WO2011082582A1 - 一种送丝送粉复合激光熔覆成形方法及装置 - Google Patents
一种送丝送粉复合激光熔覆成形方法及装置 Download PDFInfo
- Publication number
- WO2011082582A1 WO2011082582A1 PCT/CN2010/075727 CN2010075727W WO2011082582A1 WO 2011082582 A1 WO2011082582 A1 WO 2011082582A1 CN 2010075727 W CN2010075727 W CN 2010075727W WO 2011082582 A1 WO2011082582 A1 WO 2011082582A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wire
- powder
- feeding
- mirror
- composite
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B7/00—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
- B05B7/16—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed
- B05B7/22—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed electrically, magnetically or electromagnetically, e.g. by arc
- B05B7/228—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed electrically, magnetically or electromagnetically, e.g. by arc using electromagnetic radiation, e.g. laser
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/14—Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
- B23K26/144—Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor the fluid stream containing particles, e.g. powder
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/34—Laser welding for purposes other than joining
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/02—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
- B23K35/0222—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
- B23K35/0244—Powders, particles or spheres; Preforms made therefrom
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/02—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
- B23K35/0255—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
- B23K35/0261—Rods, electrodes, wires
Definitions
- the invention relates to the field of laser processing, in particular to a wire feeding powder composite laser cladding forming method and device.
- the laser and the metal material are synchronously transmitted to the processing and forming position, and the metal material is continuously, accurately and uniformly put into the processing surface to perform the scanning motion according to the predetermined trajectory.
- precise coupling of the light material is achieved.
- the material converts the light energy and the thermal energy in the focused spot, instantaneously melts and forms a small molten pool, and the continuously moving small molten pool continuously completes the rapid melting and solidification process of the material in the molten pool, thereby forming a continuous melting channel.
- the most mature in the prior art is the synchronous powder feeding laser cladding technology.
- the more advanced powder feeding device has the US patent US5961862, the European patent WO2005028151, etc., and the basic structure adopts a plurality of powder feeding nozzles uniformly arranged on the periphery of the laser beam. Structure of the program.
- wire feeding has the advantages of low material price, high utilization rate of wire material, and easy control of wire feeding process, synchronous wire feeding laser cladding forming has gradually become a new research hotspot.
- the wire feeding method also places a single wire feed tube on one side of the solid focused beam, which is fed obliquely with respect to the beam axis and enters the molten pool near the molten pool.
- the above-mentioned powder feeding or wire feeding process can be called "out-of-light feeding", and the characteristics of powder feeding and wire feeding are presented, and a powder-feeding wire composite cladding forming method has appeared.
- the basic principle is shown in Fig. 1: in solid focus On the weekend of the beam, a plurality of powder feeding tubes are arranged, and the plurality of powder bundles sprayed from the respective powder feeding tubes are evenly inclined toward the gathering pool and concentrated near the molten pool.
- the single wire feeding tube is arranged obliquely on one side of the beam, and the wire enters the molten pool near the molten pool, and the inert protective gas required for the forming process is ejected coaxially with the beam at the center of the powder beam.
- the fan composite cladding forming method has the advantages of high deposition rate and good forming precision. Fan composite laser cladding is formed in large-area thick layer laser cladding, repair and welding. Especially in the field of three-dimensional solid rapid prototyping of large and medium-sized metal parts, it has broad application prospects.
- the side wire feeding method causes the wire to be irradiated with laser light on one side, causing uneven heating of the material, increasing power consumption and degrading the quality of the molten layer.
- the trajectory of powder and silk feeding is unreasonable.
- the multi-powder beam is obliquely fed into the spot from the outside of the solid beam, and each powder bundle collides at the convergence point, and the spot is large, and the blown gas of the nozzle cavity and the lens is protected to spread the converging powder bundle, and some are surrounded by others.
- the molten pool protection gas blown by the powder bundle also causes the multi-powder bundle to intensify collision and diverge.
- the powder bundle sent to the molten pool is very small, and the powder deposition rate is only about 10% to 30%.
- the powder bundle is divided into an upper non-concentrating zone, a central converging zone and a lower diverging zone.
- the powder spot area becomes larger and deformed, the amount of powder captured by the molten pool will be drastically reduced, and the specific light energy absorbed by the molten pool powder will change accordingly, so that the molten pool physics
- the metallurgical process is unstable and causes a change in the thickness of the molten layer.
- the residual powder that has not entered the molten pool splashes and pollutes the environment, and some of the residual powder sprayed around the moving molten pool will bond, resulting in physical defects and roughness of the solidified surface.
- the wire when the wire is fed, it must also coincide with the position of the workpiece and the beam pool, and the intersection should be limited to a small area above and below the surface of the bath, but if the intersection is in the processing relative to the machined surface (or When the molten pool has fluctuations and changes in position, the thermal action of the wire will change again, which may cause the melting process of the wire to be intermittent, the front part of the wire is bent, the light and the wire are intermittently aligned and misaligned, thus melting
- the continuity of the coating process and the quality of the melt are very sensitive to small changes in the relative position between the molten pool and the machined surface.
- the structure of the powder feeding portion and the wire feeding portion are separated from each other, and it is necessary to separately adjust the alignment methods of the plurality of powder feeding nozzles and the wire feeding nozzle during use, and the adjustment is difficult.
- the object of the present invention is to overcome the deficiencies in the prior art and to provide a wire feeding powder composite laser cladding forming method and device.
- the technical solution adopted by the present invention is: a wire-feeding powder-compositing laser cladding forming method, which converts a solid laser beam emitted by a laser into a ring beam by a cone mirror through optical path transformation, and then uses a circular focusing mirror.
- the powder feeding wire and the shielding gas compound nozzle are placed in the dull zone and coaxial with the ring-cone beam, the composite nozzle
- the wire feeding hole is centered, the parallel powder feeding hole surrounds the wire feeding hole, and the collimating protection air hole surrounds the powder feeding hole in parallel, and the wire material is sent to the molten pool through the wire feeding hole and the beam coaxially perpendicular to the processing surface, and the airborne powder passes the powder feeding.
- the holes are synchronously fed into the molten pool, and the collimated shielding gas surrounds the powder bundle and is blown in parallel to the molten pool.
- the utility model relates to a device for wire-feeding and powder-feeding composite laser cladding forming, comprising a cylinder body, an optical inlet opening is arranged above the cylinder body, a lower cone sleeve is arranged below the cylinder body, and a light exit opening is arranged below the cylinder body, the cylinder
- the inner center of the body is fixed with a conical mirror via a support frame, and the mirror surface faces the light entrance port.
- the inner wall of the cylinder is fixedly provided with a circular focusing mirror, and the mirror surface is opposite to the mirror surface of the conical mirror.
- the conical mirror, the support frame and the ring shape The focusing mirror is coaxial with the light inlet and the light exit of the cylinder, and the fan gas composite nozzle is fixed under the support frame, the fan gas composite nozzle is a three-layer composite structure, the inner layer is a wire feeding tube, and the middle layer is The powder feeding tube has an outer layer of an air supply tube, and the three outlets are parallel to each other, and the fan gas composite nozzle is coaxial with the conical mirror and the annular focusing mirror.
- the cone mirror can convert the incident solid beam into a ring beam, and the ring focus mirror can reflect the ring beam into a ring.
- Conical beam The conical mirror is mounted on the center of a support frame fixed inside the cylinder, and the conical mirror surface forms an angle of 45° with respect to the direction of the entrance port.
- the annular focusing mirror is directly fixed on the inner wall of the cylinder, and the mirror surface is opposite to the mirror surface of the conical mirror.
- the reflected beam of the conical mirror is reflected toward the lower exit opening of the lower cone sleeve as a ring-shaped cone beam, and is outside the light exit port.
- the position is focused, and the working surface is generally located at the focus bath or slightly out of focus.
- the fan gas composite nozzle is fixed under the support frame, and the powder, silk and gas outlets on the composite nozzle are parallel to each other, and are a three-layer surrounding structure, the center is a wire feeding hole, and three to four or more powder feeding holes are arranged in the periphery.
