大図を示す。
 図1は、本実施形態における光学素子モジュール14の平面視した基材2と、反射体1と光学部材8と導光体5の配置を示している。ポリカーボネート製の基材表面には、9本の導光体5と9個の反射体1が配置されており、基材裏面には、9個の光学部材8が配置されている。それぞれの導光体5および光学部材8は、反射体1である反射プリズムを通じて、光学的に結合し単位ユニット15を構成している。9個の光学部材8であるレンズは、本実施例では300μmピッチの格子状に配置されており、9本の導光体5である光ファイバの端面は、反射体1である反射プリズムに接し、配置されている。
 図2には、本実施形態における光学素子モジュール14の基材2と反射体1と光学部材8と導光体5の配置を断面により示している。基材裏面10の全ての光学部材8は、同一平面上に配置されており、基材表面の反射体1と導光体5は、基材表面の鋸歯状の斜面3に配置されている。これにより、各ユニット15の光学部材8と反射体1との距離は、実質的に同じとなるように配置されている。基材表面の鋸歯状の斜面3と基材裏面10のなす角度は、図示するθ2と同じ10°となる角度であり、斜面3の表面に導光体5と反射体1が配置されている。一方、反射体1の反射面4と基材裏面10のなす角度θ1は、50°となる角度で、反射体1が配置されている。よって反射体1の反射面4と光学部材8の光軸13のなす角度θ0は、40°であり、45°未満となるように配置されている。尚、光学部材8の反射体1側の焦点Pは、導光体5の端面にあるように、光学部材8は設計されている。
 図3は、図2に示した光学素子モジュール14の反射体1の近傍を拡大した図であり、導光体5から光を出射した場合を示している。本実施形態における光学素子モジュール14では、開口数0.29の光ファイバすなわち導光体5を配置しており、導光体5からの出射光は、広がりを持ってしまう。ポリカーボネート製の反射体1の屈折率1.585では、導光体5の出射光の光軸16に対する広がりの角度すなわちファイバ出射角θ3は、10.5°となる角度となる。導光体5からの出射光で反射面4との角度が最も大きくなる角度、すなわち、入射角が最小となる最小入射角はθ4であるが、この光学素子モジュール14では、反射体1の反射面4と光学部材8の光軸13のなす角度θ0が40°であるため、ファイバ出射角θ3が10.5°であったとしても、反射面4への最小入射角θ4は39.5°となる。よって、反射面4への最小入射角θ4は、ポリカーボネート製の反射体1の全反射角39.1°よりも大きいため、導光体5からの出射光は、95%以上が反射され、ほぼ全反射条件を満たす。これにより、導光体5からの出射光の光軸16と反射面4との角度と、導光体5の開口数とによって決定される導光体5からの出射光の反射面4への最小入射角度(θ4)が、反射面4における全反射条件を満たす角度となるよう、導光体5が基材2に配置されていることがわかる。
 尚、本発明の実施形態では、導光体5が光ファイバである場合を示したが、導光体5は導波路であっても構わない。
 本発明の実施形態では、光学素子モジュール14の基材2と反射体1と光学部材8の材質がポリカーボネートである場合を示したが、ポリエーテルイミドや他の透明な材質であっても構わない。但し、ポリエーテルイミドの場合、屈折率が1.64と高いため、図2における基材表面の鋸歯状の斜面3と基材裏面10のなす角度θ2は6°、反射体1の反射面4と基材裏面10のなす角度θ1は48°となり、反射体1の反射面4と光学部材8の光軸13のなす角度θ0は42°であり、45°未満となるように配置されている。この材質と構造によっても、導光体5からの出射光は、95%以上が反射され、ほぼ全反射条件を満たす。尚、本発明の実施形態では、導光体5から光を出射した場合を示したが、光学部材8から光を入射しても構わない。これらの構造の光学素子モジュール14により、導光体5または光学部材8からの出射光が反射体1の反射面4を透過することなく反射し光学部材8または導光体5に入射するので、光強度の損失が殆ど発生しないという効果が得られる。
 尚、反射体1および光学部材8もポリカーボネート製で、基材2の形成と同時に一体で成形されていても良い。これにより、別体で組み立て形成した場合と比較して、容易に高位置精度で配置されるため、全反射条件を満たす角度がさらに安定して得られる。また、光学素子モジュール14を容易に低コストで実現できる。
 さらに本実施形態において、図1における基材裏面上の9つの光学部材8の配置が、格子状に配置されている場合を示したが、千鳥状に配置されていても構わない。この配置をとることで、導光体5を高密度に実装でき、かつ小型で多チャンネルの光授受が可能となる。
 [第2実施形態]
