WO2011086694A1 - 非接触受電装置、非接触送電装置、非接触給電システムおよび車両 - Google Patents

非接触受電装置、非接触送電装置、非接触給電システムおよび車両 Download PDF

Info

Publication number
WO2011086694A1
WO2011086694A1 PCT/JP2010/050471 JP2010050471W WO2011086694A1 WO 2011086694 A1 WO2011086694 A1 WO 2011086694A1 JP 2010050471 W JP2010050471 W JP 2010050471W WO 2011086694 A1 WO2011086694 A1 WO 2011086694A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
capacitor
capacitance
power transmission
self
Prior art date
Application number
PCT/JP2010/050471
Other languages
English (en)
French (fr)
Inventor
真士 市川
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to EP10843052.1A priority Critical patent/EP2528193B1/en
Priority to PCT/JP2010/050471 priority patent/WO2011086694A1/ja
Priority to JP2011549828A priority patent/JP5392358B2/ja
Priority to CN201080061723.2A priority patent/CN102714429B/zh
Priority to US13/521,368 priority patent/US8816537B2/en
Publication of WO2011086694A1 publication Critical patent/WO2011086694A1/ja

Links

Images

Classifications

    • H04B5/79
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/122Circuits or methods for driving the primary coil, e.g. supplying electric power to the coil
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/14Synchronous machines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • control device sets the capacitance of the capacitor so that the reflected power that is reflected and returned without being received by the power receiving device among the transmitted power is minimized.
  • the capacitor includes a first capacitor having a fixed capacitance, and a second capacitor connected in parallel to the first capacitor with respect to the self-resonant coil and capable of changing the capacitance.
  • the capacity of the first capacitor is larger than the capacity of the second capacitor.
  • the capacitance of the second capacitor is a value obtained by subtracting half the variable capacitance of the second capacitor from the total capacitance value of the capacitance of the first capacitor and the maximum capacitance of the second capacitor.
  • the predetermined capacity is set to be smaller than a reference capacity value determined from a target distance between the power receiving device and the non-contact power transmitting device.
  • the contactless power supply system is a contactless power supply system for transmitting power in a contactless manner between a power transmitting device and a power receiving device.
  • the power transmission device includes a first self-resonant coil, a first capacitor, and a first control device for controlling the first capacitor.
  • the first self-resonant coil transmits electric power supplied from the power supply device by electromagnetic resonance with the power receiving device.
  • the first capacitor is connected to the first self-resonant coil, and is configured to be capable of changing the capacitance in order to adjust the resonance frequency of the first self-resonant coil.
  • the power receiving device includes a second self-resonant coil, a second capacitor, and a second control device for controlling the second capacitor.
  • the second self-resonant coil receives power by electromagnetic resonance with the power transmission device.
  • the second capacitor is connected to the second self-resonant coil, and is configured such that the capacitance can be changed in order to adjust the resonance frequency of the second self-resonant coil.
  • the first control device and the second control device are configured to be able to transmit and receive signals to each other through communication, and the power transmission efficiency is improved when electromagnetic resonance is performed at a predetermined frequency determined by the power supply device. As described above, the capacitances of the first capacitor and the second capacitor are controlled while being synchronized with each other.
  • the second control device transmits the received power received by the power receiving device to the first control device, and the first control device transmits the transmission efficiency based on the received power received from the second control device. It is determined whether or not is the maximum.
  • the first control device and the second control device have the first capacitor and the second capacitor so that the direction of change in the capacitance of the first capacitor and the direction of change in the capacitance of the second capacitor are the same direction.
  • Each of the two capacitors is controlled.
  • the first control device and the second control device may match the first capacitor capacity and the second capacitor capacity after matching the first capacitor capacity and the second capacitor capacity to a predetermined initial value. Change the capacitance of the capacitor.
  • a vehicle according to the present invention is a vehicle equipped with a non-contact power receiving device for receiving power in a non-contact manner with an opposing power transmission device, and the non-contact power receiving device includes a self-resonant coil, a capacitor, and a control device.
  • the self-resonant coil receives power by electromagnetic resonance with the power transmission device.
  • the capacitor is connected to the self-resonant coil and is configured to be capable of changing the capacitance in order to adjust the resonance frequency.
  • the control device controls the capacitance of the capacitor so that the power transmission efficiency is improved when electromagnetic resonance is performed at a predetermined frequency determined by the power transmission device.
  • the present invention in the non-contact power feeding system using the resonance method, even when the distance between the power transmitting device and the power receiving device is changed, it is possible to suppress a decrease in power transmission efficiency.
  • test power transmission prior to full-scale power feeding, power feeding from the power transmission unit 220 to the power receiving apparatus 110 is performed in advance (hereinafter also referred to as “test power transmission”).
  • the power receiving apparatus 110 is adjusted so that the transmission efficiency is maximized.
  • the magnitude of the power transmitted from the power transmission unit 220 during the test power transmission is set smaller than the power supplied from the power transmission unit 220 to the power receiving device 110 when full-scale power transmission is performed.
  • FIG. 2 is a diagram for explaining the principle of power transmission by the resonance method.
  • this resonance method in the same way as two tuning forks resonate, two LC resonance coils having the same natural frequency resonate in an electromagnetic field (near field), and thereby, from one coil. Electric power is transmitted to the other coil by an electromagnetic field.
  • a primary coil 320 which is an electromagnetic induction coil, is connected to a high frequency power supply 310, and high frequency power of 1 M to several tens of MHz is fed to a primary self-resonant coil 330 that is magnetically coupled to the primary coil 320 by electromagnetic induction.
  • the primary self-resonant coil 330 is an LC resonator having an inductance and stray capacitance of the coil itself, and resonates using a secondary self-resonant coil 340 having the same natural frequency as the primary self-resonant coil 330 and an electromagnetic field (near field).
  • energy electrical power moves from the primary self-resonant coil 330 to the secondary self-resonant coil 340 by the electromagnetic field.
  • FIG. 3 is a diagram showing the relationship between the distance from the current source (magnetic current source) and the strength of the electromagnetic field.
  • the electromagnetic field includes three components.
  • the curve k1 is a component that is inversely proportional to the distance from the wave source, and is referred to as a “radiated electromagnetic field”.
  • a curve k2 is a component inversely proportional to the square of the distance from the wave source, and is referred to as an “induction electromagnetic field”.
  • the curve k3 is a component inversely proportional to the cube of the distance from the wave source, and is referred to as an “electrostatic magnetic field”.
  • FIG. 4 is a detailed configuration diagram of vehicle 100 shown in FIG.
  • vehicle 100 includes a power storage device 150, a system main relay SMR1, a boost converter 162, inverters 164 and 166, motor generators 172 and 174, an engine 176, a power split device 177, Drive wheel 178.
  • Vehicle 100 further includes a power reception device 110, a rectifier 140, a DC / DC converter 142, a system main relay SMR2, a voltage sensor 190, and a current sensor 195.
  • vehicle 100 includes a control device 180 and a communication unit 130.
  • Power receiving device 110 includes a secondary self-resonant coil 112, a secondary coil 114, a capacitor 116, and a power receiving ECU (Electronic Control Unit) 185.
  • ECU Electrical Control Unit
  • a hybrid vehicle including the engine 176 is described as an example of the vehicle 100, but the configuration of the vehicle 100 is not limited to this. Any vehicle driven by an electric motor can be applied to, for example, an electric vehicle and a fuel cell vehicle. In that case, the engine 176 is not arranged.
  • the motor generator 172 is an AC rotating electric machine, for example, a three-phase AC synchronous motor in which a permanent magnet is embedded in a rotor. Motor generator 172 generates power using the driving force of engine 176 divided by power split device 177. For example, when the state of charge of power storage device 150 (also referred to as “SOC (State Of Charge)”) becomes lower than a predetermined value, engine 176 is started, and power is generated by motor generator 172. Device 150 is charged.
  • SOC State Of Charge
  • the motor generator 174 is also an AC rotating electric machine, and, like the motor generator 172, is, for example, a three-phase AC synchronous motor in which a permanent magnet is embedded in a rotor. Motor generator 174 generates a driving force using at least one of the electric power stored in power storage device 150 and the electric power generated by motor generator 172. Then, the driving force of motor generator 174 is transmitted to driving wheel 178.
  • the power split device 177 includes a planetary gear mechanism having a sun gear, a pinion gear, a carrier, and a ring gear.
  • the pinion gear engages with the sun gear and the ring gear.
  • the carrier supports the pinion gear so as to be able to rotate and is coupled to the crankshaft of the engine 176.
  • the sun gear is coupled to the rotation shaft of motor generator 172.
  • the ring gear is connected to the rotation shaft of motor generator 174 and drive wheel 178.
  • System main relay SMR1 is inserted in power line PL1 and ground line NL between power storage device 150 and boost converter 162.
  • System main relay SMR1 electrically connects power storage device 150 to boost converter 162 when control signal SE1 from control device 180 is activated, and power storage device 150 when control signal SE1 is deactivated.
  • the electric circuit between boost converter 162 is cut off.
  • Boost converter 162 boosts the voltage of power line PL ⁇ b> 2 to a voltage equal to or higher than the voltage output from power storage device 150 based on signal PWC from control device 180.
  • Boost converter 162 is configured to include a DC chopper circuit, for example.
  • Inverters 164 and 166 are provided corresponding to motor generators 172 and 174, respectively.
  • Inverter 164 drives motor generator 172 based on signal PWI 1 from control device 180, and inverter 166 drives motor generator 174 based on signal PWI 2 from control device 180.
  • Inverters 164 and 166 include, for example, a three-phase bridge circuit.
  • the secondary self-resonant coil 112 receives power from a primary self-resonant coil included in the power transmission device 200 described later with reference to FIG. 5 by electromagnetic resonance using an electromagnetic field.
  • the secondary coil 114 is provided coaxially with the secondary self-resonant coil 112, and can be magnetically coupled to the secondary self-resonant coil 112 by electromagnetic induction.
  • the secondary coil 114 takes out the electric power received by the secondary self-resonant coil 112 by electromagnetic induction and outputs it to the rectifier 140.
  • the power receiving unit 400 of the power receiving device 110 is formed by the secondary self-resonant coil 112, the secondary coil 114, and the capacitor 116 described above.
  • System main relay SMR2 is provided between DC / DC converter 142 and power storage device 150.
  • System main relay SMR2 electrically connects power storage device 150 to DC / DC converter 142 when control signal SE2 from control device 180 is activated, and power storage device when control signal SE2 is deactivated.
  • the electric circuit between 150 and the DC / DC converter 142 is interrupted.
  • the voltage sensor 190 detects the voltage VH between the rectifier 140 and the DC / DC converter 142, and outputs the detected value to the control device 180 and the power receiving ECU 185.
  • the current sensor 195 is provided on the power line PL3 connecting the rectifier 140 and the DC / DC converter 142, and detects the current IH flowing through the power line PL3.
  • Current sensor 195 outputs the detection result to control device 180 and power receiving ECU 185.
  • Control device 180 generates control signals PWC, PWI1, and PWI2 for driving boost converter 162 and motor generators 172 and 174, respectively, based on signals from accelerator opening, vehicle speed, and various other sensors.
  • the generated control signals are output to boost converter 162 and inverters 164 and 166, respectively.
  • control device 180 activates control signal SE1 to turn on system main relay SMR1, and deactivates control signal SE2 to turn off system main relay SMR2.
  • control device 180 receives information (voltage and current) of the power transmitted from the power transmission device 200 from the power transmission device 200 via the communication unit 130.
  • the detection value of voltage VH detected by voltage sensor 190 is received from voltage sensor 190. Based on these data, control device 180 performs vehicle parking control and the like so as to guide the vehicle to power transmission unit 220 (FIG. 1) of power transmission device 200.
  • the power receiving ECU 185 receives the detected values of the voltage VH and the current IH detected by the voltage sensor 190 and the current sensor 195. Then, the power receiving ECU 185 calculates the received power PR received from the power transmission device 200 based on these pieces of information. Then, the power receiving ECU 185 sends the received power PR to the power transmission device 200 via the communication unit 130.
  • control device 180 transmits a power supply command to the power transmission device 200 via the communication unit 130 and activates the control signal SE2 to turn on the system main relay SMR2. Then, control device 180 generates a signal PWD for driving DC / DC converter 142 and outputs the generated signal PWD to DC / DC converter 142.
  • control device 180 and the power receiving ECU 185 include a CPU (Central Processing Unit), a storage device, and an input / output buffer, and input each sensor and output a control command to each device.
  • the vehicle 100 or each device is controlled. Note that these controls are not limited to software processing, and a part of them can be constructed and processed by dedicated hardware (electronic circuit).
  • control device 180 and the power receiving ECU 185 are configured as separate control devices.
  • the configuration is not limited to such a configuration, and the control device 180 and the power receiving ECU 185 are configured as one control device. May be. Also, some functions of the control device 180 may be further divided into separate control devices.
  • FIG. 5 is a detailed configuration diagram of the power transmission device 200 shown in FIG.
  • power transmission device 200 includes AC power supply 250, high-frequency power driver 260, primary coil 222, primary self-resonant coil 224, voltage sensor 272, current sensor 274, communication unit 240, Power transmission ECU 270 and capacitor 280 are included.
  • AC power supply 250 is a power supply external to the vehicle, for example, a commercial power supply.
  • the high frequency power driver 260 converts the power received from the AC power source 250 into high frequency power, and supplies the converted high frequency power to the primary coil 222.
  • the frequency of the high-frequency power generated by the high-frequency power driver 260 is, for example, 1 M to several tens of MHz.
  • the primary coil 222 is provided coaxially with the primary self-resonant coil 224 and can be magnetically coupled to the primary self-resonant coil 224 by electromagnetic induction.
  • the primary coil 222 feeds high-frequency power supplied from the high-frequency power driver 260 to the primary self-resonant coil 224 by electromagnetic induction.
  • the primary self-resonant coil 224 is connected to a capacitor 280 at both ends to constitute an LC resonant coil. Then, electric power is transmitted to the vehicle 100 by resonating with the secondary self-resonant coil 112 of the vehicle 100 using an electromagnetic field. In order to obtain a predetermined resonance frequency, when the capacitance component can be realized by the stray capacitance of the primary self-resonant coil 224 itself, the capacitor 280 is not arranged, and the primary self-resonant coil 224 is disconnected at both ends of the coil ( Open).
  • the primary self-resonant coil 224, the primary coil 222, and the capacitor 280 form the power transmission unit 220 shown in FIG.
  • Voltage sensor 272 detects voltage VS output from high-frequency power driver 260 and outputs the detected value to power transmission ECU 270.
  • Current sensor 274 detects current IS output from high-frequency power driver 260 and outputs the detected value to power transmission ECU 270.