- the outer circumference is a ring of air supply pipe, and the wire feeding tube, the powder feeding tube and the air supply tube are all vertically oriented toward the lower cone sleeve outlet port.
- the support frame is composed of an inner ring, an outer ring and at least two ribs
- the outer ring is disposed on the inner wall of the cylinder, and is connected to the inner ring via a rib
- the inner ring A conical mirror is arranged on the surface of the rib
- a light absorbing layer is arranged on the rib
- a cooling water channel is arranged inside the rib.
- the outer ring is fixed on the inner wall of the cylinder, and the inner ring is connected by the rib.
- the cone-shaped focused light passes between the outer ring and the inner ring, and the rib is in the light irradiation area, in order to avoid the ribs reflecting light and Overheating, the light-incident surface above the ribs is coated with a light absorbing layer, and a circulating cooling water channel is provided inside to absorb heat.
- the materials and gases such as light outside the light can enter the light through the ring light outside the ribs, thereby effectively avoiding the light and entering the fan gas composite nozzle.
- the wire feeding tube penetrates from the upper portion of the cylinder through the cavity, passes through a gap between the cone mirror and the annular focusing mirror, and extends into the composite nozzle and the cone after the cone mirror
- the mirror is coaxial
- the light-feeding surface of the wire feeding tube is provided with a light absorbing layer
- a cooling water channel is arranged inside. Since the wire cannot be excessively bent, the wire feeding tube is inserted from the upper portion of the cylinder, and passes between the conical mirror and the annular focusing mirror, and then enters from the upper end of the fan gas compound nozzle.
- the wire feeding tube reaches the hollow region from the outside of the ring-shaped cone beam, it needs to cross the beam locally.
- the light-incident surface of the wire feeding tube is coated with a light-absorbing layer, and a cooling water channel is arranged inside the wire feeding tube. Absorbs beam heat.
- the powder feeding tube is L-shaped, and the horizontal section of the powder feeding tube penetrates from the side of the cylindrical body, and is disposed under the rib to extend into the composite nozzle, and the feeding tube has a light absorbing surface.
- the floor has a cooling channel inside. The powder feeding tube enters the lower part of the rib of the support frame from the outside of the cylinder through the small hole in the cylinder, and closes to the lower end of the rib to the upper end of the fan air compound nozzle, and then enters the composite nozzle.
- the air supply pipe is L-shaped, and a horizontal section thereof penetrates through the cylinder body from the side of the cylinder body, and is disposed under the rib to extend into the composite nozzle.
- the working principle of the invention is that the solid laser beam emitted from the laser is expanded into a ring beam by a conical mirror, and then focused by a ring focusing mirror into a ring-shaped cone beam, and a cone-shaped hollow matte is formed in the ring-cone beam.
- the zone, the fan gas composite nozzle is placed in this dull zone and is coaxial with the ring cone beam.
- the structure of the fan gas compound nozzle is that the wire feeding tube is centered, the powder feeding tube tightly surrounds the wire feeding tube, and the collimating shielding gas supply pipe further surrounds the wire feeding tube in parallel.
- the wire is fed into the molten pool at the center of the ring-shaped cone beam through the center of the composite nozzle perpendicular to the processing surface, and the wire is surrounded by the lower portion of the ring-shaped beam near the beam pool, and then illuminated and illuminated.
- the molten pool heat conduction and the like are heated and melted to enter the molten pool;
- the powder feeding tube on the composite nozzle, such as the airborne powder is simultaneously fed into the molten pool, and the collimated shielding gas surrounds the powder bundle to be blown out, so that the collimated shielding gas surrounds the powder bundle to blow out
- the powder bundle is not diverge and is sprayed into the molten pool parallel to the wire.
- the wire and powder melted into the molten pool on the surface of the substrate together with a small amount of the surface material of the molten substrate form a molten pool.
- the melt in the molten pool follows the beam and the substrate. The relative movement continues to solidify to form a melt channel.
- the present invention has the following advantages over the prior art:
- the invention transforms the original solid beam into a hollow beam by optical path transformation, and the beam is a solid spot on the focal plane, and the hollow annular beam changes the intensity distribution in the radial direction of the spot, which can weaken the center and increase the intensity of the surrounding spot.
- the scanning irradiation intensity is saddle-shaped, so that the temperature of the molten pool tends to be rationalized, and the deficiency of under-melting on both sides of the melting channel is overcome when the solid light scanning is performed;
- the fan gas composite nozzle is placed in a hollow portion of the annular focusing beam and coaxial with the beam, and the wire, the powder material and the collimating shielding gas are coaxially ejected from the lower end of the composite nozzle in parallel, and are coaxially parallel with the focused beam.
- Positively feeding into the center of the spot, the wire, powder, collimated shielding gas and annular beam are evenly symmetrically surrounded, which realizes the intra-coaxial coaxial composite powder feeding and wire cladding deposition, which effectively ensures the stable coupling of the light fan, the melting layer Good quality, significantly improved deposition rate;
- the wire, powder and gas nozzle of the composite nozzle are integrated integrally, and the wire, powder and gas three-body separating device are more compact in structure than the original laterally separated powder feeding and wire feeding device, and the three need no alignment adjustment during processing.
- the powder trajectory of the powder feeding and the feeding orientation and posture of the wire are not affected by the change of the amount of powder and the amount of carrier gas caused by the action during the processing;
- the positive single powder bundle is linear, the direction is the same, it will not collide and divergence, the powder deposition rate is increased, the diverging residual powder and the bonding surface adhere to the particles are reduced, and the coupling accuracy of the light powder promotes the physical thermal coupling effect, the melting layer
- the layer thickness is stable, the surface morphology and roughness are obviously improved, and the environmental pollution is reduced.
- FIG. 1 is a schematic view of a method for solid wire feeding of a solid light in the prior art
- FIG. 2 is a schematic view showing a composite cladding of an optical powder feeding wire in the first embodiment of the present invention
- FIG 3 is a schematic structural view of a light intra-feed powder feeding composite cladding device according to a first embodiment of the present invention.
- Embodiment 1 Referring to FIG. 2, a wire-feeding powder composite laser cladding forming method is characterized in that a solid laser beam emitted by a laser is converted into a ring beam by a cone mirror by optical path transformation, and then focused by a ring focusing mirror to form a ring.
- the cone beam forms a conical hollow matt zone in the ring cone beam, and the powder feeding wire and the shielding gas compound nozzle are placed in the dull zone and are coaxial with the ring cone beam, and the wire feeding hole is centered.
- the parallel powder feeding hole surrounds the wire feeding hole, and the collimating protection air hole surrounds the powder feeding hole in parallel, and the wire material is fed into the molten pool perpendicularly to the processing surface through the wire feeding hole and the beam, and the airborne powder is synchronously sent into the molten pool through the powder feeding hole.
- the collimating shielding gas surrounds the powder bundle and is blown in parallel to the molten pool.
- the apparatus for forming a wire-feeding powder composite laser cladding forming method of the above method comprises a cylinder 17 having a light inlet opening 26 formed above the cylinder body 17, and a lower taper sleeve 18 disposed below the cylinder body 17
- a light exit port 27 is defined in the lower portion, and a support frame 21 is disposed at the center of the inner portion of the tubular body 17.
- the support frame 21 is composed of an inner ring, an outer ring and two ribs, and the outer ring is disposed on the inner wall of the cylindrical body 17.
- the inner ring is connected to the inner ring, and the inner ring is provided with a conical mirror 19, and the mirror surface faces the light entrance port 26.
- the illuminating surface of the rib is provided with a light absorbing layer, and the rib is internally provided.
- the optical port 26 and the light exit port 27 are coaxial, and the fan gas composite nozzle 11 is fixedly disposed below the support frame 21.
- the fan gas composite nozzle 11 has a three-layer composite structure, the inner layer is a wire feed pipe 23, and the middle layer is sent.
