WO2011084421A1 - Hollow structures and associated methods for conveying refrigerant fluids - Google Patents

Hollow structures and associated methods for conveying refrigerant fluids Download PDF

Info

Publication number
WO2011084421A1
WO2011084421A1 PCT/US2010/060294 US2010060294W WO2011084421A1 WO 2011084421 A1 WO2011084421 A1 WO 2011084421A1 US 2010060294 W US2010060294 W US 2010060294W WO 2011084421 A1 WO2011084421 A1 WO 2011084421A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
acid
carbon atoms
resin composition
hollow structure
Prior art date
Application number
PCT/US2010/060294
Other languages
French (fr)
Inventor
Shailesh Doshi
Original Assignee
E. I. Du Pont De Nemours And Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by E. I. Du Pont De Nemours And Company filed Critical E. I. Du Pont De Nemours And Company
Priority to EP10798880A priority Critical patent/EP2512794A1/en
Priority to CA2781438A priority patent/CA2781438A1/en
Priority to CN2010800575263A priority patent/CN102656009A/en
Priority to JP2012544711A priority patent/JP2013514442A/en
Publication of WO2011084421A1 publication Critical patent/WO2011084421A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a non-planar shape
    • B32B1/08Tubular products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00507Details, e.g. mounting arrangements, desaeration devices
    • B60H1/00557Details of ducts or cables
    • B60H1/00571Details of ducts or cables of liquid ducts, e.g. for coolant liquids or refrigerants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/04Hoses, i.e. flexible pipes made of rubber or flexible plastics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/04Hoses, i.e. flexible pipes made of rubber or flexible plastics
    • F16L2011/047Hoses, i.e. flexible pipes made of rubber or flexible plastics with a diffusion barrier layer