  • the power transmission ECU 270 when the power transmission ECU 270 receives a signal output command for test power transmission from the power receiving device 110 via the communication unit 240, the power transmission ECU 270 supplies a predetermined power smaller than the power at the time of power feeding based on the power feeding start command.
  • the output of the high-frequency power driver 260 is controlled to output.
  • the capacitor 116 may be a single capacitor having a variable capacitance, but as shown in FIG. 7, a large-capacitance capacitor 117 having a fixed capacitance and connected in parallel to the secondary self-resonant coil 112. It may be configured to include a small-capacitance capacitor 118 having a variable capacitance.
  • the price of a capacitor having a variable capacity is often higher than the price of a capacitor having the same capacity and a fixed capacity. Therefore, as shown in FIG. 7, by using a small-capacity variable capacitor 118 having a required variable range and a large-capacity fixed-capacitance capacitor 117 having a capacity near a predetermined reference capacity determined from a design value. The cost can be expected to be lower than when a single variable capacitor having a large variable range is provided.
  • the non-contact power supply using the resonance method electric power is transmitted by causing the primary self-resonant coil 224 and the secondary self-resonant coil 112 to resonate at a predetermined resonance frequency.
  • the frequency of a predetermined electromagnetic field that is, a high frequency power supply
  • the coil unit is designed and adjusted so as to resonate at the power supply frequency of the driver 260.
  • the distance between the units may deviate from the reference distance due to a difference in the stopping position of the vehicle or a difference in the height of the bottom surface of the vehicle body due to a difference in the vehicle type.
  • the spatial impedance between the units changes and the reflected power increases, or the intensity of the electromagnetic field changes, which may reduce the power transmission efficiency.
  • FIG. 8 is a diagram for explaining the relationship between the inter-coil distance between the primary self-resonant coil and the secondary self-resonant coil and the resonance frequency when the power transmission efficiency is maximized.
  • the horizontal axis in FIG. 8 indicates the distance between the coils, and the vertical axis indicates the resonance frequency.
  • the frequency range of the electromagnetic field that can be used may be limited by regulations of the Radio Law. There may be a case where a desired frequency cannot be selected.
  • the capacitor of the coil unit when the distance between the coils changes, the capacitor of the coil unit is set so that the power transmission efficiency is maximized while maintaining the frequency of the predetermined electromagnetic field defined by the Radio Law.
  • the maximum power control is performed to control the resonance frequency of the coil unit by changing the capacity of the coil unit.
  • FIG. 9 is a diagram showing an example of the capacitor capacity that maximizes the power transmission efficiency when the distance between the coils changes while the electromagnetic field frequency is maintained at a certain value (for example, 13 MHz).
  • the horizontal axis in FIG. 9 indicates the distance between the coils, and the vertical axis indicates the capacitance of the capacitor. Note that Clim in the figure indicates the maximum capacity of the variable capacitor.
  • the reference capacitor capacity (hereinafter also referred to as “reference capacitor capacity”) at which the transmission efficiency is maximum at the target reference distance Daim is Copt in the case of a predetermined electromagnetic field frequency
  • the capacitance of the capacitor that maximizes the transmission efficiency changes as indicated by a curve W2 in the figure.
  • the amount of change in the capacitor capacity when the distance between the coils is smaller than the reference distance is larger than the amount of change in the capacitor capacity when the distance between the coils is larger than the reference distance. The reason for this will be described with reference to FIGS.
  • the capacitance of the capacitor is set so that the transmission efficiency is maximized in the state where the frequency of the electromagnetic field is maintained at a predetermined frequency with respect to the change in the distance between the coils. Change. That is, for example, in the case of the curve W21 in FIG. 11, the entire curve W21 is adjusted so that the resonance frequency of the coil unit is changed by adjusting the capacitance of the capacitor and the frequency f21 at which the transmission efficiency is maximized becomes the frequency f20. Equivalent to shifting.
  • the change range (C10 in the figure) in the direction in which the inter-coil distance becomes smaller than the reference distance is set as the reference. It is necessary to make it larger than the change range (C20 in the figure) in the direction in which the distance between the coils becomes larger than the distance. That is, the capacitance of the capacitor is set such that the reference capacitor capacitance value Copt is larger than the median value of the variable range of the capacitor.
  • FIG. 13 is a diagram showing an example of setting the capacitor capacity considering the variable range of the capacitor as described above.
  • An example of the change in EF is shown in FIG. In FIG. 14, a curve W40 represents the received power PR, and a curve W41 represents the transmission efficiency EF.
  • the transmission efficiency EF can be generally expressed by the equation (1), basically, when the received power PR in the power receiving apparatus 110 is maximized, the transmission efficiency EF is also almost nearly maximized. .
  • Transmission efficiency received power / transmitted power (1) Accordingly, while power is being transmitted from the power transmission unit 220, the received power PR is detected while changing the value of the variable capacitor, and a point (P40 in FIG. 14) where the received power PR is maximum is searched.
  • the transmission efficiency EF can be maximized by setting a variable capacitor to the capacitor capacity (Cadj in FIG. 14) at the point where the received power PR is maximized.
  • FIG. 15 is a flowchart for explaining the maximum power control process executed by power receiving ECU 185 in the first embodiment.
  • Each step in the flowchart shown in FIG. 15 is realized by executing a program stored in advance in power receiving ECU 185 at a predetermined cycle. Alternatively, some of the steps can be realized by dedicated hardware (electronic circuit).
  • step 300 when power receiving ECU 185 detects that vehicle 100 has stopped on power transmission unit 220 at step (hereinafter, step is abbreviated as S) 300, power transmission device via communication unit 130.
  • the 200-side power transmission ECU 270 is requested to start test power transmission.
  • the power transmission ECU 270 starts power transmission at a lower output than during full-scale power transmission for test power transmission.
  • the power receiving ECU 185 initializes (for example, sets to zero) the stored value Pmax of the maximum value of the received power in the storage unit (not shown) in the power receiving ECU 185.
  • the power receiving ECU 185 outputs the control signal CTL1 to the capacitor 116 in S320, and starts changing the capacity of the variable capacitor 118 in the capacitor 116.
  • the power receiving ECU 185 increases the capacity by a predetermined change amount from the minimum capacity to the maximum capacity of the variable capacitor 118, and performs the subsequent processes from S320 to S350.
  • power receiving ECU 185 calculates received power PR based on the detected values of voltage VH from voltage sensor 190 and current IH from current sensor 195.
  • the power receiving ECU 185 compares the received power PR obtained by the calculation with the stored maximum value Pmax of the received power, and determines whether the received power PR is larger than the stored value Pmax.
  • the power receiving ECU 185 determines whether or not the capacity change of the variable capacitor 118 has been completed.
  • the determination of the completion of the capacitance change is made, for example, when the capacitance is increased by a predetermined change amount from the minimum capacitance to the maximum capacitance of the variable capacitor 118 as described above, the capacitance of the variable capacitor 118 becomes the maximum capacitance. It is determined by whether or not it is.
  • variable capacitor 118 If the capacity change of variable capacitor 118 has not been completed (NO in S360), the process returns to S320, and the capacity of variable capacitor 118 is further changed. Then, the processes of S330 to S350 are repeated. As described above, when the received power PR for each capacitance value is calculated over the entire variable capacitance range of the variable capacitor 118, the calculated received power PR is maximized (that is, when the transmission efficiency is maximized). Can be determined.
  • step S360 power receiving ECU 185 requests power transmission ECU 270 to stop test power transmission in S370.
  • step S380 power receiving ECU 185 sets the capacity of variable capacitor 118 so that the stored capacitor capacity value is obtained.
  • the power receiving ECU 185 requests the power transmission ECU 270 to start full-scale power transmission in S390.
  • the capacitance of the capacitor can be set so as to maximize the transmission efficiency in a state where the frequency of the electromagnetic field is maintained at a predetermined frequency.
  • FIG. 16 is a detailed configuration diagram of the vehicle 100 according to the second embodiment.
  • the capacitor 116 in FIG. 4 of the first embodiment is replaced with a capacitor 116A having a fixed capacitance.
  • FIG. 17 is a detailed configuration diagram of the power transmission device 200 according to the second embodiment.
  • the capacitor 280 in FIG. 5 of the first embodiment is replaced with a capacitor 280A having a variable capacitance, and a reflected wattmeter 273 for detecting reflected power reflected from the power receiving apparatus 110A is added.
  • FIGS. 16 and 17 the description of the same elements as those in FIGS. 4 and 5 will not be repeated.
  • capacitor 280A is connected to both ends of primary self-resonant coil 224.
  • Capacitor 280A includes an actuator (not shown). Then, the actuator is controlled by a control command CTL2 from the power transmission ECU 270, whereby the capacity of the capacitor 280A is changed.
  • the reflected wattmeter 273 is provided between the high frequency power driver 260 and the primary coil 222. Reflected wattmeter 273 detects reflected power reflected from power receiving apparatus 110 ⁇ / b> A and outputs the detected value RF to power transmission ECU 270.
  • FIG. 18 is a diagram illustrating an example of a circuit of the power receiving device 110A and the power transmission unit 220A in the second embodiment.
  • capacitor 280A included in power transmission unit 220A has a fixed capacitance connected in parallel to primary self-resonant coil 224, similarly to capacitor 116 on power receiving device 110 side in the first embodiment. And a small-capacitance capacitor 281 having a variable capacity.
  • Capacitor 280A may be a single capacitor having a variable capacity, but from the viewpoint of cost, it is preferable to include a capacitor 281 having a fixed capacity and a capacitor 282 having a variable capacity as described above. .
  • Power transmission ECU 270 receives power reception PR detected by power reception device 110A from power reception ECU 185, and sets the capacity of capacitor 280A so that power reception power PR is maximized as in the first embodiment. Good.
  • FIG. 20 is a flowchart for illustrating a maximum power control process executed by power transmission ECU 270 in the second embodiment.
  • Each step in the flowchart shown in FIG. 20 is realized by executing a program stored in advance in power transmission ECU 270 at a predetermined cycle. Alternatively, some of the steps can be realized by dedicated hardware (electronic circuit).
  • power transmission ECU 270 when power transmission ECU 270 detects in S400 that vehicle 100 has stopped on power transmission unit 220, power transmission ECU 270 performs test power transmission that transmits lower output power than during full-scale power transmission. Start.
  • the power transmission ECU 270 acquires the detected value of the reflected power RF from the reflected power meter 273 in S430.
  • the power transmission ECU 270 determines whether or not the capacity change of the variable capacitor 281 has been completed. The determination of the completion of the capacity change is made, for example, when the capacity is increased by a predetermined change amount from the minimum capacity to the maximum capacity of the variable capacitor 281 as described above, the capacity of the variable capacitor 281 becomes the maximum capacity. It is determined by whether or not it is.
  • variable capacitor 281 If the capacity change of variable capacitor 281 has been completed (YES in S460), power transmission ECU 270 stops test power transmission in S470. In S480, power transmission ECU 270 sets the capacity of variable capacitor 281 so that the stored capacitor capacity value is obtained. Then, power transmission ECU 270 starts full-scale power transmission in S490.
  • the capacity of the capacitor of the power transmission device can be set so as to maximize the transmission efficiency in a state where the frequency of the electromagnetic field is maintained at a predetermined frequency.
  • Embodiment 3 a configuration will be described in which both the power receiving device and the power transmitting device have variable capacitors, and the capacity of both capacitors is adjusted while being synchronized, thereby suppressing a decrease in transmission efficiency.
  • the capacitors of both the power receiving device and the power transmitting device the impedances of both coil units can be matched, so that the reflected power can be reduced.
  • it can be expected to further suppress a decrease in transmission efficiency.
  • the detailed configuration of the vehicle 100 is the same as that in FIG. 4, and the detailed configuration of the power transmission device 200 is the same as that in FIG. 17.
  • the search for the capacitor capacity that maximizes the transmission efficiency will be described using power transmission ECU 270 using received power PR calculated on power reception device 110 side. Therefore, power receiving ECU 185 outputs received power PR calculated based on the detection values from voltage sensor 190 and current sensor 195 to power transmission ECU 270 via communication units 130 and 240.
  • the power transmission ECU 270 determines the capacitor capacity when the received power PR becomes maximum. Then, power reception ECU 185 and power transmission ECU 270 set the capacities of capacitors 116 and 280A, respectively, according to the determined capacitor capacities.
  • the power receiving ECU 185 may determine the capacitor capacity that maximizes the transmission efficiency by using the received power PR, or the power transmitting ECU 270 determines the reflected power RF as in the second embodiment.
  • the capacitor capacity that maximizes the transmission efficiency may be determined.
  • control synchronization signal is not recognized (NO in S110)
  • the process is returned to S110, and power reception ECU 185 and power transmission ECU 270 wait for the synchronization signal to be recognized.
  • the capacitors 116 and 280A are set to initial values of the same capacity in advance, and the same change direction (increase or decrease) is obtained while synchronizing. Change the capacity in the direction).
  • the power transmission ECU 270 compares the received power PR received from the power receiving ECU 185 with the stored maximum value Pmax of the received power, and determines whether the received power PR is larger than the stored value Pmax.
  • the power transmission ECU 270 determines whether or not the capacitor capacity change has been completed.
  • the process returns to S140, and power receiving ECU 185 and power transmission ECU 270 further change the capacitor capacity and repeat the processes of S150 to S170.
  • power transmission ECU 270 stops test power transmission in S190.
  • power receiving ECU 185 and power transmission ECU 270 set the capacities of capacitors 116 and 280A, respectively, so that the capacitor capacity value when received power PR becomes maximum is obtained.
  • the power transmission ECU 270 starts full-scale power transmission to the power receiving apparatus 110 in S210.
  • the primary self-resonant coil 224 and the secondary self-resonant coil 112 in the present embodiment are examples of the “first self-resonant coil” and the “second self-resonant coil” in the present invention.
  • the power transmission ECU 270 and the power reception ECU 185 in the present embodiment are examples of the “first control device” and the “second control device” in the present invention.
  • the high-frequency power driver 260 in the present embodiment is an example of the “power supply device” in the present invention.
  • 10 power supply system for vehicle 100 vehicle, 110, 110A power receiving device, 112, 340 secondary self-resonant coil, 113 bobbin, 114, 350 secondary coil, 116, 116A, 117, 118, 280, 280A, 281, 282 capacitor , 130, 240 communication unit, 140 rectifier, 142 DC / DC converter, 150 power storage device, 162 boost converter, 164, 166 inverter, 172, 174 motor generator, 176 engine, 177 power split device, 178 drive wheel, 180 control device 185, power receiving ECU, 190,272 voltage sensor, 195,274 current sensor, 200 power transmission device, 210 power supply device, 220, 220A power transmission unit, 222, 320 primary coil, 224, 330 Primary self-resonant coil, 250 AC power source, 260 high frequency power driver, 270 transmission ECU, 273 reflected power meter, 310 high-frequency power source, 360 load, 400 receiving unit, NL ground lines, PL1 ⁇ PL3 power