- the focusing mirror is coaxial 20; the wire feeding tube 23 enters through the cylindrical body 17 from the upper portion of the cylinder, passes through the gap between the conical mirror 19 and the annular focusing mirror 20, and is below the conical mirror 19
- the conical mirror is coaxial, the light-feeding surface of the wire feeding tube 23 is provided with a light-absorbing layer, and a cooling water channel is disposed therein; the powder feeding pipe 24 and the air supply pipe 25 are L-shaped, and the horizontal section penetrates the cylindrical body 17 from the side of the cylindrical body.
- the inlets are respectively disposed under the two ribs and protrude into the composite nozzle.
- the powder feeding tube 24 is provided with a light absorbing layer on the light-facing surface, and a cooling water channel is arranged inside.
- the conical mirror 19 expands and reflects the incident laser beam 16 onto the annular mirror surface of the annular focusing mirror 20, which in turn reflects the beam expanding into a conical cone focusing beam 22, the center of which forms a cone-shaped focusing beam 22.
- the tapered hollow matte region 28, the cone-shaped focused beam 22 is focused below the light exit opening 27 to form a molten pool 15.
- the wire 14 in the wire feed pipe 23, the metal powder 12 in the powder feeding pipe 24, and the collimating shielding gas 13 in the air supply pipe 25 are simultaneously discharged in parallel at the lower end of the fan-air composite nozzle 11, wherein the wire 14 is discharged in parallel. Centered, the metal powder 12 surrounds the wire 14, which in turn surrounds the metal powder 12.
- the melt in the pool as the entire optical head scans relative to the machined surface, melts in the molten pool 15 to solidify continuously on the machined surface to form a melt.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Optics & Photonics (AREA)
- Mechanical Engineering (AREA)
- Plasma & Fusion (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Electromagnetism (AREA)
- Laser Beam Processing (AREA)
Description
本发明涉及激光加工领域,具体涉及一种送丝送粉复合激光熔覆成形方法及装置。
在高能束激光熔覆制造技术中,有一个关键技术,即将激光和金属材料同步传输至加工成形位置,并使金属材料连续、准确、均匀地投入到加工面上按预定轨迹作扫描运动的聚焦光斑内,实现光料精确耦合。材料在聚焦光斑内进行光能与热能的转换,瞬间熔化并形成小熔池,连续移动的小熔池不断完成熔池内材料的快速熔化和凝固过程,从而形成连续的熔道。
目前,现有技术中最为成熟的就是同步送粉激光熔覆技术,比较先进的送粉装置有美国专利US5961862、欧洲专利WO2005028151等,其基本结构均采用在激光束外围均匀布置多个送粉喷嘴的结构方案。近来,由于送丝熔覆具有材料价格低廉、丝材无发散利用率高、送丝过程易于控制等优点,同步送丝激光熔覆成形逐渐成为新的研究热点。送丝方法也是将单根送丝管布置在实心聚焦光束的一侧,丝材相对光束轴线倾斜送进并在熔池附近进入熔池。上述送粉或送丝工艺可称之为“光外送料”,综合送粉与送丝的特点,出现了一种送粉送丝复合熔覆成形方法,其基本原理参见图1:在实心聚焦光束的周末,布置了数根送粉管,从各送粉管喷射的多路粉束均匀朝聚熔池倾斜,并在光束熔池附近汇聚。单根送丝管则在光束的某一侧倾斜布置,丝材在熔池附近进入熔池,成形过程所需的惰性保护气则在粉束中心与光束同轴喷出。研究证明:与单独送粉相比,其沉积率大大增加,熔池吸收的能量比高,孔隙少20%—30%;与单独送丝相比,熔道凹凸度减低,平整率提高。在大中型金属件快速熔覆堆积成型中,粉丝复合熔覆成形方法更具有沉积率高、成型精度较好的优势,粉丝复合激光熔覆成形在大面积厚层激光熔覆、修复、焊接,特别在大中型金属件的三维实体快速成形制造等领域有广泛的应用前景。
然而,现有的同步送粉或送丝以及粉丝复合激光熔覆方法存在以下不足:
1.能量分布不合理。由于光斑为聚焦实心光斑,熔池中部温度偏高,熔池中心与边缘的温度和张力差都较大,造成熔池熔体对流强烈,凝固后的熔层表面凹凸较大;而且,扫描时沿扫描线宽上中部辐照时间长,吸收能量多,而两侧扫描辐照时间短,吸收能量少,熔层与邻层、下层的搭接处出现熔不透、裂纹等缺陷。特别对于送丝工艺而言,侧向送丝方式使得丝材为单边受到激光辐照,造成材料受热不均,功耗增加并且熔层质量下降。
2.粉、丝送进轨迹不合理。多粉束从实心光束外侧倾斜送进光斑,各粉束在汇聚点相交发生碰撞,汇聚点粉斑大,保护喷头内腔与镜片的下吹气体使汇聚粉束散开,有的另加包围粉束斜吹的熔池保护气也会使多粉束加剧碰撞而发散。一般送入熔池的粉束很少,粉末沉积率只有10%~30%左右,粉束分为上部未汇聚区,中部汇聚区和下部发散区。加工中当喷头相对加工面距离不准确或上下有波动变化时,粉斑面积变大和变形,熔池捕获的粉量会急剧减少,熔池粉末吸收的比光能随之变化,使熔池物理冶金过程不稳定,同时造成熔层层厚变化。未进入熔池的余粉飞溅且污染环境,喷射在运动熔池周围的部分余粉会粘结,造成凝固表面物理缺陷和粗糙度增大。同样,丝材送进时也必须在工件表面与光束熔池位置与之相交重合,其交点又应限制在熔池表面上下一块很小的区域内,但如果加工中此交点相对加工表面(或熔池)上下有位置波动和变化时,丝材的热作用又将发生变化,可能使丝材的融化过程断续进行,丝材前段弯曲,光和丝断续对准和错位,这样使熔覆过程的连续性和熔道质量对熔池与加工面之间相对位置的微小变化都非常敏感。
3.扫描方向性的影响。由于丝材倾斜进入熔池,上方受到光束照射、下方受到熔池热传导和辐射,各种热作用不对称、不均匀。特别当熔覆中不可避免的出现方向性变化,即加工中激光束相对加工面作不同方向的扫描运动时,光束和丝材相对扫描运动方向就有不同的方位和姿态,丝材的熔融和熔池的热作用和力作用过程效果将发生变化,从而使凝固后的熔道尺寸、形貌、表面粗糙度等均会发生较大变化,甚至造成熔融过程的时断时续,这对复杂型面堆焊特别是三维直接快速成型等工艺而言,影响尤为突出,严重时熔覆的连续性或熔道质量都很难保证。
此外,现有粉丝复合熔覆方法中,送粉部分和送丝部分的结构相互分离,使用中需要分别调整多个送粉嘴和送丝嘴的对准方法,调整困难。
本发明目的是为了克服现有技术中存在的不足,提供一种送丝送粉复合激光熔覆成形方法及装置。