Definitions

  • the present invention relates to the field of flexible hollow structures that are particularly suitable for conveying refrigerant fluids.
  • thermoplastic Hollow structures made of thermoplastic are well known for a variety of applications, like for example in the building industry for water pipes, radiator pipes or floor-heating pipes or in automotive conduits to carry many different fluids or liquid media, and are desired to display a balance of properties including thermal, mechanical and chemical resistance.
  • structures made of thermoplastic materials and used to convey fluids such structures (pipes, ducts, conduits, tubes, tubings, etc.) are desired to exhibit good mechanical properties, flexibility, impermeability and chemical resistance to the fluid(s) being conveyed.
  • the refrigerant fluid needs to be transported through and/or between various components of the system such as the
  • Hollow structures used to convey refrigerant fluids are required to exhibit a balance of properties including flexibility, thermal, mechanical and chemical resistance to all of the constituents of the refrigerant fluid.
  • Such structures need to be flexible for ease of installation and use, and often must be shaped into curves and bends for connecting
  • Such structures need to have a high resistance to bursting pressures and possess high impermeability to the refrigerant fluid being conveyed. It is important that the structure not suffer from deterioration leading to the loss of properties upon long term contact with the refrigerant fluid. For example, a reduction in molecular weight and concomitant loss in physical properties can result in failure of the structure during use.
  • the layers of such structures often comprise dissimilar materials to satisfy specified performance criteria by placing different materials at the most appropriate position in the structure.
  • the multilayer hollow structure may comprise one or more barrier layers made of a thermoplastic resin that possess high impermeability to the refrigerant fluid, one or more elastomeric layers to provide flexibility, one or more layers of braiding to provide burst strength to withstand the refrigerant fluid pressure, and adhesive layers disposed between any of these layers to provide adhesion.
  • Poiyamides are a desirable material to use for hoses and pipes because they have good chemical resistance, good physical properties, and can be conveniently formed into hoses with a variety of diameters and incorporated into multi layered hoses.
  • Certain short chain poiyamides and copolyamides, especially PA 6, PA 66 and PA 66/6 possess good impermeability to refrigerant fluids, and are thus commonly used to form thermoplastic resin barrier layers of the hollow structure used to convey refrigerant fluids.
  • These poiyamides may further comprise plasticizers and/or toughening agents.
  • European Pat. No. 0,945,660 discloses a multilayer hose
  • an innermost layer comprising a polyamide, especially polyamide 6, and optionally a polyolefin rubber, an intermediate reinforcing layer made of aramid fibers and an outermost layer made of an ethylene acrylic rubber.
  • a hollow structure for conveying a refrigerant fluid comprising a layer made of a resin composition comprising one or more semi-aromatic poiyamides and one or more functionalized polyolefins,
  • the one or more semi-aromatic poiyamides are selected from copolyamides made from:
  • aromatic dicarboxylic acids having 8 to 20 carbon atoms and aliphatic diamines having 4 to 20 carbon atoms;
  • the monomers of group A are present in an amount from at or about 10 mole-percent to at or about 40 mole-percent based on the copolyamide, and the monomers of group B are present in an amount from at or about 60 mole-percent to at or about 90 mole-percent based on the copolyamide.
  • fluid refers to a substance that flows and conforms to the outline of its container, a fluid can be a liquid or a gas.
  • pipe used interchangeably herein to denote a hollow structure, i.e. any structure having an empty or concave interior part used to convey a fluid.
  • the hollow structure according to the present invention comprises a layer made of a resin composition comprising one or more semi-aromatic polyamides and one or more functionalized polyolefins.
  • the one or more semi-aromatic polyamides comprised in the resin composition described herein are selected from copolyamides made from: a) group A monomers selected from:
  • aromatic dicarboxylic acids having 8 to 20 carbon atoms and aliphatic diamines having 4 to 20 carbon atoms;
  • lactams and/or aliphatic aminocarboxylic acids having 4 to 20 carbon atoms wherein the monomers of group A are present in an amount from at or about 10 mole-percent to at or about 40 mole-percent, preferably from at or about 15 mole-percent to at or about 35 mole-percent, based on the copolyamide, and the monomers of group B are present in an amount from at or about 60 mole-percent to at or about 90 mole-percent, preferably from at or about 65 mole-percent to at or about 85 mole-percent based on the copolyamide.
  • Suitable aromatic dicarboxylic acids having 8 to 20 carbon atoms include terephthalic acid, isophthalic acid, phthalic acid, 2-methyl terephthalic acid, diphenic acid, 1 ,5-naphthalenedicarboxylic acid, 2,6- naphthalenedicarboxylic acid, and 2,7-naphthalenedicarboxylic, 1 ,5- nathphalenedicarboxylic acid; 2,6-nathphalenedicarboxylic acid; terephthalic acid and isophthalic acid being preferred.
  • Suitable aliphatic dicarboxylic acids having 6 to 20 carbon atoms include adipic acid (C6), pimelic acid (C7), suberic acid (C8), azelaic acid (C9), decanedioic acid (C10), undecanedioic acid (C11 ), dodecanedioic acid (C12), tridecanedioic acid (C13), tetradecanedioic acid (C14), and pentadecanedioic acid (C15), hexadecanoic acid (C16), octadecanoic acid (C18) and eicosanoic acid (C20).
  • adipic acid C6
  • pimelic acid C7
  • suberic acid C8
  • azelaic acid C9
  • decanedioic acid C10
  • undecanedioic acid C11
  • dodecanedioic acid C12
  • Suitable aliphatic diamines having 4 to 20 carbon atoms include tetramethylene diamine, hexamethylene diamine, octamethylene diamine, nonamethylenediamine, decamethylene diamine, dodecamethylene diamine, 2-methylpentamethylene diamine, 2-ethyltetramethylene diamine, 2-methyloctamethylene diamine, trimethylhexamethylene diamine, and bis(p-aminocyclohexyl)methane.
  • Suitable aromatic diamines having 6 to 20 carbon atoms include m- xylylenediamine and p-xylylenediamine.
  • Suitable aromatic aminocarboxylic acids having 7 to 20 carbon atoms include p-aminobenzoic acid, m-aminobenzoic acid, anthranilic acid 6-amino-2-naphthoic acid. .
  • Suitable lactams include caprolactam and laurolactam.
  • a suitable aliphatic aminocarboxylic acid includes 11- aminoundecanoic acid.
  • the one or more semi-aromatic polyamides comprised in the resin composition described herein are selected from copolyamides made from:
  • aromatic dicarboxylic acids selected from terephthalic acid, isophthaiic acid and mixtures thereof and aliphatic diamines having 4 to 10 carbon atoms; or
  • aromatic aminocarboxylic acids having 7 to 10 carbon atoms and
  • the one or more semi-aromatic polyamides are selected from copolyamides made from:
  • group B monomers selected from adipic acid and
  • decanedioic acid and hexamethylenediamine dodecanedioic acid and hexamethylenediamine
  • caproiactam laurolactam
  • 11-aminoundecanoic acid
  • the one or more semi-aromatic polyamides are selected from copolyamides made from: a) group A monomers selected from terephthalic acid and hexamethyienediamine and b) group B monomers selected from adipic acid and hexamethyienediamine.
  • copolyamides described herein may be prepared by any means known to those skilled in the art, such as in a batch process using, for example, an autoclave or using a continuous process. See, for example, Kohan, M.I. Ed. Nylon Plastics Handbook, Hansen Kunststoff, 1995; pp. 13-32. Generally, the monomers are allowed to react to form a random chain of interlinked monomers.
  • the resin composition described herein comprises one or more functionalized polyolefins.
  • the one or more functionalized polyolefins may be used alone or may be used in combination with the one or more unfunctionalized polyolefins described below.
  • the term "functionalized polyolefin” refers to an alkylcarboxyl-substituted polyolefin, which is a polyolefin that has carboxyiic moieties attached thereto, either on the polyolefin backbone itself or on side chains.
  • carboxyiic moiety refers to carboxyiic groups, such as carboxyiic acids, carboxyiic acid ester, carboxyiic acid anhydrides and carboxyiic acid salts.
  • Functionalized polyolefins may be prepared by direct synthesis or by grafting.
  • An example of direct synthesis is the polymerization of ethylene and/or at least one alpha-olefin with at least one ethylenically unsaturated monomer having a carboxyiic moiety.
  • An example of grafting process is the addition of at least one ethylenically unsaturated monomer having at least one carboxyiic moiety to a polyolefin backbone.
  • the ethylenically unsaturated monomers having at least one carboxyiic moiety may be, for example, mono-, di-, or polycarboxylic acids and/or their derivatives, including esters, anhydrides, salts, amides, imides, and the like.
  • Suitable ethylenically unsaturated monomers include methacrylic acid; acrylic acid; ethacrylic acid; glycidyl methacrylate; 2-hydroxy ethylacrylate; 2-hydroxy ethyl methacrylate; diethyl maleate; monoethyl maleate; di-n-butyl maleate; maleic anhydride; maieic acid; fumaric acid; mono- and disodium maleate; acrylamide; glycidyl methacrylate; dimethyl fumarate; crotonic acid, itaconic acid, itaconic anhydride;
  • tetrahydrophthalic anhydride monoesters of these dicarboxylic acids; dodecenyl succinic anhydride; 5-norbornene-2,3-anhydride; nadic anhydride (3,6-endomethylene-1 ,2,3,6-tetrahydrophthalic anhydride);
  • polyolefins are incompatible with polyamides, it is necessary to modify them with functional groups that are capable of reacting with the acid or amine ends of the polyamide polymer. Due to the fact that the reaction of an anhydride with an amine is very fast, anhydrides are preferred grafting agents and more preferably maleic anhydride is chosen.
  • the one or more functionalized polyolefins are one or more grafted polyolefins.
  • the grafting agents i.e. the at least one monomer having at least one carboxylic moiety, is preferably present in the one or more functionalized polyolefins in an amount from at or about 0.05 to at or about 6 weight percent, preferably from at or about 0.1 to at or about 2.0 weight percent, the weight percentages being based of the total weight of the one or more functionalized polyolefins.
  • Grafted polyolefins are preferably derived by grafting at least one monomer having at least one carboxylic moiety to a polyolefin, an ethylene alpha-olefin or a copolymer derived from at least one alpha-olefin and a diene.
  • the resin composition described herein comprises grafted polyolefins selected from grafted polyethylenes, grafted
  • the resin composition described herein comprises maleic anhydride grafted polyolefins selected from maleic anhydride grafted polyethylenes, maleic anhydride grafted polypropylenes, maleic anhydride grafted ethylene alpha-olefin copolymers, maleic anhydride grafted copolymers derived from at least one alpha-olefin and a diene and mixtures thereof.
  • Polyethylenes used for preparing maleic anhydride grafted polyethylene are commonly available polyethylene resins selected from HDPE (density higher than 0.94 g/cm 3 ), LLDPE (density of 0.915 - 0.925 g/cm 3 ) or LDPE (density of 0.91 - 0.94 g/cm 3 ).
  • Polypropylenes used for preparing maleic anhydride grafted polypropylene are commonly available copolymer or homopolymer polypropylene resins.
  • Ethylene alpha-olefins copolymers comprise ethylene and one or more alpha-olefins, preferably the one or more alpha-olefins have 3-12 carbon atoms.
  • alpha-olefins include but are not limited to propylene, 1-butene, 1-pentene, 1-hexene-1 , 4-methyl 1-pentene, 1- heptene, 1-octene, 1-nonene, 1-decene, 1-undecene and 1-dodecene.
  • the ethylene alpha-olefin copolymer comprises from at or about 20 to at or about 96 weight percent of ethylene and more preferably from at or about 25 to at or about 85 weight percent; and from at or about 4 to at or about 80 weight percent of the one or more alpha-olefins and more preferably from at or about 5 to at or about 75 weight percent, the weight percentages being based on the total weight of the ethylene alpha-olefins copolymers.
  • Preferred ethylene alpha-olefins copolymers are ethylene- propylene copolymers and ethylene-octene copolymers.
  • Copolymers derived from at least one alpha-olefin and a diene are preferably derived from alpha-olefins having preferably 3-8 carbon atoms
  • Preferred copolymers derived from at least one alpha-olefin and a diene are ethylene propylene diene elastomers.
  • ethylene propylene diene elastomers (EPDM) refers to any elastomer that is a terpolymer of ethylene, at least one alpha-olefin, and a copoiymerizable non-conjugated diene such as norbornadiene, 5-ethylidene-2-norbornene,
  • the ethylene propylene diene polymer preferably comprise from at or about 50 to at or about 80 weight percent of ethylene, from at or about 10 to at or about 50 weight percent of propylene and from at or about 0.5 to at or about 10 weight percent of at least one diene, the weight percentages being based on the total weight of the ethylene propylene diene elastomer.
  • the one or more functionalized polyolefins are preferably present in the resin composition described herein in an amount from at or about 5 to at or 40 weight percent and more preferably from at or about 10 to at or 30 weight percent, the weight percentages being based on the total weight of the resin composition.
  • the resin composition described herein may further comprise one or more unfunctionalized polyolefins.
  • the one or more unfunctionalized polyolefins are selected from unfunctionalized
  • the one or more unfunctionalized polyolefins are preferably present in the resin composition described herein in an amount from at or about 5 to at or 40 weight percent and more preferably from at or about 10 to at or 30 weight percent, the weight percentages being based on the total weight of the resin composition.
  • the resin composition described herein may further comprise one or more ionomers.
  • lonomers are thermoplastic resins that contain metal ions in addition to the organic backbone of the polymer such as for example copolymers of an olefin such as ethylene with partially
  • alpha, beta-unsaturated C 3 -C a carboxylic acid Preferred alpha, beta-unsaturated C3-C8 carboxylic acids are acrylic acid (AA), methacrylic acid (MAA) or maleic acid monoethylester ( AME).
  • Neutralizing agents are alkali metals like lithium, sodium or potassium or transition metals like manganese or zinc.
  • the one or more ionomers are preferably present in the resin composition described herein in an amount from at or about 5 to at or 40 weight percent and more preferably from at or about 10 to at or 30 weight percent, the weight percentages being based on the total weight of the resin composition.
  • Suitable ionomers for use in the present invention are commercially available under the trademark Surlyn ® from E. I. du Pont de Nemours and Company, Wilmington, Delaware.
  • the resin composition described herein may further comprise one or more plasticizers.
  • the one or more plasticizers are selected from sulfonamides, esters of hydroxybenzoic acids,
  • plasticizer examples include without limitation sulfonamides, esters of hydroxybenzoic acids, such as ethyl p-hydroxybenzoate, 2-ethylhexyl para-hydroxybenzoate, octyl p-hydroxybenzoate, 2-decylhexyl para-hydroxybenzoate or isohexadecyl p-hydroxybenzoate; tetrahydrofurfuryl alcohol esters or ethers, such as oligoethoxylated tetrahydrofurfuryl alcohol; esters of citric acid or of hydroxymalonic acid, such as oligoethoxylated malonate. Mention may also be made of decylhexyl para-hydroxybenzoate and ethylhexyl para-hydroxybenzoate.
  • the one or more plasticizer include without limitation sulfonamides, esters of hydroxybenzoic acids, such as ethyl p-hydroxybenzoate, 2-e
  • sulfonamides such as benzenesulfonamides and toluenesulfonamides.
  • aromatic sulfonamides include A/-alkyl
  • benzenesulfonamides and toluenesufonamides such as N- butylbenzenesulfonamide (BBSA), N-(2- hydroxypropyl)benzenesulfonamide, N-cyclohexyltoluenesulphonamide; N-n-octyltoluenesulfonamide, N-2-ethy!hexylbenzenesulfonamide, N- ethyl-o-toluenesulfonamide, N-ethyl-p-toluenesulfonamide, o- toluenesulfonamide, p-toluenesulfonamide, and the like.
  • BBSA butylbenzenesulfonamide
  • BBSA butylbenzenesulfonamide
  • N-(2- hydroxypropyl)benzenesulfonamide N-cyclohexyltolu
  • Preferred aromatic sulfonamides are N-butylbenzenesulfonamide, N-ethyl-o- toluenesulfonamide, and N-ethyl-p-toluenesulfonamide, are N- butylbenzenesulfonamide being particularly preferred.
  • the one or more plasticizers are preferably present in the resin composition described herein in an amount from at or about 1 to at or 20 weight percent and more preferably from at or about 5 to at or 15 weight percent, the weight percentages being based on the total weight of the resin composition.
  • the plasticizer may be incorporated into the resin composition by melt-blending the polymer with plasticizer and, optionally, other ingredients, or during polymerization.
  • the polyamide monomers are blended with one or more plasticizers prior to starting the polymerization cycle and the blend is introduced to the polymerization reactor.
  • the plasticizer can be added to the reactor during the polymerization cycle.
  • the resin composition described herein may further comprise one or more heat stabilizers.
  • the one or more heat stabilizers are selected from copper salts and/or copper salt derivatives such as for example copper halides or copper acetates; divalent manganese salts and/or derivatives thereof and mixtures thereof.
  • copper salts are used in combination with halide compounds and/or phosphorus compounds and more preferably copper salts are used in combination with iodide or bromide compounds, and still more preferably, with potassium iodide or potassium bromide.
  • the one or more heat stabilizers are preferably present in the resin composition described herein in an amount from at about 0.1 to about 3 weight percent and preferably from at or about 0.1 to at or about 1 weight percent, the weight
  • the resin composition described herein may further comprise one or more antioxidants such as phosphorus stabilizers (e.g. phosphate or phosphonite stabilizers), hindered phenol stabilizers, hindered amine stabilizers, aromatic amine stabilizers, thioesters, and phenolic based anti- oxidants that hinder thermally induced oxidation of polymers where high temperature applications are used.
  • the one or more antioxidants are selected from hindered phenol stabilizers, hindered amine stabilizers, phosphorus antioxidants and mixtures thereof.
  • the one or more antioxidants are preferably present in the resin composition described herein in an amount from at or about 0.1 to at or about 3 weight percent and preferably from at or about 0.1 to at or about 1 weight percent, the weight percentages being based on the total weight of the resin composition.