Abstract

 共鳴法を用いた非接触給電システム(10)において、受電装置(110)または送電装置(200)は、自己共振コイル(112,224)に接続され、容量が可変なコンデンサ(116,280A)を有する。そして、送電装置(200)によって決まる所定の周波数で電磁共鳴が行なわれる場合に、給電時の電力の伝送効率が最大となるように、コンデンサ(116,280A)の容量を調整する。これによって、受電装置(110)に含まれる二次自己共振コイル(112)と、送電装置(200)に含まれる一次自己共振コイル(224)との距離が、設計時の基準距離から変動した場合であっても、伝送効率の低下を抑制することが可能となる。

Description

非接触受電装置、非接触送電装置、非接触給電システムおよび車両
 本発明は、非接触受電装置、非接触送電装置、非接触給電システムおよび車両に関し、より特定的には、共鳴法を用いた非接触給電システムの制御に関する。
 近年、環境に配慮した車両として、蓄電装置(たとえば二次電池やキャパシタなど)を搭載し、蓄電装置に蓄えられた電力から生じる駆動力を用いて走行する車両が注目されている。このような車両には、たとえば電気自動車、ハイブリッド自動車、燃料電池車などが含まれる。
 ハイブリッド車においても、電気自動車と同様に、車両外部の電源から車載の蓄電装置を充電可能な車両が知られている。たとえば、家屋に設けられた電源コンセントと車両に設けられた充電口とを充電ケーブルで接続することにより、一般家庭の電源から蓄電装置を充電可能ないわゆる「プラグイン・ハイブリッド車」が知られている。
 一方、送電方法として、電源コードや送電ケーブルを用いないワイヤレス送電が近年注目されている。このワイヤレス送電技術としては、有力なものとして、電磁誘導を用いた送電、電磁波を用いた送電、および共鳴法による送電の3つの技術が知られている。
 このうち、共鳴法は、一対の共鳴器(たとえば一対の自己共振コイル)を電磁場(近接場)において共鳴させ、電磁場によって送電する非接触の送電技術であり、数kWの大電力を比較的長距離(たとえば数m)送電することも可能である。
 特開2009-106136号公報(特許文献1)は、共鳴法によって車両外部の電源からワイヤレスで充電電力を受電し、車両に搭載された蓄電装置を充電する技術が開示される。
 特開2004-356765号公報(特許文献2)は、非接触データキャリアにおいて、コイル状のアンテナと可変コンデンサとを有し、非接触リーダライタとの共振周波数を調整して無線通信を行なう技術が開示される。
特開2009-106136号公報 特開2004-356765号公報
 共鳴法を用いた非接触給電システムにおいては、送電装置に含まれる自己共振コイルと、受電装置に含まれる自己共振コイルとの間で電磁共鳴させることで電力を伝達する。そのため、送電装置および受電装置の共鳴周波数が不一致になると、電力の伝送効率が低下し得る。
 また、送電装置と受電装置との距離が変化した場合、空間のインピーダンスが変化することによって伝送効率が最大となる周波数も変化し得る。そのため、送電装置と受電装置との距離が所定の基準距離の場合に伝送効率が最大となるように互いの共鳴周波数を調整していたとしても、たとえば車両の停車位置がずれたような場合には伝送効率の低下を招くおそれがある。
 本発明は、このような課題を解決するためになされたものであり、その目的は、共鳴法を用いた非接触給電システムにおいて、送電装置と受電装置との距離が変化した場合であっても、電力の伝送効率の低下を抑制することである。
 本発明による非接触受電装置は、対向する送電装置と非接触で電力を受電するための非接触受電装置であって、自己共振コイルと、コンデンサと、制御装置とを備える。自己共振コイルは、送電装置との電磁共鳴によって電力を受電する。コンデンサは、自己共振コイルに接続され、自己共振コイルの共鳴周波数を調整するために容量の変更が可能に構成される。そして、制御装置は、送電装置によって決まる所定の周波数で電磁共鳴が行なわれる場合に、電力の伝送効率が向上するように、コンデンサの容量を制御する。
 好ましくは、制御装置は、自己共振コイルで受電した受電電力が最大となるように、コンデンサの容量を設定する。
 好ましくは、コンデンサは、容量が固定された第1のコンデンサと、自己共振コイルに対して第1のコンデンサに並列に接続され、容量の変更が可能な第2のコンデンサとを含む。
 好ましくは、第1のコンデンサの容量は、第2のコンデンサの容量よりも大きい。
 好ましくは、第2のコンデンサの容量は、第1のコンデンサの容量および第2のコンデンサの最大容量の合計容量値から、第2のコンデンサの変化可能な容量の半分の容量を差し引いた容量値が、所定の周波数において送電装置と非接触受電装置との目標距離から定まる基準容量値よりも小さくなるように設定される。
 本発明による非接触送電装置は、対向する受電装置と非接触で電力を送電するための非接触送電装置であって、自己共振コイルと、コンデンサと、制御装置とを備える。自己共振コイルは、電源装置から与えられる電力を受電装置との電磁共鳴によって送電する。コンデンサは、自己共振コイルに接続され、自己共振コイルの共鳴周波数を調整するために容量の変更が可能に構成される。そして、制御装置は、電源装置によって決まる所定の周波数で電磁共鳴が行なわれる場合に、電力の伝送効率が向上するように、コンデンサの容量を制御する。
 好ましくは、制御装置は、送電電力のうちで受電装置で受電されずに反射されて戻ってきた反射電力が最小となるように、コンデンサの容量を設定する。
 好ましくは、コンデンサは、容量が固定された第1のコンデンサと、自己共振コイルに対して第1のコンデンサに並列に接続され、容量の変更が可能な第2のコンデンサとを含む。
 好ましくは、第1のコンデンサの容量は、第2のコンデンサの容量よりも大きい。
 好ましくは、第2のコンデンサの容量は、第1のコンデンサの容量および第2のコンデンサの最大容量の合計容量値から、第2のコンデンサの変化可能な容量の半分の容量を差し引いた値が、所定の周波数において受電装置と非接触送電装置との目標距離から定まる基準容量値よりも小さくなるように設定される。
 本発明による非接触給電システムは、送電装置と受電装置との間で非接触で電力を伝達するための非接触給電システムである。送電装置は、第1の自己共振コイルと、第1のコンデンサと、第1のコンデンサを制御するための第1の制御装置とを含む。第1の自己共振コイルは、電源装置から与えられる電力を受電装置との電磁共鳴によって送電する。第1のコンデンサは、第1の自己共振コイルに接続され、第1の自己共振コイルの共鳴周波数を調整するために容量の変更が可能に構成される。受電装置は、第2の自己共振コイルと、第2のコンデンサと、第2のコンデンサを制御するための第2の制御装置とを含む。第2の自己共振コイルは、送電装置との電磁共鳴によって電力を受電する。第2のコンデンサは、第2の自己共振コイルに接続され、第2の自己共振コイルの共鳴周波数を調整するために容量の変更が可能に構成される。そして、第1の制御装置および第2の制御装置は、通信により互いに信号の授受が可能に構成され、電源装置によって決まる所定の周波数で電磁共鳴が行なわれる場合に、電力の伝送効率が向上するように、互いに同期をとりながら第1のコンデンサおよび第2のコンデンサの容量をそれぞれ制御する。
 好ましくは、第2の制御装置は、受電装置で受電した受電電力を第1の制御装置に送信し、第1の制御装置は、第2の制御装置から受信した受電電力に基づいて、伝送効率が最大であるか否かを判定する。
 好ましくは、第1の制御装置および第2の制御装置は、第1のコンデンサの容量の変化方向と第2のコンデンサの容量の変化方向とが同じ方向となるように、第1のコンデンサおよび第2のコンデンサをそれぞれ制御する。
 好ましくは、第1の制御装置および第2の制御装置は、第1のコンデンサの容量および第2のコンデンサの容量を、所定の初期値に一致させた後に、第1のコンデンサの容量および第2のコンデンサの容量を変化させる。
 本発明による車両は、対向する送電装置と非接触で電力を受電するための非接触受電装置を搭載した車両であって、非接触受電装置は、自己共振コイルと、コンデンサと、制御装置とを含む。自己共振コイルは、送電装置との電磁共鳴によって電力を受電する。コンデンサは、自己共振コイルに接続され、共鳴周波数を調整するために容量の変更が可能に構成される。そして、制御装置は、送電装置によって決まる所定の周波数で電磁共鳴が行なわれる場合に、電力の伝送効率が向上するように、コンデンサの容量を制御する。
 本発明によれば、共鳴法を用いた非接触給電システムにおいて、送電装置と受電装置との距離が変化した場合であっても、電力の伝送効率の低下を抑制することができる。
本発明の実施の形態1による車両用給電システムの全体構成図である。 共鳴法による送電の原理を説明するための図である。 電流源(磁流源)からの距離と電磁界の強度との関係を示した図である。 図1に示した車両の詳細構成図である。 図1に示した送電装置の詳細構成図である。 受電装置に含まれるコイルユニットの外観図である。 実施の形態1における、受電装置および送電ユニットの回路の一例を示す図である。 一次自己共振コイルおよび二次自己共振コイルのコイル間距離と、電力の伝送効率が最大になる場合の共鳴周波数との関係を説明するための図である。 共鳴周波数を所定の周波数に固定した状態で、コイル間距離が変化したときに電力の伝送効率が最大となるようなコンデンサ容量の一例を示した図である。 コイル間距離を大きくした場合の、共鳴周波数と伝送効率との関係の一例を示した図である。 コイル間距離を小さくした場合の、共鳴周波数と伝送効率との関係の一例を示した図である。 コンデンサの可変範囲と基準コンデンサ容量との関係を説明するための図である。 コンデンサの可変範囲を考慮したコンデンサ容量の設定の一例を示す図である。 実施の形態1において、共鳴周波数を所定の周波数に固定した状態でコンデンサ容量を変化させた場合の、受電装置で受電される受電電力、および電力の伝送効率の変化の一例を示した図である。 実施の形態1において、受電ECUで実行される電力最大制御処理を説明するためのフローチャートである。 実施の形態2における車両の詳細構成図である。 実施の形態2における送電装置の詳細構成図である。 実施の形態2における、受電装置および送電ユニットの回路の一例を示す図である。 実施の形態2において、共鳴周波数を所定の周波数に固定した状態でコンデンサ容量を変化させた場合の、送電装置で検出される反射電力、および電力の伝送効率の変化の一例を示した図である。 実施の形態2において、送電ECUで実行される電力最大制御処理を説明するためのフローチャートである。 実施の形態3における、受電装置および送電ユニットの回路の一例を示す図である。 実施の形態3における、電力最大制御処理を説明するためのフローチャートである。
 以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。
 [実施の形態1]
 図1は、この発明の実施の形態1による車両用給電システム10の全体構成図である。図1を参照して、車両用給電システム10は、車両100と、送電装置200とを備える。車両100は、受電装置110と、通信部130とを含む。
 受電装置110は、車体底面に設けられ、送電装置200の送電ユニット220(後述)から送出される電力を非接触で受電するように構成される。詳しくは、受電装置110は、自己共振コイル(後述)を含み、送電ユニット220に含まれる自己共振コイルと電磁場を用いて共鳴することにより送電ユニット220から非接触で受電する。通信部130は、車両100と送電装置200との間で通信を行なうための通信インターフェースである。
 送電装置200は、電源装置210と、送電ユニット220と、通信部240とを含む。電源装置210は、たとえば商用電源から供給される交流電力を高周波の電力に変換して送電ユニット220へ出力する。なお、電源装置210が生成する高周波電力の周波数は、たとえば1M~十数MHzである。
 送電ユニット220は、駐車場の床面に設けられ、電源装置210から供給される高周波電力を車両100の受電装置110へ非接触で送出するように構成される。詳しくは、送電ユニット220は、自己共振コイル(後述)を含み、受電装置110に含まれる自己共振コイルと電磁場を用いて共鳴することにより受電装置110へ非接触で送電する。通信部240は、送電装置200と車両100との間で通信を行なうための通信インターフェースである。
 この車両用給電システム10においては、送電装置200の送電ユニット220から高周波の電力が送出され、車両100の受電装置110に含まれる自己共振コイルと送電ユニット220に含まれる自己共振コイルとが電磁場を用いて共鳴することにより、送電装置200から車両100へ給電される。
 また、本実施の形態1においては、本格的な給電に先立ち、送電ユニット220から受電装置110へ事前に給電(以下、「テスト送電」とも称する。)が行なわれ、その給電状況に基づいて、伝送効率が最大となるように受電装置110が調整される。
 なお、上記のテスト送電時に送電ユニット220から送出される電力の大きさは、本格的な電力送電が行なわれる際に送電ユニット220から受電装置110へ供給される電力よりも小さく設定される。
 次に、この実施の形態1による車両用給電システム10に用いられる非接触給電方法について説明する。この実施の形態1による車両用給電システム10では、共鳴法を用いて送電装置200から車両100への給電が行なわれる。
 図2は、共鳴法による送電の原理を説明するための図である。図2を参照して、この共鳴法では、2つの音叉が共鳴するのと同様に、同じ固有振動数を有する2つのLC共振コイルが電磁場(近接場)において共鳴することによって、一方のコイルから他方のコイルへ電磁場によって電力が伝送される。
 具体的には、高周波電源310に電磁誘導コイルである一次コイル320を接続し、電磁誘導により一次コイル320と磁気的に結合される一次自己共振コイル330へ1M~十数MHzの高周波電力を給電する。一次自己共振コイル330は、コイル自身のインダクタンスと浮遊容量とによるLC共振器であり、一次自己共振コイル330と同じ固有振動数を有する二次自己共振コイル340と電磁場(近接場)を用いて共鳴する。そうすると、一次自己共振コイル330から二次自己共振コイル340へ電磁場によってエネルギー(電力)が移動する。二次自己共振コイル340へ移動したエネルギー(電力)は、電磁誘導により二次自己共振コイル340と磁気的に結合される電磁誘導コイルである二次コイル350によって取出され、負荷360へ供給される。なお、共鳴法による送電は、一次自己共振コイル330と二次自己共振コイル340との共鳴強度を示すQ値がたとえば100よりも大きいときに実現される。