为达到上述目的,本发明采用的技术方案是:一种送丝送粉复合激光熔覆成形方法,通过光路变换,用圆锥镜将激光器发射的实心激光束变换为环形光束,再用环形聚焦镜聚焦成为环锥形光束,在环锥形光束中形成一锥形中空无光区,送粉送丝和保护气复合喷嘴置于该无光区内并与环锥形光束同轴线,复合喷嘴的送丝孔居中,平行送粉孔包围送丝孔,准直保护气孔平行包围送粉孔,丝材通过送丝孔与光束同轴垂直于加工面送入熔池,气载粉末通过送粉孔同步送入熔池,准直保护气包围粉束平行吹向熔池。
一种送丝送粉复合激光熔覆成形的装置,包括筒体,所述筒体上方开设有入光口,所述筒体下方设有下锥套,其下方开设有出光口,所述筒体内部中心经支撑架固定有圆锥镜,其镜面朝向入光口,所述筒体内壁上固定设有环形聚焦镜,其镜面与所述圆锥镜镜面相对,所述圆锥镜、支撑架及环形聚焦镜与筒体的入光口及出光口同轴,所述支撑架下方固定设有粉丝气复合喷嘴,所述粉丝气复合喷嘴为三层复合结构,内层为送丝管,中间层为送粉管,外层为送气管,三者出口相互平行,所述粉丝气复合喷嘴与所述圆锥镜及环形聚焦镜同轴。
上文中,所述筒体上方有入光口,下锥套下方有出光口,所述圆锥镜可将入射的实心光束变换为环形光束,所述环形聚焦镜可将上述环形光束反射聚焦成为环锥形光束。圆锥镜安装于一个固定在筒体内部的支撑架的中心,其圆锥镜面相对入光口方向构成45°夹角。所述环形聚焦镜直接固定于筒体内壁上,其镜面与圆锥镜的镜面相对,工作中将圆锥镜反射光束朝向下锥套下部出光口反射为一环锥形光束,并在出光口外某一位置聚焦,工作中加工表面一般位于聚焦熔池处或稍微离焦的位置。所述粉丝气复合喷嘴固定于支撑架下方,复合喷嘴上的粉、丝、气出口相互平行,为三层包围结构,中心为送丝孔,周边3—4个或更多送粉孔,在外围为一圈送气管,送丝管、送粉管及送气管均垂直朝向下锥套出光口。
进一步的技术方案,所述支撑架由内圈、外圈及至少两根筋条构成,所述外圈设于所述筒体内壁上,经筋条与所述内圈连接,所述内圈上设有圆锥镜,所述筋条的迎光面设有吸光层,所述筋条内部设有冷却水道。所述外圈固定在筒体内壁上,通过筋条连接内圈,工作中环锥形聚焦光在外圈和内圈之间通过,而期间的筋条处于光线照射区,为避免筋条反射光线和过热,在筋条上方的迎光面上涂镀有吸光层,并在其内部设置了循环冷却水道吸热。而光外的粉末等材料和气体均可通过筋条下方由环形光外进入光内,从而有效避开光照,进而进入粉丝气复合喷嘴。
进一步的技术方案,所述送丝管贯穿所述筒体从筒体上部进入,穿过所述圆锥镜与环形聚焦镜间的空隙,直至所述圆锥镜下方后伸入复合喷嘴内并与圆锥镜同轴,所述送丝管迎光面设有吸光层,内部设有冷却水道。由于丝材不能过度弯曲,因而送丝管从筒体上部插入,从圆锥镜与环形聚焦镜之间通过后,由粉丝气复合喷嘴上端进入。送丝管从环锥形光束外部到达中空区时局部需要穿越光束,为避免送丝管反射光线并过热,在送丝管的迎光面上涂镀有吸光层,并在其内部设置冷却水道吸收光束热量。
进一步的技术方案,所述送粉管为L型,其水平段贯穿筒体从筒体侧面进入,设置于所述筋条下方伸入复合喷嘴内,所述送粉管迎光面设有吸光层,内部设有冷却水道。送粉管由筒体外部经筒体上的小孔分别进入支撑架的筋条下部,紧贴筋条下部至支撑架内圈到达粉丝气复合喷嘴上端,然后进入复合喷嘴。
进一步的技术方案,所述送气管为L型,其水平段贯穿筒体从筒体侧面进入,设置于所述筋条下方伸入复合喷嘴内。
本发明的工作原理为:用圆锥镜将激光器发射出的实心激光束扩束变换为环形光束,再用环形聚焦镜聚焦成为环锥形光束,在环锥形光束中形成一锥形中空无光区,粉丝气复合喷嘴置于此无光区并且与环锥形光束同轴线。粉丝气复合喷嘴的结构为送丝管居中,送粉管紧紧包围送丝管,而准直保护气送气管又平行包围送丝管。工作中丝材在环锥形光束中心通过复合喷嘴中心的送丝管垂直于加工面送入熔池,丝材在接近光束熔池处被所述环锥形光束下部包围照射,然后在光照与熔池热传导等的共同作用下被加热并熔化而进入熔池;气载粉末等过复合喷嘴上的送粉管包围丝材被同步送入熔池,而准直保护气包围粉束吹出,使粉束不发散而平行于丝材喷入熔池,熔入基材表面熔池中的丝材和粉末与少量熔化的基材表层材料共同形成熔池,熔池中熔体随光束与基材的相对移动不断凝固而形成熔道。
由于上述技术方案运用,本发明与现有技术相比具有下列优点:
1.本发明通过光路变换,将原实心光束转变为中空光束,此光束在聚焦面上为实心光斑,中空环形光束改变了光斑内沿径向的光强分布,可弱化中心,加大光斑周边光强,使扫描辐照光强呈鞍型分布,使熔池温度趋于合理化,克服实心光扫描时熔道两侧欠熔的不足;
2.本发明中粉丝气复合喷嘴置于环形聚焦光束中空部位并与光束同轴线,加工中丝材、粉材、准直保护气从复合喷嘴下端平行同轴喷出,与聚焦光束平行同轴被正向送入光斑中心,丝材、粉材、准直保护气和环形光束均匀对称包围,实现了光内同轴复合送粉送丝熔覆沉积,有效保证了光粉丝气耦合稳定,熔层质量好,沉积率明显提高;
3.复合喷嘴的丝、粉、气喷嘴一体集成,比原来侧向分离式送粉送丝装置中丝、粉、气三体分离装置在结构上更为紧凑,加工时三者不需要对位调整,送粉的粉束轨迹和丝材的送进方位、姿态不会因加工过程中的动作而引起粉量、载气量的变化而受到影响;
4.正向单粉束为直线状,方向一致,不会相交碰撞和发散,粉末沉积率提高,发散余粉和成形面粘附颗粒减少,光粉耦合精度的提高促使物理热耦合效应提高,熔层层厚稳定,其表面形貌和粗糙度明显改善,环境污染减小。
图1 为现有技术中实心光广外送粉送丝方法的示意图;
图2为本发明实施例一中光内送粉送丝复合熔覆的示意图;
图3为本发明实施例一中光内送粉送丝复合熔覆装置的结构示意图。
其中:1、实心光束;2、送粉嘴;3、送丝嘴;4、粉末;5、丝材;6、工件;7、工作台;8、保护气;9、熔池;10、环形光束;11、粉丝气复合喷嘴;12、粉末;13、准直保护气;14、丝材;15、熔池;16、入射激光束;17、筒体;18、下锥套;19、圆锥镜;20、环形聚焦镜;21、支撑架;22、环锥形聚焦光束;23、送丝管;24、送粉管;25、送气管;26、入光口;27、出光口;28、锥形中空无光区;29、加工表面。
下面结合附图及实施例对本发明作进一步描述:
实施例一:参见图2所示,一种送丝送粉复合激光熔覆成形方法,通过光路变换,用圆锥镜将激光器发射的实心激光束变换为环形光束,再用环形聚焦镜聚焦成为环锥形光束,在环锥形光束中形成一锥形中空无光区,送粉送丝和保护气复合喷嘴置于该无光区内并与环锥形光束同轴线,送丝孔居中,平行送粉孔包围送丝孔,准直保护气孔平行包围送粉孔,丝材通过送丝孔与光束同轴垂直于加工面送入熔池,气载粉末通过送粉孔同步送入熔池,准直保护气包围粉束平行吹向熔池。
实现上述方法的一种送丝送粉复合激光熔覆成形的装置,包括筒体17,所述筒体17上方开设有入光口26,所述筒体17下方设有下锥套18,其下方开设有出光口27,所述筒体17内部中心设有支撑架21,所述支撑架21由内圈、外圈及两根筋条构成,所述外圈设于所述筒体17内壁上,经筋条与所述内圈连接,所述内圈上设有圆锥镜19,其镜面朝向入光口26,所述筋条的迎光面设有吸光层,所述筋条内部设有冷却水道;所述筒体17内壁上固定设有环形聚焦镜20,其镜面与所述圆锥镜19镜面相对,所述圆锥镜19、支撑架21及环形聚焦镜20与筒体17的入光口26及出光口27同轴,所述支撑架21下方固定设有粉丝气复合喷嘴11,所述粉丝气复合喷嘴11为三层复合结构,内层为送丝管23,中间层为送粉管24,外层为送气管25,三者出口相互平行,所述粉丝气复合喷嘴11与所述圆锥镜19及环形聚焦镜同轴20;所述送丝管23贯穿所述筒体17从筒体上部进入,穿过所述圆锥镜19与环形聚焦镜20间的空隙,直至所述圆锥镜19下方后与圆锥镜同轴,所述送丝管23迎光面设有吸光层,内部设有冷却水道;所述送粉管24及送气管25为L型,其水平段贯穿筒体17从筒体侧面进入,分别设置于所述两根筋条下方伸入复合喷嘴内,所述送粉管24迎光面设有吸光层,内部设有冷却水道。
工作时,圆锥镜19将入射激光束16扩束反射至环形聚焦镜20的环形镜面上,环形镜面进而将扩束光发反射成环锥形聚焦光束22,环锥形聚焦光束22中心形成一锥形中空无光区28,环锥形聚焦光束22在出光口27的下方聚焦,形成熔池15。送丝管23内的金属丝材14、送粉管24内的金属粉末12以及送气管25内的准直保护气13在粉丝气复合喷嘴11的下端一同平行喷出,其中,金属丝材14居中,金属粉末12包围金属丝材14,准直保护气13又包围金属粉末12。金属丝材,金属粉末在准直保护气的包围准直作用下垂直加工表面29进入熔池15,在聚焦光束的照射和熔池15内熔体材料的热作用下迅速熔化而不断形成为熔池内的熔体,随着整个光头相对加工表面的扫描移动,熔池15中的熔体在加工表面连续凝固而形成熔道。
Claims (6)
1.一种送丝送粉复合激光熔覆成形方法,其特征在于:通过光路变换,用圆锥镜将激光器发射的实心激光束变换为环形光束,再用环形聚焦镜聚焦成为环锥形光束,在环锥形光束中形成一锥形中空无光区,送粉送丝和保护气复合喷嘴置于该无光区内并与环锥形光束同轴线,复合喷嘴中的送丝孔居中,平行送粉孔包围送丝孔,准直保护气孔平行包围送粉孔,丝材通过送丝孔与光束同轴垂直于加工面送入熔池,气载粉末通过送粉孔同步送入熔池,准直保护气包围粉束平行吹向熔池。