  • the resin composition described herein may further comprise modifiers and other ingredients, including, without limitation, lubricants and mold release agents (including stearic acid, stearyl alcohol and
  • stearamides and the like
  • flame retardants include flame retardants, antistatic agents, coloring agents (including dyes, pigments, carbon black, and the like), nucleating agents and other processing aids known in the polymer compounding art.
  • coloring agents including dyes, pigments, carbon black, and the like
  • nucleating agents and other processing aids known in the polymer compounding art.
  • the resin composition described herein may further comprise fillers and reinforcing agents such as mineral fillers, glass fibers, nano particulates, carbon fibers, metal fibers and metal-coated fibers.
  • fillers and reinforcing agents such as mineral fillers, glass fibers, nano particulates, carbon fibers, metal fibers and metal-coated fibers.
  • the resin compositions described herein are preferably melt-mixed blends, wherein all of the polymeric components are well-dispersed within each other and all of the non-polymeric ingredients are well-dispersed in and bound by the polymer matrix, such that the blend forms a unified whole. Any melt-mixing method may be used to combine the polymeric components and non-polymeric ingredients of the present invention.
  • the polymeric components and non-polymeric ingredients may be added to a melt mixer, such as, for example, a single or twin-screw extruder; a blender; a single or twin-screw kneader; or a Banbury mixer, either all at once through a single step addition, or in a stepwise fashion, and then melt-mixed.
  • a melt mixer such as, for example, a single or twin-screw extruder; a blender; a single or twin-screw kneader; or a Banbury mixer, either all at once through a single step addition, or in a stepwise fashion, and then melt-mixed.
  • a melt mixer such as, for example, a single or twin-screw extruder; a blender; a single or twin-screw kneader; or a Banbury mixer, either all at once through a single step addition, or in a stepwise fashion, and then melt-mixed.
  • the hollow structures described herein exhibit a good retention of mechanical properties upon exposure to a refrigerant fluid and are therefore particularly suitable in applications where the layer made of the resin composition described herein is in contact with a refrigerant fluid.
  • the hollow structure is preferably in the form of a hose, a pipe, a duct, a tube, tubing or a conduit. Due to the advantages mentioned above, the hollow structures described herein are particularly suitable for use in applications that require conveying a refrigerant fluid or a refrigerant- containing composition.
  • the refrigerant fluid that is conveyed by the hollow structure described herein comprises a hydrofluoroolefin (HFO) and more preferably 2,3,3,3-tetrafluoropropene.
  • HFO hydrofluoroolefin
  • Refrigerants fluids comprising fluorocarbon compounds based on hydrofluoroolefins (HFOs) and especially tetrafluoropropenes (such as for example HFO-1234) are particularly suitable.
  • Hydrofluoroolefins (HFOs) are unsaturated compounds, preferably having at least one double bond, comprising at least one fluorine atom substituent and at least one hydrogen atom.
  • Refrigerant-containing compositions may comprise a variety of optional additives including lubricants (e.g. mineral oil, polyalkylene glycol, polyalkylene glycol ester, polyvinyl ethers, and polyol esters), stabilizers (e.g. dienes, phosphates, phenols and epoxides), metal passivators, corrosion inhibitors, flammability suppressants, and the like.
  • lubricants e.g. mineral oil, polyalkylene glycol, polyalkylene glycol ester, polyvinyl ethers, and polyol esters
  • stabilizers e.g. dienes, phosphates, phenols and epoxides
  • metal passivators e.g. corrosion inhibitors, flammability suppressants, and the like.
  • the hollow structure described herein can be circular in cross-section, other shapes including elliptical or other non-circular shapes are also contemplated.
  • the walls of the hollow structure described herein may be smooth or may comprise corrugated regions that are interrupted by smooth regions (hereafter called “partially corrugated hoses") or can be corrugated all along its length (hereafter called “continuously corrugated hoses”).
  • continuously or partially corrugated hollow structures described herein enable complex routing of the pipes in constrained spaces, such as those available in underhood areas of automobiles and other vehicles.
  • the hollow structure described herein may be manufactured by any melt extrusion process including blow molding, profile extrusion and corrugated extrusion.
  • Profile extrusion and corrugated extrusion are conventional techniques used for manufacturing hollow plastic bodies in arbitrary long lengths.
  • the composition is extruded in a hot moldable state through the gap between the pin and the die of an extrusion head.
  • profile extrusion it is meant a technique used to produce a hollow article having the same cross section over a long length.
  • the pin and die are shaped to produce the desired cross-section, and for example an annular die-gap between concentric circular pin and die is used to make tubes and pipes.
  • the melt may be drawn to a thinner cross section through an air gap.
  • the melt is then cooled and its shape is maintained.
  • corrugated extrusion it is meant a technique used to produce hollow articles comprising corrugated regions that may be interrupted by smooth regions.
  • the pin and the die are positioned inside the two halves of the mold blocks of the equipment.
  • the molten material coming from the extrusion head reaches the mold blocks, it is drawn up to the shape of the mold article either by heated air or by vacuum expansion against the surface of the mold cavity.
  • Such process is described for example in U.S. Pat. No. 6,764,627 and 4,319,872 and Int'l. Pat. App. Pub. No. WO 03/055664.
  • multilayer hollow structures comprising a layer made of the resin composition described above and one or more additional layers.
  • the layer made of the resin composition described herein may be used as a barrier layer in the hollow structure or as a veneer layer.
  • barrier layer refers to a layer that is not in direct contact with the refrigerant fluid.
  • Veneer layer refers to a layer that is in direct contact with the refrigerant fluid.
  • a so-called veneer structure comprises the resin composition described herein as its innermost layer in direct contact with the refrigerant fluid. Fittings may inserted into the end of the hollow structure. If the hollow structure has a hard surface, specially designed fittings often comprising O-rings can be used to provide leak-proof sealing between the surface of the fitting and the resin composition described herein..
  • a so-called barrier structure comprises a resin made of a material other than the resin composition described herein, such as for example an elastomeric material, as its innermost layer, in direct contact with the refrigerant fluid and a barrier layer made of the resin composition described herein located outward of the innermost layer.
  • a resin made of a material other than the resin composition described herein such as for example an elastomeric material, as its innermost layer, in direct contact with the refrigerant fluid and a barrier layer made of the resin composition described herein located outward of the innermost layer.
  • the barrier layer made of the resin composition described herein is sandwiched between at least two other layers of the multilayer structure.
  • multilayer hollow structure examples include without limitation multilayer hollow structures comprising one or more barrier layers made of the resin composition described herein and an innermost layer made of a material other than the resin composition described herein;
  • multilayer hollow structures comprising one or more layers made of the resin composition described herein and an outermost layer made of a material other than the resin composition described herein; multilayer hollow structures comprising one or more layers made of the resin composition described herein, an innermost layer and an outermost layer made of a material other than the resin composition described herein; and multilayer hollow structures comprising one or more layers made of the resin composition described herein and one or more functional layers; and combinations thereof.
  • multilayer hollow structures comprising one or more layers made of the resin composition described herein and an innermost layer made of a material other than the resin composition described herein.
  • the term "innermost layer” refers to a layer that is in direct contact with the refrigerant fluid to be conveyed.
  • the innermost layer comprises an elastomeric material that is able to seal against the surface of a fitting inserted at one of the ends of the structure.
  • the elastomeric material is preferably a non-fluorinated rubber.
  • Preferred non-fluorinated rubbers are selected from acrylonitrile- butadiene rubber (NBR), hydrogenated acrylonitrile-butadiene rubber (HNBR), epichlorohydrin rubber (ECO), chlorosulfonated rubber (CSM), butyl rubber (MR) and mixtures thereof.
  • the innermost layer can comprise of a thermoplastic material selected from polyamides, polyesters and TEE.
  • multilayer hollow structures comprising one or more layers made of the resin composition described herein and an outermost layer made of a material other than the resin composition described herein.
  • the term outermost layer refers to a layer that faces the environment.
  • the outermost layer may be made of one or more suitable elastomeric or plastic materials designed to withstand the exterior environment encountered.
  • the material for the outermost layer is not specifically limited, but examples thereof include polyamide resins, polyolefin resins and thermoplastic elastomers and rubbers, which may be used either alone or in combination.
  • thermoplastic elastomers and rubbers include without limitation acrylonitrile-butadiene rubber (NBR), hydrogenated acrylonitrile-butadiene rubber (HNBR), butyl rubber (MR), chlorosulfonated polyethylene (CSM), polychloroprene rubber (CR), epichlorohydrin rubber (ECO), ethylene-vinyl acetate
  • EVM ethylene methylacrylate elastomer
  • ACM acrylic or acrylate elastomer
  • NBR-PVC nitrile-polyvinylchloride
  • CPE chlorinated polyethylene
  • EPDM ethylene-propylene-diene elastomer
  • the multilayer hollow structures described herein may further comprise one or more functional layers, which functional layers may be situated over the outermost layer or inside the innermost layer of the hollow structure.
  • the one or more functional layers include but are not limited to braidings, reinforcement layers, thermal shields and softer cover layers.
  • braidings may be filament braidings with polyamide, aramid, polyethylene terephthalate (PET) or metallic filaments and woven fabrics of these materials.
  • thermal shields may be metallic foils such as aluminum foils.
  • softer cover layers may be layers made of rubber or of a thermoplastic elastomer.
  • one or more adhesive layers also called tie layers, intervening tie layers or adhesion-promoting layers may be added between the different layers.
  • the multilayer hollow structures described herein can be any multilayer hollow structures described herein.
  • thermoplastic material examples include materials comprising for example a polyamide, a copolyamide, a polyester, a polyesterether, a functionalized polyolefin or a thermoplastic vulcanizate.
  • a multilayer co-extrusion process separate extruders are used to extrude each type of polymeric compositions.
  • the temperature settings and other processing conditions for the extruders are arranged such that they are appropriate to the composition being extruded. This avoids having to expose lower melting polymeric compositions to higher than normal processing temperatures during the extrusion step while allowing the extrusion of higher melting polymeric compositions at a suitable temperature.
  • the individual melts from the extrusion streams are combined together in a suitably designed die and arranged in the desired multilayer arrangement
  • the multilayer hollow structure comprising at least one layer made of the resin composition described herein and layers made of elastomeric materials can be made by a sequential process wherein each individual layer is extruded in sequence over a pre-extruded underlying layer, braiding layer is constructed at appropriate location, and the complete hollow structure is cured in order to cure the elastomeric layers.
  • one barrier layer, one braiding layer and two elastomeric layers may be constructed as follows: a hollow structure made of the resin composition described herein is first extruded to form the innermost layer and a layer of uncured elastomeric compound is then extruded over the first layer to form a second layer of the hose.
  • the elastomeric compound may be modified to enhance its adhesion to the layer made of the resin composition described herein.
  • the structure may be cooled to a low temperature, and then a braiding layer of filaments may be applied over the elastomeric layer.
  • a second layer of the same or a different uncured elastomeric compound is then extruded over the braiding layer.
  • the entire structure is subjected to a curing process to cure the elastomeric layers and ensure adhesion among the respective layers to form the multilayer hollow structure comprising a layer made of the resin composition described herein.
  • the present invention relates to a method for conveying a refrigerant fluid comprising a step of passing the refrigerant fluid through the hollow structure described herein.
  • the present invention relates a refrigerant device comprising the hollow structure described herein.
  • refrigerant device include without limitation automotive air-conditioning systems, building heating, ventilation and air conditioning systems, refrigerated storage systems, refrigerated transportation systems and such where a refrigerant fluid needs to be conveyed between various components of the device.
  • the following materials were used for preparing the resin composition to be used to make the hollow structure of the present invention and a comparative example.
  • Polyamide PA66/6T copolyamide made from a) group A monomers consisting of terephthalic acid and hexamethylenediamine; and b) group B monomers consisting of adipic acid and hexamethylenediamine, wherein the monomers of group A are present in an amount of 25 mole-percent and the monomers of group B are present in an amount of 75 mole- percent, the weight percentages being based on the copolyamide.
  • Polyamide PA6 Compound a commercially available PAG described as an extrudable super tough polyamide 6 resin suitable for hose inner cores, such a product is commercially available from E. I. du Pont de Nemours and Company, Wilmington, Delaware under the tradename Zytel ® ST811 HS NC 010.
  • MAH-g-ethylene octene copolymer ethylene octene copolymer comprising 72 weight percent of ethylene, 28 weight percent of octene and about 0.6 weight percent of grafted maleic anhydride.
  • Ethylene-octene polymer a polymer comprising 72 weight percent of ethylene, 28 weight percent of octene supplied from Dow Chemicals under the name EngageTM.
  • N-butyl benzene sulphonamide plasticizer supplied by Unitex Chemical Corportation, Greensboro, NC, USA under the name Uniplex 214
  • Antioxidant 1 N,N'-hexane-1 ,6-d iyl bis(3-(3, 5 ⁇ d i-tert-b u tyl-4- hydroxyphenylpropionamide)) supplied by Ciba Specialty Chemicals, Tarrytown, New York, USA under the tradename Irganox® 1098.
  • Antioxidant 2 tris(2,4-ditert-butylphenyl)phosphite supplied by Ciba Specialty Chemicals, Tarrytown, New York, USA under the tradename Irgafox® 168.
  • Heat stabilizer mixture of potassium iodide , copper iodide and aluminum distearate in a 7:1 :1 ratio.
  • Refrigerant fluid a mixture comprising 50% of HFO 1234 yf (2,3,3,3- tetrafluoropropene supplied by DuPont, 50% of a proprietary polyalkylene glycol (PAG) based lubricant referred to as ND8S5 supplied by Idemitsu and 2000 ppm H 2 0 based on the weight of the oil.
  • PAG polyalkylene glycol
  • the composition of the Example (E1 ) was prepared by melt blending ingredients shown in Table 1 in a ZSK 25 mm twin screw extruder operating at about 260 ° C and a throughput of about 15 kg/h. Ingredient quantities shown in Table 1 are given in weight percent on the basis of the total weight of the resin composition.
  • the compounded mixture was extruded in the form of laces or strands, cooled in a water bath, chopped into granules and placed into sealed aluminum lined bags in order to prevent moisture pick up.
  • the composition of the Comparative Example (C1 ) was used as commercially available resin form. All materials were dried overnight at 70°C in a dehumidified drier prior to further use.
  • test pieces Preparation of test pieces.
  • the compositions E1 and C1 were extruded into a thin sheet.
  • E1 composition was extruded into a 0.17 mm thick flat sheet using a sheet casting line with 45 mm (1.75") 24:1 L/D Wayne extruder with a 200 mm (8") wide coathanger type sheet die at a melt temperature of about 260°C.
  • Dogbone shaped tensile test pieces measuring 63 mm long, 3.2 mm wide in the gauge section and 9.5 mm wide at the ends were die-cut from the sheet.
  • Dogbone shaped tensile test pieces from a 0.15 mm thick sheet of composition C1 were procured for comparative testing. These test pieces measured about 45 mm long, 6 mm wide in the gauge section and 17 mm wide at the ends.
  • test specimens were dried at 60°C for 24 hrs in a dehumidified dryer, and individually sealed into glass tubes containing 4 ml_ of the refrigerant fluid (as described in the "Materials" section).
  • Two tubes were prepared for test pieces of composition E1 and three tubes were prepared for test pieces of composition C1.
  • the tubes were heated in an oven with circulating hot air at a temperature of 150°C for 300 hours. At the end of the heating, the glass tubes were broken and the test pieces were retrieved for
  • Tensile properties of the test pieces before and after heat ageing were measured at room temperature on a tensile tester by gripping the wide ends of the dogbone shaped test pieces in the upper and lower grips, and stretching the test pieces at a crosshead speed of 50 mm/min.
  • the average values of tensile strength before and after heat ageing are given in Table 1.
  • Polyamide or copolyamide phase of each composition was thus dissolved and the solution was used to determine the MW.
  • the average values of MW before and after heat ageing are given in Table 1.
  • test pieces made of the composition E1 comprising a semi-aromatic copolyamide and a functionalized polyolefin exhibited improved retention of the tensile strength and MW at the end of ageing test compared to comparative test pieces mad of composition C1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Laminated Bodies (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The present invention relates to the field of flexible hollow structure suitable to convey a refrigerant fluid and methods for their use. Disclosed hollow structures comprising a layer made of a resin composition comprising one or more semi-aromatic polyamides and one or more functionalized polyolefins show a balance of properties in terms of flexibility, permeation barrier against a refrigerant fluid and retention of properties upon heat and refrigerant fluid exposure.