 なお、図1との対応関係については、二次自己共振コイル340および二次コイル350が図1の受電装置110に対応し、一次コイル320および一次自己共振コイル330が図1の送電ユニット220に対応する。
 図3は、電流源(磁流源)からの距離と電磁界の強度との関係を示した図である。図3を参照して、電磁界は3つの成分を含む。曲線k1は、波源からの距離に反比例した成分であり、「輻射電磁界」と称される。曲線k2は、波源からの距離の2乗に反比例した成分であり、「誘導電磁界」と称される。また、曲線k3は、波源からの距離の3乗に反比例した成分であり、「静電磁界」と称される。
 この中でも波源からの距離とともに急激に電磁波の強度が減少する領域があるが、共鳴法では、この近接場(エバネッセント場)を利用してエネルギー(電力)の伝送が行なわれる。すなわち、近接場を利用して、同じ固有振動数を有する一対の共鳴器(たとえば一対のLC共振コイル)を共鳴させることにより、一方の共鳴器(一次自己共振コイル)から他方の共鳴器(二次自己共振コイル)へエネルギー(電力)を伝送する。この近接場は遠方にエネルギー(電力)を伝播しないので、遠方までエネルギーを伝播する「輻射電磁界」によりエネルギー(電力)を伝送する電磁波に比べて、共鳴法は、より少ないエネルギー損失で送電することができる。
 図4は、図1に示した車両100の詳細構成図である。
 図4を参照して、車両100は、蓄電装置150と、システムメインリレーSMR1と、昇圧コンバータ162と、インバータ164,166と、モータジェネレータ172,174と、エンジン176と、動力分割装置177と、駆動輪178とを含む。また、車両100は、受電装置110と、整流器140と、DC/DCコンバータ142と、システムメインリレーSMR2と、電圧センサ190と、電流センサ195とをさらに含む。さらに、車両100は、制御装置180と、通信部130とを含む。また、受電装置110は、二次自己共振コイル112と、二次コイル114と、コンデンサ116と、受電ECU(Electronic Control Unit)185とを含む。
 なお、本実施の形態1では、車両100としてエンジン176を備えたハイブリッド車両を例として説明するが、車両100の構成はこれに限られない。電動機により駆動される車両であれば、たとえば電気自動車や燃料電池自動車にも適用可能である。その場合は、エンジン176が配置されない構成となる。
 この車両100は、エンジン176およびモータジェネレータ174を駆動源として搭載する。エンジン176およびモータジェネレータ172,174は、動力分割装置177に連結される。そして、車両100は、エンジン176およびモータジェネレータ174の少なくとも一方が発生する駆動力によって走行する。エンジン176が発生する動力は、動力分割装置177によって2経路に分割される。すなわち、一方は駆動輪178へ伝達される経路であり、もう一方はモータジェネレータ172へ伝達される経路である。
 モータジェネレータ172は、交流回転電機であり、たとえばロータに永久磁石が埋設された三相交流同期電動機である。モータジェネレータ172は、動力分割装置177によって分割されたエンジン176の駆動力を用いて発電する。たとえば、蓄電装置150の充電状態(「SOC(State Of Charge)」とも称される。)が予め定められた値よりも低くなると、エンジン176が始動してモータジェネレータ172により発電が行なわれ、蓄電装置150が充電される。
 モータジェネレータ174も、交流回転電機であり、モータジェネレータ172と同様に、たとえばロータに永久磁石が埋設された三相交流同期電動機である。モータジェネレータ174は、蓄電装置150に蓄えられた電力およびモータジェネレータ172により発電された電力の少なくとも一方を用いて駆動力を発生する。そして、モータジェネレータ174の駆動力は、駆動輪178に伝達される。
 また、車両の制動時や下り斜面での加速度低減時には、モータジェネレータ174は駆動輪178から回転力を受け、モータジェネレータ174が発電機として作動する。これにより、モータジェネレータ174は、走行エネルギーを電力に変換して制動力を発生する回生ブレーキとして作動する。そして、モータジェネレータ174により発電された電力は、蓄電装置150に蓄えられる。
 動力分割装置177は、いずれも図示しないが、サンギヤと、ピニオンギヤと、キャリアと、リングギヤとを有する遊星歯車機構を含んで構成される。ピニオンギヤは、サンギヤおよびリングギヤと係合する。キャリアは、ピニオンギヤを自転可能に支持するとともに、エンジン176のクランクシャフトに連結される。サンギヤは、モータジェネレータ172の回転軸に連結される。リングギヤはモータジェネレータ174の回転軸および駆動輪178に連結される。
 蓄電装置150は、再充電可能な直流電源であり、たとえばリチウムイオンやニッケル水素などの二次電池を含んで構成される。蓄電装置150は、DC/DCコンバータ142から供給される電力を蓄える。また、蓄電装置150は、モータジェネレータ172,174によって発電される回生電力も蓄える。そして、蓄電装置150は、その蓄えた電力を昇圧コンバータ162へ供給する。なお、蓄電装置150として大容量のキャパシタも採用可能であり、送電装置200(図1)から供給される電力やモータジェネレータ172,174からの回生電力を一時的に蓄え、その蓄えた電力を昇圧コンバータ162へ供給可能な電力バッファであれば如何なるものでもよい。
 システムメインリレーSMR1は、蓄電装置150と昇圧コンバータ162との間の、電力線PL1,接地線NLに介挿される。システムメインリレーSMR1は、制御装置180からの制御信号SE1が活性化されると、蓄電装置150を昇圧コンバータ162と電気的に接続し、制御信号SE1が非活性化されると、蓄電装置150と昇圧コンバータ162との間の電路を遮断する。昇圧コンバータ162は、制御装置180からの信号PWCに基づいて、電力線PL2の電圧を蓄電装置150から出力される電圧以上の電圧に昇圧する。なお、この昇圧コンバータ162は、たとえば直流チョッパ回路を含んで構成される。インバータ164,166は、それぞれモータジェネレータ172,174に対応して設けられる。インバータ164は、制御装置180からの信号PWI1に基づいてモータジェネレータ172を駆動し、インバータ166は、制御装置180からの信号PWI2に基づいてモータジェネレータ174を駆動する。なお、インバータ164,166は、たとえば三相ブリッジ回路を含んで構成される。
 本実施の形態においては、上述のように2つのインバータ、およびそれに対応する2つのモータジェネレータを備える構成としているが、モータジェネレータおよびインバータの数はこれに限定されない。たとえば、インバータとモータジェネレータのペアを1組の設ける構成としてもよい。
 二次自己共振コイル112は、図5で後述する送電装置200に含まれる一次自己共振コイルから、電磁場を用いて電磁共鳴により受電する。
 コンデンサ116は、容量の変更が可能に構成された可変コンデンサであり、二次自己共振コイル112の両端に接続される。コンデンサ116は、図示しないアクチュエータを含む。そして、受電ECU185からの制御信号CTL1によってアクチュエータが制御されることによって、コンデンサ116の容量が変更される。
 この二次自己共振コイル112については、送電装置200の一次自己共振コイルとの距離や、一次自己共振コイルおよび二次自己共振コイル112の共鳴周波数等に基づいて、一次自己共振コイルと二次自己共振コイル112との共鳴強度を示すQ値(たとえば、Q>100)およびその結合度を示すκ等が大きくなるようにその巻数が適宜設定される。
 二次コイル114は、二次自己共振コイル112と同軸上に設けられ、電磁誘導により二次自己共振コイル112と磁気的に結合可能である。この二次コイル114は、二次自己共振コイル112により受電された電力を電磁誘導により取出して整流器140へ出力する。
 なお、上述の二次自己共振コイル112、二次コイル114、コンデンサ116によって、受電装置110の受電ユニット400が形成される。
 整流器140は、二次コイル114によって取出された交流電力を整流する。DC/DCコンバータ142は、制御装置180からの信号PWDに基づいて、整流器140によって整流された電力を蓄電装置150の電圧レベルに変換して蓄電装置150へ出力する。
 システムメインリレーSMR2は、DC/DCコンバータ142と蓄電装置150との間に設けられる。システムメインリレーSMR2は、制御装置180からの制御信号SE2が活性化されると、蓄電装置150をDC/DCコンバータ142と電気的に接続し、制御信号SE2が非活性化されると、蓄電装置150とDC/DCコンバータ142との間の電路を遮断する。
 電圧センサ190は、整流器140とDC/DCコンバータ142との間の電圧VHを検出し、その検出値を制御装置180および受電ECU185へ出力する。
 電流センサ195は、整流器140とDC/DCコンバータ142とを接続する電力線PL3に設けられ、電力線PL3を流れる電流IHを検出する。そして、電流センサ195は、その検出結果を、制御装置180および受電ECU185へ出力する。
 制御装置180は、アクセル開度や車両速度、その他種々のセンサからの信号に基づいて、昇圧コンバータ162およびモータジェネレータ172,174をそれぞれ駆動するための制御信号PWC,PWI1,PWI2を生成し、その生成した制御信号をそれぞれ昇圧コンバータ162およびインバータ164,166へ出力する。そして、車両の走行時は、制御装置180は、制御信号SE1を活性化してシステムメインリレーSMR1をオンさせるとともに、制御信号SE2を非活性化してシステムメインリレーSMR2をオフさせる。
 また、制御装置180は、送電装置200から送出される電力の情報(電圧および電流)を送電装置200から通信部130を介して受ける。そして、電圧センサ190によって検出される電圧VHの検出値を電圧センサ190から受ける。そして、制御装置180は、これらのデータに基づいて、送電装置200の送電ユニット220(図1)へ車両を誘導するように車両の駐車制御などを実行する。
 受電ECU185は、電圧センサ190および電流センサ195によって検出される電圧VH,電流IHの検出値を受ける。そして、受電ECU185は、これらの情報に基づいて、送電装置200から受電した受電電力PRを演算する。そして、受電ECU185は、この受電電力PRを通信部130を介して送電装置200へ送出する。
 また、受電ECU185は、制御信号CTL1によりコンデンサ116に含まれるアクチュエータ(図示せず)を制御することによってコンデンサ116の容量を変更する。
 送電ユニット220上への駐車が完了すると、制御装置180は、通信部130を介して送電装置200へ給電指令を送信するとともに、制御信号SE2を活性化してシステムメインリレーSMR2をオンさせる。そして、制御装置180は、DC/DCコンバータ142を駆動するための信号PWDを生成し、その生成した信号PWDをDC/DCコンバータ142へ出力する。
 なお、制御装置180および受電ECU185は、いずれも図示しないが、CPU(Central Processing Unit)と、記憶装置と、入出力バッファとを含み、各センサの入力や各機器への制御指令の出力を行ない、車両100または各機器の制御を行なう。なお、これらの制御については、ソフトウェアによる処理に限られず、一部を専用のハードウェア(電子回路)で構築して処理することも可能である。
 また、図4においては、制御装置180と受電ECU185とを別個の制御装置とする構成としているが、このような構成に限定されず、制御装置180と受電ECU185とを1つの制御装置として構成してもよい。また、制御装置180のうちの一部の機能を、さらに別個の制御装置に分割することとしてもよい。
 図5は、図1に示した送電装置200の詳細構成図である。図5を参照して、送電装置200は、交流電源250と、高周波電力ドライバ260と、一次コイル222と、一次自己共振コイル224と、電圧センサ272と、電流センサ274と、通信部240と、送電ECU270と、コンデンサ280とを含む。
 交流電源250は、車両外部の電源であり、たとえば商用電源である。高周波電力ドライバ260は、交流電源250から受ける電力を高周波の電力に変換し、その変換した高周波電力を一次コイル222へ供給する。なお、高周波電力ドライバ260が生成する高周波電力の周波数は、たとえば1M~十数MHzである。
 一次コイル222は、一次自己共振コイル224と同軸上に設けられ、電磁誘導により一次自己共振コイル224と磁気的に結合可能である。そして、一次コイル222は、高周波電力ドライバ260から供給される高周波電力を電磁誘導により一次自己共振コイル224へ給電する。
 一次自己共振コイル224は、両端にコンデンサ280が接続され、LC共振コイルを構成する。そして、車両100の二次自己共振コイル112と電磁場を用いて共鳴することにより車両100へ電力を送電する。なお、所定の共鳴周波数を得るために、一次自己共振コイル224自身のもつ浮遊容量により容量成分が実現できる場合には、コンデンサ280は配置されず、一次自己共振コイル224はコイル両端が非接続(オープン)の状態とされる。
 この一次自己共振コイル224も、車両100の二次自己共振コイル112との距離や、一次自己共振コイル224および二次自己共振コイル112の共鳴周波数等に基づいて、Q値(たとえば、Q>100)および結合度κ等が大きくなるようにその巻数が適宜設定される。
 なお、一次自己共振コイル224、一次コイル222およびコンデンサ280は、図1に示した送電ユニット220を形成する。電圧センサ272は、高周波電力ドライバ260から出力される電圧VSを検出し、その検出値を送電ECU270へ出力する。電流センサ274は、高周波電力ドライバ260から出力される電流ISを検出し、その検出値を送電ECU270へ出力する。