2.一种送丝送粉复合激光熔覆成形的装置,包括筒体(17),所述筒体(17)上方开设有入光口(26),所述筒体(17)下方设有下锥套(18),其下方开设有出光口(27),所述筒体(17)内部中心经支撑架(21)固定有圆锥镜(19),其镜面朝向入光口(26),所述筒体(17)内壁上固定设有环形聚焦镜(20),其镜面与所述圆锥镜(19)镜面相对,所述圆锥镜(19)、支撑架(21)及环形聚焦镜(20)与筒体(17)的入光口(26)及出光口(27)同轴,其特征在于:所述支撑架(21)下方固定设有粉丝气复合喷嘴(11),所述粉丝气复合喷嘴(11)为三层复合结构,内层为送丝管(23),中间层为送粉管(24),外层为送气管(25),三者出口相互平行,所述粉丝气复合喷嘴(11)与所述圆锥镜(19)及环形聚焦镜(20)同轴。
3.根据权利要求2所述的一种送丝送粉复合激光熔覆成形的装置,其特征在于:所述支撑架(21)由内圈、外圈及至少两根筋条构成,所述外圈设于所述筒体(17)内壁上,经筋条与所述内圈连接,所述内圈上设有圆锥镜(19),所述筋条的迎光面设有吸光层,所述筋条内部设有冷却水道。
4.根据权利要求2所述的一种送丝送粉复合激光熔覆成形的装置,其特征在于:所述送丝管(23)贯穿所述筒体(17)从筒体上部进入,穿过所述圆锥镜(19)与环形聚焦镜(20)间的空隙,直至所述圆锥镜(19)下方后伸入复合喷嘴内并与圆锥镜同轴,所述送丝管(23)迎光面设有吸光层,内部设有冷却水道。
5.根据权利要去2所述的一种送丝送粉复合激光熔覆成形的装置,其特征在于:所述送粉管(24)为L型,其水平段贯穿筒体(17)从筒体侧面进入,设置于所述筋条下方伸入复合喷嘴内,所述送粉管(24)迎光面设有吸光层,内部设有冷却水道。
6.根据权利要求2所述的一种送丝送粉复合激光熔覆成形的装置,其特征在于:所述送气管(25)为L型,其水平段贯穿筒体(17)从筒体侧面进入,设置于所述筋条下方伸入复合喷嘴内。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010017158.1 | 2010-01-09 | ||
CN2010100171581A CN101733550B (zh) | 2010-01-09 | 2010-01-09 | 一种送丝送粉复合激光熔覆成形方法及装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011082582A1 true WO2011082582A1 (zh) | 2011-07-14 |
Family
ID=42457859
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2010/075727 WO2011082582A1 (zh) | 2010-01-09 | 2010-08-05 | 一种送丝送粉复合激光熔覆成形方法及装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN101733550B (zh) |
WO (1) | WO2011082582A1 (zh) |
Cited By (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105562951A (zh) * | 2016-02-03 | 2016-05-11 | 苏州大学 | 一种用于激光熔覆的激光光内送丝装置 |
CN107283050A (zh) * | 2017-08-11 | 2017-10-24 | 重庆江陆激光科技有限公司 | 一种深孔激光熔覆用的导光装置 |
DE102016219587A1 (de) * | 2016-10-10 | 2018-04-12 | Siemens Aktiengesellschaft | Kombination von Draht- und Pulverauftragschweißung, Verfahren, Vorrichtung und Bauteil |
CN109536952A (zh) * | 2018-12-25 | 2019-03-29 | 北京安迪威尔科技有限公司 | 一种送粉装置和激光熔覆设备 |
CN110193647A (zh) * | 2019-07-04 | 2019-09-03 | 湖北汽车工业学院 | 一种电弧增材制造用丝-粉同送的焊枪套筒 |
EP3369518A4 (en) * | 2015-12-28 | 2019-09-04 | Dmg Mori Co., Ltd. | HEAD FOR ADDITIVE PROCESSING, PROCESSING MACHINE AND PROCESSING METHOD |
US10457035B2 (en) | 2017-03-07 | 2019-10-29 | General Electric Company | Apparatuses and systems for net shape manufacturing |
CN110405203A (zh) * | 2018-04-17 | 2019-11-05 | 长沙嘉程机械制造有限公司 | 同轴复合多束激光+电热丝材沉积方法 |
CN110684974A (zh) * | 2019-09-10 | 2020-01-14 | 武汉武钢华工激光大型装备有限公司 | 一种可变光斑的振镜扫描式激光熔覆加工头装置 |
CN110709195A (zh) * | 2017-03-31 | 2020-01-17 | 株式会社尼康 | 造型系统及造型方法 |
CN110938818A (zh) * | 2019-12-20 | 2020-03-31 | 西安交通大学 | 一种旁轴送粉装置 |
CN111424276A (zh) * | 2020-05-28 | 2020-07-17 | 山东雷石智能制造股份有限公司 | 一种l型激光熔覆头和一种激光熔覆设备 |
WO2020202342A1 (ja) * | 2019-03-29 | 2020-10-08 | Dmg森精機株式会社 | 加工機械 |
CN111922354A (zh) * | 2020-08-29 | 2020-11-13 | 四川弘博新材科技股份有限公司 | 一种电爆炸包覆粉体的方法及其装置 |
WO2021001054A1 (en) | 2019-07-03 | 2021-01-07 | Directedmetal 3D Sl | Multi-mode laser device for metal manufacturing applications |
CN112410779A (zh) * | 2020-11-02 | 2021-02-26 | 水利部杭州机械设计研究所 | 一种同轴多束激光合成轴心送粉超高速激光熔覆头及其熔覆方法 |
US20210060861A1 (en) * | 2019-08-27 | 2021-03-04 | Edison Welding Institute, Inc. | Coaxial laser-wire optical system for use in additive manufacturing |
FR3101559A1 (fr) * | 2019-10-07 | 2021-04-09 | Safran Aircraft Engines | Système de dépôt laser de métal |
CN112828430A (zh) * | 2021-02-08 | 2021-05-25 | 深圳先进技术研究院 | 一种等离子电弧增材制造形性一体化成形装备系统 |
CN113215562A (zh) * | 2021-04-21 | 2021-08-06 | 苏州工业职业技术学院 | 一种三光束丝粉混合激光熔覆喷头 |
CN113235084A (zh) * | 2021-05-11 | 2021-08-10 | 苏州大学 | 一种实现环形中空偏焦激光的高速熔覆方法 |
CN113231741A (zh) * | 2021-04-26 | 2021-08-10 | 南京航空航天大学 | 一种基于环形光斑同轴送丝的激光焊接装置及方法 |
CN113737173A (zh) * | 2021-08-25 | 2021-12-03 | 武汉瀚海智能激光工程有限公司 | 一种激光熔覆头装置 |
US11203084B2 (en) | 2017-01-05 | 2021-12-21 | Ipg Photonics Corporation | Additive laser machining systems and methods |
CN113818019A (zh) * | 2021-09-22 | 2021-12-21 | 北京机科国创轻量化科学研究院有限公司 | 一种合适大送粉量的超高速激光熔覆喷嘴与熔覆工艺 |
CN114231978A (zh) * | 2021-11-15 | 2022-03-25 | 苏州工业职业技术学院 | 一种具闭环控制的激光熔覆系统 |
US20220134440A1 (en) * | 2019-08-27 | 2022-05-05 | Edison Welding Institute, Inc. | Multi-beam coaxial laser optical system for use in additive manufacturing |
CN114657553A (zh) * | 2022-03-14 | 2022-06-24 | 江苏电子信息职业学院 | 一种钛合金表面改性用激光熔覆装置 |