Description

TITLE
HOLLOW STRUCTURES AND ASSOCIATED METHODS FOR CONVEYING REFRIGERANT FLUIDS FIELD OF THE INVENTION
The present invention relates to the field of flexible hollow structures that are particularly suitable for conveying refrigerant fluids.
BACKGROUND OF THE INVENTION
Hollow structures made of thermoplastic are well known for a variety of applications, like for example in the building industry for water pipes, radiator pipes or floor-heating pipes or in automotive conduits to carry many different fluids or liquid media, and are desired to display a balance of properties including thermal, mechanical and chemical resistance. In the automotive industry for example, and especially for structures made of thermoplastic materials and used to convey fluids, such structures (pipes, ducts, conduits, tubes, tubings, etc.) are desired to exhibit good mechanical properties, flexibility, impermeability and chemical resistance to the fluid(s) being conveyed. In air conditioning and refrigeration systems, the refrigerant fluid needs to be transported through and/or between various components of the system such as the
compressor, condenser and evaporator.
Hollow structures used to convey refrigerant fluids are required to exhibit a balance of properties including flexibility, thermal, mechanical and chemical resistance to all of the constituents of the refrigerant fluid.
Such structures need to be flexible for ease of installation and use, and often must be shaped into curves and bends for connecting
components already installed into fixed positions without kinking.
Such structures need to have a high resistance to bursting pressures and possess high impermeability to the refrigerant fluid being conveyed. It is important that the structure not suffer from deterioration leading to the loss of properties upon long term contact with the refrigerant fluid. For example, a reduction in molecular weight and concomitant loss in physical properties can result in failure of the structure during use.
Such failure can be catastrophic, with the loss of refrigerant fluid causing the impairment of the performance of the device within which the hollow structure is incorporated.
Due to the difficulty of meeting all these needs with a single material, multilayer hollow structures have been developed. The layers of such structures often comprise dissimilar materials to satisfy specified performance criteria by placing different materials at the most appropriate position in the structure. The multilayer hollow structure may comprise one or more barrier layers made of a thermoplastic resin that possess high impermeability to the refrigerant fluid, one or more elastomeric layers to provide flexibility, one or more layers of braiding to provide burst strength to withstand the refrigerant fluid pressure, and adhesive layers disposed between any of these layers to provide adhesion.
Poiyamides are a desirable material to use for hoses and pipes because they have good chemical resistance, good physical properties, and can be conveniently formed into hoses with a variety of diameters and incorporated into multi layered hoses. Certain short chain poiyamides and copolyamides, especially PA 6, PA 66 and PA 66/6 possess good impermeability to refrigerant fluids, and are thus commonly used to form thermoplastic resin barrier layers of the hollow structure used to convey refrigerant fluids. These poiyamides may further comprise plasticizers and/or toughening agents.
European Pat. No. 0,945,660 discloses a multilayer hose
comprising an innermost layer comprising a polyamide, especially polyamide 6, and optionally a polyolefin rubber, an intermediate reinforcing layer made of aramid fibers and an outermost layer made of an ethylene acrylic rubber.
Unfortunately, the existing technologies that are used to prepare hollow structures for conveying refrigerant fluids suffer from deterioration of their mechanical properties upon high temperature exposure in the presence of a refrigerant fluid.
A need remains for hollow structures used for conveying refrigerant fluids that have a good balance of properties in terms of flexibility, impermeability to the refrigerant fluid being conveyed and a good retention of mechanical and structural properties upon exposure to heat in the presence of a refrigerant fluid.
SUMMARY OF THE INVENTION
There is disclosed a use of a hollow structure for conveying a refrigerant fluid, said hollow structure comprising a layer made of a resin composition comprising one or more semi-aromatic poiyamides and one or more functionalized polyolefins,
wherein the one or more semi-aromatic poiyamides are selected from copolyamides made from:
a) group A monomers selected from:
i) aromatic dicarboxylic acids having 8 to 20 carbon atoms and aliphatic diamines having 4 to 20 carbon atoms; or
ii) aliphatic dicarboxylic acids having 6 to 20 carbon atoms and aromatic diamine having 6 to 20 carbon atoms; or
iii) aromatic aminocarboxylic acids having 7 to 20 carbon atoms; and
b) group B monomers selected from:
iv) aliphatic dicarboxylic acids having 6 to 20 carbon atoms and aliphatic diamines having 4 to 20 carbon atoms; or
v) lactams and/or aliphatic aminocarboxylic acids having 4 to 20 carbon atoms,
wherein the monomers of group A are present in an amount from at or about 10 mole-percent to at or about 40 mole-percent based on the copolyamide, and the monomers of group B are present in an amount from at or about 60 mole-percent to at or about 90 mole-percent based on the copolyamide.
Further described herein is a refrigerant device comprising the hollow structure described above.
Further described herein is method for conveying a refrigerant fluid comprising a step of passing the refrigerant fluid through the hollow structure described above. DETAILED DESCRIPTION OF THE INVENTION
As used throughout the specification, the phrases "about" and "at or about" are intended to mean that amounts, sizes, formulations, parameters, and other quantities and characteristics are not and need not be exact, but may be approximate and/or larger or smaller, as desired, reflecting tolerances, conversion factors, rounding off,
measurement error and the like, and other factors known to those of skill in the art. In genera!, an amount, size, formulation, parameter or other quantity or characteristic is "about" or "approximate" whether or not expressly stated to be such.
The term "fluid" refers to a substance that flows and conforms to the outline of its container, a fluid can be a liquid or a gas.
The terms "pipe", "duct", "conduit", "tube" and "tubing" are used interchangeably herein to denote a hollow structure, i.e. any structure having an empty or concave interior part used to convey a fluid.
The hollow structure according to the present invention comprises a layer made of a resin composition comprising one or more semi-aromatic polyamides and one or more functionalized polyolefins.
The one or more semi-aromatic polyamides comprised in the resin composition described herein are selected from copolyamides made from: a) group A monomers selected from:
i) aromatic dicarboxylic acids having 8 to 20 carbon atoms and aliphatic diamines having 4 to 20 carbon atoms; or
ii) aliphatic dicarboxylic acids having 6 to 20 carbon atoms and aromatic diamine having 6 to 20 carbon atoms; or
iii) aromatic aminocarboxylic acids having 7 to 20 carbon atoms; and
b) group B monomers selected from:
iv) aliphatic dicarboxylic acids having 6 to 20 carbon atoms and aliphatic diamines having 4 to 20 carbon atoms; or
v) lactams and/or aliphatic aminocarboxylic acids having 4 to 20 carbon atoms, wherein the monomers of group A are present in an amount from at or about 10 mole-percent to at or about 40 mole-percent, preferably from at or about 15 mole-percent to at or about 35 mole-percent, based on the copolyamide, and the monomers of group B are present in an amount from at or about 60 mole-percent to at or about 90 mole-percent, preferably from at or about 65 mole-percent to at or about 85 mole-percent based on the copolyamide.
Suitable aromatic dicarboxylic acids having 8 to 20 carbon atoms include terephthalic acid, isophthalic acid, phthalic acid, 2-methyl terephthalic acid, diphenic acid, 1 ,5-naphthalenedicarboxylic acid, 2,6- naphthalenedicarboxylic acid, and 2,7-naphthalenedicarboxylic, 1 ,5- nathphalenedicarboxylic acid; 2,6-nathphalenedicarboxylic acid; terephthalic acid and isophthalic acid being preferred.
Suitable aliphatic dicarboxylic acids having 6 to 20 carbon atoms include adipic acid (C6), pimelic acid (C7), suberic acid (C8), azelaic acid (C9), decanedioic acid (C10), undecanedioic acid (C11 ), dodecanedioic acid (C12), tridecanedioic acid (C13), tetradecanedioic acid (C14), and pentadecanedioic acid (C15), hexadecanoic acid (C16), octadecanoic acid (C18) and eicosanoic acid (C20).
Suitable aliphatic diamines having 4 to 20 carbon atoms include tetramethylene diamine, hexamethylene diamine, octamethylene diamine, nonamethylenediamine, decamethylene diamine, dodecamethylene diamine, 2-methylpentamethylene diamine, 2-ethyltetramethylene diamine, 2-methyloctamethylene diamine, trimethylhexamethylene diamine, and bis(p-aminocyclohexyl)methane.
Suitable aromatic diamines having 6 to 20 carbon atoms include m- xylylenediamine and p-xylylenediamine.
Suitable aromatic aminocarboxylic acids having 7 to 20 carbon atoms include p-aminobenzoic acid, m-aminobenzoic acid, anthranilic acid 6-amino-2-naphthoic acid. .
Suitable lactams include caprolactam and laurolactam.
A suitable aliphatic aminocarboxylic acid includes 11- aminoundecanoic acid. Preferably, the one or more semi-aromatic polyamides comprised in the resin composition described herein are selected from copolyamides made from:
a) group A monomers selected from:
i) aromatic dicarboxylic acids selected from terephthalic acid, isophthaiic acid and mixtures thereof and aliphatic diamines having 4 to 10 carbon atoms; or
ii) aliphatic dicarboxylic acids having 6 to 14 carbon atoms and aromatic diamine having 6 to 10 carbon atoms; or
iii) aromatic aminocarboxylic acids having 7 to 10 carbon atoms and
b) group B monomers selected from:
iv) aliphatic dicarboxylic acids having 6 to 10 carbon atoms and aliphatic diamines having 4 to 10 carbon atoms; or
v) lactams and/or aliphatic aminocarboxylic acids having 4 to 12 carbon atoms.
More preferably, the one or more semi-aromatic polyamides are selected from copolyamides made from:
- a) group A monomers selected from terephthalic acid and
hexamethylenediamine or terephthalic acid and tetramethylenediamine; and b) group B monomers selected from adipic acid and
tetramethylenediamine; adipic acid and hexamethylenediamine;
decanedioic acid and hexamethylenediamine; dodecanedioic acid and hexamethylenediamine; caproiactam; laurolactam; 11-aminoundecanoic acid;
- a) group A monomers selected terephthalic acid and
decamethylenediamine; and b) group B monomers selected from
decanedioic acid and decamethylenediamine;
- a) group A monomers selected adipic acid and m-xylylenediamine; and b) group B monomers selected from adipic acid and
hexamethylenediamine;
- and mixtures thereof. Still more preferably, the one or more semi-aromatic polyamides are selected from copolyamides made from: a) group A monomers selected from terephthalic acid and hexamethyienediamine and b) group B monomers selected from adipic acid and hexamethyienediamine.
The copolyamides described herein may be prepared by any means known to those skilled in the art, such as in a batch process using, for example, an autoclave or using a continuous process. See, for example, Kohan, M.I. Ed. Nylon Plastics Handbook, Hansen Munich, 1995; pp. 13-32. Generally, the monomers are allowed to react to form a random chain of interlinked monomers.
The resin composition described herein comprises one or more functionalized polyolefins. The one or more functionalized polyolefins may be used alone or may be used in combination with the one or more unfunctionalized polyolefins described below. The term "functionalized polyolefin" refers to an alkylcarboxyl-substituted polyolefin, which is a polyolefin that has carboxyiic moieties attached thereto, either on the polyolefin backbone itself or on side chains. The term "carboxyiic moiety" refers to carboxyiic groups, such as carboxyiic acids, carboxyiic acid ester, carboxyiic acid anhydrides and carboxyiic acid salts.
Functionalized polyolefins may be prepared by direct synthesis or by grafting. An example of direct synthesis is the polymerization of ethylene and/or at least one alpha-olefin with at least one ethylenically unsaturated monomer having a carboxyiic moiety. An example of grafting process is the addition of at least one ethylenically unsaturated monomer having at least one carboxyiic moiety to a polyolefin backbone. The ethylenically unsaturated monomers having at least one carboxyiic moiety may be, for example, mono-, di-, or polycarboxylic acids and/or their derivatives, including esters, anhydrides, salts, amides, imides, and the like. Suitable ethylenically unsaturated monomers include methacrylic acid; acrylic acid; ethacrylic acid; glycidyl methacrylate; 2-hydroxy ethylacrylate; 2-hydroxy ethyl methacrylate; diethyl maleate; monoethyl maleate; di-n-butyl maleate; maleic anhydride; maieic acid; fumaric acid; mono- and disodium maleate; acrylamide; glycidyl methacrylate; dimethyl fumarate; crotonic acid, itaconic acid, itaconic anhydride;
tetrahydrophthalic anhydride; monoesters of these dicarboxylic acids; dodecenyl succinic anhydride; 5-norbornene-2,3-anhydride; nadic anhydride (3,6-endomethylene-1 ,2,3,6-tetrahydrophthalic anhydride);
nadic methyl anhydride; and the like. Since polyolefins are incompatible with polyamides, it is necessary to modify them with functional groups that are capable of reacting with the acid or amine ends of the polyamide polymer. Due to the fact that the reaction of an anhydride with an amine is very fast, anhydrides are preferred grafting agents and more preferably maleic anhydride is chosen.
Preferably, the one or more functionalized polyolefins are one or more grafted polyolefins. The grafting agents, i.e. the at least one monomer having at least one carboxylic moiety, is preferably present in the one or more functionalized polyolefins in an amount from at or about 0.05 to at or about 6 weight percent, preferably from at or about 0.1 to at or about 2.0 weight percent, the weight percentages being based of the total weight of the one or more functionalized polyolefins.