 送電ECU270は、車両100から通信部240を介して起動指令を受けると、送電装置200を起動する。そして、送電ECU270は、車両100から通信部240を介して給電開始指令を受けると、送電装置200から車両100へ供給される電力が目標値に一致するように高周波電力ドライバ260の出力を制御する。
 また、送電ECU270は、通信部240を介して、受電装置110から、テスト送電のための信号出力指令を受けているときは、給電開始指令に基づく給電実行時の電力よりも小さい所定の電力を出力するように高周波電力ドライバ260の出力を制御する。
 図6は、受電装置110および送電装置200に含まれるコイルユニットの外観図である。図6においては、一例として、受電装置110の受電ユニット400について説明する。
 図6を参照して、受電ユニット400は、二次コイル114と、二次自己共振コイル112と、ボビン113と、コンデンサ116とを含む。
 二次コイル114は、コイル材がボビン113の内面または外面に沿って巻回される。そして、二次コイル114は、二次自己共振コイル112と同軸上に配置される。二次コイル114の両端は、受電ユニット400を収納するコイルケース(図示しない)の外部に引き出されて負荷に接続される。そして、二次コイル114は、電磁誘導により、二次自己共振コイル112から受電する。
 コンデンサ116は、上述のように容量の変更が可能な可変コンデンサであり、ボビン113の内部に設置される。コンデンサ116は、二次自己共振コイル112の両端に接続され、LC共振回路を構成する。
 なお、コンデンサ116は、容量が可変な1つのコンデンサとしてもよいが、図7のように、二次自己共振コイル112に対して並列に接続された、固定の容量を有する大容量のコンデンサ117と容量が可変な小容量のコンデンサ118とを含む構成としてもよい。一般的に、容量が可変なコンデンサの価格は、同じ容量で容量が固定されたコンデンサの価格と比較して高価となる場合が多い。そのため、図7のように、必要とされる可変範囲を有する小容量の可変コンデンサ118と、設計値から定まる所定の基準容量近傍の容量を有する大容量の固定容量のコンデンサ117とを用いることによって、大きな可変範囲を有する単一の可変コンデンサを備える場合と比較してコストの低減が期待できる。
 共鳴法を用いた非接触給電においては、一次自己共振コイル224および二次自己共振コイル112を、所定の共鳴周波数で共鳴させることによって電力を伝達する。送電ユニット220および受電ユニット400において、コイルユニットの共鳴周波数を設定する際、送電ユニット220と受電ユニット400との距離が狙いとなる基準距離である場合に、所定の電磁場の周波数(すなわち、高周波電源ドライバ260の電源周波数)でコイルユニットが共鳴するように設計・調整される。しかしながら、実際に給電を行なう場合には、車両の停車位置のずれや、車種の違いによる車体底面の高さの違いなどによって、ユニット間の距離が基準距離とずれてしまうことが発生し得る。そうすると、ユニット間の空間インピーダンスが変化して反射電力が増加したり、電磁場の強度が変化したりすることによって、電力の伝送効率が低下するおそれがある。
 図8は、一次自己共振コイルおよび二次自己共振コイルのコイル間距離と、電力の伝送効率が最大になる場合の共鳴周波数との関係を説明するための図である。図8の横軸にはコイル間距離が示され、縦軸には共鳴周波数が示される。
 図8を参照して、ある狙いの基準距離Daimにおいて、電力の伝送効率が最大となる共鳴周波数がFoptであるとする。このとき、コイル間距離が基準距離から変化すると、その変化に応じて伝送効率が最大となる共鳴周波数が、図8中の曲線W1のように変化する。
 このような特性にあわせて、コイル間距離に応じて高周波電源の周波数を変更することも可能であるが、一方で、電波法等の規定によって使用可能な電磁場の周波数範囲が制限される場合もあり、所望の周波数を選択できない場合も起こり得る。
 そこで、本実施の形態においては、コイル間距離が変化した場合に、電波法等で規定された所定の電磁場の周波数を維持しながら、電力の伝送効率が最大となるように、コイルユニットのコンデンサの容量を変化させてコイルユニットの共鳴周波数を制御する、最大電力制御を行なう。
 図9は、電磁場の周波数をある値(たとえば、13MHz)に維持した状態で、コイル間距離が変化したときに電力の伝送効率が最大となるようなコンデンサ容量の一例を示した図である。図9の横軸にはコイル間距離が示され、縦軸にはコンデンサの容量が示される。なお、図中のCulimは、可変コンデンサの最大容量を示す。
 図9を参照して、所定の電磁場の周波数の場合に、狙い基準距離Daimのときに伝送効率が最大となる基準のコンデンサ容量(以下、「基準コンデンサ容量」とも称する)がCoptであるとき、コイル間距離が変化すると、伝送効率が最大となるコンデンサの容量は図中の曲線W2のように変化する。曲線W2からわかるように、コイル間距離が基準距離より小さくなる場合のコンデンサ容量の変化量のほうが、コイル間距離が基準距離より大きくなるときのコンデンサ容量の変化量よりも大きい。このようになる理由を、図10および図11を用いて説明する。
 図10および図11は、コイル間距離を変化させた場合の、共鳴周波数と伝送効率との関係の一例を示した図である。図10はコイル間距離を大きくした(遠ざけた)場合を示し、図11はコイル間距離を小さくした(近づけた)場合を示す。
 図10を参照して、曲線W10は、コイル間距離が基準距離の場合の伝送効率を示したものであり、このときの伝送効率が最大となる共鳴周波数がf10であったとする。この状態から、コイル間距離を大きくしていくと、曲線W11,W12のように、徐々に伝送効率の最大値が低下する。これは、コイル間距離が大きくなるにつれて、電磁界強度がしだいに弱くなっていくことの影響が大きいためである。この場合は、伝送効率が最大となる共鳴周波数については、あまり大きく変化しない。
 一方、コイル間距離を小さくしていくと、たとえば、図11の曲線W21のように、伝送効率が最大となる周波数(f21,f21*)が、基準距離の場合の周波数f20から周波数の高くなる方向および低くなる方向へ徐々に広がっていく。そして、伝送効率が最大となる周波数の間(f21とf21*との間)においては、逆に伝送効率が低下する。これは、コイル間距離が小さくなるにつれて、コイル間の空間インピーダンスが大きく変化し、反射電力が増加するためである。
 本実施の形態の最大電力制御においては、このように、コイル間距離の変化に対して、電磁場の周波数を所定の周波数に維持した状態で、伝送効率が最大となるように、コンデンサの容量を変化させる。すなわち、たとえば図11の曲線W21となる場合には、コンデンサをの容量を調整してコイルユニットの共鳴周波数を変化させ、伝送効率が最大となる周波数f21が周波数f20となるように曲線W21全体をずらすことに相当する。
 このとき、図10および図11からわかるように、コイル間距離を大きくする場合は、周波数の変化量が小さいため、コンデンサ容量の変化量は小さくなる。一方、コイル間距離を小さくする場合には、相対的に周波数の変化量が大きくなるので、コンデンサ容量の変化量も大きくする必要がある。
 したがって、図12に示すように、コイル間距離の変化に応じて必要となるコンデンサの容量変化範囲ΔCにおいて、基準距離よりコイル間距離が小さくなる方向の変化範囲(図中のC10)を、基準距離よりコイル間距離が大きくなる方向の変化範囲(図中のC20)よりも大きくすることが必要となる。すなわち、基準コンデンサ容量値Coptが、コンデンサの可変範囲の中央値よりも大きくなるように、コンデンサの容量が設定される。
 図13は、上述のようなコンデンサの可変範囲を考慮したコンデンサ容量の設定の一例を示す図である。図13を参照して、図12で説明したように、基準距離から定まるコンデンサ容量Coptを基準として、必要とされる容量の可変範囲C10,C20から可変コンデンサの最大容量Cvar(Cvar=C10+C20)を決定する。そして、基準距離から定まるコンデンサ容量Coptから減少方向の可変容量C10を差し引いた容量を、固定コンデンサの容量Cfix(Cfix=Copt-C10)として設定する。このようにすることによって、適切な可変範囲を有する最適なコンデンサ容量を設定することができる。
 このような可変コンデンサを有する本実施の形態において、電磁場の周波数を所定の周波数に固定した状態でコンデンサ容量を変化させた場合の、受電装置110で受電される受電電力PR、および電力の伝送効率EFの変化の一例を図14に示す。図14においては、曲線W40が受電電力PRを表わし、曲線W41が伝送効率EFを示す。
 図9等で説明したように、電磁場の周波数を所定の周波数に固定した場合に、コイル間距離が決まると、それに応じて伝送効率が最大となるコンデンサ容量が決まる。ここで、伝送効率EFは、一般的に式(1)で表わすことができるので、基本的には受電装置110での受電電力PRが最大となるときに、伝送効率EFもほぼ最大に近くなる。
  伝送効率=受電電力/送電電力 … (1)
 したがって、送電ユニット220から電力が送電されている間に、可変コンデンサの値を変化させながら受電電力PRを検出し、この受電電力PRが最大となる点(図14中のP40)を検索する。そして、この受電電力PRが最大となる点におけるコンデンサ容量(図14中のCadj)に可変コンデンサを設定することで、伝送効率EFを最大とすることができる。
 図15は、本実施の形態1において、受電ECU185で実行される電力最大制御処理を説明するためのフローチャートである。図15に示されるフローチャート中の各ステップについては、受電ECU185に予め格納されたプログラムを所定周期で実行することによって実現される。あるいは、一部のステップについては、専用のハードウェア(電子回路)で処理を実現することも可能である。
 図15を参照して、受電ECU185は、ステップ(以下、ステップをSと略す。)300にて、車両100が送電ユニット220上へ停車したことを検知すると、通信部130を介して、送電装置200側の送電ECU270に対して、テスト送電の開始を要求する。この要求に対応して、送電ECU270は、テスト送電のために、本格的な電力送電時よりも低出力の電力の送電を開始する。
 受電ECU185は、S310にて、受電ECU185内の記憶部(図示しない)の受電電力の最大値の記憶値Pmaxを初期化する(たとえば、ゼロに設定する)。
 次に、受電ECU185は、S320にて、制御信号CTL1をコンデンサ116に出力して、コンデンサ116内の可変コンデンサ118の容量の変更を開始する。たとえば、受電ECU185は、可変コンデンサ118の最小容量から最大容量に向けて、所定の変化量ずつ容量を増加させ、以降のS320~S350までの処理を行なう。
 受電ECU185は、S330にて、電圧センサ190からの電圧VHおよび電流センサ195からの電流IHの検出値に基づいて、受電電力PRを演算する。
 そして、受電ECU185は、S340にて、演算によって求められた受電電力PRと記憶された受電電力の最大値Pmaxとを比較し、受電電力PRが記憶値Pmaxより大きいか否かを判定する。
 受電電力PRが記憶値Pmaxより大きい場合(S340にてYES)は、S350に処理が進められ、受電ECU185は、その受電電力PRの値を受電電力の最大値Pmaxとして設定するとともに、そのときのコンデンサ容量を記憶する。そして、処理がS360に進められる。
 一方、受電電力PRが記憶値Pmax以下の場合(S340にてNO)は、S350の処理がスキップされて、処理がS360に進められる。
 S360では、受電ECU185は、可変コンデンサ118の容量変更が完了したか否かを判定する。この容量変更の完了の判定は、たとえば上述のように可変コンデンサ118の最小容量から最大容量に向けて、所定の変化量ずつ容量を増加させる場合には、可変コンデンサ118の容量が最大容量となっているか否かによって判定される。
 可変コンデンサ118の容量変更が完了していない場合(S360にてNO)は、処理がS320に戻されて、可変コンデンサ118の容量がさらに変更される。そして、S330~S350の処理が繰り返される。このように、可変コンデンサ118の可変容量範囲の全範囲にわたって、各容量値に対する受電電力PRを算出するとともに、その算出した受電電力PRが最大となるとき(すなわち、伝送効率が最大となるとき)のコンデンサ容量値を決定することができる。
 可変コンデンサ118の容量変更が完了している場合(S360にてYES)は、受電ECU185は、S370にて、送電ECU270に、テスト送電を停止するように要求する。そして、受電ECU185は、S380にて、記憶したコンデンサ容量値となるように、可変コンデンサ118の容量を設定する。
 そして、受電ECU185は、S390にて、送電ECU270に、本格的な電力送電を開始するように要求する。
 以上のような処理に従って制御を行なうことによって、電磁場の周波数を所定の周波数に維持した状態において、伝送効率を最大にするようにコンデンサの容量を設定することができる。これによって、共鳴法を用いた非接触給電システムにおいて、コイル間距離が設計時の基準距離から変動した場合であっても、伝送効率の低下を抑制することが可能となる。
 [実施の形態2]
 実施の形態1においては、車両側のコイルユニットのコンデンサを可変とし、この可変コンデンサの容量を調整することによって、コイル間距離が変動した場合に電力の伝送効率の低下を抑制する構成について説明した。
 実施の形態2では、送電装置側のコンデンサの容量を可変とし、送電装置側のコンデンサ容量を調整することによって、電力の伝送効率の低下を抑制する構成について説明する。
 図16は、実施の形態2における車両100の詳細構成図である。図16においては、実施の形態1の図4におけるコンデンサ116が、容量が固定されたコンデンサ116Aに置き換わったものとなっている。
 また、図17は、実施の形態2における送電装置200の詳細構成図である。図17においては、実施の形態1の図5におけるコンデンサ280が、容量が可変なコンデンサ280Aに置き換わるとともに、受電装置110Aから反射される反射電力を検出するための反射電力計273が追加される。
 なお、図16および図17において、図4および図5と重複する要素の説明については繰り返さない。