CN115213576A (zh) * | 2022-08-02 | 2022-10-21 | 哈尔滨工业大学(威海) | 一种超声辅助的水下激光电弧复合增材设备 |
CN115351293A (zh) * | 2022-09-01 | 2022-11-18 | 华侨大学 | 一种丝粉同步送料增材制造气体保护方法 |
CN115475957A (zh) * | 2022-09-01 | 2022-12-16 | 华侨大学 | 一种丝粉同步送料增材制造方法 |
CN115502563A (zh) * | 2022-11-24 | 2022-12-23 | 广东省科学院智能制造研究所 | 一种激光增材加工系统 |
CN115533114A (zh) * | 2022-10-31 | 2022-12-30 | 广东利元亨技术有限公司 | 复合材料制造装置及其控制方法 |
DE102022001085A1 (de) | 2022-03-29 | 2023-10-05 | Mercedes-Benz Group AG | Verfahren zur elektrischen Kontaktierung von Batteriezellen mit einem Zellverbinder |
CN117696927A (zh) * | 2024-01-08 | 2024-03-15 | 哈尔滨工业大学 | 一种送粉式激光熔覆增材制造过程中粉末流量实时调控装置及其使用方法 |
Families Citing this family (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101733550B (zh) * | 2010-01-09 | 2012-04-25 | 苏州大学 | 一种送丝送粉复合激光熔覆成形方法及装置 |
CN103399405B (zh) * | 2013-07-17 | 2016-07-06 | 苏州大学 | 一种激光宽带熔覆装置及方法 |
CN104014793B (zh) * | 2014-05-15 | 2016-01-27 | 东莞市亚美精密机械配件有限公司 | 挤出式金属流3d打印机 |
CN104313571B (zh) * | 2014-11-06 | 2016-09-07 | 哈尔滨工业大学 | 丝粉同步送进激光沉积制备铝基复合材料构件的方法 |
CN105710532A (zh) * | 2014-12-03 | 2016-06-29 | 苏州天弘激光股份有限公司 | 送粉焊接装置 |
EP3334558B1 (de) * | 2015-08-13 | 2022-07-27 | Trumpf Laser- und Systemtechnik GmbH | Verfahren zum laserauftragsschweissen |
CN108136541A (zh) * | 2015-08-14 | 2018-06-08 | Dm3D技术有限责任公司 | 具有用于直接金属沉积的激光扫描头的喷嘴 |
CN105648436B (zh) * | 2016-01-21 | 2018-06-29 | 苏州大学 | 曲率实体件激光熔覆成形工艺及装置 |
TWI621739B (zh) * | 2016-06-20 | 2018-04-21 | 國立成功大學 | 沉積設備與沉積方法 |
CN106312304B (zh) * | 2016-11-01 | 2018-09-04 | 苏州大学 | 激光熔覆送料装置 |
CN106392314B (zh) * | 2016-11-01 | 2018-05-22 | 苏州大学 | 激光熔覆送料装置 |
CN106583726B (zh) * | 2017-01-24 | 2018-10-16 | 苏州大学 | 激光多光束熔覆装置 |
CN106583920B (zh) * | 2017-01-24 | 2018-06-29 | 苏州大学 | 激光熔覆装置 |
CN107322166B (zh) * | 2017-08-04 | 2019-04-12 | 苏州大学 | 激光熔覆装置的抛物面的设定方法及激光熔覆装置 |
CN107498140B (zh) * | 2017-08-28 | 2019-12-17 | 大族激光科技产业集团股份有限公司 | 激光同轴钎焊装置及激光焊接方法 |
CN107604194B (zh) * | 2017-10-31 | 2022-07-15 | 湖北汽车工业学院 | 一种基于电弧沉积金属基复合材料的送丝送粉耦合装置 |
CN108380879A (zh) * | 2018-04-28 | 2018-08-10 | 上海产业技术研究院 | 以激光为热源的送丝3d打印机及其打印方法 |
WO2020125197A1 (zh) * | 2018-12-18 | 2020-06-25 | 苏州大学 | 熔覆喷头、熔覆装置及熔覆成型方法 |
CN109351973A (zh) * | 2018-12-18 | 2019-02-19 | 苏州大学 | 一种三维空间任意方向熔覆成型方法 |
CN109551126A (zh) * | 2019-01-29 | 2019-04-02 | 长沙星沙机床有限公司 | 一种送料装置及其组成的半导体激光机器人加工设备 |
CN109852965B (zh) * | 2019-03-15 | 2021-09-07 | 西安增材制造国家研究院有限公司 | 一种激光送丝与送粉复合的激光熔覆加工头 |
CN109894740A (zh) * | 2019-04-12 | 2019-06-18 | 哈尔滨工业大学 | 一种激光聚焦装置及其进行激光聚焦的方法 |
CN110587139A (zh) * | 2019-10-09 | 2019-12-20 | 西安增材制造国家研究院有限公司 | 一种电弧激光同轴送丝送粉打印喷头及增材制造装置 |
CN110846659A (zh) * | 2019-12-23 | 2020-02-28 | 苏州天弘激光股份有限公司 | 光内同轴送球激光熔覆头、熔覆系统及熔覆方法 |
CN111441050A (zh) * | 2020-04-28 | 2020-07-24 | 苏州大学 | 激光超高速熔覆头、超高速熔覆系统及熔覆方法 |
CN111519183A (zh) * | 2020-04-28 | 2020-08-11 | 苏州大学 | 激光超高速熔覆头、超高速熔覆系统及熔覆方法 |
CN111471992B (zh) * | 2020-05-19 | 2023-04-25 | 宝宇(武汉)激光技术有限公司 | 一种应用于激光熔覆的靶面叠加式激光镜片模组系统 |
CN111575702B (zh) * | 2020-05-22 | 2022-05-27 | 苏州大学 | 一种激光熔覆方法及系统 |
CN111940730A (zh) * | 2020-06-23 | 2020-11-17 | 南昌大学 | 一种通过激光增材原位制备金属基复合材料的方法 |
CN112743245A (zh) * | 2021-01-05 | 2021-05-04 | 兰州理工大学 | 一种激光同轴送粉和热丝耦合的焊接装置及方法 |
CN112743244A (zh) * | 2021-01-05 | 2021-05-04 | 兰州理工大学 | 一种激光同轴送粉和焊丝耦合的焊接装置及方法 |
CN114951930A (zh) * | 2021-02-23 | 2022-08-30 | 深圳先进技术研究院 | 一种等离子电弧增材制造装置及方法 |
CN113102781A (zh) * | 2021-04-21 | 2021-07-13 | 苏州工业职业技术学院 | 一种三光束丝粉混合激光熔覆系统 |
CN113102783A (zh) | 2021-05-11 | 2021-07-13 | 苏州大学 | 一种环形中空偏焦激光熔覆装置 |
CN113927047B (zh) * | 2021-10-28 | 2023-03-28 | 中北大学 | 基于丝-粉联合激光增材制造的填丝装置 |
CN114457331A (zh) * | 2021-12-24 | 2022-05-10 | 武汉数字化设计与制造创新中心有限公司 | 一种随运动自适应调节工作焦距的激光熔覆加工头系统 |
CN114309662B (zh) * | 2021-12-31 | 2023-05-30 | 西安交通大学 | 一体化3d打印头装置、平台及熔丝送粉混合增材制造方法 |
CN114561640B (zh) * | 2022-03-09 | 2023-01-10 | 华中科技大学 | 一种基于金属基复合材料制备的水下激光修复装置及方法 |
CN115283692A (zh) * | 2022-03-29 | 2022-11-04 | 苏州大学 | 一种全等轴晶构件及激光增材制造全等轴晶构件的方法 |
CN114769875A (zh) * | 2022-04-25 | 2022-07-22 | 中国航空制造技术研究院 | 一种激光旋转扫描同轴熔丝熔粉装置及沉积方法 |
CN114643410B (zh) * | 2022-04-25 | 2022-11-29 | 大连理工大学 | 一种同轴送丝激光制造方法及装置 |