Grafted polyolefins are preferably derived by grafting at least one monomer having at least one carboxylic moiety to a polyolefin, an ethylene alpha-olefin or a copolymer derived from at least one alpha-olefin and a diene. Preferably, the resin composition described herein comprises grafted polyolefins selected from grafted polyethylenes, grafted
polypropylenes, grafted ethylene alpha-olefin copolymers, grafted copolymers derived from at least one alpha-olefin and a diene and mixtures thereof. More preferably, the resin composition described herein comprises maleic anhydride grafted polyolefins selected from maleic anhydride grafted polyethylenes, maleic anhydride grafted polypropylenes, maleic anhydride grafted ethylene alpha-olefin copolymers, maleic anhydride grafted copolymers derived from at least one alpha-olefin and a diene and mixtures thereof.
Polyethylenes used for preparing maleic anhydride grafted polyethylene (MAH-g-PE) are commonly available polyethylene resins selected from HDPE (density higher than 0.94 g/cm3), LLDPE (density of 0.915 - 0.925 g/cm3) or LDPE (density of 0.91 - 0.94 g/cm3).
Polypropylenes used for preparing maleic anhydride grafted polypropylene (MAH-g-PP) are commonly available copolymer or homopolymer polypropylene resins.
Ethylene alpha-olefins copolymers comprise ethylene and one or more alpha-olefins, preferably the one or more alpha-olefins have 3-12 carbon atoms. Examples of alpha-olefins include but are not limited to propylene, 1-butene, 1-pentene, 1-hexene-1 , 4-methyl 1-pentene, 1- heptene, 1-octene, 1-nonene, 1-decene, 1-undecene and 1-dodecene. Preferably the ethylene alpha-olefin copolymer comprises from at or about 20 to at or about 96 weight percent of ethylene and more preferably from at or about 25 to at or about 85 weight percent; and from at or about 4 to at or about 80 weight percent of the one or more alpha-olefins and more preferably from at or about 5 to at or about 75 weight percent, the weight percentages being based on the total weight of the ethylene alpha-olefins copolymers. Preferred ethylene alpha-olefins copolymers are ethylene- propylene copolymers and ethylene-octene copolymers.
Copolymers derived from at least one alpha-olefin and a diene are preferably derived from alpha-olefins having preferably 3-8 carbon atoms, Preferred copolymers derived from at least one alpha-olefin and a diene are ethylene propylene diene elastomers. The term "ethylene propylene diene elastomers (EPDM)" refers to any elastomer that is a terpolymer of ethylene, at least one alpha-olefin, and a copoiymerizable non-conjugated diene such as norbornadiene, 5-ethylidene-2-norbornene,
dicyclopentadiene, 1 ,4-hexadiene and the like. When a functionalized ethylene propylene diene elastomer is comprised in the resin composition described herein, the ethylene propylene diene polymer preferably comprise from at or about 50 to at or about 80 weight percent of ethylene, from at or about 10 to at or about 50 weight percent of propylene and from at or about 0.5 to at or about 10 weight percent of at least one diene, the weight percentages being based on the total weight of the ethylene propylene diene elastomer.
The one or more functionalized polyolefins are preferably present in the resin composition described herein in an amount from at or about 5 to at or 40 weight percent and more preferably from at or about 10 to at or 30 weight percent, the weight percentages being based on the total weight of the resin composition.
The resin composition described herein may further comprise one or more unfunctionalized polyolefins. Preferably, the one or more unfunctionalized polyolefins are selected from unfunctionalized
polyethylenes, unfunctionalized polypropylenes, unfunctionalized ethylene alpha-olefin copolymers such as those described above, unfunctionalized ethylene propylene diene rubbers (EPDM) such as those described above and mixtures thereof. When present, the one or more unfunctionalized polyolefins are preferably present in the resin composition described herein in an amount from at or about 5 to at or 40 weight percent and more preferably from at or about 10 to at or 30 weight percent, the weight percentages being based on the total weight of the resin composition.
The resin composition described herein may further comprise one or more ionomers. lonomers are thermoplastic resins that contain metal ions in addition to the organic backbone of the polymer such as for example copolymers of an olefin such as ethylene with partially
neutralized (from 10 to 99.9%) alpha, beta-unsaturated C3-Ca carboxylic acid. Preferred alpha, beta-unsaturated C3-C8 carboxylic acids are acrylic acid (AA), methacrylic acid (MAA) or maleic acid monoethylester ( AME). Neutralizing agents are alkali metals like lithium, sodium or potassium or transition metals like manganese or zinc. When present, the one or more ionomers are preferably present in the resin composition described herein in an amount from at or about 5 to at or 40 weight percent and more preferably from at or about 10 to at or 30 weight percent, the weight percentages being based on the total weight of the resin composition. Suitable ionomers for use in the present invention are commercially available under the trademark Surlyn® from E. I. du Pont de Nemours and Company, Wilmington, Delaware.
The resin composition described herein may further comprise one or more plasticizers. Preferably, the one or more plasticizers are selected from sulfonamides, esters of hydroxybenzoic acids,
tetrahydrofurfuryl alcohol esters or ethers, esters of citric acid or of hydroxymalonic acid and mixtures thereof. Examples of plasticizer include without limitation sulfonamides, esters of hydroxybenzoic acids, such as ethyl p-hydroxybenzoate, 2-ethylhexyl para-hydroxybenzoate, octyl p-hydroxybenzoate, 2-decylhexyl para-hydroxybenzoate or isohexadecyl p-hydroxybenzoate; tetrahydrofurfuryl alcohol esters or ethers, such as oligoethoxylated tetrahydrofurfuryl alcohol; esters of citric acid or of hydroxymalonic acid, such as oligoethoxylated malonate. Mention may also be made of decylhexyl para-hydroxybenzoate and ethylhexyl para-hydroxybenzoate. Preferably, the one or more plasticizers are sulphonamides and more preferably aromatic
sulfonamides such as benzenesulfonamides and toluenesulfonamides. Examples of suitable aromatic sulfonamides include A/-alkyl
benzenesulfonamides and toluenesufonamides, such as N- butylbenzenesulfonamide (BBSA), N-(2- hydroxypropyl)benzenesulfonamide, N-cyclohexyltoluenesulphonamide; N-n-octyltoluenesulfonamide, N-2-ethy!hexylbenzenesulfonamide, N- ethyl-o-toluenesulfonamide, N-ethyl-p-toluenesulfonamide, o- toluenesulfonamide, p-toluenesulfonamide, and the like. Preferred aromatic sulfonamides are N-butylbenzenesulfonamide, N-ethyl-o- toluenesulfonamide, and N-ethyl-p-toluenesulfonamide, are N- butylbenzenesulfonamide being particularly preferred. When present, the one or more plasticizers are preferably present in the resin composition described herein in an amount from at or about 1 to at or 20 weight percent and more preferably from at or about 5 to at or 15 weight percent, the weight percentages being based on the total weight of the resin composition. The plasticizer may be incorporated into the resin composition by melt-blending the polymer with plasticizer and, optionally, other ingredients, or during polymerization. If the plasticizer is incorporated during polymerization, the polyamide monomers are blended with one or more plasticizers prior to starting the polymerization cycle and the blend is introduced to the polymerization reactor. Alternatively, the plasticizer can be added to the reactor during the polymerization cycle.
The resin composition described herein may further comprise one or more heat stabilizers. Preferably, the one or more heat stabilizers are selected from copper salts and/or copper salt derivatives such as for example copper halides or copper acetates; divalent manganese salts and/or derivatives thereof and mixtures thereof. Preferably, copper salts are used in combination with halide compounds and/or phosphorus compounds and more preferably copper salts are used in combination with iodide or bromide compounds, and still more preferably, with potassium iodide or potassium bromide. When present, the one or more heat stabilizers are preferably present in the resin composition described herein in an amount from at about 0.1 to about 3 weight percent and preferably from at or about 0.1 to at or about 1 weight percent, the weight
percentages being based on the total weight of the resin composition.
The resin composition described herein may further comprise one or more antioxidants such as phosphorus stabilizers (e.g. phosphate or phosphonite stabilizers), hindered phenol stabilizers, hindered amine stabilizers, aromatic amine stabilizers, thioesters, and phenolic based anti- oxidants that hinder thermally induced oxidation of polymers where high temperature applications are used. Preferably, the one or more antioxidants are selected from hindered phenol stabilizers, hindered amine stabilizers, phosphorus antioxidants and mixtures thereof. When present, the one or more antioxidants are preferably present in the resin composition described herein in an amount from at or about 0.1 to at or about 3 weight percent and preferably from at or about 0.1 to at or about 1 weight percent, the weight percentages being based on the total weight of the resin composition.
The resin composition described herein may further comprise modifiers and other ingredients, including, without limitation, lubricants and mold release agents (including stearic acid, stearyl alcohol and
stearamides, and the like), flame retardants, antistatic agents, coloring agents (including dyes, pigments, carbon black, and the like), nucleating agents and other processing aids known in the polymer compounding art.
The resin composition described herein may further comprise fillers and reinforcing agents such as mineral fillers, glass fibers, nano particulates, carbon fibers, metal fibers and metal-coated fibers.
The resin compositions described herein are preferably melt-mixed blends, wherein all of the polymeric components are well-dispersed within each other and all of the non-polymeric ingredients are weil-dispersed in and bound by the polymer matrix, such that the blend forms a unified whole. Any melt-mixing method may be used to combine the polymeric components and non-polymeric ingredients of the present invention. For example, the polymeric components and non-polymeric ingredients may be added to a melt mixer, such as, for example, a single or twin-screw extruder; a blender; a single or twin-screw kneader; or a Banbury mixer, either all at once through a single step addition, or in a stepwise fashion, and then melt-mixed. When adding the polymeric components and non- polymeric ingredients in a stepwise fashion, part of the polymeric components and/or non-polymeric ingredients are first added and melt- mixed with the remaining polymeric components and non-polymeric ingredients being subsequently added and further melt-mixed until a well- mixed composition is obtained.
The hollow structures described herein exhibit a good retention of mechanical properties upon exposure to a refrigerant fluid and are therefore particularly suitable in applications where the layer made of the resin composition described herein is in contact with a refrigerant fluid. The hollow structure is preferably in the form of a hose, a pipe, a duct, a tube, tubing or a conduit. Due to the advantages mentioned above, the hollow structures described herein are particularly suitable for use in applications that require conveying a refrigerant fluid or a refrigerant- containing composition. Preferably, the refrigerant fluid that is conveyed by the hollow structure described herein comprises a hydrofluoroolefin (HFO) and more preferably 2,3,3,3-tetrafluoropropene. Refrigerants fluids comprising fluorocarbon compounds based on hydrofluoroolefins (HFOs) and especially tetrafluoropropenes (such as for example HFO-1234) are particularly suitable. Hydrofluoroolefins (HFOs) are unsaturated compounds, preferably having at least one double bond, comprising at least one fluorine atom substituent and at least one hydrogen atom.
Refrigerant-containing compositions may comprise a variety of optional additives including lubricants (e.g. mineral oil, polyalkylene glycol, polyalkylene glycol ester, polyvinyl ethers, and polyol esters), stabilizers (e.g. dienes, phosphates, phenols and epoxides), metal passivators, corrosion inhibitors, flammability suppressants, and the like.
While for many applications the hollow structure described herein can be circular in cross-section, other shapes including elliptical or other non-circular shapes are also contemplated. The walls of the hollow structure described herein may be smooth or may comprise corrugated regions that are interrupted by smooth regions (hereafter called "partially corrugated hoses") or can be corrugated all along its length (hereafter called "continuously corrugated hoses"). Continuously or partially corrugated hollow structures described herein enable complex routing of the pipes in constrained spaces, such as those available in underhood areas of automobiles and other vehicles.
The hollow structure described herein may be manufactured by any melt extrusion process including blow molding, profile extrusion and corrugated extrusion. Profile extrusion and corrugated extrusion are conventional techniques used for manufacturing hollow plastic bodies in arbitrary long lengths. During profile and corrugated extrusion, the composition is extruded in a hot moldable state through the gap between the pin and the die of an extrusion head. By "profile extrusion", it is meant a technique used to produce a hollow article having the same cross section over a long length. The pin and die are shaped to produce the desired cross-section, and for example an annular die-gap between concentric circular pin and die is used to make tubes and pipes. After it exits the die assembly, the melt may be drawn to a thinner cross section through an air gap. The melt is then cooled and its shape is maintained. By "corrugated extrusion", it is meant a technique used to produce hollow articles comprising corrugated regions that may be interrupted by smooth regions. In this case, the pin and the die are positioned inside the two halves of the mold blocks of the equipment. When the molten material coming from the extrusion head reaches the mold blocks, it is drawn up to the shape of the mold article either by heated air or by vacuum expansion against the surface of the mold cavity. Such process is described for example in U.S. Pat. No. 6,764,627 and 4,319,872 and Int'l. Pat. App. Pub. No. WO 03/055664.