 図17を参照して、コンデンサ280Aは、一次自己共振コイル224の両端に接続される。コンデンサ280Aは、図示しないアクチュエータを含む。そして、送電ECU270からの制御指令CTL2によってアクチュエータが制御されることによって、コンデンサ280Aの容量が変更される。
 反射電力計273は、高周波電力ドライバ260と一次コイル222との間に設けられる。反射電力計273は、受電装置110Aから反射される反射電力を検出し、その検出値RFを送電ECU270へ出力する。
 図18は、実施の形態2における、受電装置110Aおよび送電ユニット220Aの回路の一例を示す図である。
 図18を参照して、送電ユニット220Aに含まれるコンデンサ280Aは、実施の形態1における受電装置110側のコンデンサ116と同様に、一次自己共振コイル224に対して並列に接続された、固定の容量を有する大容量のコンデンサ281と容量が可変な小容量のコンデンサ281とを含む。コンデンサ280Aは、容量が可変な1つのコンデンサとすることもできるが、コストの面から上述のように容量が固定されたコンデンサ281と容量が可変なコンデンサ282を含む構成とすることが好適である。
 図19は、実施の形態2における電力最大制御を説明するための図であり、共鳴周波数を所定の周波数に固定した状態でコンデンサ容量を変化させた場合の、送電装置200で検出される反射電力RF、および電力の伝送効率EFの変化の一例を示したものである。図19においては、曲線W50が反射電力RFを表わし、曲線W51が伝送効率EFを示す。
 一般的に、受電装置110Aで受電される受電電力PRと反射電力FRとの間には、式(2)の関係が成立する。
  受電電力=送電電力-反射電力-損失 … (2)
 上述の式(1)について、この式(2)を用いると、伝送効率EFは式(3)のように書き換えることができる。
  伝送効率=(送電電力-反射電力-損失)/送電電力 … (3)
 この式(3)からわかるように、電力の伝送において、回路の抵抗成分や電磁場の漏洩を防止する電磁場遮蔽材による損失の変動が小さい場合には、反射電力RFが小さいほど伝送効率が大きくなる。したがって、送電ユニット220Aに含まれるコンデンサ280Aの容量を変化させ、そのときの反射電力RFが最小となる点(図19中のP50)におけるコンデンサ容量Cadj*に、コンデンサ280Aの容量を設定することによって、伝送効率EFを最大とすることが可能となる。
 なお、送電ECU270が、受電装置110Aで検出された受電電力PRを受電ECU185から受けて、実施の形態1と同様に受電電力PRが最大となるようにコンデンサ280Aの容量を設定するようにしてもよい。
 図20は、実施の形態2において、送電ECU270で実行される電力最大制御処理を説明するためのフローチャートである。図20に示されるフローチャート中の各ステップについては、送電ECU270に予め格納されたプログラムを所定周期で実行することによって実現される。あるいは、一部のステップについては、専用のハードウェア(電子回路)で処理を実現することも可能である。
 図20を参照して、送電ECU270は、S400にて、車両100が送電ユニット220上へ停車しことが検知されると、本格的な電力送電時よりも低出力の電力を送電するテスト送電を開始する。
 送電ECU270は、S410にて、送電ECU270内の記憶部(図示しない)の反射電力の最小値の記憶値Rminを初期化する。このときの反射電力の初期値Kは、たとえば送電電力と同程度の値に設定する。
 次に、送電ECU270は、S420にて、制御信号CTL2をコンデンサ280Aに出力して、コンデンサ280A内の可変コンデンサ281の容量の変更を開始する。たとえば、送電ECU270は、可変コンデンサ281の最小容量から最大容量に向けて、所定の変化量ずつ容量を増加させ、以降のS420~S450までの処理を行なう。
 送電ECU270は、S430にて、反射電力計273からの反射電力RFの検出値を取得する。
 そして、送電ECU270は、S440にて、反射電力RFと記憶された反射電力の最小値Rminとを比較し、反射電力RFが記憶値Rminより小さいか否かを判定する。
 反射電力RFが記憶値Rminより小さい場合(S440にてYES)は、S450に処理が進められ、送電ECU270は、その反射電力RFの値を反射電力の最小値Rminとして設定するとともに、そのときのコンデンサ容量を記憶する。そして、処理がS460に進められる。
 一方、反射電力RFが記憶値Rmin以上の場合(S440にてNO)は、S450の処理がスキップされて、処理がS460に進められる。
 S460では、送電ECU270は、可変コンデンサ281の容量変更が完了したか否かを判定する。この容量変更の完了の判定は、たとえば上述のように可変コンデンサ281の最小容量から最大容量に向けて、所定の変化量ずつ容量を増加させる場合には、可変コンデンサ281の容量が最大容量となっているか否かによって判定される。
 可変コンデンサ281の容量変更が完了していない場合(S460にてNO)は、処理がS420に戻されて、可変コンデンサ281の容量がさらに変更される。そして、S430~S450の処理が繰り返される。このように、可変コンデンサ281の可変容量範囲の全範囲にわたって、各容量値に対する反射電力RFを算出するとともに、その算出した反射電力RFを比較することによって、反射電力RFが最小となるとき(すなわち、伝送効率が最大となるとき)のコンデンサ容量値を決定することができる。
 可変コンデンサ281の容量変更が完了している場合(S460にてYES)は、送電ECU270は、S470にて、テスト送電を停止する。そして、送電ECU270は、S480にて、記憶したコンデンサ容量値となるように、可変コンデンサ281の容量を設定する。そして、送電ECU270は、S490にて、本格的な電力送電を開始する。
 以上のような処理に従って制御することによって、電磁場の周波数を所定の周波数に維持した状態において、伝送効率を最大にするように送電装置のコンデンサの容量を設定することができる。これによって、共鳴法を用いた非接触給電システムにおいて、コイル間距離が設計時の基準距離から変動した場合であっても、伝送効率の低下を抑制することが可能となる。
 [実施の形態3]
 実施の形態1および実施の形態2においては、受電装置または送電装置のいずれか一方のコイルユニットに、容量が可変なコンデンサを有する場合について説明した。
 実施の形態3においては、受電装置および送電装置の両方に可変コンデンサを有し、両方のコンデンサの容量を同期しながら調整することによって、伝送効率の低下を抑制する構成について説明する。このように、受電装置および送電装置の両方のコンデンサを調整することによって、両方のコイルユニットのインピーダンスを合わせることができるので、反射電力を低減することが可能となる。これにより、実施の形態1および実施の形態2と比較して伝送効率の低下をさらに抑制することが期待できる。
 実施の形態3においては、車両100の詳細構成は図4と同様であり、また、送電装置200の詳細構成は図17と同様である。以下の説明においては、伝送効率が最大となるコンデンサ容量の検索については、送電ECU270において、受電装置110側で演算された受電電力PRを用いて行なう場合について説明する。そのため、受電ECU185は、電圧センサ190および電流センサ195からの検出値に基づいて演算した受電電力PRを、通信部130,240を介して送電ECU270へ出力する。送電ECU270は、この受電電力PRが最大となるときのコンデンサ容量を決定する。そして、受電ECU185および送電ECU270は、決定されたコンデンサ容量にしたがって、コンデンサ116,280Aの容量をそれぞれ設定する。なお、実施の形態1と同様に、受電ECU185が受電電力PRを用いて伝送効率が最大となるコンデンサ容量を決定してもよいし、実施の形態2のように、送電ECU270が反射電力RFを用いて伝送効率が最大となるコンデンサ容量を決定してもよい。
 図21は、実施の形態3における、受電装置110Aおよび送電ユニット220Aの回路の一例を示す図である。実施の形態1および実施の形態2の場合と同様に、コンデンサ116,280Aは、容量が固定されたコンデンサ117,281および容量が可変なコンデンサ118,282をそれぞれ有する。
 図22は、実施の形態3における、電力最大制御処理を説明するためのフローチャートである。図22に示されるフローチャート中の各ステップについては、受電ECU185または送電ECU270に予め格納されたプログラムを所定周期で実行することによって実現される。あるいは、一部のステップについては、専用のハードウェア(電子回路)で処理を実現することも可能である。
 図22を参照して、車両100が送電ユニット220上へ停車したことが検知されると、受電ECU185および送電ECU270は、S100にて、通信部130,240を介して、互いのコイルユニットの諸元データの授受を行なう。ここで、コイルユニットの諸元データには、自己共振コイルの基準の共鳴周波数、自己共振コイルのインダクタンス値、コンデンサの最大容量値、コンデンサの可変容量範囲およびコンデンサの可変調整方向(増加方向または減少方向)が含まれる。
 そして、受電ECU185および送電ECU270は、S110にて、互いに制御用の同期信号を認識しているか否かを判定する。
 制御用の同期信号を認識していない場合(S110にてNO)は、処理がS110に戻されて、受電ECU185および送電ECU270は、同期信号が認識されることを待つ。
 制御用の同期信号を認識した場合(S110にてYES)は、処理がS120に進められて、送電ECU270によりテスト送電が開始される。
 そして、送電ECU270は、S130にて、送電ECU270内の記憶部(図示しない)の受電電力の最大値の記憶値Pmaxを初期化する(たとえば、ゼロに設定する)。
 次に、S140にて、受電ECU185および送電ECU270は、同期を取りながら、制御信号CTL1,CTL2によって、コンデンサ116,280Aの変更を開始する。このとき、コンデンサ116,280Aの可変範囲が同じである場合には、基本的には可変範囲の全範囲について容量の変更を行なう。一方、コンデンサ116,280Aの可変範囲が異なる場合には、たとえば、可変範囲の狭い側の範囲内で容量の変更を行なうようにしてもよいし、互いに重複する可変範囲内で容量の変更を行なうようにしてもよい。なお、いずれの場合においても、コンデンサ116,280Aの容量の変更に際しては、コンデンサ116,280Aを、予め同じ容量の初期値に設定した上で、同期を取りつつ同一の変化方向(増加方向または減少方向)に容量を変化させる。
 S150にて、受電ECU185は、電圧センサ190からの電圧VHおよび電流センサ195からの電流IHの検出値に基づいて受電電力PRを演算するとともに、その演算結果を送電ECU270へ出力する。
 S160では、送電ECU270は、受電ECU185から受けた受電電力PRと記憶された受電電力の最大値Pmaxとを比較し、受電電力PRが記憶値Pmaxより大きいか否かを判定する。
 受電電力PRが記憶値Pmaxより大きい場合(S160にてYES)は、S170に処理が進められ、送電ECU270は、受電電力PRの値を受電電力の最大値Pmaxとして設定するとともに、そのときのコンデンサ容量を記憶する。そして、処理がS180に進められる。
 一方、受電電力PRが記憶値Pmax以下の場合(S160にてNO)は、S170の処理がスキップされて、処理がS180に進められる。
 S180では、送電ECU270は、コンデンサの容量変更が完了したか否かを判定する。
 コンデンサの容量変更が完了していない場合(S180にてNO)は、処理がS140に戻されて、受電ECU185および送電ECU270は、コンデンサの容量をさらに変更して、S150~S170の処理を繰り返す。
 コンデンサの容量変更が完了している場合(S180にてYES)は、送電ECU270は、S190にて、テスト送電を停止する。
 そして、受電ECU185および送電ECU270は、S200にて、受電電力PRが最大となったときのコンデンサ容量値となるように、コンデンサ116,280Aの容量をそれぞれ設定する。
 そして、送電ECU270は、S210にて、受電装置110に対する本格的な電力送電を開始する。
 以上のような処理に従って制御することによって、電磁場の周波数を所定の周波数に維持した状態において、伝送効率を最大にするように受電装置および送電装置のコンデンサの容量を設定することができる。これによって、共鳴法を用いた非接触給電システムにおいて、コイル間距離が設計時の基準距離から変動した場合であっても、伝送効率の低下を抑制することが可能となる。
 なお、本実施の形態における一次自己共振コイル224および二次自己共振コイル112は、本発明における「第1の自己共振コイル」および「第2の自己共振コイル」の一例である。本実施の形態における送電ECU270および受電ECU185は、本発明における「第1の制御装置」および「第2の制御装置」の一例である。また、本実施の形態における高周波電力ドライバ260は、本発明の「電源装置」の一例である。
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 10 車両用給電システム、100 車両、110,110A 受電装置、112,340 二次自己共振コイル、113 ボビン、114,350 二次コイル、116,116A,117,118,280,280A,281,282 コンデンサ、130,240 通信部、140 整流器、142 DC/DCコンバータ、150 蓄電装置、162 昇圧コンバータ、164,166 インバータ、172,174 モータジェネレータ、176 エンジン、177 動力分割装置、178 駆動輪、180 制御装置、185 受電ECU、190,272 電圧センサ、195,274 電流センサ、200 送電装置、210 電源装置、220,220A 送電ユニット、222,320 一次コイル、224,330 一次自己共振コイル、250 交流電源、260 高周波電力ドライバ、270 送電ECU、273 反射電力計、310 高周波電源、360 負荷、400 受電ユニット、NL 接地線、PL1~PL3 電力線、SMR1,SMR2 システムメインリレー。

Claims (15)

  1.  対向する送電装置(200)と非接触で電力を受電するための非接触受電装置であって、
     前記送電装置(200)との電磁共鳴によって電力を受電するように構成された自己共振コイル(112)と、
     前記自己共振コイル(112)に接続され、前記自己共振コイル(112)の共鳴周波数を調整するために容量の変更が可能に構成されたコンデンサ(116)と、
     前記送電装置(200)によって決まる所定の周波数で電磁共鳴が行なわれる場合に、電力の伝送効率が向上するように、前記コンデンサ(116)の容量を制御するための制御装置(185)とを備える、非接触受電装置。
  2.  前記制御装置(185)は、前記自己共振コイル(112)で受電した受電電力が最大となるように、前記コンデンサ(116)の容量を設定する、請求の範囲第1項に記載の非接触受電装置。
  3.  前記コンデンサ(116)は、
     容量が固定された第1のコンデンサ(117)と、
     前記自己共振コイル(112)に対して前記第1のコンデンサ(117)に並列に接続され、容量の変更が可能な第2のコンデンサ(118)とを含む、請求の範囲第2項に記載の非接触受電装置。
  4.  前記第1のコンデンサ(117)の容量は、前記第2のコンデンサ(118)の容量よりも大きい、請求の範囲第3項に記載の非接触受電装置。
  5.  前記第2のコンデンサ(118)の容量は、前記第1のコンデンサ(117)の容量および前記第2のコンデンサ(118)の最大容量の合計容量値から、前記第2のコンデンサ(118)の変化可能な容量の半分の容量を差し引いた容量値が、前記所定の周波数において前記送電装置(200)と前記非接触受電装置(110)との目標距離から定まる基準容量値よりも小さくなるように設定される、請求の範囲第3項に記載の非接触受電装置。
  6.  対向する受電装置(110A)と非接触で電力を送電するための非接触送電装置であって、
     電源装置(260)から与えられる電力を、前記受電装置(110A)との電磁共鳴によって送電するように構成された自己共振コイル(224)と、
     前記自己共振コイル(224)に接続され、前記自己共振コイル(224)の共鳴周波数を調整するために容量の変更が可能に構成されたコンデンサ(280A)と、
     前記電源装置(260)によって決まる所定の周波数で電磁共鳴が行なわれる場合に、電力の伝送効率が向上するように、前記コンデンサ(280A)の容量を制御するための制御装置(270)とを備える、非接触送電装置。
  7.  前記制御装置(270)は、送電電力のうちで前記受電装置(110A)で受電されずに反射されて戻ってきた反射電力が最小となるように、前記コンデンサ(280A)の容量を設定する、請求の範囲第6項に記載の非接触送電装置。
  8.  前記コンデンサ(280A)は、
     容量が固定された第1のコンデンサ(281)と、
     前記自己共振コイル(224)に対して前記第1のコンデンサ(281)に並列に接続され、容量の変更が可能な第2のコンデンサ(282)とを含む、請求の範囲第7項に記載の非接触送電装置。
  9.  前記第1のコンデンサ(281)の容量は、前記第2のコンデンサ(282)の容量よりも大きい、請求の範囲第8項に記載の非接触送電装置。
  10.  前記第2のコンデンサ(282)の容量は、前記第1のコンデンサ(281)の容量および前記第2のコンデンサ(282)の最大容量の合計容量値から、前記第2のコンデンサ(282)の変化可能な容量の半分の容量を差し引いた値が、前記所定の周波数において前記受電装置(110A)と前記非接触送電装置(200)との目標距離から定まる基準容量値よりも小さくなるように設定される、請求の範囲第8項に記載の非接触送電装置。
  11.  送電装置(200)と受電装置(110)との間で非接触で電力を伝達するための非接触給電システムであって、
     前記送電装置(200)は、
     電源装置(260)から与えられる電力を、前記受電装置(110)との電磁共鳴によって送電するように構成された第1の自己共振コイル(224)と、
     前記第1の自己共振コイル(224)に接続され、前記第1の自己共振コイル(224)の共鳴周波数を調整するために容量の変更が可能に構成された第1のコンデンサ(280A)と、
     前記第1のコンデンサ(280A)を制御するための第1の制御装置(270)とを含み、
     前記受電装置(110)は、
     前記送電装置(200)との電磁共鳴によって電力を受電するように構成された第2の自己共振コイル(112)と、
     前記第2の自己共振コイル(112)に接続され、前記第2の自己共振コイル(112)の共鳴周波数を調整するために容量の変更が可能に構成された第2のコンデンサ(116)と、
     前記第2のコンデンサ(116)を制御するための第2の制御装置(185)とを含み、
     前記第1の制御装置(270)および前記第2の制御装置(185)は、通信により互いに信号の授受が可能に構成され、前記電源装置(260)によって決まる所定の周波数で電磁共鳴が行なわれる場合に、電力の伝送効率が向上するように、互いに同期をとりながら前記第1のコンデンサ(280A)および前記第2のコンデンサ(116)の容量をそれぞれ制御する、非接触給電システム。
  12.  前記第2の制御装置(185)は、前記受電装置(110)で受電した受電電力を前記第1の制御装置(270)に送信し、
     前記第1の制御装置(270)は、前記第2の制御装置(185)から受信した前記受電電力に基づいて、前記伝送効率が最大であるか否かを判定する、請求の範囲第11項に記載の非接触給電システム。
  13.  前記第1の制御装置(270)および前記第2の制御装置(185)は、前記第1のコンデンサ(280A)の容量の変化方向と前記第2のコンデンサ(116)の容量の変化方向とが同じ方向となるように、前記第1のコンデンサ(280A)および前記第2のコンデンサ(116)をそれぞれ制御する、請求の範囲第11項に記載の非接触給電システム。
  14.  前記第1の制御装置(270)および前記第2の制御装置(185)は、前記第1のコンデンサ(280A)の容量および前記第2のコンデンサ(116)の容量を、所定の初期値に一致させた後に、前記第1のコンデンサ(280A)の容量および前記第2のコンデンサ(116)の容量を変化させる、請求の範囲第13項に記載の非接触給電システム。
  15.  対向する送電装置(200)と非接触で電力を受電するための非接触受電装置(110)を搭載した車両であって、
     前記非接触受電装置(110)は、
     前記送電装置(200)との電磁共鳴によって電力を受電するように構成された自己共振コイル(112)と、
     前記自己共振コイル(112)に接続され、共鳴周波数を調整するために容量の変更が可能に構成されたコンデンサ(116)と、
     前記送電装置(200)によって決まる所定の周波数で電磁共鳴が行なわれる場合に、電力の伝送効率が向上するように、前記コンデンサ(116)の容量を制御するための制御装置(185)とを含む、車両。
PCT/JP2010/050471 2010-01-18 2010-01-18 非接触受電装置、非接触送電装置、非接触給電システムおよび車両 WO2011086694A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP10843052.1A EP2528193B1 (en) 2010-01-18 2010-01-18 Contactless electric power receiving apparatus, contactless electric power transmitting apparatus, contactless electric power feeding system, and vehicle
PCT/JP2010/050471 WO2011086694A1 (ja) 2010-01-18 2010-01-18 非接触受電装置、非接触送電装置、非接触給電システムおよび車両
JP2011549828A JP5392358B2 (ja) 2010-01-18 2010-01-18 非接触受電装置、非接触送電装置
CN201080061723.2A CN102714429B (zh) 2010-01-18 2010-01-18 非接触受电装置、非接触输电装置、非接触供电系统以及车辆
US13/521,368 US8816537B2 (en) 2010-01-18 2010-01-18 Contactless electric power receiving apparatus, contactless electric power transmitting apparatus, contactless electric power feeding system, and vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/050471 WO2011086694A1 (ja) 2010-01-18 2010-01-18 非接触受電装置、非接触送電装置、非接触給電システムおよび車両

Publications (1)

Publication Number Publication Date
WO2011086694A1 true WO2011086694A1 (ja) 2011-07-21

Family

ID=44303997

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/050471 WO2011086694A1 (ja) 2010-01-18 2010-01-18 非接触受電装置、非接触送電装置、非接触給電システムおよび車両

Country Status (5)

Country Link
US (1) US8816537B2 (ja)
EP (1) EP2528193B1 (ja)
JP (1) JP5392358B2 (ja)
CN (1) CN102714429B (ja)
WO (1) WO2011086694A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012135109A (ja) * 2010-12-21 2012-07-12 Yazaki Corp 給電システム
WO2013015416A1 (ja) * 2011-07-28 2013-01-31 本田技研工業株式会社 ワイヤレス送電方法
JP2013081331A (ja) * 2011-10-05 2013-05-02 Hitachi Maxell Ltd 非接触電力伝送装置
JP2013090470A (ja) * 2011-10-19 2013-05-13 Yazaki Corp 給電システム
WO2013115245A1 (ja) * 2012-02-01 2013-08-08 矢崎総業株式会社 非接触電力伝送システム
CN103312050A (zh) * 2013-06-14 2013-09-18 清华大学 有源式主动接受无线能量传输方法及装置
JP2013223301A (ja) * 2012-04-13 2013-10-28 Toyota Industries Corp 非接触電力伝送装置の受電機器及び送電機器
WO2013181985A1 (en) * 2012-06-04 2013-12-12 Shenzhen Byd Auto R&D Company Limited Transmitting device, wireless charging system comprising transmitting device and method for controlling charging process thereof
JP2014003849A (ja) * 2012-06-20 2014-01-09 Hitachi Ltd 無線電力伝送装置、及びこれを用いた画像表示システム、移動体給電システム
JP2014103751A (ja) * 2012-11-19 2014-06-05 Toshiba Corp 無線電力伝送制御装置、送電装置、受電装置および無線電力伝送システム
US20150200568A1 (en) * 2012-06-26 2015-07-16 Hitachi, Ltd. Radio Power Transmission Apparatus and Radio Power Transmission System
JP2020036495A (ja) * 2018-08-31 2020-03-05 トヨタ自動車株式会社 送電装置および受電装置、ならびにその送電装置の制御方法
US11139717B2 (en) 2017-07-13 2021-10-05 Panasonic Intellectual Property Management Co., Ltd. Power generation system including power generating device and capacitor, and capable of storing energy of generated electric power with reducing waste energy

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5258521B2 (ja) * 2008-11-14 2013-08-07 トヨタ自動車株式会社 給電システム
US8725330B2 (en) 2010-06-02 2014-05-13 Bryan Marc Failing Increasing vehicle security
JP5674013B2 (ja) * 2010-10-08 2015-02-18 ソニー株式会社 給電装置および給電システム
US11128180B2 (en) 2011-02-01 2021-09-21 Fu Da Tong Technology Co., Ltd. Method and supplying-end module for detecting receiving-end module
US10951063B2 (en) * 2011-02-01 2021-03-16 Fu Da Tong Technology Co., Ltd. Supplying-end module of induction type power supply system and signal detection method thereof
US9166562B2 (en) * 2013-02-25 2015-10-20 Qualcomm Incorporated Impedance transformation network for improved driver circuit performance
US10381874B2 (en) 2011-03-25 2019-08-13 Qualcomm Incorporated Filter for improved driver circuit efficiency and method of operation
US8970069B2 (en) * 2011-03-28 2015-03-03 Tdk Corporation Wireless power receiver and wireless power transmission system
US9531441B2 (en) * 2012-02-21 2016-12-27 Lg Innotek Co., Ltd. Wireless power receiver and method of managing power thereof
CN107415764B (zh) 2012-05-09 2020-09-29 丰田自动车株式会社 车辆
US9042816B2 (en) * 2012-11-05 2015-05-26 Qualcomm Incorporated Methods and apparatus for improving NFC coil tuning based on proximity to a remote NFC device
JP5979032B2 (ja) * 2013-02-08 2016-08-24 株式会社デンソー 非接触給電制御装置
JP2014176170A (ja) * 2013-03-07 2014-09-22 Toshiba Corp 受電装置および充電システム
WO2014157030A1 (ja) * 2013-03-27 2014-10-02 株式会社村田製作所 ワイヤレス給電装置
WO2014185490A1 (ja) * 2013-05-15 2014-11-20 日本電気株式会社 電力伝送システム、送電装置、受電装置、及び電力伝送方法
JP5794407B2 (ja) * 2013-06-06 2015-10-14 株式会社村田製作所 非接触電力伝送システムの検査装置及び検査方法
AU2014296320B2 (en) * 2013-07-29 2018-07-26 Alfred E. Mann Foundation For Scientific Research Implant charging field control through radio link
TWI513136B (zh) * 2013-12-06 2015-12-11 Wireless charging system and its control method
DE102013225241A1 (de) * 2013-12-09 2015-06-11 Bayerische Motoren Werke Aktiengesellschaft Feldabschirmung bei induktivem Laden
CN104716747B (zh) * 2013-12-12 2017-12-08 财团法人车辆研究测试中心 无线充电系统及其控制方法
KR101728149B1 (ko) * 2014-10-24 2017-04-20 한국철도기술연구원 전원 공급용 원거리 무선전력전송장치
JP6401672B2 (ja) * 2015-07-22 2018-10-10 本田技研工業株式会社 受電装置及び非接触送電方法
US10538165B2 (en) * 2015-09-22 2020-01-21 Ford Global Technologies, Llc Parameter estimation of loosely coupled transformer
JP6229708B2 (ja) * 2015-12-15 2017-11-15 トヨタ自動車株式会社 車両及び非接触電力伝送システム
WO2020159324A1 (ko) * 2019-02-01 2020-08-06 주식회사 와이파워원 전기차량 및 산업용 장비의 주행 중 무선충전 급전 및 집전 시스템
WO2020159323A1 (ko) * 2019-02-01 2020-08-06 주식회사 와이파워원 전기차량 및 산업용 장비의 주행 중 무선충전 급전 시스템
US11642537B2 (en) 2019-03-11 2023-05-09 Axonics, Inc. Charging device with off-center coil
DE102019206848B3 (de) * 2019-05-10 2020-08-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Abstimmung eines elektromagnetischen Schwingkreises einer Konfigurationsschnittstelle eines Teilnehmers eines Kommunikationssystems

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004356765A (ja) 2003-05-27 2004-12-16 Matsushita Electric Ind Co Ltd 共振周波数調整装置、非接触リーダライタ、および、非接触データキャリアシステム
WO2009054221A1 (ja) * 2007-10-25 2009-04-30 Toyota Jidosha Kabushiki Kaisha 電動車両および車両用給電装置
WO2010032309A1 (ja) * 2008-09-19 2010-03-25 トヨタ自動車株式会社 非接触受電装置およびそれを備える車両
JP2010074937A (ja) * 2008-09-18 2010-04-02 Toyota Motor Corp 非接触受電装置およびそれを備える車両

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69330516T2 (de) * 1992-05-10 2002-04-25 Auckland Uniservices Ltd System zur berührungslosen energieübertragung
JP2833998B2 (ja) 1994-06-06 1998-12-09 日本電気精器株式会社 高周波電力の非接触給電装置
JPH08175232A (ja) 1994-12-22 1996-07-09 Toyota Autom Loom Works Ltd 非接触給電システム
JP3303764B2 (ja) 1998-02-06 2002-07-22 株式会社豊田自動織機 非接触給電装置
JP2002272134A (ja) 2001-03-08 2002-09-20 Mitsubishi Heavy Ind Ltd 高周波電力の非接触給電装置及び非接触給電方法
JP3906708B2 (ja) 2002-02-25 2007-04-18 松下電工株式会社 非接触電力伝達装置
US7825543B2 (en) 2005-07-12 2010-11-02 Massachusetts Institute Of Technology Wireless energy transfer
EP2306615B1 (en) 2005-07-12 2020-05-27 Massachusetts Institute of Technology (MIT) Wireless non-radiative energy transfer
CN102361358B (zh) 2007-03-27 2015-07-29 麻省理工学院 无线能量传输
KR100895689B1 (ko) * 2007-11-14 2009-04-30 주식회사 플라즈마트 임피던스 매칭 방법 및 이 방법을 위한 전기 장치
WO2009023155A2 (en) * 2007-08-09 2009-02-19 Nigelpower, Llc Increasing the q factor of a resonator
CN101557127A (zh) * 2008-04-10 2009-10-14 朱斯忠 无线电源
DE102008038479A1 (de) 2008-08-20 2010-02-25 Henkel Ag & Co. Kgaa Wasch- oder Reinigungsmittel mit gesteigerter Waschkraft
JP4737253B2 (ja) * 2008-08-29 2011-07-27 ソニー株式会社 非接触受信装置
US8669676B2 (en) * 2008-09-27 2014-03-11 Witricity Corporation Wireless energy transfer across variable distances using field shaping with magnetic materials to improve the coupling factor
JP4759610B2 (ja) * 2008-12-01 2011-08-31 株式会社豊田自動織機 非接触電力伝送装置
JP5114372B2 (ja) * 2008-12-09 2013-01-09 株式会社豊田自動織機 非接触電力伝送装置における電力伝送方法及び非接触電力伝送装置
JP5114371B2 (ja) 2008-12-09 2013-01-09 株式会社豊田自動織機 非接触電力伝送装置
WO2010067763A1 (ja) 2008-12-09 2010-06-17 株式会社 豊田自動織機 非接触電力伝送装置及び非接触電力伝送装置における電力伝送方法
WO2011142417A1 (ja) * 2010-05-14 2011-11-17 株式会社 豊田自動織機 共鳴型非接触給電システム、および共鳴型非接触給電システムの充電時における整合器の調整方法
WO2012020475A1 (ja) 2010-08-10 2012-02-16 パイオニア株式会社 インピーダンス整合装置、制御方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004356765A (ja) 2003-05-27 2004-12-16 Matsushita Electric Ind Co Ltd 共振周波数調整装置、非接触リーダライタ、および、非接触データキャリアシステム
WO2009054221A1 (ja) * 2007-10-25 2009-04-30 Toyota Jidosha Kabushiki Kaisha 電動車両および車両用給電装置
JP2009106136A (ja) 2007-10-25 2009-05-14 Toyota Motor Corp 電動車両および車両用給電装置
JP2010074937A (ja) * 2008-09-18 2010-04-02 Toyota Motor Corp 非接触受電装置およびそれを備える車両
WO2010032309A1 (ja) * 2008-09-19 2010-03-25 トヨタ自動車株式会社 非接触受電装置およびそれを備える車両

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012135109A (ja) * 2010-12-21 2012-07-12 Yazaki Corp 給電システム
JP5564620B2 (ja) * 2011-07-28 2014-07-30 本田技研工業株式会社 ワイヤレス送電方法
WO2013015416A1 (ja) * 2011-07-28 2013-01-31 本田技研工業株式会社 ワイヤレス送電方法
US9490064B2 (en) 2011-07-28 2016-11-08 Honda Motor Co., Ltd. Wireless power transmission method
JP2013081331A (ja) * 2011-10-05 2013-05-02 Hitachi Maxell Ltd 非接触電力伝送装置
JP2013090470A (ja) * 2011-10-19 2013-05-13 Yazaki Corp 給電システム
JP2013162533A (ja) * 2012-02-01 2013-08-19 Yazaki Corp 非接触電力伝送システム
CN104205567A (zh) * 2012-02-01 2014-12-10 矢崎总业株式会社 非接触电力传输系统
WO2013115245A1 (ja) * 2012-02-01 2013-08-08 矢崎総業株式会社 非接触電力伝送システム
JP2013223301A (ja) * 2012-04-13 2013-10-28 Toyota Industries Corp 非接触電力伝送装置の受電機器及び送電機器
WO2013181985A1 (en) * 2012-06-04 2013-12-12 Shenzhen Byd Auto R&D Company Limited Transmitting device, wireless charging system comprising transmitting device and method for controlling charging process thereof
JP2014003849A (ja) * 2012-06-20 2014-01-09 Hitachi Ltd 無線電力伝送装置、及びこれを用いた画像表示システム、移動体給電システム
US9899875B2 (en) * 2012-06-26 2018-02-20 Hitachi, Ltd. Radio power transmission apparatus and radio power transmission system
US20150200568A1 (en) * 2012-06-26 2015-07-16 Hitachi, Ltd. Radio Power Transmission Apparatus and Radio Power Transmission System
JP2014103751A (ja) * 2012-11-19 2014-06-05 Toshiba Corp 無線電力伝送制御装置、送電装置、受電装置および無線電力伝送システム
CN103312050B (zh) * 2013-06-14 2016-02-24 清华大学 有源式主动接受无线能量传输方法及装置
CN103312050A (zh) * 2013-06-14 2013-09-18 清华大学 有源式主动接受无线能量传输方法及装置
US11139717B2 (en) 2017-07-13 2021-10-05 Panasonic Intellectual Property Management Co., Ltd. Power generation system including power generating device and capacitor, and capable of storing energy of generated electric power with reducing waste energy
JP2020036495A (ja) * 2018-08-31 2020-03-05 トヨタ自動車株式会社 送電装置および受電装置、ならびにその送電装置の制御方法
JP7067376B2 (ja) 2018-08-31 2022-05-16 トヨタ自動車株式会社 送電装置

Also Published As

Publication number Publication date
CN102714429B (zh) 2015-02-25
JPWO2011086694A1 (ja) 2013-05-16
JP5392358B2 (ja) 2014-01-22
CN102714429A (zh) 2012-10-03
EP2528193B1 (en) 2018-09-05
EP2528193A4 (en) 2015-09-23
US20130119774A1 (en) 2013-05-16
EP2528193A1 (en) 2012-11-28
US8816537B2 (en) 2014-08-26

Similar Documents

Publication Publication Date Title
JP5392358B2 (ja) 非接触受電装置、非接触送電装置
JP4947241B2 (ja) コイルユニット、非接触受電装置、非接触送電装置、非接触給電システムおよび車両
JP4868077B2 (ja) 給電システムおよび電動車両
JP6119756B2 (ja) 非接触給電システムおよび送電装置
JP5146488B2 (ja) 給電システムおよび車両
JP5287863B2 (ja) 非接触受電装置およびそれを備える車両
JP5692163B2 (ja) 車両、および送電装置
JP5643270B2 (ja) 車両および非接触給電システム
JP4962621B2 (ja) 非接触電力伝達装置および非接触電力伝達装置を備える車両
WO2013042229A1 (ja) 非接触送電装置、非接触受電装置および非接触送受電システム
JP5304624B2 (ja) 給電装置、車両および車両給電システム
JP5768878B2 (ja) 車両
WO2010119577A1 (ja) 非接触給電設備、非接触受電装置および非接触給電システム
WO2012086051A1 (ja) 非接触給電システム、車両、給電設備および非接触給電システムの制御方法
WO2013069089A1 (ja) 車両の受電装置、送電装置および非接触送受電システム
JP2013126326A (ja) 非接触受電装置およびそれを搭載する車両、非接触送電装置、ならびに非接触給電システム
JP2013005614A (ja) 送電装置、受電装置、車両、および非接触給電システム
WO2013061441A1 (ja) 非接触受電装置、非接触送電装置および非接触送受電システム
JP5287115B2 (ja) 車両の受電制御装置およびそれを備える車両
JP5920185B2 (ja) 非接触受電装置
JP2015027224A (ja) 非接触受電装置
JPWO2013042229A1 (ja) 非接触送電装置、非接触受電装置および非接触送受電システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080061723.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10843052

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2011549828

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13521368

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010843052

Country of ref document: EP