CN118513671A (zh) * | 2024-07-22 | 2024-08-20 | 比亚迪股份有限公司 | 一种焊接装置及焊接系统 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101148760A (zh) * | 2006-09-22 | 2008-03-26 | 苏州大学 | 激光加工成形制造光内送粉工艺与光内送粉喷头 |
CN101362244A (zh) * | 2008-09-27 | 2009-02-11 | 沈阳哈维尔表面工程技术有限公司 | 明弧添加特种合金粉自动堆焊设备 |
CN101386111A (zh) * | 2007-09-14 | 2009-03-18 | 苏州大学 | 激光光内送丝熔覆方法与光内送丝装置 |
CN101733550A (zh) * | 2010-01-09 | 2010-06-16 | 苏州大学 | 一种送丝送粉复合激光熔覆成形方法及装置 |
-
2010
- 2010-01-09 CN CN2010100171581A patent/CN101733550B/zh not_active Expired - Fee Related
- 2010-08-05 WO PCT/CN2010/075727 patent/WO2011082582A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101148760A (zh) * | 2006-09-22 | 2008-03-26 | 苏州大学 | 激光加工成形制造光内送粉工艺与光内送粉喷头 |
CN101386111A (zh) * | 2007-09-14 | 2009-03-18 | 苏州大学 | 激光光内送丝熔覆方法与光内送丝装置 |
CN101362244A (zh) * | 2008-09-27 | 2009-02-11 | 沈阳哈维尔表面工程技术有限公司 | 明弧添加特种合金粉自动堆焊设备 |
CN101733550A (zh) * | 2010-01-09 | 2010-06-16 | 苏州大学 | 一种送丝送粉复合激光熔覆成形方法及装置 |
Cited By (58)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11173662B2 (en) | 2015-12-28 | 2021-11-16 | Dmg Mori Co., Ltd. | Additive-manufacturing head, manufacturing machine, and manufacturing method |
EP3369518A4 (en) * | 2015-12-28 | 2019-09-04 | Dmg Mori Co., Ltd. | HEAD FOR ADDITIVE PROCESSING, PROCESSING MACHINE AND PROCESSING METHOD |
CN105562951A (zh) * | 2016-02-03 | 2016-05-11 | 苏州大学 | 一种用于激光熔覆的激光光内送丝装置 |
DE102016219587A1 (de) * | 2016-10-10 | 2018-04-12 | Siemens Aktiengesellschaft | Kombination von Draht- und Pulverauftragschweißung, Verfahren, Vorrichtung und Bauteil |
US11318557B2 (en) | 2017-01-05 | 2022-05-03 | Ipg Photonics Corporation | Additive laser machining systems and methods |
US11203084B2 (en) | 2017-01-05 | 2021-12-21 | Ipg Photonics Corporation | Additive laser machining systems and methods |
US10457035B2 (en) | 2017-03-07 | 2019-10-29 | General Electric Company | Apparatuses and systems for net shape manufacturing |
CN110709195A (zh) * | 2017-03-31 | 2020-01-17 | 株式会社尼康 | 造型系统及造型方法 |
EP3603853A4 (en) * | 2017-03-31 | 2020-12-23 | Nikon Corporation | MODELING SYSTEM AND MODELING PROCESS |
CN107283050B (zh) * | 2017-08-11 | 2024-03-15 | 重庆江陆激光科技有限公司 | 一种深孔激光熔覆用的导光装置 |
CN107283050A (zh) * | 2017-08-11 | 2017-10-24 | 重庆江陆激光科技有限公司 | 一种深孔激光熔覆用的导光装置 |
CN110405203A (zh) * | 2018-04-17 | 2019-11-05 | 长沙嘉程机械制造有限公司 | 同轴复合多束激光+电热丝材沉积方法 |
CN109536952A (zh) * | 2018-12-25 | 2019-03-29 | 北京安迪威尔科技有限公司 | 一种送粉装置和激光熔覆设备 |
JP7098053B2 (ja) | 2019-03-29 | 2022-07-08 | Dmg森精機株式会社 | 加工機械 |
WO2020202342A1 (ja) * | 2019-03-29 | 2020-10-08 | Dmg森精機株式会社 | 加工機械 |
JPWO2020202342A1 (ja) * | 2019-03-29 | 2021-12-09 | Dmg森精機株式会社 | 加工機械 |
CN113950388A (zh) * | 2019-07-03 | 2022-01-18 | 德瑞柯特金属3D有限公司 | 用于金属制造应用的多模激光器装置 |
US11219951B2 (en) | 2019-07-03 | 2022-01-11 | Directed Metal 3D, S.L. | Multi-mode laser device for metal manufacturing applications |
WO2021001054A1 (en) | 2019-07-03 | 2021-01-07 | Directedmetal 3D Sl | Multi-mode laser device for metal manufacturing applications |
EP4183513A1 (en) | 2019-07-03 | 2023-05-24 | Directedmetal 3D SL | Multi-mode laser device for metal manufacturing applications |
CN113950388B (zh) * | 2019-07-03 | 2024-04-19 | 德瑞柯特金属3D有限公司 | 用于金属制造应用的多模激光器装置 |
CN110193647A (zh) * | 2019-07-04 | 2019-09-03 | 湖北汽车工业学院 | 一种电弧增材制造用丝-粉同送的焊枪套筒 |
CN110193647B (zh) * | 2019-07-04 | 2024-05-10 | 湖北汽车工业学院 | 一种电弧增材制造用丝-粉同送的焊枪套筒 |
EP4021668A4 (en) * | 2019-08-27 | 2023-10-04 | Edison Welding Institute, Inc. | COAXIAL OPTICAL LASER WIRE SYSTEM FOR USE IN ADDITIVE MANUFACTURING |
US20210060861A1 (en) * | 2019-08-27 | 2021-03-04 | Edison Welding Institute, Inc. | Coaxial laser-wire optical system for use in additive manufacturing |
US20220134440A1 (en) * | 2019-08-27 | 2022-05-05 | Edison Welding Institute, Inc. | Multi-beam coaxial laser optical system for use in additive manufacturing |
CN110684974A (zh) * | 2019-09-10 | 2020-01-14 | 武汉武钢华工激光大型装备有限公司 | 一种可变光斑的振镜扫描式激光熔覆加工头装置 |
FR3101559A1 (fr) * | 2019-10-07 | 2021-04-09 | Safran Aircraft Engines | Système de dépôt laser de métal |