Also described herein are multilayer hollow structures comprising a layer made of the resin composition described above and one or more additional layers. In multilayer hollow structures, the layer made of the resin composition described herein may be used as a barrier layer in the hollow structure or as a veneer layer. The term "barrier layer" refers to a layer that is not in direct contact with the refrigerant fluid. The term
"veneer layer" refers to a layer that is in direct contact with the refrigerant fluid. A so-called veneer structure comprises the resin composition described herein as its innermost layer in direct contact with the refrigerant fluid. Fittings may inserted into the end of the hollow structure. If the hollow structure has a hard surface, specially designed fittings often comprising O-rings can be used to provide leak-proof sealing between the surface of the fitting and the resin composition described herein..
A so-called barrier structure comprises a resin made of a material other than the resin composition described herein, such as for example an elastomeric material, as its innermost layer, in direct contact with the refrigerant fluid and a barrier layer made of the resin composition described herein located outward of the innermost layer. Given that elastomeric materials are flexible, it is often able to provide sealing against the surface of a fitting inserted into the end of the hollow structure. In this latter structure, the barrier layer made of the resin composition described herein is sandwiched between at least two other layers of the multilayer structure.
Examples of multilayer hollow structure include without limitation multilayer hollow structures comprising one or more barrier layers made of the resin composition described herein and an innermost layer made of a material other than the resin composition described herein;
multilayer hollow structures comprising one or more layers made of the resin composition described herein and an outermost layer made of a material other than the resin composition described herein; multilayer hollow structures comprising one or more layers made of the resin composition described herein, an innermost layer and an outermost layer made of a material other than the resin composition described herein; and multilayer hollow structures comprising one or more layers made of the resin composition described herein and one or more functional layers; and combinations thereof.
Described herein are multilayer hollow structures comprising one or more layers made of the resin composition described herein and an innermost layer made of a material other than the resin composition described herein. The term "innermost layer" refers to a layer that is in direct contact with the refrigerant fluid to be conveyed. Preferably, the innermost layer comprises an elastomeric material that is able to seal against the surface of a fitting inserted at one of the ends of the structure. The elastomeric material is preferably a non-fluorinated rubber. Preferred non-fluorinated rubbers are selected from acrylonitrile- butadiene rubber (NBR), hydrogenated acrylonitrile-butadiene rubber (HNBR), epichlorohydrin rubber (ECO), chlorosulfonated rubber (CSM), butyl rubber (MR) and mixtures thereof. Alternately, the innermost layer can comprise of a thermoplastic material selected from polyamides, polyesters and TEE.
Also described herein are multilayer hollow structures comprising one or more layers made of the resin composition described herein and an outermost layer made of a material other than the resin composition described herein. The term outermost layer refers to a layer that faces the environment. In general, the outermost layer may be made of one or more suitable elastomeric or plastic materials designed to withstand the exterior environment encountered. The material for the outermost layer is not specifically limited, but examples thereof include polyamide resins, polyolefin resins and thermoplastic elastomers and rubbers, which may be used either alone or in combination. Examples of thermoplastic elastomers and rubbers include without limitation acrylonitrile-butadiene rubber (NBR), hydrogenated acrylonitrile-butadiene rubber (HNBR), butyl rubber (MR), chlorosulfonated polyethylene (CSM), polychloroprene rubber (CR), epichlorohydrin rubber (ECO), ethylene-vinyl acetate
(EVM), ethylene methylacrylate elastomer (EAM), acrylic or acrylate elastomer (ACM), nitrile-polyvinylchloride (NBR-PVC) blended
elastomer, chlorinated polyethylene (CPE), ethylene-alpha-olefin elastomer, ethylene-propylene-diene elastomer (EPDM) and mixtures thereof.
The multilayer hollow structures described herein may further comprise one or more functional layers, which functional layers may be situated over the outermost layer or inside the innermost layer of the hollow structure. The one or more functional layers include but are not limited to braidings, reinforcement layers, thermal shields and softer cover layers. Examples of braidings may be filament braidings with polyamide, aramid, polyethylene terephthalate (PET) or metallic filaments and woven fabrics of these materials. Examples of thermal shields may be metallic foils such as aluminum foils. Examples of softer cover layers may be layers made of rubber or of a thermoplastic elastomer.
Should the adhesion between the layer made of the resin composition described herein and the one or more additional layers be insufficient, one or more adhesive layers (also called tie layers, intervening tie layers or adhesion-promoting layers) may be added between the different layers.
The multilayer hollow structures described herein can be
manufactured by conventional processes like for example extrusion, blow molding, injection molding, and corrugated extrusion. When the layer made of the resin composition described herein is adjacent to and directly in contact with a layer made of a second thermoplastic material, these layers may be manufactured by processes such as coextrusion or coextrusion blowmolding. Examples of a second thermoplastic material include materials comprising for example a polyamide, a copolyamide, a polyester, a polyesterether, a functionalized polyolefin or a thermoplastic vulcanizate. In a multilayer co-extrusion process, separate extruders are used to extrude each type of polymeric compositions. The temperature settings and other processing conditions for the extruders are arranged such that they are appropriate to the composition being extruded. This avoids having to expose lower melting polymeric compositions to higher than normal processing temperatures during the extrusion step while allowing the extrusion of higher melting polymeric compositions at a suitable temperature. The individual melts from the extrusion streams are combined together in a suitably designed die and arranged in the desired multilayer arrangement
The multilayer hollow structure comprising at least one layer made of the resin composition described herein and layers made of elastomeric materials can be made by a sequential process wherein each individual layer is extruded in sequence over a pre-extruded underlying layer, braiding layer is constructed at appropriate location, and the complete hollow structure is cured in order to cure the elastomeric layers. For example, in order to construct a veneer structure with circular cross- section, one barrier layer, one braiding layer and two elastomeric layers may be constructed as follows: a hollow structure made of the resin composition described herein is first extruded to form the innermost layer and a layer of uncured elastomeric compound is then extruded over the first layer to form a second layer of the hose. The elastomeric compound may be modified to enhance its adhesion to the layer made of the resin composition described herein. Given the high softness of the uncured elastomeric compound layer at room temperature, the structure may be cooled to a low temperature, and then a braiding layer of filaments may be applied over the elastomeric layer. A second layer of the same or a different uncured elastomeric compound is then extruded over the braiding layer. Finally the entire structure is subjected to a curing process to cure the elastomeric layers and ensure adhesion among the respective layers to form the multilayer hollow structure comprising a layer made of the resin composition described herein.
In another aspect, the present invention relates to a method for conveying a refrigerant fluid comprising a step of passing the refrigerant fluid through the hollow structure described herein.
In another aspect, the present invention relates a refrigerant device comprising the hollow structure described herein. Examples of refrigerant device include without limitation automotive air-conditioning systems, building heating, ventilation and air conditioning systems, refrigerated storage systems, refrigerated transportation systems and such where a refrigerant fluid needs to be conveyed between various components of the device.
EXAMPLES
The Examples below provide greater detail for the compositions, uses and processes described herein.
The following materials were used for preparing the resin composition to be used to make the hollow structure of the present invention and a comparative example.
Materials
Polyamide PA66/6T: copolyamide made from a) group A monomers consisting of terephthalic acid and hexamethylenediamine; and b) group B monomers consisting of adipic acid and hexamethylenediamine, wherein the monomers of group A are present in an amount of 25 mole-percent and the monomers of group B are present in an amount of 75 mole- percent, the weight percentages being based on the copolyamide.
Polyamide PA6 Compound: a commercially available PAG described as an extrudable super tough polyamide 6 resin suitable for hose inner cores, such a product is commercially available from E. I. du Pont de Nemours and Company, Wilmington, Delaware under the tradename Zytel® ST811 HS NC 010.
MAH-g-ethylene octene copolymer: ethylene octene copolymer comprising 72 weight percent of ethylene, 28 weight percent of octene and about 0.6 weight percent of grafted maleic anhydride. Ethylene-octene polymer: a polymer comprising 72 weight percent of ethylene, 28 weight percent of octene supplied from Dow Chemicals under the name Engage™.
N-butyl benzene sulphonamide: plasticizer supplied by Unitex Chemical Corportation, Greensboro, NC, USA under the name Uniplex 214
Antioxidant 1 : N,N'-hexane-1 ,6-d iyl bis(3-(3, 5~d i-tert-b u tyl-4- hydroxyphenylpropionamide)) supplied by Ciba Specialty Chemicals, Tarrytown, New York, USA under the tradename Irganox® 1098.
Antioxidant 2: tris(2,4-ditert-butylphenyl)phosphite supplied by Ciba Specialty Chemicals, Tarrytown, New York, USA under the tradename Irgafox® 168.
Heat stabilizer: mixture of potassium iodide , copper iodide and aluminum distearate in a 7:1 :1 ratio.
Refrigerant fluid: a mixture comprising 50% of HFO 1234 yf (2,3,3,3- tetrafluoropropene supplied by DuPont, 50% of a proprietary polyalkylene glycol (PAG) based lubricant referred to as ND8S5 supplied by Idemitsu and 2000 ppm H20 based on the weight of the oil.
Compounding. The composition of the Example (E1 ) was prepared by melt blending ingredients shown in Table 1 in a ZSK 25 mm twin screw extruder operating at about 260°C and a throughput of about 15 kg/h. Ingredient quantities shown in Table 1 are given in weight percent on the basis of the total weight of the resin composition. The compounded mixture was extruded in the form of laces or strands, cooled in a water bath, chopped into granules and placed into sealed aluminum lined bags in order to prevent moisture pick up. The composition of the Comparative Example (C1 ) was used as commercially available resin form. All materials were dried overnight at 70°C in a dehumidified drier prior to further use.
Preparation of test pieces. The compositions E1 and C1 were extruded into a thin sheet. E1 composition was extruded into a 0.17 mm thick flat sheet using a sheet casting line with 45 mm (1.75") 24:1 L/D Wayne extruder with a 200 mm (8") wide coathanger type sheet die at a melt temperature of about 260°C. Dogbone shaped tensile test pieces measuring 63 mm long, 3.2 mm wide in the gauge section and 9.5 mm wide at the ends were die-cut from the sheet. Dogbone shaped tensile test pieces from a 0.15 mm thick sheet of composition C1 were procured for comparative testing. These test pieces measured about 45 mm long, 6 mm wide in the gauge section and 17 mm wide at the ends.
Heat ageing in the presence of a refrigerant fluid. The test specimens were dried at 60°C for 24 hrs in a dehumidified dryer, and individually sealed into glass tubes containing 4 ml_ of the refrigerant fluid (as described in the "Materials" section). Two tubes were prepared for test pieces of composition E1 and three tubes were prepared for test pieces of composition C1. The tubes were heated in an oven with circulating hot air at a temperature of 150°C for 300 hours. At the end of the heating, the glass tubes were broken and the test pieces were retrieved for
measurements.
Measurements
Tensile properties of the test pieces before and after heat ageing were measured at room temperature on a tensile tester by gripping the wide ends of the dogbone shaped test pieces in the upper and lower grips, and stretching the test pieces at a crosshead speed of 50 mm/min. The average values of tensile strength before and after heat ageing are given in Table 1.
Following tensile measurements, broken test pieces were retained and used for the determination of weight average molecular weight (MW) by SEC method using THF solvent and refractive index detector.
Polyamide or copolyamide phase of each composition was thus dissolved and the solution was used to determine the MW. The average values of MW before and after heat ageing are given in Table 1.
The retention of tensile strength and MW is reported as the percentage of the tensile strength and MW retained after aging at 150°C for 300 hours, in comparison with the value of the specimens prior to ageing (i.e. unaged) considered as being 100%. Retention results are given in Table 1. Table 1
Figure imgf000023_0001
As shown in Table 1 , test pieces made of the composition E1 comprising a semi-aromatic copolyamide and a functionalized polyolefin exhibited improved retention of the tensile strength and MW at the end of ageing test compared to comparative test pieces mad of composition C1.