 図4には、本発明の第2の実施形態における光学素子モジュール14の基材21と反射体1と光学部材8と導光体5の配置を断面により示している。図示しないが、光学部材8は、平面視して千鳥状に配置されている。第1の実施形態では、基材2の表面を鋸歯状に形成したが、本実施形態の基材21においては、光学部材8を取り付ける基材裏面の水平面11を階段状に形成することにより、光学部材8と反射体1との距離を各ユニット15間で実施的に同じになるように形成した。本実施形態では第1の実施形態と同様に、基材21と全ての反射体1および光学部材8はポリカーボネート製である。基材表面の全ての反射体1と導光体5は、同一平面上の斜面3に配置されており、基材裏面の光学部材8は、基材裏面の階段状の水平面11に配置されている。各ユニット15の光学部材8と反射体1との距離は、実質的に同じとなるように配置されている。基材表面の斜面3と基材裏面の階段状の水平面11のなす角度は、図示するθ2と同じ10°となる角度であり、斜面3の表面に導光体5と反射体1が配置されている。一方、反射体1の反射面4と基材裏面の階段状の水平面11のなす角度θ1は、50°となる角度で、反射体1が配置されている。よって反射体1の反射面4と光学部材8の光軸13のなす角度θ0は、40°であり、45°未満となるように配置されている。尚、光学部材8の反射体1側の焦点Pは、導光体5の端面にあるように、光学部材8は設計されている。本実施形態の構成により、第一実施形態と同様に導光体5からの出射光は、95%以上が反射され、ほぼ全反射条件を満たす。
 この構造の光学素子モジュール14により、導光体5または光学部材8からの出射光が反射体1の反射面4を透過することなく反射し光学部材8または導光体5に入射するので、光強度の損失が殆ど発生しないという効果が得られ、かつ全ての導光体5が基材表面上の同一平面に高密度で容易に配置できる。
 尚、光学素子モジュール14の基材21と全ての反射体1および光学部材8はポリカーボネート製で一体成形されていても良い。
 なお、光学部材8を階段状の基材裏面に配置せず、図5に示すように、基材裏面の同一平面11Aに光学部材8を設けても良い。この場合、各ユニット15間で光学部材8と反射体1とのなす距離が異なるので、光学部材8の反射体1側の焦点距離を調整するために、反射体1と導光体5との間にポリカーボネート製のスペーサ30を設けても良い。これにより、光学部材8を階段状とした基材裏面に配置する場合と比較して、同一平面上に光学部材8を設けることができるので、光学部材8の形成が容易となる。
 [第3実施形態]
 図6には、本発明の第3の実施形態における光学素子モジュール14の基材22と反射体1と光学部材8と導光体5の配置を断面により示している。図示しないが、光学部材8は、平面視して千鳥状に配置されている。第1の実施形態では、基材2の表面を鋸歯状に形成したが、本実施形態の基材22においては、光学部材8を取り付ける基材裏面の斜面6と基材表面の斜面3が平行になるように基材22を形成した。これにより、光学部材8と反射体1との距離を各ユニット15間で実施的に同じになるようにできる。本実施形態では第1の実施形態と同様に、基材22と全ての反射体1および光学部材8はポリカーボネート製である。基材表面の全ての反射体1と導光体5は、同一平面上の斜面3に配置されており、基材裏面の光学部材8は、基材裏面の同一平面上の斜面6に配置されている。基材裏面の光学部材8の複数の光軸13を法線とする仮想平面12と基材表面の斜面3のなす角度θ2は、10°となる角度である。図6は、複数ある光軸13のうち一つを示している。一方、反射体1の反射面4と仮想平面12のなす角度θ1は、50°となる角度である。よって反射体1の反射面4と光学部材8の光軸13のなす角度θ0は、40°であり、45°未満となるように配置されている。尚、光学部材8の反射体1側の焦点Pは、導光体5の端面にあるように、光学部材8は設計されている。本実施形態の構成により、第一実施形態と同様に導光体5からの出射光は、95%以上が反射され、ほぼ全反射条件を満たす。
 この構造の光学素子モジュール14により、導光体5または光学部材8からの出射光が反射体1の反射面4を透過することなく反射し光学部材8または導光体5に入射するので、光強度の損失が殆ど発生しないという効果が得られ、かつ全ての導光体5が基材表面上の同一平面に高密度で容易に配置できる。
 尚、光学素子モジュール14の基材22と全ての反射体1および光学部材8はポリカーボネート製で一体成形されていても良い。
 1 反射体
 2,21,22 基材
 3 斜面
 4 反射面
 5 導光体
 6 斜面
 8 光学部材
 10 基材裏面
 11 水平面
 12 仮想平面
 13 光学部材の光軸
 14 光学素子モジュール
 15 ユニット

Claims (7)

  1.  導光体と、前記導光体から出た光を反射可能とする反射体と、前記反射体からの光を集光またはコリメーション可能とする光学部材と、が設けられた光学素子モジュールであって、
     前記光学部材の前記反射体側の焦点が、前記導光体の端面に有ると共に、前記反射体の反射面と前記光学部材の光軸とのなす角度が45°未満であり、
     前記導光体からの出射光の光軸と前記反射面とのなす角度と、前記導光体の開口数とによって決定される前記導光体からの出射光の前記反射面への最小入射角(θ4)が、前記反射面における全反射条件を満たす角度となるよう、前記導光体が配置されていることを特徴とする光学素子モジュール。
  2.  請求項1記載の光学素子モジュールであって、
     前記光学部材に入射された光を前記反射体を介して前記導光体の前記端面に集光するとともに導光させることを特徴とする光学素子モジュール。
  3.  前記光学部材と前記反射体と前記導光体を固定する基材が設けられていることを特徴とする請求項1または請求項2に記載した光学素子モジュール。
  4.  前記基材は、前記光を透過する透明部材であることを特徴とする請求項3に記載の光学素子モジュール。
  5.  前記光学部材と前記反射体と前記基材とが前記透明部材で一体に形成されている請求項4に記載の光学素子モジュール。
  6.  前記基材に前記光学部材と前記反射体と前記導光体とからなるユニットが複数設けられており、
     各ユニットの前記光学部材と前記反射体との距離が、実質的に同じとなるように、前記光学部材と前記反射体とが前記基材に固定されていることを特徴とする請求項3ないし請求項5のいずれか1項に記載した光学素子モジュール。
  7.  前記複数のユニットに設けられた各光学部材の光軸は全て同一方向であり、
     前記複数の導光体が配置される前記基材の表面が、同一平面であり、
     前記複数の光軸を法線とする仮想平面からの距離が異なる光学部材が、少なくとも一つ設けられていることを特徴とする請求項6記載の光学素子モジュール。
PCT/JP2011/050528 2010-01-15 2011-01-14 光学素子モジュール WO2011087081A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011550013A JP5186048B2 (ja) 2010-01-15 2011-01-14 光学素子モジュール

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010007072 2010-01-15
JP2010-007072 2010-01-15

Publications (1)

Publication Number Publication Date
WO2011087081A1 true WO2011087081A1 (ja) 2011-07-21

Family

ID=44304350

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/050528 WO2011087081A1 (ja) 2010-01-15 2011-01-14 光学素子モジュール

Country Status (2)

Country Link
JP (1) JP5186048B2 (ja)
WO (1) WO2011087081A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014526720A (ja) * 2011-09-26 2014-10-06 スリーエム イノベイティブ プロパティズ カンパニー その主面に複数の千鳥状の光方向転換機構を有する光学基材
US20150301295A1 (en) * 2012-12-13 2015-10-22 3M Innovative Properties Company Multi-channel optical connector with coupling lenses

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102336336B (zh) * 2010-07-20 2013-08-14 湖北中烟工业有限责任公司 烟箱输送线流量自动调节及暂存装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000009968A (ja) * 1998-06-19 2000-01-14 Matsushita Electric Ind Co Ltd 受光モジュール
JP2001174671A (ja) * 1999-12-16 2001-06-29 Japan Aviation Electronics Industry Ltd 光素子モジュール
JP2002131591A (ja) * 2000-10-27 2002-05-09 Fuji Xerox Co Ltd 光信号伝達装置及び透光性媒体への光入射方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000009968A (ja) * 1998-06-19 2000-01-14 Matsushita Electric Ind Co Ltd 受光モジュール
JP2001174671A (ja) * 1999-12-16 2001-06-29 Japan Aviation Electronics Industry Ltd 光素子モジュール
JP2002131591A (ja) * 2000-10-27 2002-05-09 Fuji Xerox Co Ltd 光信号伝達装置及び透光性媒体への光入射方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014526720A (ja) * 2011-09-26 2014-10-06 スリーエム イノベイティブ プロパティズ カンパニー その主面に複数の千鳥状の光方向転換機構を有する光学基材
US20150301295A1 (en) * 2012-12-13 2015-10-22 3M Innovative Properties Company Multi-channel optical connector with coupling lenses

Also Published As

Publication number Publication date
JP5186048B2 (ja) 2013-04-17
JPWO2011087081A1 (ja) 2013-05-20

Similar Documents

Publication Publication Date Title
US9223098B2 (en) Lens array and optical module including the same
WO2017130586A1 (ja) 光コネクタ及び光伝送モジュール
JP5127546B2 (ja) 光コネクタ
JP6161604B2 (ja) 光レセプタクルおよびこれを備えた光モジュール
JP4582266B2 (ja) 投光装置およびセンサ
JP2013235243A (ja) 光路変更部材
TWI609205B (zh) Optical socket and light module with it
JP6747448B2 (ja) 光路変換素子、光インターフェース装置、光伝送システム
KR20140119605A (ko) 광학모듈 및 광송수신모듈
JP6161605B2 (ja) 光レセプタクルおよびこれを備えた光モジュール
JP5758657B2 (ja) レンズアレイおよびこれを備えた光モジュール
JP5550353B2 (ja) レンズアレイおよびこれを備えた光モジュール
JP5186048B2 (ja) 光学素子モジュール
JP5390422B2 (ja) 光学素子モジュール
JP2005274702A (ja) 光合分波器
CN112946833A (zh) 光插座及光模块
US20230213712A1 (en) Optical receptacle and optical module
WO2023163224A1 (ja) 光レセプタクルおよび光モジュール
JP2020056894A (ja) 光路変換部品、光路変換部品付き光導波路、光モジュールおよび電子機器
JP5282988B2 (ja) 光コネクタ
JP2017207788A (ja) 光モジュール

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2011550013

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11732951

Country of ref document: EP

Kind code of ref document: A1