CN110938818A (zh) * | 2019-12-20 | 2020-03-31 | 西安交通大学 | 一种旁轴送粉装置 |
CN110938818B (zh) * | 2019-12-20 | 2024-06-07 | 西安交通大学 | 一种旁轴送粉装置 |
CN111424276A (zh) * | 2020-05-28 | 2020-07-17 | 山东雷石智能制造股份有限公司 | 一种l型激光熔覆头和一种激光熔覆设备 |
CN111424276B (zh) * | 2020-05-28 | 2024-03-22 | 山东雷石智能制造股份有限公司 | 一种l型激光熔覆头和一种激光熔覆设备 |
CN111922354A (zh) * | 2020-08-29 | 2020-11-13 | 四川弘博新材科技股份有限公司 | 一种电爆炸包覆粉体的方法及其装置 |
CN111922354B (zh) * | 2020-08-29 | 2022-12-02 | 四川弘博新材科技股份有限公司 | 一种电爆炸包覆粉体的方法及其装置 |
CN112410779A (zh) * | 2020-11-02 | 2021-02-26 | 水利部杭州机械设计研究所 | 一种同轴多束激光合成轴心送粉超高速激光熔覆头及其熔覆方法 |
CN112828430A (zh) * | 2021-02-08 | 2021-05-25 | 深圳先进技术研究院 | 一种等离子电弧增材制造形性一体化成形装备系统 |
CN113215562B (zh) * | 2021-04-21 | 2024-03-29 | 苏州工业职业技术学院 | 一种三光束丝粉混合激光熔覆喷头 |
CN113215562A (zh) * | 2021-04-21 | 2021-08-06 | 苏州工业职业技术学院 | 一种三光束丝粉混合激光熔覆喷头 |
CN113231741B (zh) * | 2021-04-26 | 2022-04-19 | 南京航空航天大学 | 一种基于环形光斑同轴送丝的激光焊接装置及方法 |
CN113231741A (zh) * | 2021-04-26 | 2021-08-10 | 南京航空航天大学 | 一种基于环形光斑同轴送丝的激光焊接装置及方法 |
CN113235084B (zh) * | 2021-05-11 | 2022-11-11 | 苏州大学 | 一种实现环形中空偏焦激光的高速熔覆方法 |
CN113235084A (zh) * | 2021-05-11 | 2021-08-10 | 苏州大学 | 一种实现环形中空偏焦激光的高速熔覆方法 |
CN113737173B (zh) * | 2021-08-25 | 2023-12-26 | 武汉瀚海智能激光工程有限公司 | 一种激光熔覆头装置 |
CN113737173A (zh) * | 2021-08-25 | 2021-12-03 | 武汉瀚海智能激光工程有限公司 | 一种激光熔覆头装置 |
CN113818019B (zh) * | 2021-09-22 | 2024-03-26 | 北京机科国创轻量化科学研究院有限公司 | 一种合适大送粉量的超高速激光熔覆喷嘴与熔覆工艺 |
CN113818019A (zh) * | 2021-09-22 | 2021-12-21 | 北京机科国创轻量化科学研究院有限公司 | 一种合适大送粉量的超高速激光熔覆喷嘴与熔覆工艺 |
CN114231978A (zh) * | 2021-11-15 | 2022-03-25 | 苏州工业职业技术学院 | 一种具闭环控制的激光熔覆系统 |
CN114657553A (zh) * | 2022-03-14 | 2022-06-24 | 江苏电子信息职业学院 | 一种钛合金表面改性用激光熔覆装置 |
CN114657553B (zh) * | 2022-03-14 | 2023-09-15 | 江苏电子信息职业学院 | 一种钛合金表面改性用激光熔覆装置 |
DE102022001085A1 (de) | 2022-03-29 | 2023-10-05 | Mercedes-Benz Group AG | Verfahren zur elektrischen Kontaktierung von Batteriezellen mit einem Zellverbinder |
CN115213576A (zh) * | 2022-08-02 | 2022-10-21 | 哈尔滨工业大学(威海) | 一种超声辅助的水下激光电弧复合增材设备 |
CN115213576B (zh) * | 2022-08-02 | 2023-09-15 | 哈尔滨工业大学(威海) | 一种超声辅助的水下激光电弧复合增材设备 |
CN115351293A (zh) * | 2022-09-01 | 2022-11-18 | 华侨大学 | 一种丝粉同步送料增材制造气体保护方法 |
CN115475957A (zh) * | 2022-09-01 | 2022-12-16 | 华侨大学 | 一种丝粉同步送料增材制造方法 |
CN115533114A (zh) * | 2022-10-31 | 2022-12-30 | 广东利元亨技术有限公司 | 复合材料制造装置及其控制方法 |
CN115502563B (zh) * | 2022-11-24 | 2023-08-15 | 广东省科学院智能制造研究所 | 一种激光增材加工系统 |
CN115502563A (zh) * | 2022-11-24 | 2022-12-23 | 广东省科学院智能制造研究所 | 一种激光增材加工系统 |
CN117696927A (zh) * | 2024-01-08 | 2024-03-15 | 哈尔滨工业大学 | 一种送粉式激光熔覆增材制造过程中粉末流量实时调控装置及其使用方法 |
Also Published As
Publication number | Publication date |
---|---|
CN101733550B (zh) | 2012-04-25 |
CN101733550A (zh) | 2010-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2011082582A1 (zh) | 一种送丝送粉复合激光熔覆成形方法及装置 | |
CN101386111A (zh) | 激光光内送丝熔覆方法与光内送丝装置 | |
CN101148760B (zh) | 激光加工成形制造光内送粉工艺与光内送粉喷头 | |
US11772193B2 (en) | Annular hollow offset-focus laser cladding device | |
CN106312304B (zh) | 激光熔覆送料装置 | |
CN106444049B (zh) | 激光宽带熔覆装置 | |
CN109989060B (zh) | 一种同轴送粉高速激光喷涂装置 | |
CN106392314B (zh) | 激光熔覆送料装置 | |
CN204825050U (zh) | 一种内孔用激光熔覆头 | |
WO2015007117A1 (zh) | 一种激光宽带熔覆装置及方法 | |
CN215033627U (zh) | 一种环形中空偏焦激光熔覆装置 | |
CN101774084A (zh) | 一种光、粉、气同轴输送激光熔覆成形制造的方法及装置 | |
CN104289811A (zh) | 一种多光束中心送丝激光加工头及其加工方法 | |
CN214768946U (zh) | 一种三光束丝粉混合激光熔覆系统 | |
CN105562951A (zh) | 一种用于激光熔覆的激光光内送丝装置 | |
CN111455378A (zh) | 一种高效率矩形光斑激光熔覆方法 | |
CN206356731U (zh) | 激光熔覆送料装置 | |
CN210683941U (zh) | 一种高速激光熔覆头 | |
CN206584125U (zh) | 激光宽带熔覆装置 | |
CN111575702B (zh) | 一种激光熔覆方法及系统 | |
CN111549343A (zh) | 一种水冷单通道中心送粉熔覆头 | |
CN105772724A (zh) | 一种提高激光金属3d成形件质量的方法 | |
CN111805088A (zh) | 一种光内同轴送丝的激光增材装置 | |
CN111250702A (zh) | 一种用于激光定向能量沉积的送粉嘴 | |
CN206567684U (zh) | 激光熔覆送料装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10841925 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10841925 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10841925 Country of ref document: EP Kind code of ref document: A1 |