Claims

CLAIMS What is claimed is:
1. A use of a hollow structure for conveying a refrigerant fluid, said hollow structure comprising a layer made of a resin composition comprising one or more semi-aromatic polyamides and one or more functionalized polyolefins,
wherein the one or more semi-aromatic polyamides are selected from copolyamides made from:
a) group A monomers selected from:
i) aromatic dicarboxylic acids having 8 to 20 carbon atoms and aliphatic diamines having 4 to 20 carbon atoms; or
ii) aliphatic dicarboxylic acids having 6 to 20 carbon atoms and aromatic diamine having 6 to 20 carbon atoms; or
iii) aromatic aminocarboxylic acids having 7 to 20 carbon atoms and
b) group B monomers selected from:
iv) aliphatic dicarboxylic acids having 6 to 20 carbon atoms and aliphatic diamines having 4 to 20 carbon atoms; or
v) lactams and/or aliphatic aminocarboxylic acids having 4 to 20 carbon atoms,
wherein the monomers of group A are present in an amount from at or about 10 mole-percent to at or about 40 mole-percent based on the copolyamide, and the monomers of group B are present in an amount from at or about 60 mole-percent to at or about 90 mole-percent based on the copolyamide.
2. The use according to claim 1 , wherein the one or more functionalized polyolefins are maleic anhydride grafted polyolefins.
3. The use to claim 1 or 2, wherein the one or more functionalized
polyolefins are selected from maleic anhydride grafted polyethylenes, maleic anhydride grafted polypropylenes, maleic anhydride grafted ethylene alpha-olefin copolymers or maleic anhydride grafted ethylene- propylene diene rubber and mixtures thereof.
4. The use according to claim 2 or 3, wherein the one or functionalized polyolefins are present in an amount from 10 to 30 weight percent, the weight percentages being based on the total weight of the composition.
5. The use according to any preceding claim, wherein the one or more semi-aromatic polyamides are selected from copolyamides made from:
- a) group A monomers selected from terephthalic acid and hexamethylenediamine; terephthalic acid and
tetramethylenediamine; and b) group B monomers selected from adipic acid and tetramethylenediamine; adipic acid and
hexamethylenediamine; decanedioic acid and
hexamethylenediamine; dodecanedioic acid and
hexamethylenediamine; caprolactam; laurolactam; 11- aminoundecanoic acid;
- a) group A monomers selected terephthalic acid and
decamethyienediamine; and b) group B monomers selected from decanedioic acid and decamethyienediamine;
- a) group A monomers selected adipic acid and m- xylylenediamine; and b) group B monomers selected from adipic acid and hexamethylenediamine;
- and mixtures thereof.
6. The use according to claim 5, wherein the one or more semi-aromatic polyamides are selected from copolyamides made from a) group A monomers selected from terephthalic acid and hexamethylenediamine; and b) group B monomers selected from adipic acid and
hexamethylenediamine.
7. The use according to any preceding claim, wherein the resin
composition further comprises one or more unfunctionalized polyolefins selected from polyethylenes, unfunctionalized polypropylenes, unfunctionalized ethylene alpha-olefin copolymers, unfunctionalized ethylene propylene diene rubbers (EPDM) and mixtures thereof.
8. The use according to any preceding claim, wherein the resin
composition further comprises one or more plasticizers selected from sulfonamides, esters of hydroxybenzoic acids, tetrahydrofurfuryl alcohol esters or ethers, esters of citric acid or of hydroxymalonic acid and mixtures thereof.
9. The use according to any preceding claim, wherein the hollow structure further comprises an innermost layer made of a material other than the resin composition.
10. The use according to any preceding claim, wherein the hollow structure further comprises an outermost layer made of a material other than the resin composition.
11. The use according to any preceding claim, wherein the hollow structure further comprises one or more functional layers.
12. The use according to any preceding claim, wherein the hollow structure is in the form of a hose, a pipe, a duct, a tube, tubing or a conduit.
13. The use according to any preceding claim, wherein the refrigerant fluid comprises a hydrofluoroolefin (HFO).
14. The use according to claim 13, wherein the hydrofluoroolefin is 2,3,3,3- tetrafluoropropene.
15. A refrigerant device comprising the hollow structure as recited in
anyone of claims 1 to 12.
6. A method for conveying a refrigerant fluid comprising passing the refrigerant fluid through a hollow structure comprising a layer made of a resin composition comprising one or more semi-aromatic polyamides and one or more functionalized polyolefins,
wherein the one or more semi-aromatic polyamides are selected from copolyamides made from:
a) group A monomers selected from:
i) aromatic dicarboxylic acids having 8 to 20 carbon atoms and aliphatic diamines having 4 to 20 carbon atoms; or
ii) aliphatic dicarboxylic acids having 6 to 20 carbon atoms and aromatic diamine having 6 to 20 carbon atoms; or
iii) aromatic aminocarboxylic acid having 7 to 20 carbon atoms and
b) group B monomers selected from:
iii) aliphatic dicarboxylic acids having 6 to 20 carbon atoms and aliphatic diamines having 4 to 20 carbon atoms; or iv) lactams and/or aliphatic aminocarboxyiic acids having 4 to 20 carbon atoms,
i) wherein the monomers of group A are present in an amount from at or about 10 mole-percent to at or about 40 mole- percent based on the copolyamide, and the monomers of group B are present in an amount from at or about 60 mole- percent to at or about 90 mole-percent based on the copolyamide.
17. The method according to claim 16, wherein the one or more
functionalized polyolefins are maleic anhydride grafted polyolefins.
18. The method according to claim 16, wherein the one or more
functionalized polyolefins are selected from maleic anhydride grafted polyethylenes, maleic anhydride grafted polypropyienes, maleic anhydride grafted ethylene alpha-oiefin copolymers or maleic anhydride grafted ethylene-propylene diene rubber and mixtures thereof.
19. The method according to claim 16, wherein the one or functionalized polyolefins are present in an amount from 10 to 30 weight percent, the weight percentages being based on the total weight of the resin composition.
20. The method according to claim 16, wherein the one or more semi- aromatic polyamides are selected from from copolyamides made from:
- a) group A monomers selected from terephthalic acid and hexamethylenediamine; terephthalic acid and
tetramethylenediamine; and b) group B monomers selected from adipic acid and tetramethylenediamine; adipic acid and
hexamethylenediamine; decanedioic acid and
hexamethylenediamine; dodecanedioic acid and
hexamethylenediamine; caprolactam; laurolactam; 11- aminoundecanoic acid;
- a) group A monomers selected terephthalic acid and
decamethylenediamine; and b) group B monomers selected from decanedioic acid and decamethylenediamine; - a) group A monomers selected adipic acid and m- xylylenediamine; and b) group B monomers selected from adipic acid and hexamethylenediamine;
- and mixtures thereof..
21.The method according to claim 16, wherein the one or more semi- aromatic polyamides are selected from copolyamides made from a) group A monomers selected from terephthalic acid and
hexamethylenediamine; and b) group B monomers selected from adipic acid and hexamethylenediamine.
22. The method according to claim 16, wherein the resin composition
further comprises one or more unfunctionalized polyolefins are selected from polyethylenes, unfunctionalized polypropylenes, unfunctionalized ethylene alpha-olefin copolymers, unfunctionalized ethylene propylene diene rubbers (EPDM) and mixtures thereof.
23. The method according to claim 16, wherein the resin composition
further comprises one or more ionomers.
24. The method according to claim 16, wherein the composition resin
further comprises one or more plasticizers selected from sulfonamides, esters of hydroxybenzoic acids, tetrahydrofurfuryi alcohol esters or ethers, esters of citric acid or of hydroxymalonic acid and mixtures thereof.
25. The method according to claim 16, wherein the hollow structure further comprises an innermost layer made of a material other than the resin composition.
26. The method according to claim 16, wherein the hollow structure further comprises an outermost layer made of a material other than the resin composition.
27. The method according to claim 16, wherein the hollow structure further comprises one or more functional layers.
28. The method according to claim 16, wherein the hollow structure is in the form of a hose, a pipe, a duct, a tube, tubing or a conduit.
29. The method according to claim 16, wherein the refrigerant fluid
comprises a hydrofluoroolefin (HFO).
30. The method according to claim 16, wherein the refrigerant fluid comprises 2,3,3,3-tetrafiuoropropene.
31.A refrigerant device comprising the hollow structure recited in claim 16.
PCT/US2010/060294 2009-12-16 2010-12-14 Hollow structures and associated methods for conveying refrigerant fluids WO2011084421A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP10798880A EP2512794A1 (en) 2009-12-16 2010-12-14 Hollow structures and associated methods for conveying refrigerant fluids
CA2781438A CA2781438A1 (en) 2009-12-16 2010-12-14 Hollow structures and associated methods for conveying refrigerant fluids
CN2010800575263A CN102656009A (en) 2009-12-16 2010-12-14 Hollow structures and associated methods for conveying refrigerant fluids
JP2012544711A JP2013514442A (en) 2009-12-16 2010-12-14 Hollow structure and related methods for carrying refrigerant fluid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US28697709P 2009-12-16 2009-12-16
US61/286,977 2009-12-16

Publications (1)

Publication Number Publication Date
WO2011084421A1 true WO2011084421A1 (en) 2011-07-14

Family

ID=43663503

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2010/060294 WO2011084421A1 (en) 2009-12-16 2010-12-14 Hollow structures and associated methods for conveying refrigerant fluids

Country Status (6)

Country Link
US (1) US20110155359A1 (en)
EP (1) EP2512794A1 (en)
JP (1) JP2013514442A (en)
CN (1) CN102656009A (en)
CA (1) CA2781438A1 (en)
WO (1) WO2011084421A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012151460A1 (en) * 2011-05-04 2012-11-08 E. I. Du Pont De Nemours And Company Polyamide compositions for the inner layer of a multi-layer tubular article and articles incorporating same
JP2016516099A (en) * 2013-02-18 2016-06-02 アルケマ フランス Use of semi-aromatic copolyamides to transport refrigerant fluids
JP2016516834A (en) * 2013-02-18 2016-06-09 アルケマ フランス Thermoplastic structure for transporting refrigerant fluid

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130052384A1 (en) * 2011-08-29 2013-02-28 E I Du Pont De Nemours And Company Copolyamide compositions derived from vegetable oil
KR20150063498A (en) * 2012-11-12 2015-06-09 미쯔이가가꾸가부시끼가이샤 Semiaromatic polyamide, semiaromatic polyamide resin composition, and molded article
NL1041400B1 (en) 2015-07-14 2017-01-30 Wavin Bv Multilayered pipe and method of manufacturing the same.
CN109311271A (en) 2016-06-01 2019-02-05 韦文有限公司 The pipe of multilayer and be used to form multilayer pipe method
KR102276518B1 (en) * 2017-02-20 2021-07-12 미쓰이 가가쿠 가부시키가이샤 laminate
CN114599738B (en) 2019-10-24 2023-09-26 英威达纺织(英国)有限公司 Polyamide composition and articles made therefrom
US11674618B2 (en) * 2020-09-30 2023-06-13 Contitech Techno-Chemie Gmbh Vehicle air conditioning hose inner layer
US11634564B2 (en) 2021-03-22 2023-04-25 Contitech Transportbandsysteme Gmbh High heat and oil resistant conveyor belt
GB2623846A (en) * 2022-10-24 2024-05-01 Titeflex Corp Multilayer composite pipe and pipe assemblies including reflective insulation

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4319872A (en) 1976-12-01 1982-03-16 Lupke Gerd Paul Heinrich Apparatus for producing thermoplastic tubing
EP0685505A2 (en) * 1994-05-31 1995-12-06 Ube Industries, Ltd. Terpolymer polyamide, polyamide resin composition containing the same, and automotive parts obtained from these
EP0945660A2 (en) 1998-03-26 1999-09-29 The Goodyear Tire & Rubber Company Air conditioning hose
EP1074777A1 (en) * 1999-08-06 2001-02-07 Tokai Rubber Industries, Ltd. Rubber compositions, rubber-resin laminates and fluid-impermeable hoses
WO2003055664A1 (en) 2001-12-21 2003-07-10 Rubbermaid Incorporated Apparatus and method for forming discrete hollow parts
US6764627B2 (en) 2000-03-23 2004-07-20 Hahn Elastomer Corporation Method of making corrugated part
EP1860134A1 (en) * 2005-03-18 2007-11-28 Kuraray Co., Ltd. Semi-aromatic polyamide resin
WO2009002453A1 (en) * 2007-06-22 2008-12-31 E. I. Du Pont De Nemours And Company Multilayer coolant pipes
US20090269532A1 (en) * 2008-03-03 2009-10-29 Arkema France Multilayer structure comprising at least one stabilized layer

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0781016B2 (en) * 1991-03-18 1995-08-30 東レ株式会社 Polyamide blow molded product
US20050020762A1 (en) * 2003-06-05 2005-01-27 Chou Richard T. Scuff resistant compositions comprising ethylene acid copolymers and polyamides
AR053845A1 (en) * 2005-04-15 2007-05-23 Tibotec Pharm Ltd 5-TIAZOLILMETIL [(1S, 2R) -3 - [[(2-AMINO-6-BENZOXAZOLIL) SULFONIL)] (2-METHYLPROPIL) AMINO] -2-HYDROXY-1- (PHENYLMETIL) PROPIL] CARBAMATE AS A PHARMACY IMPROVER METABOLIZED BY THE CYCROCHROME P450

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4319872A (en) 1976-12-01 1982-03-16 Lupke Gerd Paul Heinrich Apparatus for producing thermoplastic tubing
EP0685505A2 (en) * 1994-05-31 1995-12-06 Ube Industries, Ltd. Terpolymer polyamide, polyamide resin composition containing the same, and automotive parts obtained from these
EP0945660A2 (en) 1998-03-26 1999-09-29 The Goodyear Tire & Rubber Company Air conditioning hose
EP1074777A1 (en) * 1999-08-06 2001-02-07 Tokai Rubber Industries, Ltd. Rubber compositions, rubber-resin laminates and fluid-impermeable hoses
US6764627B2 (en) 2000-03-23 2004-07-20 Hahn Elastomer Corporation Method of making corrugated part
WO2003055664A1 (en) 2001-12-21 2003-07-10 Rubbermaid Incorporated Apparatus and method for forming discrete hollow parts
EP1860134A1 (en) * 2005-03-18 2007-11-28 Kuraray Co., Ltd. Semi-aromatic polyamide resin
WO2009002453A1 (en) * 2007-06-22 2008-12-31 E. I. Du Pont De Nemours And Company Multilayer coolant pipes
US20090269532A1 (en) * 2008-03-03 2009-10-29 Arkema France Multilayer structure comprising at least one stabilized layer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Nylon Plastics Handbook", 1995, HANSER, pages: 13 - 32

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012151460A1 (en) * 2011-05-04 2012-11-08 E. I. Du Pont De Nemours And Company Polyamide compositions for the inner layer of a multi-layer tubular article and articles incorporating same
JP2016516099A (en) * 2013-02-18 2016-06-02 アルケマ フランス Use of semi-aromatic copolyamides to transport refrigerant fluids
JP2016516834A (en) * 2013-02-18 2016-06-09 アルケマ フランス Thermoplastic structure for transporting refrigerant fluid
US10023695B2 (en) 2013-02-18 2018-07-17 Arkema France Thermoplastic structure for transporting refrigerant fluid
JP2018168374A (en) * 2013-02-18 2018-11-01 アルケマ フランス Use of semi-aromatic copolyamide for transporting refrigerant fluid
CN109849478A (en) * 2013-02-18 2019-06-07 阿科玛法国公司 It is used for transmission thermoplastic structure's body of refrigerant fluid
JP2019090029A (en) * 2013-02-18 2019-06-13 アルケマ フランス Thermoplastic structure for transporting refrigerant fluid
US10605385B2 (en) 2013-02-18 2020-03-31 Arkema France Use of semi-aromatic copolyamide for transporting refrigerant fluid
US10914409B2 (en) 2013-02-18 2021-02-09 Arkema France Use of semi-aromatic copolyamide for transporting refrigerant fluid
US11209105B2 (en) 2013-02-18 2021-12-28 Arkema France Use of semi-aromatic copolyamide for transporting refrigerant fluid
JP7220568B2 (en) 2013-02-18 2023-02-10 アルケマ フランス Thermoplastic structure for transporting refrigerant fluids

Also Published As

Publication number Publication date
CN102656009A (en) 2012-09-05
CA2781438A1 (en) 2011-07-14
EP2512794A1 (en) 2012-10-24
JP2013514442A (en) 2013-04-25
US20110155359A1 (en) 2011-06-30

Similar Documents

Publication Publication Date Title
US20110155359A1 (en) Hollow structures and associated method for conveying refrigerant fluids
EP2512793B1 (en) Multilayer structures comprising a barrier layer and their use to convey fluids
US20200173583A1 (en) Use of semi-aromatic copolyamide for transporting refrigerant fluid
JP4480718B2 (en) Laminated hose for high temperature chemical and / or gas transport
JP4522406B2 (en) Laminated structure
TWI688472B (en) Fiber reinforced composite pipe and cold and warm water piping system
KR20140002047A (en) Multilayer structure including a layer of a specific copolyamide and a barrier layer
US9346953B2 (en) Semi-aromatic-polyamide-based flexible composition, process for preparing same and uses thereof
CN105985635B (en) Multilayer composite comprising a partially aromatic polyamide layer
JP2016516834A (en) Thermoplastic structure for transporting refrigerant fluid
US20230191756A1 (en) Multilayer structure based on recycled polyamide
US20090162591A1 (en) Multilayer coolant pipes
US11338541B2 (en) Multilayer tubular structure intended for transporting an air-conditioning fluid
KR20170128334A (en) Multilayer tube for fuel transportation, fuel pump module provided with same, use of same, and use of fuel pump module
WO2012135393A2 (en) Thermoplastic multilayer tubes and process for manufacturing
JP7303803B2 (en) Multi-layer body with good aging properties and resistance to rupture at high temperature for high temperature automotive applications
WO2016133167A1 (en) Fiber-reinforced composite pipe and cold/warm water piping system
JP2019023487A (en) Refrigerant transport hose
WO2023282154A1 (en) Polyamide composition
JPH059378A (en) Resin composition having low gas-permeability and air-conditioner hose made thereof
KR20220012907A (en) Device for cooling and/or heating an electric vehicle battery

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080057526.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10798880

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2781438

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2010798880

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012544711

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE